
i
i

“ms˙fragility˙PNAS” — 2015/9/24 — 11:57 — page 1 — #1 i
i

i
i

i
i

Interatomic repulsion softness directly controls the
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We present an analytic scheme to connect the fragility and viscoelas-
ticity of metallic glasses to the effective ion-ion interaction in the
metal. This is achieved by a novel approximation of the short-range
repulsive part of the interaction, combined with nonaffine lattice
dynamics to obtain analytical expressions for the shear modulus, vis-
cosity, and fragility in terms of the ion-ion interaction. By fitting
the theoretical model to experimental data, we are able to link the
steepness of the interionic repulsion to the Thomas-Fermi screened
Coulomb repulsion and to the Born-Mayer valence-electron overlap
repulsion for various alloys. The result is a simple closed-form expres-
sion for the fragility of the supercooled liquid metal in terms of few
crucial atomic-scale interaction and anharmonicity parameters. In
particular, a linear relationship is found between the fragility and the
energy scales of both the screened Coulomb and the electron-overlap
repulsions. This relationship opens up opportunities to fabricate al-
loys with tailored thermo-elasticity and fragility by rationally tuning
the chemical composition of the alloy according to general principles.
The analysis presented here brings a new way of looking at the link
between the outer-shell electronic structure of metals and metalloids
and the viscoelasticity and fragility thereof.

metallic glasses | fragility | repulsive interaction

Introduction

Understanding the mechanism which governs the emer-
gence of mechanical stability at the glass transition of

supercooled metallic liquids [1] calls for deeper insights into
the connection between the fragility index and the interatomic
interaction. As previous work suggested [2, 3, 4], mechan-
ical stability in amorphous solids is crucially linked to the
repulsive part of the interatomic interaction potential. How-
ever, no consensus has been reached on whether interatomic
repulsion softness correlates with strong glasses [5] or with
fragile glasses [6]. We derive an analytical closed-form rela-
tion between the fragility index of metallic glass formers and
the short-ranged repulsive part of the interatomic interaction
given by pseudopotential theory. This fundamental relation is
obtained from a one-parameter theory fit to experimental rhe-
ological data of supercooled metallic melts. Resorting to this
combination of theory and experiments, it is established that
interatomic repulsion softness in metals goes along with strong
glasses and low fragility. Surprisingly, given the difference in
energy scale of many orders of magnitude and the nature of
the microscopic interaction, this finding is in full agreement
with the correlation observed experimentally for soft colloidal
glasses by Mattsson, Weitz and co-workers [5]. Finally, we
establish a quantitative link between our analysis and the the-
ory of shear transformation zones to estimate the size of the
cooperatively rearranging regions in good agreement with the
findings in Ref. [7].

Shear modulus of glasses
The starting point for linking the shear modulus and the
atomic connectivity analytically is the theoretical framework
of nonaffine elastic response [8, 9, 10]. The standard affine ap-

proximation of the classical Born-Huang theory is not appli-
cable to amorphous as well as other non-centrosymmetric lat-
tices [11]. This problem arises due to the lack of local inversion
symmetry in amorphous solids. As a consequence, the defor-
mation forces which are transmitted to an atom by its bonded
neighbours do not balance each other by mirror symmetry.
The resulting forces, which act on every atom, are released
through additional nonaffine motions on top of the standard
affine displacements dictated by the macroscopic strain. In
other words, the continuum assumption that the macroscopic
deformation scales down to the microscopic lattice does not
generally hold for amorphous systems.

Structural disorder and nonaffine motions can be taken into
account using the theory of nonaffine elastic response. For an
amorphous solid under a shear strain γ, we can express the free
energy of deformation as F (γ) = FA(γ) − FNA(γ) [12]. The
two terms represent the standard affine contribution to the
free energy, provided by the framework of Born-Huang lattice
dynamics [13, 14], and the nonaffine contribution, respectively.
Resorting to an eigenfunction decomposition of the nonaffine
contribution, it is possible to derive an analytic expression for
the shear modulus of an amorphous lattice. This has been
done for example by Lemâıtre and Maloney [8] and the result
for the shear modulus is given by

