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elements 

 

Joanna Louise Mitchelmore 

 

Summary 

Cellular development and function necessitate precise patterns of gene expression. Control of gene 

expression is in part orchestrated by a class of remote regulatory elements, termed enhancers, 

which are brought into contact with promoters via DNA looping. Enhancers typically contain 

clusters of transcription factor binding sites, and TF recruitment to them is thought to play a key 

role in transcriptional control.  

In this thesis I have addressed two issues regarding gene regulation by enhancers. First, with recent 

genome-wide enhancer mapping, it is becoming increasingly apparent that genes are commonly 

regulated by multiple enhancers in the same cell type. How a gene’s regulatory information is 

encoded across multiple enhancers, however, is still not fully understood. Second, numerous 

recent studies have found that enhancers are enriched for expression-modulating and disease-

associated genetic variants. However, understanding and predicting the effects of enhancer 

variants remains a major challenge.  

I focussed on a human lymphoblastoid cell line (LCL), GM12878, for which ChIP-Seq data are 

available for 52 different TFs from the ENCODE project. Significantly, Promoter Capture Hi-C data 

for the same LCL are available, making it possible to link enhancers to target genes globally. In the 

first part of the thesis, I investigated how gene regulatory information is encoded across enhancers. 

Specifically, I asked whether a gene tends to use multiple enhancers to bring the same or distinct 

regulatory information. I found that there was a general trend towards a “shadow” enhancer 

architecture, whereby similar combinations of TFs were recruited to multiple enhancers. However, 

numerous examples of “integrating” enhancers were observed, where the same gene showed large 

variation in TF binding across enhancers. Distinct groups of TFs were associated with these 

contrasting models of TF enhancer binding. 

To investigate the functional effects of variation at enhancers, I additionally took advantage of a 

panel of LCLs derived from 359 individuals, which have been genotyped by the 1000 Genomes 

Project, and for which RNA-Seq data are publically available. I used TF binding models to 

computationally predict variants impacting TF binding, and tested the association of these variants 

with the expression of the target genes they contact based on Promoter Capture Hi-C. Compared 
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to the standard eQTL calling approach, this offers increased sensitivity as only variants physically 

contacting the promoter and predicted to impact TF binding are tested. Using this approach, I 

discovered a set of predicted TF-binding affinity variants at distal regions that associate with gene 

expression. Interestingly, a large proportion of these binding variants fall at the promoters of other 

genes. This finding suggests that some promoters may be able to act in an enhancer-like manner 

via long-range interactions, consistent with very recent findings from alternative approaches. 
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1 Introduction 
 

The cell types in multi-cellular organisms differ dramatically in both structure and function, yet 

nearly all contain the same DNA. How then do the differences between cell types arise? The answer 

lies in gene regulation; each cell type “turns on” (expresses) a unique subset of genes encoding the 

proteins necessary for its function. The ability to switch on specific sets of genes is also critical in 

enabling cells to respond to changes in their environment. This is important both for multicellular 

organisms, where it enables cellular homeostasis to be maintained, and unicellular organisms, 

where it facilitates efficient use of cellular resources in response to the environment. There are 

many stages of gene expression –transcription, RNA processing, RNA transport and localisation, 

translation and mRNA degradation –all of which can be regulated. However transcription, as the 

first step where DNA is transcribed to mRNA, is perhaps one of the most important points of 

regulation for most genes.  

 

1.1 Distal gene regulation  
 

1.1.1 Transcription  
 

Transcription is catalysed by the enzyme RNA polymerase (RNA pol). While in bacteria there is a 

single RNA polymerase, in eukaryotes there are three different polymerases - RNA pol I, RNA pol II 

and RNA pol III (Ebright, 2000; Roeder & Rutter, 1969, 1970). RNA pol I and III transcribe a limited 

number of genes, encoding transfer RNAs, ribosomal RNAs and small nuclear RNAs (Warner, 1999; 

Weinmann & Roeder, 1974). In contrast RNA Pol II transcribes all protein-coding genes, as well as 

the majority of non-coding RNAs (Hahn, 2004). Transcription is initiated at the core promoter, a 

~100bp region immediately upstream of the transcription start site (TSS). None of the RNA pols are 

able to recognise and bind to the core promoter DNA by themselves, instead requiring accessory 

factors. While bacterial RNA pol requires only a single additional protein (σ factor) for transcription 

initiation, eukaryotic RNA pol II requires the coordinated action of at least six different proteins, 

termed general transcription factors (GTFs, i.e., TFIIA, -B, -D, -E, -F and –H) (Burgess et al., 1969; 

Orphanides, Lagrange, & Reinberg, 1996; Roeder, 1996). The GTFs assemble into a transcription 

preinitiation complex (PIC), which through a series of GTF-DNA interactions anchors RNA pol II to 

the double stranded promoter DNA (Hampsey, 1998; Lee & Young, 2000). Following assembly of 

the PIC, TFIIH unwinds 10-15bp of DNA surrounding the TSS in order to position the single-stranded 
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template DNA in the active cleft of RNA pol II (termed the open complex) to initiate RNA synthesis 

(Grünberg & Hahn, 2013). After the synthesis of ~30bp of RNA, RNA pol II releases its contacts with 

the core promoter and transitions into the elongation stage (Grünberg & Hahn, 2013). In 

metazoans, this transition often involves the pausing of RNA pol II just downstream of the 

promoter, where it remains stably associated with the nascent RNA, and is capable of resuming 

elongation upon further signals (Adelman & Lis, 2012). As such there are several steps at which 

transcription initiation can be influenced in eukaryotes.  

 

1.1.2 Transcription in the context of chromatin  

 

Figure 1.1. Chromatin structure.  

147bp of DNA is wrapped around the histone octamer core, which consists of two copies each of histone 

H2A, H2B, H3 and H4, to form the nucleosome particle. Nucleosomes are connected by ~10-70bp of linker 

DNA. A fifth histone, H1, binds to the linker DNA at the site where it enters and exits the nucleosome. 

Repeating nucleosomes form the “beads on a string” 10nm fibre, which can further condense and shorten to 

form the 30nm fibre. Figure adapted from Figueiredo, Cross, & Janzen (2009). 
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In eukaryotes genomic DNA is not “naked” but instead is wrapped around histone proteins, 

resulting in a DNA-protein complex termed chromatin (Felsenfeld & Groudine, 2003) (Figure 1.1). 

The basic repeating structural unit of chromatin is the nucleosome, which consists of a histone 

octamer and ~200 base pairs of DNA (Noll, 1974). The histone octamer is made up of two molecules 

each of H2A, H2B, H3 and H4 (the core histones); 147bp of DNA is wrapped 1.65 times around this 

histone octamer to form the core nucleosome particle (Arents et al., 1991; Luger et al., 1997). The 

nucleosome cores are connected by 10-70bp of linker DNA, which associates with linker histone 

H1, to form the nucleosome (Hergeth & Schneider, 2015). Repeating nucleosomes form a 10nm 

diameter fibre, which under a microscope resembles “beads on a string” (with the nucleosome core 

particles as the beads, and the linker DNA as the string) (Olins & Olins, 1974; Woodcock, Safer, & 

Stanchfield, 1976). In vitro this 10nm fibre was shown to form a shorter, thicker helical fibre 

approximately 30nm in diameter, termed the “30 nanometre fibre” (Finch & Klug, 1976; Gerchman 

& Ramakrishnan, 1987). However whether this 30nm fibre exists in vivo remains unclear (Fussner, 

Ching, & Bazett-Jones, 2011; Maeshima, Hihara, & Eltsov, 2010; Nishino et al., 2012). The chromatin 

fibre can then be further condensed – either via the 30nm fibre, alternative secondary structure or 

directly from the 10nm fibre- along with scaffold proteins into higher order structures (Luger, 

Dechassa, & Tremethick, 2012).  

For transcription initiation to occur RNA pol II and the other components of the PIC need to be able 

to access the DNA; thus chromatin structure can pose a significant barrier to this process (Knezetic 

& Luse, 1986; Lorch, LaPointe, & Kornberg, 1987). As such, while the packaging of DNA into 

chromatin is critical in enabling the DNA to fit into the nucleus, it also provides an additional 

opportunity to exert control over transcription initiation (Li, Carey, & Workman, 2007). 

Nucleosomes form the main point at which this control can be exerted, either through their precise 

positioning on the DNA, blocking/providing access to the core promoter, or through their ability to 

influence the degree of chromatin packaging (Bannister & Kouzarides, 2011; Perner & Chung, 

2013).   

The histones proteins making up nucleosome core particle have flexible N-terminal tails that 

project from the nucleosome; many residues in these tails can be post-translationally modified 

(Allfrey, Faulkner, & Mirsky, 1964). These modifications include methylation of arginine residues; 

methylation, acetylation and ubiquitination of lysines; and phosphorylation of serines and 

threonines (Kouzarides, 2007). With the exception of methylation, all the modifications result in a 

net reduction in positive charge of the histone octamer, which reduces the affinity of the histone 

octamer for the negatively charged DNA as well as possibly for other nucleosomes (Bowman & 

Poirier, 2015; Kouzarides, 2007). This “loosening” of DNA-histone and nucleosome-nucleosome 
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interactions, makes nucleosomes easier to displace from the DNA, and may lead to a more open 

chromatin structure (Bowman & Poirier, 2015; Kouzarides, 2007; Lawrence, Daujat, & Schneider, 

2016). Some evidence to support this idea comes from the finding that acetylated histones are 

easier to displace in vivo (Reinke & Hörz, 2003; Zhao, Herrera-Diaz, & Gross, 2005). Increased 

histone acetylation at promoter regions has also been linked to active transcription, while histones 

in inaccessible heterochromatin are generally unacetylated (Liang et al., 2004; Pokholok et al., 

2005; Roh, Cuddapah, & Zhao, 2005). Histone modifications can be added or removed by histone 

modifying enzymes, thus providing a mechanism through which chromatin structure can be altered 

to influence transcription (Butler et al. , 2012; Li et al., 2007; Pennisi, 1997). One example of such 

is p300, which as a histone acetyl transferase (HAT), adds acetyl groups to histones (Bannister & 

Kouzarides, 1996). The HAT function of this enzyme was showed to be required for transcriptional 

activation in at least some instances (Kraus, Manning, & Kadonaga, 1999).   

