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The purpose of the STAR 2019 Working Group was to build on findings from the initial 
STAR report to further clarify the expectations, limitations, perceptions, and utility 
of alloimmune assays that are currently in use or in development for risk assessment 
in the setting of organ transplantation. The goal was to determine the precision and 
clinical feasibility/utility of such assays in evaluating both memory and primary alloim-
mune risks. The process included a critical review of biologically driven, state-of-the-
art, clinical diagnostics literature by experts in the field and an open public forum in 
a face-to-face meeting to promote broader engagement of the American Society of 
Transplantation and American Society of Histocompatibility and Immunogenetics 
membership. This report summarizes the literature review and the workshop discus-
sions. Specifically, it highlights (1) available assays to evaluate the attributes of HLA 
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1  | INTRODUC TION

The ability to personalize management for a given transplant recipi-
ent and thereby optimize their long-term outcome remains a critical 
unmet need. Indeed, the majority of variance in the choice of induc-
tion or maintenance therapy is based on center-specific practices 
rather than on the traditional risk factors offered in practice guide-
lines.1,2 By comparison, other medical fields are realizing major ad-
vances in the development of diagnostic, prognostic, and predictive 
biomarkers enabling individualized therapeutic and monitoring strat-
egies while avoiding futile treatments with their associated toxicities.

In 2017, the STAR Working Group was launched by the 
American Society of Transplantation (AST) and American Society 
for Histocompatibility and Immunogenetics (ASHI) to address these 
unmet needs by evaluating (1) the prognostic utility of laboratory 
assays to precisely characterize an individual's alloimmune risk and 
(2) the predictive utility of laboratory assays to guide therapeutic 
decisions for the individual before transplant.

The STAR 2017 report3 highlighted the marked variability 
among centers for defining and assigning a level of alloimmune risk 
for a given donor/recipient pair. In part this is due to the misuse, and 
lack, of standardized terminology, and the varying interpretation of 
clinical assays without rigorous proof of the claims being asserted. 
STAR provided a primer to bring clarity and accuracy to alloimmune 
risk definitions and terminology. The STAR 2017 report also cre-
ated a framework and identified the need for every donor/recipient 
pair to be assigned 2 independent risk assessments: 1 for alloim-
mune memory and 1 for primary alloimmunity. This framework is 
intended to serve as a basis for precision therapeutic strategies.

The STAR 2019 Working Group's goal was to further expand on 
the expectations, limitations, perceptions, and actual utility of avail-
able alloimmune assays that are currently in use or in development 
to precisely evaluate alloimmune risk. Along with critically reviewing 
biologically driven, state-of-the-art, clinical diagnostics literature by 
experts in the field, the STAR 2019 workshop was open for public 
participation, to allow broader engagement of the AST and ASHI 
membership. High-level summary and recommendations is pre-
sented in Figure 1. To facilitate discussion on the clinical utility of 
current assays, this report provides a primer on the requirements 
set forth by Clinical Laboratory Improvement Act (CLIA), College of 

American Pathologists, and the US Food and Drug Administration 
(FDA) for qualification as a “clinical-grade” assay or biomarkers.

2  | ANALY TIC AL VALIDIT Y,  CLINIC AL 
VALIDIT Y,  AND CLINIC AL UTILIT Y OF 
L ABOR ATORY A SSAYS

In the United States, to ensure accurate and reliable test results, 
only laboratories accredited by a CLIA-approved program, such as 
Collage of American Pathologists, ASHI, etc., can perform tests using 
patients’ samples to support clinical decision making. All assays must 
demonstrate analytical validity, performance characteristics, as it per-
tains to the use of the assay in the laboratory's own environment (see 
42 CFR 493.1253(b)2; establishment of performance specifications). 
The analytical validation must document accuracy, precision, and 
analytical sensitivity (reproducibility, coefficient of variance [CV], 
reportable ranges, reference interval values, and analytical specific-
ity). Calibration and control procedures must be determined, and the 
laboratory must be enrolled in external proficiency testing programs. 
Even for an unmodified, FDA-cleared or approved test system, a 
laboratory must (1) demonstrate that it can obtain performance 
specifications comparable to those established by the manufacturer 
for accuracy and precision and (2) verify that the manufacturer's ref-
erence intervals (normal values) are appropriate for the laboratory's 
patient population before reporting results using that test (Table 1).

It is important to appreciate that an assay with pristine analytical 
validity does not imply association between the test result and a clini-
cal outcome. Thus, clinical validity of an assay should be proved beyond 
the analytical validity. For example, serum samples of patients under-
going dialysis do not have the same characteristics as samples from 
healthy controls. Similarly, sera from patients with high breadth and 
strength of HLA antibodies are likely to exhibit different properties 
compared with individuals with no or low levels of HLA antibodies.4 
It should be noted that the antibody-assay manufacturers do not have 
easy access to relevant patient populations’ material and thus are lim-
ited in their ability to evaluate assay performance in a clinical setting. 
As a result, our field only recently came to appreciate the limitations of 
inhibitory/interfering substances (“prozone”) and of bead saturation.5 
See the call for immediate action in this regard (Figure 2).

antibodies and their utility both as clinical diagnostics and as research tools to evaluate 
the effector mechanisms driving rejection; (2) potential assays to assess the presence 
of alloimmune T and B cell memory; and (3) progress in the development of HLA mo-
lecular mismatch computational scores as a potential prognostic biomarker for primary 
alloimmunity and its application in research trial design.