G = GA −GNA = GA −
∑
i,j

fTi H
−1
ij f j , [1]

Significance

Bulk metallic glasses are the most promising materials in many
technological applications thanks to their mechanical properties.
The stability and thermo-elasticity of supercooled liquid metals
is encoded in the temperature-dependence of the viscosity at the
glass transition: the fragility. While with colloidal glasses it has
been possible to explain the fragility in terms of the ”softness”
(or its inverse: the steepness) of the microscopic inter-particle
potential, the same could not be done with metals due to the
complex interatomic interaction. Here we solve this problem and
propose a new methodology which provides the missing analyt-
ical link between fragility and interatomic potential in metals.
Surprisingly, our results show that the same scenario found ear-
lier with colloidal glasses applies to metals too.
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where Hij = (∂2U/∂ri∂rj)γ→0 represents the standard dy-

namical matrix of the solid [15], U the internal energy of the
system and f i the force acting on the atoms due to the shear

deformation [8]. The explicit expression for the affine contri-
bution to the shear modulus is given by GA = (N/30V )κR2

0Z,
which is discussed in the Supporting Information. As shown in
Ref. [9], assuming a central-force interaction and introducing
the atomic packing fraction φ = vN/V , with v a characteristic
rigid-core volume, Eq. [1] can be evaluated analytically as

G = GA −GNA =
1

5π

κ

R0
φ(Z − Zc). [2]

The non-affinity of the amorphous solid is encoded in the quan-
tity −Zc, which denotes the critical number of bonds at which
the shear modulus vanishes by virtue of the nonaffine soft-
ening mechanism. This expression still does not include the
direct contribution of thermal effects to the elastic response.
Thermal vibrations in fact soften the shear modulus by an ad-
ditional negative term −3(N/V )kT∂2(ln ~ω/kT )/∂γ2 [9, 16].
For many materials, including metallic and polymer materials,
this contribution is very small compared to the other terms in
Eq. [2]. It determines a decreasing trend of G with T which
is negligible compared to the combined effect of non-affinity
and thermal expansion [17].

Temperature dependence of the shear modulus
The crucial effect which controls the temperature dependence
of the shear modulus is the change in atomic connectivity Z
due to Debye-Grüneisen thermal expansion [9]. Approaching
the glass transition temperature Tg from below, this effect is
responsible for the loss of mechanical stability. We will show
that the same effect is responsible for the decrease of the high-
frequency shear modulus with increasing T in the supercooled
liquid above Tg.

The atomic packing fraction φ is reduced upon increasing
the temperature T , an effect mediated by the thermal expan-
sion coefficient defined as αT = 1

V
(∂V/∂T ) = − 1

φ
(∂φ/∂T ).

Integrating this, we see that the atomic packing fraction
evolves with T according to log(1/φ) = αT T+c. For an amor-
phous metal, a decrease in Z arises if the separation between
two particles is larger than the typical length scale of attrac-
tion defined by the first minimum of the interatomic pseu-
dopotential rmin. For example, if the separation of an atom
from one of its caged nearest-neighbours exceeds r > rmin, the
neighbour effectively leaves the coordination shell or cage [9],
and no longer contributes to the cage elasticity.

When increasing T , the average spacing between atoms in
the coordination shell becomes larger, and the probability of
nearest neighbours leaving the connectivity shell increases. It
is then possible to use the radial distribution function g(r) to
relate the change in packing fraction δφ, due to an externally
imposed change in temperature δT , to the change in connec-
tivity δZ. Following along the lines of Ref. [9], the change of
atomic connectivity δZ = Z − Zc, relative to the critical sta-
bility (isostatic) point Zc, can be calculated when the density
of the system increases by an increment δφ = φ−φc according
to

Z − Zc ∼
∫ 1+δφ

1

r2g(r) dr, [3]

where r represents a dimensionless distance defined with re-
spect to the rigid-core diameter σ. Since the radial distri-
bution function g(r) is not known in analytical form for real
materials, we introduce an approximation scheme. The basic
idea is to represent the repulsive side of the first peak of g(r)

by means of the power-law approximation g(r) ∼ (r− σ)λ. In
this way, the parameter λ uniquely characterises the steepness
of the left-hand side of the first-peak of the radial distribu-
tion function. The dashed lines shown in Fig. 1 (a) represent
the power-law approximation to the actual radial distribution
function.

