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solitons and dualities in 2 + 1 dimensions · edward nicholas walton

We examine three topics in the physics of three-dimensional systems, paying particular attention

to the roles of topological field theory, topological solitons, and duality.

First, we consider the dynamics of nonrelativistic Chern–Simons-matter theories in 2 + 1

dimensions. The theories we consider support vortex solutions and, at critical coupling, they

admit an effective low-temperature description as a topological quantum mechanics on the moduli

space of these vortices. Using localisation techniques, we compute the ‘expected’ dimension of the

Hilbert space of this quantum mechanics (that is, the Euler characteristic of the relevant quantum

line bundle on the moduli space) in the case of U(Nc) gauge theory with Nf fundamental flavours

at arbitrary Chern–Simons level, λ, compactified on an arbitrary closed Riemann surface.

We apply this result to the analysis of the duality between the vortices of these theories

and the (composite) fermions that arise in descriptions of strongly correlated electron systems

and, in particular, of (nonAbelian, fractional) quantum Hall fluids. In simple cases, where the

degeneracies of the fermion fluids are well understood, the results give quantitative evidence for

these dualities. For example, when Nc = Nf = λ we find strong evidence that the vortices are

dual to fermions in the lowest nonAbelian Landau level associated to a background U(Nf ) flux.

In more complicated examples, the results lead us to quantitative insight into the conjectural

dual theory. We find that quantum vortices generally admit a description as composite objects,

bound states of (dual) anyons. We comment on potential links with three-dimensional mirror

symmetry. We also compute the equivariant expected degeneracy of local Abelian vortices on the

Ω-deformed sphere, finding it to be a q-analog of the undeformed version.

By taking the semiclassical limit, we use our result to compute the volumes of vortex moduli

spaces (which are closely related to the statistical mechanical partition functions of vortex gases).

The volume of the k-vortex moduli space is a polynomial in the volume of physical space and, in

the local case of Nc = Nf , we find a reduction in the degree of this polynomial, from Nfk to k,

resolving a point of confusion in the literature.

We also find new integrability results relating solutions of the exotic vortex equations, which

generalise the Jackiw–Pi and Ambjørn–Olesen vortex equations, in theories with Nf = 1 to

pairs consisting of a flat PSU(Nc + 1) connection and a holomorphic section of the associated

holomorphic CPNc -bundle. As well as providing a way to generate exact exotic vortex solutions

in nonAbelian gauge theories, this leads to conjectural descriptions of the moduli spaces of exotic

vortices and to topology-dependent selection rules for exotic vortex solutions (generalising the

fact that Jackiw–Pi vortex solutions on the infinite sphere always have even flux).

Second, we turn our attention to three-dimensional sigma models with N = 4 supersymmetry.

When its target space is a hyperKähler manifold carrying a (so-called) permuting Sp(1) action,

such a sigma model admits two topological twists: the A-twist and the B-twist. The B-twist,

also known as Rozansky–Witten theory, is well-understood, while the A-twist is a little more

mysterious. The two twists are expected to be related by three-dimensional mirror symmetry.

We construct the A-twist on general three-manifolds and analyse its local and extended

operators. We show that compactifying the theory on a circle gives the two-dimensional A-model
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in the presence of a certain ‘defect operator’. We then outline the construction of the 2-category

of boundary conditions in the three-dimensional A-twist. In particular, we find that the A-twist

induces a monoidal structure on the Fukaya categories of a certain, restricted, class of Kähler

manifolds.

Third, we consider magnetic Skyrmions in ferromagnetic materials. We produce a continuum

toy model of fractionalised electrons in three spatial dimensions describing magnetic Skyrmions

and their creation and destruction via emergent magnetic monopoles. When an external magnetic

field is applied, the model has a critical point where confined monopoles are dynamically stabilised

and monopole-antimonopole pairs may condense. We find novel ‘BPS-like’ equations for these

configurations. By tuning the model to critical coupling and then deforming it, we find qualitative

agreement with the observed phase structure of chiral ferromagnets.

We then consider the critically-coupled model for magnetic Skyrmions on thin films, generalising

it to thin films with curved geometry. We find exact Skyrmion solutions on some curved films with

symmetry, namely spherical, conical, and cylindrical films. We prove the existence of Skyrmion

solutions in the model on general compact films and investigate the geometry of the (resolved)

moduli space of solutions.
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1 some questions

1.1 structure and duality

Any object is no more and no less than its interactions with every other object. One can

understand an object only by probing it with other objects, as one understands a particle by

throwing other particles at it in an accelerator, or as one understands a painting by looking at it.

This holds in mathematics in the form of the Yoneda lemma, which tells us that any category of

‘objects’ admits a full and faithful embedding into the category of ‘probes’ of these objects1.

Just as anything else, quantum field theories are subject to this. Let us illustrate this in the

setting of topological field theories, describing, for example, the dynamics of gapped theories at

low energy, where one can hope to make precise statements. One ‘probes’ a topological quantum

field theory Z with another Z ′ by considering the domain walls between Z and Z ′, along with

the algebraic data defining their fusion, which generally turns the collection of domain walls into

a higher category (see [Kap10]). It is a result of Lurie [Lur09] that a topological field theory (in

the sense that Lurie defines) is determined entirely by its higher category of domain walls with

the trivial theory, which is to say by its higher category of boundary conditions.

A duality between two field theories is just a domain wall between them that is ‘trivial’, in

an appropriate sense. This is a rather soulless description. Dualities can be rich, beautiful, and

computationally powerful. It is said that poetry is the art of giving different names to the same

thing, which might explain the enduring allure of duality in physics: dualities capture the fact

that the same physical system can be described in very different ways.

Perhaps the best-known duality is the electric-magnetic duality of pure electromagnetism in

four spacetime dimensions. Maxwell’s equations for an electromagnetic gauge potential a read

dF (a) = 0 and d ∗ F (a) = 0,

where F (a) is the field strength of a, containing the data of the electric and magnetic fields, and

∗ is the Hodge star, taking 2-forms to 2-forms in four dimensions. These equations are invariant

under the ‘electric-magnetic duality transformation’

F (a) ↔ ∗F (a), (1.1)

which exchanges electric and magnetic fields.

This duality is ‘broken’ by the mathematical formulation of gauge theory. The first of Maxwell’s

equations is a mathematical triviality, while the second has dynamical content, suggesting that

the duality switches the roles of the kinematic and the dynamic.

This can lead to global issues, which are clearly seen by considering Maxwell theory on a

closed Riemannian manifold. On such a manifold, the field strength F (a) always defines a class

in the integral second cohomology. Even on-shell, where the dual field strength ∗F (a) defines
a closed 2-form, there is no reason for the dual field strength to determine a class in integral

1Here, a ‘probe’ is a presheaf on the category of ‘objects’.
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4 Chapter 1. Some questions

cohomology. It turns out that the duality is restored when one passes to the quantum theory

[Wit95], as one must then sum over all possible line bundles that could carry the gauge potential a.

A classical quantisation condition on one side of the duality is related fundamentally to quantum

mechanics on the other.

This mathematical asymmetry is also made manifest by the introduction of charged matter

into the theory. It is straightforward to introduce electric charges into the theory, but the insertion

of a magnetic monopole into Maxwell’s theory requires the presence of a topological defect in space

[Dir31]. The asymmetry is observed physically: we see electrically charged particles everywhere,

but no one has ever seen a magnetic monopole.

electric magnetic
kinematic dynamic

local nonlocal
classical quantum

weak coupling strong coupling
elementary particles solitons

Table 1.1: Some dual concepts.

The essential essence of (1.1), as summarised in Table 1.1, is at the root of a vast number of

dualities. Let us highlight briefly two further aspects of electric-magnetic duality which impact

our story. First, there is particle-vortex duality [Pes78] and its numerous cousins. These describe

the action of electric-magnetic duality on matter. Elementary particles are mapped under these

dualities to magnetically charged solitons, localised collective excitations of the elementary fields

(see [MS04] for a textbook treatment of these objects).

Second, electric-magnetic duality admits a generalisation to nonAbelian gauge theory, known

as Montonen–Olive duality, after [MO77]. The most precise form of this duality is the S-duality of

four-dimensional gauge theories with N = 4 supersymmetry, the mathematical essence of which

was captured in [KW07].

This thesis is concerned with magnetically charged objects and electric-magnetic duality in a

broad sense. Kontsevich wrote in [DLP08] that

‘for me the motivation is mostly the desire to understand the hidden machinery in a

striking concrete example, around which one can build formalisms...

In a deep sense we are all geometers’.

This encapsulates the ambitions, if not always the results, of this thesis. We aim to explore

the ‘hidden machinery’ of duality for field theories through the analysis of some very concrete

examples.

We focus in particular on physical systems in three spacetime dimensions. In rough terms,

there are three reasons for this: first, there are interesting physical phenomena that are exclusive

to or otherwise prominent in three spacetime dimensions, such as anyonic particles, quantum
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Hall phases, magnetic Skyrmions, three-dimensional mirror symmetry; second, three is between

two and four, and three-dimensional physics represents a potential bridge between the very well-

understood area of two-dimensional physics and the wilder world of four-dimensional physics2;

third, three is less than four, and the properties of three-dimensional systems can be directly

observed in laboratory settings.

In section 1.2 we summarise elements of the topics of our study and set forth some questions

which this thesis addresses. Then, in section 1.3, we summarise some of the answers we find.

1.2 physics in three dimensions

1.2.1 The quantum Hall effect, anyons, and vortices

When one applies a transverse magnetic field B to a two-dimensional electron gas (that is, a

thin slab of material) in which a current j is applied, as in Figure 1.1, a current is generated

perpendicular to both the magnetic field and the applied current. This is a consequence of the

Lorentz law.

If the sample has finite width, this leads to the formation of a voltage drop across the sample,

as charged particles accumulate on one edge. The voltage drop in the steady state that forms is

called the Hall voltage, VH , and the phenomenon is called the Hall effect.

B

j

VH

Figure 1.1: The Hall effect.

The Hall conductivity is defined to be σH := |j|/VH . A classical computation in a Drude-type

model predicts that σH should be inversely proportional to the magnitude of the applied magnetic

field. For small magnetic fields, this is indeed observed.

When the applied magnetic field has large magnitude and the temperature is low, something

strange happens. Plateaux appear where the Hall conductivity stays constant for some range

of magnetic fields. Moreover, on these plateaux, the Hall conductivity is (to great accuracy)

quantised to take the form

σH,ν
!
= ν

e2

h

where h is Planck’s constant, e is the elementary charge, and ν is an integer. Different plateaux

have different values for ν. This is the integer quantum Hall effect, first observed in [KDP80].

The integer quantum Hall effect is a consequence of quantum mechanics. Charged fermions in

a magnetic field have energies quantised into Landau levels. As the magnetic field gets larger,

2This point is particularly valid in the context of extended field theory, where increasing the dimension of a
field theory increases the categorical ‘level’ of the theory.



6 Chapter 1. Some questions

the degeneracy of each Landau level increases, as does the energy gap between each level. The

plateau corresponding to a given value of ν corresponds to the system with ν filled Landau levels.

For very clean samples, with large magnetic fields, something even stranger happens. Plateaux

appear for values of ν which are not integers but which are rational. This is the fractional quantum

Hall effect, discovered in [TSG82].

While the integer quantum Hall effect has a relatively simple explanation, the fractional

quantum Hall effect fundamentally depends on interactions between electrons in the material and

so is hard to understand. Indeed, the fractional quantum Hall effect is a consequence of electron

interactions splitting the degeneracy of a Landau level at partial filling to create a gapped state.

The microscopic origin of the effect is not well-understood. However, a great deal of theoretical

progress has been made on effective descriptions of fractional quantum Hall fluids. A very nice

review of the quantum Hall effect and the various ways to understand it is given in [Ton16]. A

more compact review is given in [Rea94]. We will summarise the ideas briefly.

The first step was made by Laughlin, who theorised in [Lau83] that the fractional quantum

Hall effect for ν = 1
q with q odd could be explained by introducing ‘quasiparticles’ and ‘quasiholes’,

emergent particle-like objects of fractional electric charge ±e/q which appear as a kind of collective

excitation of the electrons in the material. It was later shown in [ASW84] that these quasiparticles

should have fractional statistics: they should be anyons [LM77; Wil82]. Interchanging two of

these quasiholes should shift the wavefunction by a phase exp(iπ/q). To describe more general

rational values of ν, one approach is to use the so-called hierarchy states in which one considers

quantum Hall states of the quasiholes themselves.

Richer still is the composite fermion approach of Jain [Jai89] (see also [LF91; Jai92; HLR93;

Jai07]). This takes the perspective that the correct low energy degrees of freedom in a quantum

Hall fluid are composite fermions, electrons (or holes) bound to an even number of ‘vortices’.

These ‘vortices’ may be thought of as winding modes in the wavefunction of the fluid and should

each carry a quantum of ‘emergent’ magnetic flux. The point is that the composite fermions

experience a smaller ‘effective’ magnetic field than that experienced by the fundamental electrons,

given by

B∗ = B − 2pρΦ0

where B is the magnitude of the true applied field, 2p is the number of ‘vortices’ attached to each

electron, ρ is the particle density, and Φ0 is the flux quantum. The fractional quantum Hall effect

can then be understood as an integer quantum Hall effect for composite fermions.

A particular success of the composite fermion model is its prediction of the Fermi sea of

composite objects for a half-filled Landau level, as observed in many materials [Wil+93; HLR93].

If each electron has two vortices bound to it, then the effective magnetic field on the composite

fermions at ν = 1/2 (meaning that ρ = B
2Φ0

) is zero.

Some of the most subtle aspects of quantum Hall physics require even more subtle theoretical

ideas. In particular, in [Wil+87] a quantum Hall state at filling fraction ν = 5
2 was observed.

Initially, it was theorised that incompressible states at this filling fraction were not fully spin-

polarised and so not present in the strong magnetic field limit, but evidence suggests that this is

not the case [Tie+12]. Further even-demoninator quantum Hall states have also been observed
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(see [Li+17]). This poses a problem because the theoretical story so far works well for odd

denominators, but not even ones. A theoretical explanation was given in [MR91], where a

trial wavefunction describing fermions at even-denominator filling fraction was given using the

(so-called) Pfaffian. Physically, the state at ν = 5
2 can be understood through the condensation of

pairs of composite fermions.

Perhaps the most interesting aspect of the story of [MR91] is that quasihole-like excitations

of the quantum Hall state at ν = 5
2 can be nonAbelian anyons. These have the property that

they transform in an irreducible representation of the braid group of dimension higher than one,

so that taking two particles around each other can do something more complicated than simply

multiplying the wavefunction by a phase: it can act by some more general unitary transformation

(hence ‘nonAbelian’). Quantum Hall fluids supporting nonAbelian excitations of this kind are

called nonAbelian quantum Hall fluids. There is hope that they may be useful in quantum

computation (see [Nay+08]).

Running parallel to all of these ideas is the idea of duality, the idea that the physics of electrons

or, indeed, composite fermions in the material may be alternatively described as the physics of

magnetically charged objects: vortices [Ste94; Ton04a; TT15a; RTT16; Tur17; ER20]. These

vortices are not the same as those that appear in the composite fermion wavefunction. Instead

they are classical, solitonic configurations in a dual gauge theory.

The relevant dual theories are nonrelativistic Chern–Simons-matter theories, and it is these

theories that we study in this thesis. We will consider theories at critical coupling, where the

parameters are fine-tuned so that the vortices are BPS (Bogomolny–Prasad–Sommerfield) objects.

This means that they exert no forces on each other and so there is a degenerate moduli space of

vortex solutions (see [MS04], for example). Physically, critical coupling is justified by the fact that

the critically-coupled theory is an infrared fixed point of the renormalisation group flow [BL94].

Critical coupling can also be justified with supersymmetry [TT15a]. Mathematically, critical

coupling facilitates exact computations via exploration of the geometry of the moduli space.

At low temperature, the theory admits an effective description as a one-dimensional topological

sigma model with target given by this vortex moduli space. This one-dimensional low-temperature

theory is topological, so it is completely determined by the dimension of its Hilbert space. We

are led to consider the following fundamental questions, which should be equivalent by duality.

1. What is the dimension of the Hilbert space of critically-coupled nonrelativistic Chern–

Simons-matter theory with gauge group U(Nc) and Nf fundamental flavours at level λ

compactified on a Riemann surface of genus g at low temperature?

2. What are the degeneracies of quasihole excitations of a (nonAbelian) quantum Hall fluid?

We (approximately) answer these questions (or at least the first one) by first realising the

‘expected’ dimension of the Hilbert space as an integral of a particular differential form over the

vortex moduli space and then using Coulomb branch localisation [Wit92; JK95] to transform this

integral into a particular residue computation. The validity of this idea, which is well-known

in the literature concerning supersymmetric field theories, demonstrates the power of critical

coupling.
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These questions are interesting not only from the perspective of systems of correlated electrons,

but also from the perspective of vortices: they reduce to an a priori difficult question about

intersection theory on the moduli space of nonAbelian vortices. These moduli spaces are not well

understood in general and exact results are not always easy to find.

Moreover, the answers to these questions provide physical insight into the nature of quantum

vortices. Indeed, preempting the results which we summarise below, our computation reveals

that quantum vortices are generally composite objects, built out of (dual) anyons. The vortices

are dual to the composite fermions of the electron theory.

There is yet another twist in the story. For certain values of their parameters, the nonrelativistic

Chern–Simons-matter theories that we consider admit an unusual class of vortex-like configurations

that we call exotic vortices. These generalise the well-known Jackiw–Pi [JP90; Dun+91] and

Ambjørn–Olesen [AO88; AO89; AO90] vortex configurations. Abelian exotic vortices were studied

systematically in [Man17] (see also [CD17]). In [DTT16b; Tur20], the importance of Jackiw–Pi

vortices in theories of anyons (and so quantum Hall physics) was pointed out. In [DTT16b], a

series of questions were posed, which can be summarised (after widening them to incorporate

general exotic vortices) as follows.

3. What is the precise relationship between exotic vortices and bound states of anyons?

4. What is the low-temperature theory of quantum exotic vortices?

5. What is the moduli space of solutions to the exotic vortex equations?

We argue that the answer to the first of these questions is electric-magnetic duality and (as

mentioned previously) that this is not exclusive to exotic vortices. The second question can also

be answered: the low-temperature theory is (at least formally) the same topological quantum

mechanics as for ‘non-exotic’ vortices, except that it is now on the moduli space of exotic vortex

solutions. The formal methods we use in the non-exotic case can be implemented directly in the

exotic case.

The third of these questions, question 5, is tricky, because many standard mathematical

techniques can not be applied to exotic vortices. We address it by generalising methods of [Wit77;

Man13; Man17]. As we summarise in more detail below, we show that exotic vortices in theories

with one fundamental flavour (but arbitrarily many colours) can be built from objects that we call

twisted holomorphic maps into spaces of constant holomorphic sectional curvature. We conjecture,

with some evidence, that all solutions are built this way. This provides us with a qualitatively

easier to understand description of the moduli space.

A theme of this thesis is the importance of global effects. The true understanding of a theory, or

a duality, can only really come when one understands what it looks like on arbitrary (admissible)

backgrounds. A question that we will be particularly interested in is as follows.

6. What can be said about global effects in fractional quantum Hall fluids?

The importance of global structure in the fractional quantum Hall effect is well-documented (see

[Hal11; CLW14], for instance).
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We address this question from the perspective of the dual vortex theory, finding the presence

of an effective topological contribution to total effective magnetic flux experienced by composite

vortices or fermions, as previously realised (in a local form) in [Hal11]. This topological contribution

also leads to an interesting breaking of particle-hole symmetry, which can be understood in terms

of ‘spin-attachment’ (induced by BF-type couplings between emergent gauge fields and the spin

connection).

We also recover the well-known fact that the quasiobjects that comprise the composite vortex

can generally not exist on their own on compact surfaces: the number of anyonic particles must

obey a certain quantisation condition, so that the overall configuration is a geometrically viable

object (for us, a vortex).

There are some particularly interesting global effects at play in the exotic vortex theory. Our

‘twisted holomorphic map’ construction suggests that exotic vortices on the sphere obey rather

strange flux quantisation rules, which are not present on surfaces of higher genus (generalising the

known behaviour of Jackiw–Pi vortices [Dun+91; Ake+11]). This is explained by an understanding

of the topology of PSU(n)-bundles on surfaces.

1.2.2 Three-dimensional mirror symmetry and the categorification of two-dimensional mirror

symmetry

The particle-vortex duality above can, in certain cases, be viewed as a deformed version of a

duality called three-dimensional mirror symmetry.

Three-dimensional gauge theories with N = 4 supersymmetry are rich but highly structured

objects. Associated to any such theory are two (generally singular) hyperKähler manifolds,

the Higgs branch and the Coulomb branch. The infrared behaviour of the theory is tied to the

geometry of these spaces: at low energies the theory can be effectively described in terms of a

sigma model into the moduli space of vacua of the theory, which is the union of the Higgs and

Coulomb branches along with additional ‘mixed’ branches.

The geometry of the Higgs branch is given exactly as the hyperKähler quotient of a linear space

(a procedure introduced in [Hit90a]). The geometry of the Coulomb branch, on the other hand,

does not have a straightforward description. Finding a satisfactory definition of the Coulomb

branch has attracted significant attention [Nak16; BFN18; BDG17].

The three-dimensional mirror symmetry of [IS96] is an infrared duality between pairs of

three-dimensional gauge theories with N = 4 supersymmetry. Mirror symmetry interchanges the

Higgs branch of one theory with the Coulomb branch of the other.

When possible, one of the best ways to understand dualities is to associate a pair (or a more

general family) of topological field theories to the theory of interest in such a way that they are

interchanged under the duality. As we discuss shortly, this provides one of the best ways to

understand two-dimensional mirror symmetry [Wit98]. It has also been used effectively in relating

the S-duality of four-dimensional gauge theories with N = 4 supersymmetry to the geometric

Langlands correspondence [KW07].

It is desirable to use this idea to probe three-dimensional mirror symmetry. We will work at
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the level of three-dimensional N = 4 sigma models. Such theories are specified by a hyperKähler

target space X. When X admits a (so-called) permuting Sp(1) action, the corresponding

supersymmetric sigma model admits two topological twists. One of these is very well-understood:

it is the Rozansky–Witten theory of [RW97]. What about the other one? We consider the

following question.

7. What is the mirror to Rozansky–Witten theory?

Many aspects of this question are well-understood. Its spaces of states [Nak16; BFN18; BFK19;

Gai16; CDZ20], line operators [CCG19; Dim+20], and boundary conditions [Bul+16] have all

attracted study in special cases. However, many global aspects of the theory have not been

considered, partly because the theory is rarely considered on arbitrary backgrounds.

Before considering this question in any detail, let us now turn to an ostensibly different

topic. One of the best understood dualities is the two-dimensional mirror symmetry between

two-dimensional sigma models with N = (2, 2) supersymmetry.

Given a two-dimensional sigma model into a Calabi–Yau manifold Y , one can associate two

topological field theories, the A-model and the B-model. These theories arise as topological twists

of the original supersymmetric sigma model with target Y [Wit98].

The B-model is sensitive to complex (‘shape’) moduli3 of the target space Y . Its category

of boundary conditions, or ‘B-branes’, is (roughly speaking) the derived category of coherent

sheaves on Y , DCoh(Y ). An object in this category may be thought of heuristically as a complex

submanifold of Y carrying a holomorphic vector bundle (or a complex of vector bundles).

The A-model, on the other hand, is sensitive to symplectic (‘size’) moduli of Y . Its category of

boundary conditions, the ‘A-branes’, is the Fukaya category Fuk(Y ) of Y (see [Hor+03; Aur13]).

This is defined to be the category with objects Lagrangian submanifolds of Y and spaces of

morphisms the Floer cohomology groups. Really, for mirror symmetry to work, one should pass

to the derived Fukaya category DFuk(Y ) (see [Sei08]).

The basic statement of two-dimensional mirror symmetry is that the A-model in Y is equivalent

to the B-model in a mirror manifold Y ∨ and vice versa. This can be formulated mathematically

as the homological mirror conjecture of Kontsevich [Kon95] which asserts that, roughly,

DFuk(Y ) ≃ DCoh(Y ∨),

and similarly with Y and Y ∨ interchanged.

The details of this are complicated. We will not be overly concerned with these details, instead

focussing on the following question.

8. The category of B-branes has a natural tensor product. Does this have a mirror and, if it

does, what is it?

This question is more tangible, and physical, than it may appear. The existence of a tensor

product of boundary conditions indicates that they can be fused as if they were extended operators

3This is a slight simplification, as it also depends on a choice of basepoint in the space of Kähler moduli (see
[Wit93]).
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in a theory one dimension higher. Indeed, the tensor product of B-branes can be (partially)

understood as resulting from the existence of Rozansky–Witten theory, which has the property

that compactifying it on the circle gives the B-model (with a local operator inserted). The details

of this were understood in [KRS09; KR10]. As we see below, the answer to this question seems to

generally be negative, albeit in an interesting way.

A more physical form of question 8 is the following.

9. Is there a three-dimensional A-model and, if so, what is it?

By ‘three-dimensional A-model’ we mean a three-dimensional topological theory which gives the

A-model when compactified on a circle. It turns out that this is rarely possible ‘on the nose’.

Instead, one should ask for a theory which gives the two-dimensional A-model in the presence of

a certain defect operator when compactified on the circle.

This discussion suggests that we should consider the hypothetical commutative diagram

? ↔ Rozansky–Witten theory

↓ ↓
A-model + defect operator ↔ B-model + local operator

(1.2)

where the horizontal arrows represent mirror symmetry, the vertical arrows represent compactifi-

cation on a circle, and the question mark represents the ‘three-dimensional A-model’.

We get to grips with the above questions and (1.2) by explicitly carrying out the topological

twist of three-dimensional N = 4 sigma models into hyperKähler manifolds with permuting Sp(1)

actions that is mirror to Rozansky–Witten theory. By studying the boundary conditions in this

theory, we find conditions under which this theory induces the existence of a tensor product on

the Fukaya category of a Kähler manifold.

We note that a ‘three-dimensional A-model’ has been constructed in [KV10]. This is distinct

from our model, except in special cases. We comment on the difference between the models in

section 5.4.

1.2.3 Magnetic Skyrmions, monopoles, and spintronics

Three-dimensional gauge theories with N = 4 supersymmetry are rather abstract things. There

is a physical system where topological solitons, and even some of the mathematical ideas of

sophisticated abstract theories, play a very visible role, even in the laboratory: magnets.

Ferromagnetic materials below their critical temperature are well-described at long distances

by micromagnetism, which characterises the configuration of a sample, modelled by a smooth

three-manifold M , by a smooth vector field m of unit length, the magnetisation. Because m is of

unit length, it defines a map from the sample into the 2-sphere. This allows for the formation of

topological solitons, with topological charge characterised by the second cohomotopy group of

M . The relevant solitons are called magnetic Skyrmions, which are characterised by an integral

topological charge. Magnetic Skyrmions were predicted in [PB75; BH94] and first observed in

[Müh+09].
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Magnetic Skyrmions have attracted significant attention within the theoretical, experimental,

and technological communities (see [FRC17] for a review). There have been suggestions that they

may a play role in ‘next-generation’ storage devices and other so-called ‘spintronic’ applications

by virtue of their small size, ease of manipulation, and stability.

At short distances, the micromagnetic approximation is not valid and the topological symmetry

protecting Skyrmions is broken (the ‘ultraviolet’ theory of the magnet generically has no such

topological symmetry). This presents the possibility that Skyrmions may be created or destroyed

by finite energy processes. This creation or destruction is mediated by so-called emergent magnetic

monopoles, also known as Bloch points. These emergent monopoles were observed (indirectly) in

[Mil+13] and more directly in [Bir+20].

We consider the following fundamental questions.

10. What do emergent monopoles look like?

11. Can we explain the phase structure of chiral ferromagnets in a unified way?

12. What is the theory of the phase transition between the Skyrmionic and the (conical, helical,

or polarised) ferromagnetic phases?

We address these questions from the perspective of an emergent gauge theory of fractionalised

electrons (see [Sac19] for a nice review). The microscopic electron field is decomposed into two

parts, one carrying the spin (sometimes called the spinon) and the other carrying the charge

(known as the chargon). There is a redundancy in this description, which is gauged. In three

spatial dimensions, this gives an SU(2) gauge theory (this SU(2) is sometimes called pseudospin).

For the particular setup we construct, micromagnetism emerges in the Higgs phase of this gauge

theory.

By breaking the gauge symmetry in the pattern

SU(2) 99K U(1) 99K 0 (1.3)

we produce a theory supporting emergent magnetic Skyrmions at low energy (classified by

π1(U(1))) which are created and destroyed by (unstable) monopoles (classified by π2(SU(2)/U(1))

at high energy. This type of symmetry breaking pattern has been explored in the context of

(super) quantum chromodynamics in [Auz+04; Auz+03] (see also [Ton05; SY04]).

In vacuum, both the Skyrmions and the monopoles of a theory with the symmetry breaking

pattern (1.3) are not stable. However, in condensed matter systems we can vary external

parameters. If we apply a magnetic field to the system, the stabilisation of the Skyrmion phase is

observed, and we explain how this works in our model.

To analyse this phenomenon more deeply, one can use ideas of criticality. The notion of critical

coupling is well-exploited in high energy physics (sometimes for reasons of supersymmetry). A

critically-coupled micromagnetic theory was given in [BSRS20], details of which were explored

further in [Sch19; Wal20] (see also [Sch20]). For the critically-coupled theory, magnetic Skyrmions

are BPS objects, minimising the energy within their topological class and solving a first-order

equation.
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We extend this critical coupling into our theory of fractionalised electrons, finding novel

BPS-type equations for confined monopoles in a magnetic field at the critical point. This gives us

some insight into the ‘shape’ of monopoles and, by deforming the theory away from criticality,

into the phase structure of the chiral magnet.

The continuum toy model we produce provides, at best, a coarse-grained picture of a true

ferromagnet, which will not have continuous translational symmetry. However, it seems reasonable

that the ideas we discuss could be reproduced in a lattice gauge theory and, if not, it is still

interesting to see an example of a theory infrared dual to the ‘true’ theory displaying much of the

same phenomenology.

We also consider the following question about magnetic Skyrmions.

13. What happens when magnetic Skyrmions are put on curved thin films?

This is an interesting question for technological reasons, as well as mathematical ones. It has

been suggested that one can trap magnetic Skyrmions in position using curvilinear defects on

thin films [Kra+18], which may have implications for spintronic applications.

We consider this question using the ideas of [BSRS20; Sch19; Sch20], generalising the critically

coupled model of micromagnetism given in [BSRS20] to curved thin films.

1.3 summary

1.3.1 Part II: Vortices and the quantum Hall effect

In chapter 2 (which is adapted from and builds on the author’s sole-author paper [Wal21b]),

we compute the Hilbert polynomials of quantum line bundles on moduli spaces of vortices in

U(Nc) gauge theories with Nf fundamental flavours on arbitrary compact Riemann surfaces

using localisation techniques. This is equivalently the computation of the index (that is, the

‘expected dimension’ of the Hilbert space) of the low-temperature effective topological quantum

mechanics of nonrelativistic (2 + 1)-dimensional Chern–Simons-matter theories tuned to critical

coupling. The Abelian result, computed directly, is given in theorem 2.3.6. The nonAbelian result,

computed using Coulomb branch localisation, is given as (2.24). This represents an approximate

answer to question 1. We argue, but do not prove, that it becomes an exact answer when the

area of the spatial surface is sufficiently large.

The output of this computation is generally complicated, but it simplifies dramatically in

special cases. When Nc = Nf =: N and the Chern–Simons level λ is also N , we find strong

quantitative evidence for the idea that vortices at low temperature have a dual description as

charged fermions in the lowest (nonAbelian) Landau level in a background U(N) flux. When

Nf > Nc = 1 and λ = Nf , we find that vortices behave as (minimal) bound states of anyons

in a magnetic field. We give a description of these dualities, which seem to be valid at all

two-dimensional length scales (provided one sits at criticality), representing progress towards

answering question 2.

Our results also allow us to probe the action of the Seiberg duality Nc 7→ Nf −Nc in these

theories (and on vortex moduli spaces), at least in special cases. In particular, in section 2.6, we
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show that the Hilbert polynomial enjoys a refactorisation property, allowing one to express it in

‘Seiberg-dual form’.

In chapter 3 (which is adapted from the author’s sole-author paper [Wal21a]), we address

question 3, question 4, and question 5. We recall that nonrelativistic Chern–Simons-matter

theories with negative quartic coupling may support exotic vortex-like configurations. We give

the basic general theory of these objects and study their moduli spaces using direct and indirect

methods. Many of the standard techniques do not work in the exotic case.

We show that, when Nf = 1, (exotic) vortex configurations can be constructed from (twisted)

holomorphic maps into spaces of constant holomorphic sectional curvature. We conjecture that

all solutions are of this form, giving coarse evidence for this. This leads to interesting topology-

dependent constraints on the possible vortex number of solutions. It also allows us to give

(conjectural) descriptions of the moduli spaces of exotic vortices in special cases.

We then (formally) study quantum mechanics on the exotic vortex moduli space, adapting

the localisation computations of chapter 2 to (formally) compute the Euler characteristic of a

quantum line bundle on the moduli space.

In chapter 4, we use the results of chapter 2 to compute the volumes of vortex moduli spaces.

We show that when Nf = Nc =: N the volume of the k-vortex moduli space is a polynomial in

the volume of physical space of degree k rather than the näıve degree Nk, resolving a point of

confusion in the literature.

The main original results of this part, in order of appearance, are as follows.

• Theorem 2.3.6 represents the rigorous computation of the index for Abelian theories with an

arbitrary number of fundamental flavours and arbitrary Chern–Simons level. The proof of

this result is based on projective bundle methods, which allow us to give a description of the

cohomology ring of the moduli space of Abelian vortices with arbitrary numbers of flavours.

The result provides evidence for the duality between vortices and composite fermions in

electron fluids. An important application of this result is given by the conjectural duality

(??), which provides tantalising links with three-dimensional mirror symmetry.

• The result (2.18) gives the index for local Abelian vortices on the Ω-deformed sphere. The

result is the q-analog of the undeformed result.

• The result (2.24) gives the general form of the index for nonAbelian vortices. This represents

a ‘K-theoretic’ generalisation of the work of [MOS11] on the volumes of vortex moduli

spaces.

• In the special case of Nc = Nf = λ, we show that the vortex index simplifies dramatically.

The result is given in (2.25), which provides strong evidence that vortices in these theories

are dual to fermions in nonAbelian Landau levels. In subsection 2.5.3, we give a heuristic

argument for this result.

• Through Theorem 3.3.1, we show constructively that (exotic) vortices in nonAbelian gauge

theories with one flavour can be built from objects that we call twisted holomorphic maps.
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This generalises work of Manton [Man17], Witten [Wit77], and Olesen [Ole91]. It is an

integrability result, providing (in principle) a method by which solutions to vortex equations

in nonAbelian gauge theories can be given. It also gives conjectural insight into the nature

of the exotic vortex moduli space.

• With (4.2), we give volumes of vortex moduli spaces, previously computed in [MOS11], in a

novel form. In subsection 4.2.3, we use this to show that the statistical mechanical partition

function of a gas of nonAbelian vortices has degree in surface area that is independent of

the genus of the underlying surface. This resolves some confusion in the literature.

1.3.2 Part III: Mirror symmetry in two and three dimensions

In chapter 5, we address question 7, the question of writing down the theory mirror to Rozansky–

Witten theory. We show that one can associate such a mirror theory to any hyperKähler manifold

X carrying an isometric Sp(1) action permuting its complex structures. Indeed, given this data,

we construct the mirror theory, which we call the A-twist, as a cohomological field theory. The

theory can be defined on arbitrary framed three-manifolds.

We go on to study the observables of the A-twist. Its path integral localises to an integral

over the moduli space of solutions to a certain nonlinear Dirac equation. As already well-known

(see [Nak16; BFK19]), its spaces of quantum states are described by the de Rham cohomology

spaces of moduli spaces of holomorphic sections of certain X-bundles (sometimes known as twisted

quasimaps). We show that its category of line operators may be described as the category of

boundary conditions for a two-dimensional A-model deformed by a geometrical defect operator.

We then study boundary conditions in the model, finding that they are (in a particular ‘gauge’)

given by complex Lagrangian submanifolds of the target space (in a fixed complex structure)

obeying a certain equivariance property (refer to subsection 5.4.5 for details). By studying the

theory that is obtained on compactification on an interval with given boundary conditions, we

address question 8. We find that the A-twist induces a tensor product on the Fukaya category of

a Kähler manifold Y only if Y can be embedded into a hyperKähler manifold carrying a suitable

Sp(1) action in a particular ‘invariant’ way (again, refer to subsection 5.4.5 for the details). We

relate this observation to previously known descriptions of tensor product structures on Fukaya

categories in special cases (see [Pas18]).

To summarise, the main original results of this part are as follows.

• With (5.9) we give a general formulation of the ‘three-dimensional A-model’, for the first

time. This builds on [KV10], which gives the theory in a special case.

• In subsection 5.4.5, we describe general boundary conditions in our three-dimensional

A-model for the first time. We use this to characterise he conditions under which a Fukaya

category may admit a natural monoidal structure.
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1.3.3 Part IV: Magnetic Skyrmions

In chapter 6, we produce a model of fractionalised electrons which supports Skyrmion and

monopole-like configurations. We use this to explain qualitatively the phase structure of chiral

magnets. In doing this, we provide a possible answer to question 11.

In the course of this, we find a critical point where confined monopoles are dynamically

stabilised by the applied magnetic field. At this critical point, confined monopoles obey a novel

BPS-like equation and experience no local forces. This leads us to answers to the question of the

shape of emergent monopoles, question 10 and, more interestingly, the question of the theory of

the phase transition between Skyrmionic and ferromagnetic phases, question 12. At the phase

transition point, we suggest that monopole-antimonopole pairs may condense.

In chapter 7 (which is adapted from the author’s sole-author paper [Wal20]), we consider

question 13, producing a model of critically-coupled micromagnetism on curved thin films. This

generalises a model introduced in [BSRS20]. We give families of exact Skyrmion solutions in

the model on certain curved surfaces with symmetry, namely spheres, cones, and cylinders. The

axially symmetric solutions on the cylinder resemble kinks between vacua.

We further give an existence result for Skyrmion solutions in the critically-coupled micromag-

netic model on compact surfaces and investigate the (resolved) moduli space by appealing to a

theory of semilocal vortices in a background gauge field (which are also investigated in chapters 2

and 6).

Specifically, the main original contributions of this part are as follows.

• A novel general continuum model for chiral ferromagnetic materials is given in (6.3), based

on an effective gauge theory description. We show that the model supports magnetic

Skyrmion strings and confined monopoles on which such strings end. We show that there

is a critical point, given by (6.7), at which these confined monopoles are stabilised. Such

configurations are described by the novel BPS-like equations (6.10). This BPS-like model

is qualitatively different to known models which support confined monopoles. This is for

the technical reason that the gauge action permutes the complex structures on the target

space, which is unusual. We show that the general model reproduces the qualitative phase

structure of chiral ferromagnets.

• We derive a critically-coupled model for Skyrmions on curved films, given in (7.14). This

represents a special case of the general model of [Sch19], using a particular background

connection that captures the extrinsic geometry of the thin film in three-dimensional space.

We solve the corresponding Skyrmion equation exactly on the sphere, with solution given

by (7.23). We also find general axially symmetric solutions the cone, given in (7.27), and

the cylinder, given in (7.28).

• With proposition 7.2.1 we show that Skyrmion solutions in the general model of [Sch19]

always exist on compact surfaces.
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2 vortex counting and quantum hall fluids

2.1 introduction and summary

In this chapter we investigate the low-temperature behaviour of nonrelativistic gauge theory

in 2 + 1 dimensions. We focus particularly on U(Nc) Chern–Simons gauge theories with Nf

fundamental scalar fields compactified on Riemann surfaces. In the Higgs phase, these theories

are dynamically rich, supporting vortex solutions. Indeed, the particular theories we study have

an effective low-temperature description in terms of Hamiltonian dynamics on moduli spaces of

(nonAbelian) vortices.

A priori, studying the dynamics of these theories, even at low temperature, looks like a difficult

task. Vortices are complicated objects, solving systems of coupled, nonlinear differential equations

to which analytic solutions are known only in extremely special cases. As soon as Nc > 1, the

geometry of the moduli space is - in the best cases - only partially understood, making it hard to

study quantum mechanics on it directly. With all that said, there are two remarkable strands of

knowledge which allow us to get to grips with these theories, as follows.

• Coulomb branch localisation. Also known as Jeffrey–Kirwan–Witten localisation and origi-

nally due to Witten [Wit92] and Jeffrey–Kirwan [JK95], this technique allows one to express

integrals over symplectic quotient spaces in terms of certain residues. It has led to enormous

progress in the analysis of supersymmetric field theories (see [MNS00; Pes+17], for instance).

The vortex moduli space is a symplectic quotient (of an infinite-dimensional space by an

infinite-dimensional group), so this is available to us (at least formally). This technique has

been used in [MOS11; OS19] to compute the volumes of vortex moduli spaces.

• Electric-magnetic duality. It is expected that vortices, these magnetically charged particles in

the background of an electrically charged condensate, admit a dual description as electrically

charged particles in the background of a magnetic field. This idea has found itself to

be particularly important in understanding the physics of the quantum Hall effect: it is

expected that fluids of vortices in bosonic Chern–Simons-matter theories with gauge group

U(Nc) at Chern–Simons level λ describe (nonAbelian) quantum Hall fluids at filling fraction

Nc/λ [Ste94; Ton04a; RTT16; DTT16a; Kim10].

We will weave these strands together, using the first to provide quantitative evidence for the

second and using the second to guide our interpretation of the results of the first.

Our main result is the computation of the Hilbert polynomials χ(Lλ) of quantum line bundles

L → M on moduli spaces of nonAbelian vortices for arbitrary Nc and Nf on an arbitrary compact

Riemannian surface Σ. This corresponds to computing the index (that is, the ‘expected’ dimension

of the Hilbert space) of the effective topological quantum mechanics of the 2 + 1 dimensional

theories on Σ× S1 or Σ× R at arbitrary Chern–Simons level, which is the power λ. We expect,

but do not prove, that this index exactly computes the Hilbert space dimension when the area of

Σ is sufficiently large.

19
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In the Abelian case, where the moduli spaces are relatively easy to describe, we compute the

index directly, using the Hirzebruch–Riemann–Roch theorem to express χ(Lλ) as an integral

over the moduli space and doing this integral directly (this is sometimes called ‘Higgs branch

localisation’). In the nonAbelian case, where the moduli spaces are not sufficiently well-understood

to do this, we use Coulomb branch localisation techniques to carry out the computation. A

key step in the calculation is the identification of the correct residue prescription when negative

powers of Vandermonde-type determinants appear (which is whenever the genus of Σ is one or

higher). The form that the result takes is generally complicated, but in special cases it simplifies

dramatically.

The simplest, and perhaps most striking, upshot of our study is strong evidence for the notion

that nonrelativistic vortices in U(N) gauge theories with N fundamental Higgs fields (so-called

local vortices) at level λ = N ‘are’ fermions in a background flux quantum mechanically, at least

at low temperature. This can be expressed as a low-temperature duality

ZSCS,N ↔ ZFermi,N (2.1)

where ZSCS,N is a critically-coupled nonrelativistic Chern–Simons-matter theory (a Schrödinger–

Chern–Simons theory, hence SCS) with gauge group U(N), Chern–Simons level λ = N and

N fundamental flavours, and ZFermi,N is a theory of N fermion flavours critically coupled to a

particular background gauge field for the U(N) flavour symmetry. Vortices in the theory on the

left are mapped to elementary fermionic excitations on the right. The matching of various objects

across the duality is summarised in Table 2.1.

ZSCS ZFermi

vortices fermionic particles
vortex charges fermion flavours

monopole operators particle creation operators
vortex-hole symmetry particle-hole symmetry

(U(1)top × SU(N)flavour)/ZN global symmetry U(N) global symmetry

Fayet–Iliopoulos parameter background U(N) gauge field
Weil prequantisation condition flux quantisation condition

saturated Bradlow bound saturated Landau level

Table 2.1: A summary of the local Fermi-vortex duality.

The duality (2.1) was more-or-less proved in the Abelian case of N = 1 in [ER20]. In particular,

it was shown in [ER20] that the low-temperature topological quantum mechanics on both sides of

the duality were equivalent: an isomorphism of the vector spaces of states was given (although the

question of whether this introduced an isomorphism of ‘natural’ Hilbert space structures was not

resolved, see [ER20, Remark 7.3]). At the level of indices, the same result was found in [DG17].



2.1. Introduction and summary 21

Both [ER20] and [DG17] use knowledge of the geometry of the moduli space of Abelian

vortices in their calculations. As we resort to the use of rather ‘soft’ techniques, we demonstrate

a weaker statement for general N , finding an equality of the ‘expected’ dimension of the Hilbert

space (that is, the relevant index) on both sides of the duality1. In particular, on both sides of

the duality we find the index (at fixed particle number)(
NA
k

)
(2.2)

where NA = N e2τvol(Σ)
4π is the area of the two-dimensional surface Σ in units of vortex size (it

is related linearly to the Fayet–Iliopoulos parameter τ of the vortex theory, and to the gauge

coupling constant e2) and k is the number of particles or vortices. We see that the inverse of the

vortex size, which is roughly the charge density of the bosonic condensate, sets the strength of

the effective magnetic field in the Fermi theory. The parameter NA must be an integer: in the

vortex theory this is necessary for the quantum theory to exist, in the Fermi theory this is a flux

quantisation condition.

On the Fermi side, the computation of the index is a simple calculation: these are fermions

in the lowest (nonAbelian) Landau level at filling fraction ν = k/NA. On the vortex side

it is tricky: even after one has carried out the localisation calculation, it involves apparently

miraculous cancellations in a polynomial in NA of generic degree Nk (there is also a simple,

but highly heuristic, argument for the result just from symmetry arguments, which we give in

subsection 2.5.3).

The result (2.2) does not depend on the topology or local geometry of the surface Σ, which

may be thought of as reflecting the local nature of vortices when Nf = Nc. The dependence of

the result on the choice of two-dimensional scale A is simple. Note also that (2.2) captures the

so-called Bradlow bound [Bra90], which is the selection rule 0 ≤ k ≤ NA for vortices on compact

surfaces.

The fact that our evidence takes the form of an equality of indices may lead one to suspect

that the duality only holds as a result of some hidden supersymmetry. However, the evidence

of [ER20] in the Abelian case suggests that this is not the case. In that case there is a genuine

isomorphism of non-supersymmetric Hilbert spaces. Our methods are not powerful enough to

show this in the nonAbelian case, but it seems reasonable to conjecture that it is true; this

conjecture then leads to conjectures on the geometry of the moduli space of nonAbelian vortices.

Our general result, given as (2.24), contains much more than (2.2). We can independently

vary λ, which is conjectured to change the filling fraction of the dual quantum Hall fluid, Nf , and

Nc. In general, these changes lead to significant complications in the form of the index, involving

genus-dependent contributions. This reflects just how special local vortices at the right level are.

So as to not bombard the reader with unnecessarily complicated formulae at this early stage,

we will illustrate the ideas in the Abelian case. Setting Nc = 1 but allowing for a general number

1We expect that the index exactly computes the dimension of the Hilbert space when the area of Σ is sufficiently
large. This expectation is based on the general lore of positivity for vector bundles and is proved in the Abelian
case in [ER20].
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Nf of charged scalars and general level λ, we find the index

g∑
j=0

(
g

j

)
λjNg−j

f

(
λ(A− k) +Nfk + (Nf − 1)(1− g)− g

Nfk + (Nf − 1)(1− g)− j

)
(2.3)

at vortex number k, where g is the genus of Σ. We derive this result rigorously: it is given as

Theorem 2.3.6.

We extract some lessons from this, as follows.

• Composite vortices and fractional statistics. The way that the vortex number k enters

(2.3) indicates that vortices can be given a ‘composite’ interpretation. If we squint and

ignore topology-dependent effects for a moment, comparison with counting formulae for

particles with fractional statistics (see [Wu94], for example) suggests that we should think

of a single vortex in this Abelian theory as a bound state of particles with exchange phase

exp(iπNf/λ) (and, dually, vortex holes are bound states of particles with exchange phase

exp(iπλ/Nf )). There are some subtle topological issues in play, but: Quantum vortices are

made of anyons! This idea is not new: in [TT15a] it was pointed out that (local) Abelian

vortices can admit quasihole-like excitations with fractional spin and charge, which were

evaluated using a Berry phase argument.

