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Abstract
Finding the ground state of a quantum mechanical system can be formulated as an optimal con-
trol problem. In this formulation, the drift of the optimally controlled process is chosen to match
the distribution of paths in the Feynman–Kac (FK) representation of the solution of the imaginary
time Schrödinger equation. This provides a variational principle that can be used for reinforcement
learning of a neural representation of the drift. Our approach is a drop-in replacement for path inte-
gral Monte Carlo, learning an optimal importance sampler for the FK trajectories. We demonstrate
the applicability of our approach to several problems of one-, two-, and many-particle physics.
Keywords: Quantum Mechanics, Feynman–Kac Formula, Optimal Control, Reinforcement Learn-
ing

1. Introduction

Quantum mechanics takes place in infinite dimensional Hilbert space. Naturally, any numerical
approach to solving the equations of quantum mechanics – or any other physical system with a con-
tinuum description – involves a finite truncation of this space. When we turn to many-body quantum
mechanics, the dimension of Hilbert space necessarily grows exponentially with the number of par-
ticles relative to the finite truncation used for a single particle. To be specific, if a single particle
is described by a wavefunction ψ(r) defined on a real-space grid of linear size L (with L3 points
in three dimensions), the wavefunction of N particles Ψ(r1, . . . , rN ) is defined on a grid in 3N
dimensions of L3N points.

Traditionally, this challenge has been dealt with by considering many body wavefunctions of
restricted form. For example, the Hartree–Fock method employs factorized wavefunctions1

Ψ(r1, . . . , rN ) = ψ1(r1) . . . ψN (rN ).

This reduces the memory cost to linear in the number of particles,2 but represents a drastic simpli-
fication that performs especially poorly when the interaction between particles is strong. Over the
years many post–Hartree–Fock hand-crafted improvements of the many-body wavefunction have
been introduced, including Jastrow factors, and the coupled cluster and configuration interactions
methods (Foulkes et al. (2001)).

The exponential growth in the complexity of many-body quantum mechanics closely parallels
the curse of dimensionality encountered in computer vision and other traditional applications of

1. We leave aside the issue of the statistics of indistinguishable particles for the moment.
2. The computational complexity of the Hartree–Fock method scales as the cube of the number of basis functions used

to represent the ψi(r).
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machine learning. Therefore it is natural that neural methods that have recently proven successful
in the latter domain be applied to quantum mechanical calculations.

1.1. Deep Learning Approaches to Quantum Ground States

Beginning with the work of Carleo and Troyer (2017), the past few years have seen numerous
attempts to leverage the expressive power of deep networks to solve the quantum many-body prob-
lem.3

This initial work dealt with lattice models of spins that are a mainstay of quantum condensed
matter physics, representing the wavefunction using a Restricted Boltzmann Machine. Since then
neural representations of many body wavefunctions have multiplied to include lattice systems of
fermions (Nomura et al. (2017)) and bosons (Saito (2017)), particles in continuous space (Ruggeri
et al. (2018); Kessler et al. (2019)), systems with symmetry (Choo et al. (2018)), and the many-
electron problem (Han et al. (2019); Pfau et al. (2019); Hermann et al. (2019)).

All of the above-mentioned applications of neural networks to quantum mechanics have used
the Schrödinger picture, in which a representation is sought of the wavefunction. There are sev-
eral mathematically equivalent formulations of quantum mechanics that provide alternatives to the
Schrödinger equation, and hence potential alternative routes for the application of machine learn-
ing. In this work we show how reinforcement learning may be used to solve problems in quantum
mechanics via the path integral representation.

1.2. Feynman–Kac Representation of the Ground State

Feynman’s path integral formulation of quantum mechanics starts from the Schrödinger equation
(Feynman and Hibbs (1965))

i
∂ψ(r, t)

∂t
= [Hψ] (r, t), (1)

where for a single particle the Hamiltonian operator describing motion in a potential V (r) has the
form

[Hφ] (r) = −1

2
∇2φ(r) + V (r)φ(r). (2)

The wavefunction at time t2 > t1 can be expressed in terms of the wavefunction at time t1 by

ψ(r2, t2) =

∫
dr1K(r2, t2; r1, t1)ψ(r1, t1), (3)

where the propagator K(r2, t2; r1, t1) is the Green’s function of the Schrödinger equation(
i
∂

∂t2
−Hr2

)
K(r2, t2; r1, t1) = iδ(r1 − r2)δ(t1 − t2). (4)

K(r2, t2; r1, t1) has the physical interpretation of the probability amplitude to move from r1 at time
t1 to r2 at time t2. The Born rule then states that the square modulus of the probability amplitude
gives the probability for this event.