As well as increasing accessibility to the DNA through “loosening” histone-DNA interactions within 

and between nucleosomes, DNA accessibility can also be controlled by changing the precise 

positioning of nucleosomes on the DNA. This is achieved by a class of chromatin regulators termed 

chromatin remodelling complexes, which use ATP to either slide the nucleosome along the DNA, 

or to transiently eject the nucleosome from the DNA (Becker & Workman, 2013; Clapier et al., 

2017). In general promoter regions, in particular the region immediately upstream of the TSS, tend 

to be depleted of nucleosomes relative to transcribed regions. These findings are consistent across 

a range of lower and higher eukaryotes, including yeast and humans (Lee et al., 2007; Ozsolak et 

al., 2007; Yuan et al., 2005). Exactly how nucleosome re-positioning/eviction influences 

transcription initiation and gene activity though remains unclear. Perhaps the most intuitive 

mechanism is that the nucleosome blocks binding of the PIC components, and thus eviction of the 

nucleosome enables PIC assembly and the consequent initiation of transcription (Kornberg & Lorch, 

1999). Indeed at the yeast genes PHO5 and HSP82, histones are evicted from the promoter region 

upon gene activation and reassembled when the gene is turned off (Adkins & Tyler, 2006; Boeger 

et al., 2004; Reinke & Hörz, 2003; Zhao et al., 2005). Also it was shown that a nucleosome at the 

core promoter of human interferon-beta (IFN-beta) slides in vivo in response to viral infection, and 

that this is necessary for transcriptional activation (Lomvardas & Thanos, 2001). However a 

genome-wide study in yeast found that strikingly many partial PICs were assembled in the presence 

of nucleosomes (Zanton & Pugh, 2006). These partial PICs lacked TFIIH and RNA pol II, implying that 

nucleosome displacement might only be necessary when the template DNA is engaged in the RNA 

pol II active site (Zanton & Pugh, 2006). It is thus likely that the role of nucleosomes in regulating 
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transcription initiation is more complex than initially thought, with the existence of multiple 

different mechanisms which can be employed within a given organism. 

 

1.1.3 Transcription factors and regulatory elements  
 

It is evident that there are many points at which the rate of transcription initiation can be 

influenced, including recruitment of RNA pol and the GTFs, stabilisation of the PIC, release of 

proximal paused RNA pol II in metazoans, and the modification of chromatin– how are these 

processes influenced in a gene specific manner?  The answer to this question lies in a set of 

regulatory proteins, termed transcription factors (TFs). TFs recognise and bind to short specific DNA 

sequences (referred to as TF binding motifs), and once bound can either activate or repress 

transcription (Spitz & Furlong, 2012a; Vaquerizas et al., 2009). TFs are able to recognise and bind 

to their motif due to extensive complementarity between the surface of the protein (termed the 

DNA binding domain) and surface features of the DNA double helix in the region of the specific 

nucleotide sequence of the motif (Todeschini, Georges, & Veitia, 2014). This complementarity 

results in a series of contacts between the TF and the DNA, most often involving ionic bonds, 

hydrogen bonds and hydrophobic interactions, ensuring a highly specific and strong interaction.  

In prokaryotes TFs often exert their effect on transcription via a direct interaction with RNA pol. 

This can be by either providing an additional contact surface for RNA pol, helping it bind to the 

DNA, or by contacting RNA pol to facilitate its transition into an actively transcribing form to 

activate transcription (Seshasayee, Sivaraman, & Luscombe, 2011). Prokaryotic TFs can repress 

transcription by binding over the promoter region, blocking access of RNA pol and inhibiting 

transcription initiation (Marmorstein & Sigler, 1989; Rojo, 1999). In eukaryotes the step-wise 

assembly of the PIC provides many more points at which TFs can act to increase/decrease the rate 

of transcription initiation (Figure 1.2). Eukaryotic TFs can interact directly with the components of 

the PIC and RNA pol II, facilitating their recruitment and/or stability in the PIC, as well as aiding in 

the release of RNA pol II from proximal pausing (Adelman & Lis, 2012). However in addition to 

directly interacting with the PIC components, TFs can also interact indirectly via a complex termed 

Mediator (Flanagan et al., 1991; Kelleher, Flanagan, & Kornberg, 1990; Koleske & Young, 1994; 

Nonet & Young, 1989; Poss, Ebmeier, & Taatjes, 2013; Soutourina, 2017; Thompson et al., 1993). 

Mediator is a multi-subunit protein complex (consisting of 25 subunits in budding yeast and up to 

30 subunits in humans) that acts as an interface between TFs and the PIC components in all 

eukaryotes, providing an increased contact surface area for TFs to act on (Poss et al., 2013; 
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Soutourina, 2017) Its main function is to transduce activating signals from TFs to the PIC. TF-

recruited mediator establishes interactions with the PIC components, contributing to their 

recruitment and assembly, and thus enhancing transcription initiation (Poss et al., 2013; 

Soutourina, 2017). Along with

 

Figure 1.2. The role of TFs in transcriptional activation. 

(A) TFs bind to their corresponding sequence motifs in the DNA. Upon binding they can recruit chromatin 

remodellers and/or chromatin modifying enzymes (B) which can increase DNA accessibility at the core 

promoter (C). TFs, either directly or via Mediator, can recruit the components of the PIC and facilitate its 

assembly (C and D). Finally, TFs can promote the release of RNA pol II into an active elongation state (E).  

Figure adapted from Soutourina (2017). 
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recruiting Mediator, there is also evidence that TFs may be able to influence transcription via 

Mediator by inducing large-scale conformational changes in Mediator upon binding, shifting the 

PIC from an inactive to active state (Meyer et al., 2010; Poss et al., 2013; Taatjes et al., 2002; 

Taatjes, Schneider-Poetsch, & Tjian, 2004). As well as interacting directly/indirectly with the PIC 

components, eukaryotic TFs can modulate transcription indirectly by recruiting chromatin 

modifying enzymes and remodellers (through direct interactions or via Mediator) to modify the 

chromatin architecture surrounding the promoter region (Agalioti et al., 2000; Berger, 2007; 

Lomvardas & Thanos, 2002). Modulating DNA accessibility at the promoter can influence not just 

the binding of the PIC components, but also the binding of other TFs which can further act to 

activate/repress transcription (Li et al., 2007). The histone modifications themselves can also serve 

as signals to recruit additional chromatin remodelling enzymes and/or TFs, further influencing 

transcription initiation (Kouzarides, 2007; Taverna et al., 2007). 

TFs are recruited to genes by DNA sequences containing TF binding motifs, termed cis-regulatory 

elements.  In prokaryotes and lower eukaryotes such as yeast, the majority of genes contain a single 

cis regulatory sequence that is located proximal (within ~100bp) to the core promoter (Bulger & 

Groudine, 2011; Venters & Pugh, 2009). In contrast a typical metazoan gene is regulated by several 

cis-regulatory elements, one of which is usually adjacent to the core promoter (often termed the 

promoter/promoter proximal region), and the other/s of which can be located strikingly several 

kilobases, either upstream or downstream, from the core promoter (Bulger & Groudine, 2011; 

Shlyueva, Stampfel, & Stark, 2014; Venters & Pugh, 2009). These distal cis-regulatory elements are 

termed enhancers (Long, Prescott, & Wysocka, 2016; Shlyueva et al., 2014).  

 

1.1.4 Enhancers  
 

The first enhancer, a 72bp sequence from the SV40 virus, was discovered over 35 years ago (Banerji, 

Rusconi, & Schaffner, 1981). It was observed that this sequence was able to drive ectopic 

expression of a cloned rabbit beta globin gene in HeLa cells, independent of its orientation and 

distance from the gene. Subsequently endogenous elements in the mouse immunoglobulin heavy 

chain which were also able to stimulate transcription independent of orientation and at distances 

of thousands of base pairs away from the gene, were identified (Banerji, Olson, & Schaffner, 1983). 

Interestingly, the Ig enhancer was only able to drive activity in lymphocyte-derived cell lines, 

providing the first evidence that that enhancer activity shows cell-type/tissue specificity (Banerji et 

al., 1983; Gillies et al., 1983). Since then, a large number of cell-type or developmental stage-
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specific enhancers have been shown to regulate gene expression in multi-cellular organisms (Long, 

Prescott, & Wysocka, 2016). This has included enhancers that act over very large distances, for 

example the limb bud enhancer of the developmental gene Shh in mice and humans (Lettice et al., 

2002, 2003). The Shh limb bud enhancer resides in an intron of another gene, Lmbr1, almost 900kb 

away from Shh. It initiates and controls the spatial expression pattern of Shh in the posterior margin 

of the limb bud, where Shh signalling is critical for establishing anterior-posterior patterning and 

determining digit identity (Lettice et al., 2002, 2003; Sagai et al., 2009) (Figure 1.3).  In addition to 

the limb bud enhancer, Shh is regulated by at least ten other enhancer elements extending over a 

900kb region of DNA (Anderson et al., 2014) (Figure 1.3). These enhancers direct expression of Shh 

in a modular fashion, with different enhancers directing expression of Shh in different spatial 

regions (Figure 1.3); this modular organisation is a key feature of enhancer regulation (Shlyueva et 

al., 2014a).  