K E Y W O R D S

alloantibody, antigen biology, clinical research/practice, histocompatibility, lymphocyte 
biology, major histocompatibility complex (MHC), rejection: antibody-mediated (ABMR)
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The clinical utility of an assay requires evidence of an improved, 
measurable, clinical outcome that is directly related to the use of 
the test; that is, the test should add significant value to patient care. 
This takes into consideration how the assay is interpreted and how 
results are reported (positive/negative vs continuous scale) and ap-
plied. Unfortunately, while proper evaluation of an assay's clinical 
utility requires prospective randomized controlled trials (RCTs), to 
date new assays in the field of transplantation report prospective/
retrospective observational correlations, at best. In the absence of 
RCTs, evaluation of clinical utility is inferred based on systematic re-
views and/or meta-analytic approaches.

A systematic review collects, critically appraises, and summarizes 
the empirical evidence that fits a prespecified eligibility criterion. 
Meta-analysis is a statistical approach that assigns a point estimate 
(of an unknown “common truth”) from individual studies and pools 
results of multiple studies based on a weighted average. Most often, 
the random-effects model is used to express heterogeneity across 
disparate studies. A key benefit of this approach is the accumulation 

of information to reach higher statistical power. The end result, how-
ever, is an estimate of a mean parameter across population-of-stud-
ies rather than a population of patients.6,7 This is especially true in 
publications assessing HLA antibodies as different studies use differ-
ent testing methods and criteria to define the presence or absence 
of those antibodies.

A significant limitation of both systematic reviews and meta-analy-
sis is “publication bias.”8-10 It is well established that most manuscripts 
accepted for publication report on research that shows a significant 
result, usually in favor of a new treatment/test. “Negative result” sub-
missions are rarely published. Thus, a literature search is fundamentally 
biased as it is unlikely to identify publications with negative results. 
Many studies have identification problems arising from imperfections 
in the internal and external validity of the study, which cannot be fixed 
by the use of meta-analysis. It was therefore reported that the rele-
vance of systematic reviews and meta-analysis to personalized patient 
care is not evident and cannot replace well-designed prospective clin-
ical trials.11 See the call for immediate action in this regard (Figure 2).

F I G U R E  1   High level summary and 
recommendations: provide a brief review 
of assays and approaches to assess 
immunogenicity, their limitations, and 
recommendations regarding their use

 HIGH LEVEL SUMMARY AND RECOMMENDATIONS: 

o An�body A�ributes 

o Complement binding assays – most studies support correla�on between complement fixa�on, high MFI 
levels, and high an�body �ters; and all are associated with increased risk for AMR. It is not clear, however, 
whether there is a unique molecular signature that dis�nguish AMR as a result of complement binding from 
other pathways leading to AMR (ramifica�ons for therapeu�c strategies). The STAR workgroup recognizes 
the wide use of complement based assays in clinical prac�ce yet recommends not to confuse the absence of 
complement binding an�bodies (as detected by these assays) with presence of overall non-detrimental 
HLA-DSA.  

o IgG Subclasses – it is thought that different routes of allosensi�za�on trigger dis�nct pa�erns of IgG 
subclasses. It was further proposed that IgG1 and IgG3 are associated with Ac�ve AMR whereas IgG2 and 
IgG4 were proposed to show associa�on with Chronic ac�ve AMR. While the argument is compelling - 
current reagents do not withstand the rigor required for scien�fically sound interpreta�on and rou�ne 
clinical use. The STAR working group recommends pursuing the development of reagents with analy�cal 
validity prior to introducing such assays into clinical decisions. 

o Assays looking at HLA an�body outside-in signaling, leukocyte recruitment and recipient FC receptor 
genotyping are promising research tools. The STAR working group supports efforts to iden�fy specific 
pathways by which HLA an�bodies cause damage, as poten�al avenue for specific drug development. This 
is a key area of inves�ga�on, however, high quality reagents and well-designed studies are required prior 
to drawing scien�fically rigorous conclusions.  

o Memory Alloimmunity – these assays may have only a posi�ve predic�ve value (if a response is iden�fied in an in-
vitro assay, it is indica�ve of alloimmunity; lack of response in an in-vitro assay does not necessarily indicate lack of 
alloimmune memory). 

o Memory T Cell Assays 

Currently none of the assays reaches clinical grade applicability. 

Limita�ons in iden�fying donor-specific cells. 

o Memory B Cell assays 

Currently none of the assays reaches clinical grade applicability. 

Limita�ons in iden�fying donor-specific cells. 