The composite vortices can be thought of as experiencing the ‘effective magnetic flux’

λA− (λ−Nf )k + · · · = NfA− (Nf − λ)(A− k) + · · ·

where · · · denotes topological contributions. This is highly reminiscent of the effective

magnetic flux experienced by the composite fermions of Jain [Jai89; Jai07], with A identified

with the total applied magnetic flux (as in the duality above). Indeed, modulo topology, at

Nf = 1 and λ odd, vortices should be dual to composite fermions, electrons bound to λ− 1

flux quanta.

We note further that the topological contributions that we have suppressed above are related

in the dual theory to the geometrical phases of [WZ92] that arise when coupling the quantum

Hall fluid to the curvature of space (see also [Hal11] for an approach to understanding

quantum Hall fluids where similar phases arise, albeit for slightly different reasons).

• Vortex-hole (a)symmetry and bosonisation. An interesting feature of the local result (2.2)

is that it demonstrates an exact symmetry between the theory of the vortices in the Higgs

phase, which have number k, and the theory of vortex holes in a vortex fluid (which is a

Coulomb phase), which have number NcA− k, via the symmetry
(
NA
k

)
=
(
NA

NA−k
)
.

The index (2.3) illustrates the fact that when Nc ̸= Nf this symmetry is generally broken

by topology-dependent effects. In the general case, this breaking is characterised by the

quantity2 Nc(Nf −Nc)(1− g). The symmetry is partially restored at g = 1: in this case,

2This quantity is, not by coincidence, reminiscent of that characterising the ghost anomaly in the theory of
two-dimensional sigma models into Gr(Nc, Nf ) with N = (2, 2) supersymmetry.
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(2.3) is unchanged if one interchanges

k ↔ A− k and λ↔ Nf . (2.4)

That one must interchange λ with Nf is perhaps surprising and a little mysterious. A

potential explanation, which we do not develop in any detail here, comes from the consider-

ation of more general three-dimensional theories. The Chern–Simons level may be viewed

as being induced by integrating out massive fermionic fields in an auxiliary ultraviolet

theory. Then the genus one vortex-hole duality of (2.4) might be viewed as a shadow of

(a nonrelativistic version of) the ‘master’ bosonisation duality of [Jen18] (which builds, in

particular, on [Aha16]; see also [RTT16] for comments on bosonisation in nonrelativistic

theories). This duality interchanges fermions and bosons, so by applying the duality and

then integrating out the fermions on both sides, one recovers the right kind of picture.

• Semilocal duality and three-dimensional mirror symmetry. In the special case of λ = Nf ,

the duality between vortices in Abelian theories and composite particles is reminiscent of

the three-dimensional mirror symmetry of [IS96].

At this special point, the pseudoparticles which comprise a vortex do not have fractional

statistics and so a direct description of the dual theory is more accessible. We find in

section 2.8 that these vortices may be regarded as bound states of bosons or bound states

of fermions attached to flux and spin. The particles are forced into bound states by

Chern–Simons terms for an Abelian gauge field.

The fermionic version of the dual theory has Nf fermion flavours and a gauge group U(1)Nf ,

with each U(1) factor attaching flux to one of the flavours. The overall diagonal U(1) factor

is ‘gauged again’ to constrain the particles into bound states. This has the effect of inducing

a constraint on the form of the overall diagonal gauge field and so the theory is, morally

speaking, a theory with gauge group U(1)Nf /U(1). (That said, there are certain subtleties,

particularly on surfaces of genus greater than zero.)

The duality in this case therefore has schematic form

U(1)Nf
+Nf scalars ↔ U(1)Nf /U(1) +Nf fermions + CS and BF couplings

(where the subscript on the gauge group denotes the Chern–Simons level), under which

vortices are mapped to bound states of fermions, and so bears a resemblance to the mirror

duality

U(1) +Nf hypermultiplets ↔ U(1)Nf /U(1) +Nf hypermultiplets

of (relativistic) three-dimensional gauge theories with N = 4 supersymmetry [IS96]. It

seems natural to expect that our nonrelativistic story can, in this special case, be viewed as

a certain deformation of three-dimensional mirror symmetry, although we do not go so far

as to construct this deformation here.

The dualities we consider have the flavour of mirror symmetry beyond the superficial

similarities. Mirror symmetry is an electric-magnetic duality, exchanging magnetically
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charged vortices with electrically charged particles, just as our does. Our version of the

duality interchanges the parameter A = e2τvol(Σ)
4π of the vortex theory with the flux of a

background magnetic field (just as in the local duality discussed above). At the level of

global symmetries, this corresponds to the fact that the duality interchanges the topological

U(1) symmetry of the vortex theory with the phase rotation symmetry of the fermion

theory.

• Topological degeneracy. Consider the vortex fluid at maximal density, corresponding to

k = A. Then the index (2.3) tells us that the vortex fluid has expected quantum degeneracy

λg.

This is not surprising. When k = A, the vortex centres spread over the whole surface, the

Higgs fields vanish everywhere, and the theory is in a Coulomb phase, with a massless

photon. The theory is then simply a U(1) Chern–Simons theory at level λ. This theory

has classical degeneracy characterised by the moduli space of flat U(1) connections. It

is well-known, and not too hard to show, that the corresponding quantum theory has

degeneracy λg.

The above ideas extend to the nonAbelian case, but now there are some wrinkles. The

outcome of the computation becomes significantly more complicated away from the special cases

of Nc = Nf = λ or Nc = 1. We expect that the general result leads to understanding of

nonAbelian fractional quantum Hall fluids.

An interesting use of our general result is the analysis of Seiberg-like dualities for these theories.

In the limit of strong gauge coupling, vortices in these theories become holomorphic curves in

the complex Grassmannian Gr(Nc, Nf ), which is the Higgs branch of vacua in the theory. The

symmetry Gr(Nc, Nf ) ∼= Gr(Nf −Nc, Nf ) implies that there must be a kind of duality for these

theories under Nc ↔ Nf −Nc at strong coupling. In general, the vortex moduli space resolves the

(generally singular) moduli space of holomorphic maps into the Higgs branch and the resolutions

on each side of the duality may differ.

Our approach runs parallel to matrix model approaches to understanding quantum mechanics

on the vortex moduli space [Pol01; HR01; HT03; TT15a; DTT16a]. The advantage of our

approach is that it is rather general (in particular, we can work on surfaces of arbitrary genus)

and, in a sense, geometrically clearer. On the other hand, we are restricted to the computation of

rather ‘soft’ observables (like the Euler characteristic) and may have to work hard for concrete

insight.

Our story is also closely related to that of vortex partition functions in two- and three-

dimensional supersymmetric theories (see, for example, [Sha07; DGH11; Yos11; BC14; FHY14;

Fuj+12; Fuj+15; Bul+18]). The quantity we compute is slightly different from these partition

functions, essentially because the vortex moduli space is the phase space of our nonrelativistic

theory at low temperature, rather than the configuration space. In particular, the quantity we

compute is sensitive to the Kähler structure on the moduli space. We also benefit from the fact

that we do not require the presence of a supersymmetric theory. This means that we can consider

the theory on arbitrary backgrounds (with arbitrary Riemannian structure) without having to
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worry about supersymmetry. It is certainly conceivable that certain nonrelativistic deformations

of low-energy partition functions in three-dimensional supersymmetric theories could reproduce

our results, at least in special cases. Indeed, this could lead to a clearer understanding of the

relationships between our results and both bosonisation and mirror symmetry that we alluded to

above.

The rest of this chapter is structured as follows. In section 2.2 we outline the mathematical

background behind nonrelativistic Chern–Simons-matter theories and describe how they can be

effectively described in terms of quantum mechanics on the vortex moduli space. We also describe

the process of geometric quantisation and some of the subtleties that arise. In sections 2.3 to 2.5

we carry out the computation of the Hilbert polynomial of the quantum line bundle on the vortex

moduli space. This computation has three parts:

• Rigorously quantise the moduli space of Abelian vortices. We do this by direct integration

over the moduli space, which we describe as a projective bundle over the Jacobian variety

of Σ for sufficiently large k. The result is given in Theorem 2.3.6. When Nc = Nf = 1 and

Σ ∼= S2, we go further, quantising the theory in the presence of a ‘harmonic trap’.

• Use Coulomb branch localisation to reduce the computation in the nonAbelian case to

an integral over a Cartan subalgebra of u(Nc) and, correspondingly, to a sum of ‘Abelian’

contributions, which we now understand. The result of this is the general formula (2.24)

for the Hilbert polynomials of quantum line bundles on moduli spaces of vortices in the

theories we study.

• Simplify the output in special cases. This is ‘elementary’ but tricky, requiring us to prove

some combinatorial identities. Our main weapon in these proofs is simply the comparison

of generating functions. The result in the case Nc = Nf = λ is given in (2.25).

We go on to interpret the results in the context of duality in section 2.7 and section 2.8. In

section 2.6, we describe a refactorisation of the index for nonAbelian semilocal vortices, which we

argue reflects an underlying Seiberg-like duality.

2.2 chern–simons-matter theories and vortices

2.2.1 Kähler vortices

Let (Y, ωY ) be a Kähler manifold carrying the isometric, Hamiltonian action of a compact Lie

group G. Write

µ : Y → g∨

for the Kähler moment map. Here g is the Lie algebra associated to G. We will identify g with

its dual using the Killing form.

2.2.1 Example. The example to which we specialise shortly is the case where Y consists of Nf

copies of the fundamental representation of G = U(Nc). The moment map is then

µ((z1, · · · , zNf
)) =

i

2
ziz

†
i
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where zi ∈ CNc for i = 1, · · · , Nf and summation is implied.

Let Σ be a Riemann surface, representing physical space, with a volume form ωΣ. Let P → Σ

be a principal G-bundle. We can then form the associated Y -bundle

p : Y := P ×G Y → Σ.

We consider a theory of a connection A on P and a section ϕ of Y. The connection A on P

induces a connection on Y, which is a splitting of the Atiyah exact sequence

TV Y → TY dp−→ p∗TΣ, (2.5)

where TV Y is the bundle of vertical vector fields (defined as those in the kernel of dp). Indeed,

the connection A induces a map

vA : TY → TV Y

which splits the exact sequence (2.5). The covariant derivative of a section ϕ of Y with respect

to the connection A is then defined by

dAϕ = vA(dϕ) ∈ Ω1(Σ, TV Y).

The symplectic form ωY on Y induces a vertical 2-form on the fibres of Y, but not a true

2-form. For that, we need to use the connection to tell us how to feed non-vertical vectors into

the vertical 2-form (this is essentially minimal coupling to a gauge field). This gives a true 2-form,

which we call ωY .

The natural energy density functional on the space of pairs (A, ϕ) is the Yang–Mills–Higgs

energy density

EYMH =
1

e2
|F (A)|2 + |dAϕ|2 + e2(ξ − µ(ϕ))2,

where ξ is an element of the (dual of the) centre of g (known in the context of supersymmetric

field theory as the Fayet-Iliopoulos parameter), and e2 is the gauge coupling constant, a scale

factor on the dual Killing form on g∨ (we call the coupling constant e2 even in the nonAbelian

case rather than the usual g2 to avoid confusion with the genus g of Σ). As shown in [CGS00],

this functional admits the following Bogomolny rearrangement

EYMH =
1

e2
| ∗ F (A)− e2 (ξ − µ(ϕ)) |2 + |∂̄Aϕ|2 + ∗(ϕ,A)∗[ωGY ](ξ), (2.6)

where the Dolbeault operator ∂̄A is defined by

∂̄Aϕ =
1

2
(dAϕ+ JY ◦ dAϕ ◦ jΣ) ,

and where ωGY is the G-equivariant symplectic form on Y (see [AB84]).

The vortex equations ask that

F (A) = e2 (ξ − µ(ϕ))ωΣ (2.7)

∂̄Aϕ = 0. (2.8)

Solutions to these equations are absolute minimisers of EYMH within their topological class.
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2.2.2 Vortex moduli

Write C for the infinite-dimensional space of (reasonable) pairs (A, ϕ). This is an infinite-

dimensional Kähler manifold, with Kähler form3

ωC((Ȧ1, ϕ̇1), (Ȧ2, ϕ̇2)) = e2
∫
Σ

(
1

e2
tr(Ȧ1 ∧ Ȧ2) + ωY(ϕ̇1, ϕ̇2)ωΣ

)
where (Ȧi, ϕ̇i) ∈ Ω1(Σ, adP )× Γ(ϕ∗TV Y), i = 1, 2 are tangent vectors to C at a point (A, ϕ). The

space C has a natural complex structure and the corresponding Riemannian metric is the natural

kinetic energy functional for the relativistic (2 + 1)-dimensional gauge theory associated to this

data.

Let C0 be the space of pairs (A, ϕ) ∈ C solving the equation

∂̄Aϕ = 0.

This is (formally) a symplectic space, with symplectic form ωC0 . The group G := Γ(AdP ) of gauge

transformations acts on C and on C0 in the usual way, preserving the symplectic forms ωC and

ωC0
. One can show [CGS00] (see also [AB83]) that the moment map for this action is

ν(A, ϕ) = ∗F (A) + e2µ(ϕ)

which takes values in the dual of the Lie algebra of G. This tells us that the vortex moduli space

is the Kähler quotient

M = C0//ξG.

We have been very sloppy: the functional analysis of this was worked out in the Abelian case in

[GP94], and it works out as advertised. One upshot of this result is that the vortex moduli space

is a Kähler manifold (at least for generic ξ).

What does the moduli space look like? In general it is hard to say, but a great deal is known

in special cases. In particular, if G = U(1) and Y is the fundamental representation of U(1), then

the moduli space of charge k vortex solutions on Σ is well-known [JT80; Nog87; Bra90; GP94] to

be the symmetric product

Symk(Σ) := Σ×k/Sk

where the symmetric group Sk acts by permuting the various factors in Σ×k. This tells us that a

charge k vortex solution in this case is uniquely specified by an unordered list of k points in Σ,

which we interpret as the positions of the k vortices.

More generally, when G = U(Nc) and Y is Nf copies of the fundamental representation, it is

well known that the moduli space of charge k vortex solutions on Σ modulo gauge transformations

is a Kähler manifold of complex dimension

Nfk +Nc(Nf −Nc)(1− g),

3We have inserted an extra factor of e2 into the definition of the Kähler form so as to simplify notation later,
in line with our convention that Chern–Simons levels are pure integers.
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as follows from an index calculation.

The case of Nc = Nf =: N is particularly pleasant. In this case the Higgs field ϕ is an N ×N

matrix, so that one can take its determinant. Vortices then have a precise position - their centres

are located at the zeroes of the determinant. They are then exponentially localised around their

centre which justifies the fact that they are known as local vortices.

In the local case, Baptista produced an attractive description of the vortex moduli space [Bap09,

Theorem 1.3]. He showed, using the Hitchin–Kobayashi correspondence, that a configuration

of k < A local vortices on a compact surface Σ is uniquely determined by k pairs of the form

(z, V ), where z ∈ Σ and V is a vortex internal structure, which captures the internal moduli of

the vortex. Baptista’s result does not give information in the regime A ≤ k ≤ NA. The theorem

might be viewed as a formalisation of some of the arguments of [HT03], which used symmetry

arguments to understand the internal moduli of vortices.

There are many more results on vortex moduli spaces. Two particularly successful approaches

from the physics literature are the moduli matrix approach [Eto+06a; Eto+06b; Eto+08a; Eto+07],

which is closely related to the Hitchin–Kobayashi correspondence, and the matrix model approach

[HT03]. The matrix model can be derived from D-brane constructions and gives an approximation

to the worldvolume theory of the vortices. Both the moduli matrix and the matrix model describe

the moduli space of local vortices on flat space as a finite-dimensional Kähler quotient.

2.2.3 Schrödinger–Chern–Simons theories

The Chern–Simons matter theories which play a central role in our story are the ‘natural’

nonrelativistic (2 + 1)-dimensional extensions of the theory of two-dimensional Yang–Mills–Higgs

theory we considered above. As we will show, these theories admit an (exact) description as

gauged Hamiltonian mechanics on the infinite-dimensional configuration space C and an effective

low-temperature description in terms of trivial Hamiltonian mechanics on the vortex moduli space

M. The particular theories we consider are generalisations of the Abelian theory considered

by Manton in [Man97] (see also [MN99a; Rom01; RS04; TT15a] for further considerations of

Manton’s model relevant to our study). We will give the general formulation to illustrate the

geometry of the theories, but will later specialise to familiar linear examples, where the description

simplifies.

The theory is specified by the data of a Lie group G, a Hamiltonian G-space Y , as above, and

a Chern–Simons level in H4(BG), which we represent as λ. The action of the theory on Σ× S1

takes the form

S =
λ

2π

∫
Σ×D2

(
tr
(
F (Ã) ∧ F (Ã)

)
+ e2ϕ̃∗ωY ∧ ωΣ + e2(µ(ϕ̃)− ξ, F (Ã)) ∧ ωΣ

)
− β

2π

∫
Σ×S1

EYMHdt ∧ ωΣ

(2.9)

There are a few things to explain here. First, Ã and ϕ̃ are extensions of A and ϕ respectively from

Σ× S1 to Σ×D2. In general, such extensions may not exist, so in defining the theory we should

restrict to loops (A|Σ, ϕ) : S1 → C which are simply connected. Provided an extension exists, the
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Lagrangian depends only on the homotopy class of the extension provided the parameter λ is an

integer (or more accurately, that the class in H4(BG) induced by λ is integral).4

The coordinate t ∈ [0, 2π) is a periodic coordinate on the circle factor. The constant β is a

scale factor on the length of the circle. Notice that it appears only in front of the second integral,

as this is the only place where a ‘bare’ dt sits.

For reasons that we’ll describe shortly, one can (up to a ground state energy) replace the

critically-coupled two-dimensional energy density EYMH, which is the Hamiltonian of the theory

of (2.9), with |∂̄Aϕ|2, which looks a little less ‘fine-tuned’.

To connect (2.9) with more familiar things, we can write it purely in (2 + 1)-dimensional

notation. To do this, it is useful to specialise to the case of G = U(Nc) and Y = CNcNf . Then

ϕ̃∗ωY − (µ(ϕ̃), F (A)) = i dÃϕ̃
†
i ∧ dÃϕ̃i − iϕ†iF (A)ϕi

=
i

2
d
(
ϕ̃†idÃϕ̃i − (dÃϕ̃

†
i )ϕ̃i

)
where i = 1, · · · , Nf is the flavour index and summation is implied. This allows us to use Stokes’

theorem, leaving us with an integral over the boundary of Σ×D2, which is Σ× S1. This is

S =
λ

2π

∫
Σ×S1

(
∗CS(A)− e2(ξ, At) +

ie2

2

(
ϕ†iDtϕi − (Dtϕi)

†ϕi

)
+
β

λ
EYMH

)
dt ∧ ωΣ (2.10)

where Dt is the time component of the covariant derivative and CS(A) is the Chern–Simons

3-form,

CS(A) := tr

(
A ∧ dA+

1

3
A ∧ [A,A]

)
,

which has the defining property that it is a primitive of tr(F (Ã) ∧ F (Ã)).
In the form (2.10), the action looks quite familiar. It is the obvious generalisation of the model

considered by Manton in [Man97] in the Abelian case, at least for certain choices of coupling.

The nonAbelian version of this theory has previously been considered in [RTT16; Tur17], for

example. The reason that we initially wrote (2.9) rather than (2.10) is that the latter is not

generally well-defined (or rather, it is well-defined only when one defines it as (2.9)).

2.2.4 Classical vortex mechanics

The action (2.9) can be reinterpreted as an action for gauged Hamiltonian dynamics on the

infinite-dimensional configuration space C. The gauge group is the group G = Γ(Σ,AdP ) of

G-valued gauge transformations on Σ.

In (0 + 1)-dimensional language, the field content of the theory consists of a path in the space

of configurations on Σ, which we write as

(AΣ, ϕ) : S
1 → C

4There is a quirk of conventions here. A Chern–Simons level is sometimes thought of as a dimensionful quantity
taking values in ℏe−2Z, rather than a dimensionless quantity taking values in Z. We will prefer to take our
Chern–Simons levels to be pure integers. We will usually work in units with ℏ = 1, but we have to be careful with
factors of e2.
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where AΣ is the two-dimensional gauge field and ϕ is the scalar field, as before, and a gauge

potential a for the infinite-dimensional gauge group G. The gauge potential a is the t-component

of the original gauge potential A of the (2 + 1)-dimensional theory. Indeed, A = a+AΣ.

More precisely, we take a G-bundle P → S1 with connection a. There is an associated C-bundle
given by

C := P ×G C → S1,

and we take a section (AΣ, ϕ) of this bundle. The space C has a symplectic form ωC , which defines

a vertical 2-form along the fibres of C. By minimally coupling this to the gauge field a, this can

be extended to a true 2-form ωC on C.
We suppose that this data can be extended over the disk and we write (ÃΣ, ϕ̃) and ã respectively

for the corresponding extensions of (AΣ, ϕ) and a.

The action (2.9) becomes

S =
λ

2π

∫
D2

(
(Ã, ϕ̃)∗ωC + (ν(Ã, ϕ̃)− e2ξ, F (ã))

)
− β

∫
S1

EYMH(A, ϕ)dt, (2.11)

where we recall that the moment map ν is

ν(Ã, ϕ̃) = ∗ΣF (Ã) + e2µ(ϕ̃),

and have used bracket notation to denote the inner product on Lie(G) = Γ(adP ), which can be

thought of as being induced by the inner product on the original Lie algebra g and integration

over Σ.

Applying Stokes’ theorem to (2.11) gives

S =
λ

2π

∫
D2

(Ã, ϕ̃)∗ωC +
1

2π

∫
S1

(λ(ν(A, ϕ)− ξ, at)− βEYMH) dt, (2.12)

where a = atdt.

The particular Lagrangian (2.11) takes the standard form of gauged Hamiltonian mechanics

(as in [Xu16]) in C. The gauge group is G and the G-invariant Hamiltonian is EYMH. The gauge

field a of this mechanics enters only as a Lagrange multiplier, and integrating it out imposes the

‘Gauss law’

∗F (A) = e2(ξ − µ(ϕ)),

which we identify as the first vortex equation. With this done, we may quotient by the gauge

action, after which the action (2.11) becomes (in the temporal gauge, a = 0)

λ

2π

∫
D2

(Ã, ϕ̃)∗ωC//G − β

2π

∫
S1

(∫
Σ

(
|∂̄Aϕ|2ωΣ

)
+ Etop

)
dt (2.13)

which is a Hamiltonian mechanics on the symplectic quotient C//G, with Hamiltonian (up to the

topological term, Etop, which is just a ground state energy)∫
Σ

|∂̄Aϕ|2ωΣ,
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which we view as a function of gauge equivalence classes of pairs (A, ϕ). In the limit of low

energy5, or low temperature (that is, rescaling t 7→ βt and taking β → ∞), we are led to consider

the configurations which minimise this energy, which is the locus of

∂̄Aϕ = 0.

Imposing this equation puts on the vortex moduli space, with restricted action

Svortex =
λ

2π

∫
D2

z̃∗ωM (2.14)

where z is a simply-connected loop S1 → M, z̃ is an extension of z to the disk, the 2-form ωM

is the Kähler form on the vortex moduli space, and we have subtracted off the dynamically

unimportant topological term. The reason that this all works out is the fact that the vortex

moduli space is a symplectic quotient.

The action (2.14) describes Hamiltonian mechanics on the vortex moduli space with zero

Hamiltonian. Notice that the vortex moduli space is the phase space of the theory, not the

configuration space (as it would be in a theory with second-order dynamics). The theory is

classically ‘trivial’ (modulo the difficult problem of finding a vortex solution), with no dynamics.

The vortices sit still, reflecting their BPS nature. This theory is interesting quantum mechanically,

however: it is a (generally nontrivial) topological quantum mechanics on the vortex moduli space.

Note that we could have taken the low-temperature limit before integrating out the one-

dimensional gauge field. In this case, we get the low-temperature gauged quantum mechanics

Sβ→∞ =
λ

2π

∫
D2

(
(Ã, ϕ̃)∗ωC0

+ (ν(Ã, ϕ̃)− e2ξ, F (ã))
)
.

Integrating out a and taking the quotient by the group G leaves one with the theory (2.14).

2.2.5 Quantum vortex mechanics

The most natural way to quantise the classical theory of (2.14) is by geometric quantisation (see

[Woo92]). This proceeds by finding a Hermitian, holomorphic line bundle

Lλ → M

over the moduli space with first Chern class

c1(Lλ) =
λ

2π
[ωM] ∈ H2(M,Z).

This imposes a Bohr–Sommerfeld quantisation condition (also known as a Weil prequantisation

condition) on the Kähler form ωM.

The Hilbert space of states is then identified with the space of holomorphic sections of Lλ:

H0(λ) := H0(Lλ).
5In condensed matter applications, one could imagine dissapative effects driving the system towards low energy.

In pure Hamiltonian mechanics, the energy is conserved.
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In general, even the dimension of this space is hard to access. It generally depends on the precise

choice of line bundle L. A more accessible quantity is the dimension of the graded space

H(λ) :=
∑
i

(−1)iHi(Lλ),

The graded dimension of this is the Euler characteristic χ(Lλ) of Lλ. If there is a well-defined

bundle L at λ = 1, we may also call χ(Lλ) the Hilbert polynomial of L when viewed as a function

of λ.

The Euler characteristic is rendered accessible by virtue of the Hirzebruch–Riemann–Roch

theorem

χ(Lλ) !
=

∫
M

ch(Lλ)td(M) (2.15)

where ch(Lλ) = exp( λ4π [ωM]) is the Chern character of Lλ and td(M) is the Todd class of the

tangent bundle of M. This is an entirely topological decription of the a priori analytic quantity

χ(Lλ). The main aim of this note is to compute χ(Lλ) in the case of G = U(Nc) and Y = CNcNf .

There are two subtleties which should be addressed, as follows.

• Polarisation dependence. Generally, geometric quantisation requires a choice of polarisation.

This is, roughly speaking, a choice between ‘position’ and ‘momentum’ representations for

the quantum states. In our context, the fact that the moduli space M is Kähler allows us

to gloss over this issue: the polarisation here is the choice of holomorphic structure on the

bundle L. Polarisations of this type are called Kähler polarisations.

It is an interesting question to ask how the Hilbert space changes as one varies the choice of

polarisation. For pure Chern–Simons theory quantised on the product of a smooth, closed

two-dimensional surface Σ and the real line, the space of Kähler polarisations is the moduli

space of complex structures on Σ and the bundle of Hilbert spaces over this space carries a

projectively flat connection, the Hitchin connection [Hit90b] (see also [Wit89; ADPW91;

And12]). This demonstrates that, in this instance, the choice of Kähler polarisation is

unimportant.

On the other hand, it was argued in [ER20] that for quantisations of moduli spaces of

local Abelian vortices it is generally not possible to construct a similar projectively flat

connection on the moduli space of Kähler polarisations.

For us, the details of different polarisations are relatively unimportant, as we simply compute

a topological invariant.

• The metaplectic correction. The space of quantum states should have a natural inner

product. One way to ensure that this is so is to ‘upgrade’ the quantum states to L-valued
half-densities on M, so that they pair to give a density that can be integrated over M.

Mathematically, this means taking the quantum states to be sections of L ⊗K
1
2

M rather

than sections of L, where K
1
2

M is a square root of the canonical bundle of n-forms on M, if

such a square root exists.
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The metaplectic correction is often necessary in the case of non-Kähler polarisations,

as otherwise the Hilbert space that one obtains is often empty. In general though, the

metaplectic correction may not even exist, as is generally the case for Chern–Simons theory

[ADPW91] and for quantisations of Abelian vortex moduli spaces [ER20]. The fact that

metaplectic corrections do not generally exist for the theories which we are interested

in suggests that we should not consider them and so we will not attempt to include a

metaplectic correction in our quantisation.

2.2.6 The path integral

There is another approach to quantising the theory: the path integral approach. The partition

function for the low-temperature theory on Σ× S1 is written schematically as

Z =

∫
L0M

Dz exp
(
i
λ

2π

∫
S1

z∗θM

)
where θM is a local symplectic potential on M and L0M is the space of contractible loops on M.

On general grounds, the partition function is the dimension of the Hilbert space of the theory.

One can compute it directly using localisation techniques (see, for example, [Sza96]). Localisation

allows one to reduce the path integral to an integral over the space of constant loops, which is

simply M. Up to some potential topological subtleties, this integral over M is exactly that on

the right-hand-side of (2.15).

2.3 quantisation of abelian vortex moduli

2.3.1 Characteristic classes

In the Abelian case of Nc = 1, we will compute the Euler characteristic χ(Lλ) rigorously by a

direct integration over the moduli space using the Hirzebruch–Riemann–Roch theorem (2.15). To

do this, we need to get to grips with the integrand. Here we recall some relevant information

about characteristic classes.

Let X be a complex manifold and let E → X be a complex vector bundle or rank n. If

ct(E) = 1 + c1(E)t+ c2(E)t2 + · · ·+ cn(E)tn

is the Chern polynomial of E, the Chern roots {αi(E)}i=1,··· ,n of E are defined by

ct(E) =

n∏
i=1

(1 + αi(E)t).

Each of the αi has cohomological degree 2. The fact that the Chern polynomial can be written in

this way is a result of the splitting principle.

The Todd class of E is then defined by

td(E) :=

n∏
i=1

Q(αi(E))
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where

Q(x) =
x

1− e−x
,

which we interpret in terms of a formal power series. It is immediate from this definition that the

Todd class is multiplicative over exact sequences of vector bundles. We write td(X) := td(TX).

2.3.1 Example (Projective space). The tangent bundle of Pn fits into the Euler exact sequence

0 → O → O⊕(n+1) → TPn → 0.

Thus

td(Pn) =

(
ξ

1− e−ξ

)n+1

where ξ = c1(O(1)) is the generator of H2(Pn).

2.3.2 Example (Projective bundles). Let V → Y be a vector bundle of rank r, and let

X := P(V )
p−→ Y be the corresponding projective bundle, given by projectivising the fibres of V .

The space X carries the natural tautological line bundle OX(1).

There are two useful exact sequences, the relative Euler sequence

0 → OX → p∗V ⊗OX(1) → TX/Y → 0

and the (holomorphic) Atiyah sequence

0 → TX/Y → TX → p∗TY → 0.

These reveal that

td(X) = td(p∗V ⊗OX(1))p∗td(Y ).

2.3.2 Local Abelian vortices

Let us begin in the local Abelian case of Nc = Nf = 1. In this case, our discussion retreads some

of the ideas of [Mac62] on the cohomology rings of symmetric products of Riemann surfaces. The

results of [Mac62] were used in [DG17] to compute the expected dimension of the Hilbert space of

the vortex quantum mechanics in the special case λ = 1 and in [MN99b] to compute the volume

of the moduli space of local Abelian vortices.

The moduli space of local Abelian vortices on a Riemann surface Σ of genus g is well-known

to be the space of effective divisors on Σ [Tau90; Nog87; Bra90; GP94]. This can be thought of

as the space of holomorphic line bundles with normalised holomorphic section, which facilitates

the following construction of the vortex moduli space as a complex manifold6.

Write P k(Σ) for the moduli space of holomorphic line bundles on Σ of degree k. This is a

torus of complex dimension g. Let

U → P k(Σ)× Σ

6Another, direct, way to think of vortices in these terms follows from looking at the dissolving vortex limit
[Weh08; BM03], a kind of (shifted) weak-coupling limit, where the vortex equations explicitly become the equations
for a line bundle with a flat connection with normalised holomorphic section.
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CP k−g

P k(Σ)

Figure 2.1: A sketch of the moduli space of charge k local Abelian vortices for k > 2g − 2. The
moduli space fibres over the torus P k(Σ), which is the moduli space of charge k holomorphic line
bundles, with fibre CP k−g, which is the space of normalised sections. When k ≤ 2g− 2, there are

degenerate fibres (see [MR11]).

be the universal degree k line bundle. This is well-defined only after choosing a point x ∈ Σ and

asking that U|Pk(Σ)×{x} be trivial.

Writing q : P k(Σ)× Σ → P k(Σ) for the projection, we consider the direct image sheaf q!U
over P k(Σ). If k > 2g − 2, this is locally free of constant rank and defines a vector bundle V over

P k(Σ) with fibre over a holomorphic line bundle L the space of holomorphic sections of L. The
moduli space of vortices is then

M ∼= P(V ),

which admits a projection map p : M → P k(Σ) and supports the tautological line bundle OM(1).

Combining this with example 2.3.2 tells us that the Todd class of M is

td(M) = td(p∗V ⊗OM(1))p∗td(P k(Σ)).

The space P k(Σ) is a torus and so has trivial tangent bundle, so the Todd class becomes

td(M) = td(p∗V ⊗OM(1)).

To compute the Chern roots of V = q!U , we use the Grothendieck–Riemann–Roch theorem.

We have

ch(V ) = ch(q!U)
!
= q∗ (ch(U)td(Σ)) , (2.16)

where the first equality follows from the definition of V and the second follows from the

Grothendieck–Riemann–Roch theorem. Write ω̂ for the generator of H2(Σ,Z). Then

td(Σ) = 1 + (1− g)ω̂

and

c1(U) = kω̂ + t
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where t ∈ H1(Σ)⊗H1(P k(Σ)) is the class dual to the natural evaluation map.

Using the fact that ch(U) = exp(c1(U)) and the Grothendieck–Riemann–Roch formula (2.16),

we see that

ch(V ) = k + 1− g +
1

2
q∗t

2.

The class σ = − 1
2q

∗t2 ∈ H2(P k(Σ)) is that of the theta divisor.

This reveals that rank(V ) = k + 1 − g, that c1(V ) = −σ, and that all of the higher Chern

classes conspire to cancel the higher contributions to the Chern character. This means that

ci(V ) =
1

i!
(−σ)i,

and the Chern polynomial is ct(V ) = e−σt (note that this truncates because σg+1 = 0 for

dimensional reasons).

The projective bundle formula reveals that the cohomology ring of M takes the form

H•(M) = H•(P k(Σ))[ξ]/R

where the relation R is
g∑
i=0

1

i!
(−σ)iξk−g+1−i = 0.

Write σi, i = 1, · · · , g for the Chern roots of V . These obey σ2
i = 0 for all i. Then the Todd

class of M is

td(M) = td(p∗V ⊗OM(1))

=

(
ξ

1− e−ξ

)k−2g+1 g∏
i=1

ξ − σi
1− e−(ξ−σi)

=

(
ξ

1− e−ξ

)k−g+1

e−σX

where, formally, X = 1
ξ −

e−ξ

1−e−ξ and we interpret e−σX as a formal power series which truncates.

The Kähler class of the moduli space is

1

2π
[ωM] = dξ + σ

where d = A− k. To see this, one can write out representatives for ξ and σ directly (see [Per06;

Bap11], for example).

Let L be a holomorphic line bundle with c1(L) = dξ + σ. There is a natural choice for this

quantum line bundle L, namely

L = OM(d)⊗ p∗det(V ),

although we do not insist on this choice (indeed, V was defined with respect to an arbitrary choice

of normalisation for the Poincaré line bundle, so the bundle above is not canonically determined).
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Ideally, we would like to compute

h0(Lλ) = dimH0(Lλ)

where λ is a parameter (physically, it is the Chern–Simons level). This is generally not accessible,

and may depend on the particular choice of L. Instead, we would like to compute the Euler

characteristic

χ(Lλ) =
∑
i

(−1)ihi(Lλ).

The Riemann–Roch theorem tells us that

χ(Lλ) =
∫
M

ch(Lλ)td(M)

which is ∫
M
eλ(dξ+σ)

(
ξ

1− e−ξ

)k−g+1

e−σX .

This becomes

χ(Lλ) =
∑
j=0

λj

j!

∫
M
σjeλdξ

(
ξ

1− e−ξ

)k−g+1

e
−σ

(
1
ξ−

e−ξ

1−e−ξ

)

=
∑
j=0

λj

j!

∫
M
σjeλdξ

(
ξ

1− e−ξ

)k−g+1

e
σ
(

e−ξ

1−e−ξ

)

using the relation R. Expanding the exponential, collecting the powers of σ, and removing terms

that do not contribute to the integral, we find

χ(Lλ) =
g∑
j=0

λj

j!(g − j)!

∫
M
σgξk−g+1 e(λd−g+j)ξ

(1− e−ξ)k−j+1

=

g∑
j=0

λj
(
g

j

)
Resx=0

e(λd−g+j)x

(1− e−x)k−j+1
dx,

where we have used that the integral of σg over the Jacobian is g!, which is a classical result.

To compute a residue of the form

Resx=0
epx

(1− e−x)q+1
dx

one may introduce a variable y by 1− e−x = y. Then ex = (1− y)−1 and dx = 1
1−ydy. Then the

residue is

Resy=0
(1− y)−p−1

yq+1
dy =

(
p+ q

q

)
.

Putting the pieces together gives us the following result.

2.3.3 Theorem. Let L → M be the quantum line bundle over the moduli space of local Abelian

vortices of charge k on a closed Riemannian surface Σ of genus g and dimensionless ‘area’

A = e2τvol(Σ)
4π ∈ Z. Suppose that k > 2g − 2. Then the Hilbert polynomial of L is

χ(Lλ) =
g∑
j=0

λj
(
g

j

)(
λ(A− k) + k − g

k − j

)
.
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2.3.4 Remark. Our proof of this result only holds literally in the case that k ≥ 2g− 1. However,

the method still goes through in a virtual sense for all k, and the result holds in general. Note

that if k < g, the terms with j = k + 1, · · · , g all vanish.

2.3.5 Remark. One can express the Euler characteristic as a single residue as

χ(L⊗λ) = Resx=0

(
e−x + λ(1− e−x)

)g eλdx

(1− e−x)k+1
dx.

This is the form that one might find the answer in if one exploited Coloumb branch localisation.

This makes particularly clear the simplification that occurs if λ = 1.

This theorem mediates between two known results. Setting λ = 1 computes the Euler

characteristic of the quantum line bundle L, which is the expected dimension of the Hilbert space

of the vortex quantum mechanics at Chern–Simons level 1. This is

χ(L) =
g∑
j=0

(
g

j

)(
A

k − j

)

=

(
A
k

)
,

as previously found in [ER20] and in [DG17]. In the full quantum theory, one should sum over

topological sectors with a fugacity t for the topological symmetry. The resulting grand canonical

partition function is

Z(t) =

∞∑
k=0

(
A
k

)
tk

= (1 + t)A.

This result exhibits a kind of ‘vortex-hole duality’. By virtue of the Bradlow bound, a

configuration of k vortices in a normalised area A might also be viewed as a configuration of

A− k vortex holes in a sea of A vortices. This is reflected in the vortex quantum mechanics by

the equality (
A
k

)
=

(
A

A− k

)
.

On the other hand, the volume of the vortex moduli space is (up to constant factors)

vol(M) =

∫
M
e[ωM].

Because the leading term in the Todd class is unity, this is the coefficient of λdim(M) in χ(Lλ)
(this is the highest power of λ that appears). We can read this off to be

min(k,g)∑
j=0

(
g

j

)
(A− k)k−j

(k − j)!

in agreement with the computations of [MN99b], [MOS11] and [OS19].
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2.3.3 Semilocal Abelian vortices

Introducing more flavours does not significantly alter the nature of the above calculation. As

revealed by the dissolving vortex limit, the moduli space is again a projective bundle. Indeed, if

the number of flavours is Nf , the moduli space of charge k vortices is, for k sufficiently large,

MNf
= P(V ⊕Nf )

where V → P k(Σ) is the vector bundle introduced previously. The dimension of the moduli space

is Nf (k − g + 1) + g − 1, in agreement with an index calculation.

Multiplicativity of the Chern class means that

c(V ⊕Nf ) = c(V )Nf

= e−Nfσ.

Again, the formal power series implied by e−Nfσ truncates because σg+1 = 0.

The cohomology ring of the moduli space can be described using the projective bundle formula

to be

H•(MNf
) = H•(P k(Σ))[ξ]/R

where the relation R is
g∑
i=0

1

i!
(−Nfσ)iξNf (k−g+1)−i = 0.

The Todd class of MNf
is

td(MNf
) =

(
ξ

1− e−ξ

)Nf (k−g+1)

e−NfσX ,

where X = 1
ξ −

e−ξ

1−e−ξ as before.

The cohomology class of the L2 Kähler form on the vortex moduli space is (just as before)

1

2π
[ωMNf

] = dξ + σ,

where d = A−k. (Note that the second cohomology group of the moduli space has two generators,

so all that one needs to do to verify this is to check the coefficients.)

We again compute the Euler characteristic of a quantum line bundle L → MNf
with

2πc1(L) = [ωMNf
]. There is again a natural choice, given by

L = OMNf
(d)⊗ p∗det(V ),

although, again, we do not insist on this, noting that it is not canonically determined.

Going through the motions as we did for the case of Nf = 1 leads to the result

χ(Lλ) =
g∑
j=0

λjNg−j
f

(
g

j

)
Resx=0

e(λd−(g−j))x

(1− e−x)Nf (k−g+1)+g−j dx

=

g∑
j=0

λjNg−j
f

(
g

j

)(
λd+Nf (k − g + 1)− 1

Nf (k − g + 1) + g − j − 1

)
.
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Substituting in d = A− k and introducing the notation δ = dimC(MNf
) leads to the following

theorem.

2.3.6 Theorem. Let MNf
be the moduli space of charge k vortex configurations in a U(1)

gauge theory with Nf fundamental flavours on a closed Riemannian surface Σ of genus g and

dimensionless ‘area’ A = e2τvol(Σ)
4π ∈ Z, supposing that k > 2g − 2. Let L → MNf

be a quantum

line bundle for the L2 vortex Kähler form on MNf
. Then

χ(Lλ) =
g∑
j=0

λjNg−j
f

(
g

j

)(
λ(A− k) + δ − g

δ − j

)
,

where δ = Nf (k − g + 1) + g − 1 is the dimension of the moduli space.

2.3.7 Remark. While our proof only literally holds for k sufficiently large, the argument should

go through in a virtual sense in the general case.

2.3.8 Remark. Again, one can express the Euler characteristic as a single residue. Indeed, one

has

χ(Lλ) = Resx=0(Nfe
−x + λ(1− e−x))g

eλdx

(1− e−x)δ+1
dx,

which simplifies in the case that λ = Nf .

As in the local case, there are two particularly interesting corollaries of this result. Setting

λ = Nf , one finds the visually simple result

χ(LNf ) = Ng
f

g∑
j=0

(
g

j

)(
Nf (A− k) + δ − g

δ − j

)

= Ng
f

(
Nf (A− k) + δ

δ

)
.

We interpret this result in section 2.8.

On the other hand, identifying the coefficient of the highest power of λ in χ(Lλ) gives us the
volume of the vortex moduli space, up to factors of 2π. We read this off to be

min(δ,g)∑
j=0

Ng−j
f

(
g

j

)
(A− k)δ−j

(δ − j)!
,

in agreement with the result of [MOS11; OS19].

2.3.4 Abelian vortices in a harmonic trap

There is a special class of deformations of the theory that ‘preserve critical coupling’. These

are deformations induced from Hamiltonian actions of groups on the configuration space of the

theory preserving the vortex equations. Such deformations induce a potential on the moduli

space for the Hamiltonian mechanics controlling the low-temperature behaviour of the theory.

The potential is such that the Hamiltonian flow generates the symmetry.
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Here we consider an example in the local Abelian case, that of a harmonic trap. The symmetry

generating this is a rotational symmetry of space, so it requires that Σ has a rotational symmetry.

We will take Σ to be the round sphere. This has previously been considered in [Rom05]. This is

a version of the Ω-deformation, originally considered in four dimensional flat space in [Nek03]. In

the case that Σ is the two-dimensional plane, the analogous story was considered in [TT15b] and

plays an important role in the dual approach to quantum Hall physics on the plane [Ton04a] (as,

in that case, there is no Bradlow bound and a different mechanism is necessary to induce the

creation of a region of Coulomb phase).

Suppose that Σ = S2 with a round metric and consider U(1) gauge theory with one fundamental

flavour. The moduli space of k-vortex solutions is then the complex projective space M = CP k.

A useful coordinate system for the moduli spaces can be given as follows. Let z be a complex

coordinate on Σ ∼= CP 1. A k-vortex configuration is uniquely specified by k points (z1, · · · , zk)
on Σ and so we may parameterise the moduli space (away from configurations with vortices at

z = ∞) with the polynomials
k∏
i=1

(z − zi).

Expanding this polynomial gives an alternative parameterisation in terms of (an affine patch of)

homogeneous coordinates [w0 : w1 : · · · : wk] as

k∏
i=1

(z − zi) = w0z
k + w1z

k−1 + · · ·+ wk.

In this patch, w0 = 1, w1 =
∑
i zi, and so on.

The theory on the round sphere S2 has a global U(1) symmetry given by rotating the sphere

around a fixed axis. This induces an action of U(1) on the space C of vortex configurations in

the obvious way, rotating the configuration. This action preserves the vortex equations and so

descends to the moduli space of vortices.

We may align our complex coordinate z on Σ in such a way that eiθ ∈ U(1) acts via

z 7→ eiθz,

so that z = 0 and z = ∞ are the fixed points of the action. This action induces the action

zj 7→ eiθzj

for j = 1, · · · , k on the moduli space coordinates, which in turn implies that

wj 7→ eiθjwj (2.17)

for j = 1, · · · , k.
We can now carry out an equivariant geometric quantisation of the moduli space. Again, we

will consider the simpler question of computing the equivariant index. See [Pes+17, Section 2] for

an introduction to these ideas, which we summarise here.
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The quantum line bundle is O(d)λ → CP k, which lifts to an equivariant line bundle. We are

interested in computing the equivariant Euler characteristic

χU(1)(O(d)λ; q) =
∑
i

(−1)itrHi(CPk,O(d)λ)(q)

of this equivariant line bundle. Here, for V a representation of U(1), trV (q) is the trace of q ∈ U(1)

in the representation V . If U(1) acts trivially, then any element of U(1) is represented as the

identity and the trace recovers the dimension of the vector space, so that the equivariant Euler

characteristic is the usual Euler characteristic in that case.

One way to compute this is using the equivariant Hirzebruch–Riemann–Roch theorem, which

realises the equivariant Euler characteristic as an integral of an element of the equivariant

cohomology of the moduli space. One has

χU(1)(O(λd); q) =

∫
CPk

(
chU(1)(O(λd))tdU(1)(CP

k)
)
(q),

where chU(1)(O(λd)) is the equivariant Chern character of the bundle O(λd) and tdU(1)(CP k) is

the equivariant Todd class of TCPk .

As recalled in [Pes+17; Sza96], this integral can be reduced to a sum of contributions from

the fixed points of the group action. The outcome of this (when the fixed point set is discrete,

which it is for us) is the Lefshetz formula

χU(1)(O(λd); q) =
∑
p∈F

trO(λd)p(q)

detT 1,0
p CPk(1− q−1)

.

We can apply this to the group action (2.17). This action has k + 1 fixed points (p0, · · · , pk).
Physically, the fixed point pi corresponds to i vortices sitting at z = 0 and k − i vortices sitting

at z = ∞. The character of the U(1) representation O(λd)pi is given by

trO(λd)pi
(q) = qλdi

and the determinant is

det(TCPk )pi
(1− q−1) =

∏
j ̸=i

(1− qj−i).

The index is then

χU(1)(O(λd); q) =

k∑
i=0

qiλd∏
j ̸=i(1− qj−i)

(see also [Pes+17, section 2.9] for a very similar computation). Rearranging this sum gives

χU(1)(O(λd); q) =

k∏
i=0

(1− qi+λd)

(1− qi)

=:

(
λd+ k

k

)
q

. (2.18)
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This is the q-binomial coefficient, sometimes known as the Gaussian binomial coefficient. It has

the property that, for any n and k,

lim
q→1

(
n

k

)
q

=

(
n

k

)
so that we recover our previous result Theorem 2.3.3 in the genus zero case.

Substituting in d = A− k, we have at λ = 1,

χU(1)(O(d); q) =

(
A
k

)
q

.

The Ω-deformation on flat space regularises infrared divergences. In the limit that the area of

the sphere diverges, corresponding to A → ∞, we have (for λ > 0)

lim
A→∞

(
λ(A− k) + k

k

)
q

=
1

(1− q)(1− q2) · · · (1− qk)
.

In this limit, the only contribution to the index comes from the configuration with all vortices

sitting at the minimum of the potential. This result may therefore be thought of as a flat space

result, with all vortices sitting at the origin. In this special case, we recover a special case of

[Yos11, Eq. 5.16], which gives the ‘K-theoretic’ (that is, (2 + 1)-dimensional) vortex partition

function on the Ω-deformed plane.