  

Figure 1.3. Enhancer regulation of Shh. 

(A) The murine regulatory locus of Shh. Enhancers are depicted as coloured bars. Genes are indicated by grey 

rectangles, shaded from dark to light in the 5’ to 3’ orientation. (B) Schematic illustrating the sites of Shh 

expression in the E11.5 mouse embryo. The colours used to depict the regions of expression match the 

colour/s of the enhancer/s (in A) that direct expression in that particular region. As such a hatched/dot 

pattern indicates that multiple enhancers drive expression of Shh in that region. The enhancer/s responsible 
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for expression of Shh in the zona limitans intrathalamica have not yet been discovered. Figure adapted from 

Anderson et al. (2014).  

Interestingly while enhancers were originally defined as being able to act independent of 

orientation, several studies have identified enhancers that appear to act in an orientation-

dependent manner, suggesting that while enhancers are generally able to activate transcription 

independent of orientation, this may not be the case for all enhancers (Hozumi et al., 2013; Sauter 

et al., 2013; Swamynathan & Piatigorsky, 2002). The cell-type specific activity of enhancers is in 

contrast to promoter regions, which tend to more ubiquitously active (Heintzman et al., 2009; 

Thurman et al., 2012; Visel et al., 2009). Collectively these results have led to the realisation that 

enhancers play a key role in the control of spatiotemporal expression patterns in multicellular 

organisms.  

 

1.1.5 Evolution of enhancers 
 

A recent analysis of the closest unicellular relative of metazoans, Capsaspora, found that their 

regulatory elements largely lie proximal to genes, suggesting that distal regulation is indeed an 

animal evolutionary innovation (Sebé-Pedrós et al., 2016). The appearance of distal enhancers – 

given their key role in controlling cell-type specific expression in metazoans –is thus postulated to 

be one of the key features that enabled the emergence of animal multi-cellularity (Bulger & 

Groudine, 2011; Carroll, 2008; Sebé-Pedrós et al., 2016). As well as playing a key role in enabling 

the development of multi-cellularity, enhancers are also thought to have been critical in facilitating 

animal diversity (Levine, Cattoglio, & Tjian, 2014). Due to the modular nature of enhancers, 

mutations at a given enhancer may change expression of a gene in a particular region with no or 

very little effect on other regions (Carroll, 2008; Cho, 2012). This is in contrast to either mutations 

in the DNA coding for a TF, where a change in activity of the TF can affect expression of all target 

genes across all regions where the TF is active, or at the promoter of a gene, where expression of 

the gene across all regions can be affected (Cho, 2012). In fitting with this reasoning the mean 

lifetime of enhancers was found to be three times shorter than that of promoters across 20 

mammalian species in liver (Villar et al., 2015). Strikingly almost half of enhancers in each species 

appeared to be recently evolved, suggestive of a role in generating species-specific differences 

(Villar et al., 2015).  

One example highlighting the role of enhancers in morphological evolution is the pelvic enhancer 

in stickleback fish. Freshwater stickleback fish lack the pelvic bony spines that are present in 
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saltwater and ancestral fish (Bell, 1987). In marine sticklebacks development of the pelvic spines 

depends on expression of the TF Pitx1 in the pelvic region, which is under the control of a specific 

enhancer; freshwater sticklebacks have lost this enhancer (Chan et al., 2010; Shapiro et al., 2004). 

In addition to the loss or gain of enhancers (and consequent loss/gain of gene expression in a 

particular region), more subtle changes in enhancer activity can also lead to phenotypic variation. 

One example of such is the spot enhancer that controls expression of the yellow gene in the 

Drosophila wing. The yellow gene encodes an enzyme involved in the synthesis of a black pigment 

(Wittkopp, Vaccaro, & Carroll, 2002). In D. melanogaster the spot enhancer directs low levels of 

expression of the yellow gene throughout the wing, resulting in even pigmentation. In contrast, in 

D. biarmipes the spot enhancer directs high levels of yellow expression in the corner of the wing, 

resulting in a dark spot (Wittkopp et al., 2002). The spot enhancer in D. biarmipes was found to 

contain mutations which resulted in the creation of a binding site for both a transcriptional 

activator (Distalless) and a transcriptional repressor (Engrailed) (Arnoult et al., 2013; Gompel et al., 

2005). The repressor, Engrailed, was found to be responsible for restricting yellow expression at 

the posterior area of the wing (Gompel et al., 2005). 

 

1.1.6 Models of enhancer organisation  
 

Investigations of enhancer organisation, including mapping TF binding in-vivo and TF motif 

identification, have revealed that enhancers are composed of clusters of TF binding sites (Shlyueva, 

Stampfel, & Stark, 2014). One reason why the binding of multiple TFs is thought to be important 

for enhancer activity is due to the high affinity of enhancer sequences for histone octamers (Tillo 

et al., 2010), which creates a barrier for the TFs in accessing the DNA. Cooperativity between TFs is 

thought to facilitate nucleosome eviction at enhancers and consequent TF occupancy (Calo & 

Wysocka, 2013). 

Several distinct models have been proposed to explain how combinatorial binding of multiple TFs 

enables TF occupancy and enhancer activation (Figure 1.4). The “enhanceosome” model postulates 

that TFs cooperate directly with each other via physical interactions, resulting in the formation of 

a highly ordered nucleoprotein complex (Thanos & Maniatis, 1995). The mammalian IFN-beta cis-

regulatory element is the best example of an enhanceosome. Eight TFs bind cooperatively to the 

interferon beta enhancer; disruption of the binding of individual TFs disables the enhancer, 

suggesting that composite nucleoprotein structure is critical for enhancer activity (Thanos & 

Maniatis, 1995) . As well as facilitating the binding of the TFs to the DNA, the nucleoprotein complex 
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may also provide a surface through which other co-factors, which play a role in stimulating 

transcription at the target promoter, can be recruited. As such the activity of the enhancer will be 

greater than the sum of the individual TF contributions (Spitz & Furlong, 2012). The enhanceosome 

model requires a highly specific arrangement of TF binding sites so that the TFs can physically 

interact with each other when bound. However, most developmental enhancers do not 

  

Figure 1.4. Models of enhancer organisation.  

In the enhanceosome model TFs cooperate to form a nucleoprotein complex that integrates information 

from all the TF binding sites to activate transcription. In this model the exact order, spacing, identity and 

number of binding sites are critical for its function; changing the order, spacing or removing any of the binding 

sites will result in a complete loss of ability of the enhancer to activate transcription. In the billboard model 

the TFs deliver their “doses” of activation independently to the target promoter. The spacing, identity and 

order of the TF binding sites is flexible. Consequently changing the order or spacing between TF binding sites 

will not result in any change in level of activation conferred by the enhancer, while the loss of TF binding sites 

will result only in a reduction in the level of activation that the enhancer confers.  Finally, in the TF collective 

TFs form cooperative complexes at the enhancer though both TF-TF and DNA-TF interactions. As a result, the 

spacing, order and identity of the TF binding sites are very flexible; changes in the spacing and identity of the 

binding sites will not result in any changes in the level of activation conferred by the enhancer. Given that 

TFs can be recruited by other TFs in the absence of their binding site, loss of TF binding sites may result in no 

change in the level of activation conferred (if the TF can be recruited by another TF bound). Alternatively, if 
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the TF cannot be recruited by another TF already bound, then the loss of its binding site will result in a 

decrease in the level of activation conferred, comparable to that of the billboard model.  

appear to have form such ordered nucleoprotein complexes. In addition, large-scale cross-species 

comparisons of enhancers and synthetic enhancer reporter studies largely support a more flexible 

organisational models enhancer organisation (Smith et al., 2013; Taher et al., 2011). Two more 

flexible models of enhancer organisation have been proposed: the “billboard” and the “TF 

collective”. In the billboard model there are no direct interactions between TFs and each TF 

independently interacts with the target promoter (Kulkarni & Arnosti, 2003). As such, TF motif 

spacing and orientation is flexible. TFs may still bind cooperatively (indirectly) via collectively 

competing for DNA access with the same histone octamer (Miller & Widom, 2003). The “TF 

collective” proposes that TFs form cooperative complexes at the enhancer through both DNA-TF 

and TF-TF interactions (Junion et al., 2012). Unlike the “enhanceosome” model, where the TF-TF 

interactions are necessary to produce a highly ordered nucleoprotein complex, in the “collective” 

they enable TFs without motifs to be recruited to the enhancer. Motif organisation at the collective 

is thus the most flexible; both the arrangement and composition of motifs can be variable. It is 

likely that most enhancers fall within the spectrum of the model extremes, with some motifs 

showing flexible organisation and others with defined spacing and orientations (Long, Prescott, 

Wysocka, et al., 2016).  