The STAR working group emphasizes again the need for assays to detect and iden�fy donor-specific cell-based memory 
responses and urges the community and the funding ins�tu�ons to priori�ze such work  

o Primary Alloimmunity 

o None of the currently published HLA molecular mismatch (mMM) approaches seem to have an advantage 
over the other approaches. The STAR working group strongly advises that authors provide informa�on also 
at the amino-acid sequence level (with specific details about which por�ons of the molecule were used for 
comparison) in order to allow for comparison between publica�ons and draw encompassing conclusions. 

o The use of HLA mMM assessment for enriching popula�on-of-interest for the purpose of clinical drug-
development trials is currently being evaluated by the FDA. The STAR working group recognizes that such an 
approach for risk stra�fica�on post transplanta�on seems to show promise. However, we strongly 
recommend to await the considera�on of the FDA (including determina�on of applicable cut-off values 
etc.) 

o The use of HLA mMM assessment as a tool to guide organ alloca�on policies has no rigorous scien�fic 
support at this point. The STAR working group strongly advises against considering such an approach for 
alloca�on schemes un�l tools to assess immunogenicity are available and the impact of such an approach 
of diverse ethnic popula�ons have been thoroughly studied.  
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It is through this lens that the STAR 2019 workshop considered 
the potential state-of-the-art assays for pretransplant risk assess-
ment, highlighting need for scrutiny before full implementation into 
clinical decision-making schemes.

3  | AT TRIBUTES OF HL A ANTIBODIES

Although HLA donor-specific antibody (DSA) has shown association 
with AMR and poor allograft outcome,12 this correlation is far from 
being absolute. Factors that may contribute to this observation in-
volve the slow learning curve of accurately interpreting single anti-
gen bead (SAB) assay results. Even if a strict cutoff value is enforced, 
which is a questionable practice given the relatively high %CV in 
mean fluorescence intensity (MFI) read-out (>25% even when strin-
gent standardization was applied),13 additional factors such as lack 
of appreciation of potential inhibition, bead saturation, and “shared 
epitope phenomena” as mentioned by the STAR 2017 report3 can 
lead to incorrect conclusions regarding antibody detection. Finally, 
different attributes of HLA antibodies may lead to, or at least are as-
sociated with, different transplant outcomes. Thus, new approaches 
are being explored to optimize risk stratification (Table 2).

3.1 | Complement fixation assays

Lessons from the CDC crossmatch assay, the “gold standard,” indicated 
that complement activation is associated with the most severe forms 
of antibody-mediated rejection (AMR)—hyperacute and accelerated 
rejections.14 Thus, the increased sensitivity of the solid-phase–based 
Luminex assays was proposed as a means to differentially attribute risk 
levels to antibodies that activate complement in vitro vs those that do 
not.15-17 Assays developed to look at different components of the com-
plement cascade (C1q, C3d, C4d) indeed appear to reveal a correlation 
between this attribute and greater likelihood to develop AMR and a 
higher incidence of graft loss,18-20 including in a systematic review and 

meta-analysis.21 However, in AMR with DSAs that in vitro do not exhibit 
complement fixation, 40% have been reported to exhibit C4d+ histol-
ogy in vivo.22 Most of the data reveal a strong association between in 
vitro complement fixation and high MFI levels/antibody titers.4,23-25 This 
is further complicated by the fact that antibody titer can change dynami-
cally, which will affect the complement assay results, such that a low titer 
complement fixing DSA at a particular time point will be C1q– and then 
increase its titer to become C1q+ in a consecutive test.4,5,26,27 Although 
a distinct molecular signature for AMR appears to occur in the context of 
in vitro complement-fixing antibodies,28 it is not clear whether this cor-
relation is due to the titer and/or polyclonality of the circulating antibody 
rather than the relative ability of each subclass to fix complement.22,28-31

Gaps requiring further research:

1.	 Need to distinguish whether in vitro complement binding in 
solid-phase assays is simply a marker of higher titer/enhanced 
functional capacity of DSAs, or if it provides additional infor-
mation of an in vivo mechanism of physiological complement 
activation. This may have implications in associating such qualities 
with different types of AMR.

2.	 Need for biochemical analysis of antibody attributes associated 
with function (e.g., comparing class I vs class II antibodies, sialya-
tion status of DSA,32 and the relationship with the time of detec-
tion in a process). This may guide interpretation of assay results 
and choice of therapeutic management.

3.2 | HLA antibody subclass

Cell-based and solid-phase assays testing for HLA antibodies tradi-
tionally identify antibodies of the IgG isotype. However, these as-
says do not distinguish between stronger complement-fixing IgG1 
and IgG3 subclasses from the lesser complement-fixing IgG2 and 
IgG4, given that the detection reagent is specific for all Fcγ. Different 
routes of allosensitization trigger distinct patterns of IgG subclasses 
directed against HLA.33-35 Preliminary studies of HLA antibody 

TA B L E  1   Evaluation of laboratory assays—path for clinical utility

Purpose/expectations Information provided Regulated by

Analytical validity

Demonstrates the accuracy, precision, and reproducibility of 
the test in a clinical laboratory setting

How well does the test measure what it claims 
to measure

CMS/CLIA mandate

Clinical validity

Demonstrates the effectiveness of the test—ie correlation 
between the test result and the pathophysiology of the 
disease—for diagnostic/prognostic/predictive accuracy

How relevant is the test measurement to the 
clinical condition?