We know that the potential of mean force [18] between
two atoms is related to the radial distribution function by
Vm/kT = − ln g(r) ∼ − ln(r − σ)λ, where the ion-core di-
ameter σ indicates the mutual separation between two ions
at which the interaction energy is practically infinite. If the
separation between two ions is small, Vm reduces to the short-
range part of the ion-ion repulsion. Hence, λ is proportional
to the steepness of the short-range effective repulsion and in-
versely proportional to the softness of the pseudopotential,
which scales as 1/λ.

Subsequently, with the power-law approximation for g(r) in
Eq. [3], the change in connectivity becomes a function of
the repulsion steepness λ: δZ ∼ δφ1+λ. It is assumed that
the spherical integration is well approximated by Cartesian
coordinates at short separations. When decreasing the tem-
perature by δT < 0, the atomic packing fraction grows by
δφ = −φαT δT > 0. Consequently, the connectivity Z in-
creases more strongly for steeper pseudopotentials than for
the softer counterpart. Analogously, an increase of tempera-
ture, δT > 0, causes the atomic connectivity to decrease more
abruptly with T for a steep ion-ion repulsion, and more grad-
ually for a softer interaction.

The high-frequency shear modulus
Experimental measurements of the viscosity and shear mod-
ulus of supercooled liquid metals at the glass transition can
be obtained using ultrasonic techniques, which probe the ma-
terial response at frequencies in the GHz range [19]. These
high frequencies exceed the typical relaxation frequency of
a metallic glass by several orders of magnitude [20]. Under
such conditions, the response to an applied oscillatory shear
strain generally is dominated by the instantaneous (affine or
quasi-affine) limit of the shear modulus. For frequencies ω
much larger than the inverse of the Maxwell relaxation time
τ , that is for ωτ � 1, the shear modulus cannot decay through
a nonaffine relaxation process. This situation is sketched in
Fig. 1 (b) together with the low-frequency case, where the
nonaffine decay is possible.

At high frequency, the atoms cannot leave their affine po-
sitions to reach the nonaffine positions, as the deformation is
too quickly reverted. Hence, the elastic response at GHz fre-
quencies is predominantly affine, as shown in the Supporting
Information using the full nonaffine response theory. Consid-
ering Eq. [2], this means that the shear modulus is reduced

to its affine contribution in the sense that G
ω→∞−−−−→ GA. Con-

sequently, in this regime the expression for G is proportional
to Z [13], but no longer depends on the critical connectivity
Zc. Therefore, it holds true that δZ → Z and δφ→ φ. Setting
Zc and φc to zero is the defining feature of the high-frequency
quasi-affine limit [14].

Going back to Eq. [1], we recognise that in the regime
ωτ � 1 this leaves us with G = 1

5π
κ
R0
φZ. We recall that the

packing fraction depends on T , φ(T ) ∼ e−αT T and, thus, we

obtain Z(T ) ∼ e−(1+λ)αT T . Upon replacing this result in the
above equation for G, we find that the T -dependence of the
shear modulus is dictated by

G(T ) ∼ 1

5π

κ

R0
exp

[
− (2 + λ)αTT

]
. [4]

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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The high-frequency shear modulus now explicitly depends on
the softness of the interaction potential, and on the thermal
expansion coefficient αT . Both these crucial effects are reflec-
tions of the anharmonicity of the elastic response.

As already hinted above, we shall remark that in general
there is also a phonon contribution to the shear modulus pro-
portional to kT e−αT T . However, this contribution is typically
negligible with respect to the one in Eq. [4] [17], even more
so, if one considers, as it will be shown below, that typical
values of λ are in the range 100− 400.