 

1.1.7 Chromatin signatures of enhancers  
 

Active enhancers tend to show distinct chromatin signatures. The binding of TFs displaces 

nucleosomes, resulting in increased chromatin accessibility (“open” chromatin) and 

hypersensitivity of the DNA to enzymes such as DNase I or Tn5 transposase as measured by ATAC- 

Seq (Buenrostro et al., 2013; ENCODE Project Consortium, 2012). Furthermore nucleosomes in the 

vicinity of active enhancers tend to contain certain histone modifications, including H3K4me1 and 

H3K27ac (ENCODE Project Consortium, 2004; Heintzman et al., 2009). In the genomic era these 

enhancer features have enabled the systematic annotation of putative enhancers genome-wide 

(Maston et al., 2012). For example, chromatin immunoprecipitation (ChIP) of histone marks and 

TFs, coupled with next generation sequencing, enable the identification of regions and TF binding 

genome-wide respectively. As such enhancers can be predicted based on clusters of bound TFs and 

presence of H3K27ac and an enrichment of H3K4me1 over H3K4me3 (ENCODE Project Consortium, 

2012). 
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1.1.8 Molecular mechanisms of enhancer activation  
 

We have already seen in Section 1.1.3 the general mechanisms through which TFs are theorised to 

exert their effect on promoters (e.g. recruiting components of the PIC and facilitating its assembly, 

increasing accessibility of the promoter region, releasing RNA pol II from proximal pausing) – are 

any of these mechanisms particularly favoured by enhancers or are there any other mechanisms 

that might be unique to enhancers? There is some evidence to support a model whereby enhancers 

recruit chromatin modifying enzymes via TFs to open up the chromatin at the promoter regions 

(termed the “hit and run” model).  Several studies have shown that tethering a chromatin 

modifying enzyme to enhancers can modulate target gene transcription, as predicted by the “hit 

and run” model (Hilton et al., 2015; Kearns et al., 2015; Mendenhall et al., 2013). However for two 

of the studies it was unclear whether this was a direct result of chromatin modification at the 

promoter by the long-range activity of the enhancer-tethered enzyme (Kearns et al., 2015; 

Mendenhall et al., 2013). As well as targeting activating marks to the promoter, enzymes at 

enhancers may also remove repressive marks (Vernimmen et al., 2011). For example the α-globin 

promoter, which in normal development loses its repressive Polycomb-associated chromatin marks 

prior to activation, shows increased binding levels of Polycomb proteins and associated marks upon 

deletion of a key enhancer (Vernimmen et al., 2011). 

The presence of RNA-poll II at enhancers led to the proposal of a model where RNA poll II is 

delivered to the core promoter via enhancers, either directly or through a tracking model where 

RNA poll II travels to the promoter via the intervening DNA (De Santa et al., 2010; Ptashne & Gann, 

1997; Vieira et al., 2004). Finally the recent discovery that many enhancers produce bi-directional 

RNA, termed enhancer RNA (eRNA), has prompted speculation that these may also play a role in 

transcriptional activation (Kim et al., 2010). Support for the various mechanisms tends to come 

from single loci studies, and thus it is hard to tell which of the models will generalise. It is possible 

that different mechanisms are adopted by different enhancers and/or different TFs recruited to 

them (Beagrie & Pombo, 2016).  

 

1.1.9 Activation over a distance  
 

Given that one of the characterising features of enhancers is their ability to stimulate transcription 

over long distances, a key question is how they exert their long-range effects. Two major models 

have been proposed to explain how enhancers can act on promoters tens of kilobases away (Figure 
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1.5): scanning, whereby proteins recruited to the enhancer slide along the DNA until they reach a 

promoter sequence, or looping, which involves the formation of DNA loops between the enhancer 

and promoter, bringing the enhancer into close proximity with the promoter (Blackwood & 

Kadonaga, 1998; Bulger & Groudine, 1999). Over the past ~15 years a series of experiments have 

 

Figure 1.5. Mechanisms of transcriptional activation by enhancers. 

In the scanning model RNA pol II and the associated transcriptional machinery track through the intervening 

DNA from the enhancer to the promoter. The looping model proposes that the enhancer comes into physical 

contact with the promoter, via the looping out of the intervening DNA. 

 

provided support in favour of a looping model. The first direct evidence that an enhancer is in close 

physical proximity to the gene it regulates and thus supporting a looping model, came from two 

studies investigating the B-globin locus (Carter et al. , 2002; Tolhuis et al. , 2002). Carter et al. used 

RNA TRAP, a technique which enables chromatin in the immediate vicinity of actively transcribing 

genes to be tagged and recovered, to identify DNA sequences in close proximity to the actively 

transcribing B-globin gene. They found multiple regions in a known long-range B-globin enhancer 

located over 50kb away were in physical proximity to the B-globin gene (Carter et al., 2002). The 

second study, by Tolhuis et al. (2002) utilised the then-recently developed chromosome 

conformation capture (3C) technology, which is a biochemical approach that enables the detection 

of sequences in close physical proximity, to confirm that known enhancer regions were in close 

physical proximity to the B-globin gene (Tolhuis et al., 2002).  

3C-based methods (discussed in the next section) have since been used to probe the distal 

interactions of thousands of promoters. These have revealed that promoters are frequently 

involved in multiple long-range interactions (Mifsud, et al., 2015; Rao et al., 2014; Schoenfelder et 
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al., 2015; Y. Zhang et al., 2013). The distal interacting regions are enriched for regulatory marks 

such as enhancer-associated histone marks and TF binding sites, indicating that many promoter 

interactions might be of regulatory nature (Mifsud et al., 2015; Rao et al., 2014; Schoenfelder et 

al., 2015; Y. Zhang et al., 2013). Taken together these findings support the idea that enhancers 

contact their target promoter via DNA looping. Additional support for a looping model comes from 

studies using imaging techniques, such as DNA-FISH, where loci of interest (e.g. a promoter and 

enhancer) are probed with DNA fragments labelled with different fluorophores on fixed cells 

(Giorgetti & Heard, 2016; Matharu & Ahituv, 2015). The distance between the two signals within 

the nucleus are measured, and compared to the cells where the loci are not predicted to interact. 

Numerous chromatin looping interactions have been observed between enhancers and their 

promoters using DNA-FISH, for example the SHH limb bud enhancer was shown to physically 

interact with its promoter in the developing limb bud (Amano et al., 2009). Direct evidence for the 

functional importance of DNA looping came from a study that used zinc finger proteins to induce 

looping between the B-globin gene and enhancer (Deng et al., 2012). Looping was found to induce 

strong transcriptional activation of the B-globin gene (Deng et al., 2012). Despite the strong 

evidence in support of a looping model, it is possible that not all enhancers act via looping. For 

example, a recent study found evidence of large scale PARP-mediated chromatin decompaction 

between neural enhancers and Shh (Benabdallah et al., 2017). The authors suggested this may be 

more compatible with a tracking model of activation (Benabdallah et al., 2017).  

1.1.10 3C-based methods to identify promoter-enhancer interactions  
 

In 3C-based methods, cells are cross-linked with formaldehyde to covalently link DNA segments 

that are in close spatial proximity (Job Dekker, Marti-Renom, & Mirny, 2013; Schmitt, Hu, & Ren, 

2016) (Figure 1.6) . Next chromatin is fragmented by restriction enzyme digestion, followed by 

ligation such that cross-linked fragments are ligated together to form hybrid DNA molecules. The 

ligation frequency between chromatin fragments (and hence cross-linking probability) is taken as 

a proxy for their interaction frequency, and thus spatial proximity. In conventional 3C, single 

ligation products are detected by PCR using locus-specific primers (Dekker et al., 2002) (Figure 1.6). 

However, this is laborious and only enables interactions between two pre-chosen loci can be 

investigated. Several variants of 3C that differ in the way hybrid DNA molecules are detected have 

since been developed, overcoming some of these limitations. Notably one variant, Hi-C, enables 

the genome-wide detection of interactions between all loci (Lieberman-Aiden et al., 2009). Hi-C 

includes an additional step after fragmentation, where the DNA ends are filled in with biotinylated 

nucleotides before ligation (Figure 1.6). Biotinylated ligation junctions, each of which corresponds 
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to a ligation event between a pair of loci, can then be purified using streptavidin beads and 

sequenced using massively parallel sequencing. While Hi-C enables interaction between all loci to 

be detected, the resolution is limited by sequencing depth. For example, with several hundred 

million reads pairs (as is often routine), interactions can be detected at 100kb resolution in the 

human genome. Unless a far higher sequencing depth is achieved, which is usually prohibitive due 

to cost, Hi-C is not suitable for detecting specific regulatory interactions. Several 3C variants have 

 

Figure 1.6. Chromosome Conformation Capture techniques. 

Chromosome conformation capture is based on a restriction enzyme (RE) digest of cross-linked chromatin, 

followed by proximity ligation. This results in fragments being ligated together that were close together in 

3D space, but potentially far apart on the linear genome. Several variants of chromosome conformation 

capture exist, differing in their strategies for fragmentation, enrichment and detection of the ligation 

junctions. In ChIA-PET, a ChIP step is included before the proximity ligation, to enrich for DNA interactions 

involving a protein of interest. In Hi-C an additional step is included after fragmentation, where fragment 
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ends are filled in with biotin. This facilitates the enrichment of successful ligation junctions in the final 

sequencing library. As a result Hi-C is a very high throughput chromosome conformation capture method 

that enables all interactions between all genomic loci to be assayed. Capture Hi-C includes a capture step 

after ligation, using baits designed to capture sequence regions of interest (for example promoter regions). 

This enables a subset of interactions of interest to be detected at higher resolution. In 3C, single ligation 

products are detected using PCR with primers against two loci of interest. Figure adapted from Risca & 

Greenleaf (2015). 