3. There is earlier work on few-body quantum mechanics from before the deep learning era (Lagaris et al. (1997)). A
separate strand of work is concerned with efficient parameterization of interatomic potentials that have been calcu-
lated by other means, see e.g. (Behler (2016)).
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The path integral is a representation of the propagator as a ‘sum over paths’, written formally as

K(r2, t2; r1, t1) =

∫
r(t1)=r1
r(t2)=r2

Dr(t) exp

(
i

∫ t2

t1

L(r, ṙ)dt

)
(5)

where L(r,v) = 1
2v

2− V (r) is the classical Lagrangian function of the system, and the domain of
the integral is all paths satisfying the stated endpoint conditions.

Despite being successfully wielded by physicists for decades Feynman’s original idea has never
found rigorous mathematical formulation due to the difficulties of defining a suitable measure on
the path space. Kac (1949) discovered, however, that a fully rigorous path integral formula exists
for the heat-type equations

∂ψ(r, t)

∂t
= − [Hψ] (r, t), (6)

also known as the imaginary time Schrödinger equation. Moving to imaginary time makes the
exponent in (5) real. Kac observed that the part of the exponent arising from the kinetic energy
could be interpreted as a measure on Brownian paths, leading to the Feynman–Kac (FK) formula
for the solution of (6)

ψ(r2, t2) = E
r(t2)=r2

[
exp

(
−
∫ t2

t1

V (r(t))dt

)
ψ(r(t1), t1)

]
, (7)

where the expectation is over Brownian paths finishing at r2 at time t2. In this way quantum
mechanics is brought into the realm of stochastic processes, albeit in ‘imaginary time’. Whilst
this formulation is therefore not of direct utility in studying quantum dynamics, it provides a very
useful tool for studying ground states. This is because the propagator K(r2, t2; r1, t1) for (6)
has a spectral representation in terms of the eigenfunctions ϕn and eigenenergies En of the time
independent Schrödinger equation Hϕn = Enϕn as

K(r2, t2; r1, t1) =
∑
n

ϕn(r2)ϕ∗n(r1)e−En(t2−t1) (8)

−→ ϕ0(r2)ϕ∗0(r1)e−E0(t2−t1) as t2 − t1 →∞. (9)

Thus, as t2 − t1 →∞, only the ground state contributes.
The FK formula defines a new path measure PFK that differs from the Brownian measure P0 by

the Radon–Nikodym derivative

dPFK

dP0
= N exp

(
−
∫ t2

t1

V (r(t))dt

)
(10)

where N is a normalization factor. Intuitively, (10) describes paths that spend more time in the
attractive regions of the potential (V (r) < 0) and less time in the repulsive regions (V (r) > 0). It
is natural to conjecture that if t2 = −t1 = T/2 with T → ∞, the distribution of r(0) under this
measure coincides with the ground state probability distribution |ϕ0(r)|2 from the Born rule. To
see that this is the case, consider a path that passes through (r−,−T/2), (r, 0) and (r+, T/2) for
some arbitrary initial and final point r±. The overall propagator is then

K(r+, T/2; r, 0)K(r, 0; r−,−T/2; ) ∼ |ϕ0(r)|2ϕ0(r+)ϕ∗0(r−)e−E0T . (11)
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Apart from a normalization factor that depends on r± and T ,4 this is just the expected ground state
distribution |ϕ0(r)|2. Thus, the ability to sample from the FK measure for long trajectories would
also allow us to sample from the ground state distribution.

1.3. Quantum Mechanics and Optimal Control

Long before Feynman, the path measure was studied for finite T and the case of a free particle
(V (r) = 0) by Schrödinger (1931, 1932) in an early exploration of the connection between his
equation and the heat equation. Schrödinger sought the path measure that interpolates between
given marginal distributions at the initial and final times. The generalizations of this question are
now known as the Schrödinger problem: see Léonard (2014) for an insightful recent review with a
historical survey. One of the major conclusions of these works is that the path measure is Markov
(Jamison (1974)) and that paths r(t) satisfy a stochastic differential equation (SDE)

drt = dBt + v(rt, t)dt, (12)

where Bt ∈ Rd is a standard Brownian motion and v(rt, t) is a drift that is determined by the
potential V (r), as well as the initial and final conditions. The problem of finding the drift can be
given an optimal control formulation, with v(rt, t) achieving the minimum of the cost function
(Holland (1977); Fleming (1977))

CT [v] =
1

T
E
[∫ T

0

[
1

2
(v(rt, t))

2 + V (rt)

]
dt

]
, (13)

where the expectation is over the process (12). When this cost is minimized the path measure of this
process coincides with the FK measure. For the infinite horizon T → ∞ case the optimal drift has
no explicit time dependence and we obtain the ground state energy as E0 = limT→∞minv CT [v].