FDA mandate

Clinical utility

Demonstrates that the test result performs around the 
clinical decision point (SD and %CV that can change patient 
treatment)

Is the test result relevant to the clinical decision 
making (eg treatment). Can it lead to clinical 
decision that improves patient outcome

Often determined 
after the assay is in 
clinical use

Statistical significance ≠ clinical significance

Abbreviations: CLIA, Clinical Laboratory Improvement Act; CMS, Centers for Medicare and Medicaid Services; CV, coefficient of variance; FDA, US 
Food and Drug Administration.
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subclasses suggest that IgG2 and IgG4 do not constitute a large pro-
portion of HLA DSAs. Rather, HLA IgG1 and IgG3 are the predomi-
nant subclasses associated with graft rejection and graft loss.36-40 
Although preformed IgG3 DSAs may be associated with risk of acute 
rejection, DSAs of the IgG2 and IgG4 subclasses are not associated 
with absence of rejection (i.e., these subclasses are not demonstra-
bly benign).36,41 This may be due to the fact that IgG4 arises from 
repeated antigen stimulation such as is seen in allergy or chronic in-
fection and that the γ2 and γ4 genes are further downstream on the 

germline and often only produced after sequential switching from 
other γ immunoglobulins.28,42-45 Importantly, current reagents to 
determine IgG subclasses in the context of HLA-SAB assays have 
cross-reactivity/lack of specificity.46 Moreover, all studies to date 
attempting to define the IgG subclass of HLA antibodies have con-
ceded that 10%-20% of total IgG-positive HLA antibodies could not 
be classified by any of the 4 IgG subclass-specific reagents.36 Other 
technical limitations include difficulties in directly comparing con-
centrations of the individual IgG subclasses, different affinities of 

F I G U R E  2   Call for immediate action: highlights area where progress can be achieved within the near future, or where action is required 
in order to drive progress
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reagents, and the relative abundance of each subclass.34,47,48 Finally, 
virtually all patients present with a mixture of HLA DSA subclasses. 
All of these aforementioned issues make it difficult to draw robust 
conclusions regarding mechanisms of injury related to a given sub-
class of DSA and their individual impact on transplant outcome.

Gaps requiring further research:

1.	 Development of analytically validated reagents to study dif-
ferent strengths/titers of IgG antibody subclass in the context 
of commercially available HLA antibody testing platforms.

2.	 Longitudinal analyses of HLA antibody subclasses are needed, 
given that this is a dynamic and responsive biological system.

3.	 The mechanisms of graft injury by different subclasses are un-
known and need to be confirmed in experimental transplant mod-
els and in situ in allografts. This is required for assessing treatment 
strategies aimed at manipulating IgG subclass diversity.

3.3 | HLA antibody and outside-in signaling

Crosslinking of HLA molecules is a universal function of HLA 
class I and II antibodies irrespective of subclass. Crosslinking trig-
gers outside-in signal transduction and endothelial cell survival, 
proliferation, and migration, as evidenced by in vitro and in vivo 
models.49-54 The mechanisms have been studied and described 
to include the Src/FAK/Rho pathways.55,56 More recently, signal-
ing downstream of HLA crosslinking has also been demonstrated 
in parenchymal epithelial cells.52 It has been shown that the ca-
pacity for HLA antibodies to induce outside-in signaling is de-
pendent on the level of HLA antigen expression on graft cells 
and on HLA antibody titer and affinity/avidity. Experimental 
evidence highlights signaling pathways in vascular cells down-
stream of HLA class II molecules.51,57 The mTOR signaling axis 
that is activated by HLA class I and class II antibodies represents 
a potential diagnostic criterion for AMR and a therapeutic target 
to reduce endothelial cell activation during AMR. However, the 
relative role that outside-in signaling pathways play in determin-
ing patient outcomes remains to be studied in vivo.

Gaps requiring further research:

1.	 There is a need to determine which qualitative aspects of HLA-
DSA (IgG subclasses, titer, and specificities) are most relevant 
to the in vivo function (i.e., leukocyte recruitment, cell survival, 
cell proliferation amd migration, complement activation) and 
the pathology caused.

2.	 Correlation of signaling pathways identified in experimental 
models with the wealth of information arising from transcrip-
tomic characterization of human transplant biopsies undergoing 
rejection.

3.	 Determining whether the outside-in signaling pathways are also 
inducted following recognition by an Fc receptor–positive cell re-
mains unknown.

3.4 | Leukocyte recruitment, microcirculation 
inflammation, and recipient Fc receptor genotype

A hallmark of AMR across all solid organ transplants is the presence 
of intracapillary inflammatory cells in the allograft.28 Interactions 
between endothelial-bound HLA IgG antibodies and myeloid and 
NK cell FcγRs can facilitate tethering and adhesion of leukocytes. 
Endothelial cells exposed to HLA antibodies produce cytokines 
and growth factors that can signal in an autocrine and paracrine 
manner and promote inflammation.58,59 Data from in vitro experi-
mental assays indicate that FCGR2A polymorphisms on mono-
cytes govern interactions with distinct HLA IgG subclasses.60 
Similarly, the FcγRIIIA V158 high-affinity allele (CD16a) expressed 
on NK cells could enhance the ability of anti-HLA DSA to trigger 
inflammation in the microcirculation, resulting in adverse allograft 
outcomes.28,61

Gaps requiring further research:

1.	 Studies are needed to understand the mechanistic role of in-
travascular leukocytes in antibody-mediated acute and chronic 
graft injury and the interplay between HLA DSA titer, subclass, 
activated complement split products, Fc receptor polymorphism, 
and mechanisms of graft injury by microcirculation inflammation.