 

now been developed that enable a large number of interactions to be interrogated at an increased 

resolution. One such variant is Chromatin immunoprecipitation interaction assay with paired end 

tagging (ChIA-PET), as well as the recent HiChIP, which adds a chromatin immunoprecipitation step 

to enrich for interactions involving certain proteins (Fullwood et al., 2009; Mumbach et al., 2016). 

The use of an RNA-poll II or cohesin antibody, for example, enables a subset of promoter-enhancer 

interactions to be detected at high resolution (DeMare et al., 2013; G. Li et al., 2012) (Figure 1.6). 

A variant of Hi-C, Capture Hi-C (CHiC), uses sequence capture technologies to enrich for Hi-C 

interactions that involve a specific region of interest (Hughes et al., 2014; Mifsud et al., 2015; 

Schoenfelder et al., 2015) (Figure 1.6). One version of this, Promoter Capture Hi-C (PCHiC), uses 

sequence capture to pull down all fragments containing nearly all annotated promoters, enriching 

for all interactions involving promoters (Mifsud et al., 2015; Schoenfelder et al., 2015). Significantly, 

this enables the global detection of promoter interactions independent of the proteins bound.  

3C-based techniques have been key in providing support for the role of chromatin looping in long-

range enhancer regulation, as well as advancing our understanding of the role of 3D genome 

architecture in gene regulation (Dekker et al., 2013). Given the finding that many enhancers do not 

regulate the closest gene, linking enhancers to target genes is a non-trivial challenge (Daniel, Nagy, 

& Nagy, 2014). The fact that most enhancers appear to form chromatin loops with their target 

promoter, also enables 3C-based techniques to be used to link enhancers to target genes. The 

ability to assign enhancers to target genes based on physical proximity thus provides a 

breakthrough in enhancer assignment. Capture Hi-C, as well as deeply sequenced Hi-C, are 

particularly significant as they enable enhancers to be assigned to target genes globally (Mifsud et 

al., 2015; Rao et al., 2014; Schoenfelder et al., 2015).  

 

1.2 Multi-enhancer logic  
 

1.2.1 Concurrent regulation by multiple enhancers  
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It is becoming clear that many genes rely on the action of not one, but multiple enhancers, to 

generate the correct spatial-temporal expression patterns. In some cases each enhancer directs 

expression in a particular cell type, and as such the gene is under the control of a single enhancer 

in a given tissue/time (Spitz & Furlong, 2012). However there are many developmental genes that 

appear to be regulated by multiple enhancers driving partially or completely overlapping 

expression patterns, suggestive of concurrent regulation by enhancers (Barolo, 2012; Hong, 

Hendrix, & Levine, 2008). Enhancers driving similar patterns of expression have been termed 

“shadow enhancers” by Hong et al. (2008), after observing that many early patterning genes in 

Drosophila melanogaster have a secondary element with very similar TF occupancy and the same 

activity as a previously characterised enhancer (Figure 1.7). Shadow enhancers are not limited to 

Drosophila. For example the expression of both Sox10 and Shh in mice was found to be driven by 

enhancers with highly similar spatial activities (Jeong et al., 2006; Werner et al. , 2007) (Figure 1.7).   
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Figure 1.7. Shadow enhancers. 

(A) Clusters of Snail, Dorsal and Twist binding were identified based on whole genome ChIP-chip assays by 

Hong et al., (2018). The leftmost cluster (E1) coincided with a previously identified enhancer belonging to the 

Sog gene. A second cluster (E2) was detected in the intron of the neighbouring gene, CG8117. A ~1kb DNA 

fragment encompassing the second cluster (E2) was able to direct lateral stripes of gene expression (pictures 

on the right-hand side), in the same way as the original enhancer, suggesting it functions as an authentic 

enhancer. They termed these enhancers, shadow enhancers. (B) Werner et al. (2007) identified four shadow 

enhancers (U1,U2,U3 and D6) that were able to direct very similar patterns of expression of β-galactosidase 

in transgenic mice to the neural crest where Sox10 is active. (C) Jeong et al. (2006) identified six enhancers 

(E1 to E6) that were able to target reporter gene expression to sites of Shh transcription in the central nervous 

system of mouse embryos. In the schematic view of the mouse neural tube, regions are colour coded to 

indicate the distinct enhancer element driving their expression; solid colours indicate sites of Shh expression 

controlled by a single enhancer, whereas hatched patterns indicate that expression at that site is driven by 

more than one enhancer. As such, due to driving highly similar patterns of expression E1 + E3 and E4 +E6 

could be classed as shadow enhancers.  Figure are adapted from Hong et al. (2008), Werner et al. (2007) and 

Jeong et al. (2006).   

3′ binding cluster (shadow enhancer) was tested in arrowhead) 

1.2.2 Multiple enhancers may confer robustness 
 

The apparent redundant activities of shadow enhancers have led to the hypothesis that they may 

confer phenotypic robustness. Recent studies on the Drosophila genes shavenbaby and snail have 

provided support for this hypothesis. Shavenbaby is regulated by five enhancers with extensively 

overlapping activities (Frankel et al., 2010). Removal of two of these enhancers does not impact 

trichome patterning at optimal temperatures, but at both low and high temperature extremes 

results in extensive trichome loss (Frankel et al., 2010). In addition, embryos heterozygous for the 

wingless gene that encodes a protein involved in trichome formation, only show trichome defects 

upon removal of the two shadow enhancers (Frankel et al., 2010). A similar picture emerged for 

snail. Snail is regulated by a proximal, and  recently identified, distal enhancer located in an intron 

of a neighbouring gene (Ip et al., 1992). Quantitative imaging assays and genetic complementation 

experiments have shown a role for the snail enhancers in maintaining reliable expression at high 

temperatures, and upon a reduction in the concentration of a key activator (Dunipace, Ozdemir, & 

Stathopoulos, 2011; Perry et al., 2010). Removal of either one of the snail enhancers, in particular 

the distal enhancer, at either high temperatures or with a reduced concentration of a key activator, 

resulted in erratic patterns of gastrulation (Dunipace et al., 2011; Perry et al., 2010).  

Whether shadow enhancers may play a similar role in buffering expression against environmental 

and genetic perturbations in mammals remains an open question. The finding that shadow 

enhancers of several mammalian genes are functionally redundantly under normal conditions, 

suggests it is plausible that they may play a role in conferring robustness. For example, deletion of 
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either of the two TCRγ enhancers had little effect on TCRγ transcription, but deletion of both 

enhancers caused a large reduction in transcription and defects in γδ thymocyte development in 

mice (Xiong, Kang, & Raulet, 2002). Similarly, one of the two enhancers driving expression Pax3 in 

the neural crest, whilst sufficient to rescue neural crest cell development in mice lacking 

endogenous Pax3, is not necessary for development (Degenhardt et al., 2010). 

How might shadow enhancers confer robustness to environmental and intrinsic fluctuations? A 

simple mechanism proposed by Perry and colleagues is that multiple enhancers decrease the 

overall failure of enhancer-mediated transcriptional activation (Perry, Boettiger, & Levine, 2011; 

Perry et al., 2010) (Figure 1.8). If enhancers act independently, then the combined probability that 

a cell will fail to express a gene in a given timeframe is the product of their individual failure rates. 

For example, if two enhancers each have a 10% failure rate, their combined failure rate is 1% i.e. 

transcription will fail in 1% of cells. This model was based on the observation that Drosophila 

embryos lacking either one of the two hunchback shadow enhancers had a greater number of 

inactive nuclei ( Perry et al., 2011). This idea is consistent with the recent finding that at least some 

enhancers increase the frequency of transcriptional bursting, where several transcripts are 

produced in rapid succession followed by a period of little activity, rather than the size of bursts  

(Bartman et al., 2016; Fukaya, Lim, & Levine, 2016). If enhancers modulate burst frequency it might 

be expected that multiple enhancers would produce more consistent transcription, and thus cells 

would show less variation in transcript levels as observed with hunchback (Perry et al., 2011).  

 

1.2.3 Additive action of enhancers boosts expression 
 

Shadow enhancers may also act additively to ensure high levels of expression (Figure 1.8). The 

additive action of enhancers has been observed in both Drosophila and mammals. For example a 

quantitative live imaging study of Drosophila pre-cellular embryos found that two enhancers of a 

patterning gene kni, which drive near identical patterns of expression, showed additive activity 

(Bothma et al., 2015). Similarly, it was demonstrated through targeted deletions that the two 

enhancers driving neuronal expression of Pomc act additively in adult mice (Lam et al., 2015). By 

measuring mRNA levels for each enhancer deletion Lim et al. were able to quantify the contribution 

of each enhancer to Pomc expression, finding that the more distal enhancer is responsible for ~80% 

of Pomc expression and the more proximal enhancer ~20% (Lam et al., 2015). Two shadow 

enhancers at the α-globin locus also appear to act additively. Deletion of either of them resulted in 

a reduction in nascent α:β globin ratio in a manner consistent with the independent and additive 
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action of the enhancers (Hay et al., 2016). What might be the benefit of using multiple additive 

enhancers as opposed to a single enhancer of greater strength? It is possible that each enhancer 

has a maximum rate, at which it can activate the promoter, and so the only way to increase the 

expression level of a gene is to increase the number of enhancers used (Barolo, 2012).  