Comparison with experimental data
The above expression for the high-frequency affine shear mod-
ulus can be rewritten as

G(T ) = CG exp

[
αTTg(2 + λ)

(
1− T

Tg

)]
, [5]

where CG = ε
5π

κ
R0

e−αT Tg(2+λ) is a prefactor independent of

T . The constant ε stems from the integration of αT and from
the dimensional prefactor in the power-law ansatz for g(r). All
the parameters in this expression, which are given in Tab. 1,
are fixed by the experimental protocol, apart from the fitting
parameter λ related to the ion-ion repulsion steepness. With
Eq. [5] at hand, we can generate a one-parameter fit to the
experimental data provided from Ref. [19], which accurately
captures the data sets for the three metallic glass alloys, as
can be seen from Fig. 2 (a). The different slope of the three
depicted curves reflects the fact that the repulsion steepness
λ in Eq. [5] controls the behaviour of G(T ). A decreasing λ,
among the different alloys, correlates with a slower decrease
of the shear modulus upon increasing the temperature.

Furthermore, we can use our model for the high-frequency
shear modulus to evaluate the activation energy E(T ) involved
in restructuring the glassy cage and, hence, the viscosity η of
the melts. Within the framework of the shoving or elastic
model of the glass transition [21, 22, 23, 24], the activation
energy for local cooperative rearrangements is E(T ) = GAVc.
The characteristic atomic volume Vc appearing here is acces-
sible through the theoretical fitting to the viscosity data, al-
though its value is approximately specified by the atomic com-
position of the alloy.

Replacing the expression for the activation energy in the
Arrhenius relation given by the shoving model of the glass
transition, and using Eq. [5] for the high-frequency shear
modulus GA inside E(T ), we obtain the following analytical
expression for the viscosity,

η(T )

η0
= exp

{
VcCG
k T

exp

[
(2 + λ)αTTg

(
1− T

Tg

)]}
, [6]

where η0 is a normalisation constant.
It is important to note how the double-exponential of the

viscosity versus T arises. The first exponential stems from the
elastic activation described in the framework of the shoving
model, whereas the second exponential is due to the Debye-
Grüneisen thermal expansion rooted in lattice-dynamical con-
siderations, and ultimately related to anharmonicity.

We compare the theoretical predictions to the experimental
data of Ref. [19] in Fig. 2 (b). In this case there is also an ex-
cellent agreement between theory and experiment with the ad-
justable parameters being λ, the steepness of the short-ranged
ion-ion repulsion, and Vc, the characteristic atomic volume.

Interatomic repulsion and fragility
With the analytical theory developed above, we are in the po-
sition to relate the atomic-scale properties of the interaction
between ions to the experimentally observable macroscopic re-
sponse of the material. We now consider the behaviour of the
viscosity in Fig. 2 (b) together with the corresponding be-
haviour of the interaction parameter λ for various alloys in
Tab. 1. Evidently, upon approaching the glass transition, the
slope of the viscosity η(T ) is controlled by the interatomic re-
pulsion steepness λ, which depends on the atomic composition
of the alloy. A steeper pseudopotential repulsion between two
nearest-neighbour ions goes hand in hand with a steeper rise
of viscosity, when T is increased.

This observation leads us straight to connecting the softness
of the potential to the fragility of metallic glasses. The fragility
is given as the slope of the viscosity evaluated at the glass

transition temperature Tg, i.e. m =
( ∂ log10(η/η0)

∂(Tg/T )

)∣∣
T=Tg

[25].

Using the analytical expression for η, Eq. [6], we obtain a
simple relation between the fragility m and the steepness of
the interatomic repulsion λ given by

m(λ) =
1

ln 10

VcCG
kTg

[
1 + (2 + λ)αTTg

]
. [7]

Metallic glasses with a steeper repulsive part of the interatomic
interaction are thus more fragile. The values of the fragility
obtained for the various alloys of Ref. [19] are listed in Tab. 1,
together with the fitted values of the interatomic repulsion
steepness λ. Good agreement is also found with independent
experimental measurements of m from the literature.

Intriguingly, this prediction is in full agreement with the
experimental findings of Ref. [5]. In that work the softness
of the interparticle potential was varied in a model colloidal
glass, where the energy scale is orders of magnitude smaller
than in metals.