2.	 Larger prospective studies are needed to assess the effect of sig-
nal transduction inhibitors and other mediators of antibody-FcγR 
signaling pathways in active and chronic AMR and define the im-
pact of FcγR polymorphisms on leukocyte recruitment and long-
term graft outcomes.

4  | ALLO -SPECIFIC B AND T CELL 
IMMUNE MEMORY

Although HLA antibodies in the circulation pose best known appar-
ent and immediate risk to the allograft, many patients may harbor 
adaptive memory T and B cell responses that, at the time of clini-
cal consideration, are not apparent. STAR 2017 identified the lack 
of available assays to robustly detect B and T cell memory that have 
the potential to rapidly mount allo-specific responses as a significant 
gap. Here we provide a more in-depth summary of available assays.

4.1 | B cells

Current assays to determine prior sensitization to HLA antigen 
measure preformed circulating HLA antibodies (IgG). This reflects 
antibody production by long-lived plasma cells in the bone marrow 
and/or ongoing generation of short-lived plasma cells. Yet, humoral 
sensitization that resulted in the generation of memory B cells that 
are capable of mounting an amnestic response early posttransplant 
remain undetected.62-64 When driven into recall responses, the ma-
jority of memory B cells rapidly convert into antibody-secreting cells 
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(ASCs) and produce highly specific HLA antibodies, leading to acute 
AMR.64 Prior sensitizing events resulting in HLA antibody generation 
may have occurred decades before transplant assessment, and as 
such, the breadth and strength of antibodies detected in the circula-
tion may not reflect the breadth and depth of plasma cells or memory 
B cells that had been generated at the time of antigen exposure. In 
addition, loss of plasma cells or memory B cells may independently 
occur over time.65,66 Finally, there is a qualitative difference in affinity 
between memory B cells that tend to have lower B cell receptor af-
finity compared with antibodies produced by plasma cells (Table 3).67

Reliable means to detect the presence of allo-specific memory 
B cells before transplant many have the potential to transform our 
ability to risk-stratify patients and individualize immunosuppression 
and monitoring protocols, and several assays are under investiga-
tion. Flow cytometry–based assays using single HLA antigen–coated 
beads or multimers for detecting antigen-specific B cells are con-
ceptually straightforward and can be rapidly performed. However, 
there are significant technical challenges preventing the rapid ap-
plication of these assay for use in the clinic, including the lack of 
a broad array of HLA multimers, challenges in defining the condi-
tions that allow for the specific identification of low-frequency 
donor-specific B cells, preventing nonspecific binding to the HLA 
multimers or HLA-coated beads, and addressing the potential issue 
of B cell polyreactivity. Importantly, these assays have not been 
shown to be able to reliably and specifically quantify the frequency 
of memory HLA-reactive B cells in humans.64,68-72

Other studies have attempted to differentiate memory B cells into 
ASCs in vitro, followed by quantification of the resulting ASCs in an 
IgG ELISpot assay, or measurement of donor-specific antibodies in 
the culture supernatant as surrogate measures of the frequency of 
memory B cells. With these assays, it is important to remember that 
the HLA antibody concentration in the culture supernatant may not 
necessarily correspond to the frequency of the in vitro differentiated 
memory B cell, as it is possible that each plasma cell secretes different 
amounts of HLA antibody. In addition, such assays require 6-10 days 
of culture of the memory B cells for inducing in vitro differentiation, 
making these assays less practical when clinical results are required 
in a short time frame. On the other hand, potential recipients of a liv-
ing-donor transplant may benefit from such detailed quantification of 
memory B cell frequency. The use of an in vitro memory B cell ELISpot 
assay to inform risk of AMR was recently evaluated in kidney trans-
plant recipients.69,73 Multivariate analysis showed that pretransplant 
and posttransplant DSAs and frequency of donor reactive memory 
B cell were independent predictors of AMR. To this point, 21 of 29 
patients with chronic AMR were DSA negative at the time of AMR 
diagnosis but had detectable donor reactive memory B cells.69 These 
data suggest that monitoring donor-reactive memory B cells may be a 
useful complement to DSA quantification in order to accurately pre-
dict or diagnose AMR after kidney transplant.

Gaps requiring further research:

1.	 Development of rapid, reliable, and clinically feasible assays to 
determine the frequency of anti-HLA memory B cells (need to 

determine whether this can this be achieved using peripheral 
blood or requires sampling of certain niches)

2.	 Design studies to assess predictive value of circulating anti-donor 
HLA memory B cell frequencies and transplant outcome

4.2 | T cells

Seminal studies showed that the frequencies of donor-specific IFNγ-
secreting memory T cells measured via ELISpot correlated with risk of 
rejection in both nonhuman primates (NHPs)74,75 and human renal, but 
not heart, studies.76,77 However, this approach has yet to be translated 
into clinical use in part due to the technical difficulty of standardizing 
this assay and the time needed to generate results (6-24 hours). The 
panel-reactive T cell (PRT) assay is more feasible currently in that it 
measures memory T cell alloreactivity against a panel of target cells 
expressing distinct HLA molecules, thus allowing the test to be run be-
fore the identification of a donor.78 Still, recent studies suggest that 
IFNγ secretion may identify only a small subset of antigen-specific T 
cells,79 and these assays largely measure direct antigen recognition of 
native HLA molecules that may be less predictive of pathologic im-
mune responses relative to measures of indirect recognition by HLA 
antigens processed and presented by recipient APCs.80,81 These limita-
tions thus present challenges for the clinical implementation of these 
assays as measures of pretransplant donor reactivity (Table 4).