Despite reductions in gene expression upon removal of either of the shadow enhancers at the Pomc 

or α globin gene, only very modest effects on metabolic phenotype and peripheral blood 

haemoglobin levels were observed (Hay et al., 2016; Lam et al., 2015). In the case of the α globin 

gene, this was thought to be due to stress erythropoiesis which compensated for the reduced α:β 

globin ratio (Hay et al., 2016). The lack of physiological effects suggests that the expression levels 

of these genes may be super-thresholded, perhaps to confer robustness. As such the additive, as 

well as the redundant action, of enhancers may confer robustness but via slightly differing 

mechanisms. Additive enhancers can increase robustness when expression is super-thresholded, 

such that the threshold can be reached with just one enhancer. Whereas redundant enhancers may 

ensure reliability of expression, through decreasing the overall failure rate of activation. It is of 

course possible that shadow enhancers may confer robustness through both mechanisms 

simultaneously. 

 

1.2.4 Synergistic action of enhancers  
 

In many cases, enhancers that appear to act redundantly due to overlapping spatio-temporal 

activities, are actually both necessary to generate the correct expression pattern (Barolo, 2012) 

(Figure 1.8). One example of such is the Drosophila gap gene hunchback, which is involved in 

establishing the segmented body plan of the embryo along the anterior-posterior axis. Hunchback 

transcription is normally localised to the anterior part of the drosophila embryo, in response to an 

attenuating bicoid gradient. Transgenes containing the proximal and distal element together were 

found to recapitulate this endogenous expression pattern (Perry et al., 2011). However, strikingly 

the transgene showed ectopic expression when driven by the proximal element alone; this was not 

found to be the case for the distal element, which drove expression within the endogenous area. A 

similar logic, whereby similar but slightly distinct regulatory inputs are integrated in a manner that 

is different than the sum of their parts, was observed for other genes involved in Drosophila embryo 

segmentation , including additional gap genes and pair-rule genes (Dunipace, Ozdemir, & 

Stathopoulos, 2011; Perry et al., 2011). Several examples of enhancers acting in a synergistic 

manner have been also observed in mice. For example, in mouse myeloid cells two enhancers were 

found to act synergistically to maintain high levels of PU.1 expression (Leddin et al., 2011). One of 
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the enhancers was found to bind myeloid cell specific C/EBP-α, which was able to increase 

chromatin accessibility and permit PU.1 binding at the second enhancer (Leddin et al, 2011). Cross-

talk between enhancers is one potential mechanism that may enable synergistic action. In the case 

of hunchback, repressors bound at the distal element may act in a dominant negative way to 

supress the proximal element (Perry et al., 2011). Indeed the distal element was found to contain 

binding sites for repressors downstream of the torso signalling pathway, which likely mediates the  

 

 

 Figure 1.8. Possible mechanisms for the function of shadow enhancers. 

“Failure rate”: if enhancers have an inherent failure rate (they fail to activate transcription in a set proportion 

of cells), the inclusion of an additional enhancer will reduce their combined failure rate and increase the 

proportion of cells where gene expression is activated. “Additive”: the total activation output is a sum of the 

output of the two individual enhancers. If enhancers have an inherent “maximum” activation level, increasing 

the number of enhancers provides a way to increase the rate of transcription of a given gene. “Synergistic”: 

enhancers with overlapping patterns combine to produce a novel expression pattern that is different to the 

sum of their parts.  
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repressive effect (Perry et al., 2011). Interestingly the Pomc neuron-specific shadow enhancers, 

that acted redundantly in adult mice, were found to act synergistically during the embryonic stage 

The removal of either enhancer at the embryonic stage drastically reduced expression of Pomc 

(Lam et al., 2015). A similar situation was observed for the TCRγ locus, while enhancers were found 

to act redundantly in γδ thymocytes, while in a different cellular context they were found to act 

non-redundantly (Xiong, Kang, & Raulet, 2002b). The synergistic action of enhancers at some time 

point in development may be a key in enabling redundant enhancers to be maintained over 

evolutionary time (Cannavò et al., 2016).  

 

1.2.5 Regulation by multiple enhancers is widespread  
 

To date most of the insights into multi-enhancer logic have come from single-locus studies of well-

studied developmental genes, and it is thus unclear how widespread concurrent regulation by 

multiple enhancers is. Cannavò et al. recently attempted to gain a more global insight into the 

prevalence of “simultaneous” enhancer regulation (Cannavò et al., 2016). They used TF occupancy 

data from a range of Drosophila mesodermal tissues to predict pairs of enhancers active in the 

same tissue and associated with the same gene (shadow enhancers). They used two methods to do 

this; the first of which involved identifying correlated regions of TF binding within 50kb of each 

other and a gene active in the same tissue. For the second method, they utilised a machine learning 

approach, trained on enhancers with characterised activity, to predict tissue activity from TF 

occupancy. Shadow enhancers were defined as pairs of enhancers having either highly correlated 

TF occupancy or predicted activity in the same tissue, being within 50kb of each other, and within 

proximity of a gene expressed in the same tissue. They were able to identify ~1100 enhancers 

whose predicted activity overlapped with that of at least one other enhancer associated with the 

same gene (Cannavò et al., 2016). Out of the genes identified as having shadow enhancers, ~60% 

were associated with more than two enhancers, highlighting the potential complexity of multi-

enhancer regulation (Cannavò et al., 2016) This suggests, at least for Drosophila developmental 

genes, that regulation by multiple enhancers in the same tissue and time point is relatively 

common.  

Recent genome-wide enhancer mappings have provided evidence to suggest that concurrent 

regulation by multiple enhancers may also be widespread in vertebrates and not limited to 

developmental genes. First, the genome-wide annotation of enhancers in numerous mouse and 

human cell types has revealed that the number of active enhancers far exceeds the number of 
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expressed genes in a given cell type (ENCODE Project Consortium, 2004; Shen et al., 2012). Second, 

recent high-resolution chromosome conformation capture studies in mouse and human cells, 

which identify looping interactions of gene promoters, found that on average each promoter 

interacted with approximately four distal regions (Freire-Pritchett et al., 2017; Javierre et al., 2016; 

Ozsolak et al. 2007; Sanyal et al., 2012a). Collectively these findings suggest that regulation by 

multiple enhancers in a given cell type and time point might be a pervasive feature of metazoan 

gene regulation.  

 

1.3 Natural variation and enhancer activity  
 

1.3.1 GWAS and eQTLs - Population genomics approaches to assess the impact of natural 

variation 
 

Given the importance of enhancers in the spatial-temporal control of gene expression, it might be 

expected that mutations, which alter enhancer activity carry phenotypic consequences. Indeed, 

several rare Mendelian disorders have been attributed to malfunctions of individual enhancers. 

Perhaps the most striking example is the dysregulation of SHH which has been found to cause limb 

malformations. SHH is normally expressed in the developing limb bud under the control of a long-

range enhancer located >1 MB away from the gene, and is essential for limb patterning. Mutations 

at this long-range enhancer have been linked to a congenital abnormality in humans, known as pre-

axial polydactyly, which results in the formation of extra digits. The mutations were found to alter 

the binding profiles of ETS factors at the long-range enhancer, causing ectopic expression of SHH 

in the limb bud (Lettice et al., 2002, 2003, 2012; Lettice, Hill, Devenney, & Hill, 2008).  

Recent findings from genome-wide association studies (GWAS) have revealed that enhancer 

variants also play a role in many complex diseases and traits (Donnelly, Price, & Spencer, 2015.; 

Hirschhorn & Daly, 2005; McCarthy & Hirschhorn, 2008). GWAS involve the genotyping of hundreds 

of thousands or millions of single nucleotide polymorphisms (SNPs) in a large group of individuals, 

and testing each polymorphism for statistical association with a trait/disease of interest. Due to 

linkage disequilibrium (LD) this results in groups of correlated SNPs which show a significant 

association with the trait of interest. Over the past 10 years, hundreds of GWASs have been 

performed, identifying thousands of loci that may contribute to susceptibility of a diverse range of 

diseases (MacArthur et al. 2017). Strikingly the vast majority of these disease -associated SNPs 

(~93%) were found to fall outside of protein coding genes (Maurano et al., 2012a). Numerous 

studies have found that GWAS SNPs are enriched at regions of DNase hypersensitivity (DNase HS), 
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which is indicative of open chromatin, and at regions with enhancer-associated histone marks in 

the relevant cell type suggesting that many variants influence activity of non-coding regulatory 

elements (Ernst et al., 2011; Maurano et al., 2012; Schaub et al., 2012). 

Expression quantitative trait loci (eQTL) studies, which identify genetic variants that influence gene 

expression, represent a population-based approach to evaluate the regulatory impact of non-

coding variants (Albert & Kruglyak, 2015; Gilad, Rifkin, & Pritchard, 2008; Nica & Dermitzakis, 2013; 

Stranger & Raj, 2013). Standard eQTL studies involve testing for association between gene 

expression, as measured via microarrays or RNA sequencing, and genotypes of SNPs within a 

certain distance of the gene (often within 1MB) in tens to hundreds of individuals (Albert & 

Kruglyak, 2015a; Gilad, Rifkin, & Pritchard, 2008; Nica & Dermitzakis, 2013; Stranger & Raj, 2013).  