The existence of a variational principle allows the tools of deep learning to be brought to bear.
In this work the drift function will be parameterized by a neural network with parameters θ: v(r) =
vθ(r). Finding the optimal drift can be regarded as a reinforcement learning problem with the cost
(13) as our (negative) reward function. Although the expectation in (13) is intractable, a Monte Carlo
estimate may be made by generating a batch of solutions of the SDE using standard discretizations
(Kloeden and Platen (2013)). Optimization of this estimate is then possible through automatic
differentiation of the estimated cost with respect to θ. Derivatives with respect to the expectation
are straightforward as the SDE increments are written in terms of standard Brownian increments,
analogous to the reparameterization trick used in stochastic backpropagation through deep latent
Gaussian models (Rezende et al. (2014)) or variational autoencoders (Kingma and Welling (2013)).

As well as providing a route to the evaluation of the ground state energy, (12) provides a sam-
pler for the ground state probability distribution, as the stationary distribution of the SDE with the
optimal drift coincides with |ϕ0|2.

The imaginary time Feynman path integral (or FK formula) is the basis of other numerical
techniques in physics, notably the path integral Monte Carlo method (Ceperley (1995)). In this
approach, the state of the Monte Carlo simulation corresponds to an entire Feynman trajectory,
which is updated according to a Markov chain that ensures the paths sample the FK distribution in
the stationary state. Our approach by contrast learns to sample the trajectories in the optimal way.
We intend our method to be a drop-in replacement for path integral Monte Carlo as far as ground
state properties are concerned.

4. In particular, we see thatN ∼ eE0T in the long time limit.
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1.4. The Many-Body Problem

All of the above considerations extend straightforwardly to systems of many identical particles,
with one important caveat. The wavefunction of a system of identical particles must either be com-
pletely symmetric or antisymmetric under exchange of particles, corresponding to identical bosons
or fermions (the latter described by the Pauli exclusion principle). The overall ground state of an
identical particle Hamiltonian is symmetric under very general conditions and therefore corresponds
to the bosonic case (Feynman (1998)). Apart from some two-electron problems where the spin state
of the electrons is antisymmetric, allowing the spatial wavefunction to be symmetric (see Section 4),
the many-fermion problem is out of reach of our method for now.5

1.5. Outline

The outline of the remainder of this paper is as follows. In Section 2 we discuss the connection be-
tween quantum mechanics and optimal control in more detail, focusing on the variational principle
that can be used to learn the optimal drift. In Section 3 we introduce our neural representation of
the drift, with particular attention given to permutation equivariance which is a feature of systems
of indistinguishable particles. We also describe the algorithm used to learn the drift. Section 4
describes experiments on some simple physical systems. Finally, in Section 5 we summarize our
findings and provide an outlook to future work.

2. Quantum Mechanics and Optimal Control

2.1. Fokker–Planck to Schrödinger

The most direct way to establish a link between stochastic processes and quantum mechanics is via
a standard mapping between the Fokker–Planck and Schrödinger equations. This is discussed for
example in Risken (1996); Pavliotis (2014), but we repeat the main points here. Starting from a
solution p(r, t) of the Fokker–Planck (FP) equation

∂p(r, t)

∂t
=

1

2
∇2p(r, t) +∇ · (p(r, t)∇U(r)) , (14)

with a drift v(r) = −∇U(r) given in terms of some potential function U(r), the stationary state
π(r) of this FP equation has the form of a Boltzmann distribution

π(r) ∝ exp (−2U(r)) . (15)

If we define the function

ψ(r, t) =
p(r, t)√
π(r)

, (16)

then ψ(r, t) satisfies the (imaginary time) Schrödinger equation

∂ψ(r, t)

∂t
= −Hψ(r, t) (17)

5. The same restriction applies to the path integral Monte Carlo method, where it is known as the sign problem.

5
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with Hamiltonian H = 1
2∇

2 + VU (r), where the potential VU (r) has the form

VU (r) ≡ 1

2

[
−∇2U + (∇U)2

]
=

1

2

[
∇ · v + v2

]
. (18)

The zero energy ground state wavefunction of this Hamiltonian is

ϕ0(r) =
√
π(r). (19)

The Fokker–Planck equation (14) describes the evolution of the probability density of a stochastic
process described by the stochastic differential equation (SDE)

drt = dBt + v(rt)dt, (20)

whereBt is a standard Brownian motion. We emphasize that the quantum probability in the ground
state |ϕ0(r)|2 coincides with the classical stationary distribution π0 of this process.

2.1.1. EXAMPLE: CALOGERO–SUTHERLAND AND DYSON BROWNIAN MOTION

An instructive example of a many body problem and the associated stochastic process is provided
by the Calogero–Sutherland model describing particles in one dimension in a harmonic potential
interacting by an inverse square potential (Sutherland (1972))

H =
∑
i

1

2

[
− ∂2

∂x2
i

+ x2
i

]
+ λ(λ− 1)

∑
i<j

1

(xi − xj)2
.

In this case, the ground state is known exactly and has the form of the Gaussian ground state wave-
function of the harmonic oscillator multiplied by a pairwise Jastrow factor

Φ0(x1, . . . xN ) =
∏
i<j

|xi − xj |λ exp

(
−1

2

∑
i

x2
i

)
.