The model also can capture the behavior of m observed in
simulation studies of Lennard-Jones glasses, where the attrac-
tive anharmonicity controls the fragility via the thermal ex-
pansion coefficient and, by construction, a high anharmonicity
is accompanied by a low repulsion steepness [26].

Extracting pseudopotentials from experimental data
Given the schematic form of the repulsive short-range part of
the interaction, − ln(r − σ)λ, used in the fitting, it is desir-
able to map this semi-empirical repulsion onto a physically
realistic interatomic pseudopotential. This can be achieved
by using an Ashcroft-type pseudopotential for modelling the
Thomas-Fermi screened interionic Coulomb repulsion [27] and,
in addition, a Born-Mayer interaction term which accounts for
the effect of electron-overlap and Pauli exclusion repulsion be-
tween valence-electron shells of two interacting ions [28]. A
more detailed discussion of this matter can be found in the
Supporting Information. This combination of the two contri-
butions to the interaction is the most meaningful choice for
the present situation, as discussed in [29].

The softness of the pseudopotential is predominantly con-
trolled by the Born-Mayer parameters, because electron-
overlap repulsion between valence electrons is more energetic
over a broader length scale compared to the Ashcroft contribu-
tion, as illustrated in the Supporting Information. Physically,
a slower decay of the electron-overlap repulsion with distance
reflects the softness of the effective interaction. The glass sta-
bility, however, is optimised by the coexistence of both softness
and substantial repulsion, as is the case for technologically im-
portant alloys, like binary Zr-Cu alloys [30].

Footline Author PNAS Issue Date Volume Issue Number 3
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Microscopically, it is the strongly anisotropic density dis-
tribution of d-shell electrons, due to the quadrupolar d-wave
symmetry, which provides significant softness (upon taking a
spherical average), compared to the more isotropic electron
density distribution of elements whose outer shells are domi-
nated by s-electrons. Hence, the form of the pseudopotentials
may explain the difference in stability and fragility based on
the composition of the alloy. In our model, this effect is ex-
pressed by the energy-scale of the Born-Mayer repulsion B. In
particular, we find that B correlates linearly with the fragility
index m, as shown in Fig. 3 (b). This correlation reflects the
fact that d-shell orbitals effectively soften the interatomic re-
pulsion, whereas s-shell electrons are associated with steeper
repulsion and higher fragility.

The second effect which is captured by this approach is the
ion-size mismatch. If smaller metal atoms are added to larger
atoms, fragility decreases and strong glasses can be formed.
This mechanism which affects multi-component alloys is anal-
ysed and discussed in [31]. Again, this is the consequence of an
effectively softer interatomic repulsion. Smaller atoms of met-
alloids like P, B or Si can easily come closer to larger ions like
Pd, La, Zr or Cu by fitting into the“voids” of the quadrupolar
d-shell structure. In general, this topological effect also leads
to a softer average pseudopotential.

This connection between macroscopic flow behaviour, en-
coded in m, and electronic structure is an important step to-
wards a unifying framework for understanding and controlling
mechanical properties of metallic glasses on the atomic scale.

Connection with cooperative shear events
As already pointed out, the energy necessary to trigger a shov-
ing event is E(T ) = GA(T )Vc. Importantly, the characteristic
atomic volume Vc is not the volume change which is connected
to a shoving event. This quantity, also called the activation
volume ∆V , is connected to Vc and the initial shoving volume
V via the relation

Vc =
2

3

(∆V )2

V
, [8]

which can be derived in the framework of the elasticity theory
of an isotropic expanding sphere [23].

It is widely believed that shear transformation zones (STZs)
are the fundamental plastic entities responsible for the yield-
ing mechanism in metallic glasses. STZs are clusters of atoms
which can cooperatively rearrange under shear stress, and
are directly connected to the local accumulation of free vol-
ume [32]. It is in this sense that the activation of STZs allows
the involved atoms to rearrange more easily under shear stress.
Assuming that the initial shoving volume V corresponds to
the volume of a STZ, we find a direct relation between the
characteristic volume Vc and the activation volume ∆V in the
following way.