A large number of eQTL studies have now been carried out in both human cell lines and primary 

tissues (e.g., Albert & Kruglyak, 2015; Battle et al., 2014; Blauwendraat et al., 2016; Grundberg et 

al., 2012; GTEx Consortium, 2015; Lappalainen et al., 2013; Montgomery et al., 2010; Pai, Pritchard, 

& Gilad, 2015; Yang et al., 2012), collectively reinforcing the notion that expression-modulating  

variation is widespread. The most recent studies which include ~1000 individuals found that the 

majority of genes contained at least one eQTL; given that power to detect significant variant-

expression associations is strongly affected by the number of individuals included in the study, 

additional eQTLs are likely to be revealed as ever greater numbers of individuals are used (Battle 

et al., 2014). eQTLs were found to be highly enriched at DNase1 hypersensitivity sites and in 

chromatin states associated with active promoters and enhancers, suggesting that a large number 

of variants influencing expression through regulation. The majority of eQTLs lie close to the TSS, 

suggesting they fall at promoter regions (Stranger et al., 2007). Indeed as the distance between the 

eQTL and the TSS increases, the effect size tends to decrease (Westra & Franke, 2014).  

As with GWAS studies, due to LD many correlated variants will show significant associations; the 

SNP with the most significant association (the “lead” SNP) is often considered as the most likely 

causal one. However, the “lead” eQTL SNP may not always be causal, for example, due to noise in 

the expression data, with estimates for the percentage of best eQTLs that are causal ranging from 

30%-70% (Lappalainen et al., 2013). Several fine-mapping strategies have incorporated regulatory 

annotations to prioritise reduced sets of putative causal variants (Kumasaka, Knights, & Gaffney, 

2015; Spain & Barrett, 2015; Wen, Luca, & Pique-Regi, 2015).  
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Figure 1.8. Schematic illustrating the principles of an eQTL analysis. 

Two hypothetical SNPs (X and Y) and one indel (Z) are tested for association with expression of gene A. For 

each variant (X, Y and Z) an association test is carried out between the variant genotype and expression levels 

of gene A in hundreds of individuals. Here only for SNP Y does expression associate with genotype, and as 

such SNP Y can be termed an eQTL. For each variant the genotypes of a subset of the individuals tested are 

shown (for example in the first set of individuals, A/A indicates that the individual is homozygous for 

nucleotide A at SNP X). The boxplots on the right show the expression levels of the individuals, split by 

genotype at the respective SNP/indel.  
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1.3.2 How do non-coding variants influence regulatory activity?  
 

1.3.2.1 Disrupting TF binding 

 

Investigating the properties of eQTL variants provides the opportunity to obtain insights into the 

mechanisms through which non-coding variants act to modulate expression. Numerous studies 

have found eQTLs to be significantly enriched at TF peaks, consistent with the hypothesis that 

variants impact expression through TF binding (Gaffney et al., 2012). The availability of position 

weight matrices (PWMs), which model the sequence binding preferences of TFs, enable sequences 

to be scored according to their predicted affinity for a given TF (Berg & von Hippel, 1987, 1988; 

Fields et al., 1997; Stormo, 2000). Thus PWMs can be used to predict the effect on TF affinity of a 

particular variant (Andersen et al., 2008; Macintyre et al., 2010; Manke, Heinig, & Vingron, 2010; 

Moyerbrailean et al., 2016). Numerous studies have taken advantage of such computational 

binding predictions to test whether eQTLs are enriched for SNPs predicted to impact TF binding. 

For example one such study found that eQTLs in a lymphoblastoid cell line (LCL) showed a 

significant enrichment for variants predicted to alter TF binding; this enrichment was larger than 

that for variants which fell at a TF binding site but were not predicted to impact binding (Wen, Luca, 

& Pique-Regi, 2015). This is further supported by the finding that SNPs associated with allele-

specific TF binding (as assayed by TF ChIP-seq) show a significant enrichment for eQTLs (Cavalli et 

al., 2016). It was also estimated that for around 55% of eQTLs the SNP genotype correlates with 

DNase hypersensitivity levels (dsQTL); a likely mechanism behind this association between SNP and 

DNase HS is through the alteration of TF binding, which affects local nucleosome occupancy and 

thus DNase cut rates (Degner et al., 2012). Indeed dsQTLs are significantly enriched in predicted TF 

binding sites, and the allele with the highest predicted TF affinity tends to be associated with the 

higher chromatin accessibility (Degner et al., 2012). 

A similar picture has also emerged from recent massively parallel reporter assays (MPRA), which 

directly assess the ability of thousands of regulatory elements to drive expression of a reporter 

gene (Inoue & Ahituv, 2015; Kwasnieski et al. , 2012; Patwardhan et al., 2012; Tewhey et al., 2016). 

One such study tested the regulatory impact of SNPs identified as eQTLs across a panel of LCLs; out 

of the identified expression-modulating SNPs (which overlapped a TF peak), 76% showed a 

significant difference in predicted TF affinity (Tewhey et al., 2016). Another such study directly 

tested the effect of targeted motif disruptions for selected TFs on ~2,000 enhancers predicted 

based on chromatin data from the ENCODE in HepG2 and K562 cells ( Kwasnieski et al., 2012). They 

found that the disruption of the binding sites of activator TFs resulted in reduced activity in the 
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relevant cell type. MPRAs are emerging as a powerful complementary tool for investigating the 

effects of non-coding variants on expression; unlike eQTL analyses, where determining the causal 

SNP is hard due to LD, they are able to directly assess the impact of individual SNPs. The 

disadvantage of MPRAs is that they do not study variants in their native context, and so for example 

the effects of chromatin and long range interactions will not be evaluated. As such they are perhaps 

most powerful when used in parallel with another approach that takes into account the native in 

vivo environment, for example they can be used to assist in identifying the causal SNPs at previously 

identified eQTL loci (Tewhey et al., 2016). 

 

1.3.2.2 Altering the chromatin state  

 

In addition to expression QTLs, several studies have investigated the effect of DNA variation on 

chromatin state. These analyses have revealed widespread associations between sequence 

variants and histone modifications (including H3K4me1, H3K4me3 and H3K27ac), DNA 

methylation, DNase HS and ATAC- Seq signals (Alasoo et al., 2017; Banovich et al., 2014; Chen et 

al., 2016; Degner et al., 2012; Maya Kasowski et al., 2013; Kilpinen et al., 2013; McVicker et al., 

2013). QTLs for many of these features were significantly enriched for loci associated with changes 

in gene expression (Banovich et al., 2014; Degner et al., 2012; Kilpinen et al., 2013; McVicker et al., 

2013). Local differences in histone modifications were found to correlate with TF binding site 

polymorphisms, suggesting that changes in TF binding might underlie at least some histone 

modification variation (McVicker et al., 2013). A similar picture was found for methylation and 

DNase QTLs, with SNPs predicted to change TF binding affinity significantly enriched for association 

with DNA methylation at close CpG sites and DNase HS (Banovich et al., 2014; Degner et al., 2012). 

A large number of loci were associated with both differences in histone modifications and DNA 

methylation, suggesting that chromatin changes are often coordinated, perhaps via TF binding 

changes (Banovich et al., 2014a). Collectively these results suggest that sequence variants could 

initially impact TF binding, which can lead to concomitant changes in chromatin state and gene 

expression. If this is the case, changes in gene expression might occur either directly as a result of 

TF binding perturbation or as a consequence of alteration of chromatin state.  

 

 

 



29 
 

1.3.2.3 Chromatin looping to impacted gene 

 

While the majority of eQTLs lie proximal to the TSS, many lie at greater distances suggesting that 

they may fall at long range regulatory elements. 3C-based methods including 3C, 4C and Capture 

Hi-C have demonstrated that variants are often in contact with the impacted gene, indicative of 

DNA looping between the variant and gene (e.g. Canver et al., 2015; Cowper-Sal·lari et al., 2012; 

Javierre et al., 2016b; Smemo et al., 2014). For example a SNP linked with breast cancer that 

associates with expression of TOX9, was demonstrated to physically interact with the TOX9 gene 

(Cowper-Sal·lari et al., 2012). Further investigation revealed that the risk allele showed increased 

binding of FOXA1 region in-vivo, suggesting the SNP modulates enhancer activity via impacting 

FOXA1 binding (Cowper-Sal·lari et al., 2012). Another study showed that obesity-associated 

variants located in an intron of FTO physically connect to the promoter of another gene, IRX3 

(Smemo et al., 2014). Enhancers at the risk associated locus were able to recapitulate parts of IRX3 

expression, suggesting that they may act as long range enhancers to IRX3. Consistent with this 

variants were found to associate with expression of IRX3, and not FTO in human brains (Smemo et 

al., 2014). Bauer et al. show that SNPs associated with increases in fetal haemoglobin level are 

localised to an intron of BCL11A, which is decorated with enhancer-associated histone marks and 

in close physical proximity to the promoter of BCL11A (Bauer et al., 2013). Using allele-specific 

analysis, the authors further demonstrated that the enhancer variants impact TF binding and 

expression (Bauer et al., 2013).  

In theory, chromatin loops between variants and target genes may play a “passive” role in 

modulating expression, whereby they facilitate communication between the perturbed enhancer 

and the promoter. Alternatively, given that many factors known to be involved in loop formation 

are DNA binding proteins (e.g. CTCF), some variants may influence expression by impacting binding 

of these factors and directly disrupting looping (Rao et al., 2014). Experimental perturbations of 

CTCF binding motifs at the anchor points of loops, have been shown to alter looping (Sanborn et 

al., 2015). A recent study that identified binding QTLs for five TFs found evidence to suggest that 

they may alter looping (Tehranchi et al., 2016). Using allele-specific Hi-C, they were able to show 

that for binding QTLs that were heterozygous in the sample, the high binding allele made 

significantly more distal contacts (Tehranchi et al., 2016). While one of the five TFs was CTCF, a 

factor known to be involved in the looping, the other TFs were not known to play a role in loop 

formation. In these instances whether the TF is directly important in anchoring the loop, or if it 

contributes to the overall loss of activity of the regulatory element which as a consequences results 

in loss of the loop, remains to be seen.  
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In summary natural variation may impact enhancer activity through a variety of mechanisms 

including altering TF binding, chromatin state and looping. Many of these key insights have come 

from eQTL studies and GWASs, through the identification and characterisation of large numbers of 

variants associated with changes in expression and phenotypic traits. 3C-based studied have 

highlighted the role of variants at long range regulatory elements in modulating expression.  