2.4 quantisation of nonabelian vortex moduli

2.4.1 Coulomb branch localisation of the Euler characteristic

After localising with respect to time translations and integrating out the time component of the

gauge field, the (super) partition function of our theory is

χ(Lλ) =
∫
M

td(M)ch(Lλ), (2.19)

where L → M is a quantum line bundle on the moduli space of vortices. When the gauge group

is nonAbelian, we do not have a generators-and-relations description of the cohomology ring of

the moduli space M, so it is hard to compute this integral directly. Instead, we will exploit the

Jeffrey–Kirwan–Witten method of equivariant localisation (or ‘Coulomb branch localisation’) to

compute this integral. We do not give a complete account of this technique here, instead giving a

fairly high-level exposition of the computation in the context relevant to us. We refer the reader

to the original works [JK95; JK97; Wit92] and to [MOS11; OS19], which give a clear exposition of

the technique in the context of computing the volumes of vortex moduli spaces. Our computation

of χ(Lλ) generalises the results of these latter works.

The moduli space M is the formal symplectic quotient of the space C0 = {(AΣ, ϕ) | ∂̄Aϕ =

0} ⊂ C = {(AΣ, ϕ)} by the group G of gauge transformations. The lift of the tangent bundle of

M to C0 is the equivariant virtual bundle

adG → TC0 → ad∨G
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where adG is the equivariant bundle C0 × Lie(G) → C0, carrying the adjoint action on the fibres.

Here the first arrow is the derivative of the group action and the second arrow is the derivative of

the moment map. The equivariant Todd class of this virtual bundle is

tdG(C0)td−1
G (adG ⊕ ad∨G).

In general, we must regard C0 itself as a derived space, as the space of solutions to ∂̄Aϕ = 0 does

not have constant dimension as A varies, so that TC0 is itself a graded bundle.

The lift of the quantum bundle L to C0 is an equivariant line bundle L̂λ with equivariant first

Chern class equal to

cG1 (L̂λ) =
λ

2π
[ωG

C0
] ∈ H2

G(C0),

where ωG
C0

= ωC0
− ν is the equivariant symplectic form (see [AB84]).

The super partition function is then the integral∫
C0×Lie(G)

(
tdG(C0)td−1

G (adG ⊕ ad∨G)chG(L̂λ)
)
(Φ)DΦ.

Here Φ is valued in the Lie algebra Lie(G) and DΦ is a measure on this space. Physically, this

could be derived by computing the (super) partition function of the three-dimensional theory

after localising with respect to time translations. The field Φ is then the constant mode of the

time-component of the gauge field.

We will use the notion of equivariant integration to localise this to an integral over the Lie

algebra of the maximal torus of the group G. This integral can then be expressed as a residue.

To do this, we note that the space C0 × Lie(G) carries an infinitesimal U(1) action, generated

by the variations

δ((AΣ, ϕ),Φ) = ((dAΣ
Φ,Φ(ϕ)), 0).

Our integrand is invariant under this action and we may localise with respect to it. The space of

fixed points decomposes into a number of branches, including the Higgs branch, where Φ = 0,

and the Coulomb branch, where ϕ = 0. The space of fixed points carries an action of the torus

T ∼= U(1)Nc of global Abelian gauge transformations. The fixed point locus of this T action is

the Coulomb branch, where ϕ = 0 and dAΣΦ = 0.

A generic point on the Coulomb branch defines a holomorphic vector bundle of the form

E =
⊕
a

La → Σ

where La has degree ka and
∑
a ka = k, the total vortex number. Deformations of these T -

invariant solutions within the space of configurations are given by pairs consisting of a holomorphic

section ψ of ENf and a deformation of the holomorphic structure of E, which is an element of

H1(E ⊗ E∨) = H1

ONc ⊕
⊕
a̸=b

La ⊗ L−1
b

 .

Such a deformation remains T -invariant if ψ = 0 and if the variation of holomorphic structure

lies in H1(ONc).
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Recall from above that the equivariant virtual bundle we need to consider is

adG → TC0 → ad∨G .

Over a connected component of the T -invariant locus, the moment map is constant (as ϕ = 0 and

by the quantisation of the Abelian flux). The image of the second map is therefore zero. We are

left with a T -equivariant bundle whose fibre at the bundle E ∈ F is

VF =
(
H0(E ⊗ E∨) → TEF ⊕ (νF )E → 0

)
where the bundle on the left is the bundle of infinitesimal automorphisms of a point E on F (that

is, a residual gauge transformation) and νF is the equivariant normal bundle to F in C0, which
takes the form

νF =

0 → H1(
⊕
a̸=b

La ⊗ L−1
b )⊕H0(ENf ) → H1(ENf )


where we recall that we are working with the derived locus of the space of solutions to ∂̄Aϕ = 0.

The space F is torus of complex dimension Ncg, with trivial tangent bundle. Putting this

together, the class of VF in equivariant K-theory is

[VF ] = [TF ] +
∑
a

[H•(L
Nf
a )]−

∑
a ̸=b

[H•(La ⊗ L−1
b )].

where by H• we mean the graded space H0 −H1.

We now compute the Todd class of each of these summands divided by the Euler class,

include the contribution of the Chern character of the quantum line bundle restricted to the

component, and sum over the components of the fixed point locus. Let xa, a = 1, · · · , Nc be

standard coordinates on the Lie algebra of T . From section 2.3, we know that the first and second

summands integrated over F give a contribution of

∏
a

(
Nf

e−xa

1− e−xa
+ λ

)g
1

(1− e−xa)Nf (ka−g+1)

to the residue. The second summand gives a contribution of

∏
a ̸=b

(
1− e−(xa−xb)

)ka−kb−g+1

.

The differences xa − xb are the roots of u(Nc).

The restriction of the equivariant Chern character of the quantum bundle to the fixed point

locus is ∏
a

eλdaxa

where da = A− ka is the action −
∫
Σ

(
F (A)a − e2(τ − µ(ϕ))aωΣ

)
when ϕ = 0.
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Putting these pieces together and summing over the partitions of k, which correspond to the

fixed point loci of the T -action, we come to one of our main results:

(−1)σ

Nc!
χ(Lλ) =

∑
∑
ka=k

Resx=0

[(∏
a<b

exaexb(e−xa − e−xb)2

)1−g

×
∏
a

(Nfe
−xa + λ(1− e−xa))g

eλdaxa

(1− e−xa)δa+1
dxa

] (2.20)

where da = A− ka and δa = Nf (ka − g + 1) + g − 1, the sum is over partitions of k of length Nc,

and where σ = (N +1)(k+1). We comment on precisely how we mean to take this residue below.

Introducing ya = 1− e−xa , the residue (2.20) can alternatively be written as

(−1)σ

Nc!

∑
∑
ka=k

Resy=0

(∏
a<b

(ya − yb)
2−2g

×
∏
a

(Nf (1− ya) + λya)
g (1− ya)

−λda−(1−g)(Nc−1)−1

yδa+1
a

dya

)
.

(2.21)

This is often a more convenient form.

The general structure of the quantity in the residue in (2.20) is∏
a>b

V (xa, xb)
χ(Σ)

︸ ︷︷ ︸
integration over off-diagonal
components of gauge group

∑
∑
ka=k

∏
a

H(xa)
g︸ ︷︷ ︸

contribution from
cycles in Jacobian

Z(xa, ka)dxa

︸ ︷︷ ︸
Abelian contribution

,

where V (xa, xb) = (e−xa − e−xb) comes from the off-diagonal part of the gauge group, H(xa) =

(Nfe
−xa + λ(1 − e−xa) comes from integrating over the cycles in the Jacobian (as we saw in

section 2.3), and Z(xa, ka) = e(λda+(1−g)(Nc−1)+1)xa(1 − e−xa)−(δa+1). This is of the same

structure as [MOS11, Eq. 4.21], which gives the analogous residue formula for the volume of the

vortex moduli space (in our language, the volume is
∫
M ch(L)), although the precise details differ.

2.4.2 The Vandermonde determinant

The evaluation of the residues (2.21) requires us to understand the meaning of the Vandermonde-

type contribution ∏
a<b

(ya − yb)
2−2g. (2.22)

The meaning is clear for positive powers (that is, for g = 0), but needs thought otherwise, as the

residue requires us to understand how it behaves when all the ya → 0.

We argue that the correct series expansion of

(ya − yb)
−2n
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for n ∈ Z≥0 for our purposes is the symmetric one:

(ya − yb)
−2n = (−1)−n(ya − yb)

−n(yb − ya)
−n

= (−yayb)−n
(
1− ya

yb

)−n(
1− yb

ya

)−n

= (−yayb)−n
(
2−

(
ya
yb

+
yb
ya

))−n

= (−2yayb)
−n

∞∑
i=0

(−1)i
(
−n
i

)(
1

2

(
ya
yb

+
yb
ya

))i
.

If one views this as a power series in the real numbers, it never converges, which is a cost of

insisting on symmetry.

In general, we say that

(ya − yb)
2−2g = (ya − yb)

2(ya − yb)
−2g

= (ya − yb)
2(−2yayb)

−g
∞∑
i=0

(−1)i
(
−g
i

)(
1

2

(
ya
yb

+
yb
ya

))i
. (2.23)

2.4.3 The general result

We can evaluate the general residue (2.21) using the expansion of the Vandermonde determinant

given above:

∏
a<b

(ya − yb)
2−2g = 2(Nc−1)g

∑
∑
la=Nc(Nc−1)

∞∑
c1,··· ,cNc=−∞

al1,··· ,lNc
Ac1,··· ,cNc

∏
a

yla+ca−g(Nc−1)
a

where al1,··· ,lNc
is the coefficient of

∏
a y

la
a in

∏
a<b y

la
a and Ac1,··· ,cNc

is the coefficient of
∏
a y

ca
a

in
∏
a<b

(
1− 1/2(yay

−1
b + yby

−1
a )
)−g

.

Evaluating the residue, we find that

χ(Lλ) = (−1)σ2(Nc−1)g

Nc!

∑
∑
ka=k

∑
∑
la=Nc(Nc−1)

∑
c1,··· ,cNc

al1,··· ,lNc
Ac1,··· ,cNc

×
∏
a

 g∑
j=0

(
g

j

)
λjNg−j

f

(
λ(A− ka) + (Nc − 1) +Nfka + (Nf − 1)(1− g)− la − ca − g

Nfka + (Nf − 1)(1− g)− la − ca + g(Nc − 1)− j

) ,

(2.24)

which is the general result.

As written, this is not too meaningful (or, at least, not too useful). In what follows, we will

attempt to simplify (2.24) in special cases.
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2.5 simplifications of the index for local vortices

2.5.1 NonAbelian local vortices on the sphere

Warm-up: The case of N = 2

In this section, we will simplify the form of the index (2.24) in the case that Nc = Nf =: N . We

will find ourselves able to simplify the index dramatically when we take λ = N .

To warm up, let us consider the case of N = 2 and g = 0. Results in the general case will

follow from similar methods, but it is instructive to begin in this restricted situation as everything

is more-or-less directly computationally tractable.

The relevant residue is

χ(Lλk;2,2) =
(−1)k+1

2

∑
k1+k2=k

Resx1=x2=0(e
−x1 − e−x2)2

e(λd1+1)x1e(λd2+1)x2

(1− e−x1)δ1+1(1− e−x2)δ2+1
dx1dx2,

where da = A− ka and δa = 2ka + 1.

This can be evaluated: it is

(−1)k+1

2

∑
k1+k2=k

[(
λd1 + δ1 − 1

δ1 − 2

)(
λd2 + δ2 + 1

δ2

)
− 2

(
λd1 + δ1
δ1 − 1

)(
λd2 + δ2
δ2 − 1

)
+

(
λd1 + δ1 + 1

δ1

)(
λd2 + δ2 − 1

δ2 − 2

)]
.

In general, this appears to be rather complicated.

There is a drastic simplification if λ = 2, so that λ = N , as the ka dependence of the binomial

coefficients simplifies. In this case, we have

χ(L2
k;2,2) = (−1)k+1

k∑
i=0

[(
2A

2i− 1

)(
2A+ 2

2(k − i) + 1

)
−
(
2A+ 1

2i

)(
2A+ 1

2(k − i)

)]
.

This can be (rather strikingly) simplified further to

χ(L2
k;2,2)

!
=

(
2A
k

)
as we show with the following lemmas.

2.5.1 Lemma. The identity

k∑
i=0

[(
n

2i− 1

)(
n+ 2

2(k − i) + 1

)
−
(
n+ 1

2i

)(
n+ 1

2(k − i)

)]
=

2k∑
j=0

(−1)j+1

(
n

j

)(
n

2k − j

)
holds.

Proof. It is possible to derive this result by a liberal application of Pascal’s identity for binomial

coefficients and a certain rearrangement of the sum, but a much neater proof comes from comparing

generating functions on both sides. The sum on the left hand side is the coefficient of x2k in

1

4

[
−
(
(1 + x)n+1 + (1− x)n+1

)2
+
(
x−1(1− x)n − x−1(1 + x)n

) (
x(1− x)n+2 − x(1− x)n+2

)]
,
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where we have used that 1
2 ((1 + x)p + (1− x)p) isolates the even-power terms of (1 + x)p, as well

as the analogous result for the odd-power terms.

Expanding this out gives

−1

4
((1− x) + (1 + x))2(1− x)n(1 + x)n = −(1− x)n(1 + x)n.

The coefficient of x2k in this final polynomial is

−
2k∑
j=0

(−1)j
(
n

j

)(
n

2k − j

)
which gives the claimed result.

2.5.2 Lemma. The identity

2k∑
j=0

(−1)j
(
n

j

)(
n

2k − j

)
= (−1)k

(
n

k

)
holds.

Proof. Comparison of the coefficients of x2k on both sides of the identity

(1− x)n(1 + x)n = (1− x2)n

gives the result.

These lemmas lead us to the result that

χ(L2
k;2,2) =

(
2A
k

)
.

General N on the sphere

When g = 0 but N is allowed to be general, recall that the relevant residue can be evaluated to

give

χ(Lλk;N,N ) =
(−1)σ

N !

∑
∑
ka=k

∑
∑
la=N(N−1)

al1···lN
∏
a

(
λda + δa +N − 1− la

δa − la

)
where al1···lN is the coefficient of yl11 · · · ylNN in the polynomial

∏
a<b(ya − yb)

2.

This is, again, a complicated sum. Once more, it simplifies if we take λ = N . In this case, it

becomes

χ(LNk;N,N ) =
(−1)σ

N !

∑
∑
ka=k

∑
∑
la=N(N−1)

al1···lN
∏
a

(
NA+ 2(N − 1)− la
Nka +N − 1− la

)
.

To understand this sum, we will consider its generating function. The basic result that

underlies our computation is the following elementary lemma, which tells us how to pick out the

relevant binomial coefficients in our expressions.
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2.5.3 Lemma. For any j, one has

∞∑
i=0

(
n

Ni+ j

)
xNi =

x−j

N

N∑
a=1

r−aj(1 + rax)n,

where r generates the group of N th roots of unity.

Proof. On the right hand side, we have

xj

N

N∑
a=1

r−aj(1 + rax)n =
1

N

N∑
a=1

∞∑
l=0

(
n

l

)
ra(l−j)xl−j

=
1

N

∞∑
l=0

(
n

l

)
xl−j

N∑
a=1

ra(l−j)

Now, by virtue of the properties of roots of unity, the sum

N∑
a=1

ra(l−j) = rl−j
1− rN(l−j)

1− rl−j

vanishes unless l = Ni+ j for some i, in which case it is N . Our sum thus becomes

N∑
i=0

(
n

Ni+ j

)
xNi

as claimed.

Using this lemma and writing n = NA, the Euler characteristic χ(LNk;N,N ) is, up to the overall

factor (−1)σN !−1N−N , the coefficient of xNk of the polynomial

P (x) =
∑

∑
a la=N(N−1)

al1···lN

n∏
a=1

x−(N−1)+la

(
N∑
b=1

r−(1−la)b(1 + rbx)n+2(N−1)−la

)

where r generates the group of N th roots of unity. Because
∑
la = N(N − 1), we see that∏

a x
−(N−1)+la = 1. We then have

P (x) =
∑

∑
a la=N(N−1)

al1···lN
∏
a

(∑
b

r−(1−la)b(1 + rbx)n+2(N−1)−la

)
.

Expanding the product gives

P (x) =
∑

∑
la=N(N−1)

al1···lN

N∑
b1,··· ,bN=1

N∏
a=1

r−(1−la)ba(1 + rbax)n+2(N−1)−la

=

N∑
b1,··· ,bN=1

∑
∑
la=N(N−1)

al1···lN

N∏
a=1

r−(1−la)ba(1 + rbax)n+2(N−1)−la .
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The only non-zero contributions to the sum come from those terms where all the ba are different. To

see this, sum over the terms where bj = · · · = bN =: b for some N > j ≥ 1. Write a′ = 1, · · · , j−1

and ã = j, · · · , N . The sum over the restricted configurations with bã = b is

∑
∑
la=N(N−1)

al1···lN

N∑
b=1

N∑
ba′=1

N∏
ã=j

r−(1−lã)b(1+rbx)n+2(N−1)−lã
j−1∏
a′=1

r−(1−la′ )ba′ (1+rba′x)n+2(N−1)−la′ .

We can now do the product over ã, giving∑
∑
la=N(N−1)

al1···lN
∑
b

(
r
∑

ã lãb(1 + rbx)n+2(N−1)−
∑

ã lã
)

×
∑
ba′

j−1∏
a′=1

r−(1−la′ )ba′ (1 + rba′x)n+2(N−1)−la′ .

Write L̃ =
∑
ã lã. Then this becomes

N(N−1)∑
L̃=0

∑
∑
lã=L̃

∑
∑
la′=N(N−1)−L̃

al1,··· ,lN
∑
b

rL̃b(1 + rbx)n+2(N−1)−L̃

×
∑
ba′

j−1∏
a′=1

r−(1−la′ )ba′ (1 + rba′x)n+2(N−1)−la′

which vanishes because, for each value of L̃, the sum∑
∑N

j lã=L̃

al1···lj−1lj ···lN = 0,

as long as N − j > 1. This follows from the definition of the coefficient al1···lN as the coefficient

of
∏
a y

la
a in

∏
a<b(ya − yb)

2.

Returning now to our generating function P (x), restricting to all of the ba different allows us

to write

P (x)

N !
=

∑
∑
la=N(N−1)

al1···lN
∏
a

r−(1−la)a(1 + rax)n+2(N−1)−la

= ±(1± xN )n+2(N−1)
∏
a

(r−a(1 + rax))−la ,

where we have used that
∏
a(1 + rax) = (1 ± xN ) where the sign is negative for N even and

positive for N odd. We can now use the definition of the al1···lN to repackage the sum as follows

P (x)

N !
= ±(1± xN )n+2(N−1)

∏
a<b

(
ra

(1 + rax)
− rb

(1 + rbx)

)2

= ±(1± xN )n
∏
a<b

(ra − rb)
2

= ±NN (1± xN )n.
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By taking the coefficient of xNk and reinserting the relevant factors, we see that the Euler

characteristic is

χ(LNk;N,N ) =

(
NA
k

)
when g = 0.

2.5.2 NonAbelian local vortices on general compact surfaces

Warming up on general surfaces: The case of N = 2

To see through the eventual forest of sums and products that arises in general, when g is general

it is again useful to begin in the case of N = 2, which is the first nontrivial case.

The residue that we need to compute is

(−1)σ22g

2!

∑
k1+k2=k

Resy1=y2=0

[
(y1 − y2)

2−2g (1− y1)
−2d1−(1−g)−1(1− y2)

−2d2−(1−g)−1

yδ1+1
1 yδ2+1

2

dy1dy2

]
.

Our prescription for evaluating this residue is based on the series expansion (2.23) for the

Vandermonde-type contribution. Plugging this back into the residue and interchanging the sum

and the integral gives

(−1)σ2g−1
∑

k1+k2=k

∞∑
i=0

(
−g
i

)(
−1

2

)i i∑
j=0

(
i

j

)

× Res

[(
y1
y2

− 2 +
y2
y1

)
(1− y1)

−2d1−(1−g)−1(1− y2)
−2d2−(1−g)−1

y
δ1+(g−1)−2j+i+1
1 y

δ2+(g−1)−i+2j+1
2

dy1dy2

]
,

where da = A− ka and δa = Nfka + (Nf − 1)(1− g).

The residues can be evaluated and the terms grouped, giving

(−1)σ2g
∑

k1+k2=k

∞∑
i=0

(
−g
i

)(
−1

2

)i i∑
j=0

(
i

j

)

×
[(

2A+ (1− g)− 1− 2j + i

2k1 − 1− 2j + i

)(
2A+ (1− g) + 1 + 2j − i

2k2 + 1 + 2j − i

)
−(

2A+ (1− g)− 2j + i

2k1 − 2j + i

)(
2A+ (1− g) + 2j − i

2k2 + 2j − i

)]
.

Writing S(g, k, 2A) for this quantity, we will show that the identity

S(g, k, n) =

(
n

k

)
holds.
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Introducing the space-saving notation n = 2A and l = 2j − i, the quantity S(g, k, n) is the

coefficient of x2k of the polynomial

(−1)σ2g−2
∞∑
i=0

(
−g
i

)(
−1

2

)i i∑
j=0

(
i

j

)
[(

(1 + x)n+(1−g)−1−l + (−1)−g−l(1− x)n+(1−g)−1−l
)

×
(
(1 + x)n+(1−g)+1+l + (−1)−g−l(1− x)n+(1−g)+1+l

)
−
(
(1 + x)n+(1−g)−l + (−1)1−g−l(1− x)n+(1−g)−l

)
×
(
(1 + x)n+(1−g)+l + (−1)1−g−l(1− x)n+(1−g)+l

)]
,

which simplifies to give

(−1)σ−g2g−1
∞∑
i=0

(
−g
i

)(
1

2

)i i∑
j=0

(
i

j

)
(1− x2)n+(1−g)−1−l ((1 + x)2l+1 + (1− x)2l+1

)
= (−1)σ−g2g(1− x2)n−g

∞∑
i=0

(
−g
i

)
(−1)i

(
x2 + 1

x2 − 1

)i

= (−1)σ−g2g(1− x2)n−g

(
1

1− x2+1
x2−1

)g
= (−1)k(1− x2)n.

The coefficient of x2k in (1− x2)n is (−1)k
(
n
k

)
, so we have shown that

S(g, k, n) =

(
n

k

)
as claimed.

Modulo technical questions regarding the mathematical validity of the residue prescription we

give, we have demonstrated that

χ(L2
g;k;2,2) =

(
2A
k

)
for all g, k and A.

General N on general surfaces

We now turn to the most general case of local vortices in U(N) gauge theory with N flavours on

arbitrary compact surfaces.

Our results for general Nc and g = 0 and for Nc = 2 and general g lead us to suspect that

χ(LNg;k;N,N )
?
=

(
NA
k

)
for all N and g.
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We again simplify by setting λ = Nf . The residue we need to compute is then

(−1)σNNcg
f

Nc!

∑
∑
ka=k

Resy=0

[∏
a<b

(ya − yb)
2−2g

∏
a

(1− ya)
−Nfda−(Nc−1)(1−g)−1

yδa+1
a

dya

]
,

where, as always, da = A− ka, δa = Nfka + (Nf − 1)(1− g), and a, b = 1, · · ·Nc.
Our prescription for computing this residue is based on the expansion of (2.23), which gives∏

a<b

(ya − yb)
2−2g =

∏
a<b

(ya − yb)
2
∏
a<b

(ya − yb)
−2g

= 2(Nc−1)g
∏
a<b

(ya − yb)
2
∏
a

y−g(Nc−1)
a

∏
a<b

(
1− 1

2

(
ya
yb

+
yb
ya

))−g

= 2(Nc−1)g
∏
a<b

(ya − yb)
2
∏
a

y−g(Nc−1)
a

∏
a<b

∞∑
ia,b=0

(
−g
ia,b

)(
−1

2

)ia,b
(
ya
yb

+
yb
ya

)ia,b

= 2(Nc−1)g
∏
a<b

(ya − yb)
2
∏
a

y−g(Nc−1)
a

∏
a<b

∞∑
ia,b=0

(
−g
ia,b

)(
−1

2

)ia,b

×

 ia,b∑
ja,b=0

(
ia,b
ja,b

)
y
2ja,b−ia,b
a y

−2ja,b+ia,b

b


= 2(Nc−1)g

∑
∑
la=Nc(Nc−1)

al1···lNc

∏
a

yla−g(Nc−1)
a

∏
a<b

∞∑
ia,b=0

(
−g
ia,b

)(
−1

2

)ia,b

×

 ia,b∑
ja,b=0

(
ia,b
ja,b

)
y
2ja,b−ia,b
a y

−2ja,b+ia,b

b


= 2(Nc−1)g

∑
∑
la=Nc(Nc−1)

al1,··· ,lNc

∞∑
c1,··· ,cNc=−∞

Ac1,··· ,cNc

∏
a

yla+ca−g(Nc−1)
a

where the al1···lN is the coefficient of
∏
a y

la
a in

∏
a<b(ya − yb)

2 as before and Ac1,··· ,cNc
is the

coefficient of
∏
a y

ca
a in

∏
a<b

∑
ia,b

(−g
ii,b

)
(−1/2(yay

−1
b + yby

−1
a ))1/2.

The idea is to unwind this expansion, compute the residue, pass to the generating function,

and then wind the expansion back up to obtain a neat form.

Substituting this into the residue gives, up to the overall prefactor (−1)σ2(Nc−1)gNNcg
f Nc!

−1,

∑
∑
ka=k

∑
∑
la=Nc(Nc−1)

∑
c1,··· ,cNc

al1,··· ,lNc
Ac1,··· ,cNc

∏
a

(
Nfda + (Nc − 1) + δa − la − ca

δa − la − ca + g(Nc − 1)

)

where, as always, da = A− ka and δa = Nfka + (Nf − 1)(1− g). This constitutes the general

result for the Euler characteristic χ(LNf

k;Nc,Nf
).

We now set Nc = Nf =: N . In this case, the residue becomes∑
∑
ka=k

∑
∑
la=N(N−1)

∑
c1,··· ,cN

al1,··· ,lNAc1,··· ,cN
∏
a

(
NA+ (N − 1)(2− g)− la − ca

Nka + (N − 1)− la − ca

)
.
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Using the lemma 2.5.3 and writing n = NA, we find that these numbers are the coefficients of

xNk of the polynomial

Pg(x) =
∑

∑
la=N(N−1)

∑
c1,··· ,cN

al1,··· ,lNAc1,··· ,cN

×
∏
a

x−(N−1)+la+ca

(
N∑
b=1

r−(1−la−ca)b(1 + rbx)n+(N−1)(2−g)−la−ca

)

where r generates the N th roots of unity, as before, and we have multiplied through by NN .

The method now is similar to the genus zero case. That
∑
la = N(N−1) gives

∏
a x

−(N−1)+la =

1. We then expand the product to give

Pg(x) =
∑

∑
la=N(N−1)

∑
c1,··· ,cN

al1,··· ,lNAc1,··· ,cN

×
N∑

b1,··· ,bN=1

∏
a

xcar−(1−la−ca)ba(1 + rbax)n+(N−1)(2−g)−la−ca .

For exactly the same reasons as before the only nonzero contributions come when all the ba are

distinct, at least after regularisation. Thus

Pg(x)

N !
=

∑
∑
la=N(N−1)

∑
c1,··· ,cN

al1,··· ,lNAc1,··· ,cN
∏
a

xcar−(1−la−ca)a(1 + rax)n+(N−1)(2−g)−la−ca

= (−1)N+1(1± xN )n+(N−1)(2−g)
∑
la

∑
ca

al1,···lNAc1,··· ,cN

×
∏
a

(x−1r−a(1 + rax))−ca(r−a(1 + rax))−la .

We now wind up the series, using the definition of the coefficients al1,··· ,lN and Ac1,··· ,cN ,

which leads to the polynomial

Pg(x)

N !
= (−1)N+1(1± xN )n+(N−1)(2−g)

∏
a<b

(
ra

(1 + rax)
− rb

(1 + rbx)

)2

×
∏
a<b

(
1− 1

2

(
ra(1 + rbx)

rb(1 + rax)
+
rb(1 + rax)

ra(1 + rbx)

))−g

.

This is

2(N−1)g

N !
Pg(x) = ±(1± xN )n+(N−1)(2−2g)

∏
a<b

(
ra

(1 + rax)
− rb

(1 + rbx)

)2−2g

= ±NN(1−g)(1± xN )n.

Now, Pg(x) was defined to so that the coefficient of xNk in

(−1)σNN(g−1)N !−12(N−1)gPg(x)
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is the quantity we are after. Collecting all of the various prefactors that we have discarded and

comparing coefficients, this gives the final result

χ(LNg;k;N,N ) =

(
NA
k

)
, (2.25)

as expected.

2.5.3 A heuristic argument for the local vortex count

The computation that we have done is interesting in that it is rather involved but has, in the

local case (at least), a very simple output. One simple, but heuristic, way to see that the local

vortex count might be (
NA
k

)
follows by considering symmetry arguments based on colour-flavour locking, as used in [HT03;

Ton05] to understand the internal moduli of vortices. Let us summarise the construction. Let

(A∗, ϕ∗) be a solution to the local Abelian vortex equations. Then one can embed this Abelian

solution into a solution (A, ϕ) to the local nonAbelian vortex equations as

A =


A∗

0
. . .

0

 , ϕ =


ϕ∗

√
τ

. . .
√
τ

 .

Of course, there is nothing special about the top left entry: a local nonAbelian vortex can be

given by putting a local Abelian vortex in any colour-flavour ‘slot’.

One could then build a charge k nonAbelian vortex by distributing k Abelian vortices into

the N ‘slots’. Given that the number of charge ki local Abelian vortices is(
A
ki

)
,

the number of ways to distribute k Abelian vortices among the N slots is∑
k1+···+kN=k

(
A
k1

)
· · ·
(
A
kN

)
=

(
NA
k

)
.

This is in agreement with the result (2.25).

Note that, while the result of the localisation computation also came as a sum over partitions

of k, the form that the summands take is very different to this and there are cancellations between

the contributions from the various partitions.

It is quite remarkable that objects as complicated as vortices might be amenable to such

simple symmetry arguments (at least in special cases). It would be interesting to see how to

make the above argument rigorous. The results of Baptista in [Bap09] show that aspects of

these symmetry-based arguments can be made rigorous in some generality when applied to

understanding the geometry of the vortex moduli space.
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2.6 index refactorisation for semilocal vortices

2.6.1 Seiberg duality

When Nf > Nc, the infrared limit (corresponding to e2 → ∞) of the critically-coupled Yang–

Mills–Higgs theory in two dimensions can be effectively described by a sigma model into the

Higgs branch of the theory, which is the complex Grassmannian

Gr(Nc, Nf ).

This is the same as the Higgs branch for the theory with Nf −Nc colours:

Gr(Nc, Nf ) ∼= Gr(Nf −Nc, Nf ),

which leads one to the idea of Seiberg duality (originally considered in [Sei95] in the context

of four-dimensional theories with N = 1 supersymmetry), the notion that the theory with Nc

colours and the theory with Nf −Nc colours are equivalent in the infrared.

The BPS objects of the infrared theory are holomorphic curves in the Grassmannian. As

one moves away from the infrared, these become vortices. The moduli space of vortices resolves

the moduli space of holomorphic maps into the Grassmannian, which is generally a singular

space. The Seiberg dual theories generally lead to different resolutions of the moduli space of

holomorphic maps.

Our results allow us, in principle, to probe the action of Seiberg duality on the vortex moduli

space. We make only surface level inroads here. To do this, we should get to grips with the

meaning of the index (2.24) when Nc ̸= Nf .

Our main result is the reformulation of the index in ‘Seiberg dual’ form, with certain sums

over Nc indices, each taking values from 1 to Nf , replaced with sums over Nf −Nc indices. We

carry this out in detail for Nf −Nc = 1.

2.6.2 The index for semilocal vortices

There are two natural generalisations to the simplifying computations we have done, changing λ

or changing Nf −Nc. Changing λ leads to rather fundamental calculational difficulties, relating

to the fact that it becomes hard to write down generating functions. We make some progress in

the case of λ→ ∞ in chapter 4.

On the other hand, moving away from the local case does not lead to such significant problems.

The general result for the Euler characteristic χ(LNf

g;k;Nc,Nf
) is, up to a prefactor,

∑
∑
ka=k

∑
∑
la=Nc(Nc−1)

∞∑
ca=−∞

al1,··· ,lNc
Ac1,··· ,cNc

∏
a

(
NfA+ (Nc − 1) + (Nf − 1)(1− g)− la − ca
Nfka + (Nf − 1)(1− g) + g(Nc − 1)− la − ca

)
,

where a = 1, · · · , Nc.
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To understand this, we proceed as before, by looking for a generating function. Indeed, this

quantity is the coefficient of xNfk in the polynomial

Pg;Nc,Nf
(x) =

∑
∑
la=Nc(Nc−1)

∑
ca

al1···lNc
Ac1···cNc

∏
a

x−(Nf−1)(1−g)−g(Nc−1)+la+ca

×

Nf∑
b=1

r−b((Nf−1)(1−g)+g(Nc−1)−la−ca)(1 + rbx)n+(Nc−1)+(Nf−1)(1−g)−la−ca


up to a factor of NNc

f , where n = NfA and r generates the group of the Nf
th roots of unity.

Expanding the product gives

Pg;Nc,Nf
(x) =

∑
∑
la=Nc(Nc−1)

∑
ca

al1···lNc
Ac1···cNc

x−Nc(Nf−Nc)(1−g)
Nf∑

b1,··· ,bNc=1

∏
a

xca

× r−ba((Nf−1)(1−g)+g(Nc−1)−la−ca)(1 + rbax)n+(Nc−1)+(Nf−1)(1−g)−la−ca .

We now do the la and ca sums. This leaves us with

Pg;Nc,Nf
(x) = x−Nc(Nf−Nc)(1−g)

Nf∑
b1,··· ,bNc=1

∏
a1<a2

(
rba1

1 + rba1x
− rba2

1 + rba2x

)2

×
(
1− 1

2

(
rba1 (1 + rba2x)

rba2 (1 + rba1x)
+
rba2 (1 + rba1x)

rba1 (1 + rba2x)

))−g

×
∏
a

r−ba((Nf−1)(1−g)+g(Nc−1))(1 + rbax)n+(Nc−1)+(Nf−1)(1−g)

= x−Nc(Nf−Nc)(1−g)2−g(Nc−1)

×
Nf∑

b1,··· ,bNc=1

∏
a1<a2

(
rba1 − rba2

)2−2g

×
∏
a

r−ba(Nf−1)(1−g)(1 + rbax)n+(Nf−Nc)(1−g).

As before, we should regularise by asking that all the ba are distinct.

Simplifying this in general remains difficult. It does have an interesting duality property,

which can be exploited. We illustrate this in the case of Nf −Nc = 1.

The case of Nf −Nc = 1

The ba should all be distinct so, at the cost of a factor of Nc!, we may assume that

1 ≤ b1 < · · · < bNc
≤ Nf .

When Nf = Nc + 1, we can replace the sum

S :=
∑

b1<···<bNc

∏
a1<a2

(rba1 − rba2 )2−2g
∏
a

r−ba(1−g)(1 + rbax)n+(1−g)
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that appears in Pg;Nc,Nf
with a sum over the number b̂ in {1, · · · , Nf} which none of the ba take.

That is, we have

S = ±NNf (1−g)
f (1± xNf )n+(1−g)

Nf∑
b̂=1

(1 + rb̂x)−n−(1−g)
∏
b̸=b̂

(
rb − rb̂

)2g−2

= ±N (Nf−1)(1−g)
f (1± xNf )n+(1−g)

Nf∑
b̂=1

rb̂(1−g)(1 + rb̂x)−n−(1−g)

= ±N (Nf−1)(1−g)+1
f (1± xNf )n+(1−g)

∞∑
i=0

(
−n− (1− g)

Nf i− (1− g)

)
xNf i−(1−g),

where we have used lemma 2.5.3.

In this case, the full generating function for the Euler characteristics, including all the right

factors, is

±NNcg
f x−(Nf−1)(1−g)S = ±NNf

f

∞∑
i,j=0

(−1)j(Nf+1)

(
n+ (1− g)

j

)(
−n− (1− g)

Nf i− (1− g)

)
xNf (i+j+g−1)

Given a vortex number k, we’re interested in the coefficient of xNfk, which is

χ(LNf

g;k;Nc=Nf+1) = ±NNf

f

∞∑
j=0

(−1)j(Nf+1)

(
n+ 1− g

j

)(
−n− (1− g)

Nf (k − j) + (Nf − 1)(1− g)

)
.

This is substantially simpler than the original form of the index.

The general case

More generally, the sum over the {ba}a=1,··· ,Nc
can be replaced with a sum over those values in

{1, · · · , Nf} that none of the ba take. Just as above, this allows us to ‘refactorise’ the index in

‘Seiberg-dual form’.

2.7 local duality

2.7.1 What are local vortices?

In our discussion of duality we will restrict ourselves to two special cases where our results take a

particularly simple form: the local case of Nf = Nc = λ and the Abelian semilocal case of Nc = 1,

Nf = λ. (Recall that working at Chern–Simons level λ = Nf simplifies our formulae significantly,

especially on surfaces of genus greater than one.)

We begin here in the local case, where we conjecture that quantum vortices ‘are’ fermions in

a background flux, generalising the results of [ER20].

More precisely, we will find that our vortex quantum mechanics seems to agree with the theory

of N := Nf = Nc = λ flavours of (spin half) fermion coupled to a background gauge field for the

flavour symmetry. Matching of these theories requires the matching of choices made in defining

the theory. We will see that both theories depend on the choice of a holomorphic vector bundle.
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2.7.2 The Fermi theory

The basic Fermi theory dual to the theory of local U(N) vortices at level N takes the following

simple form, based on the Abelian example of [ER20].

Let V → Σ be a (flavour) complex vector bundle of rank N and degree c1(V )[Σ] = NA, which

should be an integer. The field of the static theory is a section

ψ = (ψ1, · · · , ψN ) ∈ Γ(V ⊗K
1/2
Σ )

where K
1/2
Σ is a spin bundle on Σ. Each of the ψi is interpreted as an individual flavour. Note,

however, that for general NA there is no splitting

V
?
= L⊕N

for a line bundle L, so the individual flavours do not really have an independent existence. Of

course, one can make sense of them locally. If A is an integer, so that NA ∈ NZ, then L does

exist, and one can make sense of the individual flavours.

We give the flavour bundle V ⊗K
1/2
Σ a backgound connection B. The total flux of B through

Σ is fixed by the topology of the bundle to be N(A − 1 + g). The connection B induces a

holomorphic structure on V ⊗K
1/2
Σ via the Dolbeault operator ∂̄B .

We extend the bundle V ⊗ K
1/2
Σ to Σ × S1 in the trivial way, pulling it back along the

projection to Σ. We then think of ψ as being a function of a periodic time component t. We

should also introduce a time component Bt to the background gauge field B so as to preserve

gauge invariance. However, because the topology of the bundle is trivial along the time direction,

we can make the gauge choice Bt = 0. This is sometimes called the temporal gauge. As B is a

background gauge field, this is completely harmless.

In this gauge, the Lagrangian is the Pauli Lagrangian

ψ†(i∂t +∆B − ∗F (B))ψ + c.c.

where ∆B is the usual B-coupled Laplacian and the combination ∆B−∗F (B) gives the Dolbeault

Laplacian ∆∂̄B = ∂̄†B ∂̄B .

Note that if A ∈ Z and B diagonalises, this is the Lagrangian for N fermion flavours in the

background of a (genuine) magnetic field of total flux A.

At low temperature, the theory becomes fermionic Hamiltonian mechanics on the space of

zero modes

∂̄Bψ = 0,

which is the zeroth vector bundle cohomology H0(V ⊗K
1/2
Σ ). The Riemann–Roch theorem tells

us that the ‘expected’ dimension of this space is

h0(V ⊗K
1/2
Σ )− h1(V ⊗K

1/2
Σ ) = N(A− 1 + g) +N(1− g)

= NA.
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When is h1(V ⊗K
1/2
Σ ) = 0? Suppose that A ∈ Z and that V splits as L⊕N as a holomorphic

bundle where L is a holomorphic line bundle of degree A. In that case, the first cohomology

of V ⊗K
1/2
Σ = (L⊗K

1/2
Σ )⊕N vanishes whenever that of L⊗K

1/2
Σ vanishes. By positivity, this

happens for A > g − 1. It seems likely that in the general case, there will be similar vanishing

results for NA ≫ Ng.

Suppose we are in this regime. Then we have a nonrelativistic quantum mechanics on the odd

vector space

ΠCNA,

where Π denotes parity reversal. The geometric quantisation prescription tells us that quantum

states should be holomorphic functions on this space. Such functions are analytic functions of

the holomorphic coordinates (z1, · · · , zNA). Because the zi are anticommuting, such a function is

the linear combination of monomials of the form

zi1 · · · zik

where 0 ≤ k ≤ NA. The total Hilbert space is therefore the exterior algebra

H•
Fermi = Λ•CNA

with total dimension 2NA.

There is an overall U(1) action on the space of zero modes, acting by zi 7→ eiθzi for each i.

This grades the Hilbert space by particle number. The k-particle Hilbert space is

Hk
Fermi = ΛkCNA,

which has dimension
(
NA
k

)
. This is the expected dimension of the k-vortex Hilbert space.

This is the basic result underpinning the duality (2.1) which we gave at the start of this

chapter:

ZSCS,N ↔ ZFermi,N .

We now understand the theories on both sides a little better. When A ∈ Z, so that the Fermi

theory becomes the theory of N fermions in a magnetic field, this exactly realises the low energy

vortex theory as the theory of the lowest Landau level for a system of N Fermi flavours in a

magnetic field of flux A. Really though, for general A, this should be interpreted as a Landau

level of charge 1/N objects (or, more accurately, a nonAbelian Landau level).

There is a subtlety in the matching of the global symmetries in the Fermi-vortex duality above.

In the Fermi theory, the global symmetry is

U(N) =
U(1)× SU(N)

ZN
.

The U(1) factor allows us to count the number of particles, and the SU(N) factor rotates the

flavours among themselves. The discrete quotient allows us to couple to background gauge fields

for the flavour symmetry which would not be viable as U(1)× SU(N) gauge fields. This is the

reason that the ‘effective Abelian flux’ A need not be an integer, as long as NA is.
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Näıvely, the vortex theory has a topological global symmetry

U(1)top

which allows us to count the number of vortices, and a flavour symmetry

SU(N)flavour.

In the Higgs phase, the flavour symmetry is locked to the colour group as

SU(N)diag ⊂ U(N)colour × SU(N)flavour.

which rotates the possible vortex charges among themselves at the same time as the scalar field

flavours.

How do these global symmetries fit together? One way to understand this is to start in

the vortex theory and couple the scalar fields to a background gauge field for a U(N) flavour

symmetry. This may look illegal, because the overall U(1) is gauged, but there is nothing stopping

one from thinking of the scalar field as taking values in

E ⊗ V → Σ

where E is the colour bundle on which there is a dynamical gauge field and V is a flavour bundle

which could have nonzero degree, d. This nonzero degree shifts the overall Chern class of the

bundle E⊗V by Nd and so is equivalent to increasing the degree of the colour bundle by d. This

means shifting the vortex number k 7→ k + d. This slightly roundabout argument implies that

the global symmetries fit together as

U(1)top × SU(N)flavour
ZN

= U(N),

so that the global symmetries match across the duality.

The equality of indices that we have demonstrated (as well as the matching of global symmetries

and various parameters) is good evidence for the duality, but does not constitute a proof of the

duality. To prove the duality one needs to show more.

In the Abelian case N = 1, Eriksson–Romão showed in [ER20] that the k-vortex Hilbert space

was

Hk
N=1

∼= ΛkH0(Σ, L⊗K
1/2
Σ )

where L is a holomorphic line bundle of degree A as above. This result holds for all A ∈ Z and

does not rely on vanishing theorems (in particular, the dimension of the Hilbert space may be

larger than the expected dimension for small A). Note that the vortex Hilbert space is defined

with respect to a line bundle on Σ which must be taken to be L⊗K1/2
Σ for the above isomorphism

to be natural and even to exist in general.

This leads us to conjecture in the nonAbelian case that the k-vortex Hilbert space is

Hk
N

?∼= ΛkH0(Σ, V ⊗K
1/2
Σ ) (2.26)
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where V is a (semi)stable holomorphic bundle of rank N and degree NA as above, and the

vortex Hilbert space is defined with respect to the bundle V ⊗K
1/2
Σ . Proving this conjecture

would essentially constitute a proof of the Fermi-vortex duality as a genuine duality of non-

supersymmetric field theories.

The conjecture would also imply that the true dimension of the Hilbert space obeys the

inequality

dim(Hk
N ) ≥

(
NA
k

)
,

which follows because

h0(Σ, V ⊗K
1/2
Σ ) = NA+ h1(Σ, V ⊗K

1/2
Σ )

≥ NA.

2.8 semilocal duality

2.8.1 What are semilocal vortices?

The outcome of the vortex count at Nc = 1 is (see Theorem 2.3.6)

χ(Lλk;1,Nf
) =

g∑
j=0

λjNg−j
f

(
g

j

)(
λ(A− k) + δ − g

δ − j

)

where δ = Nfk + (Nf − 1)(1− g).

The simplest case is λ = Nf , in which case the count is

Ng
f

(
NfA+ (Nf − 1)(1− g)

Nfk + (Nf − 1)(1− g)

)
= Ng

f

(
NfA+ (Nf − 1)(1− g)

Nf (A− k)

)
. (2.27)

The first thing to note here is the asymmetry between vortices and vortex-holes for g ̸= 1: it

appears that vortex-holes are more natural from the perspective of state counting, reflecting the

strange-looking selection rule Nfk ≥ (Nf − 1)(g − 1) for semilocal Abelian vortices (this is the

same as the condition that the expected dimension of the vortex moduli space be nonnegative).

The second thing to note is that the count of vortex-holes is reminiscent of the counting of

states consisting of Nf anticommuting objects (that is, fermions). The third thing to note is the

appearance of the factor Ng
f , which is familiar from state counting in Abelian Chern–Simons and

in theories of anyons.

In this case, we conjecture that the vortex theory is dual to a U(1)Nf /U(1) theory coupled to

Nf fermion flavours, each attached to flux and spin. We give a description of this theory.

More generally, away from λ = Nf , topological effects become more important, exemplified

by the fact that the index generally comes as a sum over 0, · · · , g. We do not give a general

field-theoretic description in this case, but conjecture that the vortex theory is dual to a theory

of anyons with fractional statistics exp(iπλ/Nf ).
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2.8.2 Global symmetries

To understand what a potential dual theory looks like, we consider the symmetries of the semilocal

theory. There is the flavour symmetry

SU(Nf )

which is broken to S(U(Nc)diag × U(Nf − Nc)) in the Higgs phase, and the vortex-counting

topological symmetry

U(1)top.

To see how the U(1) and SU(N) symmetries fit together, we again think of the scalar fields

as taking values in a bundle

E ⊗ V → Σ

where E is the colour bundle and V is the flavour bundle. Shifting the degree of the flavour

bundle by d is formally equivalent to a shift of E by
Nf

Nc
d.

In general, the fractional nature of the shift means that there is something to think about

here7, but in the Abelian case this means that the topological symmetry binds to the original

flavour symmetry as

U(1)top × SU(Nf ), (2.28)

which is the global symmetry we should aim for.

2.8.3 Flux attachment, spin attachment, and Chern–Simons theory

Consider the theory of a spin 1/2 fermion ψ coupled to a U(1) gauge potential a at Chern–Simons

level n, with Lagrangian

n

2π
∗ a ∧ da− 1

2

(
ψ†(iDt +∆∂̄a⊗B

)ψ + c.c.
)
,

where B is a background Abelian connection, including the spin connection (often, one incorporates

B into the dyanamical connection a by including a BF coupling of the form a ∧ dB).

The equation of motion for at is the Gauss law constraint

n

2π
F (a)Σ = |ψ|2ωΣ. (2.29)

The object on the right is the ψ particle density on Σ. This equation requires the particle number,

which is the integral of this particle density, to be quantised in units of n. It also tells us that

for a given configuration of ψ particles, the moduli space of classical gauge fields on Σ is the

Jacobian of Σ with symplectic form scaled by n. It is well-known that quantising this gives ng

states associated to the gauge field a.

On the other hand, the low-temperature equation of motion for ψ on a compact surface is the

lowest Landau level equation

∂̄a⊗Bψ = 0.

7In a sense, the fact that the shift simplifies for Nf = Nc or for Nc = 1 is the reason why these two cases are
simple enough for us to study in detail.
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The Riemann–Roch theorem tells us that, if the background magnetic flux is sufficiently strong,

the number of possible states for the ψ particle is

B +m

where B is the integrated magnetic flux, and m is the number of ψ particles divided by n. The

genus-dependent terms cancel because ψ has spin 1/2.

Because ψ is a fermion, the occupation number of each state is one or zero. This means that,

for a given compatible configuration of the gauge field, the number of ψ states is(
B +m

nm

)
.