In parallel, several groups have taken the alternate approach of at-
tempting to define immunophenotypes of bulk (non–donor-specific) 
memory T cell populations to assess a given patient's overall “memory T 
cell risk” for rejection. For example, 2 recent studies identified a memory 
T cell signature that was associated with risk of acute rejection in kid-
ney recipients treated by costimulation blockade using belatacept.82,83 
Studies showed that patients who went on to reject their grafts exhib-
ited a higher frequency of CD8+CD28+TEM than those who were sta-
ble on belatacept. A potentially related population of CD57+PD-1lo cells 
was also found to correlate with risk of belatacept-resistant rejection.84 
Similar to the PRT assay, the use of bulk memory T cell immunopheno-
typic signatures to stratify patient risk will not provide information on 
donor-specific memory T cell compartment.

Follicular helper T cells (Tfh) are of particular interest for monitoring 
newly developed memory T cells, as these cells provide critical signals 
for the generation of donor-specific B cell and antibody responses.85 
Recent studies in human renal transplant recipients have confirmed 
that circulating Tfh are generated and detectable in patients who de-
velop DSAs.86 However, they may not reflect the full magnitude of 
the Tfh response that exists in the draining lymph nodes (LNs).79 Fine 
needle aspirates can detect LN Tfh via cytokine-independent activa-
tion-induced marker (AIM) assay.79 While fine needle aspirate assays 
on patient lymph nodes presents a major logistical challenge, the AIM 
assay for Tfh measurement has shown some utility in the blood.79

Gaps requiring further research:

1.	 Develop a rapid, reliable, and clinically feasible assay to deter-
mine whether anti-HLA memory T cells exist, their frequencies, 
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and whether they recognize donor antigens via the direct or 
the indirect pathway.

2.	 Expand tools to study Tfh (potentially with emphasis on fine nee-
dle aspirates).

3.	 Design studies to assess potential correlation between circulating 
anti-HLA memory T cells and transplant outcome.

5  | PRIMARY (NAÏVE OR DE NOVO) ALLO -
IMMUNE RESPONSE

5.1 | HLA molecular mismatch and immunogenicity

HLA immunogenicity is a consequence of reactivity at both the cel-
lular (T cell alloreactivity) and the humoral (B cell alloreactivity) lev-
els, as these immune responses are interdependent and intrinsically 
linked.87,88 Advances in the science of B/T cell receptor interaction 
with their target ligands (i.e., epitopes) led to the development of 
computational modeling approaches to predict potential T cell im-
munizing epitopes in the context of cancer therapy, vaccine develop-
ment, etc. and specifically for the field of transplantation—surmizing 
donor HLA allo-epitopes recognized by recipient B/T cells.

The principal hypothesis underpinning this theoretical approach 
to predicting the risk of development of primary alloimmunity is that 
HLA allorecognition by recipient B/T cells is more likely the more 
‘different’ the donor HLA compared with recipient HLA molecules.89 
Thus, current computational algorithms aim to quantify a mea-
sure of “dissimilarity” between donor and recipient HLA—the HLA 
Molecular Mismatch (mMM) Score. The most common approaches 
include HLA Matchmaker, Electrostatic Mismatch Score (EMS),90-93 
PIRCHE®,94 and a simple count of amino acid mismatches. A compar-
ison between the different methods is presented in Table 5. To date, 
correlations have been demonstrated by all of these computational 
approaches with differences at the sequence level.89,91

There is a body of evidence in support of the utility of HLA mMM 
score as a basis for primary alloimmunity risk stratification. Wiebe 
et al95 demonstrated that in a naive kidney transplant cohort, the 
sum of the HLA-DR or -DQ mMM scores for the DR and DQ loci 
(regardless if determined by eplet MM, amino acid MM, or electro-
static MM) is an independent correlate of de novo DSA to HLA-DR 
or -DQ.91 Notably, HLA eplet mMM evaluation of each individual 
HLA-DR/DQ mismatched molecule is better associated with de novo 
DSA development against that unique mismatch compared with ap-
proaches that sum all HLA mMM scores at a given HLA locus.96 In 
this study, patients could be assigned to a low, intermediate, or high 
primary alloimmune risk category using HLA mMM thresholds de-
rived for all HLA-DRβ1/3/4/5 and HLA-DQα1/β1 molecules. Finally, in 
3 independent cohorts, the DR or DQ HLA mMM score correlated 
with the level of calcineurin inhibitor–based immunosuppression re-
quired to control primary alloimmunity.97,98 Based on this body of 
work, the FDA Center for Drug Evaluation and Research agreed to 
evaluate the potential role of HLA-DR/DQ eplet mMM score as a 
strategy for enrichment or risk stratification in phase 2 and 3 kidney 

transplant clinical drug development trials and as a prognostic bio-
marker for de novo DSA, graft rejection, and graft failure.99 Whether 
eplet mMM or single molecule HLA-DR or -DQ eplet mMM scores 
can be used to guide risk stratification for personalized immunosup-
pression requires proof through prospective clinical trials, because 
different investigators report different risk thresholds.100-103