According to Ref. [33], the total energy barrier W between
two basins in the potential energy landscape can be evalu-
ated to give W ≈ (1/320)GAΩ, see Supporting Information.
We assume that W in the cooperative shear model is approxi-
mately equal to the shoving energy, that is W ≈ E. It directly
follows that GAVc ≈ (1/320)GAΩ, which leads us to conclude
that the effective volume of a STZ is Ω ≈ 320Vc.

It is physically meaningful that the effective STZ volume
Ω is approximately equivalent to the initial shoving volume
V , henceforth calling it VSTZ. Using the identification Ω ≈
VSTZ ≈ 320Vc, we can use the values for Vc to extract values
for STZ volumes from our theoretical analysis and compare
them to experimental results for VSTZ from Ref. [7]. We find

that the calculated STZ volumes for the respective alloys are
in very good agreement with the experimental results for sim-
ilar alloys, which is displayed in Tab.2.

Moreover, using VSTZ ≈ 320Vc together with Eq. [8], we
obtain a relation between the activation volume and the char-
acteristic volume Vc given by ∆V ≈

√
480Vc. With the values

for Vc from the viscosity fitting, we can calculate the activa-
tion volume for the corresponding alloys to be in the range

151−324 Å3. For a Pd-based metallic glass, an activation vol-

ume of 106Å3 was found experimentally [34], which is not too
far from our estimate for the alloys discussed here.

Elsewhere the activation volume for Zr41.2 Ti13.8 Cu12.5 Ni10
Be22.5 is determined to be 75 Å3 [35]. For the same alloy, we
calculate the value for the activation volume from the corre-
sponding Vc with the result ∆V = 186 Å3, which is about 2.5
times larger in comparison. This difference may be explained
by the different deformation protocols (shear amplitude, ap-
plied stress rate, etc.), in the respective experiments. It is
argued in Refs. [36, 37] that a higher degree of applied stress
leads to an increase of the size of the individual flow units,
which means that both the STZ volume and the activation
volume tend to increase.

Conclusions
The basic mechanism controlling the mechanical response and
the fragility of liquid metals close to vitrification can be sum-
marised in the following way. Due to thermal expansion, an
increase in the temperature leads to a decreasing atomic pack-
ing fraction and, thus, to a decrease of atomic connectivity.

The latter effect softens the material, causing the shear mod-
ulus to decrease with T . The rate of this process is controlled
by the steepness of the repulsive short-range interatomic in-
teraction. This mechanism propagates to the viscosity, and it
controls its temperature dependence and leads to fragile be-
haviour with steep interatomic repulsion, and to strong glasses
when the repulsion is softer. In an amorphous solid we can
picture this situation by considering a reference atom which
is surrounded by a number of neighbouring atoms, forming a
disordered cage. The repulsive interaction between these par-
ticles provides stability to the cage. When the temperature
is increased, a corresponding change of packing fraction takes
place, implying that the disordered cage around the reference
atom becomes larger and less stable, see Fig. 4.

With this moving farther apart of the nearest neighbours
from the reference atom, the local stabilising energy felt by
the atoms decreases due to a smaller overlap of the repulsive
interatomic interactions by ∆E. At the onset of the glass tran-
sition, the stabilising effect of the atomic cage breaks down,
which ultimately leads to the vanishing of the zero-frequency
shear modulus at Tg. It is the steepness of the repulsive pseu-
dopotential which controls how rapidly or abrupt the the sta-
bilizing energy decreases as the temperature is increased. For
an alloy whose constituents exhibit a steeper interatomic re-
pulsion, this process of destabilisation will be more abrupt re-
sulting in a faster variation of the shear modulus and viscosity
with T and, correspondingly, to a more fragile glass.

We also show that the steepness of the interatomic repulsion
for various metallic alloys can be mapped one-to-one onto a
pseudopotential with two contributions. The overall softness
of the pseudopotential is mainly controlled by Born-Mayer re-
pulsion stemming from the overlap of valence-shell electrons.
A direct relation of linear proportionality between the fragility
index m and the Born-Mayer energy B is obtained from the
fitting to experimental data. Lower values of B may correlate
with mixtures of elements having outer electrons in d-shells,

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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as is the case of Cu in Zr-Cu alloys, or with the concentration
of metalloid in metal-metalloid mixtures. Systematic studies
in the future using ab-initio simulations may shed light on the
link with the detailed electronic structure.