This does not take into account the number of states associated to the gauge field, which to a

first approximation, gives an additional factor of ng. In general, a more detailed calculation is

necessary to account for potential effects associated to nontrivial topology of the moduli space.

Proceeding for now, if we set n = 1 then ng = 1 and the (approximate) number of quantum

states in the full theory is (
B +m

m

)
. (2.30)

This is the count of states in a Landau level of bosons.

This carries the essence of flux attachment [Wil82]. The equation (2.29) ‘attaches’ 1/n units

of flux to each ψ particle. Each ψ particle is also electrically charged and the flux attachment

turns it into a flux-charge composite. By considering the Aharanov–Bohm phase associated to

a rotation of this composite, one can see that the statistical exchange phase of ψ is shifted by

exp(iπn−1). As we started with a fermion, the new statistical phase is

exp(iπ(1/n− 1)).

When n = 1, the composite is a boson, which agrees with what we saw with the state count in

the lowest Landau level.

There is a subtlety here. The state count (2.30) is not the count of states for spin 0 bosons in

the lowest Landau level in general, but rather the count of states for spin 1/2 bosons. Indeed, the

number of states for a system of q spin 0 bosons in the lowest Landau level instead takes the form(
B + q + (1− g)

q

)
.

Of course, one can absorb 1 − g into B, shifting the total effective magnetic flux. This is a

little unsatisfactory from a geometrical perspective. It is a little more natural to think of flux

attachment as changing the statistics, but not the geometrical spin.

If we want to really change the spin of the fermion, we should introduce a BF coupling between

the dynamical connection a and the background spin connection Γ on K
1/2
Σ so as to ‘eat’ the spin

degrees of freedom. This term takes the general form

p

2π
∗ a ∧ dΓ,
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for some level p. Note that Γ is not dynamical: it is a background connection. The new flux

attachment equation is

nF (a)Σ + pF (Γ)Σ = 2π|ψ|2ωΣ.

Integrating this, we see that the allowed number of ψ particles now takes the form

q = nm− p(1− g)

for m ∈ Z. We have used that Γ is a connection on K
1/2
Σ and so has degree g − 1.

Setting n = p = 1, the count of states with q = m− 1 + g of the fermionic ψ particles is then(
B + q + (1− g)

q

)
which is the count of states for q spinless bosons, as desired.

2.8.4 The dual of a semilocal vortex

We now turn these ideas towards the Abelian semilocal vortex theory. For simplicity, consider

the case of λ = Nf so that the vortex count is

Ng
f

(
NfA+ (Nf − 1)(1− g)

Nf (A− k)

)
.

When Nf = 1, this is simply a theory of fermions in a magnetic field. When Nf > 1, we must do

something a bit more clever.

Although, for consistency, we will eventually start with a theory of fermions, it is actually

easier to write down a bosonic dual in the general case. Take a theory of Nf spinless bosons

Φ = (Φ1, · · · ,ΦNf
) coupled to a background U(1) × SU(Nf ) connection b (this differs from

our usual B as it does not contain the spin connection, because our bosons are spinless) and a

dynamical U(1) gauge potential a. The purpose of this gauge potential is simply to attach flux

and spin to the bosons. In flat space, it does not enter the dynamics in any interesting way - its

equations of motion are constraints. However, its dynamics do become important on topologically

non-trivial backgrounds.

We introduce the Chern–Simons coupling

Nf
2π

∗ a ∧ da− 1

2π
∗ a ∧ dΓ

where Γ is the non-dynamical spin connection on K
1/2
Σ , and the usual matter terms

1

2

(
Φ†(iDt +∆∂̄a⊗b

)Φ + c.c.
)

into the Lagrangian.

The Gauss law is

−NfF (a)Σ + F (Γ)Σ = 2π|Φ|2ωΣ,
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which restricts the number of Φ particles to take the form

q = −Nfm+ (1− g),

for m ∈ Z.

At low temperatures, the equation of motion for Φ is

∂̄a⊗bΦ = 0

which has a space of solutions of expected dimension

NfB +Nfm+Nf (1− g)

where B is the total flux associated to the background magnetic field b. In terms of the particle

number q, this is

NfB − q + (Nf − 1)(1− g).

Then, because Φ is bosonic, the count of q-particle states is, ignoring the gauge field for now,(
number of states + number of particles

number of particles

)
=

(
NfB + (Nf − 1)(1− g)

−Nfm+ (1− g)

)
.

Assuming that the gauge field states enter in the simplest way, the expected quantum degeneracy

of the low-temperature theory is then

Ng
f

(
NfB + (Nf − 1)(1− g)

−Nfm+ (1− g)

)
.

If we identify the vortex number k with −m+ 1− g and A with B, this is the index for semilocal

vortices at λ = Nf . This is a version of bosonic particle-vortex duality.

It would be nice to give this a fermionic description, which we can do by regarding the bosonic

fields in the above description as fermions attached to flux and spin. To do this, we start with Nf

spin-half fermion flavours ψ = (ψ1, · · · , ψNf
). The fermions are charged under the background

field B, which consists of a fixed magnetic field and a fixed spin connection. We gauge the U(1)

phase of each fermion flavour individually, writing αi for the gauge field associated to rotations of

ψi. We introduce an extra gauge field a, which is associated to simultaneous rotations of all of

the ψi. This might look a bit strange, as we have already gauged each U(1), but one can think of

it as a shift of each of the αi. As before, the purpose of the gauge field a is simply to implement

a constraint. In this case, the constraint can be thought of as a constraint on the sum of the

αi. Thus, on flat space, we could regard the dynamical gauge field as U(1)Nf /U(1). On general

backgrounds, the situation is slightly more complicated because of the presence of nontrivial flat

connections.

To attach the correct fluxes and spins, we consider the Chern–Simons terms

Nf
2π

a ∧ da− 1

2π
a ∧ dΓ−

Nf∑
i=1

(
1

2π
αi ∧ dαi +

1

2π
αi ∧ dΓ

)
,
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in addition to the usual matter terms for ψ.

The Gauss laws for the various gauge fields impose the equations

F (αi) + F (Γ) = 2πψ†
iψi (no summation)

−NfF (a) + F (Γ) = 2π
∑
i

ψ†
iψi.

These equations imply that ∑
i

F (αi) = −NfF (a) + (1−Nf )F (Γ).

This can be thought of as the constraint that including the field a buys us.

The Riemann-Roch theorem then tells us that expected number of solutions to the lowest

Landau level equation ∂̄α⊗a⊗Bψ = 0 is

NfB + (Nf − 1)(1− g),

The total number of particles is constrained to take the form

q = −Nfm+ (1− g)

for an integer m. Thus the count of q-particle fermion states is(
number of states

number of particles

)
=

(
NfB + (Nf − 1)(1− g)

−Nfm+ (1− g)

)
for an integer m.

Incorporating the Ng
f states associated to the gauge field, which we again assumes enters in

the simplest way, the total number of states for a given q is then

Ng
f

(
NfB + (Nf − 1)(1− g)

−Nfm+ (1− g)

)
.

This again agrees with the vortex count.

This leads us to a conjectural electric-magnetic duality, between the nonrelativistic Chern–

Simons-matter theory

U(1)Nf
+Nf fundamental scalars

and the fermionic theory we have just described. The Fermi theory has gauge group U(1)Nf ,

but the overall U(1) is gauged twice and subject to a constraint. The gauge group is ‘morally’

U(1)Nf /U(1). Indeed, the overall U(1) should survive as a global symmetry for the duality to

hold. However, the need to bind the fermions together and the presence of the factor Ng
f in the

index make it difficult to give a direct description of the dual theory as a U(1)Nf−1 gauge theory.

In any case, we schematically denote the dual theory as

U(1)Nf /U(1) +Nf fermions + CS and BF couplings.

The duality maps vortices to bound states of fermions.
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The background gauge flux for the U(1)top global symmetry in the vortex theory is A, which

is mapped to the background gauge flux B for the overall U(1) global symmetry in the Fermi

theory.

Stated in these terms, the duality is highly reminiscent of the mirror symmetry duality

U(1) +Nf hypermultiplets ↔ U(1)Nf /U(1) +Nf hypermultpliets

of three-dimensional gauge theories with N = 4 supersymmetry [IS96]. Mirror symmetry is also

an electric-magnetic duality, mapping vortices to electrically charged particles.

The appearance of a Chern–Simons term in the vortex theory can be thought of from this

perspective as arising from integrating out the fermionic fields of the supersymmetric theory.

It would be interesting to understand more precisely the nature of three-dimensional mirror

symmetry in this ‘quantum Hall regime’ (a regime considered for three-dimensional Chern–Simons

theories with N = 2 supersymmetry in [LLM92]).

In assuming that the index factorises into gauge and matter contributions we have been rather

quick. It would be good to clarify the form of the index of the dual theory to verify the duality.

It would also be nice to clarify precisely the role of the overall U(1) symmetry in the construction

of the dual gauge theory: is there a direct construction of the theory as a U(1)Nf /U(1) theory?





3 exotic vortices

3.1 introduction and summary

Exotic vortices are vortex-like configurations in physical systems which exhibit a kind of ‘anti-

Meissner–Higgs effect’. Rather than acting to screen magnetic fields, the Higgs fields in these

theories conspire to accumulate in regions of magnetic flux. This means that ‘inside’ a vortex,

where the Higgs fields become small, the magnetic flux is at its weakest.

The equations for BPS-like exotic vortices are exactly as the usual vortex equations, constrain-

ing the configuration of a gauge potential A and a Higgs field ϕ living on a Riemann surface Σ,

with schematic form

∗F (A) = i

2
e2(τ − ϕϕ†)

∂̄Aϕ = 0,

(3.1)

except that the constant e2, which we usually think of as a gauge coupling constant, is allowed to

be nonpositive (we give a more complete description below).

Integrating the trace of the first vortex equation over a compact surface tells us that vortices

‘take up’ some area proportional to e2. For conventional vortices, with e2 > 0, this leads to

the Bradlow bound, constraining the number of vortices that can fit on a compact surface of

finite area. When e2 < 0, the vortices ‘produce’ area: there is no upper bound on the number of

vortices.

As we summarise below, exotic vortices arise most naturally in nonrelativistic Chern–Simons-

matter theories. Abelian examples include the Jackiw–Pi vortex equation [JP90] and the equations

studied by Popov [Pop12] and Manton [Man13; Man17]. Among other equations, including that of

Jackiw–Pi, Manton studied the so-called Ambjørn–Olesen equation, which found use in describing

the electroweak phase transition [AO88; AO89; AO90].

While Abelian examples are most prominent in the literature, exotic vortices can be considered

for the data of a general gauge theory [Dun+91; Tur20] and we recall the basic theory here,

extending it to allow for matter living in general nonlinear symplectic representations of the

gauge group.

We will address the problems of finding solutions to these equations, understanding the moduli

spaces of solutions, and understanding the (quantum) dynamics of exotic vortices. In doing this

we address some of the questions raised in [DTT16b] in the context of Jackiw–Pi vortices.

Our main technical result, which is based on results of Manton [Man17], Witten [Wit77], and

Olesen [Ole91], relates solutions to the (exotic) vortex equations to objects that we call twisted

holomorphic maps into complex space forms (complete Kähler manifolds of constant holomorphic

sectional curvature). For us, a twisted holomorphic map from a Riemann surface Σ into a Kähler

manifold X is a flat Isom(X) bundle equipped with a holomorphic section of the associated

holomorphic X-bundle. Our main result can then be summarised as follows.

Our main technical result, which is based on results of Manton [Man17], Witten [Wit77], and

Olesen [Ole91], relates solutions to the (exotic) vortex equations to objects that we call twisted

71
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holomorphic maps into complex space forms (complete Kähler manifolds of constant holomorphic

sectional curvature). For us, a twisted holomorphic map from a Riemann surface Σ into a Kähler

manifold X is a flat Isom(X)-bundle equipped with a holomorphic section of the associated

holomorphic X-bundle. We explicitly construct a map from the space of equivalence classes of

twisted holomorphic maps from Σ to X, where X has constant holomorphic sectional curvature

κ, to the space of equivalence classes of solutions to the exotic vortex equations (3.1) on Σ with

gauge group U(dimC(X)), one fundamental flavour, e2 = −κ, and τ = 2−2g
2πvol(Σ)κ1.

We further conjecture, with both local and global evidence, that the converse holds: every

solution to the relevant vortex equation arises in this way and the moduli space of the vortex

solutions is in one-to-one correspondence with the moduli space of relevant twisted holomorphic

maps. As the moduli space of twisted holomorphic maps is rather more accessible that that of

exotic vortices, this conjecture gives us conjectural information about the moduli space, and

therefore the quantum mechanics, of exotic vortices. In particular, our results give additional

context to results of Turner on nonnormalisable modes in the quantum mechanics of Jackiw–Pi

vortices [Tur20]. The conjecture also implies certain selection rules for exotic vortices on the

sphere, generalising the known fact that Jackiw–Pi vortices on the sphere have even vortex number

[JP90]. In our context, such results are related to the topology of flat Isom(X)-bundles.

Our results have something to say about conventional (nonexotic) vortices in U(Nc) gauge

theories with a single fundamental flavour, generalising Witten’s work [Wit77] for Nc = 1. We

focus our attention primarily on the exotic case of e2 < 0, as, in this case, the twisted holomorphic

map moduli problem is more accessible.

The chapter continues as follows. In the rest of the introduction, we summarise the story

in more detail, outlining our main results and pointing out some related work. In section 3.2,

we describe the exotic vortex equations in detail and give some basic facts about the structure

of their moduli spaces of solutions. In section 3.3, we prove our main result and use it to give

conjectural descriptions of exotic vortex moduli spaces. We show how previous results, such as

Olesen’s single-vortex solution to the Jackiw–Pi equation on the torus [Ole91], fit into our work.

In section 3.4, we describe the (quantum) dynamics of gauge theories supporting exotic vortices.

The natural classical dynamics is first order. At low temperature, it is described by Hamiltonian

mechanics on the moduli space of vortices. Using results of chapter 2, we (formally) compute the

‘expected’ (or ‘supersymmetric’) partition function of the dynamical exotic Abelian theory on

Riemann surfaces of arbitrary genus.

3.1.1 Exotic vortices from twisted holomorphic curves

Mathematically, the equations (3.1) with e2 < 0 are harder to analyse than the usual vortex

equations, which partially reflects the fact that they do not appear to be stable in relativistic

physical theories. In fact, the natural relativistic theories that one would write down which

exhibit the kind of anti-Meissner effect that is necessary are completely sick, with Euclidean

energy functionals unbounded from below. The unboundedness of the relevant functionals from

below makes the usual functional analysis techniques hard, or impossible, to implement.



3.1. Introduction and summary 73

While this sounds unpleasant, there is beauty in the equations. It was noticed by Manton

[Man17] that, on constant curvature backgrounds, special cases of the exotic vortex equations in

theories with gauge group U(1) and one fundamental scalar flavour could be solved by meromorphic

functions. This is the exotic analogue of Witten’s solution of the hyperbolic vortex equations by

Blaschke functions [Wit77] and it generalises the fact that the Jackiw–Pi equations on the plane

are equivalent to the Liouville equation, which is solved by meromorphic functions [JP90; HY98].

It was shown in [CD17] that these results could be understood in terms of dimensional reduction

of the self-duality equations in four dimensions, in analogy to Witten’s argument in [Wit77].

We generalise Manton’s result in several ways. First, we consider the same vortex systems as

Manton, showing that one can produce additional solutions by considering meromorphic functions

‘twisted’ by a flat gauge field for the PSU(2) symmetry that rotates the target sphere (we explain

what this means in detail below). In particular, this includes Olesen’s single vortex solution to

the Jackiw–Pi equation on the torus [Ole91]. We conjecture that all of the relevant exotic vortex

solutions can be found in this way, giving some coarse evidence for this in the form of an equality

of indices. This would be useful, because the moduli problem for a flat PSU(2) gauge field and

twisted meromorphic function is qualitatively easier to understand than that of the exotic vortex

system.

We then generalise this story of Abelian exotic vortices to nonAbelian gauge theories. We

show that, on backgrounds of constant curvature, solutions to exotic vortex equations in U(Nc)

theories with Nf = 1 fundamental flavour can be produced from twisted holomorphic maps into

CPNc , ‘twisted’ by a flat PSU(Nc+1) connection. More generally, (not necessarily exotic) vortex

solutions can be produced from ‘twisted’ holomorphic maps into Kähler manifolds of constant

holomorphic section curvature. Usually one asks that Nf ≥ Nc in order to see (nonexotic) vortices,

as this is necessary to completely Higgs the gauge group. In the exotic case things are rather

different, and we expect to find families of solutions even for Nf < Nc.

Indeed, we show that the moduli space of pairs consisting of a flat PSU(Nc + 1) connection

and a twisted holomorphic curve in the associated CPNc -bundle has the same expected dimension

as that of exotic vortices in the relevant U(Nc) gauge theory with 1 fundamental flavour. This

leads us to conjecture that all such exotic vortex solutions on constant curvature backgrounds

arise in this way.

We also show how to alleviate the constraint of constant curvature, using ‘uniformising

functions’. While this is formally useful, it takes us a little way from the original simple solution

generating techniques of [Man17].

This construction is novel, but it does not represent the first time that nonAbelian connections

have played a role in the story of Abelian exotic vortices. Indeed, the dimensional reduction

picture of [Wit77; CD17] mentioned above involves nonAbelian gauge theory in four dimensions

(with gauge group a real form of SL(2,C) depending on the form of the vortex equation).

In [RS18], solutions to the Abelian exotic vortex equations on the two-dimensional sphere

(known as Popov vortices, after [Pop12]) were related to flat SU(2) gauge potentials on the

three-sphere.

A unifying picture might be provided by Hitchin’s work [Hit90a] relating solutions to a kind
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of ‘exotic Hitchin system’ of equations for an SU(2) gauge theory to (twisted) harmonic maps

into the three-sphere. Our result in the Abelian case can be thought of as arising from this when

the SU(2) connection is reducible to U(1).

3.1.2 Exotic selection rules

One of the strange things about Jackiw–Pi vortices on the infinite sphere is that there are no

solutions with odd flux: the total vortex charge is always even [HY98]. This has no straightforward

topological explanation and if one studies the same equation on the flat torus, one can find

solutions with odd flux. Such a solution was found by Olesen in [Ole91].

While this might look mysterious from the perspective of the vortex equations, it can be

understood clearly in the context of twisted meromorphic functions. For us, a twisted meromorphic

function is a section ψ of a CP 1-bundle S over our base Riemann surface Σ. The vortex number

associated to the section ψ is

k = (2g − 2) + deg(ψ∗TS).

This is a kind of generalised Riemann–Hurwitz relation.

If the bundle S is topologically trivial, then the second term on the right hand side is always

even, because deg(TCP 1) = 2. Then k is always even. When S is nontrivial, the second term on

the right hand side may be odd.

In general, topological S2-bundles on a surface Σ are classified by a Stiefel–Whitney-type

class in

H1(Σ,Z2).

The point here is that the group of oriented diffeomorphisms of the sphere is homotopic to

PSU(2). A PSU(2)-bundle is locally an SU(2)-bundle, but one has an additional choice of sign

around each noncontractible cycle, giving rise to an element of Z2 for each such cycle.

When Σ = CP 1, there are no topologically nontrivial bundles, so k must be even. When Σ

has higher genus, topologically nontrivial bundles are available and so solutions with odd vortex

number may exist.

In subsection 3.3.2, we show that this generalises to the nonAbelian case of a U(Nc) theory

with one flavour. Now the selection rules are determined by the topology of PSU(Nc+1)-bundles.

When Σ = CP 1, solutions arising from the relevant analogue of the twisted meromorphic functions

above are forced to have

k = −2Nc + (Nc + 1)p

for p ∈ Z. Nontrivial PSU(Nc + 1)-bundles, which exist on surfaces with g > 0, allow for

k −Nc(2g − 2) to take nonzero values modulo Nc + 1.

3.1.3 Quantum exotic vortices or: Probing the moduli space with quantum mechanics

While lots of things that we are used to when thinking about vortices break when one takes

e2 < 0, the construction of the moduli space as a symplectic quotient does not (although it is no



3.2. Exotic vortices and their moduli 75

longer a Kähler quotient). This means that the moduli space should generically be a symplectic

manifold, which makes it a good home for Hamiltonian mechanics.

From the point of view of (2 + 1)-dimensional physics, Hamiltonian mechanics on the vortex

moduli space is realised as a low-temperature limit of certain nonrelativistic Chern–Simons-matter

theories. We have already studied this in detail in the non-exotic case in chapter 2. Formally, the

calculations go through in the same way, with certain parameters changing sign.

Because we know very little about the existence of solutions in the general case, these

calculations are fundamentally formal and so are highly speculative. However, they are interesting.

We compute, for example, the expected degeneracy of quantum Jackiw–Pi vortices at low

temperature.

3.1.4 Vortices as degenerate metrics

In [Bap14], Baptista observed that the usual Abelian vortex equation could be viewed as an

equation for a degenerate metric obeying a certain curvature condition. This idea was carried

forward by Manton in [Man17], who noted that solutions to Abelian exotic vortex equations

produce metrics with conical singularities with cone angle a multiple of 2π.

We will not develop this idea in any detail here, only noting that our results can be used to

understand the moduli spaces of constant curvature metrics on Riemann surfaces with conical

singularities of the given type (see also [Che+15; EGT14; MZ21]).

3.2 exotic vortices and their moduli

3.2.1 The exotic vortex equations

The exotic vortex equations take the same data as the usual, nonexotic, vortex equations. We fix

a Kähler manifold Y carrying the Hamiltonian action of a compact Lie group G. We write

µ : Y → g∨

for the corresponding moment map, where g is the Lie algebra of G.

We now take a smooth two-dimensional surface Σ with volume form ωΣ. We fix a principal

G-bundle

P → Σ

and form the associated Y -bundle

Y := Y ×G P → Σ.

We take a section ϕ of Y and a connection A on P . For a given element ξ in the dual of the

centre of g, the vortex equations for (A, ϕ) are

∗F (A) = e2(ξ − µ(ϕ))

∂̄Aϕ = 0
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where e2 is a scale factor on the Killing form on g.

The exotic vortex equations are these equations with e2 ≤ 0. This subtle change from the

usual case has dramatic consequences, as we will see.

The case of e2 = 0 is rather trivial, with the equations becoming the equations for a flat

connection and a section of an associated holomorphic bundle. Vortices in these theories are

sometimes called Bradlow vortices, because they resemble vortices ‘at the Bradlow bound’. They

have been considered in [GN17]. Because they are rather simple from our perspective, we will

focus our attention primarily on the case of e2 < 0.

3.2.2 The moduli space as a symplectic quotient

An important fact about the moduli space of non-exotic vortices is that it is a symplectic, and in

fact Kähler, quotient. It is this fact that captured the inherent structure in the Chern–Simons-

matter dynamics that we studied in chapter 2.

Some mathematical insight into the nature of exotic vortices comes by considering how this

construction of the moduli space differs (or rather, how it does not) when e2 ≤ 0.

In a sense, setting e2 ≤ 0 is all there is to it. Write C for the space of (reasonable) pairs (A, ϕ).

Recall that this space has a symplectic form

ωC((Ȧ1, ϕ̇1), (Ȧ2, ϕ̇2)) =

∫
Σ

(
tr
(
Ȧ1 ∧ Ȧ2

)
+ e2ωY(ϕ̇1, ϕ̇2)ωΣ

)
.

There is nothing stopping us from taking e2 ≤ 0, and this is what we do.

This does have consequences, though. When e2 > 0, the symplectic form ωC forms part of a

Kähler structure. The corresponding Riemannian metric can then be interpreted as a relativistic

kinetic energy functional. When e2 ≤ 0, this ‘metric’ is, at best, semiRiemannian (see [Man17;

CD17]). It may be rather more degenerate than that. A metric with negative norm states can

never make for a good kinetic energy functional, because the system will run away to negative

energy.

We do not need to worry about this though: we have a symplectic structure on C and the

story of gauged Hamiltonian mechanics goes through as in the non-exotic case. The group G
of gauge transformations acts symplectically on C. Restricting to the space C0 of solutions to

∂̄Aϕ = 0, we take the symplectic quotient to get the vortex moduli space

M = C0//G.

In particular, this implies that the exotic vortex moduli space is ‘generically’ symplectic.

However, as we will see explicitly, the exotic vortex equations are much less well behaved than

the usual vortex equations, and simple examples may fail to be generic in this sense.
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3.3 exotic vortices from twisted holomorphic curves

3.3.1 The Abelian case

In [Man13; Man17], Manton found beautiful integrability results for Abelian exotic vortex

equations in the case that the Riemannian surface Σ has constant scalar curvature κ0, building

on [Wit77; Pop12]. In that case, he produced solutions to the equations

∗F (A) = −κ
(κ0
κ

− |ϕ|2
)

∂̄Aϕ = 0,

where A is a U(1) connection, ϕ is a single scalar field of unit charge, and κ is a positive real

number. He did this, roughly speaking, by setting |ϕ|2 = ∗ψ∗ωCP 1 , where ψ : Σ → CP 1 is

holomorphic and ωCP 1 is the Fubini–Study form, and solving for ϕ in some gauge, showing that

the result solved the vortex equations in a second-order form (which is obtained by eliminating

the gauge field locally).

We start by generalising the ideas of [Man17] to find more general solutions. To do this,

we consider sections of possibly nontrivial CP 1-bundles over Σ. Indeed, suppose S → Σ is a

CP 1-bundle carrying a flat PSU(2) connection a. Let ψ be a section of S obeying the equation

∂̄aψ = 0.

Our claim is that one can build an Abelian exotic vortex solution from this data. We recover

Manton’s result when the connection a is trivial.

We will take a slightly different approach to that of [Man17]. We will work in the ‘holomorphic

gauge’, as in [Bra90], where one views the Abelian vortex equation as an equation for a holomorphic

line bundle (L, ∂̄L) with section ϕ and Hermitian metric h obeying

∗F (h) = ie2

2
(τ − |ϕ|2h)

∂̄Lϕ = 0,

(3.2)

where F (h) is the curvature of the Chern connection uniquely associated to (∂̄L, h). One can get

back and forth between this and the usual vortex equation by the complex gauge transformation

g that sets g(h) = 1.

By the holomorphicity of ψ and the flatness of a, we have that

daψ ∈ Ω0(Σ,KΣ ⊗ ψ∗TS)

is holomorphic with respect to the natural holomorphic structure, induced by a and the holomor-

phic structure of Σ. We set L := KΣ ⊗ ψ∗TS .

The round Kähler structure (gS2 , ωS2) defines a vertical Kähler structure on the fibres of S.

The connection a allows us to extend the domain of gS2 and ωS2 to include horzontal vector fields,

and we write gS and ωS for the resulting tensor fields. The flatness of a means that it can be
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trivialised locally, so the distinction between (gS , ωS) and (gS2 , ωS2) is locally insignificant. Note

that, despite the notation, gS is not a metric on the total space of S and ωS is not a symplectic

form on the total space of S.

The combination of the round Hermitian structure on the fibres of S and the metric on Σ

defines a Hermitian structure h on L. With this structure, one has

|daψ|2h = (gS)ij(g
−1
Σ )µνDµψ

iDνψ
j

where we have written D := da to accommodate the indices. This admits a Bogomolny rearrange-

ment

|daψ|2h = 2|∂̄aψ|2 + ∗ψ∗ωS

where we have used that a is flat (if a is not flat, an extra curvature dependent term appears).

Here ∗ is the Hodge star on Σ. Now, the fact that ∂̄aψ = 0 tells us that

|daψ|2h = ∗ψ∗ωS . (3.3)

On the other hand, associated to the Hermitian structure h and the holomorphic structure

on L is the uniquely defined Chern connection ∇h. By definition, this has the properties that

∇0,1
h = ∂̄L, and ∇h preserves h. The curvature of ∇h is

F (h) = −F (gΣ) + ψ∗F (gS),

where by F (gS) we mean the fibrewise curvature of gS extended to horizontal vectors using the

flat connection a.

Now, gS is fibrewise the round metric, so in particular it has constant curvature κ, so that

F (gS) = iκωS . Combining this with (3.3) tells us that

F (h) = −F (gΣ) + iκ ∗ |daψ|2h.

Defining ϕ to be daψ, which is a holomorphic section of L, this is starting to look like a vortex

equation. The only thing left to do is to ask gΣ to have constant curvature, so that

F (gΣ) = iκ0ωΣ.

As F (gΣ) is the curvature of a connection on TΣ, the Gauss–Bonnet theorem means that we

must have

κ0 =
2− 2g

2πvol(Σ)

where g is the genus of Σ.

In this case, we have

F (h) = −iκ
(κ0
κ

− |ϕ|2h
)
ωΣ

∂̄Lϕ = 0,

where κ, being the curvature of a round sphere, is necessarily positive. These are exotic vortex

equations in the holomorphic gauge (3.2). Thus (∂̄L, h, ϕ) defined this way give solutions to the
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exotic vortex equations. We can put them into the unitary form by acting with a complex gauge

transformation g : Σ → C∗ with gg∗ = 1
h .

The vortex number k is the degree of the bundle L = KΣ⊗ψ∗TS . This is given by a generalised

Riemann–Hurwitz formula, which we can derive by considering the exact sequences

0 → OS → p∗E ⊗OS(1) → TS/Σ → 0,

0 → TS/Σ →TS → p∗TΣ → 0

of holomorphic vector bundles, where p : S → Σ is the projection, E is a choice of rank 2 vector

bundle such that S is the projectivisation of E (which always exists for dimensional reasons), and

OS(1) is the corresponding tautological bundle. The bundle E is not uniquely specified: it can

be shifted by any line bundle. This is accompanied by a corresponding shift of the tautological

bundle, so that p∗E ⊗OS(1) is uniquely specified by S, as it must be. The first sequence is the

relative Euler sequence, and the second is the Atiyah sequence.

Using these sequences and the multiplicativity of the Chern character, we have that

ch(ψ∗TS) = ch(TΣ)ch(E ⊗ ψ∗OS(1))

where we have pulled the sequences back along ψ. From this we can read off the degree of ψ∗TS .

Without loss of generality, we can assume that deg(E) is either 0 or 1 (twisting with a line bundle

allows us to bring it into one of these forms). If E has degree 0, this gives

deg(ψ∗TS) = 2deg(ψ) + 4− 4g

so that the vortex number is

k = deg(KΣ ⊗ ψ∗TS)

= 2deg(ψ) + 2− 2g.

This is the usual Riemann–Hurwitz formula.

We have shown to any pair consisting of a flat PSU(2) connection (equivalently, a projectively

flat U(2) connection) and a holomorphic section of the corresponding CP 1 bundle gives rise to an

Abelian exotic vortex equation on a constant curvature surface.

Note that we could replace the target sphere with the flat plane or the hyperbolic plane.

Correspondingly, one should change PSU(2) to E(2) or PSU(1, 1) respectively. This allows one

to find solutions with κ = 0 or κ negative. Indeed, this was the original insight of Witten [Wit77]

for (nonexotic) hyperbolic vortices.

Moduli

It is conceivable that every solution to the relevant exotic vortex equation on a constant curvature

surface arises from this construction. Showing this directly seems to be tricky as it involves

integrating the equation ϕ = daψ. Standard arguments as in [Man17], for example, show that it

is true locally. By studying the moduli problem for the pair (a, ψ) we give some coarse evidence

for the idea in more generality.
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The first question is: what is the dimension of the moduli space of pairs of a flat PSU(2)

connection a and a holomorphic section ψ of the associated CP 1-bundle? The equations are

F (a) = 0

∂̄aψ = 0.
(3.4)

The linearisation of the first equation lives in the elliptic complex

Ω•−1(su(2))

and so has real index

6g − 6.

On the other hand, the linearisation of the second equation lives in the complex

Ω0(ψ∗TS/Σ)
∂̄A−−→ Ω1(ψ∗TS/Σ)

and so has real index

2deg(ψ∗TS/Σ) + (2− 2g).

The vortex number is k = deg(ψ∗TS/Σ) + 2g − 2, so this index is

2k + 6− 6g

The combined system of equations (3.4) therefore has total index 2k, which is the same as

the index of the vortex problem. This means that the ‘expected dimensions’ of the two moduli

problems agree.

The sphere, bad behaviour, and symmetry breaking

The integrable Abelian vortex equation on the sphere is known as the Popov equation, after

[Pop12]. In the limit that the radius of the domain sphere becomes large, the constant κ0 → 0,

and the equation becomes the Jackiw–Pi equation of [JP90].

The moduli space of pairs (a, ψ) is directly accessible in this case. When Σ = S2, the only

flat connection is the trivial one. The moduli space is then the space of rational functions

ψ : CP 1 → CP 1, modulo the action of PSU(2) rotations of the target sphere.

This tells us that the moduli space of vortex number k solutions that can be constructed in

this way is, as a manifold, (
CP k+3 −∆

)
/PSU(2)

if k is even and empty if k is odd, where ∆ is the resultant hypersurface of rational functions

that degenerate to one of lower degree.

The real dimension of this space is

2k + 3,

not the expected 2k. This isn’t even even! If this is the full vortex moduli space, then it can’t be

symplectic, even though we expect it to be. What’s going on?
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The answer is that the moduli problem for flat PSU(2) connections on the sphere is not

well-behaved. It has dimension 0, or dimension −3 as a stack, rather than the expected dimension

−6 (which is its dimension as a derived stack).

One way to think about this is well illustrated in the zero vortex sector, which is now nontrivial.

When k = 0 there are still solutions coming from rational functions ψ of degree 1. These form a

group, the group PSL(2) of Möbius transformations. Taking the quotient by PSU(2) gives

PSL(2)/PSU(2) ∼= H3,

hyperbolic 3-space. This is a kind of vacuum moduli space, which can be thought of as coming

from the symmetry breaking PSL(2) 99K PSU(2) implemented by the choice of round metric on

the target sphere.

This issue does not arise for nonexotic hyperbolic vortices, as in [Wit77], because all the

holomorphic automorphisms of the hyperbolic plane (which is the target space) are isometries.

The holomorphic symmetry is therefore unbroken by the metric and this strange k = 0 moduli

space is not present.

A related and interesting point is raised in [Tur20]. There, Turner argues that the size modulus

of a single Jackiw–Pi vortex should not be considered as a fluctuating mode in the quantum

mechanical theory, because an infrared divergence renders it non-normalisable. Instead, Turner

argues that the size modulus should be regarded as a fixed dimensionful parameter in the quantum

theory. It seems plausible that this argument applies also to the other residual PSL(2) moduli

and that, at least for the purposes of quantum mechanics, one should regard the moduli space as(
CP k+3 −∆

)
/PSL(2).

Pleasantly, this has complex dimension k, which is the expected dimension of the moduli problem.

The details surrounding the physical and mathematical implementation of this more severe

quotient deserve further study.

There is another issue that we have not yet addressed: when Σ = S2, no vortex solutions

with odd vortex number can be found with this construction. As discussed above, this is because

there are no topologically nontrivial PSU(2)-bundles on the sphere and so the relevant moduli

space of flat connections is empty.

The Jackiw–Pi equation on the torus and Olesen’s solution

When Σ is a flat torus, the integrable exotic vortex equation is the Jackiw–Pi equation [JP90]

F (A) = iκ|ϕ|2.

(Notice that this equation also arises as the infinite radius limit of the Popov equation considered

previously. The difference here is in the boundary conditions.)

On the torus there exists a topologically nontrivial PSU(2)-bundle. This allows for the

construction of solutions with odd vortex number, as in [Ole91]. As illustrated in Figure 3.1, the

idea of [Ole91] is to find a particular four-vortex solution on the torus (which can be built from
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an elliptic function) with the property that it defines a doubly-periodic single vortex solution on

the quarter cell.

Figure 3.1: A sketch of Olesen’s construction of a single vortex solution to the Jackiw–Pi
equation on the torus [Ole91]. One starts with a symmetric four-vortex solution, which can be
produced from the elliptic function (3.5), and then cuts the domain into four, giving single vortex

solutions on the quarter cells.

It is illustrative to consider the details of this. Let Σ be the torus, thought of as a rectangle

with side lengths a and b in the upper half plane with opposite sides identified. Letting z be a

complex coordinate on the upper-half plane, the symmetric elliptic function found by Olesen can

be written

ψ4(z) =
℘(z)− e3√

(e3 − e1)(e2 − e3)
, (3.5)

where ℘ is the Weierstrass elliptic function with periods a and b and

e1 = ℘(a/2), e2 = ℘(b/2), e3 = ℘(−(a+ b)/2). (3.6)

Then the square of the Higgs field is
|ψ′

4|2

(1 + |ψ4|2)2
,

which has four zeroes and is periodic with periods (a/2, b/2), not just (a, b), as illustrated in

Figure 3.1.

What about ψ4? As observed in [Ole91], this is not periodic in a/2 or b/2. Instead, it varies

by a Möbius transformation as one moves by a half-period. This means that it is a section of a

CP 1-bundle with nontrivial transition functions, which is the basic construction of this chapter.

The general solution to the problem of solving the Jackiw–Pi equation on the torus was given

in [Ake+11], generalising the ideas of Olesen. Indeed, the solutions all arise from ‘twisted’ elliptic

functions, referred to as Ω-quasi-elliptic functions in [Ake+11]. The observations that we have

made about the topology of PSU(2) bundles resolves a question raised in [Ake+11] about the

topology-dependent nature of selection rules for Jackiw–Pi vortices.

3.3.2 The nonAbelian case

Let X be a Kähler manifold with complex structure J and metric g, and let ∇ be the corresponding

Levi-Civita connection. Writing R for the curvature of∇, we can then define a symmetric curvature
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tensor G by

G(v, w) = R(v, Jw) ∈ Ω0(End(TX))

for any pair of vectors v, w. We will proceed as in the Abelian case, where X = CP 1, now using

the tensor G to contract indices.

For now, let us not worry about the additional flat connection, and so work with a standard

nonlinear sigma model. We consider holomorphic maps

ψ : Σ → X.

Holomorphicity means that

dψ + J ◦ dψ ◦ jΣ = 0,

where jΣ is the complex structure on Σ.

Then dψ is a holomorphic section of the Hermitian, holomorphic vector bundle V = KΣ⊗ψ∗TX .

The Chern connection A on V is built from those on KΣ and TX , giving

F (A) = −F (Σ)⊗ 1 + ψ∗F (∇)

where 1 is the identity endomorphism of ψ∗TX .

We now consider

(g−1
Σ )µνG(∂µψ, ∂νψ). (3.7)

Using the holomorphicity of ψ and the definition of R in terms of F (∇), a Bogomolny-type

rearrangement tells us that this is

∗ψ∗F (∇).

In analogy with the Abelian case, we would like to define

ϕ
?
:= dψ

as a section of the holomorphic bundle V . As the bundle V has rank n, we expect this to be a

Higgs field in a theory with Nc = n and Nf = 1.

Writing h for the Hermitian structure on V , we have

(ϕϕ†h)ij = ϕihjkϕ̄
k

= (h−1
Σ )zz̄∂zψ

i(hX)jk∂z̄ψ̄
k

where hΣ is the Hermitian structure on TΣ and hX = (hX)ijdψ
idψ̄j is the Hermitian structure on

ψ∗TX . By contracting the above expression with arbitrary vectors and expanding the Hermitian

structure in terms of g and J , we see that this is the same object as (3.7) up to a factor κ if

g(R(u, v)w, x) =

κ

4
(g(u,w)g(v, x)− g(v, w)g(u, x) + g(u, Jw)g(v, Jx)− g(u, Jx)g(v, Jw) + 2g(u, Jv)g(w, Jx))
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for vectors u, v, w, x, which is equivalent to X having constant holomorphic sectional curvature κ

[KN96]. The holomorphic sectional curvature is defined by

H(ξ) := g(R(ξ, ξ)ξ, ξ)/|ξ|4

for ξ a holomorphic tangent vector.

Thus we find exotic vortex solutions from holomorphic curves in Kähler manifolds of constant

holomorphic sectional curvature. In particular, the solutions that one finds are exotic vortex

solutions in theories with Nc = dimC(X) colours and Nf = 1 flavour.

Manifolds with a complete Kähler metric of constant holomorphic sectional curvature are

called complex space forms, in analogy with the space forms of Riemannian geometry (which

are complete Riemannian manifolds of constant sectional curvature). Every simply connected

complex space form is either a complex projective space CPn (with H > 0), a flat space Cn

(with H = 0), or a hyperbolic space Hn (with H < 0) [KN96]. This generalises the well-known

uniformatisation theorem for n = 1.

In the context of exotic vortices, we are interested in the case of positive curvature, so we take

X = CPn. Just as before, we can generalise this by introducing an additional flat connection for

the isometry group of the target space X. In the case that X = CPn, the isometry group of X is

PSU(n+ 1).

Notice that this method also provides a way to generate solutions to the non-exotic nonAbelian

vortex equations, using holomorphic maps into the hyperbolic space HNc+1 or quotients thereof.

This generalises the result of [Wit77]. Such maps do exist and it would be interesting to investigate

the nature of the vortex solutions that can be generated in this way when Nc > 1.

On moduli

Fix a Riemann surface Σ and consider the theory of a flat PSU(n+ 1) connection on Σ and a

section ψ of the associated CPn-bundle.

The real index of the corresponding moduli problem is

((n+ 1)2 − 1)(2g − 2) + 2ψ∗c1(TCPn)[Σ] + n(2− 2g).

The vortex number is the degree of the bundle V which is

k = n(2g − 2) + ψ∗c1(TX)[Σ]. (3.8)

In terms of k, the real index of the moduli problem is

2k + n(1− n)(2− 2g). (3.9)

On the other hand, the real expected dimension of the moduli space of vortices in a U(Nc)

gauge theory with Nf flavours is

2k +Nc(Nf −Nc)(2− 2g). (3.10)

This is formally independent of the sign of the coupling constant, so it applies in the exotic case.
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The solutions we find from twisted holomorphic curves are meant to be solutions in a theory

with Nc = n and Nf = 1. Comparing (3.9) and (3.10), we see that the expected dimensions of

the moduli spaces of the relevant vortices and the relevant twisted holomorphic curves agree.

This leads us to conjecture that all nonAbelian exotic vortex solutions with κ > 0 on constant

curvature backgrounds arise in this way.

Selection rules

In the Abelian case, we saw that integrable exotic vortices on the sphere must have even vortex

number. This followed because of the non-existence of topologically nontrivial SO(3) bundles on

the sphere and because of the Riemann–Hurwitz relation.

Here we have a similar story. Bundles with structure group PSU(n + 1) are topologically

classified by a Zn+1-valued invariant. More precisely, PSU(n+1) bundles on a Riemann surface Σ

are classified topologically by H1(Σ,Zn+1). On the sphere, any PSU(n+ 1) bundle is necessarily

trivial.

For the trivial bundle, the Riemann–Hurwitz-type formula (3.8) tells us that the vortex

number k must take the form

k = n(2g − 2) + (n+ 1)p

for p ∈ Z. When nontrivial bundles exist, they allow for k − n(2g − 2) to take nontrivial values

modulo n+ 1.

3.3.3 Introducing curvature through uniformisation

So far, our results require us to consider the vortex equations on constant curvature backgrounds.

We can lift this requirement by introducing additional ‘uniformising data’ in the solution.

Let Σ be a Riemann surface with Hermitian metric hΣ. Any other such metric can be given as

hf = efhΣ

for f some real function. The curvature of this metric is

F (hf ) = F (hΣ) + ∂̄∂f .

We would like to set F (hf ) = iκ0ωΣ, where κ0 is a constant. This leads to a Poisson-type equation

∂̄∂f = iκ0ωΣ − F (hΣ)

for f , which can be solved provided that [iκ0ωΣ] = [F (hΣ)] in H
2(Σ), which fixes κ0. The sign of

κ0 is determined by topology through the Gauss–Bonnet theorem. To solve the equation we note

that, if the condition above is satisfied, then iκ0ωΣ − F (hΣ) is an exact form on Σ and we can

use the ∂̄∂-lemma. Write f0 for a solution to this equation and write h0 := hf0 .

We now turn to the vortex equations. Previously, we found a solution (V, ∂̄V , h, ϕ) in the

holomorphic gauge by taking

V = KΣ ⊗ ψ∗TX
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for ψ a section of a certain X-bundle X , with X a Kähler manifold of constant holomorphic

sectional curvature, and letting h be the natural tensor product metric h−1
Σ ⊗ hψ∗TX .

When hΣ does not have constant curvature, we simply let the Hermitian structure h be

h−1
0 ⊗ hψ∗TX .

While this saves us from constant curvature, it does not save us from global issues: the

Fayet–Iliopoulos parameter in the vortex equation that this construction solves is still fixed by

virtue of the Gauss–Bonnet theorem (although it can be varied by scaling the volume of Σ).

Putting everything together, we can now state our main technical result.

3.3.1 Theorem. Let X be a complete Kähler manifold with constant holomorphic sectional

curvature κ and isometry group H. Then every pair consisting of a flat H-connection and a

holomorphic section of the associated holomorphic X-bundle on a Riemannian surface Σ of genus

g gives rise to a solution to the exotic vortex equations (3.1) in a U(dimC(X)) gauge theory with

one fundamental flavour with e2 = −κ and τ = 2−2g
2πvol(Σ)κ . Moreover, gauge equivalent pairs of

this form give rise to gauge equivalent vortex solutions.

Perhaps more important than this result itself is that our proof is constructive. It therefore

represents an integrability-type result for vortices in nonAbelian gauge theories.

3.4 the dynamics of exotic vortices

3.4.1 Nonrelativistic Chern–Simons-matter theories

The fact that the configuration space C for the theory with e2 < 0 is naturally symplectic but

not naturally Kähler implies that the dynamical (2 + 1)-dimensional theory of exotic vortices

should come from Hamiltonian dynamics on the configuration space. Thus the space C is the

phase space of the (2 + 1)-dimensional theory.

This is exactly the setup of chapter 2, where we studied nonrelativistic Chern–Simons-matter

theories, realising them as theories of Hamiltonian mechanics on C. The story goes through

mutatis mutandi with e2 < 0, so we do not repeat it here. The only subtle point concerns the

sign of the Chern–Simons level. For our conventions, it turns out to be natural to accompany a

flip in the sign of e2 with a flip in the sign of the Chern–Simons level.

The low-temperature theory is given by Hamiltonian mechanics on the moduli space of

vortices with zero Hamiltonian, capturing the fact that the classical theory is dynamically trivial

at low energy. As before, though, there is an interesting topological quantum mechanics at low

temperature, obtained by geometric quantisation of the vortex moduli space M.

Even though our understanding of the exotic vortex moduli space is limited, we can formally

apply the ideas of chapter 2 to compute the Euler characteristic of a (possibly virtual) quantum

line bundle L → M on the moduli space. Recall that such a bundle is one with first Chern class

equal to the class of the symplectic form on M divided by 2π.

To properly carry out the geometric quantisation so as to obtain a space of states, one must

choose a polarisation for the line bundle L (corresponding, roughly, to a choice of ‘position’ or
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‘momentum’ representation of the quantum states). In the non-exotic case, there is a natural way

to do this, by giving L the structure of a holomorphic line bundle. In the exotic case, M is not

necessarily a complex manifold in any natural way (or at all) so this is not a natural procedure.

The quantity we compute is sufficiently ‘soft’ that we need not worry about this. We will simply

assume that a reasonable procedure exists and that the required index theorem still holds (to

some extent, this follows formally from loop space supersymmetry methods). A more detailed

study would have to deal with this potentially thorny issue.

This is not the only thorny issue in play. We saw that the moduli space of Popov-type vortices

on the sphere was not even symplectic, even though it is ‘expected’ to be. We must be aware

of this kind of phenomenon. As discussed above, the arguments of [Tur20] suggest that one

should omit the extra modes associated with non-rigid Möbius transformations. If one does

this, the moduli space does become even-dimensional and so could be symplectic in a natural

way. The details of implementing this idea mathematically deserves study. Treating these badly

behaved moduli spaces as symplectic manifolds in a formal sense presumably requires a kind

of derived symplectic geometry. Physically, this could be understood by including ‘ghost’ and

‘antighost’ zero-modes in the moduli space (or, more-or-less equivalently, by working with the

supersymmetric completion). We will not worry too much about this, proceeding in a rather

formal fashion (the Euler characteristic formally includes the ghost-like fields, but does not allow

us to disentangle the bosonic vortex moduli from the ghost moduli).

Such blindness to technical issues makes things rather easy: the general answers we found in

chapter 2 did not (formally) require us to take e2 > 0.

3.4.2 Exotic vortex counting

For simplicity, we will illustrate the idea only for the Abelian case. Recall from theorem 2.3.6

that the formal Euler characteristic for k Abelian vortices with Nf flavours at Chern–Simons

level λ on a Riemann surface of genus g is

g∑
j=0

λjNg−j
f

(
g

j

)(
λ(A− k) +Nf (k − g + 1)− 1

Nf (k − g + 1) + (g − j)− 1

)

where A = e2τvol(Σ)
4π .