Although a strong correlation exists between increased mMM and 
de novo DSA, some of the patients do develop de novo DSA despite 
having a low HLA mMM score.101,103 This emphasizes that certain 
mMM may have a higher immunogenic impact compared with other 
mMM and that not all mMM should be assigned the same immuno-
genic value. An approach to investigate immunogenicity was recently 
published by Tambur et al.101 Without clear understanding of the im-
munogenic value of each mismatch, mMM evaluation is far from being 
optimized for consideration in allocation schemes and may be prema-
ture for use other than design/enrichment of clinical trials.

Gaps requiring further research:

1.	 Currently, there are multiple approaches to calculate mMM. 
Approaches need to be optimized and algorithms should be 
standardized such that they can be locked before implemen-
tation in clinical practice.

2.	 Thresholds for risk categories need to be established and the im-
pact of other factors on these thresholds need to be accounted 
for (e.g., recipient age, race, etc.). Formal evaluation, in prospec-
tive clinical trials, should be performed before clinical grade rec-
ommendations can be made.

3.	 Tools to prospectively determine donor/recipient HLA specific im-
munogenicity beyond the mismatch load (given that DSA can be 
developed in some patients with low HLA mMM score) should be 
developed. This is essential before considering evaluation and im-
plementation of immunogenicity analysis as a guide to organ alloca-
tion schemes.

5.2 | Genetic modifiers of alloimmunity

Genome-wide studies have focused on gene polymorphisms in both 
recipient and donor and their association with transplant outcome 
(for a review, see ref. 104). Multiple single nucleotide polymorphisms 
(SNPs) have been identified in association with allograft renal func-
tion105 although disputed on further study.106 Donor polymorphisms 
have also been identified associated with allograft survival.107,108 
There have also been associations with protection against allograft 
loss and NF-κB1.109 A more comprehensive review of these associa-
tions is presented by Dorr et al104 and Hernandez-Fuentes et al.110

Despite a large body of published data, there is a lack of concor-
dance across genetically varied transplant populations and with dif-
ferences in disease phenotype definition such as serum creatinine 
or specific pathological diagnoses whose criteria change periodi-
cally.111,112 Similarly, the effect of individual gene variants is generally 
relatively small, and it is likely that few are obligatory for the out-
come to occur.113 Complexity is further compounded by the potential 
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genetic interaction of donor and recipient factors and additional 
studies are required. An approach of “loss of function compatibil-
ity”114 is suggested by the international consortium iGeneTRAiN, the 
International Genetics and Translational Research in Transplantation 
Network.

SNPs have been identified not only in immune response genes 
but also in other genes associated with drug metabolism.115 Studies 
primarily focused on CNI metabolism hypothesize that achieving 
specific immunosuppression target level quickly may be associated 
with improved transplant outcomes, although this has not been 
proved definitively.116,117 Similarly, there have been SNP associa-
tions with IMPDH and RNA metabolism affecting mycophenolate 
levels118 and associated with acute rejection119 or associated with 
harmful toxicities such leukopenia and anemia,120 which are dose 
limiting. Recent meta-analysis of pharmacogenomics markers sug-
gests a positive impact in transplant management.121 However, until 
definitive prospective trial data indicate that proper early dosing 
minimizes adverse events, further adoption of such markers is un-
likely to have a clinical impact.

In summary, the study of genetic variation influencing the quality 
of the alloimmune response is likely to expand significantly in the 
coming years as the cost of genome-wide studies decrease and tech-
nologies become more accessible. This will be driven by the potential 

benefit of validated SNPs for either susceptibility/risk biomarker or 
predictive biomarker as a guide for more precise prescription of im-
munosuppressive load to avoid harmful side effects of either over-
immunosuppression or underimmunosuppression.

Gaps requiring further research:

1.	 Prospective clinical trials are needed to validate the impact of 
potential immunoregulatory SNPs on modulating the immune 
response before they can be adopted as routine susceptibility/
risk biomarkers.