The drift of the associated SDE is

vi = ∂i log Φ0 = −xi + λ
∑
j 6=i

1

xi − xj
(21)

corresponding to Dyson’s Brownian motion (Dyson (1962), see Figure 1).

2.2. The Variational Principle

In order to turn the above connection into a calculational tool, we exploit a connection between the
path measure Pv of the SDE (20) and the corresponding quantity PFK from the FK formula. For a
FP measure that relates the ground state distribution π0(r0,T ) at t = 0 and t = T , the log likelihood
ratio (log Radon–Nikodym derivative) of the two measures obeys

log

(
dPv

dPFK

)
= `T − E0T + log

(
ϕ0(r0)

ϕ0(rT )

)
`T ≡

∫
v(rt) · dBt +

∫
dt

(
1

2
|v(rt)|2 + V (rt)

)
, (22)

6
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Figure 1: Trajectories of 15 particles evolving under the Dyson process (21).

See Appendix A for a heuristic proof. The KullbackLeibler (KL) divergence of the two measures is
then

DKL (Pv‖PFK) = E
Pv

[
`T − E0T + log

(
ϕ0(r0)

ϕ0(rT )

)]
. (23)

Note that (23) is true for any r0. If we additionally average over r0 drawn from the stationary
distribution of the SDE, then the distributions of rT and r0 coincide, and the final term vanishes.
Because the KL divergence is positive DKL (Pv‖PFK) ≥ 0 we then have EPv [`T ] ≥ E0T , with
equality when the two measures match. This is the variational principle that forms the basis of our
approach. For T →∞ we can ignore the final term so that

lim
T→∞

EPv [`T ]

T
≥ E0, (24)

irrespective of the initial state distribution (as T → ∞ the final state distribution will be the sta-
tionary state of the SDE, assuming ergodicity). Using the fact that Brownian increments have zero
expectation recovers Holland’s cost (13).

3. Reinforcement Learning

We have identified a variational principle for the drift with a time integrated cost function. Learning
the optimal drift may be regarded as an entropy regularized reinforcement learning (RL) problem.
The usual Markov decision process formulation of RL involves Markov dynamics in a state space
together with a set of actions that can influence the dynamics within this space. We seek a policy
– a distribution of actions to be taken at each step given the current state – optimal with respect to
a time integrated reward function. In the present case, optimizing over all possible drift functions
corresponds to complete controllability of the state, instead of a restriction to a (possibly finite) set of
actions. As we have seen in Section 2.2, however, the optimization problem is regularized by a KL
divergence that originates from the kinetic energy, and penalizes deviations of the stochastic process
from the ‘passive’ Brownian dynamics. In RL the resulting cost gives rise to linearly solvable
Markov decision problems (Todorov (2007, 2008)). 6

6. In RL this entropy regularization has a practical utility in encouraging diverse policies (Levine (2018)).

7
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In the remainder of this section we introduce a concrete algorithm to learn the optimal drift for
a given quantum many-body problem.

3.1. Neural representation of the drift

In practice, one cannot optimize over arbitrary drifts. We introduce a neural parameterization vθ(r)
of the drift function, so the quality of our approximation is limited by the expressiveness of the
network. Thus we are performing a variational approximation to the optimal control problem, with
the cost bounded from below by the ground state energy.

ForN > 1 particles, the drift of each is a function of all the particle coordinates: vi,θ(r1, . . . , rN )
i = 1, . . . , N . For identical particles, this drift must be permutation equivariant, meaning that for
any permutation P of the particles

vi,θ(r1, . . . , rN ) = vP (i),θ(rP (1), . . . , rP (N)). (25)

We now introduce two ways in which equivariance may be achieved.

3.1.1. DEEPSETS

Guttenberg et al. (2016); Zaheer et al. (2017) identified deep neural architectures that respect per-
mutation equivariance, building on the much earlier work of Shawe-Taylor (1989). We use a variant
of the DEEPSETS architecture of Zaheer et al. (2017), in which an equivariant hidden state is based
on the sum-pooling operation

hi = φ

Γri + Λ
∑
j

rj


(biases omitted for clarity) for weight matrices Γ,Λ ∈ RH×d, where d is the spatial dimension and
H the number of hidden units. φ is a nonlinear activation function. These layers can then be stacked
to produce a more expressive representation.

3.1.2. PAIRDRIFT

Alternatively, we may use a representation of single particle and pair features (c.f. Pfau et al. (2019))

hi = σ1(ri) +
∑
j

π1(ri − rj) (26)

hij = Π1(ri − rj). (27)

where σ,π : Rd → RH and Π : Rd → RH×H are neural networks. The single particle hidden state
hi contains information about single particle and pair locations. This process may be continued

h̃i = σ2(hi) +
∑
j

π2(hij) (28)

h̃ij = Π2(hij). (29)

Finally, the permutation equivariant drift function is written in terms of the last hidden state as

vi = σ3(h̃i) +
∑
j

π3(h̃ij). (30)

8
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Note that if we had represented the drift simply as

vi = σ(ri) +
∑
j

π(ri − rj),

this would correspond to a pairwise Jastrow factor in the many-body wavefunction via the formula
vi = ∇i log Ψ. Repeatedly merging the pair features into the single particle features enriches the
representation. In our experiments, we find it sufficient to include a single hidden layer.