It is natural to accompany a flip in the sign of e2 with a flip in the sign of λ. We will see

this explicitly in a moment. The fundamental physical reason for this is discussed in [Tur20]:

it is related to the (in)stability of the theory under renormalisation group flow at the relevant

fixed point. Thus, while in the non-exotic case we found that the theory was best-behaved when

λ = Nf , here we will consider the case of λ = −Nf .
Indeed, the case of λ = −1 provides a good window into nature the theory. When g = 0, one

finds the index (
−A+ 2k

k

)
.

This captures the ‘Bradlow bound’

−k < −A
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for this theory correctly.

In particular, we see that Jackiw–Pi vortices on the sphere at level −1 have expected degeneracy(
2k

k

)
. (3.11)

Of course, this should be supplemented with the knowledge that there are no vortex solutions

when k is odd. To some extent, this result gets to the heart of the question of why Jackiw–Pi

vortices are interesting. When τ = 0, the theory is (at least näıvely) gapless. However, this

result indicates the potential existence of an interesting topological quantum mechanics at low

temperature, which is usually a feature of gapped theories.

The result (3.11) is altered on surfaces of higher genus. For example, when g = 1, it is(
2k − 1

k

)
−
(
2k − 1

k − 1

)
.

This is always zero! In fact, whenever g is odd, the terms in the index cancel pairwise, and the

result is zero. This is probably because we are computing an index and not the true dimension of

the Hilbert space, but it is intriguing nonetheless.



4 on the statistical mechanics of nonabelian vortices

4.1 introduction and summary

In chapter 2, we were concerned with quantities of the form

χ(Lλ)

where Lλ → M is a line bundle on the vortex moduli space M with the property that

c1(Lλ) =
λ

2π
[ωM],

where ωM is the natural Kähler form on the vortex moduli space.

We consider the semiclassical limit λ→ ∞. Recall that, in previous examples with λ finite,

we had to impose some kind of quantisation condition on the dimensionless area scale A. In

general, though, the quantity that really must be integral for the quantum theory to exist is λA,

so that in the limit λ→ ∞ the area quantisation condition becomes vacuous.

The Hirzebruch–Riemann–Roch theorem tells us what the semiclassical limit of the vortex

count is. One has

χ(Lλ) =
∫
M

exp

(
λ

2π
[ωM]

)
td(M)

so that as λ→ ∞, the leading term is(
λ

2π

)dimM ∫
M

ω
dim(M)
M

dim(M)!
=

(
λ

2π

)dimM

vol(M)

where the volume is defined with respect to the Kähler structure and we have used that the

zeroeth order part of the Todd class is 1.

Thus, the number of states in the semiclassical theory is measured by the volume of the vortex

moduli space. For related reasons, the volume of the vortex moduli space computes the statistical

mechanical partition function of a gas of vortices in a relativistic theory [Man93; MN99b]. The

volumes of vortex moduli spaces are therefore interesting quantities that have attracted attention.

In [MN99b], Manton and Nasir computed the volume of the moduli space of local Abelian vortices

by direct integration of the Kähler form (or a representative of its cohomology class). This built

on previous work [Man93] of Manton and aspects of the calculation were later clarified by Perutz

[Per06] and Baptista [Bap11]. In [Eto+08b], the statistical mechanics of a gas of local nonAbelian

vortices on the torus was studied by giving a D-brane realisation of vortices and using T-duality

to relate them to domain walls. In [MOS11] and [OS19], Miyake–Ohta–Sakai and Ohta–Sakai

computed the volumes of moduli spaces of vortices in U(Nc) gauge theories with Nf flavours

on arbitrary Riemann surfaces using localisation (although the authors followed the calculation

through to the end only for the genus zero and genus one cases). The work of this part was

greatly inspired by this calculation.

In general, the volume of the vortex moduli space is a polynomial in A of degree dim(M).

One of the most striking results of [MOS11; OS19] was that in the local case Nc = Nf =: N the

89
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volume of the moduli space of k vortices on a genus zero surface is a polynomial in A of degree k,

which represents a striking reduction from the expected degree of Nk. An analogous result was

seen in [Eto+08b] for the vortex gas on the torus.

In this part, we have seen a similarly striking reduction in the Euler characteristics of quantum

line bundles on moduli spaces of local vortices. We saw such a reduction for every genus, but

[MOS11] saw such a reduction of the volume only for genus zero, and not for genus one (the

authors of [MOS11] did not go into detail in the g > 1 case, as the calculation becomes very

involved).

This is rather strange, because it implies that the thermodynamics of a vortex gas depends

strongly on the topology of the underlying surface, which conflicts with general lore that ther-

modynamics depend weakly on such global effects (see [MN99b], for example). It also disagrees

with the result of [Eto+08b]. It seems unlikely that adding a handle to a surface should create a

potentially large thermodynamic degeneracy.

We argue that this is due to the particular residue prescription used by [MOS11]. More

precisely, we argue that the interpretation of negative powers of the Vandermonde determinant

in [MOS11] is incorrect (or at least leads to incorrect answers). Here we give an alternative

calculation.

4.2 the volumes of vortex moduli spaces

4.2.1 Abelian vortices

Let us first consider the volume of the moduli space of k-vortex solutions in an Abelian theory

with gauge group U(1) and Nf fundamental flavours. This case is well-studied: we will aim to

recover known results in this case.

The Euler characteristic χ(Lλ) is, in the Abelian case,

g∑
j=0

(
g

j

)
Ng−j
f λj

(
λ(A− k) +Nfk + (Nf − 1)(1− g)− g

Nfk + (Nf − 1)(1− g)− j

)
(4.1)

as we found in theorem 2.3.6.

Using that (
λn+ p

q

)
=

(λn)q

q!
+ · · · ,

we see that (4.1) is

λNfk+(Nf−1)(1−g)
g∑
j=0

Ng−j
f

(A− k)Nfk+(Nf−1)(1−g)−j

(Nfk + (Nf − 1)(1− g)− j)!
+ · · ·

where · · · denotes terms of lower order in λ. We read off the volume of the moduli space to be

g∑
j=0

Ng−j
f

(A− k)Nfk+(Nf−1)(1−g)−j

(Nfk + (Nf − 1)(1− g)− j)!
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at least up to a constant scale factor. This recovers the results of [MOS11; OS19].

Taking Nf = 1 gives the relatively simple formula

g∑
j=0

(A− k)k−j

(k − j)!

for the volume of the moduli space of local Abelian vortices (up to constant scale factors). This

recovers the original result of [Man93; MN99b].

4.2.2 The general result

The Euler characteristic for general Nc and Nf is

χ(Lλ) =(−1)σ2(Nc−1)g

Nc!

∑
∑
ka=k

∑
∑
la=Nc(Nc−1)

∑
c1,··· ,cNc

al1,··· ,lNc
Ac1,··· ,cNc

×
∏
a

 g∑
j=0

(
g

j

)
λjNg−j

f

(
λ(A− ka) + (Nc − 1) +Nfka + (Nf − 1)(1− g)− la − ca − g

Nfka + (Nf − 1)(1− g)− la − ca + g(Nc − 1)− j

) ,

as given in (2.24).

The volume of the vortex moduli space is the coefficient of the leading term in λ. Taking the

leading term in λ of each of the binomial coefficients, we find that

χ(Lλ) = λNfk+Nc(Nf−Nc)(1−g) (−1)σ2(Nc−1)g

Nc!

∑
∑
ka=k

∑
∑
la=Nc(Nc−1)

∑
c1,··· ,cNc

al1,··· ,lNc
Ac1,··· ,cNc

×
∏
a

 g∑
j=0

(
g

j

)
λ−caNg−j

f

(A− ka)
Nfka+(Nf−1)(1−g)−la−ca+g(Nc−1)−j

(Nfka + (Nf − 1)(1− g)− la − ca + g(Nc − 1)− j)!

+ · · · .

where the dots again denote lower order terms. The definition of the Ac1,··· ,cNc
reveals that they

are nonzero only when the sum of the ca vanishes. The factors of λ−ca therefore cancel and we

see that this is the leading term in λ, proportional to λdim(M). Following our earlier discussion,

we identify the coefficient as the volume of the moduli space:

Vol(M) ∼ (−1)σ2(Nc−1)g

Nc!

∑
∑
ka=k

∑
∑
la=Nc(Nc−1)

∑
c1,··· ,cNc

al1,··· ,lNc
Ac1,··· ,cNc

×
∏
a

 g∑
j=0

(
g

j

)
Ng−j
f

(A− ka)
Nfka+(Nf−1)(1−g)−la−ca+g(Nc−1)−j

(Nfka + (Nf − 1)(1− g)− la − ca + g(Nc − 1)− j)!

 ,

(4.2)

at least up to constant factors. This result is the general one, but it is not particularly amenable

to further analysis. In the general case, there is no reason to expect it to be simple at all.

4.2.3 Local vortices

Our claim is that, when Nc = Nf =: N the volume of the k-vortex moduli space is a polynomial

in A of degree k. The form of (4.2) reveals that it is a polynomial of maximal degree Nk, so this

would represent a significant reduction.
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For Nc = Nf =: N , the volume of the k-vortex moduli space (4.2) is

(−1)σ2(N−1)g

N !

∑
∑
ka=k

∑
∑
la=N(N−1)

∑
c1,··· ,cN

al1,··· ,lNAc1,··· ,cN

×
∏
a

 g∑
j=0

(
g

j

)
Ng−j (A− ka)

Nka+(N−1)−la−ca−j

(Nka + (N − 1)− la − ca − j)!

 (4.3)

A clean way to deal with expressions such as this is to consider the generating function (as in

[OS19] and in chapter 2). In general though, it is not easy to obtain simple expressions for the

relevant generating functions.

For this reason, we will give a softer argument, reducing the question of the degree of the

polynomial to the results of chapter 2. Our argument can be extended to show that the Euler

characteristic χ(Lλ) is a polynomial in A of degree k for all λ when Nc = Nf .

We note first that the degree of (4.3) as a polynomial in A is bounded above by the degree of

(−1)σ2(N−1)g

N !

∑
∑
ka=k

∑
∑
la=N(N−1)

∑
c1,··· ,cN

al1,··· ,lNAc1,··· ,cN

×
∏
a

 g∑
j=0

(
g

j

)
Ng−j

(
(A− ka) + ka + (N − 1)(2− g)− la − ca − g

Nka + (N − 1)− la − ca − j

)
as a polynomial in A. To see this, one can expand this latter polynomial and realising that it

contains (4.3) without cancellations.

Expanding out the product gives

(−1)σ2(N−1)g

N !

∑
∑
ka=k

∑
∑
la=N(N−1)

∑
c1,··· ,cN

g∑
j1,··· ,jN=0

al1,··· ,lNAc1,··· ,cNαj1,··· ,jN

×
∏
a

(
A+ (N − 1)(2− g)− la − ca − g

Nka + (N − 1)− la − ca − ja

)

where

αj1,··· ,jN =

N∏
a=1

(
g

ja

)
Ng−ja
f .

We analyse this by passing to the generating function. Using lemma 2.5.3, this quantity is the

coefficient of xNk in the polynomial

(−1)σ2(N−1)g

N !NN

∑
∑
ka=k

∑
∑
la=N(N−1)

∑
c1,··· ,cN

g∑
j1,··· ,jN=0

al1,··· ,lNAc1,··· ,cNαj1,··· ,jN

×
∏
a

x(N−1)−la−ca−ja

(
N∑
b=0

r(1−la−ca−ja)b(1 + rbx)A+(N−1)(2−g)−la−ca

)
,
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where r generates the N th roots of unity. We have
∏
a x

N−1−la = 1, which simplifies the product.

Expanding the product gives

(−1)σ2(N−1)g

N !NN

∑
∑
la=N(N−1)

∑
c1,···cN

g∑
j1,··· ,jN=0

al1,··· ,lNAc1,··· ,cNαj1,··· ,jN

×
N∑

b1,··· ,bN=1

∏
a

x−ca−jar(1−la−ca−ja)ba(1 + rbax)A+(N−1)(2−g)−la−ca .

As we have seen multiple times now, the coefficients al1,··· ,lN conspire to make it so that the

only nonzero contributions come when all of the ba are different. This gives

(−1)σ2(N−1)g

NN

∑
∑
la=N(N−1)

∑
c1,···cN

g∑
j1,··· ,jN=0

al1,··· ,lNAc1,··· ,cNαj1,··· ,jN

×
∏
a

x−ca−jar(1−la−ca−ja)a(1 + rax)A+(N−1)(2−g)−la−ca−g.

We now wind the expansions back up using the definition of the various coefficients. We find

2(N−1)gN−NN !(1− xN )A+(N−1)(2−2g)−g
∏
a<b

(
1

ra(1 + rax)
− 1

rb(1 + rbx)

)2−2g∏
a

(rax+N)
g

= ±2(N−1)gN−gNN !(1− xN )A−g
∏
a

(rax+N)g

which is

F (x) := (−1)k(1− xN )A−g
∏
a

(
1 +

rax

N

)g
= (−1)k(1− xN )A−g

(
1−

( x
N

)N)g
.

The coefficient of xNk in F (x) is a coarse approximation to the volume of the k-vortex moduli

space. This is the quantity ∑
i+j=k

(
A− g

i

)(
g

j

)(
1

N

)Nj
. (4.4)

If k > g, the terms with j > g do not contribute.

This is a polynomial in A of degree k for all g and all N . As the degree of the polynomial

defining the volume is bounded above by the degree of (4.4), we have shown that the volume of

the k-vortex moduli space is a polynomial in A of degree at most k.
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mirror symmetry in three dimensions
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5 the three-dimensional a-model

5.1 introduction and summary

Given a quaternionic representation V of a compact Lie group G, one can form a three-dimensional

gauge theory with N = 4 supersymmetry. The infrared behaviour of such a theory is determined

in part by its moduli space of vacua, which decomposes into a number of branches, each of which

is a (possibly singular) hyperKähler space. Of particular interest are the Higgs branch

MH = V///G,

parameterising vacua in which the gauge group is completely broken, and the Coulomb branch

MC ≃ (R3 × S1)rank(G)/Weyl(G),

parameterising vacua in which the gauge group is broken to a maximal torus. Other ‘mixed’

branches mediate between these two extremes. The geometry of the Higgs branch is determined

exactly by the classical hyperKähler quotient construction of [Hit90a], but the geometry of the

Coulomb branch receives perturbative and non-perturbative quantum corrections [SW96].

In this chapter, we consider some aspects of a remarkable story which has emerged, that of a

deep link between the geometry of the Higgs and Coulomb branches. From a classical perspective,

there is little reason to think that there should be any relationship at all between the two spaces.

Indeed, the classical Coulomb branch does not even see the representation V . However, there is

significant evidence for such a relationship (see [Tau90; RW97; MM99; BT02]) culminating with

the program of Braverman–Finkelberg–Nakajima to construct the Coulomb branch in terms of

Higgs branch data [Nak16; BFN18] and in the program of symplectic duality [Bra+14; Bul+16].

Let us offer a sketch of the story. By topologically twisting a three-dimensional N = 4 sigma

model into a hyperKähler manifold (or stack) X carrying an isometric Sp(1) action permuting its

complex structures, one can attempt to produce a pair of distinct three-dimensional topological

field theories, which we call ZXA and ZXB . The theory ZXA is known as the A-twist1 and ZXB is

Rozansky–Witten theory [RW97], also known as the B-twist2. The relationship to which we allude

between the Higgs branch, MH , and the Coulomb branch, MC , should then be captured (at

least schematically) by the duality

ZMH

A

?!≃ ZMC

B (5.1)

and similarly with MH and MC switched. As we argue shortly, this duality can be understood as

stating the equivalence of two different descriptions of a single topological twist of the ultraviolet

gauge theory. The richest realisation of this duality would be an equivalence between the

2-categories of boundary conditions of the two theories (see [Kap10]).

1Sometimes this A-twisted theory is called ‘twisted’ Rozansky–Witten theory, but we will refrain from doing
this to avoid overuse of the word ‘twisted’.

2There is significant potential for confusion here, because what is sometimes called the Rozansky–Witten twist
of a gauge theory can be described in terms of the A-twisted sigma model into the Coulomb branch (or in terms of
the B-twist in the Higgs branch). We will refer to the twists of the ultraviolet gauge theory as the H- or C-twists,
for ‘Higgs’ and ‘Coulomb’ respectively. The situation is illustrated in Figure 5.1.
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One half of (5.1), that of the Rozansky–Witten theory, is rather well-understood. In [KRS09;

KR10], a description of the 2-category of boundary conditions in Rozansky–Witten theory was

given. There, it was shown that boundary conditions in ZXB are given by complex Lagrangian

submanifolds of X, thought of as a complex symplectic manifold in a fixed complex structure,

generally carrying additional degrees of freedom (given in the general case by complexes of sheaves

of categories; see also [Tel14]).

Many elements of the A-twist are also well-understood, with significant recent attention

focussing on its spaces of quantum states [Nak16; BFN18; Gai16; BFK19; Bul+18; CDZ20], on

its category of line operators [CCG19; Dim+20], and on its local boundary conditions [Bul+16;

CO17; CG19]. In [Set13; KSV10], the A-twist of the circle compactification of four-dimensional

N = 4 gauge theory was constructed. However, some aspects of the theory ZXA , including its

general definition, remain rather mysterious. This is partly because it is rarely considered on

general backgrounds, meaning that some of the more subtle geometrical issues related to the

twist do not raise their heads.

Our aim in this chapter is to describe the structure of ZXA as an extended three-dimensional

(framed) topological quantum field theory. In section 5.4, we formulate the theory on general three-

manifolds, describing its local and extended operators. Computations of correlation functions

reduce to integrals over moduli spaces of solutions to a certain nonlinear Dirac equation (which

becomes an equation for certain quasimaps when reduced to two dimensions, as familiar from

[Nak16; BFK19; Kim16]). Compactifying the theory on the circle gives a two-dimensional

topological theory that may be thought of as the two-dimensional A-model with a certain

defect operator inserted. This is mirror to the fact that Rozansky–Witten theory gives the

two-dimensional B-model with a certain local operator inserted when compactified on the circle

[RW97; Tho98; KRS09].

Our interest is particularly in the boundary conditions of the theory. We show that boundary

conditions in the A-twist are determined by complex Lagrangian submanifolds of the target space

with a certain invariance property.

We then analyse the effective theory obtained on compactification on an interval in special

cases, which represents an early step towards understanding the collection of boundary conditions

as a 2-category. In special cases, the compactified theory is the two-dimensional A-model in a

Kähler manifold. We use our construction to understand the conditions under which Fukaya

categories of Kähler manifolds may admit monoidal structures (see subsection 5.1.3 below).

We remark that a three-dimensional A-model has been constructed previously by Kapustin–

Vyas in [KV10] as a generalisation of the matter sector of a three-dimensional topological Abelian

gauge theory considered in [KSV10]. Our theory and that of Kapustin–Vyas are distinct, but

agree in certain special cases. We compare the two theories in subsection 5.4.6.

We also note that the A-twist can be viewed as a reduction of a four-dimensional topological

sigma model considered by Anselmi and Fré [AF94; AF95] (modulo the ‘topological’ term in that

theory).

In the rest of this introduction we summarise the story of the duality (5.1) in more detail. In

section 5.2, we review some fundamental elements of three-dimensional gauge theories with N = 4
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supersymmetry and topological twists thereof. We offer a (possibly novel) description of the space

of twists as a holomorphic symplectic quotient. In section 5.3, we consider the nonlinear Dirac

equations that arise in the description of the A-twist. We consider the geometry of solutions on

certain backgrounds, including nontrivial circle bundles over surfaces. In section 5.4, we construct

and analyse the theory ZXA as a cohomological field theory. Finally in section 5.5, we give a brief

sketch of a gravity-coupled version of the theory. This has the benefit of allowing for the excision

of singularities in the target space (at the cost of dealing with strongly-coupled gravity).

5.1.1 Mirror symmetry and flows

Certain pairs of three-dimensional N = 4 gauge theories are related by an infrared duality called

three-dimensional mirror symmetry [IS96]. The group of global symmetries of an undeformed

three-dimensional N = 4 theories has a subgroup given by the R-symmetry group

SO(4) = (Sp(1)H × Sp(1)C) /Z2,

which rotates the supercharges among themselves. In a gauge theory, the group Sp(1)H acts

isometrically on the Higgs branch, permuting its complex structures, while the group Sp(1)C acts

isometrically on the Coulomb branch, permuting its complex structures. The R-symmetry group

has an outer automorphism of order two given by switching Sp(1)H and Sp(1)C . In nice cases,

this automorphism induces mirror symmetry of pairs of linear gauge theories. It interchanges the

Higgs and Coulomb branches.

If T is a theory with Higgs branch MH and Coulomb branch MC and T∨ is a theory mirror

to T , with Higgs branch M∨
H

∼= MC and Coulomb branch M∨
C
∼= MH , the duality (5.1) implies

that

ZMH

A

(5.1)
≃ ZMC

B

mirror≃ Z
M∨

H

B ,

and simliarly with MC . This tells us that, just as the Higgs and Coulomb branches are

interchanged by mirror symmetry, so are the A-twist and the B-twist.

This is exactly what one expects from the topological twisting procedure (of [Wit88a; Wit88b])

used to produce these topological theories. We are interested primarily in sigma models, so

suppose that we have an effective description of a gauge theory as a sigma model into its Higgs

branch (say). Then, identifying the (Euclidean) spacetime spin group Sp(1)E with Sp(1)H leads

to the A-twist with target space the Higgs branch. If one carries out the mirror twist, identifying

Sp(1)E with Sp(1)C , one obtains the B-twist with the same target space.

This can be thought of in the following way. The ultraviolet gauge theory can be described

in the infrared by a sigma model into the Higgs branch or the Coulomb branch (or a mixed

branch, or a union of branches). Then, roughly speaking, the Sp(1)H twist, say, of the ultraviolet

gauge theory can be described by ZMH

A in the Higgs phase, and by ZMC

B in the Coulomb phase.

Similarly, the Sp(1)C twist can be described by either ZMC

A or ZMH

B . We illustrate the situation

in Figure 5.1.

This is a kind of heuristic ‘derivation’ of the duality (5.1). By considering only a single

topological twist of the ultraviolet gauge theory, one can obtain both of the theories ZMH

A and
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Sp(1)H twist of TZMH

A ZMC

B

Sp(1)C twist of T∨
Z

M∨
C

A Z
M∨

H

B

↕ mirror symmetry

Figure 5.1: A sketch of the relationship between (5.1) and mirror symmetry. In principle, a
single topological twist of an ultraviolet theory T has two descriptions, one in terms of ZMH

A and

one in terms of ZMC

B . One can equivalently take the mirror twist of the mirror theory T∨. We
note that the story surrounding the horizontal arrows is complicated by the presence of

singularities in the moduli spaces of vacua.

ZMC

B (choosing the other twist of the ultraviolet theory leads to the same story with the Higgs and

Coulomb branches switched), which are then expected to be equivalent (modulo certain technical

issues, related to singularities in the moduli space and residual gauge sectors, see [GW09]). This

is essentially the argument of [BT02], also alluded to in [RW97], although in that case it was

applied to a theory with a trivial Higgs branch. In general, this argument (and the story as a

whole) can run into substantial problems in the form of singularities in the moduli space, a point

on which we comment in subsection 5.1.4.

5.1.2 The Coulomb branch

While the geometry of the Higgs branch is given exactly by its classical description in the quantum

theory, the geometry of the Coulomb branch receives quantum corrections. This makes it hard to

understand.

The conjectural duality of (5.1) captures the idea behind Nakajima’s approach to understanding

the geometry of Coulomb branches [Nak16; BFN18]. The key point is that Rozansky–Witten

theory has the property that3

ZXB (S2) ∼= C[X],

which is to say that its algebra of local operators is the chiral ring of X (in a particular complex

structure - all the complex structures are essentially equivalent in the undeformed theory) [RW97].

This means that the problem of understanding the chiral ring of the Coulomb branch (and

therefore its structure as an affine variety) is the problem of understanding local operators in

Rozansky–Witten theory. This is little more than a rephrasing of the problem, but following the

conjectural duality (5.1) allows us to suppose that

ZMH

A (S2) ≃ C[MC ].

Thus the structure of the Coulomb branch as an affine variety can be expressed in terms of ‘Higgs

branch data’. This is the insight of the papers [Nak16; BFN18], which also describe how to

3We use the notation of topological field theory: an n-dimensional field theory acts on a k-manifold to produce
an (n− k)-dimensional field theory (via compactification), which is determined by its linear (n− k − 1)-category
of boundary conditions (see [Lur09; Kap10]). When n = 3 and k = 2, one gets a linear 0-category, which is a
vector space.
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construct the space of local operators of the theory ZMH

A in terms of moduli spaces of twisted

quasimaps.

In principle, there is much more in (5.1) than simply the matching of spaces of local operators,

which means that one can reconstruct more details about the geometry of the Coulomb branch

by studying operators in ZA. For example, compactifying the Rozansky–Witten theory ZXB on a

circle gives a monoidal category which is a deformation of the category of coherent sheaves on

X, with the deformation involving a complex symplectic structure on X [KRS09; KR10]. It is

plausible therefore that by applying this in the case X = MC , one could recover details about

the complex symplectic structures on MC . To get to this, one could use (5.1) to realise this

monoidal category as ZMH

A (S1), expressing it in terms of Higgs branch data.

Aspects of the monoidal categories ZXA (S1), ZXB (S1) have been studied for gauge theories in

[Dim+20], where they are viewed as categories of topological line operators. We show that the

category ZXA (S1) can the thought of as the category of boundary conditions in a defect-deformed

two-dimensional A-model.

We note for completeness that this is not the only approach to understanding the Coulomb

branch. In [BDG17], the ring C[MC ] was constructed by a direct parameterisation in terms of

expectation values of ‘dressed monopole operators’ on an ‘Abelian patch’, Mabel
C ↪→ MC , which

is the complement of the regions where nonAbelian gauge symmetry is restored.

5.1.3 On categorifying the A-model

A striking fact about Rozansky–Witten theory is that it ‘explains’ why one can take the tensor

product of coherent sheaves on a complex manifolds. Given a complex manifold Y , one can

consider Rozansky–Witten theory in the cotangent bundle T∨Y (this may not be hyperKähler, but

it is complex symplectic, which is enough to define Rozansky–Witten theory [Kap99]). The zero

section Y ⊂ T∨Y defines a complex Lagrangian submanifold and is therefore a good boundary

condition for the Rozansky–Witten theory [KRS09].

Compactifying the theory on an interval and asking that the boundary condition at both ends

of the interval be given by Y leads to an effective two-dimensional sigma model in Y . It was

shown in [KRS09] that this effective theory is the two-dimensional B-model in Y (see [Wit98;

Hor+03]), which has as its boundary conditions coherent sheaves on Y .

From the perspective of the three-dimensional theory, the boundary conditions in the B-model

are interpreted as defect line operators separating the boundary conditions at either end of the

interval (see [Kap10]). Fusion of these line operators in the three-dimensional theory defines a

tensor product operation betwen them. In the effective two-dimensional theory, this defines a

tensor product of boundary conditions and hence a tensor product on the category of coherent

sheaves on Y . In fact, this is not quite the usual tensor product of coherent sheaves: it is instead

a quantum deformation thereof [KRS09].

In constructing the A-twist, we put ourselves in a position to ask what the mirror of this

story is. In subsection 5.4.5, we find that boundary conditions in the theory can be described as

U(1)-equivariant complex Lagrangian submanifolds of X, considered as a complex symplectic
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manifold in a fixed complex structure. The U(1) action factors through the permuting Sp(1)

action, preserving the fixed complex structure.

In general, when one compactifies the theory on an interval and asks the boundary condition

at both ends to be specified by a fixed complex Lagrangian submanifold Y , the effective two-

dimensional theory that one finds is (semiclassically) a deformed version of the two-dimensional

A-model, with the deformation being of a global nature. Only when Y can be embedded into X

as a U(1)-invariant complex Lagrangian submanifold (meaning that U(1) acts trivially on it)

does this deformation disappear.

Thus, the A-twist induces a tensor product on the Fukaya category only in special cases, one

of which was considered in [KSV10]. This seems to square with the results of the mathematical

literature, where natural tensor product structures have been found only in special cases (see

[Pas18; NZ09]).

5.1.4 Life at the tip of the cone

One of the most substantial technical difficulties associated to understanding the infrared be-

haviour of the A-twist in the Higgs branch, or in hyperKähler cones more generally, is the

presence of singularities. This is a rather pervasive issue: there has been substantial work [DS18;

BGD18; BG18] dedicated to defining indices of superconformal quantum mechanical theories on

hyperKähler cones, for example.

If one is willing to restrict oneself to studying the A-twist on spacetime manifolds with spin

group broken to U(1) (for example, manifolds which are the product of a surface and a circle),

then one can resolve the singularities by introducing an Fayet–Iliopoulos parameter. This is not

compatible with the full topological twist, as it breaks the symmetry that is used to define the

twisted theory.

We offer a sketch of a possible solution to this issue. The idea is that one can excise the tip of

the cone by critically coupling the theory to gravity and taking a strong-coupling limit.

The point is that, when the Sp(1) action on the target space X has the technical property of

being what we call a Swann action (after [Swa90]), one can form the Swann quotient

X/SwannSp(1)

which is quaternion-Kähler manifold of quaternionic dimension one lower than X, which is

typically nonsingular. By coupling the theory to gravity and taking a strong-coupling limit, one

finds a sigma model into this quotient space. We describe how this works in section 5.5, although

we remark that the story we give is by no means complete. In particular, the strongly-coupled

gravitational sector remains, leading to a classically underdetermined theory.

This idea provides a partial realisation of an suggestion of Singleton, who argued that one

might work with the equivariant cohomology of the homothetic action on a hyperKähler cone to

define suitable invariants in [Sin16, Chapter 8].
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5.2 twists of three-dimensional theories with N = 4 supersymmetry

5.2.1 Three-dimensional gauge theories at critical coupling

Let G be a compact Lie group with Lie algebra g. Let (V,ωV ) be a hyperKähler manifold carrying

an isometric, hyperHamiltonian G action, with hyperKähler moment map

µ : V → g∨ ⊗ sp(1)H .

(We refer the reader to the paper [Hit+87] for details about the meaning of this.) The subscript

H here refers to Higgs. The corresponding group Sp(1)H acts on the endormorphism bundle of

the tangent bundle of V (but not necessarily on V itself), rotating the complex structures as a

3-vector. Later we will specialise to the case that the group Sp(1)H does act on V , as this is the

case relevant in examples. We have written V for the hyperKähler manifold to indicate that it is

typically taken to be a linear representation.

To this data we can associate a three-dimensional gauge theory. This theory will have an

additional global symmetry Sp(1)C , where the C here refers to Coulomb. We will use bold

symbols to denote Sp(1)H vectors, and over-arrows to denote Sp(1)C vectors.

Take a three-manifold M and a principal G-bundle

P →M .

Form the associated bundle

V := P ×G V .

The bosonic field content of the theory consists of a connection A on P , a section ψ of V
(the hypermultiplet scalars), and an sp(1)C-valued adjoint scalar ϕ⃗ ∈ Ω0(adP ⊗ sp(1)C) (the

vectormultiplet scalars).

The connection A induces covariant derivatives on the adjoint bundle adP and the bundle V.
Sections of the adjoint bundle can act on sections of V via vertical vector fields induced by the

derivative of the G action. (When V is a linear representation of G, this is the usual story.)

Writing g2 for the coupling constant of the theory, we consider the bosonic energy density

E =
1

g2

(
|F (A)|2 + |dAϕ⃗|2 + |[ϕ⃗, ϕ⃗]|2

)
+ |dAψ|2 + |(m⃗− ϕ⃗)ψ|2 + g2|ξ − µ(ψ)|2,

which depends on the parameters ξ, an sp(1)H -valued element of the dual of the centre of g, and

m⃗, an sp(1)C -valued element of the centre of g. The parameter ξ, known as the Fayet–Iliopoulos

parameter, breaks Sp(1)H to U(1) if it is a symmetry of the theory (in general, Sp(1)H may not

act on V ). On the other hand, the mass parameter m⃗ breaks Sp(1)C to a U(1) subgroup.

The form of E is fixed by the N = 4 supersymmetry that we will eventually impose. The

supersymmetric theory can generally be defined only on M = R3, although by twisting the theory

we will eventually be able to place it on general manifolds.
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Vacua

In general, the energy density E vanishes for solutions to the vacuum equations

F (A) = 0, dAϕ⃗ = 0, dAψ = 0,

µ(ψ) = ξ, m⃗(ψ) = ϕ⃗(ψ), [ϕ⃗, ϕ⃗] = 0.

The nature of the space of solutions depends strongly on the parameters ξ and m⃗. There are two

particularly interesting branches of vacua, describing qualitatively different physical behaviour.

• The Coulomb branch. Suppose that ψ sits at a constant fixed point of the G action. Then

ϕ⃗ is free to take any value for which its three components mutually commute. Moreover,

A need not be trivial. The condensation of ϕ⃗ generically breaks the gauge group G to

a maximal torus T ∼= U(1)rank(g). Provided space is simply connected, the only moduli

associated with the equation F (A) = 0 in this phase are the global gauge transformations

for the unbroken gauge group T , which are often interpreted in terms of so-called dual

photons.

These vacua describe a Coulomb phase, because the gauge bosons associated with the

residual T gauge group are massless.

There is then a Coulomb branch of these vacua, parameterised by the expectation values of

ϕ⃗ and the dual photons,

MC ≃ (R3 × S1)rank(g)/W

where W is the Weyl group. This description is classically valid, at least whenever ϕ⃗ ̸= 0,

but generally receives quantum corrections.

The classical Coulomb branch has a hyperKähler structure induced from S1 × R3 ∼= H/Z.

Supersymmetry constrains the possible quantum corrections to ensure that the quantum

Coulomb branch is hyperKähler.

The undeformed Coulomb branch carries an isometric action of Sp(1)C , permuting its

complex structures. Classically, this factors through the vector action of SO(3) on the

vectormultiplet scalars ϕ⃗. Mass parameters resolve the Coulomb branch, breaking Sp(1)C

to a U(1) subgroup.

• The Higgs branch. Suppose that A is trivial and m⃗ = 0. Then we can set ϕ⃗ = 0. There is

then a Higgs branch of vacua

MH = µ−1(ξ)/G.

This phase is called the Higgs phase because the scalar ψ generically breaks the gauge group

completely (it ‘Higgses’ the gauge group).

The geometry of the Higgs branch as determined by the hyperKähler quotient construction

is exact in the quantum theory. When V carries a permuting Sp(1)H action (for example,

when V is a linear representation of the gauge group) the Higgs branch also carries such

an action when ξ = 0 (we assume that the moment map is normalised so as to be Sp(1)H

equivariant), but a nonzero value of ξ breaks Sp(1)H to U(1).
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Higgs branch

Coulomb branch

Mixed branches

Figure 5.2: A sketch of the vacuum moduli space of a three-dimensional theory with N = 4
supersymmetry.

In general, there are also mixed phases, where the gauge group is partially Higgsed. A

schematic sketch of the vacuum moduli space is given in Figure 5.2.

Solitons

Three-dimensional N = 4 gauge theories admit a rich spectrum of BPS excitations. These can

be classified by the symmetries they preserve. On R3, the global symmetry group of an N = 4

theory includes

Sp(1)E × (Sp(1)H · Sp(1)C)

where · denotes the product of groups as subgroups of SO(4). Then we can classify BPS

configurations in terms of how this symmetry group is (explicitly) broken. We summarise some

of the story in Table 5.1. We have included local, ‘electric’ objects in Table 5.1 to make manifest

the nature of the mirror duality.

This also tells us which BPS objects are relevant in the various possible twists of the

supersymmetric theory: as we recall below in subsection 5.2.3, the twists of the theory are related

to possible identifications of Sp(1)E (or subgroups thereof) with subgroups of Sp(1)H · Sp(1)C .
Our interest in the A-twist leads us to consider the (generalised) Seiberg–Witten equations in

more detail. Their definition requires one to identify Sp(1)E with Sp(1)H , as one might expect if

they are to play a role in the A-twist in the Higgs branch.

We also briefly recall the notion of complexified flat connections in the Coulomb phase. They

require one to identify Sp(1)E with Sp(1)C , which leads one to expect that they play a role in

the A-twist in the Coulomb branch (which should be related to the B-twist in the Higgs branch).

We then propose equations which mediate between the Seiberg–Witten equations and the

complex flat connection equations, the complexified Seiberg–Witten equations, which require one

to identify all three of Sp(1)E , Sp(1)H , and Sp(1)C .
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Solitons Unbroken symmetry

(Undeformed) Seiberg–Witten monopoles Sp(1)E,H · Sp(1)C
(Undeformed) Complexified flat connections Sp(1)H · Sp(1)E,C

(Undeformed) Complexified Seiberg–Witten monopoles Sp(1)E,H,C

BPS critically-coupledopoles Sp(1)E × (Sp(1)H · U(1)C)
Particle creation operators Sp(1)E × (U(1)H · Sp(1)C)

Vortex lines U(1)E × (U(1)H · Sp(1)C)
Wilson (particle) lines U(1)E × (Sp(1)H · U(1)C)

BPS monopoles in the Higgs phase [Ton04b] U(1)E × (U(1)H · U(1)C)
Particle operators in the Coulomb phase U(1)E × (U(1)H · U(1)C)

Table 5.1: A partial classification of BPS objects in three-dimensional N = 4 theories in terms of
the symmetries they preserve (note that solutions may spontaneously break this ‘preserved’

symmetry). The objects are grouped into pairs related by mirror symmetry. Here Sp(1)E,H is
the (anti)diagonal subgroup of Sp(1)E × Sp(1)H and similarly for Sp(1)E,C and Sp(1)E,H,C .

• Complexified flat connections. The effective theory in the Coulomb phase has energy density

ECoulomb =
1

g2

(
|F (A)|2 + |dAϕ⃗|2 + |[ϕ⃗, ϕ⃗]|2

)
.

Fixing an identification of Sp(1)E with Sp(1)C , which we write as δȧµ for ȧ = 1, 2, 3 an

sp(1)C index and µ = 1, 2, 3 a spatial index, we can introduce a 1-form field Φ = δȧµϕȧdx
µ.

We consider solutions to

F (A) = [Φ ∧ Φ], dAΦ = 0, d†AΦ = 0.

The first two equations assert that the complex connection A+ iΦ is flat, while the third is

a kind of complex gauge fixing equation for this complex connection, necessary to ensure

that the system is elliptic modulo real gauge transformation.

There are generally no nontrivial solutions to these equations on flat space, so a solution

defines a constant point in the Coulomb branch.

• Generalised Seiberg–Witten monopoles. The effective theory in the Higgs phase has energy

density

EHiggs =
1

g2
|F (A)|2 + |dAψ|2 + g2(ξ − µ(ψ))2.

Suppose now that V is a linear representation (the story works in the general case, but is

simplified slightly in the linear case). In flat space, EHiggs admits the rearrangement

EHiggs =
1

g2
(F (A)− g2(ξ − µ(ψ))2 + |/dAψ|2 + 2F (A) · ξ + d†j
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where

/dAψ = δµaIa(dA)µψ

is a Dirac operator, we define F a = δaµ(∗F )µ, and jµ = δaνϵ
µνρ(ψ, Ia(dAψ)ρ) for the Ia the

complex structures on V .

The three-dimensional Seiberg–Witten equations are

F (A) = g2(ξ − µ), /dAψ = 0.

For solutions to the second of these equations, the form j becomes

j = (ψ,dAψ),

which is a local current, while ξ · F can be thought of as the tension of a vortex line in the

direction δaµξa. When ξ = 0 rotational symmetry is restored.

In the infrared limit, given by taking g2 → ∞, Seiberg–Witten monopoles become maps

into the Higgs branch V///G obeying a nonlinear Dirac equation. The story becomes more

complicated on general backgrounds. We consider this in section 5.3.

• Complexified Seiberg–Witten monopoles. The previous two classes of BPS configurations

can be mashed together. To do this, we identify all of Sp(1)E , Sp(1)H , and Sp(1)C . We do

this locally with δaµ and δȧµ as above. We consider the equations

F (A+ iΦ) = g2µ(ψ), /dA+iΦψ = 0, d†AΦ = 0. (5.2)

These equations have solutions given by complexified flat connections (with ψ = 0) and

from Seiberg–Witten monopoles (with Φ = 0).

5.2.2 Supersymmetry in three dimensions

The (complexified) N -extended superEuclidean algebra in three dimensions takes the form

A = (isoC(n)⊕ soC(N ))⋉ΠSN

where S ∼= C2 is the spin representation. The factor so(N ) is the Lie algebra of the R-symmetry

group, which acts by rotating the factors of S in SN .

To define the algebra structure [·, ·] on A, we introduce an spC(1)-equivariant, non-degenerate

map

Γ : Sym2(SN ) → C3

where C3 is the complexified vector representation. In the absence of central charges, the algebra

structure is then given by

[α, β] = Γ(α, β)

for α, β ∈ SN .
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The map Γ defines an spC(1)-equivariant quadratic form

ν : SN → C3

via ν(α) := Γ(α, α).

The standard choice is

Γ(α, β)µ = σabµ α
i
aβ

j
bδ
ij , (5.3)

where µ = 1, 2, 3 is an index on the vector representation, a, b are indices on the spin representation

S ∼= C2 and i, j = 1, 2, · · · ,N are indices for the R-symmetry representation RN . Here the matrices

(σµ)
a
b are the Pauli matrices, where indices are raised and lowered with the two-dimensional

epsilon tensor.

The space SN is naturally a hyperKähler manifold, with hyperKähler structure induced from

that on S. In writing down the complexified supersymmetry algebra, we chose a complex structure

on S, regarding it as C2 = {(z1, z2)}. This distinguishes the complex symplectic structure

Ω =

N∑
i=1

dzi1 ∧ dzi2

on SN . The spin group Sp(1)E acts holomorphically on SN , preserving Ω. The holomorphic

moment map is then just the quadratic form ν, with respect to the choice (5.3).

5.2.3 Twists of three-dimensional theories

On can unleash the power of homological algebra when one has in one’s possession an operator

that squares to zero. We define a twisting supercharge to be an element Q ∈ SN such that

Q2 :=
1

2
[Q,Q] = 0.

When one has a twisting supercharge Q and supersymmetric field theory representing the

supersymmetry algebra, to twist the field theory is to work in the cohomology of Q. Twisting

of supersymmetric theories was introduced by Witten [Wit88a; Wit88b]. See [ES19] for a

comprehensive discussion of twists of supersymmetric theories. In the context of three-dimensional

N = 4 theories, see also [CG19].

We would like to classify the twisting supercharges. We have just seen that they are given by

solutions to the holomorphic moment map equation

ν(Q) = 0.

The complexified spin group acts on the space of solutions to this equation, and the quotient is

the holomorphic symplectic quotient

ν−1(0)/Sp(1)C
E =: SN //Sp(1)C

E .

This is a singular complex symplectic space of expected complex dimension 2N − 6.
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In addition to the spin action of Sp(1)E , the space S
N carries an SO(N ) action which preserves

the hyperKähler structure, and another action of Sp(1), which permutes the hyperKähler structures

of S. This second Sp(1) action does not preserve the holomorphic moment map equations and

so does not act on the quotient, but there is a subgroup U(1) ⊂ Sp(1) which fixes our choice of

complex structure and so does act on the quotient.

Consider the case that N = 4. Then the quotient above has three strata: one of complex

dimension 2, given by generic solutions; one of complex dimension 1, given by the so-called

holomorphic twists; and one of dimension 0, consisting of the trivial solution Q = 0. When

removes the singularities and takes the quotient by the C∗-action which complexifies the U(1)

action considered above (that is, takes the geometric invariant theory quotient by C∗), one gets the

space S2 ⊔ S2. In gauge theory representations of the supersymmetry algebra, this is sometimes

thought of as the union of the twistor spheres of the Higgs branch and the Coulomb branch, so

that a twist is thought of as being specified by a complex structure on either the Higgs branch or

the Coulomb branch of the theory.

That the space of twisting supercharges can be realised as a holomorphic symplectic quotient

suggests a quaternionic approach to the story. One can replace the holomorphic symplectic

quotient

SN //Sp(1)C
E

with the hyperKähler quotient

SN ///Sp(1)E .

If the holomorphic quotient were non-singular, one might expect these two spaces to be isomorphic.

In fact, the hyperKähler quotient partially resolves the singularities of the holomorphic quotient

by removing the so-called holomorphic twists. The hyperKähler quotient carries the permuting

action of Sp(1), not just a subgroup. This is related to the fact that this approach does not

distinguish a complex structure on the spinor representation.

If N = 4, one can show that the hyperKähler quotient is

H/Z2 ∪{0} H/Z2,

a pair of hyperKähler cones joined at their tips. A (nonzero) point on this space defines a

frame of complex structures on either the Higgs or Coulomb branches of the theory. The group

SO(4) = Sp(1)H · Sp(1)C acts on this space, with Sp(1)H acting in the standard way on one of

the H/Z2 summands and Sp(1)C acting on the other.

Topological twists

A twisting supercharge Q is called topological if the map [Q, · ] : SN → R3 is surjective. This

means that the generators of translations are exact in the Q-cohomology and so ‘trivial’ in the

twisted theory. The twists that are preserved in the hyperKähler quotient are all nondegenerate

in this sense and so are topological.

A twisted theory is a genuine topological field theory, in the sense that it is independent of a

choice of metric on spacetime, if its stress-energy tensor is trivial in Q-cohomology. Often, Q
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being topological is enough to guarantee this (see [ES19, Section 3.5]). In examples of Lagrangian

field theories, it is usually possible to check whether this is the case explicitly, as one can check

whether the action of the theory is Q-exact modulo metric-independent terms.

Twisting homomorphisms

One can interpret (topological) twists in terms of a deformation of the action of the spacetime

spin group Sp(1)E . Indeed, this was the original approach of [Wit88a; Wit88b]. A generic

twisting supercharge Q breaks the usual spacetime spin group, because the supercharges of

a supersymmetric field theory are spinor-valued. It is often the case, however, that one can

compensate for the action of spin rotations with the action of elements of the R-symmetry group

in a consistent way so that Q is invariant under the combined group action.

In our context, this means asking for a homomorphism

φ : Sp(1)E → Sp(1)H · Sp(1)C

such that Q is invariant under the action of {(g, φ(g)) ∈ Sp(1)E × (Sp(1)H · Sp(1)C)}. If such
a homomorphism can be found, it is called a twisting homomorphism. The existence of such a

twisting homomorphism for a twisting supercharge Q implies that Q is topological in the sense

above [ES19, Theorem 3.18] (the analogue of this statement holds in all spacetime dimensions

greater than two).

All of the topological twists of the three-dimensionalN = 4 spupersymmetry algebra considered

above admit twisting homomorphisms, given by the Z2 quotient of the identification of Sp(1)E

with Sp(1)H or with Sp(1)C . When Sp(1)E is identified with Sp(1)C , one gets the so-called

C-twist, which can be thought of in terms of Rozansky–Witten theory on the Higgs branch. When

Sp(1)E is identified with Sp(1)H , one finds the H-twist, which can be thought of in terms of the

A-twist on the Higgs branch.

As we discuss below, the twisting homomorphism for the A-twisted theory exists for nonlinear

sigma models only when the target space carries an isometric Sp(1) action permuting its complex

structures. If this is not the case, the R-symmetry group is broken to Sp(1) and the twisting

homomorphism for the A-twist can not be defined.

Ghost symmetries and Z-gradings

Generally, the operators in a topological theory obtained by twisting a supersymmetric theory

come with a Z2-grading, corresponding to their overall parity (with the fermionic fields, and

therefore Q, being odd). Sometimes it is possible to lift this Z2-grading to a Z-grading, often

called a ghost number grading, obtained by finding a U(1) symmetry of the theory with respect

to which Q has weight one. This symmetry is compatible with a twisting homomorphism φ if the

U(1) symmetry commutes with the image of φ.

For an N = 4 theory with unbroken R-symmetry group Sp(1)H · Sp(1)C , all of the twists

considered above have such a U(1) symmetry, given by a choice of U(1) subgroup of the Sp(1)
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factor of the R-symmetry group which is not in the image of the twisting homomorphism. Clearly

this still holds if that Sp(1) factor is broken to U(1) (as happens in deformed gauge theories).

Three-dimensional sigma models with N = 4 supersymmetry can be defined with target

space a generic hyperKähler manifold (without an isometric Sp(1) action permuting its complex

structures). In this case, however, the R-symmetry group is not Sp(1)H · Sp(1)C , but is broken
to a single factor of Sp(1). (We will often think of the hyperKähler manifold as if it were the

Higgs branch of a gauge theory, in which case one can think of this group as Sp(1)C .) For such a

theory, the Rozansky–Witten theory has a compatible twisting homomorphism, given by a choice

of isomorphism

Sp(1)E
∼−→ Sp(1),

but can not be given a Z-grading, while the A-twisted theory is not compatible with any twisting

homomorphism (see [ES19, Example 4.13]).