Furthermore, we connect the characteristic atomic volume
Vc with the size of STZs. In this regard, STZs appear to
be regions in the amorphous solid with a relatively low aver-
age atomic connectivity Z. These regions are prone to elastic
stress accumulation, leading to an increase in individual shov-
ing events, which eventually results in macroscopic plasticity.

While there exists a clear linear relation between the
fragility and the repulsive steepness λ, the correlation between
the size of a STZ and the fragility exhibits no simple form and
remains to be understood in future investigations. We believe
that the present framework may open up the possibility, in fu-
ture work, of a priori designing metallic glasses with tailored
rheological and mechanical properties (e.g. plasticity and duc-
tility [38] based on the alloy elemental composition.
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Table 1. Summary of the experimental data

Alloy Tg(K) 102αTTg λ CG (GPa) Vc(10−27m3) m(λ) m

Zr46.75 Ti8.25 Ni10Cu7.5 Be27.5 597[19] 0.591 99.7 34.52 — — —
Pd43 Cu27 Ni10 P20 567[19] 0.935[39] 115.9 30.44 — — —
Pt57.5 Ni5.3 Cu14.7 P22.5 489[19] 0.776 164.2 30.56 — — —

La55 Al25 Ni20 465[39] 0.711[39] 196.2 15.4 [20] 0.0148 37.16 37
[19]
450K 33

[40]
462K

Zr41.2 Ti13.8 Ni10 Cu12.5 Be22.5 623[39] 0.617[39] 276.4 33.2[19] 0.0085 38.74 40
[19]
613K 39

[41]
648K

Pd40 Ni40 P20 551[39] 0.856[39] 286.5 36.5 [20] 0.0069 49.91 50
[19]
560K 41

[42]
580K

Pd77.5 Cu6 Si16.5 625[39] 0.865[39] 381.2 32.9 [20] 0.0084 60.04 61
[19]
634K 52

[42]
635K

Table 2. Experimental and theoretical STZ volumes

Alloy Vc (nm3) Ω (nm3)

Pd40 Ni40 P20 0.0069 2.21

Pd48 Ni32 P20 - 2.36[7]

Zr41.2 Ti13.8 Ni10 Cu12.5 Be22.5 0.0085 2.72

Zr46.75 Ti8.25 Ni10 Cu7.5 Be27.5 - 3.13[7]

La55 Al25 Ni20 0.0148 4.74

La55 Al25 Ni20 - 5.31[7]
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(a)

(b)

Fig. 1. (a) Approximation of the repulsive part of the first peak of g(r) using two different

values for the steepness λ. An increase in λ is linked to a steeper slope of g(r). (b) In the

high-frequency regime the affine shear modulus represents a good approximation to the actual

behaviour of the shear modulus G = GA −GNA.
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(a)

(b)

Fig. 2. The experimental data points for various glass-forming alloys from [19] and the

respective fitting curves for the shear modulus in panel (a), and the viscosity in panel (b).

The solid lines are the one-parameter fitting curves obtained using the expressions Eqs. [5 ]
and [6 ], for the shear modulus and viscosity, respectively. The values used for the fittings are

reported in Tab. 1.
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(a)

(b)

Fig. 3. (a) The Ashcroft-Born-Mayer pseudopotential is depicted for four different glass-

forming alloys. The fragility m increases with the pseudopotential steepness. (b) The value of

the Born-Mayer energy scale increases linearly with the fragility. Also, it is observed that the

average ionic diameter decreases linearly with the fragility.
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Fig. 4. (Left) The distance between the atoms decreases as the temperature is increased

leading to a smaller overlap of the effective interaction potentials. (Right) The growth of the

cage by ∆R when increasing the temperature by ∆T and the corresponding loss of stabilizing

energy ∆E. The potentials are shifted for the sake of clarity.
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