3.2. Integration of the SDE

From (22), we see that to evaluate the cost function we need to solve the system of SDEs

drt = dBt + v(rt)dt,

d`t = v(rt) · dBt +

(
1

2
|v(rt)|2 + V (rt)

)
dt. (31)

As T →∞, `T satisfies EPv [`T ] ≥ E0T . Numerous techniques exist for the numerical solution of
such problems, beginning with the Euler–Maruyama scheme

rt+∆t = rt + ∆Bt + v(rt)∆t,

`t+∆t = `t + v(rt) ·∆Bt +

(
1

2
|v(rt)|2 + V (rt)

)
∆t. (32)

where ∆Bt ∼ N (0, t) are iid Gaussian increments.
Higher order methods offering improved accuracy with longer time steps ∆t are described in

Kloeden and Platen (2013). For most of our experiments we used the SOSRA method from Rack-
auckas and Nie (2018). Implementing these methods in a framework that supports automatic dif-
ferentiation allows the cost to be optimized by gradient descent with respect to the parameters θ
describing the drift.

As emphasized in recent work on neural ordinary differential equations Chen et al. (2018), one
can regard integration schemes like (32) as a (recurrent) residual network. This affords a clean sepa-
ration of the model (the drift vθ(r)) from the implementation and allows us to adapt the integration
scheme on the fly for different epochs of training, or at evaluation time.

We evolve a batch of trajectories for T/∆t steps of size ∆t, starting from an initial state equal
to the final state of the previous batch. This is analogous to training a recurrent network by back-
propagation through time on infinite sequences by unrolling for a finite number of steps, stopping
the gradients from propagating into the infinite past. Starting each step from the final state of the
previous step means that the batch tracks closely the stationary distribution of the stochastic process,
so no burn-in is required before the integration of the cost function can begin.

This procedure leads to the following issue, arising from the presence of the boundary term in
(22). Its expectation is zero for a stationary process where the marginal distributions of the initial
and terminal points coincide. The gradients of this expectation with respect to the drift parameters
are however nonzero, as changing these parameters changes the endpoint rT . Evaluating this gradi-
ent to get the gradient of the KL in (23) is intractable because the ground state wavefunction is not
known, but it may be estimated from the current drift as

∇θ log

(
ϕ0(r0)

ϕ0(rT )

)
= −∇θrT · v(rT ) ≈ −∇θrT · vθ(rT ), (33)

9
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an approximation that improves as the true drift v(r) = ∇ logϕ0(r) is approached. Although this
correction may be neglected in the T → ∞ limit, we find it significantly improves convergence in
our experiments.

3.3. Stochastic Backpropagation

Recall that the cost function (23) is the expectation of a time integral over the stochastic process.
Although the expectation is intractable, a batch of B simulated trajectories r(b)

t can be used to make
a Monte Carlo estimate as follows

`T [vθ] ≈
1

BT

∑
b,t

[
vθ

(
r

(b)
t

)
·∆B(b)

t +

(
1

2

(
vθ

(
r

(b)
t

))2
+ V

(
r

(b)
t

))
∆t

]
. (34)

Because rbt have been generated by an SDE discretization such as (32), backpropagating through this
estimated expectation is analogous to the reparameterization trick in deep latent Gaussian models
(Rezende et al. (2014)) or variational autoencoders (Kingma and Welling (2013)). This similarity
has been emphasized in recent work on neural stochastic differential equations (Tzen and Raginsky
(2019)). The memory cost of backpropagation is proportional toBT/∆t, and is the main bottleneck
in our approach.

Though the exact T → ∞ value of the cost is an upper bound on the ground state energy, we
have to bear in mind that the approximations of finite time, finite batch size, and any discretization
error in the integration of the SDE mean that in practice the upper bound may be violated during
training, particularly as optimization converges.

3.4. Related Work

We have already mentioned wavefunction based neural approaches to quantum mechanics in Sec-
tion 1.1. Here we summarize work that is technically related to ours.

Learning SDEs using stochastic optimization was introduced in Ryder et al. (2018) to infer SDE
parameters from trajectories and in Tzen and Raginsky (2019) as a generative model to map a simple
initial distribution of r−T/2 to a given empirical distribution of rT/2.

The path integral point of view has been applied to RL in Kappen (2007); Theodorou et al.
(2010). Also from the RL side, Todorov (2007) introduced linearly solvable Markov decision prob-
lems. Their reward function – as in the quantum case – is a sum of a cost on the state space and the
KL divergence between the passive and controlled dynamics. Todorov showed that for these prob-
lems the nonlinear Bellman equation could be transformed to a linear equation by an exponential
transformation. As we have seen in Section 2, for the quantum cost this linear equation is just the
Schrödinger equation.