One can restore the full global symmetry group by insisting that the target space carries an

isometric Sp(1) action permuting its complex structures. This is precisely the situation that

arises in the infrared limit of undeformed gauge theories and the one that we consider in this

chapter.

In particular, this allows one to give Rozansky–Witten theory a Z-grading. (In fact, if one

is happy to consider Rozansky–Witten theory in a single complex structure, one need only ask

there to be a permuting U(1) action preserving that complex structure to define the Z-grading.)

Importantly, it also allows us to define a twisting homomorphism for the A-twist. If one has only

a permuting U(1) action, then the twisting homomorphism for the A-twist can be defined only

on manifolds on which the spin group is broken to U(1). This case is often considered in the

literature, as Fayet–Iliopoulos parameters break Sp(1)H 99K U(1).

Incidentally, this is why symplectic duality is only a relationship between 1-categories and not

2-categories. It is concerned with complex symplectic manifolds carrying permuting C∗ actions

and so does not necessarily require or see the full Sp(1) action that is necessary to turn the

A-twist into a genuine three-dimensional topological field theory.

5.3 dirac equations

5.3.1 HyperKähler manifolds with permuting Sp(1) actions

As discussed above, we can only find two distinct topological twists of a three-dimensional N = 4

sigma model if the target space carries an isometric Sp(1) action permuting its complex structures.

We refer to [Cal16] for details about such actions, recalling only the most vital aspects here.

Let (X, gX) be a hyperKähler manifold with complex structures I = (I1, I2, I3) and Kähler

structures ω = (ω1, ω2, ω3). An isometric Sp(1) action on X is called a permuting Sp(1) action if

the induced action on the 2-sphere of complex structures factors through the standard action of

SO(3) on S2.

There are two basic classes of permuting Sp(1) actions, which might physically be thought of

as being of ‘hypermultiplet’-type or ‘vectormultiplet’-type.
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5.3.1 Example (‘Hypermultiplet’). Let X = H, thought of as a right H-module. Then the action

of unit quaternions on the right is a permuting Sp(1) action.

5.3.2 Example (‘Vectormultiplet’). Consider X = H and consider the conjugation action of

unit quaternions. This defines a permuting Sp(1) action, which splits X into a sum of the scalar

and vector representations: X ∼= R × R3. Note that the same permuting action descends to

H/Z ∼= S1 × R3.

Hyperexactness

A vital fact is that hyperKähler manifolds with permuting Sp(1) actions are hyperexact, meaning

that there exists θ ∈ Ω1(X, sp(1)) such that

ω = dθ.

In particular, this implies that all such manifolds are noncompact. The existence of a suitable θ

was shown constructively in [Pid04, Section 2.2] by an argument we now summarise.

The Sp(1) action induces the action of sp(1) on X via vector fields. Write i : Ω2(X) →
Ω1(X, sp(1)) for the contraction with these vector fields and L : Ω2(X) → Ω2(X, sp(1)) for the

Lie derivative. One has L = di+ id. By definition of the permuting action, one has

Laωb = ϵabcωc,

where we have introduced indices a, b, c, · · · = 1, 2, 3 on sp(1).

One then has

θa =
1

2
ϵabcibωc,

as follows from the fact that

dϵabcibωc = ϵabcLbωc
= ϵabcϵbcdωd

= 2ωa.

Moment maps and the Higgs branch

Suppose that, in addition to a permuting Sp(1) action, X carries an action of a compact

Lie group G which commutes with the Sp(1) factor and preserves its hyperKähler structure.

Write g for the Lie algebra, which acts on X through the action of vector fields. We write

ig : Ω•(X) → Ω•−1(X, g∨) for the corresponding contraction operation.

Then, as shown in [Pid04, Section 2.2.1] and recalled in [Cal16], the action is hyperHamiltonian,

with hyperKähler moment map

µ : X → g∨ ⊗ sp(1)

given by

µ = igθ. (5.4)
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Moreover, because the actions of Sp(1) and G commute, the permuting Sp(1) action descends

to the hyperKähler quotient

X///G = µ−1(0)/G.

Note that this is only true if the moment map is Sp(1)-equivariant (as is the case for (5.4)).

Let us apply this to the case of the Higgs branch. Let V = Hn with the permuting action of

unit quaternions acting on the left (this is an action of ‘hypermultiplet’ type). Suppose that a

compact group G acts through a representation G ↪→ Sp(n) acting on the left. This commutes

with the permuting Sp(1) action and preserves the natural hyperKähler structure on V . If one

chooses an Sp(1)-equivariant moment map, the permuting action descends to the hyperKähler

quotient V///G. Equivariance of the moment map is broken by Fayet–Iliopoulos parameters.

5.3.2 Dirac operators

In the infrared, the three-dimensional Seiberg–Witten equations reduce to a certain nonlinear

Dirac equation for a field valued in the hyperKähler quotient V///G. We review here the nature

of this nonlinear Dirac equation. In this we follow [Tau99; Pid04; Hay06; Cal16; Doa19] (some of

these references deal primarily with the four-dimensional case, but the three-dimensional case

is similar). The only possible novelty here is the presentation of a 1-form-valued version of the

Dirac operator, which makes clear the sense in which the operator is a three-dimensional version

of the Cauchy–Riemann operator.

Let (X, gX , I,ω) be a hyperKähler manifold carrying a permuting action of Sp(1). Let M be

a three-manifold with a spin structure. For us, a spin structure on a three-manifold is a principal

Sp(1)-bundle Pspin →M equipped with an isomorphism

Pspin ×Sp(1) sp(1)
∼−→ TM .

We can now form the associated bundle

X := Pspin ×Sp(1) X →M .

Why consider this bundle? The point is that, in forming this bundle, we have identified the

Sp(1)E spin group with the Sp(1)H group of R-symmetries rotating the complex structures on

the target space. This is the essence of the topological twist.

5.3.3 Example (Twist of a free hypermultiplet). Let X = H with the permuting Sp(1) action of

unit quaternions on the right. This is the three-dimensional spinor representation and a section

of the corresponding bundle X →M is a spinor field on M .

5.3.4 Example (Twist of a free vectormultiplet). Take X = S1 ×R3 with hyperKähler structure

induced from S1 × R3 ∼= H/Z and with Sp(1) acting in the vector representation on the R3 factor.

Then, using the isomorphism defining the spin structure, X ∼= S1 × TM and a section of X may

be thought of as a pair consisting of a map M → S1 and a vector field on M . We will return to

this example. As we will review later, it is relevant in the Abelian gauged A-model of [KSV10].
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Note that, because the spin group Sp(1) is 2-connected (it is diffeomorphic to the three-

sphere), any Sp(1)-bundle on an oriented three-manifold M is trivial. This is because all maps

M → BSp(1) are homotopic to the identity. Thus the bundle Pspin topologically trivial. A

trivialisation of Pspin is a choice of (spin) framing of M . Note that topological triviality is not

geometrical triviality, which corresponds to flatness of the metric induced by the framing.

Now, the endomorphism bundle of TX has a natural subbundle generated by the three complex

structures comprising the hypercomplex structure of X. Write H → X for this bundle, the fibres

of which can be naturally identified with Im(H) and so with sp(1), so we can find an isomorphism

sp(1)×X ∼= ψ∗H.

Pulling this isomorphism back along a section ψ of X induces an isomorphism

c : TM
∼−→ ψ∗H

using the isomorphism Pspin ×Sp(1) sp(1) ∼= TM defining the spin structure. We call the iso-

morphism c a Dirac structure. It assigns a complex structure on X to each direction in space.

Concretely, we can introduce a frame of 1-forms e = (e1, e2, e3), trivialising the bundle of frames

of M , and define

c = ψ∗I · e. (5.5)

The group SO(3) acts to rotate both I and e separately (that is, through the Sp(1)H and Sp(1)E

actions). The Dirac structure c is invariant under the diagonal of these actions, which is consistent

with the nature of the twist.

The Dirac structure defines a decomposition of the bundle T∨M ⊗ψ∗TV X , where TV X is the

bundle of vertical vector fields on X , via the operator

P =
1

3
(1 + ∗ c∧) ,

where the Hodge star ∗ is defined with respect to the metric induced by the framing e. This

operator is a projection operator, obeying

P2 = P,

which follows from the fact that

∗c ∧ ∗(c ∧ α) = ∗c ∧ α+ 2α

for any α ∈ Ω1(ψ∗TV X ). This fact is a consequence of the quaternionic relations among the

complex structures on X. The projection P is orthogonal with respect to the natural metric on

T∨M ⊗ ψ∗TV X induced by the metric on X and the metric on M induced by the frame e. The

complementary projector to P is given by

P⊥ =
1

3
(2− ∗ c∧).
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As a projection operator, the only eigenvalues of P are one and zero. We can therefore

decompose E := T∨M ⊗ ψ∗TV X as

E = E0 ⊕ E1

where E0 contains the elements in the kernel of P (that is, the range of P⊥) and E1 contains the

elements in the range of P (that is, the kernel of P⊥).

We can characterise the kernel of P in the following way. Let α be in Ω1(M,TV X ) and

consider

c · α,

where by · we mean the inner product of 1-forms onM induced by the inverse of the metric e2 and

the standard action of endomorphisms of TX on TX. More concretely, using the decomposition

(5.5), we can write

c · α = (IA)ab (αA)
b

where α = αAe
A and a, b are indices for TV X . The kernel of P is the kernel of the operator c · (·).

Indeed, suppose that Pα = 0. This implies that

0 =
1

3
(c · α+ c · ∗(c ∧ α))

=
1

3
(c · α+ ϵABCIAIBαC)

= c · α,

where we have used the quaternionic relations among the IA. Conversely, suppose that c · α = 0.

Then

0 = c(c · α)

= IAIBα
B

= −αA − ϵABCIBαC

= −3Pα.

Thus the kernel of P is the kernel of c · (·).
This construction should be compared to the analogous one in complex geometry. Let Σ be a

Riemann surface with complex structure jΣ and let (Y, jY ) be a complex manifold. Given a map

u : Σ → Y , the bundle T∨Σ⊗ u∗TY can be decomposed into holomorphic and antiholomorphic

parts, which are respectively the elements in the kernel and range of the projection operator

defined by

β 7→ 1

2
(1 + jY ◦ β ◦ jΣ)

for β ∈ T∨Σ⊗ u∗TY .

A trivialisation of Pspin defines a spin connection γ by declaring the trivialisation to be

horizontal with respect to γ. This connection (indeed, any connection) induces a covariant

derivative dγ on sections of X . We now consider the operator

Dψ := P(dγψ).
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This is the analogue of the Cauchy–Riemann operator in three dimensions, twisted by the spin

connection γ.

We can also define the Dirac–Fueter operator /dγ by

/dγψ := c · dγψ,

which has the same kernel as D by the result of the discussion above.

5.3.3 The energy of solutions

Let us consider the energy of solutions to the nonlinear Dirac equation /dγψ = 0. Using the

concepts of subsection 5.3.1, we will find a relationship between the energy of solutions and the

curvature of the underlying manifold M .

By using the quaternionic relations among the complex structures on X, one can show that

|/dγψ|2 = |dγψ|2 − ∗ea ∧ ψ∗ωaX

where ωX is the sp(1)-valued 2-form on X given by minimally coupling the 2-form ω on the fibres

of X to the connection γ, which is necessary for it to be a genuine 2-form on the total space of

the bundle. In components, we have

ψ∗ωX = ωijdγψ
i ∧ dγψ

j .

The term ∗ea ∧ ψ∗ωaX is interesting. If γ were flat, one could use the fact that (X,ω) is

hyperexact and that dγe = 0 to write the term ea ∧ ψ∗(ωX )a as a total derivative. In general

though, γ is not flat. Indeed, while we saw in subsection 5.3.1 that one could write down θ such

that ω = dθ, in general one has

ωX = dγ(θX )− (F (γ) · i)(θX ). (5.6)

Here, we have used the notation of subsection 5.3.1, writing i for contraction with the vector

fields generating the permuting Sp(1) action. We have written θX for the minimal coupling of θ

to the gauge field.

It is perhaps easiest to see why (5.6) holds by working locally. One can write

θX = θidγψ
i

where the components θi obey ∂iθj − ∂jθi = ωij . Acting with dγ on θX gives

dγθX = dγ(θidγψ
i)

= ωijdγψ
i ∧ dγψ

j + θiF (γ)(ψ)
i

= ωX + F (γ)aiaθX .

Using (5.6), we can write

ea ∧ (ωX )a = ea ∧
(
dγθ

a
X − F (γ)bib(θ

a
X )
)

= d(ea ∧ θaX )− ea ∧ F (γ)bib(θaX ),
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where we have used that dγe = 0. Now, the quantity

Sba := ∗ea ∧ F (γ)b

is a tensor on the manifold (M, e) that completely determines the Riemann curvature.

Thus, on closed manifolds, one has

|dγψ|2 = |/dγψ|2 − Sbaib(θ
a
X ) (5.7)

so that the energy of a solution to /dγψ = 0 is controlled in part by the curvature of M .

Generally, the quantity iaθb is symmetric [Pid04] and so can be decomposed as

νδab +Aab

where A is a symmetric tensor obeying tr(A) = 0. When A = 0, the quantity ν is a hyperKähler

potential for (X,ω), meaning that dIdν = ω. This is what happens, for example, for the

‘hypermultiplet’ type action of Sp(1) on H. When this happens the energy of solutions to /dγψ = 0

becomes

−Rν

where R = Saa is the Ricci scalar of M . This kind of fact is familiar from the original vanishing

theorems of [Wit94] for Seiberg–Witten monopoles in four dimensions.

5.3.4 The Dirac equation on circle bundles

As we will soon see, the BPS configurations of the A-twist are solutions to the nonlinear Dirac

equation

/dAψ = 0.

To get a feel for these configurations, we consider solutions in some special cases.

Ultimately, the quantum theory will not depend on the precise choice of frame that one uses

to define the Dirac equation. In general, it will depend only on its topological class. For this

reason, we can make convenient choices of frames (and corresponding Riemannian metrics) when

considering solutions.

Let M be the total space of a circle bundle p :M → Σ over a compact two-dimensional surface

Σ. Let Σ have a Riemannian metric gΣ. One can then give M a metric of the form

gM = η2 + p∗gΣ

where η ∈ Ω1(M) is a connection form on the bundle (note that a connection can be thought

of as a globally defined 1-form on the total space of a bundle, generally valued in the space of

vertical vector fields on the bundle). This is a ‘Kaluza–Klein’ approach to Riemannian geometry

on circle bundles.

Writing φ for a local periodic coordinate on the circle fibres of p, one can write

gM ≃ (dφ+ p∗A)2 + p∗gΣ
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locally, where A is a local connection 1-form on Σ given by pulling η back along a local section of

p. The local section may be given by taking ψ to be constant. We write A = Axdx+Aydy.

In a local patch U ⊂ Σ, we can write

gΣ ≃ e2u
(
dx2 + dy2

)
for some local coordinates x, y and function u : U → R. We may then choose a local orthonormal

coframe for TΣ|U given by

f1 = eudx, f2 = eudy.

Over this patch, we can give the coframe

(e1, e2, e3) = (p∗f1, p∗f2,dφ+ p∗A)

for TM |U×S1 .

The inverse metric is

g−1
M = (v1)

2 + (v2)
2 + (v3)

2

where, locally,

v1 = e−u∂x − e−uAx∂φ, v2 = e−u∂y − e−uAy∂φ, v3 = ∂φ,

which obey ea(vb) = δab . Here, and elsewhere, the indices a, b, c, · · · = 1, 2, 3 are indices for the

bundle M × so(3), which is identified with TM by the frame v.

The spin connection γ is determined by the structure equation dea = −γab ∧ eb and by

antisymmetry. Solving this gives

γabc = ϵ3bc(δa1v2(u)− δa2v1(u)) +
1

2
ϵabcF12 (5.8)

where F12 is defined by F (A) = 1
2F12e

1 ∧ e2.
Now let us consider the Dirac equation on this background. We begin with a simple example,

one which serves as a local model for more general cases.

5.3.5 Example (Free hypermultiplet). Let X = H, thought of as a right H-module, with

permuting Sp(1) action given by the action of unit quaternions on the right. The Dirac equation

is then the usual Dirac equation for a spinor field.

We may regard X as C2 with complex structures (iσ1, iσ2, iσ3). The permuting action is

generated by the action of the complex structures themselves.

Let ψ be a section of the bundle X . The covariant derivative is

dγψ = dψ +
i

2
ϵabcγ

abσcψ.

Substituting in the spin connection (5.8) gives

dγψ = dψ +
i

2
ϵabc

(
ϵ3bc(δd1v2(u)− δd2v1(u)) +

1

2
ϵdbcF12

)
edσaψ

= dψ + i(v2(u)e
1 − v1(u)e

2)σ3ψ +
i

2
F12e

aσaψ
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The Dirac equation associated to the Dirac structure ieaσa is then

0 = /dγψ

= iσava(dγψ)

= iσa
(
∂aψ + i(v2(u)δa1 − v1(u)δa2)σ

3ψ +
i

2
F12σaψ

)
= iσa∂aψ + i(v1(u)σ1 + v2(u)σ2)ψ − 3

2
F12ψ,

where ∂a(·) = va(d(·)). We can express this in terms of the coordinates (x, y, φ) and components

ψ = (ψ1, ψ2) as(
i∂φψ

1 − 3
2F12ψ

1 + e−u
(
∂xψ

2 −Ax∂φψ
2 + ∂x(u)ψ

2 + i(∂yψ
2 −Ay∂φψ

2 + ∂y(u)ψ
2)
)

−i∂φψ
2 − 3

2F12ψ
2 + e−u

(
∂xψ

1 −Ax∂φψ
1 + ∂x(u)ψ

1 − i(∂yψ
1 −Ay∂φψ

1 + ∂y(u)ψ
1)
)) = 0.

If the bundle M → Σ is trivial and one takes F = 0, there are solutions to this equation with

∂φψ = 0 coming from holomorphic sections of the bundle

SΣ ×U(1) X → Σ,

where SΣ is the principal U(1) spin bundle on Σ and X ≃ C2 is thought of as a complex symplectic

manifold with complex structure −iσ3. One sees this by realising that the derivatives of u give

the spin connection on Σ.

This idea extends to the general case. Whenever the bundle M → Σ is trivial, there are

solutions to the Dirac equation given by pulling back holomorphic sections of a bundle of the

form SΣ ×U(1) X → Σ. This is well-known [Nak16; BFK19] and such sections are often called

quasimaps [Kim16].

The reason for the appearance of the spin bundle on Σ is that the choice of gauge for the frame

that we have used trivialises the normal bundle to Σ in M . This implements the decomposition

TM ∼= L⊕ p∗TΣ where L is trivial. Thus, the topology of TΣ becomes important.

5.4 the a-twist

5.4.1 The theory

The field content of the A-twisted theory consists of a section ψ of the bundle X , a scalar fermionic

field η ∈ Ω0(Πψ∗TV X ), a 1-form fermionic field χ ∈ Ω1(Πψ∗TV X ), and an auxiliary bosonic

1-form field H ∈ Ω1(ψ∗TV X ). Here Π denotes parity reversal of a vector bundle. As we will

see, the number of fermionic degrees of freedom can be consistently halved via a certain reality

condition.

The bundle TV X has a natural connection Γ̃ given as the sum of γ and the Levi-Civita

connection Γ on the tangent bundle of X.
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The twisting supercharge Q acts as

Qψ = η

Qη = 0

Qχiµ = P(H)iµ + Γ̃ijkP(χ)jµη
k

QHi
µ =

1

2
F (Γ̃)ijklP(χ)jµη

kηl + Γ̃ijkP(H)jµη
k,

(5.9)

which squares to zero as required. Here and throughout the Latin indices i, j, k, · · · are indices on

TV X and Greek indices µ, ν, · · · = 1, 2, 3 are indices on TM .

Notice that QP⊥χ = 0 and so that P⊥χ decouples from the algebra completely. One can

consistently set it to be zero, if one wishes, which is a kind of reality condition for the fermionic

degrees of freedom. One may then replace χ by the scalar field β := c ·χ. One can make a similar

statement for the auxiliary field H and a scalar field h = c ·H. Then, the interesting part of the

algebra is determined by

Qψ = η

Qη = 0

Qβi = hi + Γ̃ijkβ
jηk

Qhi = −1

2
F (Γ̃)ijklβ

jηkηl + Γ̃ijkh
jηk.

There is a classical ghost symmetry inducing a Z-grading on the fields. The supercharge Q

has ghost number 1 and we give ψ ghost number 0, η ghost number 1, χ (and so β) ghost number

−1, and H (and so h) ghost number 0.

Näıvely, one would write the action density of the twisted supersymmetric sigma model as

|dγψ|2 + · · ·

where · · · denotes fermionic terms. This is not the right form. The results of subsection 5.3.3 tell

us that this should be deformed by a term involving the curvature of the background, taking the

form

Sab(i
aθbX ) = S(i,θX )

where Sab = ∗ea ∧F (γ)b and the symmetric tensor iaθbX = ηδab +Aab was defined previously (we

have suppressed the pullbacks by ψ). As the original supersymmetric theory was defined only on

flat space, there is nothing stopping us from introducing curvature-dependent deformations: they

vanish on flat space.

The twisted action is then, up to possible boundary terms,

S =

∫
M

∗
(
|dγψ|2 + S(i,θX ) + 2(β, /dΓ̃η) +

1

2
F (Γ̃)(β, β, η, η)

)
.

Importantly, this action is Q-exact modulo boundary terms and the equations of motion of

the auxiliary field h. We have

−Q
∫
M

∗gX(β, h− 2/dγψ) =

∫
M

∗
(
−|h|2 + 2(h, /dγψ) + 2(β, /dγ̃η) +

1

2
F (Γ̃)(β, β, η, η)

)
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where the various covariant derivative terms are induced by the derivatives of the metric on X.

The field h enters algebraically and can be integrated out by imposing its equation of motion,

which is

h = /dγψ.

Substituting this in gives∫
M

∗
(
|/dγψ|2 + 2(β, /dΓ̃η) +

1

2
F (Γ̃)(β, β, η, η)

)
.

The energy identity (5.7) then reveals that this is the same as S up to a boundary term (we could

include this boundary term in the original action - it is not metric-independent).

5.4.2 The partition function

Compactifying the theory on a closed three-manifold M gives the partition function ZXA (M)

which, in the absence of anomalies, is a complex number.

The partition function of the theory can be written as

ZXA (M ;λ) =

∫
C
Dµ exp(−λ[Q,V ])

where V = −(β, h − 2/dγψ), the space C is the configuration space of the theory, Dµ is a path

integral measure on C, and λ is a coupling constant.

By the usual yoga of localisation, the partition function is independent of the coupling

constant λ and can be computed exactly: it is the integral of the Euler class of the moduli space

of Q-invariant configurations. These are those configurations on which η = β = h = 0 and

/dγψ = 0.

Writing M(M) for the moduli space of solutions to this equation on the compact manifold M ,

one can show that

ZXA (M ;λ) =

∫
M(M)

e(M(M)),

where e(M(M) is the Euler class of TM(M). If M(M) is compact, this integral is the Euler

characteristic of M(M).

Notice that homotopically trivial variations of the frame defining the nonlinear Dirac equation

induce Q-exact variations of the action and therefore do not change the result of the computation.

This argument does not apply to ‘large’ variations of the frame, those which change the topological

class of the frame. We therefore expect this theory to have a framing anomaly.

Generically, one expects the moduli space M(M) to be zero-dimensional, so that the Euler

characteristic is a signed count of points in the moduli space. This requires an understanding of

the orientation of the points in the moduli space. Without this, one can only define the partition

function modulo 2, as an unsigned count of points in the moduli space.

Another question is that of compactness. It is not necessarily the case that the moduli space

of solutions is compact. The failure of the moduli space to be compact leads to difficulties in
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the counting problem. It is plausible that suitable perturbations of the equations lead to good

behaviour.

We do not address these analytic issues here, noting that they have been considered in detail

for the closely related Seiberg–Witten invariants. Instead, we move on to study local and extended

operators in the theory.

5.4.3 Quantum states

The quantum states of the A-twist have been considered in detail in [BFK19; Bul+18; Nak16;

BFN18; CDZ20] and elsewhere. We summarise the story briefly.

Compactifying the theory ZXA on a closed two-dimensional surface Σ gives an effective one-

dimensional topological theory ZXA (Σ). On general grounds, we expect the theory to be a quantum

mechanics on a certain moduli space associated to Σ. In section 5.3, we saw that this moduli

space is the space of holomorphic sections of a bundle of the form SΣ ×U(1) X, where SΣ is a

principal spin bundle on Σ. These sections are sometimes called quasimaps.

Writing M(Σ) for the moduli space of these quasimaps, the space of quantum states is then

given by the de Rham cohomology

H•(M(Σ),C),

as follows from standard arguments of Q-invariance.

In principle, this space could receive non-perturbative quantum corrections due to instanton

tunnelling between states, the instantons being solutions to the nonlinear Dirac equation /dγψ = 0

on Σ× R which tunnel between a pair of distinct quasimaps ‘at’ Σ× {−∞} and Σ× {∞}.
BPS monopoles in the ambient gauge theory can act to create or destroy topological charge

associated to a quasimap solution. Algebraic aspects of this story from the perspective of the

space of quantum states considered here were studied in [Bul+18].

5.4.4 Line operators

We have considered the theory compactified on a three-manifold and on a two-manifold. We

continue here by considering the theory compactified on the circle. Compactifying a three-

dimensional topological theory on the circle gives an effective two-dimensional topological theory.

In general, compactification on the circle (or indeed any manifold) gives a theory with infinitely

many degrees of freedom. These can be parameterised in terms of Fourier modes of fields around

the circle. When one takes the circle to be small, the nonconstant modes typically decouple

leaving one with a finite number of degrees of freedom. As we are dealing with a topological theory,

the small circle limit is exact and we may neglect nonconstant modes, at least semiclassically. In

principle, this semiclassical theory may receive quantum corrections due to BPS solutions winding

the circle.

Locally and semiclassically, the compactified theory is the two dimensional A-model (see

[Wit98]). Indeed, it is not hard to check that the field content is locally that of the A-model and

that the reduced action of Q agrees with that of the A-model twisting supercharge. At the level
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of the BPS equation, this corresponds to the fact that in coordinates ((x, y), φ) on R2 × S1,

I1∂φ + I2∂x + I3∂y
∂1=0
⇝ I2∂x + I3∂y = I2(∂x − I1∂y),

so that the reduced Dirac operator is locally the Cauchy–Riemann operator for the complex

structure −I1.
However, as revealed by the discussion of section 5.3, the theory is not the A-model globally.

Instead, it is the A-model in the presence of a defect (in the sense of [CKW18]), which twists the

fields by the spin bundle on Σ. More precisely, the main bosonic field of the reduced theory is a

section of

SΣ ×U(1) X

where SΣ is a principal spin bundle on Σ and X is thought of as a complex manifold with

holomorphic U(1) symmetry in a fixed complex structure. The BPS equation then asks that this

section be holomorphic, a story which is familiar from [BFK19].

This concept was realised in section 5.3 using the ‘holomorphic gauge’, in which the frame

field used to define the theory is given locally in terms of a framing of Σ and a 1-form in the

circle direction.

A slightly different way to think about this defect is as follows. Globally, it is impossible to

frame Σ× S1 in such a way that one of the frame fields is everywhere tangent to the S1 factor

unless the genus of Σ is one. Therefore, as one moves around on the surface of Σ, the complex

structure assigned to the S1-direction by the Dirac structure varies. This defines a map

J : Σ → S2
X

where S2
X is the 2-sphere of complex structures comprising the hypercomplex structure on X (the

twistor sphere of X). The topology is such that this map must have topological degree

degJ = 1− g,

which is minus the degree of the spin bundle on Σ. Composing this with the antipodal map

on S2
X (to account for the minus sign in front of the complex structure in the reduced Dirac

equation) gives a map of degree g − 1, the degree of the spin bundle on Σ.

5.4.5 Boundary conditions

Good boundary conditions for field theories

Boundary conditions and their fusion play a vital role in the understanding of field theories. Here,

we recall what makes a good boundary condition for a field theory in the spirit of [Wit86; HW19].

Consider a field theory on an n-manifold M . Part of the data of a field theory is the

configuration space Conf(M) of physical configurations on M . We may also form the universal

space

U =M × Conf(M).
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The de Rham complex of U factors as

Ω•(U) ∼= Ω•(M)⊗ Ω•(Conf(M)),

where the tensor product is taken over the ring of smooth functions on U . We call elements of

Ωp(M)⊗ Ωq(Conf(M)) forms of type (p, q) on U . In line with standard notation, we write d for

the exterior derivative on Ω•(M) and δ for the exterior derivative on Ω•(Conf(M)), so that the

overall exterior derivative on U may be written as d + δ.

The Lagrangian density of our field theory is a differential form L on U of type (n, 0). The

action is then

S =

∫
M

L,

where
∫
M

represents the pushforward along the projection U → Conf(M). The action S is then a

function on Conf(M).

The equations of motion are determined by

δS = 0.

At the level of L, one can write

δL = E + dΘ

where E is an (n, 1)-form representing the equations of motion and Θ is an (n− 1, 1)-form. The

form Θ determines the symplectic form on the phase space of the theory.

When M has a boundary, one has

δS =

∫
M

E +

∫
∂M

Θ.

To have boundary conditions compatible with the variational principle and with the equations of

motion, one asks that the second term on the right hand side vanishes.

5.4.1 Example (Sigma model). Consider a theory of maps ψ :M → N for M , N Riemannian

manifolds with sigma model Lagrangian density

L(ψ) = |dψ|2volM .

Acting on this with δ, one sees that the equation of motion is ∆ψ = 0, where ∆ is the Hodge

Laplacian coupled to the Levi-Civita connection on the target space, and

Θ = ∗(dψ, δψ).

In the presence of a boundary ∂M , we ask that Θ|∂M = 0 to be sure that the boundary

contribution to the variation of the action vanishes. There are many ways to do this in general,

two of them are

∂nψ|∂M = 0 and δψ|∂M = 0,

where ∂n is the derivative normal to the boundary, corresponding to Neumann and Dirichlet

boundary conditions respectively. Other types of boundary conditions may be mixed Dirichlet–

Neumann conditions, with some components of ψ obeying Neumann conditions and the others

obeying Dirichlet conditions.
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5.4.2 Example (Gauged sigma model). Consider the theory of a sigma model coupled to a

background gauge field, with Lagrangian density

L = |dγψ|2volM .

Then varying ψ leads to the boundary term

Θ = ∗(δψ,dγψ).

In general, one can further include boundary (or even more general corner) terms in the

action. These can alter the allowed boundary conditions. Moreover, when a field theory has

symmetries, one can ask for boundary conditions which are compatible with the symmetry. We

have a symmetry to consider, namely that generated by Q, so we will look for boundary conditions

compatible with this symmetry.

Boundary conditions in the A-twist

Now let us apply this to the situation at hand. We would like to consider boundary conditions

for our twisted sigma model compatible with the symmetry generated by Q.

Let us first work on flat space with boundary, taking M = R≥0 × R2 with coordinates

(x1, x2, x3) where x1 ≥ 0 and flat frame e = (dx1,dx2,dx3). We take the Dirac structure

c = Iadx
a,

for a = 1, 2, 3. In the Cartesian gauge, the spin connection γ is trivial and so one may regard ψ

as a map M → X.

The boundary conditions compatible with the twisting supercharge Q are those boundary

conditions which are compatible with the BPS equation

dγψ + ∗c ∧ dγψ = 0.

Note that the spin connection γ associated to the frame e is trivial. Substituting this equation

into the form Θ of example 5.4.2 gives

Θtwist = − ∗ (∗c ∧ dγψ, δψ).

This is, for our choice of Dirac structure,

Θtwist = −dxa ∧ (ωa)ijdγψ
iδψj .

We have neglected to consider the fermions, whose behaviour is controlled by Q-invariance.

5.4.3 Remark. Another way to see that this is the correct boundary variation term is to vary

the energy identity (5.7).
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Good twisted boundary conditions are those for which (Θtwist)|{x1=0} = 0. We therefore

require (
dx2(ω2)ij + dx3(ω3)ij

)
dγψ

iδψj = 0 (5.10)

along x1 = 0. We may choose the Cartesian gauge, where γ is trivial and ψ is just a map M → X.

Then suppose that ψ|∂M : ∂M → Y for Y ⊆ X a submanifold. Using the fact that δψ and dψ|∂M
lie normal to Y , the equation (5.10) then tells us that generic boundary conditions require that

Y be isotropic with respect to both ω2 and ω3. In fact, Q-invariance also implies that Y be

coisotropic with respect to these structures. Thus Y is a complex Lagrangian submanifold of X

with respect to the complex symplectic structure ω2 + iω3 (or a phase rotation thereof). These

are mixed Dirichlet–Neumann boundary conditions: half of the degrees of freedom obey Dirichlet

conditions and the other half obey Neumann conditions.

5.4.4 Example (Free vectormultiplet). Take X = H/Z ∼= S1×R3 with Sp(1) acting in the vector

representation on the R3 factor. In a fixed complex structure we may write X = C∗ × C with

complex coordinates (z, w) and complex symplectic structure dz ∧ dw. The complex Lagrangian

manifolds either take the form

Yw0
= C∗ × {w0}

for some w0 ∈ C or take the form

Yz0 = {z0} × C

for some z0 ∈ C∗. See also [KSV10], where these boundary conditions are considered as boundary

conditions for the matter sector of a topological Abelian gauge theory. In fact, the authors of that

paper insist on setting w0 = 0 when dealing with the first class of complex Lagrangian submanifolds

above, with the point being that w0 = 0 is the fixed point of the residual U(1) ⊂ Sp(1) permuting

action preserving the boundary. (As we will see, this is forced in the general case.)

This provides a good local model for general boundary conditions. It is an oversimplified

characterisation for two reasons. First, we have fixed the gauge in a way that is generally not

possible. Second, in general, the particular complex symplectic structure on the target space

which is relevant depends on the normal direction to the boundary in physical space. Directions

in physical space and complex structures are inextricably linked by the twisting procedure.

Perhaps the easiest way to understand the effect of this is to work locally in the ‘transverse

holomorphic gauge’. As before, this works by trivialising the normal bundle of ∂M in M at

the cost of working with the spin bundle on the boundary. (We will not consider global issues

associated with completing the relevant frame to the whole of M .)

In general, the boundary of M is a two-dimensional surface Σ. Close to the boundary, M

looks like Σ× [0, ϵ). Here, we can choose the metric

gΣ×[0,ϵ) = dt2 + gΣ

where t ∈ [0, ϵ) is a coordinate along the interval and gΣ is a metric on Σ. Locally, we can choose

the orthonormal frame of 1-forms

(e1, e2, e3) ≃ (dt, eudx, eudy)
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where (x, y) are local conformal coordinates on Σ such that gΣ = e2u(dx2+dy2). Write (v1, v2, v3)

for the dual frame of orthonormal vector fields. We work with the local Dirac structure c = Iae
a.

Good boundary conditions are then found by solving

((ω2)ijD2ψ
i − (ω3)ijD3ψ

i)δψj |∂M = 0 (5.11)

locally on the boundary, where Di = vi(dγ).

To interpret this, let us regard ψ as an Sp(1)-equivariant map Pspin → X. In the gauge we

have chosen, which trivialises the normal bundle to the boundary, the boundary breaks Sp(1) to

U(1) and we may think of the boundary map as a U(1)-equivariant map

SΣ → X (5.12)

where SΣ is the principal U(1) spin bundle on Σ and we regard X as a complex manifold in

the complex structure I1 with holomorphic U(1) action induced from the subgroup of Sp(1)

preserving I1. The complex symplectic structure Ω1 = ω2 + iω3 on X transforms with weight 2

under the permuting U(1) action on X preserving I1.

The form of (5.11) tells us that complex Lagrangian submanifolds, on which Ω1 vanishes, are

again the correct boundary conditions to consider. They should also be U(1) equivariant, so that

the boundary field (5.12) is well-defined.

5.4.5 Example (Free hypermultiplet). The U(1)-equivariant complex Lagrangian submanifolds

of C2 are C × {0} and {0} × C. Both of these submanifolds transform nontrivially under the U(1)

action.

5.4.6 Example (Free vectormultiplet). The U(1)-equivariant submanifold of C∗×C are {z0}×C

for any z0 ∈ C∗ and C∗ × {0}. Notice that the first of these submanifolds transforms trivially

under U(1), while the second transforms nontrivially (see also [KSV10]).

Another description: hyperLagrangians

In the above construction, we have chosen a convenient gauge for the problem. If we do not

do this, we should extend our notion of boundary condition to allow for the relevant complex

structure to vary as one moves along the boundary. This can be achieved by recalling the notion

of hyperLagrangian submanifolds, introduced in [LW07].

5.4.7 Definition ([LW07]). Let (X,ω1, ω2, ω3) be a hyperKähler manifold and write S2
X for the

sphere of complex structures comprising the hypercomplex structure on X. A hyperLagrangian

submanifold (Y,J ) of X is a submanifold Y ⊂ X and a map J : Y → S2
X with the property that

(ϵabcJbωc)|Y = 0.

Said another way, a hyperLagrangian submanifold is pointwise complex symplectic, but

the relevant complex symplectic structure is allowed to vary. As made clear in [Leu02], hy-

perLagrangian submanifolds are to hyperKähler manifolds as Lagrangian submanifolds are to

Calabi–Yau manifolds.
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As a hyperLagrangian submanifold is locally complex Lagrangian, its dimension is half that

of the ambient hyperKähler manifold.

There is a topological invariant associated to a hyperLagrangian submanifold (Y,J ), given

by the topological degree of the map J : Y → S2. We will not worry about torsion-type effects

and so can think of this invariant as living in the de Rham cohomology H2(Y,R). It is then

represented by the pullback of the unit volume form on S2. This invariant plays an important

role in the story of boundary conditions. The unit normal vector field to the boundary ∂M of M

defines a map ∂M → S2. The degree of this map must agree with the pullback of the degree of

J if the boundary condition is to make sense.

A remarkable fact (albeit one that is physically expected) is that hyperLagrangian submanifolds

of hyperKähler manifolds are Kähler [LW07]: J defines an integrable complex structure on Y

and the 2-form J aωa|Y defines a Kähler form on Y .

As before, it is necessary to impose a kind of local equivariance condition on the hyperLa-

grangians. In general, the property of being hyperLagrangian feels softer than that of being

complex Lagrangian, but the equivariance condition seems strong enough to allow us to deal with

complex Lagrangians. This deserves further study. The results of [KT20], showing that there

is an ‘energy gap’ between hyperLagrangians which are complex Lagrangian and more general

hyperLagrangians, may be relevant.

Compactification on an interval

Compactifying the theory on an interval with a pair of boundary conditions (Y, Y ′) at either end

allows one to associate a two-dimensional topological field theory (and so a category) to (Y, Y ′).

By gluing pairs of intervals together, one can give a gluing map for these two-dimensional theories.

Taken together, this gives the collection of boundary conditions in the three-dimensional theory

the structure of a 2-category. We refer the reader to [KV10; KSV10; KRS09; Lur09] for more on

this notion.

Thus, getting to grips with the algebraic structure of the A-twist ZXA requires us to understand

the compactified theory ZXA ([0, ϵ](Y,Y ′)) for arbitrary pairs (Y, Y ′) of boundary conditions. This

was carried out for the B-twist in [KRS09; KR10] (see also [Tel14]).

Let M = Σ× [0, ϵ] with Σ a closed surface. Trivialising the normal bundle to Σ, we regard

the theory as the theory of a U(1)-equivariant map

ψ̃ : p∗SΣ → X

where p :M → Σ is the projection, SΣ is the principal U(1) spin bundle on Σ, and X is thought

of as a complex manifold in a fixed complex structure.

We impose the boundary conditions

ψ̃[SΣ × {0}] ⊆ Y

and

ψ̃[SΣ × {ϵ}] ⊆ Y ′
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for Y and Y ′ U(1)-equivariant complex Lagrangian submanifolds of X.

Using the fact that theory is topological, we may take the limit ϵ→ 0. Then, semiclassically,

we are left with the theory of an equivariant map

SΣ → Y ∩ Y ′.

This theory is a deformed version of the A-model in Y ∩ Y ′.

Generically, the intersection Y ∩ Y ′ is a disjoint union of points and the reduced theory

is more-or-less trivial, at least semiclassically. In principle, there remains the possibility of

non-peturbative corrections, from solutions to the nonlinear Dirac equation on M with the given

boundary conditions. These are instantons, tunneling between the semiclassical vacua.

At the opposite extreme to genericity, there is the case that Y = Y ′. Then the theory is then

a version of the A-model in Y . The details depend on the nature of the U(1) action on Y .

First suppose that the U(1) action on Y is trivial, so that the equivariance condition becomes

vacuous. Then the reduced theory is (up to a topological term in the action) exactly the two-

dimensional A-model. Then the category defined by the theory ZXA ([0, ϵ](Y,Y )) is the Fukaya

category of the Kähler manifold Y (this the category of branes in the two-dimensional A-

model; see [Sei08; Aur13] for details about this category). This was observed for the case of

Y = C∗ × {0} ⊂ C∗ × C in [KSV10].

In the general case, where U(1) acts non-trivially on Y , the reduced theory is the spin-deformed

version of the A-model that we saw previously when compactifying on the circle (although in that

case the target space was X). In this case, it is the theory of quasimaps, U(1)-equivariant maps,

SΣ → Y

with the BPS equation asserting that the corresponding section of the bundle SΣ ×U(1) Y be

holomorphic with respect to the holomorphic structure induced by the spin connection. This was

observed for the case of Y = {z0} × C ⊂ C∗ × C in [KSV10].

We have not discussed in any detail the nature of possible non-perturbative deformations to

the compactified theory. Such nonperturbative corrections play a vital role in understanding the

category of A-branes in the two-dimensional A-model and may well play an important role here.

On monoidal structures on the Fukaya category

The gluing of intervals induces a monoidal structure (that is, a tensor product) on the category

defined by the theory ZXA ([0, ϵ](Y,Y )). Physically, one can think of this as arising from the fusion

of defect line operators separating boundary conditions. In the dual case of the B-twist, this

‘explains’ the existence of a monoidal structure on the category of branes in the two-dimensional

B-model (the branes are coherent sheaves).

It would be nice to make an analogous statement about the category of branes in the two-

dimensional A-model (the Fukaya category), but we see that this is not so simple because of

the spin deformation. Instead, this construction only gives a monoidal structure on the Fukaya

category of a Kähler manifold Y if Y can be realised as a U(1)-invariant submanifold of a
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hyperKähler manifold with permuting Sp(1)-action on which the U(1) action is trivial. This

seems to be quite a serious restriction.

In some ways, this is not surprising. There are few examples of symplectic manifolds with

Fukaya categories with a known monoidal structure and they generally take special forms [Pas18;

Tel14]. We suggest that the reason for this (at least in the Kähler case) is precisely the fact that

it is not always possible to embed a Kähler manifold into a hyperKähler manifold in the way

mentioned above.

There are instances where it can be done. For example, it seems plausible that if L is a real

manifold, a formal neighbourhood in the total space of the bundle (T∨L)⊕3 ≃ T∨(T∨L) would

carry a suitable hyperKähler structure (along the lines of [Kal99; Fei03]) with the permuting

action permuting the factors of T∨L. Then this construction would induce a monoidal structure

on the Fukaya category of T∨L.

It is a result of [NZ09] that if one interprets the Fukaya category of T∨L in a suitable way,

it is equivalent to an object called the category of constructible sheaves on L. The category

of contructible sheaves has a monoidal structure, inducing a monoidal structure on the Fukaya

category of T∨L (see also [Pas18]). It would be interesting to see if this is the same as the

monoidal structure induced by the three-dimensional A-twist.

5.4.6 Comparison with the Kapustin–Vyas theory

In [KV10], Kapustin and Vyas associated to any real manifold L a three-dimensional topological

theory. The bosonic field content of the Kapustin–Vyas theory consists of a map

ϕ :M → L

and a T∨L-valued vector field τ̃ (in [KV10], these degrees of freedom are instead packaged into a

TL-valued 1-form τ - we have raised and lowered some indices for later convenience). The model

was inspired by the gauged A-type model considered in [KSV10; Set13].

The point is that, when L = S1, the fields (ϕ, τ̃) can naturally be organised into a ‘vectormultiplet’-

type field, taking values in S1 ×R3 ∼= H/Z. The fact that τ is a 1-form and not just an R3-valued

field corresponds to the fact that the theory has been twisted, with Sp(1)E being identified with

the Sp(1) that acts on S1 × R3 via the vector representation.

The BPS configurations of the Kapustin–Vyas model are solutions to

∇ϕ+∇× τ̃ = 0 , ∇ · τ̃ = 0

where ∇ is the covariant derivative on M . When L = S1, these are exactly the nonlinear Dirac

equations for map ψ = (ϕ, τ̃) :M → S1 × R3 with the vector permuting Sp(1) action.

A success of the Kapustin–Vyas model is that it recovers the two-dimensional A-model in

T∨L when compactified on an interval with suitable boundary conditions. When L = S1, this

corresponds to the fact that T∨L ∼= C∗ is a complex Lagrangian submanifold of C∗×C ≃ S1×R3.

For general L though, the total space of the bundle (T∨L)⊕3 → L is not hyperKähler (as we

commented above, there is a sense in which it is locally hyperKähler in nice cases [Kal99; Fei03]).
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Moreover, the Kapustin–Vyas model is not flexible enough to incorporate general hyperKähler

targets or permuting Sp(1) actions of ‘hypermultiplet’ type. This means that the Kapustin–Vyas

model can not quite be the theory underlying the A-twist of an N = 4 sigma model.

5.5 a gravitating theory

5.5.1 The Swann quotient

In ‘real life’ examples, such as those induced from gauge theories, the target space of our A-twisted

theory is likely to be a singular space. The singularities generally induce significant complications.

For example, when one hits the root of the Higgs branch of an undeformed gauge theory, one

could conceivably ‘spill out’ onto the Coulomb branch.

We have not dealt seriously with the myriad technical issues that arise when considering the

theory of the nonlinear Dirac equation into a singular space.

Here we offer a brief, speculative, and incomplete sketch of how the issue might be resolved

when the theory is coupled to background gravity. The A-twisted theory already sees background

gravity, so it is not too significant a step to pass to dynamical gravity.

We restrict ourselves to hyperKähler manifolds X with permuting Sp(1) actions for which the

quantity iaθb considered in subsection 5.3.1 takes the form

iaθb = νδab

for some ν. We call such actions Swann actions, after [Swa90]. In this case, ν is a hyperKähler

potential for X [Pid04; Cal16].

We define the Swann quotient of X at level α ∈ R to be

X/SwannSp(1) = ν−1(α)/Sp(1).

This can be viewed as a kind of desingularisation of the quotient of a hyperKähler cone X by H.

It is a result of [Swa90] that the Swann quotient is a quaternion-Kähler manifold.

5.5.2 The gravity-coupled theory

We will consider only a ‘critically-coupled’ bosonic theory here. We take a theory of a dynamical

frame e, along with the field ψ as before. We will view the spin connection γ as a function of the

frame e, as determined by the structure equation dγe = 0.

The idea of the critically-coupled theory comes from considering the term Rν in the action of

the A-twisted theory as a cross term. We consider the action density

E = −αR+
1

l2
|F (γ)|2 + |dγψ|2 + l2(α− ν(ψ))2.

The first term is a standard Einstein–Hilbert term, while the second is a kind of R2 term. We

have introduced two gravitational coupling constants, l2 and α. The point of the particular choice

of coupling that we have made is that one can write

E =
1

l2
|F (γ)− l2(α− ν(ψ))e|2 + |/dγψ|2,
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leading one to the BPS equations

F (γ) = l2(α− ν(ψ))e, /dγψ = 0.

In the limit l2 → 0, one finds the A-twisted sigma model in the background of semiclassical

gravity, with the first of the BPS equations above becoming the Einstein equation (one can

introduce a cosmological constant if one wishes). On the other hand, in the limit l2 → ∞, one

ends up with a classically underdetermined theory for a map

M → ν−1(α)/Sp(1) = X/SwannSp(1).

By passing to the Swann quotient, we have ‘excised the tip of the cone’. However, this strongly-

coupled theory is classically underdetermined because there is no equation of motion for the

gravitational field. In the absence of global anomalies, one might be able to ‘divide by the

gravitational path integral’ to give a well-defined sigma model theory.
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6 monopoles and magnetic skyrmions

6.1 introduction and summary

Finding effective methods of storing data is one of the great challenges of the modern era. The

aim of the game is to store ones and zeroes in a way that is stable against unwanted fluctuations

and yet easily writable and readable. Importantly, one wants to store these ones and zeroes as

densely as possible.