2.	 Prospective clinical trials are needed to determine the impact of 
polymorphism-directed drug dosing, and dosing equations exist 
that can be used.122,123

6  | ROADMAP AND FUTURE DIREC TIONS

While the goal of the STAR 2019 working group was to provide an 
up-to-date, high stringency, critique of transplant-related assays 
used to inform laboratory and nonlaboratory clinicians, it was not 
meant to discourage them from pursuing best standards of care 
for their patients. The STAR working group believes that it is im-
perative for clinicians to have in-depth understanding of both the 

TA B L E  5   Moleulcar mismatch calculation approaches

Assay Description

HLA matchmaker This is the first theoretical algorithm to emphasize that HLA antibodies recognize only a portion of an antigen, 
corresponding to the contact area between them (epitope/complementary-determining region [CDR] structure). 
HLA Matchmaker, developed by Rene Duquesnoy, uses donor/recipient amino acid sequences to determine 
continuous and discontinuous “eplets” that are likely part of the area recognized by an antibody's CDR. 
HLAMatchmaker focuses only on polymorphic regions and provides information regarding “verified” and “non-
verified” epitopes. All mismatched eplets are assigned the same value for a sum of eplet mismatch load. Multiple 
versions of the software are available, either on Duquesnoy's website (free of charge) or as part of different SAB 
analysis software—with differences between the versions, not easily identified or reported by the users. While 
the software declares “verified” from “non-verified” “epitopes”—it is not clear what “verification” means. Most of 
these “epitopes” were not tested, nor confirmed, by absorption elution experiments. Additionally, the standard 
Matchmaker approaches relates to both recipient alleles as a single entity, and to both donor alleles as a singel allo-
entity (this is not a physiologic representation of how HLA antigens are expressed on a cell surface)

Electrostatic Mismatch 
Score (EMS)

This approach measured the physiochemical properties and the unique surface electrostatic value of the different 
amino acids forming the HLA molecule. It therefore provides a measure of variance between physiochemical 
properties of donor and recipient alleles beyond the pure number, or mismatch load comparison. The EMS software 
was developed by Vasilis Kosmoliaptsis and has 2 versions. EMS-2D is available for download free of charge. 
EMS-3D was developed recently

Predicted Indirectly 
ReCognizable HLA 
Epitopes presented by 
recipient HLA-Class II 
antigens = PIRCHE-II

PIRCHE® approach adds the complexity of processes associated with indirect presentation to recipient T cells. 
PIRCHE-II uses algorithms to predict which peptides derived from donor HLA antigens can be presented in the 
context of recipient HLA-DR molecules. Given that T cell help is required to activate B cell responses, this approach 
may provide information beyond the previously described approaches. The algorithm in its current format does 
not consider the role of HLA-DQαβ, DPαβ, and DRβ3/4/5 in antigen presentation. It also uses a relatively low 
stringency to define “presentable” peptides and thus may lack sufficient specificity. PIRCHE® is available as a 
commercial software

Amino acid sequence 
comparison

Donor and recipient HLA alleles are converted into the corresponding amino acid sequences and the number of 
mismatches are enumerated. Similar to eplet analysis, this approach does not assign potential values regarding 
immunogenicity of different amino acid mismatches. However, it does not make a priori assumptions regarding 
which areas of the molecule may be more relevant for antibody recognition. Compared with all other approaches, 
this is the simplest approach with the least potential bias in analysis
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value and limitations of the assays in order to be better informed 
as to how to use the results clinically, in the current time. The need 
to pause and reexplore the value and wisdom of current practices 
is the hallmark of improving patient care. The ability to use current 
knowledge to reevaluate and, if needed, criticize some of the older 
highly cited works, can provide valuable insights. Only by doing 
so will our field come together to navigate toward faster future 
innovations.

We are currently at an intersection between rapid offer-
ing of new assays (and better understanding on how to use 
and interpret currently available ones) and the slow accumula-
tion of prospective transplant outcome data (with the need to 
have 5-10 years of follow-up). Intense efforts by the Transplant 
Therapeutic Consortium and Paris Transplant Group are seeking 
to shorten this time through the development of validated sur-
rogate composite endpoints for clinical trials (e.g., iBOX).124,125 
However, in the interim at this critical juncture, it may require 
some “out of the box” thinking on how to best use our existing 
resources. More collaborative efforts and less aversion to retro-
spective analysis, where samples were collected prospectively in 
a systematic fashion, should be considered. The past decade had 
seen many National Institutes of Health–sponsored Clinical Trials 
in Organ Transplantation, where samples were collected both 
for testing and biobanked for future use. HLA-related testing 
were performed for some of these studies, using best practices 
for that time, but as recommended by STAR 2017, HLA typing 
should be performed at a high resolution for both donor and re-
cipient, and antibody testing should use measures to overcome 
limitations of the SAB assays (e.g., removal of inhibition, etc.), 
in order to more accurately interpret the data. Further, we now 
appreciate the need for adjudication of some of the SAB test-
ing rather than using an arbitrary MFI value for a threshold in all 
cases. Until such efforts take place, the STAR 2019 provide the 
following recommendation as an immediate call for action (sum-
marized in Figure 2).

6.1 | Plans for STAR 2021

Planning for STAR 2021 will commence in early 2020. In response 
to feedback from the transplant community we plan to add a cou-
ple of topics, specifically looking at tests evaluating role of non-
HLA antibodies, and tests in support of assigning HLA antibody 
strength (to aid pretransplant desensitization decision-making and 
treatment efficacy monitoring, including treatment of AMR post-
transplant). As before, STAR 2021 working groups will reevaluate 
categories that were discussed in this report to provide progress if 
available. Special emphasis will be given to organs beyond kidneys 
(with the hope that sufficient literature will be available by that 
time). We encourage those who are interested in actively being 
involved with the STAR process to contact the corresponding 
author.
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