Finally, Han et al. (2018) solved semilinear parabolic PDEs in high dimension using a represen-
tation in terms of a backward SDE with a neural representation, but with a cost function based on
matching to a given terminal condition.

4. Experiments

Our experiments use PAIRDRIFT architectures described in Section 3.1, which we found to perform
best, with a single hidden layer and HardTanh activation. To ensure the trajectories remain close

10
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to the origin from the outset, these networks are initialized to give zero drift, but we add a skip
connection to give a restoring drift of simple form. For example, a linear skip connection Wskipri
to the drift of the ith particle ensures that the SDE is initially a 3D Ornstein–Uhlenbeck process.

Optimization of the estimated cost (34) uses Adam (Kingma and Ba (2015)). The gradient is
corrected to account for the boundary terms as described in Section 3.2

∇θ`T → ∇θ`T −∇θrT · vθ(rT ) (35)

All models were implemented in PyTorch. For hyperparameters see Appendix B. The code is avail-
able at https://github.com/AustenLamacraft/QuaRL

4.1. Hydrogen Atom

Hydrogen is an electrically neutral atom containing a nucleus consisting of a single proton, and
a single electron which is bound to the nucleus via the Coulomb force. Consider a single non-
relativistic electron subject to an isotropic Coulomb interaction force provided by the nucleus. In
atomic units7 the explicit form of the Hamiltonian reads

H = −1

2
∇2 − 1

|r|
(36)

where r is the position of the electron with respect to the center of the nucleus. The Schrödinger
equation for hydrogen can be solved explicitly via separation of variables, yielding the ground state
wave-function

ϕ0(r) =
1√
π
e−|r|. (37)

As the ground state of hydrogen has an exact analytic form, it is also possible to derive an exact
expression for the electron’s drift. The ground state drift velocity of the electron is given by

v = ∇ logϕ0(r) = −r̂. (38)

The exact ground state energy of Hydrogen isE0 = −0.5. We used a skip connection with Wskip =
−13, and found an energy of −0.497, which is within 0.6% of the exact value. The learned drift is
illustrated in Figure 2. From (38) and Figure 2, we see that the Hydrogen ground state drift has a
cusp at the position of the proton.

4.2. Helium atom and Hydrogen molecule

The Helium atom consists of two electrons bound to a nucleus of charge +2e. The non-relativistic
two-body Hamiltonian reads

H = −1

2

(
∇2

r1
+∇2

r2

)
− 2

|r1|
− 2

|r2|
+

1

|r1 − r2|
(39)

where r1 and r2 denote the positions of the electrons with respect to the nucleus. An analytic
solution to the Schrödinger equation does not exist for Helium. Accurate numerical calculations
may be found in the recent paper Baskerville et al. (2019), together with a comparison with the

7. Atomic units denotes energies measured in Hartrees (27.211 eV) and distances measured in Bohr radii (0.529 Å).
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Figure 2: (Left) The learned drift field for the Hydrogen atom in the x − y plane, colorscaled by
its magnitude. (Right) The electron density distribution in the stretched H2 molecule at
proton separation R = 2.8.

Hartree–Fock method. In the Hartree–Fock (HF) approximation the wavefunction is taken as the
product of two single particle wave-functions 8

ΨHF (r1, r2) = ψHF (r1)ψHF (r2) , (40)

where the single particle wavefunction ψHF(r) is optimized to minimize the energy. Baskerville
et al. (2019) find a correlation energy – the difference between the best HF value and the numerically
exact values – of 0.042, or 1.4% of the exact value.

We used the PAIRDRIFT network to model the Helium atom. The ground state energy was
found to be within 0.2% of the exact value.

For both the Helium atom and the Hydrogen molecule, we used a skip connection taking advan-
tage of Kato’s cusp conditions (Kato (1957)). These are conditions on the cusps that appear in the
wavefunction whenever two particles with a Coulomb interaction are at the same position. Kato’s
cusp conditions for wave-functions translate directly into cusp conditions for drifts: they should be
proportional to r̂ in the limit of zero separation. For electron-electron interactions, the proportion-
ality factor is 1

2 and the drift is repulsive, while for electron-nucleus interactions, the proportionality
factor is the charge of the nucleus and the drift is attractive. For our experiments on the Helium
atom and Hydrogen molecule, we therefore use a skip connection that is a sum of terms r̂, i.e. one
term for each Coulomb interaction.

Although we could have incorporated other conditions arising from rotational symmetries, we
chose not to do so because these symmetries do not generalize to other continuum systems.