Magnetic Skyrmions have emerged as a potential player in high-density, ‘next-generation’

storage devices. Predicted theoretically in [PB75; BH94] and first observed in [Müh+09], they

are ‘almost-topological’ solitons in chiral ferromagnets. The ‘almost’ arises because they are

associated to a U(1) topological symmetry1 which emerges at long distances, but is not present

at short distances. Physically, this is manifested by the fact that magnetic Skyrmions can be

created and destroyed by finite energy microscopic processes, mediated by sources or sinks for

the emergent magnetic field that magnetic Skyrmions carry. These sources (or sinks) are known

as emergent (anti)monopoles or Bloch points.

Originally considered in [Fel65; Dör68], emergent monopoles were observed indirectly in

[Mil+13] and have subsequently attracted significant theoretical and experimental attention

[Kan+16; SR14; Im+19; Kan+20; Bir+20; Fuj+19; Zha+16; Mül+20], as have related objects

called bobbers [Ryb+15; Zhe+18].

Perhaps the most obvious approach to understanding the microscopic breaking of the infrared

topological symmetry is to regard the microscopic theory as a Heisenberg model, with the spins

comprising the magnetisation field tightly bound to atoms in a lattice. Emergent monopoles can

then be regarded as sitting in between the lattice points.

In this chapter we take a rather different approach, motivated both by the fact that the

lattice theory does not give a deep understanding of the nature of the electron field close to a

monopole and by ideas of criticality. We introduce a continuum toy model of chiral ferromagnets

in three spatial dimensions to understand their phase structure close to the critical point at

which monopoles and antimonopoles may appear. The model is based on the ideas of electron

fractionalisation and emergent SU(2) gauge theory (see [Sac19] for a summary of these ideas).

This gives us a natural continuum mechanism with which to break the topological symmetry

of the infrared description of the ferromagnet at intermediate scales. The model we produce

supports Skyrmion strings and confined monopoles, although neither are generally stable. By

tuning the applied magnetic field and other parameters in the model we can (approximately)

stabilise the Skyrmion phase. The usual micromagnetic theory emerges in the infrared. The

model supports arbitrary Dzyaloshinskii–Moriya interaction.

Our main technical contribution is the identification of a critically-coupled point in our model,

where confined monopoles are dynamically stabilised. At this point the monopoles obey first-order

equations of Bogomolny–Prasad–Sommerfield (BPS) type. The equations are given in (6.10) and

the discussion of the dynamic stabilisation of their solutions follows in sections 6.3.5 and 6.3.6.

1The ‘topological’ symmetry is the symmetry for which magnetic Skyrmion number is the conserved charge.
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The equations that we find are novel and represent an interesting mix of the BPS Skyrmion

equations [BSRS20] and the BPS monopole equations [Bog76; PS75]. They are fundamentally

distinct from similar mixes that have appeared in the high-energy physics literature [Ton04b;

Auz+03; SY04] for the technical reason that the complex structure(s) used to define the relevant

Dolbeault-type operator does not commute with the gauge group. The incorporation of chiral

interactions into a confined monopole equation is also novel.

BPS-type descriptions facilitate exact analysis and there has been recent interest in one-

and two-dimensional models admitting BPS equations [BSRS20; Sch19; Wal20; RSN20; RSN21;

Hon+20]. The three-dimensional theory that we introduce is rather more complicated: while

exact BPS solutions can be found in lower dimensions, even the existence of solutions to our

system appears to be a difficult question to address. A more complete understanding of the

equations and their solutions represents an potential avenue for future work.

In the rest of this introduction we summarise the fundamental ideas in greater detail. We

introduce the general gauge theoretic description of chiral magnets in section 6.2, showing that

it supports Skyrmions strings and monopoles on which such strings may end. We explore the

phase structure of the model. In section 6.3 we find a point in the parameter space where the

Hamiltonian of the theory admits a BPS-type rearrangement. At this point, Skyrmion strings

have vanishing tension and metastable monopole-antimonopole pairs may appear. We use this to

qualitatively explore the phase structure of chiral magnets close to this critical point. We show

that the model reproduces micromagnetism at long distances.

6.1.1 Micromagnetism, chiral interactions, and magnetic Skyrmions

Micromagnetism is an effective theory of magnetic materials, valid at scales much larger than the

lattice separation, so that a continuum approximation is valid. Below the critical temperature,

the configuration of a magnetic material in the micromagnetic regime is characterised by a

three-dimensional vector field of constant magntitude m, the magnetisation field.

Because the magnetisation field m has constant magnitude, it defines a map into a 2-sphere

(or a section of a bundle of 2-spheres). The nontrivial topology of the 2-sphere allows for the

formation of topological solitons: Skyrmions, classified by π2(S
2) ∼= Z, and Hopfions, classified

by π3(S
2) ∼= Z. Hopfions are essentially (knotted) Skyrmion lines, and have been considered in

[Sut18], for example.

In general, however, these solitonic structures may be unstable against bubbling phenomena

(for example, due to Derrick-type scaling instabilities [Der64]). It is therefore important to

consider the energetics of the system.

If one ignores the so-called demagnetising energy, which is non-local but often unimportant,

the effective theory in this regime in the presence of an applied magnetic field b has an energy

density of the general form

Emicro = J(∇m)2 +Dijkmi∇jmk − µ0m · b+ V(m) (6.1)

where V(m) is a local potential energy density, zeroth order in derivatives. Here J is the exchange

constant, which we assume to be positive, and Dijk is a Lifshitz tensor, antisymmetric in its last
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two indices. The term involving D is a chiral term, often called the Dzyaloshinskii–Moriya (DM)

term, after [Dzy58; Mor60], arising from an antisymmetric interaction between neighbouring

spins.

Without the DM term, the Derrick argument renders Skyrmions unstable against scalings. The

DM term provides respite, allowing dynamically stable Skyrmions to exist. On such configurations,

the DM term is necessarily negative.

The energy density (6.1) has the general form of that of a nonlinear sigma model into the

target 2-sphere. How should one interpret the DM term in this language? As exploited in

[BSRS20], it naturally arises when one couples the theory to a background orthogonal connection

K via an exchange term involving the coupled covariant derivative

∇Km = ∇m+K ×m.

The symmetries of the Lifshitz tensor D are the natural symmetries of an orthogonal connection

K (or, better, the difference between K and the Levi-Civita connection Γ). Among other things,

this gives an easy lower bound on the DM term (which can be negative) in terms of the exchange

term.

An important fact about magnetic Skyrmions is that they are charged under an emergent

magnetic field (note that this is not a true magnetic field). In the micromagnetic theory, this

emergent magnetic field is given generally by the pullback of the SO(3)-equivariant symplectic

form on the target 2-sphere (as determined by the chiral connection K; see Appendix A) which is

just the Skyrmion density.

6.1.2 Emergent magnetic monopoles

In [Mil+13], the creation and destruction of Skyrmions was indirectly observed and argued to be

mediated by emergent magnetic monopoles, also known as Bloch points.

Magnetic Skyrmions are protected by a topological U(1) symmetry in the micromagnetic

theory. The corresponding charge is the Skyrmion number. The existence of emergent monopoles

shows that the ‘true’ theory of the magnetic material generically does not have this symmetry: it

emerges in the infrared.

One way to model this is by taking the theory of the magnet to be given by a tight-binding

Heisenberg model, in which the spins comprising the magnetisation are held at lattice points.

This clearly breaks the topological symmetry: a ‘Dirac-type’ monopole can sit in between the

lattice points.

Another theoretical approach is to consider magnetic Skyrmions as the infrared limit of

Abelian vortices and then to embed the U(1) gauge group (supporting the emergent magnetic

field) into a gauge group SU(2), invisible except at high energy. This allows us to consider ‘t

Hooft–Polyakov-type monopoles [Hoo74; Pol74] supported by a high energy symmetry breaking

SU(2) 99K U(1). This is the approach we pursue.
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6.2 a model of (chiral) ferromagnets

6.2.1 Fractionalisation, pseudospin, and charge

Let M be a three-dimensional manifold representing a sample of material. We are interested in

the behaviour of electrons in this sample. We introduce an electromagnetically charged spinor q

on M representing the (static) electron field. This lives in the spin representation of Spinc(3).

We may write

q =

(
q1 −q̄2
q2 q̄1

)
,

where q1, q2 are complex. The spin group acts as SU(2)s on the left, with the subscript s standing

for ‘spin’, and the electromagnetic U(1) acts via multiplication of matrices of the form exp(iθσ3)

on the right. This makes the quaternionic nature of the spin representation in three dimensions

partially manifest. The magnetisation order parameter is then given by

m = tr
(
σqσ3q

†)
(up to factors which we have absorbed into the fields).

We may introduce a ‘rotated spin reference frame’ for q, by writing

q = ψf (6.2)

where ψ and f are both 2× 2 matrices, which are clearly not uniquely defined by this equation.

The matrix ψ is taken to be a bosonic SU(2) matrix, while

f =

(
f1 −f̄2
f2 f̄1

)
is fermionic. The field ψ carries the left action of the spin group SU(2)s and is known as the

spinon. The fermionic field f carries the right action of the electromagnetic U(1) gauge group

and is known as the chargon.

The physical object q is unchanged under

ψ 7→ ψU , f 7→ U†f

for U an SU(2) valued function. This SU(2) redundancy is known as pseudospin and so we refer

to this group as SU(2)ps. This redundancy is, of course, not physical and so it is gauged.

For our purposes, it is convenient to modify the field content slightly. First, we need not deal

with all of the information captured by the field f , instead choosing to work with the adjoint

field ϕ defined by

ϕ · σ = fσ3f
†.

This has the advantage of leaving us with a theory of bosons.

While passing from f to ϕ simplifies things, it also means that no fields in the theory carry

electromagnetic charge. To understand how background electromagnetic fields couple to the

theory, it is useful to pass back to a description in terms of the charged field f .
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Also, for our purposes, it is useful to allow ψ to have arbitrary determinant, so that it becomes

a linear field charged under SU(2)s × SU(2)ps. Practically, this allows us to implement the

symmetry breaking procedure in a straightforward way. The additional redundancy that this

introduces is dealt with dynamically.

6.2.2 A general model

The model we consider is built from the following data2.

• A three-dimensional manifold M carrying a fixed, background spin connection K, charac-

terising spin-orbit interactions in the material.

• A dynamical SU(2)ps gauge field A.

• A SU(2)ps-charged fundamental spinor ψ. We will represent ψ as a 2× 2 matrix

ψ =

(
ψ1 −ψ̄2

ψ2 ψ̄1

)
,

where ψ1, ψ2 are complex. Hermitian conjugation corresponds to quaternionic conjugation.

The action of the spin and pseudospin groups are represented by the fundamental action of

SU(2) on the left and right respectively.

• An SU(2)ps adjoint scalar ϕ = iϕ⃗ · σ⃗. This is the simplest extra field that one can include

so as to form the gauge-invariant magnetisation field. It can also be motivated through

electron fractionalisation, as above.

In ferromagnetic materials, the pseudoparticles represented by the fields ψ, ϕ, and A are not

macroscopically visible. Hence there must be some mechanism by which they are confined into a

macroscopically observable SU(2)ps singlet. There is essentially one such observable that one can

write: the magnetic order parameter,

m = ϕitr(σiψ
†σψ).

In the presence of an applied magnetic field b, with gauge potential α, we consider a Hamilto-

nian density of the general form

E =
1

g2
(
F (A)2 + f1(ψ)dAϕ

2
)
+ f2(ϕ)|dK⊗Aψ|2 + V(ϕ, ψ, b) + · · · , (6.3)

where f1, f2 are positive, gauge-invariant functions, V(ϕ, ψ,b) is a gauge-invariant potential

energy density, g2 is a positive coupling constant, and · · · denotes additional terms involving

derivatives that one can write.

It is useful to note that 1
g2 has dimensions of length in a three-dimensional gauge theory. We

can therefore use the coupling as a proxy for ‘magnification’: the theory is strongly coupled at

long distances, and weakly coupled at short distances.

2In principle, it is natural to phrase the data of the theory in terms of SpinSU(2)-structures. However, in three
dimensions this does not lead to increased generality.
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6.2.3 Symmetry breaking and the phases of materials

The energy density (6.3) is rather flexible, and can describe several states of matter at low energy

depending on the form of the potential V. We can classify these low energy phases in terms of

symmetry breaking. In this discussion, we assume that the spin-orbit interaction, represented by

K, is relatively small, and that the applied magnetic field b is turned off.

• If neither ϕ or ψ take on a vacuum expectation value, and they are given large masses,

the low energy theory is pure SU(2)ps Yang–Mills theory. The magnetic order parameter

does not condense, so this describes a disordered state, perhaps an SU(2) spin liquid (see

[Wen02]).

• If ϕ takes on a positive vacuum expectation value, it breaks the gauge group from SU(2) to

the circle of rotations preserving ϕ, leaving an emergent U(1) gauge theory. If ψ does not

condense, this U(1) is unbroken and we are in a Coulomb phase.

• If ϕ and ψ both condense, the gauge group is completely broken. The condensation of ψ

means that the magnetisation m takes non-zero magnitude so the theory has magnetic

order. This is a Higgs phase.

To describe ferromagnetic materials, the theory should sit in the Higgs phase and be very

strongly coupled at the length scales that we observe. Then the gauge flucatuations, which

are not observed, are screened.

6.2.4 The long and short of things: Monopoles, confinement, and Skyrmion strings

Rather generally, the spontaneous breaking of a gauge group G to a subgroup H can allow for

the presence of topological solitons, classified by the homotopy groups of G/H. The point is that,

when studing the theory on Euclidean space Rn the condensed field must take values in G/H at

the ‘sphere at infinity’, Sn−1
∞ for a configuration to have a chance at having finite energy. Thus

any finite energy configuration should define a class in πn−1(G/H).

To describe a ferromagnet, we know that we should completely break the gauge group

SU(2) 99K 0. To understand the topological structures that are observed, we suppose that this

breaking is carried out in stages in the pattern

SU(2) 99K U(1) 99K 0.

The first stage is associated with the condensation of ϕ and takes place at very high energy. The

second stage is associated with the condensation of ψ and takes place at lower energy (although

still at higher energies than those we probe macrosopically). Similar symmetry breaking patterns

(and the topological solitons they do or do not support) have been considered in the context of

(super) quantum chromodynamics and nonAbelian superconductors, see [Auz+04].

A high-energy observer will not see the condensation of ψ and so sees only the breaking

SU(2) 99K U(1).
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Such an observer may expect to see emergent monopoles, of ‘t Hooft–Polyakov type, classified by

π2(SU(2)/U(1)) ∼= Z.

On the other hand, a low-energy observer would see a theory where ϕ takes on its vacuum

expectation value and the tranverse gauge bosons are too heavy to be excited. They would see a

theory of the field ψ coupled to the emergent U(1) gauge field and the corresponding symmetry

breaking

U(1) 99K 0.

This low-energy effective theory supports semilocal vortex strings, classified by π1(U(1)). In the

macroscopic (strongly coupled) limit, these vortices appear as magnetic Skyrmions. Importantly,

the vortex number becomes the total emergent magnetic flux.

Despite what some high- and low-energy observers may believe, the theory has no stable

topological solitons, as follows from the fact that π1(SU(2)) ∼= π2(SU(2)) ∼= 0. What happened to

the monopoles and the vortices?

Close to the centre of a monopole, one has ψ ≈ 0 and the monopole has an approximately

Coulombic flux pattern. As one zooms out from the monopole, the Higgs potential encourages

the condensation of ψ. This gives mass to the emergent photon, highly discouraging the radial,

Coulombic flux pattern. However, the flux has to go somewhere, so it gets confined into a tube.

These tubes are the vortex strings of the low-energy theory. We illustrate what one sees as one

zooms out from a monopole in Figure 6.1.

(a) The flux pattern is Coulombic at short
distances.

(b) Higgs condensation at intermediate length
scales discourages a radial flux pattern and

confines flux.

(c) At long distances the flux is confined into vortex (or
Skyrmion) string.

Figure 6.1: Zooming out from a monopole in the Higgs phase. The shading denotes regions
where the gauge group is unbroken. The arrows denote lines of emergent U(1) flux.

The vortex string has some energy per unit length, which means that a monopole is attached to

a string under tension. It is favourable to shorten the string, so the monopole gets dragged along

in the direction of the string. This leads to monopole confinement - monopoles and antimonopoles

in this theory are joined by a string under tension which pulls them together.



142 Chapter 6. Monopoles and magnetic Skyrmions

On the other hand, a vortex string is unstable against monopole-antimonopole pair production.

Once the monopole and antimonopole comprising such a pair are produced, they are pulled off to

infinity in opposite directions by the vortex lines.

6.2.5 The stabilisation of the Skyrmion phase

In the context of magnetic materials, we have control over the external parameters of the system.

In particular, we can apply a magnetic field to our sample.

The model we have produced provides a theoretical explanation for the existence of emergent

monopoles and also explains the mechanism which renders Skyrmions unstable at zero field.

However, we know that there are situations in which the Skyrmion phase is stabilised once one

applies a magnetic field, b, to the system.

As we address quantitatively below, the fractionalisation scheme (6.2) tells us how to couple

the applied field b to our effective theory. One natural contribution is the well-known Zeeman

term, of the form

−µ0m · b.

This encourages the magnetisation m to align with the applied magnetic field (assuming that the

sign of the constant µ0 is positive). As realised in [BSRS20] and exploited below, this term can

be ‘compensated for’ by chiral interactions in the theory.

There is another natural term which should be included in the effective theory, of the form

− µ1b · bemerge (6.4)

where bemerge is the ‘emergent magnetic field’ carried by magnetic Skyrmions. Here µ1 is a

constant.

The term (6.4) looks a little unusual, but it is natural in the fractionalisation scheme we have

employed and, as we see below, including it leads to the correct phenomenology. It has the effect

of encouraging magnetic Skyrmion strings to align with the applied field, as observed, and it helps

us to understand the phase transition into the Skyrmion phase as |b| is increased: it provides a
compensating force to the tension of Skyrmion strings.

6.3 critically-coupled magnetism

6.3.1 Critically-coupled micromagnetism

In [BSRS20], a ‘critically-coupled’ model for micromagnetism in two dimensions was found. It is

characterised by the fact that it admits a moduli space of energy-minimising configurations within

each topological charge. These configurations obey a first order differential equation. Strikingly,

the authors of [BSRS20] were able to find a general solution to the equation. In chapter 7, the

material of which appears in [Wal20], we extend the theory to curved surfaces. For certain

particularly symmetric surfaces, we find exact Skyrmion solutions.

The original model of [BSRS20] is a model of a two-dimensional sample, but in summarising

it here we will extend it to three dimensions in a trivial way.
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The theory can be defined on three-manifolds of the form3 Σ× I, for Σ a two-dimensional

Riemannian surface and I a one-manifold, and has the simple energy density

EBSRS =
1

2
|dKm|2 − F 12(K) ·m (6.5)

where (as before) m is the micromagnetic order parameter, a unit vector field in three dimensions,

and K is the spin connection (or rather the connection on the tangent bundle induced by the spin

connection) capturing spin-orbit interactions. Here F 12(K) is the Σ-component of the curvature

of K.

Expanding (6.5) gives

EBSRS =
1

2
|∇m|2 +Kν

µρm
µ∇νm

ρ +
1

2
Kµ

ν
ρK

µ
νσm

ρmσ − F (K)12µm
µ.

The first of the terms on the right hand side is a standard exchange interaction, the second is a

kind of DM interaction, while the third and final terms form an effective potential energy term.

The energy density (6.5) is called ‘critically-coupled’ because it admits the Bogomolny-style

rearrangement (see [BSRS20; Sch20] and Appendix A)

|dKm|2 = |∂̄ΣKm|2 + |dIKm|2 + ∗Σ(m,K)∗ω
SO(3)
S2 .

Here ∂̄ΣK is the K-coupled Dolbeault derivative on Σ, while dIK is the K-coupled derivative along

the one-manifold I, and ∗Σ is the Hodge star on Σ. The object ω
SO(3)
S2 is the SO(3)-equivariant

symplectic form on the target sphere S2. The meaning of this is explained in Appendix A.

The final term in this rearrangement is a kind of topological term, providing finite energy per

unit distance along I. This encourages us to consider the equations

∂̄Km = 0, dIKm = 0. (6.6)

The first of these equations always has solutions (see chapter 7), but the second may not. As we

discuss later, this is why Skyrmions can be harder to form in ‘thick’ samples, where the length of

I is comparable to, or larger than, the characteristic length scale set by the connection K.

Something special happens for special choices of DM interaction. Suppose that our sample is

modelled by R3 with Euclidean metric and Cartesian coordinates (x1, x2, x3) and let K take the

form

Kµν = κ
(
ϵµν1dx

1 + ϵµν2dx
2
)

in the Cartesian gauge, for a real parameter κ. Then

∗F 12(K) ·m = κ2m3

where m3 is the component of m in the x3 direction. This then resembles a Zeeman term

associated to a magnetic field aligned along the x3 axis. Because the curvature of K has no 23 or

31 components, the equations (6.6) do admit solutions.

We would like to extend this notion of critical coupling to our emergent gauge theory. To do

this, we will first consider the high- and low-energy regimes. We will then glue these regimes

together.

3Slightly more general situations can be considered, but this setup suffices for us.
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6.3.2 The low-energy Abelian theory

We know that, at low energy, we have a theory of an Abelian gauge field a ≈ tr(Aϕ) and the field

ψ. The Abelian gauge potential a is the gauge potential of the emergent magnetic field. We can

choose ϕ ∝ σ3, so that a acts on ψ as ψaσ3.

The critically-coupled low-energy gauge theory was studied in [Wal20], where it was viewed

as a means to resolve the magnetic Skyrmion moduli space. We now view it as a physical model.

The theory has energy

Elow =
1

e2
F (a)2 + |dK⊗aψ|2 + e2(τ2 − |ψ|2)2 − tr(ψF12(K)ψ†).

We now think ofK as a true spin connection. We may consider the case ofK = iκ
(
σ1dx

1 + σ2dx
2
)

so that the final term is the Zeeman term for a critical applied magnetic field in the x3 direction.

As promised, this theory supports vortex strings aligned in the x3 direction obeying the

Bogomolny equations

∗F (a) = e2(τ2 − |ψ|2)dx3

∂̄K⊗aψ = 0

D3ψ = 0.

Solutions to these equations (with sufficiently fast fall off at infinity) have energy density

τ2F12(a)

and so the vortex strings have energy 4πτ2N per unit length, where N is the vortex number. This

means the energy of the solution scales linearly with the width of the sample of the x3 direction.

In the full theory, it becomes favourable to destroy the vortex string via the production of a

monopole-antimonopole pair when the width becomes sufficiently large (this is one reason why

Skyrmions are generally found in relatively thin samples). In this low-energy theory, however,

there is no mechanism by which this can occur, so the vortices appear as stable objects.

Micromagnetism emerges in the strong coupling limit, where e2 → ∞. Then the gauge field

decouples (it becomes infinitely strongly screened by the Higgs effect) and we are forced to set

|ψ|2 = τ2. This constraint defines a three-sphere. Taking the quotient by the U(1) gauge action

realises the Hopf fibration S3 → S2, which acts as

ψ 7→ tr(ϕAσAψσψ
†) = m

(we have reinserted ϕ here to give a gauge-invariant statement, although one can happily fix

ϕAσA ≡ ϕ0σ3 by a gauge transformation). The theory we are left with is the theory of a

vector field m of constant magnitude |m| = |ϕ0|τ2. It is not hard to see that this theory is the

critically-coupled micromagnetism considered above. The vortex equations become the Skyrmion

equations.

The vortex equations can not be solved analytically, except in the limit of strong coupling.

They are known to have solutions for any coupling. See Part II for more details about vortices.
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6.3.3 The high-energy theory

At short distances, close to a monopole, we can take g2 → 0 and set ψ ≈ 0, leaving us with an

effective theory of the form

Ehigh =
1

g2
(
F (A)2 + dAϕ

2
)
.

As written, this theory has the trivial vacuum ϕ = 0. One often excludes this possibility with

the addition of a Higgs potential of the form

λ(ϕ20 − |ϕ|2)2.

We may then take the limit λ→ 0, remembering its presence by imposing boundary conditions

at infinity.

The theory supports monopoles. The lowest energy monopole configurations solve the BPS

equations [Bog76]

∗F (A) = dAϕ.

We refer to [MS04] for a textbook treatment of these monopole equations. In general, finite

energy solutions to these equations describe a localised region where the gauge group is unbroken,

outside of which the gauge group is broken to U(1). Solutions have a topological charge N , which

is the total emergent U(1) flux that passes through the sphere at infinity. The moduli space of

BPS monopole solutions of charge N is a hyperähler manifold of real dimension 4N .

6.3.4 A critical model

We know what the theory should look like at high and low energies. We just have to glue these

regimes together.

There is a technical issue that renders this a little harder than one might expect. The spin

representation, in which ψ takes values, is naturally a hyperKähler space, with hypercomplex

structures acting on the right in our parameterisation. The action of the pseudospin group does

not commute with the action of the complex structures, instead it is a permuting action (see

chapter 5). The condensation of ϕ breaks SU(2)ps to U(1), which fixes a complex structure on

the spin representation.

Because the action of SU(2)ps does not preserve the hyperKähler structure on the target space,

there is no hyperKähler moment map associated to it. However, in the language of chapter 5,

the SU(2)ps action is a Swann action (see [Swa90; Pid04; Cal16]). What does this mean? Every

subgroup U(1) ⊂ SU(2)ps preserves a Kähler structure on the target space and defines a Kähler

moment map. That the action is Swann means that the Kähler moment map you get does not

depend on the choice of subgroup U(1) ⊂ SU(2)ps. We call this moment map the Swann moment

map. In our case, it is

ν(ψ) =
i

2
|ψ|2,

which might be viewed as ‘explaining’ the form of potential term in the low-energy theory above.



146 Chapter 6. Monopoles and magnetic Skyrmions

Similarly, when ϕ is condensed to a vacuum expectation value (meaning that it is covariantly

constant), it defines a Dolbeault operator on the field ψ restricted to two-dimensional surfaces,

which was necessary to define the vortex equations in the low-energy Abelian theory.

The technical difficulty that we must address is how these ideas are implemented in the regions

where ϕ is not condensed. This problem is absent in other similar systems, such as those in

[Ton04b; Auz+03; Auz+04; SY04], because in those cases the gauge action commutes with all of

the relevant complex structures.

We work on a Riemannian three-manifold (M, gM ) of the form Σ× I, for Σ a two-dimensional

surface and I a one-manifold. We will write v for the unit 1-form tangent to I which we assume

to be closed (this restricts the form of the metric on I).

The theory we come to has energy density

Ecrit =
1

g2
F (A)2 +K(ϕ, ψ) + (ϕ20 − |ϕ|2)2|ψ|2 + g2(τ2 − |ψ|2)|ϕ|2, (6.7)

where

K(ϕ, ψ) =
1

g2
|dAϕ|2 + |dAψ|2 +

1

ϕ20
|dΣA(ψϕ)|2

is the kinetic term for the matter fields. We have introduced the notation dΣA for the covariant

derivative restricted to Σ. The presence of the third term above, breaking the three-dimensional

rotational symmetry of the theory, is rather unattractive. However, it seems to be necessary

in order to deal with the technical issues raised above. In applications, it is typical to consider

systems with rotational symmetry broken (often the samples are taken to be thin, for instance),

so it may be that this term is physically justifiable.

The form of Ecrit is such that it admits a Bogomolny-type rearrangement. To describe this,

we introduce the operator

D(Σ,ϕ)ψ := dAψ +
1

ϕ0
jΣ ◦ dA(ψϕ).

where jΣ is the complex structure on Σ. Notice that, if ϕ is condensed to its vacuum expectation

value, with |ϕ| = ϕ0 and dAϕ = 0, this operator is the usual Dolbeault operator with respect to

the complex structure on the spin bundle defined by ϕ, in line with our earlier discussion. We

also define the operator Dv = g−1
M (v,dA), the covariant derivative in the direction of v.

A short calculation reveals that one can write

Ecrit = | ∗ F (A)− dAϕ−g2(τ2 − |ψ|2)ϕv|2 + |Dvψ − (ϕ20 − |ϕ|2)ψ|2

+ |D(Σ,ϕ)ψ|2 + 2τ2 ∗ v ∧ tr(F (A)ϕ) + Ebdry
(6.8)

where

Ebdry = ∗d 2

g2
tr(F (A)ϕ)+vµ∂µ

(
τ2|ϕ|2 + (ϕ20 − |ϕ|2)|ψ|2

)
− ∗ 1

ϕ0
d (v ∧ tr(ψ†dA(ψϕ) + (dA(ψϕ))

†ψ)

(6.9)

is a boundary term. The first term on the right hand side of (6.9) gives the total monopole flux

when integrated, while we expect the second to be small by virtue of the fact that we expect |ϕ|
to approach ϕ0 rapidly outside of a monopole. The integral of the third term measures a kind of
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effective Abelian current carried by the fields through infinity on Σ (note that, in our conventions,

the field ϕ is antiHermitian, which explains the signs that arise). If Σ is closed, this term vanishes

by Stokes’ theorem.

We are encouraged by (6.8) to consider the equations

∗ F (A) = dAϕ+ g2(τ2 − |ψ|2)ϕv, D(Σ,ϕ)ψ = 0, Dvψ = (ϕ20 − |ϕ|2)ψ. (6.10)

These equations mix the vortex equations, which arise in the low-energy theory, and the monopole

equations, which arise in the high-energy theory. Solutions to these equations do not define stable

solutions in the theory. In addition to the boundary energy, solutions have energy density

τ2 ∗ v ∧ tr(F (A)ψ).

In regions where ϕ is condensed, this contribution is caused by the tension of vortex lines (it is

necessarily positive for the usual reasons). Indeed, we can identify

bemerge = g−1
M (∗tr(F (A)ϕ))

as the emergent magnetic vector field (of course, it is only really an emergent magnetic field in

regions where ϕ is condensed to its vacuum expectation value). Then, we can write the energy

due to vortex line tension as

τ2v · bemerge,

where v = g−1
M (v).

6.3.5 Turning on a magnetic field

Suppose for now that M is R3 (or a domain thereof) and let b be a uniform applied magnetic field,

thought of as a constant vector field. We do not have a natural way to couple to electromagnetism

in our particular fractionalisation scheme. However, by following our nose from the general scheme

(6.2), we know to consider the natural couplings of the form

−µ1b · bemerge and − µ0b ·m,

where µ0 and µ1 are coupling constants and we recall that m = tr
(
ϕψ†σψ

)
. Roughly speaking,

the magnetic field should couple to ϕ-dependent vector fields and these are the minimal such

couplings. While this is a little ad-hoc, we will see that adding these terms allows us to explain

observed phase structures of magnetic materials.

Consider the effect of including the first of these terms. We can still consider solutions to the

equations (6.10), which now have energy

(τ2v − µ1b) · bemerge + Ebdry.

We are now encouraged to align v in such a way as to minimise the first of these terms, which is

to say that it should be parallel to b. This means that vortex strings will naturally align along

the magnetic field, as observed.
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Moreover, this leads to an explanation of the phase structure of magnetic materials (although

until we include the chiral interaction, this is something of a caricature). If the magnitude of τ2v

is larger than that of µ1v, the tension of the vortex string dominates and the string will want to

shorten. Thus the stable phase is a polarised phase, with no vortices. On the other hand, if the

magnitude of µ1b is larger than that of τ2v, the vortex strings have negative energy density and

want to lengthen. This leads to the formation of a vortex (or Skyrmion) phase.

There is then a critical point at |µ1b| = τ2, where a vortex string is massless (modulo boundary

terms). At this point, monopoles may be stabilised.

To understand the Zeeman-type term b ·m, we turn on chiral interactions in the theory.

6.3.6 Turning on chiral interactions

As before, we capture spin-orbit interactions by introducing a spin connection K, acting on ψ on

the left. We couple the theory minimally to this connection, taking dAψ ⇝ dK⊗Aψ.

We can again consider the equations (6.10), although the operator D(Σ,ϕ) is now defined with

respect to the connection K ⊗A, as is Dv. This leads to an extra contribution to the energy of

solutions to the equations, taking the form

∗ v ∧ tr(ϕψ†F (K)ψ), (6.11)

and also alters Ebdry in an obvious way.

Suppose we are on flat space, M = R3, with coordinates (x1, x2, x3) and consider the case of

Kµνρ = κϵµνρ (6.12)

where we have identified spin indices with spatial indices using an implicit spin frame. This

particular choice of spin connection leads to the standard bulk DM interaction in the low energy

micromagnetic theory.

For this choice, the term (6.11) becomes

κ2v ·m.

We see that this takes the same form as the Zeeman term. Indeed, if we include the Zeeman term,

there is a term in the energy of solutions to (6.10) of the form

(−µ0b+ κ2v) ·m.

Minimising this again encourages v to be aligned with b. Then, if µ0|b| = κ2, one could hope to

have critical phenomena. This is the mechanism used in [BSRS20; Sch19] to achieve a critical

theory in the two-dimensional case.

The connection (6.12) is not the only reasonable choice. Another particularly useful choice is

Kab = κ(ϵ1abdx
1 + ϵ2abdx

2). (6.13)

This breaks three-dimensional rotational symmetry. If v = dx3, the details of the Bogomolny

rearrangement are not significantly changed. However, the Bogomolny equations are changed:
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as we saw in the discussion of the low-energy theory, the Bogomolony equations with the chiral

interaction specified by the connection of (6.12) have no Skyrmion solutions (except in the thin

film limit), while those with chiral interaction specified by (6.13) do.

6.3.7 Phases of bulk chiral magnets

We see that there are two interesting ratios

r1 :=
µ1|b|
τ2

and r0 :=
µ0|b|
κ2

,

which are dimensionless (in our units, where |v| = 1), characterising the phase of the system.

r0
r1

√
r0r1

field-polarised

Skyrmion

conical

helical

Monopole-
antimonopole
‘condensation’

Figure 6.2: A sketch of the phases of a chiral magnet with DM interaction determined by (6.13)

as
√
r0r1 ∝ |b| and r0

r1
= µ0τ

2

µ1κ2 are varied. For a standard bulk DM interaction, as determined by

(6.12), the Skyrmion phase is further destabilised by thickness effects.

The ratio r1 characterises the tension of vortex strings, while r0 characterises the residual

Zeeman effect on a solution to (6.10). When r0 ≫ 1, the ground state is field polarised.

There is a critical point at r1 = r0 = 1, where all bulk contributions to the energy of

solutions to (6.10) vanish. In principle, the mass of vortex strings vanishes and monopoles may

be dynamically stable. Some potentially subtle boundary issues remain, however. We will not

address them here, happy for now with the fact that ‘local’ forces on monopoles cancel.

At this point, there is no local energy cost to the formation of monopole-antimonopole pairs:

the length of the vortex string joining them has no effect on the energy of the configuration. The

dynamics of the critical point is therefore likely to be complicated, with monopole-antimonopole

pairs condensing and displaying intricate behaviours.

In Figure 6.2, we sketch the phase structure of the model as a function of
√
r0r1 ∝ |b| and the

ratio r0
r1

= µ0τ
2

µ1κ2 . Skyrmions are encouraged to form when r1 is large, as the Skyrmion lines then

contribute negative energy density, while the field-polarised configuration wins out for r0 large
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due to the Zeeman term. When |b| is small, the ground state will not support Skyrmions, due to

the tension of the Skyrmion lines and instead a helical or conical state will form. In general, the

Zeeman term encourages the conical phase to form at small, but non-zero, b. This picture agrees

qualitatively with the observed phase structure of chiral magnets close to the critical point (see,

for example, [Müh+09]).



7 some exact skyrmion solutions on curved thin films

7.1 introduction and summary

In this chapter, we consider magnetic Skyrmions on curved thin films from the perspective of the

‘BPS-type’ methods that we have used throughout this thesis.

There is mathematical and physical interest in magnetic Skyrmions on curved thin films (see

[GKS14; Str+16], for example). By manipulating the geometry of the film, one may be able

to manipulate the Skyrmions. Indeed, it has been demonstrated that by creating a curvilinear

defect, one can pin Skyrmions in place, at least within a certain family of micromagnetic models

[Kra+18]. Ideas like this hint at interesting mathematical links between the extrinsic geometry of

thin films and magnetic Skyrmion solutions.

In [BSRS20], a BPS model of magnetic Skyrmions on the plane was constructed. In section 7.2,

we generalise this model to curved thin films, possibly with interesting topology. The model has

a Dzyaloshinskii–Moriya (DM) antisymmetric exchange interaction1. As in the models studied in

[GKS14], the geometry induces an apparent magnetic field normal to the film in our model. We

write down the first order BPS equation for energy minimising solutions in the theory and prove

the existence of solutions on general compact films (it was shown directly in [Sch19] that local

solutions can always be constructed; our global proof follows a simple and well-known exercise

in complex algebraic geometry). We interpret solutions to this equation as describing Skyrmion

states, with number of Skyrmions N given by the topological degree of the solution (as usual).

As is typical for BPS models, the energy of solutions to the BPS equation is linear in N . In

general, Skyrmion and anti-Skyrmion density in the model is trapped in regions where the film

has (extrinsic) curvature.

We go on in section 7.3 to write down explicit solutions on certain symmetric films. In

particular, we solve generally the BPS equation for Skyrmions on a round spherical film for every

Skyrmion number. Among the solutions, we find the ‘hedgehog’ solution. We also study the case

of axially symmetric Skyrmions on certain axially symmetric films and find exact solutions on

cones, which we view as a model for solutions on films with bumps. We further solve the theory

on the cylinder. In this case, there are two axially symmetric vacuum solutions, and non-trivial

axially symmetric Skyrmion solutions are kinks mediating between these vacua.

In section 7.4, we consider the moduli space of solutions on general compact films. This

is a singular complex manifold of complex dimension 2N + 1 − g, where N is the number of

Skyrmions, and g is the genus of the film. It admits a natural resolution given by a certain moduli

space of semi-local vortices in a background gauge field, which we describe. We give a direct

construction of the moduli space of these vortices (at least for sufficiently high vortex number)

using a ‘dissolving vortex’ limit.

Later, in A.2, we collect some relevant basic results (possibly of general interest) regarding

two-dimensional nonlinear sigma models with target a symplectic manifold in the presence of

1This is in contrast to some other models of Skyrmions on curved thin films, which generate the DM interaction
as a kind of fictional force using the geometry (see [GKS14], for example).
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a background gauge field for a Hamiltonian group action on the target space. In particular,

we observe that the BPS energy bound for models of this type is given by the pull back of

the equivariant symplectic form on the target space evaluated on the funadamental class of the

two-dimensional domain. This clarifies the geometrical meaning of the terms that appear in the

context of magnetic Skyrmion models.

7.2 magnetic skyrmions on curved thin films at critical coupling

7.2.1 An effective description of chiral magnetism from torsional geometry

In [BSRS20], it was realised that the theory of planar micromagnetic thin films with DM interaction

could be captured by the theory of a two-dimensional sigma model with target space the sphere

in the background of a particular SO(3) gauge field.

To understand why this is a worthwhile approach, we should recall first that, in the micro-

magnetic regime, the magnetisation field (divided by the saturation magnetisation) is a true unit

vector field, m, in three dimensions. Hence, it is acted on naturally by the covariant derivative

associated to an orthogonal connection (the connection should be orthogonal so that it preserves

the unit length property) on the tangent bundle of a Riemannian three-manifold (usually R3 or a

domain thereof). It becomes clear that chiral interactions can be effectively modelled by allowing

the connection to have torsion.

As a very simple illustration of this, one can approximate the magnetisation field in the helical

phase of a chiral magnet in R3 to be a solution to the first order equations

∂1m
a = −ϵ1abmb

∂2m
a = 0

∂3m
a = 0,

where a, b = 1, 2, 3. This can be written

dAm = 0

where dA is the covariant derivative associated to the affine connection A with components

Aab ≡ ϵ1abdx
1. (7.1)

in Cartesian coordinates. (Here and throughout we will use ≡ to denote equality modulo gauge

transformations – that is, local coordinate transformations.)

In general, an orthogonal connection A on the tangent bundle of a Riemannian manifold M

can be characterised by its contorsion tensor

K := A− Γ ∈ Ω1(M, so(3))

where Γ is the Levi-Civita connection (the unique torsion-free orthogonal connection). In Cartesian

coordinates on flat R3, the components of the Levi-Civita connection vanish. In the case of the
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connection defined in (7.1), the contorsion tensor in the given Cartesian coordinates is simply

Kab ≡ ϵ1abdx
1. In what follows, this contorsion tensor will determine the antisymmetric exchange

interaction of the theory.

Another natural gauge covariant object that one can associate to a connection A is its

curvature. In general, the curvature of A can be given in terms of K as

F (A) = F (Γ +K)

= F (Γ) + dΓK +
1

2
[K,K].

To see how the DM interaction is related to the choice of K we consider the following. In

three dimensions, the micromagnetic energy density functional should take the form

EA[m] = |dAm|2 + V (m)

where dA is the covariant derivative and V is a choice of potential. Now, writing Greek indices

for vector indices and Latin indices for matrix indices for the adjoint representation of so(3) 2,

we have

|dAm|2 = |dm|2 + 2Aµ
a
bm

b∂µma +Aµ
a
bm

bAµ
acm

c. (7.2)

The story makes sense for arbitrary three-manifolds, but from now on we restrict ourselves

to the (physically relevant) case that the three-manifold is R3 with its standard flat metric. In

this case, we may choose a gauge (given by Cartesian coordinates) in which A ≡ K. Thus, in

these coordinates, the contorsion tensor is precisely the tensor, sometimes called the DM vector,

defining the DM term, which is the second term on the right-hand side of (7.2). (The third

term on the right-hand side of (7.2) contributes to the effective potential energy of the theory.)

It is natural therefore to choose K to be translationally invariant, meaning that dΓK = 0. In

Cartesian coordinates {xµ}µ=1,2,3, we choose

K ≡ Kµdx
µ

where Kµ are constant elements of so(3). For such choices, the fact that F (Γ) = 0 and dΓK = 0

implies that

F (A) =
1

2
[K,K],

which is also translationally invariant.

We might further restrict to connections of the form

A ≡ κOAµ TAdx
µ (7.3)

where κ is a real number, O is an orthogonal matrix of determinant 1, and the TA form the fixed

basis for the adjoint representation of so(3) given by

(TA)ab = ϵAab

2In three dimensions, these indices should be identified, but it is useful to keep them separate in the name of
maintaining sanity when discussing the two-dimensional theory.
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(of course, different choices can be made by a redefinition of O).

These connections are characterised more invariantly by their parallel transport. Given any

straight line l ⊂ R3, the parallel transport along l is given by fixed rate rotations (with frequency

given by κ) in a plane perpendicular to the line defined by acting on l with O. The rate of

rotation κ introduces a length scale into the theory.

This shows us that, in general, these connections are symmetric with respect to the subgroup

U(1) of the group SO(3) of global spatial rotations consisting of those rotations in the plane

preserved by O.

If one takes the special case O = 1, one obtains the connection known as the Cartan spiral

staircase. This leads to the usual bulk DM term, of the form κm · ∇ ×m, and will be the case

we study primarily. It is the most symmetric choice, enjoying full rotational invariance, as O = 1

preserves every plane. It is for this reason that we focus on it: it treats every tangent plane

of an arbitrary embedded two-dimensional surface in the same way. It will favour Bloch-type

Skyrmions in two-dimensions.

An interesting different choice is

O =

 0 1 0

−1 0 0

0 0 1

 (7.4)

which would give an ‘interfacial’ DM term on reduction to the two-dimensional (x1, x2) plane.

This choice would favour Néel-type Skyrmions on that plane.

Now, if Kµ = κOAµ TA, then

F (A)µν =
1

2
[Kµ,Kν ]

=
κ2

2
ϵABCO

A
µO

B
ν TC

=
κ2

2
ϵµνλO

λCTC .

Here we raise and lower Greek indices using the metric on R3, which is just δµν in these coordinates.

We then see that

∗F (A)µ = κ2OAµ TA

= κKµ. (7.5)

This implies, after a similar computation, that

d†AF (A) = κ2K, (7.6)

so that A is not a solution to the Yang–Mills equation, instead obeying a kind of non-Abelian

Proca equation.

We also observe that, for κ ̸= 0, there is no adjoint Higgs field Φ such that F (A) = ∗dAΦ,
which is to say that A does not form part of a BPS monopole solution. This follows because the

BPS equation implies that

d†AF (A) = ∗[F (A),Φ]
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which gives, using (7.5) and (7.6),

κ2K = κ[K,Φ]

which can’t be solved componentwise in so(3) for κ ̸= 0.

Let us note briefly that while it is usually natural to impose translation invariance, rotationally

covariant choices of connection are not the only interesting ones. Indeed, magnetic materials are

often not isotropic in this way. An interesting example of this was studied recently in [Hon+20].

7.2.2 The critical micromagnetic energy functional on curved thin films

Let us consider a thin film in R3, which we idealise as a smoothly embedded two-dimensional

surface

i : Σ ↪→ R3.

The Euclidean metric g on R3 induces a metric gΣ := i∗g on Σ. In two dimensions, a metric

induces a complex structure, so we may regard Σ as a Riemann surface with complex structure jΣ

and compatible metric gΣ. We write N = Nµ∂µ for the unit normal vector field to Σ ⊂ R3, and

n =
N1 + iN2

1 +N3
: Σ → CP 1 (7.7)

for the corresponding Gauss map.

The metric connection A on TR3 induces an orthogonal connection

A := i∗A

on the pullback bundle i∗TR3 → Σ, the restriction of the tangent bundle of R3 to Σ. This is a

topologically trivial vector bundle of rank 3 on Σ. We refer to [Sch19] and to A.2 for comments

on the model for a general connection. We will specialise from now on to the case that A is the

spiral staircase connection, so that

A ≡ κTµdi
µ

where iµ = i∗xµ are the components of the map i.

We consider the natural energy functional for the sigma model

EA[m] =
1

2

∫
Σ

∗
(
|dAm|2 + V (m)

)
(7.8)

where V is a local potential energy function, ∗ is the Hodge star on (Σ, gΣ) and | · |2 denotes the

square norm given by the combination of g−1
Σ and the dot product of vectors. To relate (7.8) to a

two-dimensional micromagnetic energy functional, so as to understand the role of the connection

A, we expand

|dAm|2 = |dm+A(m)|2

= |dm|2 + 2(A(m),dm) + |A(m)|2 (7.9)
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where the brackets (·, ·) denote the metric induced by the combination of g−1
Σ and the dot product

of vectors. The meaning of the first term on the right-hand side of (7.9) is clear: it is the usual

symmetric exchange interaction. What about the other terms?

Being of zeroth order, the third term on the right-hand side of (7.9) contributes to the effective

potential energy of the theory. To see what it is, it suffices to work locally on Σ. Let (x, y) be

coordinates on a local patch U ⊂ Σ such that the embedding i takes the local form

i(x, y) = (x, y, f(x, y)) (7.10)

for f : U → R a smooth real function (for sufficiently small U , such local coordinates always exist,

possibly after rotating the target space). The metric gΣ takes the local form, writing ∂xf = fx

and ∂yf = fy,

gΣ|U = (1 + f2x)dx
2 + 2fxfydxdy + (1 + f2y )dy

2

(as usual, the juxtaposition of basis 1-forms denotes the symmetric product) so that the inverse is

g−1
Σ |U =

1

1 + f2x + f2y

(
(1 + f2y )∂

2
x − 2fxfy∂x∂y + (1 + f2x)∂

2
y

)
.

The unit normal vector to i[U ] in R3 has the form

N = Nµ∂µ =
∂3 − fx∂1 − fy∂2√

1 + f2x + f2y

. (7.11)

We also have

A|U = κTµdi
µ

= (T1 + fxT3)dx+ (T2 + fyT3)dy.

Direct computation then reveals that, on U ,

|A(m)|2 = κ2
(
1 +

1

1 + f2x + f2y

(
f2xm

2
1 + f2ym

2
2 +m2

3 − 2fxm1m3 − 2fym2m3 + 2fxfym1m2

))

= κ2

1 +

 1√
1 + f2x + f2y

(m3 − fxm1 − fym2)

2


= κ2
(
1 +m2

N

)
(7.12)

where mN := m ·N is the normal component of the magnetisation field. Thus, the connection A

induces a term in the effective potential which favours the tangential alignment of the magnetisation

(it is an easy plane contribution).

A similar computation reveals that the second term on the right-hand side of (7.9) is the

standard DM term, 2κm · ∇ ×m, where ∇× here denotes the tangential curl.