8. The antisymmetry of the wavefunction demanded by the Pauli principle is achieved for the ground state by putting the
spin states of the two electrons in a spin singlet. Spin triplet states – requiring an antisymmetric spatial wavefunction
– are not accessible by our method.
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H atom He atom H2 molecule H2 molecule
(R = 2.8)

Numerically exact -0.5 -2.903 -1.173 -1.071
Hartree-Fock N/A -2.862 (1.4%) -1.129 (3.8%)
Ours -0.497 (0.6%) -2.898 (0.2%) -1.169 (0.3%) -1.068 (0.3%)

Table 1: Comparison of our approach with Hartree-Fock and numerically exact values for the
ground state energies. The percentages within parentheses are the relative errors of an
energy estimate compared to the numerically exact value.

The Hydrogen molecule consists of two electrons orbiting a pair of bound protons at separation
R, which repel each other. With the protons at positions ±Rẑ/2, the Hamiltonian becomes

H = −1

2

(
∇2

r1
+∇2

r2

)
+

1

R
+

1

|r1 − r2|
− 1

|r1 −Rẑ/2|
− 1

|r1 +Rẑ/2|
− 1

|r2 −Rẑ/2|
− 1

|r2 +Rẑ/2|
.

(41)
The correlation energy of the Hydrogen molecule is -0.044 Hartrees, corresponding to 3.8% of the
numerically exact value.

To model the Hydrogen molecule, we also used the PAIRDRIFT network with the skip con-
nection describing the electron-electron and electron-nucleus cusps. We find a ground state energy
within 0.3% of the exact value at the equilibrium separation of R = 1.401. For a stretched Hydro-
gen molecule at R = 2.800 (i.e. twice the equilibrium separation), our result is similarly 0.3% from
the exact value.

All our results for the atomic and molecular systems are given in Table 1.

4.3. Bosons in a Harmonic Trap

As an example of a many-particle system we study a system of N identical bosons trapped in a
two-dimensional isotropic harmonic potential, with the atom-atom interactions approximated by a
finite-sized Gaussian contact potential (Mujal et al. (2017)). The relevant Hamiltonian reads

H =
N∑
i=1

[
−1

2
∇2
i +

1

2
ri

2

]
+

g

πs2

N∑
i<j

exp
[
− (ri − rj)2 /s2

]
(42)

where g and s are respectively the strength and range of the pairwise interaction.

We simulated the ground state for N = 2, 3, and 4 bosons for s = 0.5 and g = 0 − 15 using
the PAIRDRIFT neural architecture. The energies derived via the neural network are compared with
those of Mujal et al. (2017) (obtained by exact diagonalization) in Section 4.3. An energy correspon-
dence within 1% of the exact diagonalization results was observed for all parameter combinations.
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Figure 3: (Left) The learned drift field for interaction strength g = 15 of one boson (orange) in the
presence of the others (green), together with the restoring drift arising from the harmonic
potential pushing particles to the center (cross). Note the resultant drift field tends to keep
the bosons apart. (Right) Comparison of ground state energies of N = 2, N = 3, and
N = 4 bosons (blue, orange and green, respectively) with results of Mujal et al. (2017).

5. Conclusion

In this work we have presented a novel neural approach to many-body quantum mechanics that
leverages the optimal control formulation of Holland (1977) to approximate the Feynman–Kac path
measure. This contrasts with earlier deep learning approaches to the many-body problem that start
from the Schrödinger picture. We have demonstrated the utility of our approach for some simple
many-body problems.

Future work will extend this approach in the following directions:

1. Many models studied in condensed matter physics are defined on a lattice rather than in
continuous space. In this case identical particles are handled by working with occupation
numbers – the count of particles on each lattice site – rather than by introducing a fictitious
index for each particle and then demanding invariance under labelling. The control theoretic
perspective is well suited to such discrete state spaces as described in Todorov (2007).

2. Rotating systems or systems with finite angular momentum may be handled with a modi-
fied cost function that leads to a rotational component to the drift. This is how time rever-
sal symmetry is broken in our formalism, corresponding to complex wavefunctions in the
Schrödinger picture.

3. The memory cost of backpropagating through SDE trajectories is a major limitation of our
approach that could be addressed using checkpointing Martens and Sutskever (2012); Chen
et al. (2016); Gruslys et al. (2016). Chen et al. (2018) suggested that neural ODE models
be trained at constant memory cost by solving the linear adjoint equation backwards in time.
The difficulties associated with implementing this method in the SDE case are discussed in
Tzen and Raginsky (2019), though very recent work has addressed this issue Li et al. (2020).
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Michelle Boué, Paul Dupuis, et al. A variational representation for certain functionals of brownian
motion. The Annals of Probability, 26(4):1641–1659, 1998.

Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, 2017.

D. M. Ceperley. Path integrals in the theory of condensed helium. Rev. Mod. Phys., 67:279–355,
Apr 1995. doi: 10.1103/RevModPhys.67.279. URL https://link.aps.org/doi/10.
1103/RevModPhys.67.279.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In Advances in neural information processing systems, pages 6571–6583,
2018.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert. Symmetries and many-body
excitations with neural-network quantum states. Physical review letters, 121(16):167204, 2018.

Paolo Dai Pra and Michele Pavon. On the markov processes of schrödinger, the feynman-kac
formula and stochastic control. In Realization and Modelling in System Theory, pages 497–504.
Springer, 1990.

Freeman J Dyson. A brownian-motion model for the eigenvalues of a random matrix. Journal of
Mathematical Physics, 3(6):1191–1198, 1962.

RP Feynman. Statistical mechanics: a set of lectures. Westview Press, 1998.

RP Feynman and AR Hibbs. Path integrals and quantum mechanics. McGraw, New York, 1965.

Wendell H Fleming. Exit probabilities and optimal stochastic control. Applied Mathematics and
Optimization, 4(1):329–346, 1977.

15

https://link.aps.org/doi/10.1103/RevModPhys.67.279
https://link.aps.org/doi/10.1103/RevModPhys.67.279


BARR GISPEN LAMACRAFT

W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal. Quantum monte carlo simulations of
solids. Rev. Mod. Phys., 73:33–83, Jan 2001. doi: 10.1103/RevModPhys.73.33. URL https:
//link.aps.org/doi/10.1103/RevModPhys.73.33.
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Appendix A. Probabilistic interpretation of the cost function

We show that the KL divergence between the probability of paths under the stochastic process (20)
and under the Feynman–Kac measure is, in the limit of long paths, given by (22).

A very general Gibbs variational principle for functionals of Brownian motion, including func-
tionals of FK type, appears in Boué et al. (1998). Here we provide only a heuristic argument adapted
to the T →∞ limit of interest for the ground state properties.

We first consider the Radon–Nikodym (RN) derivative between Pv and the distribution of Brow-
nian paths P0. Girsanov’s theorem tells us that this is

dPv

dP0
= exp

(∫
v(rt) · drt −

1

2

∫
|v(rt)|2dt

)
. (43)

Next, the Feynman–Kac formula can be expressed as the RN derivative (Dai Pra and Pavon (1990))

dPFK

dP0
=
ψ̃(rT , T )

ψ̃(r0, 0)
exp

(
−
∫ T

0
V (rt)dt

)
, (44)
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where ψ̃(rt, t) is the solution of the ‘backwards’ imaginary time Schrödinger equation

∂ψ̃(r, t)

∂t
=
[
Hψ̃

]
(r, t). (45)

The RN derivative (44) defines a path measure that relates initial and final distributions

π(r, 0) = ψ(r, 0)ψ̃(r, 0)

π(r, T ) = ψ(r, T )ψ̃(r, T ). (46)

If we take both distributions to be the ground state distribution π0(r) then

ψ̃(rT , T )

ψ̃(r0, 0)
= eE0T ϕ0(rT )

ϕ0(r0)
.

Using these results to evaluate the overall RN derivative gives

log

(
dPv

dPFK

)
= log

(
dPv

dP0

dP0

dPFK

)
=

∫
v(rt) · drt +

∫
dt

(
−1

2
|v(rt)|2 + V (rt)

)
− E0T + log

(
ϕ0(r0)

ϕ0(rT )

)
=

∫
v(rt) · dBt +

∫
dt

(
1

2
|v(rt)|2 + V (rt)

)
− E0T + log

(
ϕ0(r0)

ϕ0(rT )

)
= `T − E0T + log

(
ϕ0(r0)

ϕ0(rT )

)
(47)

This yields the result (22).
It is instructive to show how the RN derivative vanishes when the drift is optimal. In this case

vU (r) = −∇U(r) where ϕ0(r) = e−U(r). Itô calculus then gives

dU(rt) = −vU (rt) · drt −
1

2
∇ · vU (rt)dt, (48)

so that
U(rT )− U(r0) = −

∫
vU (rt) · drt −

1

2
∇ · vU (rt)dt.

Thus the RHS of (47) is

log

(
dPv

dPFK

)
=

∫ T

0
[V (rt)− VU (rt)] dt− E0T, (49)

where VU = 1
2

(
∇ · vU + v2

U

)
as before. This vanishes exactly when V = VU +E0 for any T . This

is the analogue of the ‘zero variance property’ in variational quantum Monte Carlo (Foulkes et al.
(2001)) that greatly enhances the efficiency of that algorithm.

Appendix B. Hyperparameters

We used an exponential decay of the learning rate: the learning rate was multiplied by a factor 0.95
every 10 training steps. For the bosons in a harmonic trap, we used the same hyperparameters for
all simulations. The initial learning rates, as well as other training hyperparameters can be found in
Table 2.
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H atom He atom H2 molecule H2 molecule (R = 2.8) Bosons
Batch size 210 210 210 210 29

Initial learning rate 10−2 10−3 5× 10−4 10−2 10−2

Number of time steps 210 210 210 210 26

Time step 0.01 0.01 0.01 0.01 0.01
Width of hidden layer 256 64 64 64 64

Table 2: Hyperparameters used in training.
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