As shown in [BSRS20; Sch19] and recalled in A.2, there is a very special choice of potential

for which the theory admits a so-called ‘Bogomolny rearrangement’. The choice is

Vcrit(m) = −2(∗F (A))BmB

= −2κ2mN , (7.13)
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where we have identified the tangent spaces to M with so(3) to view m as an so(3)-valued object

mBTB. To verify the second equality it again suffices to work locally. Again, suppose that the

embedding i takes the local form of (7.10), determined by a function f . Then we have, using

(7.5),

F (A) = i∗F (A)

=
κ2

2
i∗(ϵAµνT

Adxµ ∧ dxν)

= κ2(T3 − fxT1 − fyT2)dx ∧ dy

= κ2NµTµ

√
1 + f2x + f2y dx ∧ dy

= κ2NµTµωΣ

where

ωΣ =
√
1 + f2x + f2y dx ∧ dy

is the Riemannian volume form on Σ (the quantity under the square root is the determinant of

the metric gΣ). Thus, ∗F (A)B = κ2NB , so

∗(F (A))BmB = κ2mN

as claimed. This contribution to the potential resembles a Zeeman term for an applied magnetic

field normal to the thin film.

The overall effective potential, combining Vcrit and the zeroth order contribution (7.12) from

|dAm|2, is
κ2(1 +m2

N )− 2κ2mN = κ2(1−mN )2.

This favours the alignment of the magnetisation with the normal vector to the surface. It is

sensitive to the orientation of the surface.

The critically-coupled energy functional can therefore be written as

Eκ(m) =
1

2

∫
Σ

∗
(
|dAm|2 + Vcrit(m)

)
=

1

2

∫
Σ

∗
(
|dm|2 + 2κm · ∇ ×m+ κ2(1−mN )2

)
(7.14)

where, as previously mentioned, the curl is the tangential curl.

Some comments on (7.14) can be made.

• The energy functional Eκ is the natural generalisation of the functional of [BSRS20] to

curved films. In fact, in [BSRS20], a family of energy functionals on planar films was given,

parameterised by U(1). Different members of this family can be produced by starting with

different three-dimensional contorsion tensors which are symmetric under rotations in the

plane parallel to the embedded planar film. The spiral staircase connection is one such

choice, another is the example given in (7.4). A general curved film has no global symmetry

and so we do not naturally obtain a continuous family of models in our more general setting.
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• The theory has a gauge symmetry, given by SO(3) gauge transformations of A and m.

From a three-dimensional perspective, this is related to invariance under local coordinate

transformations, but in two dimensions we may view it as an abstract gauge symmetry. Both

|dAm|2 and Vcrit(m) are separately invariant under these gauge transformations, although

the decomposition of (7.14) into a gradient energy, DM energy and effective potential energy

is not invariant. Notice that, because A has curvature, it is not possible to set A ≡ 0 and

so remove the DM term using a smooth gauge transformation.

• It is not necessarily obvious that Eκ is bounded below, because the DM interaction term

(and Vcrit) can be negative. However, we show in subsection 7.2.3 that it is bounded below

(on compact films) by a topological energy contribution.

• The energy functional Eκ depends on the single real parameter κ, which introduces a length

scale 1
κ into the theory. If κ = 0, then the model becomes the basic sigma model, which is

conformally invariant and does not see the extrinsic geometry of the thin film. If one takes

κ→ ∞, then the potential energy dominates and one expects solutions to be normal to the

film almost everywhere. In general, 1
κ is the Skyrmion size, measuring the length scale over

which a configuration deviates from the normal field.

• In the case that κ ̸= 0, the theory is highly sensitive to the extrinsic geometry of the thin

film Σ ↪→ R3. This is unusual for soliton models, which often depend on intrinsic, but not

extrinsic, geometry.

This idea is clearly illustrated by consideration of the configuration m = N. One might

expect this to be a good ‘ground state’ for the theory. After all, it has mN = 1 and so

minimises the potential energy κ2

2

∫
Σ
∗(1−mN )

2. However, its gradient energy density is

generally non-zero, being given by

1

2
|dN|2 =

1

2
(ρ21 + ρ22) = 2H2 −G

where ρ1, ρ2 are the principal curvatures of the embedded thin film, H = 1
2 (ρ1 + ρ2) is the

(extrinsic) mean curvature of the film, and G = ρ1ρ2 is its (intrinsic) Gaussian curvature.

Here we have used that dN is the shape operator of the embedded surface Σ and has

eigenvalues ρ1, ρ2.

The DM energy density for the normal vector field is a total derivative and so the DM

energy vanishes on compact surfaces. Then the overall energy of the configuration m = N

on a compact Riemann surface Σ of genus g is

Eκ(N) =

∫
Σ

∗
(
2H2 −G

)
= 2

∫
Σ

∗(H2) + 4π(g − 1)

= 2

∫
Σ

∗(H2 −G) + 4π(1− g) (7.15)
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where we have used the Gauss–Bonnet theorem to find the second equality, and we have

added and subtracted 2G and used the Gauss–Bonnet theorem to find the third equality.

Notice that this does not depend on the parameter κ. This result pre-empts part of the

discussion of subsection 7.2.3 – the Bogomolny argument given there might be viewed

as a natural generalisation of these ideas about the curvature of embedded surfaces. In

particular, we see that if H2 = G, which is true for the round 2-sphere, then the Gauss map

minimises the energy within its topological class (the degree of the Gauss map is 1− g) and

so it will give us a Skyrmion solution in the sense of subsection 7.2.3.

Let us remark that the value of the energy functional (7.15) for N gives rise to a functional

on the space of smooth embeddings Σ ↪→ R3 (which one may subject to some further

constraints). Interpreted in this way, it is a natural energy functional which is well-studied

in the context of elastic membranes (see [HKS92], for example). Allowing for noncompact

surfaces, solutions to the corresponding Euler–Lagrange equations include minimal surfaces,

which have H = 0.

7.2.3 The Bogomolny equation and magnetic Skyrmions

The purpose of choosing the critical potential Vcrit is, as shown in [Sch19] and in A.2, that one

can rearrange the energy functional as follows (note that this rearrangement can be made for any

choice of connection A). One has

1

2

∫
Σ

∗
(
|dAm|2 + Vcrit(m)

)
=

∫
Σ

∗|∂̄Am|2 +
∫
Σ

(m∗ωS2 + d(m ·A)) , (7.16)

where ωS2 is the standard symplectic form on the target 2-sphere with area 4π, and by m ·A we

mean mBA
B
µ dx

µ. Here,

∂̄Am :=
1

2
(dAm+ JS2 ◦ dAm ◦ jΣ)

where jΣ is the complex structure on Σ induced by its metric, and JS2 is the standard complex

structure on the target sphere. Locally, thinking of m as a unit three-vector m, this has a

component

(∂̄Am)1 =
1

2
(D1m+m×D2m) (7.17)

where Dk is the kth component of dA in local conformal coordinates on Σ, and the second local

component of ∂̄Am is not independent.

Note that the second integral on the right-hand side of (7.16) is topological (on a compact

surface or with reasonable boundary conditions): it is the sum of 4π times the Skyrmion number

(the degree N of the map m) and an integrated ‘vorticity’, which vanishes on closed surfaces.

We give a more precise understanding of this topological energy, as a pairing in equivariant

(co)homology, in A.2. It has been argued in [BSRS20] and elsewhere that the integrated vorticity

contribution should be removed.

The rearrangement (7.16) implies that the energy within a topological class is minimised for

solutions of the first order Bogomolny equation

∂̄Am = 0. (7.18)



160 Chapter 7. Some exact Skyrmion solutions on curved thin films

The main aim of this note is to understand the solutions to this equation, which we abuse language

to call (magnetic) Skyrmions, and their moduli. The energy of solutions to this equation is

4πN , linear in the Skyrmion number N , at least when the boundary term vanishes. This linear

dependence of the energy on the topological degree is typical for solutions to Bogomolny equations

in BPS models.

The cross product in (7.17) is often inconvenient to deal with, and so it is useful to change

into coordinates in which JS2 is simply i. We do this by stereographic projection of the sphere to

the extended complex plane, which carries a natural complex coordinate

v :=
m1 + im2

1 +m3
.

In this coordinate, the Bogomolny equation becomes

∂̄v = −A0,1(v) (7.19)

where A0,1 is the (0, 1) part (that is, the part proportional to dz̄ for z a complex conformal

coordinate on Σ) of the connection A. Of course one can not truly escape the nonlinearity inherent

to equation (7.18). Here it is tied into the action of A0,1 on v, which is not a linear action: so(3)

acts on the Riemann sphere by linearised (real) Möbius transformations, or equivalently by (real)

holomorphic vector fields. A particular advantage of this coordinate choice is that it allows us to

use the tools of complex geometry, which we exploit in subsection 7.2.4.

For now, let us compute the form of the Bogomolny equation in terms of the data of the

embedding i : Σ → R3. In terms of our choice of connection A ≡ κ (diµ)Tµ, the Bogomolny

equation in the form of equation (7.19) is

∂z̄v = −κ(∂z̄iµ)Tµ(v)

where z is a (local) conformal complex coordinate on Σ. Recall that a local complex coordinate z

is conformal if, locally,

gΣ = Ω2(z, z̄)dzdz̄

for a real positive function Ω2, the conformal factor.

Once more, it is convenient to work in a local patch U ⊂ Σ with coordinates (x, y) such

that the embedding i takes the form of (7.10), determined by the single function f . Then the

Bogomolny equation becomes

∂z̄v = −1

2
κ (∂z̄(x+ iy)(T1 − iT2) + ∂z̄(x− iy)(T1 + iT2) + 2(∂z̄f)T3) (v). (7.20)

The obvious complex coordinate u := x+ iy on U is generally not conformal.

The question of how to produce a conformal coordinate z from a general coordinate u is

answered by Gauss’s theory of isothermal coordinates. It can be shown that a coordinate z(u, ū)

is conformal if it obeys the Beltrami equation

∂z

∂u
= µ

∂z

∂ū
(7.21)
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where (for our choice of embedding)

µ :=
f2x − f2y + 2ifxfy

2 + f2x + f2y + 2
√
1 + f2x + f2y

is the Beltrami coefficient of the metric gΣ. One may note that

f2x − f2y + 2ifxfy

2 + f2x + f2y + 2
√

1 + f2x + f2y

=

 fx + ify

1 +
√
1 + f2x + f2y

2

which reveals that µ = n2, the square of the Gauss map (7.7) (recall from (7.11) the form of the

unit normal vector field).

Now let us get to grips with the pieces of (7.20). Equation (7.21) implies that

∂z̄u = −µ∂z̄ū.

Also,

∂z̄f = ūz̄ (−µfu + fū) .

A computation then uncovers the fact that

−µfu + fū = −n.

The only piece of the puzzle left to find is the action of the TA on the Riemann sphere

coordinate v. The action of so(3) is by (real) linearised Möbius transformations, or equivalently,

by the action of (real) holomorphic vector fields. One can show that

T3(v) = −2iv

(T1 − iT2)(v) = 2i

(T1 + iT2)(v) = −2iv2.

We can now write down the Bogomolny equation in the simple form

∂z̄v = −iκūz̄
(
−µ− v2 − 2(−µfu + fū)v

)
= −iκūz̄

(
−n2 − v2 + 2nv

)
= iκūz̄ (v − n)

2
. (7.22)

In what follows, we will compute the geometrical prefactor ūz̄ explicitly in examples. Note that,

while we fixed the local form of u, we did not fix z, instead just asking that it solve the Beltrami

equation (7.21). One needs to pick a particular solution to compute ūz̄ (this must be true, as the

left-hand side of (7.22) depends on the choice). However, we can say something general: direct

computation reveals that

|ūz̄| =
Ω(z, z̄)

1 + |n|2
,

where Ω is the square root of the conformal factor Ω2.
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As one would expect, this equation depends sharply on the extrinsic geometry of the thin

film. It captures the interplay in the energy functional (7.14) between the symmetric exchange, or

gradient, energy |dm|2 and the potential energy (1−mN )2. If the Gauss map n is holomorphic,

then there is a natural ‘ground state’ v = n. This clearly minimises the potential energy. In

general, however, the Gauss map is not holomorphic, and the potential energy minimising

configuration v = n has too much gradient energy to be an overall energy minimiser. On the

other hand, a constant configuration (which minimises the gradient energy) generally has too

much potential energy to be a solution.

On a flat film the Gauss map is constant, and so trivially holomorphic. If one introduces a

smooth bump into the film, then the constant solution is no longer an energy minimiser and so

one expects the formation of some Skyrmion–anti-Skyrmion density in the bump. The idea that

Skyrmion density might be pinned in place by bumps in a film is familiar from [Kra+18].

Writing ṽ = v − n, the equation (7.22) becomes

∂z̄ ṽ = iκūz̄ ṽ
2 + ∂z̄n

The quantity ∂z̄n is related linearly to the difference between the principal curvatures of the film.

7.2.4 Projective bundles, their sections, and the existence of Skyrmions

We have seen that solutions to the Bogomolny equation are sections of a particular bundle over Σ

with fibre S2 satisfying the Dolbeault-type equation (7.18). We will address this structure from a

complex analytic point of view. Namely, we regard these solutions as sections of a projective line

bundle (that is, a holomorphic fibre bundle with fibre CP 1), where the holomorphic structure

is determined by the operator ∂̄A (that ∂̄A defines an integrable holomorphic structure follows

simply for dimensional reasons: there are no (0, 2)-forms on a Riemann surface). We can make

some progress simply by recalling some basic, and well-known, facts about these objects.

A useful way to build projective line bundles is to take a rank 2 complex vector bundle and

projectivise its fibres (that is, we replace the linear fibre by the space of its one-dimensional

subspaces). If E is a holomorphic vector bundle of rank 2, we write P (E) for the projective line

bundle obtained by projectivising the fibres, which we call the projectivisation of E .
At the level of transition functions, projectivisation corresponds to passing along the quotient

map

GL(2,C) → PGL(2,C),

which has kernel C∗. More precisely, the transition functions of E live in the first (Čech) cohomology

of the sheaf of holomorphic GL(2,C)-valued functions, while those of the projective bundle live

in the first cohomology of the sheaf of holomorphic PGL(2,C)-valued functions. Taking the

cohomology of the short exact sequence induced by the above map gives the long exact sequence

· · · → H1(O∗) → H1(OGL(2,C)) → H1(OPGL(2,C)) → H2(O∗) → · · ·

where by OG we mean the sheaf of holomorphic G-valued functions for a group G, and O∗ is the

sheaf of holomorphic C∗-valued functions.
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We first notice that P (E ⊗ L) ∼= P (E) for any line bundle L (this is simply the fact that

multiplying the transition functions of E by C∗-valued transition functions does not affect the

projectivisation). We further see that any obstruction to lifting a projective bundle P to a vector

bundle V such that P = P (V ) lives in H2(O∗).

In our case, Σ is compact and of real dimension two and therefore H2(O∗) = 0 (one can use

the exponential exact sequence to see this). Hence, every projective line bundle on a Riemann

surfaces arises as the projectivisation of some rank 2 vector bundle (in fact, a similar argument

shows that every projective bundle on a compact Riemann surface arises as the projectivisation

of a vector bundle).

We are interested in sections of projective line bundles. Now, holomorphic sections of the

projectivisation P (E) of a vector bundle E are equivalent to holomorphic line sub-bundles of

E – a line in a fibre of E is a point in the corresponding fibre of the projectivised bundle. In

one complex dimension, every rank 2 bundle has a holomorphic line sub-bundle (because Serre

vanishing tells us that H0(E ⊗ N) ̸= 0 for a line bundle N of sufficiently high degree) and so,

independently of any details of the model at hand, we have the following basic existence result.

7.2.1 Proposition. Solutions to the Bogomolny equation (7.18) on a compact surface always

exist. More precisely, there exists an integer N0 such that there exist Skyrmion solutions of

Skyrmion number N ≥ N0.

Note that this implies that solutions may exist with arbitrarily high degree - one can have

arbitrarily large Skyrmion density. This is in contrast to vortices, which have some non-zero size

and so have finite maximum density. We will see in section 7.4 that Skyrmions can be interpreted

as particular two-flavour Abelian vortices in the limit that the vortex size goes to zero. Of course,

from a physical perspective, the continuum approximation will break down at very high Skyrmion

densities.

Notice that the proof of proposition 7.2.1 makes no reference to the choice of connection A,

which determines the holomorphic structure ∂̄A. Thus, the result holds for any choice of DM

vector (that is, any choice of three-dimensional contorsion tensor).

7.2.5 Emergent electromagnetism

From (7.16), the topological Skyrmion energy density is

Etop(m) = m∗ωS2 + d (m ·A) .

This may be interpreted as an emergent magnetic field, generated by the magnetically charged

Skyrmions. The corresponding emergent Abelian gauge potential is

a = m∗λS2 +m ·A

where dλS2 = ωS2 , so that λS2 is the usual Dirac monopole connection on the target sphere.

Under this interpretation, the Skyrmion density becomes the magnetic flux density. In this

picture, Skyrmions are the two-dimensional shadow of ‘emergent’ Dirac monopoles.
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One can create or destroy Skyrmions on a thin film by passing an emergent monopole through

the film. This follows simply from flux conservation. This provides a ‘low energy’ realisation of

the Skyrmion (un)winding via monopoles, as described in [Mil+13].

A ‘UV-completion’ of this theory (to allow for films with non-zero thickness) would presumably

involve replacing these Dirac monopoles with BPS-type monopoles. It would be interesting to

understand possible theories of this type, and in particular to study the expected pair creation of

confined monopole-anti-monopole pairs mediating the phase transition between the Skyrmion

and helical phases [Mil+13; Kan+16].

7.3 skyrmion solutions

7.3.1 Skyrmions on spherical films

Solutions to the Bogomolny equation (7.18) on the flat plane were constructed in [BSRS20]. The

next simplest case to study is the round sphere.

The sphere is a good testing ground for these ideas due to its high degree of symmetry.

Moreover, its Gauss map is holomorphic so, as we know from (7.22), the Bogomolny equation

will separate and there is a good chance that we can find a general solution.

Solutions on the sphere are also interesting in that they may provide insight into Bloch points

in three dimensions: If the Skyrmion number on the sphere is non-zero, any attempt to continue

the solution into the interior of the sphere inevitably forces one to allow the magnetisation to

go to zero at one or more points. We might therefore view these solutions on the sphere as the

two-dimensional shadow of a smooth description of Bloch points viewed from large distances.

Let

i : S2 → R3

be the standard round embedding of a sphere of radius R. In terms of Cartesian coordinates

(x1, x2, x3) on R3, we introduce a complex coordinate on the sphere:

z =
x1 + ix2
R+ x3

which is 0 at the north pole and ∞ at the south pole. The round sphere has the property that

the Gauss map is the identity map, so we may write n = z.

To write down the Bogomolny equation (7.22) locally, we need to compute ūz̄ where u = x1+ix2

(recall that, in the derivation of (7.22), the form of u was imposed from the start - there is no

freedom in this definition). Computing the derivative reveals that

ūz̄ =
2R2

(R2 + |z|2)2
.

This is the conformal factor of the induced metric on the sphere. That this is the case is special

to the sphere. Then, the Bogomolny equation is

∂z̄v =
2iκR2

(R2 + |z|2)2
(v − z)

2
.
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(a) The ‘hedgehog’ solution. (b) The degree zero solution (7.24).

Figure 7.1: Some Skyrmion solutions on the sphere (for κ = 1), visualised in the Runge colour
scheme. In this scheme, the argument of the complex-valued function v is represented by the hue
of the colour, while the modulus is represented by the brightness (so that black corresponds to

zero and white to ∞).

This equation is separable and can be solved explicitly. The solution is

v(z, z̄) = z

(
1 +

R2 + |z|2

2iκR2 − zf(z)(R2 + |z|2)

)
, (7.23)

for any meromorphic function f . Notice that if κ = 0, one is left simply with a meromorphic

function, as one should be.

If we choose 1/f = 0, then we obtain the natural ‘ground state’, v = z. This is the ‘hedgehog’

solution, where the magnetisation points radially. It is the Gauss map of the embedded sphere.

While we call this the ‘ground state’, it actually has degree 1, and so has positive energy 4π. If

the radius is large, then, in a neighbourhood of the north pole, the Gauss map z appears constant

and zero which is the natural ground state on the plane.

If f = 1/z, we obtain

v = z

(
1 +

R2 + |z|2

2iκR2 − (R2 + |z|2)

)
= z

2iκR2

2iκR2 + (R2 + |z|2)
. (7.24)

This is a degree zero solution with zeroes at the north and south poles. As a degree zero solution,

this configuration has zero energy and is therefore a vacuum of the theory.

It would be interesting to explore more deeply the shapes of the solutions one obtains as one

varies the free meromorphic function f and also as one varies the parameters of the model.

7.3.2 Skyrmions on axially symmetric films

The next step is to consider more general symmetric surfaces. Consider an axially symmetric

embedding

i(r, θ) = (r, θ, f(r))
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where (r, θ) are plane polar coordinates. This becomes more complicated than the case of the

sphere because explicitly finding a good complex coordinate, and computing the function ūz̄ in

(7.22), is more difficult. We compute directly, using the symmetry of the problem to simplify

matters.

Using primes to indicate derivatives with respect to r, the induced metric on the surface is

i∗g =
(
1 + f ′2

)
dr2 + r2dθ2.

The obvious complex coordinate on the surface is

u = reiθ,

which is generally not conformal. We introduce another complex coordinate

z = r̃eiθ

where r̃ is a function of r only. For this to be compatible with the complex structure on the

surface induced by the embedding, we must have

i∗g = Ω2(z, z̄)dzdz̄

for some conformal factor Ω2. We see that

dzdz̄ = r̃′2dr2 + r̃2dθ2,

which is conformal to i∗g if

r̃′ =

√
1 + (f ′)2

r
r̃

with conformal factor
r2

r̃2
.

With this knowledge, we can write down the Bogomolny equation (7.22). On the left-hand

side we have

∂

∂z̄
v =

1

2

r

r̃e−iθ

(
1√

1 + (f ′)2
∂

∂r
+

i

r

∂

∂θ

)
v.

On the right, we compute

ūz̄ =
∂

∂z̄
reiθ

=
1

2

r

r̃

2

1 + |n|2

leaving us with

1

2

r

r̃e−iθ

(
1√

1 + (f ′)2
∂

∂r
+

i

r

∂

∂θ

)
v = iκ

r

r̃

1

1 + |n|2
(v − n)

2
.
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We can cancel the unknown r
r̃ from both sides, giving(

1− |n|2

1 + |n|2
∂r +

i

r
∂θ

)
v = ie−iθ 2

1 + |n|2
(v − n)

2
. (7.25)

In general, the Gauss map n is not holomorphic and so v = n is not a solution in general.

However, if the film is asymptotically conical, so that ∂rn→ 0 as r → ∞, then one expects there

to be solutions which slowly approach the Gauss map v(r) → n as r → ∞ by virtue of the 1
r

suppression of the angular derivative.

The equation (7.25) is not easy to solve in general. The complication, compared to the case

of the sphere, is that the Gauss map is not holomorphic and so the equation does not separate.

However, we can make explicit progress by looking for axially symmetric solutions for particularly

simple choices of f .

First, let us make the symmetric ansatz

v = h(r)eipθ

for p an integer and h a complex-valued function (it is too much to ask that h be real, as we do

not expect solutions to point radially everywhere). Substituting this into (7.25), we have(
1− |n|2

1 + |n|2
h′(r)− p

r
h(r)

)
eipθ = iei(2p−1)θ 2

1 + |n|2
(h(r)− |n|)2 ,

where we have used the axial symmetry of the Gauss map. We see immediately that this can

only be solved for p = 1. In this case, we have

1− |n|2

1 + |n|2
h′(r)− 1

r
h(r) = i

2

1 + |n|2
(h(r)− |n|)2 . (7.26)

The simplest example outside of the plane and the sphere is to take f = ar, for a real non-zero

constant a. This describes a cone. Then |n| = a
1+

√
1+a2

does not depend on r. In this case

the equation (7.26) can be solved exactly, for any choice of a. In general the solution involves

(modified) Bessel functions of the first and second kind of orders determined by a.

For simplicity, we reproduce the solution here only for the value a =
√
3, corresponding to an

apex angle of π/3. The solution is

hc(r) =
1

2
√
233/4

√
−ir

(
cI3
(
2
√
2 4
√
3
√
−ir

)
−K3

(
2
√
2 4
√
3
√
−ir

))
×
(
2cI2

(
2
√
2

4
√
3
√
−ir

)
+

4
√
3
√
2c
(√

3− 2ir
)
I3
(
2
√
2 4
√
3
√
−ir

)
√
−ir

+ 2cI4

(
2
√
2

4
√
3
√
−ir

)
(7.27)

+ 2K2

(
2
√
2

4
√
3
√
−ir

)
−

4
√
3
√
2
(√

3− 2ir
)
K3

(
2
√
2 4
√
3
√
−ir

)
√
−ir

+ 2K4

(
2
√
2

4
√
3
√
−ir

))
,

where c is the constant of integration, which we allow to be complex, the Iα are the modified

Bessel functions of the first kind and the Kα are the modified Bessel functions of the second
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(a) The solution at c = 0.1, visualised in
the Runge colour scheme.
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d

(b) The radial Skrymion density d of the
solution at c = 0.1 plotted against r.

Figure 7.2: Visualisations of the solution (7.27) at c = 0.1. The solution describes a ring of
Skyrmion–anti-Skyrmion density around the tip of the cone.

kind (note that the arguments of these functions in the solution are complex, so it would be

equally reasonable to write the solution in terms of the usual Bessel functions). Introducing

ξ = 2
√
2 4
√
3
√
−ir, the solution takes the slightly more compact form:

1√
3ξ (cI3(ξ)−K3(ξ))

(
2cI2(ξ) + c

(
12

ξ
+ ξ

)
I3(ξ) + 2cI4(ξ)

+ 2K2(ξ)−
(
12

ξ
+ ξ

)
K3(ξ) + 2K4(ξ)

)
.

One can compute the limit of these solutions as r → ∞, finding that

lim
r→∞

hc(r) =
1√
3
= |n|,

so that the magnetisation tends towards the Gauss map as r → ∞, as expected. Despite this,

one should note that these solutions do not have finite energy - the solution does not tend to

the normal fast enough and there is an infinite contribution to the energy from the integrated

vorticity. In spite of this, we provide a short study of these solutions as they may provide a model

for solutions on bumps in thin films and they exhibit an interesting confinement phenomenon.

Moreover, it has been suggested in [BSRS20] that it is correct to remove the integrated vorticity

contribution. If one does this, the solutions we find on the cone have finite energy.

We define the radial Skyrmion density

d(r) :=
h′h̄+ hh̄′

(1 + |h|2)2
.

This is the quantity such that the ‘Skyrmion number’ N (which may not be well-defined as an

integer in this non-compact case) is the integral
∫
d(r) dr. In Figure 7.2b, we plot d against r (in

general, r is not the right coordinate to use, but for the cone it differs from the radial distance along

the cone just by a scaling), and see that the solution describes a band of Skyrmion–anti-Skyrmion

density around the tip of the cone.
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Figure 7.3: The negative normal component of the magnetisation field, −mN , against the radial
distance r for axially symmetric solutions of the form (7.27) on the cone of slope a =

√
3 at

various values of the parameter c: (a) c = 0, (b) c = 0.1, (c) c = ∞, and (d) c = −i.

To understand how the solution varies as one varies the modulus c, we plot in Figure 7.3 the

negative of the normal component of the magnetisation vector field, −mN , against r for several

values of c.

Among the values we have plotted are the two special values c = 0 and c = ∞. The case

of c = 0 describes the natural ‘ground state’, where the system remains as close as possible to

the normal vector field (note that at r = 0, the ‘normal’ would point straight along the axis of

the cone, which corresponds – for the cone angle we have chosen – to mN = 0.5). We have also

plotted the case of c = 0.1, which can be compared to Figure 7.2.

On the other hand, the solution for c = ∞ describes a pointlike Skyrmion at the tip of the

cone (again, a value of mN = −0.5 at r = 0 implies that the field points along the axis of the

cone in the ‘anti-normal’ direction there). This is the special case in which the radius of the ring

of Skyrmion density goes to zero.

It was demonstrated in [Kra+18] that Skyrmions can be pinned in place by bumps in a thin

film. It would be desirable to take our analysis further, by studying the theory on a smooth,
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asymptotically Euclidean ‘bump’. Unfortunately, reasonable choices of bump lead to Bogomolny

equations that seem to be very difficult to solve. One could instead try to make progress

numerically, although we do not do so here.

7.3.3 Skyrmions on cylindrical films

Perhaps more interesting than the case of conical films is that of cylindrical films. The param-

eterisation that we used above does not naturally allow for cylindrical films, so we treat them

separately here. Skyrmions on cylinders may be of interest in the study of nanowires.

A symmetric embedding of a cylinder in R3 around the x3-axis takes the form

i(t, θ) = (R cos θ,R sin θ, t)

where t ∈ R, θ ∈ [0, 2π) and R is a positive constant. The induced metric on the film is

gΣ = dt2 +R2dθ2.

The local complex coordinate z = t+ iRθ is then conformal.

A short computation, along the lines of those we have already carried out, reveals that the

Bogomolny equation (7.19) is

∂v

∂t
+

i

R

∂v

∂θ
= ie−iθ

(
v − eiθ

)2
.

Note that the Gauss map of the cylinder is n = eiθ, so this equation takes a similar form to those

we have seen previously.

Again making the axial ansatz v = h(t)eiθ, we find the separable equation

h′(t) =
1

R
h(t) + i(h(t)− 1)2

which can be solved to give

hc(t) =
i
√
1− 4iR

2R
tanh

(
1

2

(√
1− 4iR (c+ t/R)

))
+

i

2R
+ 1 (7.28)

which depends on the complex parameter c. This describes a ‘kink’, mediating between the

asymptotic constant solutions

h± =
1

2R

(
i + 2R± i

√
1− 4iR

)
(7.29)

which solve the t-independent Bogomolny equation

1

R
h+ i(h− 1)2 = 0.

Notice that these asymptotic solutions do not describe the Gauss map for finite R. Because

the ‘asymptotic boundary’ of the cylinder at t → ±∞ has finite length 2πR, this does not

necessarily cause issues when evaluating the energy contribution of the integrated vorticity. The
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t-independent solutions (7.29) are true vacua: they have vanishing Skyrmion density and the

integrated vorticity vanishes, as the contribution from each end of the cylinder cancels, and so

have zero energy. This occurs in spite of the fact that they have positive potential energy and

gradient energy, because the DM energy contributes negatively.

The complex modulus c controls the position and shape of the kink. In Figure 7.4, we plot

some solutions and their Skyrmion density profiles.
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Figure 7.4: The figures (a) and (b) are plots of the real (solid line) and imaginary parts (dashed
line) of hc(t) at c = 0 and c = i respectively for R = 1. Figures (c) and (d) are the corresponding

plots of Skyrmion density d against t for the solutions h0 and hi respectively. Notice that
changing c moves the centre of the kink and changes its shape.

By evaluating the integrated Skyrmion density and integrated vorticity, one can compute

the energy of a Skyrmion kink solution. One finds that it is finite and does not depend on c.

However, it depends on the radius R of the cylinder.

Indeed, by examining the solution (7.28), one can see that for large R, the integrated Skyrmion

density goes like 1/
√
R (note that the asymptotic solution as R→ ∞ is the Gauss map which has

no Skyrmion density), while the integrated vorticity goes like
√
R (it behaves like R(h+ − h−)).

One can further compute the constants, and finds that the integrated Skyrmion density has
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leading term

4π
2√
R

as R→ ∞, while the integrated vorticity has leading term

4π

√
R

2

as R→ ∞. (Recall that we are working in units where the Skyrmion size 1
κ has been set to one.)

7.4 the moduli space of skyrmions and its resolution

7.4.1 The moduli space of Skyrmions

One of the crucial facts about the critically-coupled model is that it admits a moduli space of

degenerate energy minimising solutions within each topological class. These moduli include the

positions of the basic Skyrmions (which exert no net force on each other at critical coupling) as

well as certain internal ‘orientational’ moduli.

The moduli space of solutions to the Bogomolny equation (7.18) is the space of sections of a

(topologically trivial) projective bundle with holomorphic structure determined by A0,1. Let us

restrict to the case that Σ is compact without boundary. An index theory argument shows that

the component of the moduli space corresponding to sections of degree N has expected complex

dimension

2N + 1− g

where g is the genus of Σ. This is the same as the expected dimension of the space of meromorphic

functions on Σ.

The moduli space of sections of a projective bundle contains singular points, at which the

section degenerates to one of lower degree. From the point of view of Skyrmions, these singularities

are points at which a Skyrmion shrinks to zero size and disappears. The aim of this section is to

resolve these singularities.

7.4.2 Semilocal vortices in a background

To resolve the singularities of the moduli space we may use the idea, well-known in the literature

of high energy physics, of realising a nonlinear sigma model as a certain strong coupling limit of a

gauge theory with linear Higgs fields. The Skyrmions of the nonlinear theory are then the limits

of vortices in the gauge theory. The vortices of the gauge theory have a well-defined size and a

non-singular moduli space. We may, at least formally, do computations on the vortex moduli

space and then take the strong coupling limit to find information about the Skyrmion theory.

From a two-dimensional perspective, the theory we consider is an Abelian gauge theory with a

pair of complex scalar Higgs fields coupled to a background gauge potential for the SU(2) flavour

symmetry, which rotates the scalar fields among themselves. However, just as before, our theory

has a three-dimensional origin - really the two scalar fields arise as the restriction of a spinor field
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in three dimensions and the background gauge field comes from a spin connection with torsion.

The coupling to this connection and the relation to the theory of magnetic Skyrmions are the

only potential novelties in the following discussion.

Let M be a three-dimensional Riemannian manifold. To define the vortex theory we will

replace the magnetisation vector field m with a spinor on M . To do this, we assume that M is

oriented and let S →M be a spinor bundle. This is a Hermitian complex vector bundle of rank

2, with vanishing Chern class.

We again let i : Σ ↪→ M be an embedded thin film. We introduce a Hermitian complex

line bundle L → Σ and define E := i∗S ⊗ L. The fields of our gauge theory are then a section

Ψ ∈ Γ(E) and a U(1) connection a on L. The background SO(3) connection A can be lifted to

an SU(2) connection on i∗S which we also call A. We may then form the tensor product U(2)

connection

A⊗ 1 + 1 ⊗ a

on E, which we write as A+ a.

We introduce the energy functional

EA,e2 =
1

2

∫
Σ

∗
(
|dA+aΨ|2 + 1

e2
|F (a)|2 + e2(v2 − |Ψ|2)2 − ∗2Ψ†F (A)Ψ

)
.

This functional depends on two positive real parameters: the ‘saturation magnetisation’ |v|, which
may as well be set to 1, and the gauge coupling constant e2 (which may be thought of as a choice

of inner product on the Lie algebra of U(1)).

A well-known rearrangement (see A.2) shows that, up to boundary terms,

EA,e2 =

∫
Σ

(
|∂̄A+aΨ|2 + 1

e2
|F (a)− ie2(v2 − |Ψ|2)|2

)
+

∫
Σ

iv2F (a).

Thus, the energy is minimised within a topological class by solutions to the vortex equations

∂̄A+aΨ = 0 (7.30)

∗F (a) = ie2(v2 − |Ψ|2). (7.31)

Exact solutions to equations of this type are usually very hard to come by. However, the moduli

space of solutions to the analogue of these equations with A = 0, in the case that E is replaced

with an arbitrary sum of line bundles (the case of Abelian semi-local vortices), is well-studied, as

is the case in which A is dynamical and E is general (the case of non-Abelian vortices).

The moduli space is a Kähler manifold. A simple index calculation, using the Riemann–Roch

theorem, tells us that the expected complex dimension of the moduli space is

c1(E)[Σ] + 2− 2g + (g − 1) = 2NL + 1− g

where c1(E) is the first Chern class of E, NL is the degree of L, and g is the genus of Σ.

If one takes the strong coupling limit e2 → ∞, any finite energy configuration must obey

v2 = |Ψ|2,
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which requires that Ψ takes values in a three-sphere. In this limit, the Abelian gauge field a

decouples. When we take the quotient by the U(1) gauge group we are left with a nonlinear

sigma model into

S2 = S3/U(1),

the Higgs branch of vacua of the gauge theory. The theory that results is precisely the critical

magnetic Skyrmion theory (indeed, this point of view on the Skyrmion theory is exactly that of

subsection 7.2.4).

The vortex theory at finite e2 is such that the moduli space resolves that of magnetic Skyrmions.

In particular, the vortex moduli space is non-singular and, if Σ is closed, closed. Vortices have a

size, they take up an area proportional to

1

v2e2
,

as can be seen by integrating (7.31) over the surface Σ. In the limit e2 → ∞, this goes to zero.

We can construct the vortex moduli space, as a manifold, by using instead the ‘dissolving

vortex’ limit (see chapter 2, [Weh08, §7], and [BM03]). One may think of this as the weak coupling

limit, where e2 → 0, although one must be careful to enforce the topological constraints of the

Bogomolny equations. To do this, we first fix the vortex number N and introduce ṽ2 = v2− 2πN
e2vol(Σ)

so as to rewrite the equations (7.30), (7.31) as

∂̄A+aΨ = 0

∗F (a)− 2πiN

vol(Σ)
= ie2(ṽ2 − |Ψ|2).

Integrating the second of these equations tells us that, for any e2 ̸= 0,∫
Σ

∗|Ψ|2 = ṽ2vol(Σ).

It turns out that the system remains well-behaved as e2 → 0 [Weh08]. In this limit, the vortex

equations become the dissolving vortex equations:

∂̄A+aΨ = 0 (7.32)

∗ 1

2πi
F (a) =

N

vol(Σ)
(7.33)

1

vol(Σ)

∫
Σ

∗|Ψ|2 = ṽ2. (7.34)

So solutions consist of projectively flat line bundles (L, a) equipped with a normalised holomorphic

section Ψ of the holomorphic bundle (S ⊗ L, (A⊗ a)0,1). We expect that, as a complex manifold,

the moduli space of dissolving vortices is isomorphic to the moduli space of vortices at positive

e2. Of course, these spaces come with a natural Riemannian structure, which does vary with e2.

Let us construct the moduli space of dissolving vortices. First, there is a one-to-one correspon-

dence between projectively flat line bundles on a Riemann surface and holomorphic line bundles

on the surface, modulo equivalence. Letting PicN (Σ) be the Picard group, the moduli space of
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holomorphic line bundles on Σ of degree N , which is a torus of complex dimension g, we form

the universal holomorphic bundle

VN → Σ× PicN (Σ)

which has as fibre over Σ× {L} the bundle S ⊗ L, where S is the pulled back spinor bundle i∗S

with holomorphic structure defined by A0,1. We fix the bundle VN by choosing a point x ∈ Σ

and asking that VN |{x}×PicN (Σ) be trivial.

Regarding VN as a locally free sheaf, we may push it forward along the projection map

p : Σ× PicN (Σ) → PicN (Σ). If N is sufficiently large, Serre vanishing tells us that the resulting

sheaf is locally free of constant rank

2N + 2− 2g

(explicit bounds on N may be accessible if one computes the holomorphic type of S). In this case,

the pushforward defines a vector bundle over PicN (Σ) with fibre over L the space of holomorphic

sections of S ⊗ L.
To impose the normalisation condition (7.34) and to take the quotient of the action of gauge

transformations on Ψ, we should take the projectivisation of this vector bundle. The moduli

space is then the total space of the corresponding projective bundle. Provided N is sufficiently

large, this is a compact complex manifold of dimension

2N + 1− g

as we expected.

In the case that g = 0, this construction is particularly simple. In that case, the Picard group

is a point and the moduli space is simply

CP 2N+1.

Notice that this resolves the moduli space of rational maps, which is

CP 2N+1 −∆

where ∆ is the resultant hypersurface, consisting of rational maps which degenerate to a lower

degree map.

Note that, at least for N sufficiently large relative to g, the background connection A does

not affect the resolved moduli space, at least as a manifold.
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8 some lessons

8.1 summary

In this thesis we have studied some apparently disparate topics in the pursuit of an understanding

of the ‘hidden machinery’ of magnetically charged objects and electric-magnetic duality. While

the topics are distinct, they are thematically and technically tied together in our study, as outlined

in Figure 8.1.

Part III: Mirror
symmetry in

three dimensions

Part II: Vortices
and the quan-
tum Hall effect

Part IV: Magnetic
Skyrmions

Permuting
Sp(1) actions

Mirror symmetry,
topological
field theory

Gauge-theoretic
methods in condensed

matter physics

solitons and
BPS methods

Figure 8.1: The topics of this thesis and some of the themes linking them.

The story of parts II and III was, fundamentally, a story of electric-magnetic duality. In

chapter 2, we gave a very explicit realisation of electric-magnetic duality, giving strong evidence

for the idea that vortices in nonrelativistic Chern–Simons-matter theories admit a dual description

as electrically charged particles, elementary or composite, in a background flux. We did this by

(approximately) solving the low-temperature topological quantum mechanics for both sides of the

putative duality.

We went on to explore more aspects of this story, considering so-called ‘exotic vortex’ solutions

in these theories in chapter 3. There, we saw that such solutions could be produced from what

we called twisted holomorphic maps into spaces of constant holomorphic sectional curvature. We

conjectured that all exotic vortex solutions in U(Nc) theories with one fundamental flavour could

be produced in this way, giving some evidence for this. This leads to interesting constraints on the

possible vortex number of exotic vortex solutions. In chapter 4, we considered the semiclassical

limit of the story, using our results to compute the volumes of vortex moduli spaces.

We suggested that, in special cases, this duality between vortices and electrically charged

particles could be understood as a deformation of three-dimensional mirror symmetry, a topic that

we explored from a loftier perspective in chapter 5. By topologically twisting a three-dimensional

N = 4 sigma model with target space a hyperKähler manifold with permuting Sp(1) action, one

can produce two topological field theories: the A-twist and the B-twist. The two theories are

mirror, in the sense that the A-twist in the Higgs branch of a gauge theory is, in principle, the

same as the B-twist in the Coulomb branch of the gauge theory. The B-twist is well-understood,
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but the A-twist has evaded a complete description. We built the A-twist as a cohomological field

theory and sketched it as an extended topological field theory. By outlining a construction of its

2-category of boundary conditions, we offered an understanding of when the Fukaya category of a

Kähler manifold admits a monoidal structure (and when it might not).

Vitally important in the construction of the A-twist is the existence of a permuting Sp(1)

action on the target space. This idea also played a crucial role in chapter 6, where we built

a gauge-theoretic model of magnetic materials supporting magnetic Skyrmions and emergent

magnetic monopoles. We studied the thin film limit in chapter 7, finding exact Skyrmion solutions

on some surfaces with symmetry at ‘critical coupling’. Pleasantly, this use of gauge-theoretic and

‘BPS-type’ methods (which traditionally find their home in the domain of high energy physics) to

understand a condensed matter system brings us back to the ideas of Part II, where we applied

these notions to understand another condensed matter system.

8.2 outlook

Many of the results and ideas of this thesis would benefit from further investigation. Obvious

avenues for further work include understanding more deeply the Seiberg-like duality of section 2.6,

generalising the twisted holomorphic map construction of chapter 3 to allow for more flavours,

studying the quantum corrections to the 2-category of boundary conditions in the A-twist of

chapter 5, and sharpening the analysis of the phase structure of the gauge-theoretic model of

magnetic materials in chapter 6. Rather than considering the details of these ideas, we content

ourselves by making some more general comments about the themes of this thesis.

The idea of using ‘BPS-type’ methods in condensed matter physics is not new. It has been

used successfully in understanding quantum Hall physics in the program of Tong, Turner, and

others [Ton04a; Tur17] and in the understanding of chiral magnets in [BSRS20]. In this thesis,

we hope that we have demonstrated further the power of this idea. Sophisticated methods like

Coulomb branch localisation can be applied to understand the behaviour of systems of electrons

in a magnetic field. It seems likely that both particle physics and condensed matter physics can

benefit considerably from continuing to find applications for these ideas.

Despite being of mathematical interest, permuting Sp(1) actions on hyperKähler manifolds

have played a rather fringe role in physics. In this thesis, we hope that we have demonstrated

their importance. Indeed, we have seen that they are crucial in the understanding of the three-

dimensional mirror symmetry of sigma models. They also play an intriguing part in chapter 6,

which is suggestive of their potential importance more generally in gauge theories. For example,

the unusual dual confinement mechanism of chapter 6 could be applied to understand confinement

in more general gauge theories.

Finally, electric-magnetic duality remains a fascinating and deep subject. By continuing to

understand concrete examples of it, as we have attempted to do in this thesis, we can continue to

lift the curtain obscuring its ‘hidden machinery’.



a background gauge fields

a.1 introduction and summary

At several points in this thesis, we have considered theories coupled to background gauge fields.

This can be done whenever a theory has a global symmetry. Here, we summarise the critical

coupling of a two-dimensional nonlinear sigma model with symplectic target to a background

flavour symmetry. This is particularly relevant to the material of chapter 7, but also plays a role

in chapters 5 and 6.

a.2 nonlinear sigma models in a background gauge field

We recall some aspects of the theory of sigma models in a background gauge field. The general set

up is as follows. Let G be a compact Lie group with Lie algebra g with a given Killing form. Let

(X,ωX) be a symplectic manifold with a compatible almost complex structure JX . Let X carry a

Hamiltonian G-action. Physically, X will be the target space and G will be the gauge group.

Associated to the Hamiltonian action of G on X is an equivariant moment map

µ : X → g∨

with the (defining) property that the equivariant 2-form

ωX − µ ∈ Ω2
G(X)

is equivariantly closed [AB84], which is to say that

dµ(ξ) = ω(vξ)

for all ξ ∈ g, where vξ is the fundamental vector field on X associated to ξ. Hence, ωX − µ

determines a class [ωX − µ] in the equivariant cohomology H2
G(X).

Now, let Σ be a compact Riemannian 2-manifold, playing the role of physical space. We would

like to set up a background gauge theory, and so we take a principal G-bundle P → Σ. Our

nonlinear field is a gauged map into the target space X (i.e. an X-valued field, charged under G),

which is to say that it is a section of the associated bundle

X := X ×G P → Σ.

A section of this bundle is equivalently a G-equivariant map P → X.

Now, we should introduce a background gauge field, which is a connection A on P . This

allows us to define the covariant derivative dAϕ ∈ Ω2
V (X) of a section ϕ ∈ Γ(X). Here, by Ω2

V (X)

we mean the space of vertical 2-forms. We also define the antiholomorphic derivative

∂̄Aϕ =
1

2
(dAϕ+ JX ◦ dAϕ ◦ jΣ) .

The energy functional we consider is the usual one:

E[A][ϕ] =
1

2

∫
Σ

(
|dAϕ|2 + V (ϕ,A))

)
volΣ.
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The critically-coupled model arises for a special potential, namely,

Vcrit(ϕ,A) = −2µ(ϕ)(∗F (A)) (A.1)

where ∗ is the Hodge star on Σ. The equivariance of the moment map implies that this potential

is gauge invariant.

The reason that this is called ‘critically-coupled’ is that, for this choice of potential, the energy

admits a Bogomolny rearrangement. Indeed, it was shown in [CGS00] that

1

2

∫
Σ

∗
(
|F (A)|2 + |dAϕ|2 + |µ(ϕ)|2

)
=

∫
Σ

∗
(
|∂̄Aϕ|2 +

1

2
| ∗ F (A) + µ♯(ϕ)|2

)
+[ω−µ]([ϕ]) (A.2)

where the second term on the right-hand side is the natural pairing of [ωX − µ] ∈ H2
G(X) with

[ϕ] ∈ HG
2 (X) and µ♯(ϕ) is the moment map with its index raised using the Killing form, so that

it takes values in g. This rearrangement is of interest in the study of (symplectic) vortices.

Rearranging (A.2), we see that∫
Σ

∗|∂̄Aϕ|2 + [ω − µ]([ϕ]) =
1

2

∫
Σ

∗
(
|dAϕ|2 + |F (A)|2 + |µ(ϕ)|2 − | ∗ F (A) + µ♯(ϕ)|2

)
=

1

2

∫
Σ

∗
(
|dAϕ|2 − 2µ(ϕ)(∗F (A))

)
.

The right-hand side is our energy functional. The energy of a configuration is therefore bounded

below within a topological sector by the topological energy

[ω − µ]([ϕ])

and the bound is saturated by configurations ϕ obeying

∂̄Aϕ = 0.

For the model studied in chapter 7, we take X to be the sphere S2 with its standard symplectic

form ωS2 . We take G = SO(3), which acts on S2 by rotations in the usual way preserving ωS2 .

We now write m for the field ϕ, as we now interpret it as the magnetisation field. It can be shown

that the moment map for this action

µ : S2 → so(3)

is the inclusion of the unit sphere. Hence, thinking of m = (m1,m2,m3) as a unit vector in

R3 ∼= so(3), we have

µ(m)(ξ) = mBξB

for ξ ∈ so(3) and where B = 1, 2, 3 labels coordinates on so(3). Substituting this into the critical

potential (A.1) leads to the potential term (7.13).
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