 

1.3.3 Limitations of eQTL approaches  
 

While eQTL studies have enabled the identification of thousands of non-coding expression 

modulating variants and investigations of their properties, they have several limitations. These 

limitations may be especially relevant for the discovery of novel expression-modulating enhancer 

variants. Typically in eQTL studies, variants are classified as either cis or trans, based on their 

distance from the gene and potentially reflecting the mechanism through which they act (Nica & 

Dermitzakis, 2013). To identify cis-variants associated with expression, generally only variants 

falling within a small window (often around 1MB) around the TSS are tested. This is in order to limit 

the multiple testing burden and consequently increase the power. Trans-variants are tested 

separately, and suffer from much lower power due to the huge number of tests performed to 

search the genome for all trans-eQTLs. Even within the small window in which cis-eQTLs are tested, 

there are still a huge number of variants, requiring a vast number of tests to be performed. As a 

result, they suffer from low statistical power and thus are only able to detect robust changes in 

gene expression. Although there are numerous examples of enhancer perturbations that have large 

effects on gene expression, individual enhancers are generally expected to have more modest 

effects on expression than promoters. This is in part due to the redundant nature of enhancers (e.g. 

shadow enhancers). Massively parallel reporter assays, which directly assess the ability of 

thousands of regulatory elements to drive expression of a reporter gene, found that most enhancer 

variants that affect expression induced a modest 1.3 - 2 fold change in transcriptional level 

(Patwardhan et al., 2012; Tewhey et al., 2016). eQTL studies might therefore be inherently biased 

towards the detection of promoter variants which have a larger effect, and that a greater 

proportion of distal regulatory variants may be missed. This may partly explain why the majority of 

eQTLs are localised very close to the TSS.  

Due to the vast number of variants tested per gene, eQTL studies tend not to consider 

combinatorial effects of multiple SNPs at a given loci and instead test the effect of each SNP 

individually. They also often make the assumption that there is a single causal SNP per gene or in 
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some cases per LD block. However there is increasing evidence to show that genes may harbour 

multiple eQTLs across their regulatory regions, and these may be in LD with each other (Bauer et 

al., 2013; Corradin et al., 2014; Wen et al., 2015). As the “causal” eQTL is selected as the one with 

the most significant association, if both proximal and distal eQTLs are detected, due to generally 

larger effect sizes the proximal ones are likely to be the most significant. Furthermore recent work 

by Corradin et al. (2014) suggests that several variants distributed across multiple enhancers may 

co-ordinately affect expression of their target gene, terming this the “multi enhancer variant” 

(MEV) hypothesis (Corradin et al., 2014). They provided evidence for this in six human autoimmune 

traits, where they found GWAS associations were often the result of expression changes brought 

about by the coordinated action of several SNPs in LD distributed over multiple enhancers. When 

such SNPs are tested individually (as in the case in most eQTL studies), unless they are in perfect 

LD, their effects on expression may be missed (Corradin et al., 2014). This may either be due to the 

fact that the change expression is brought about by the coordinated action of multiple SNPs, or 

each SNP has a very small effect and thus it is only the larger combined effect that is above the 

detection threshold (Corradin et al. 2014). 

In conclusion, while eQTL studies are a powerful way to investigate the effects of sequence variants, 

they are not without limitations. These limitations are especially likely to impact the discovery of 

enhancer variants. As such, there is still room for the development of novel population genomics 

approaches to identify and investigate the function of enhancer variants. 

 

1.4 Aim 
 

My thesis sets out to examine two key issues presented here regarding gene regulation by 

enhancers. First, how a gene’s regulatory information is encoded across multiple enhancers. 

Second, understanding and predicting the effects of enhancer variants. 
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2 Methods 
 

2.1 Promoter Capture Hi-C (PCHiC) data processing and interaction calling 
 

Promoter Capture Hi-C data for GM12878 were obtained from Mifsud et al. (2015). Interactions 

were called at a HindIII restriction fragment level using the CHiCAGO pipeline (Cairns et al., 2016). 

The CHiCAGO pipeline uses a convolution background model to account for both random distance 

dependent collisions and technical noise from the assay and sequencing. CHiCAGO corrects for 

multiple testing using a p-value weighting procedure based on the expected true positive rate for 

the given interaction distance. As such, the scores represent soft-thresholded –log weighted p-

values. The default threshold of 5 was used, which has previously been shown to maximise 

enrichment of promoter-interacting regions for regulatory chromatin marks (Cairns et al., 2016). 

Baits were annotated for transcriptional start sites (TSSs) using the bioMart package in R with 

Ensembl TSSs for GRCh37 (Smedley et al., 2015). Baits with TSSs for more than one gene (4,178 out 

of 22,076) were excluded from the analysis, as in these instances it is not being possible to tell 

which of the genes the detected interactions are formed with, which might confound analysis of 

gene-level properties.  

 

2.2 Downloading and processing TF ChIP-Seq data  
 

ChIP-seq data for 52 TFs in GM12878 were obtained from the ENCODE project (ENCODE Project 

Consortium, 2012). ChIP-seq narrow peak files for the 52 TFs (in GM12878) called with the SPP 

caller and thresholded the irreproducible discovery rate (IDR) were downloaded from the USCS 

ENCODE portal. Where multiple peak files existed for a single TF (due to either multiple ENCODE 

production groups performing ChIP-Seq for the same TF or different protocols being used) the 

intersect of the two files was taken for all TFs except for ERG1. One of the two ERG1 peak files 

(produced using a different protocol) had substantially fewer peaks than the other one and was 

identified by ENCODE as being of lower quality, likely missing many true positives. The union of the 

EGR1 peaks was taken instead to avoid losing peaks from the higher quality dataset. Histone and 

DNase peaks were also downloaded from the UCSC ENCODE portal (ENCODE Project Consortium, 

2012a). 
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2.3 Definition of TF-bound regions/CRMs and integration with PCHiC data 
 

For Chapter 3 analysis, the architectural factors (CTCF, RAD21 and SMC3) were excluded, resulting 

in a set of 49 TFs. For Chapter 3 analysis, all 52 TFs were used in annotating TF binding at CRMs– 

however due to the lack of availability of PWMs for 11 of the 52 TFs, binding affinities (and 

binding affinity variants) were only predicted for 41 of the 52 TFs. 

The union of TF peaks for the 49/52 TFs was taken (minimum 1bp overlap) to produce a composite 

set of TF bound regions for Chapter 3/Chapter 4 analyses respectively. This took the form of a binary 

matrix, where for each region the presence/absence of each TF was indicated. For the analysis in 

Chapter 2, this set of TF bound regions was filtered to those containing at least three different TFs 

and then referred to as cis-regulatory modules (CRMs).  

The CRMs/TF bound regions were overlaid onto promoter interacting regions detected in Promoter 

Capture Hi-C, requiring a minimum 1bp overlap. For Chapter 4, TF-bound regions falling (by at least 

1bp) within 18kb window centred at of the midpoint of the bait were defined as proximal TF bound 

regions. An 18kb window was chosen as this represented the median length of three restriction 

fragments, whereby the median was calculated only on restriction fragments included in this 

analysis (i.e. those involved in interactions, either as the bait or PIR, and overlapping with at least 

one TF bound region). The fragment immediately up- and downstream of the bait are excluded 

from Promoter Capture Hi-C during the data processing steps, resulting in theory, in a three 

restriction fragment length “blind” window.  

 

2.4 Analysis of multi-enhancer genes 
 

All analysis was carried out in R statistical environment unless stated otherwise.  

2.4.1 Enhancer similarity metrics 
 

Similarity of a gene’s enhancers based on the identity of the TFs bound (the initial metric, used in 

Section 3.22) was calculated as follows: 

(1)                                                        𝐻̅ =
1

𝑇
 ∑

𝑥𝑗

𝑒

𝑇
𝑗=1  

Where T is the total number of unique TFs at a given gene, x is the number of enhancers that a TF 

is bound at a given gene, e is the total number of enhancers for a given gene and j is the TF.  
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The modified enhancer similarity metric, which was used to identify genes with highly dissimilar 

enhancers (Section 3.24), was computed as follows. The number of enhancers bound per gene by 

a given TF for genes with N enhancers is assumed to have hypergeometric distribution. The 

theoretical mean number of enhancers bound per gene and variance were calculated using the 

hypergeometric function for each of the 49 TFs for genes with 2-11 enhancers, as follows:  

(2)      𝑥̅ 𝑒𝑗 = 
𝑒𝐾𝑗

𝐸
 

 

(3)     𝑣𝑎𝑟𝑥𝑒𝑗 = 
𝑒𝐾𝑗(𝐸−𝐾𝑗)(𝐸−𝑒)

𝐸2(𝐸−1)
 

Where the e is the number of enhancers belonging to a gene, j is the TF, K is the total number of 

enhancers bound by a given TF across all genes, and E is the total number of enhancers across all 

genes. The resulting means and variances were used to compute z-scores for all TFs bound at each 

gene, as follows:  

(4)                   𝑧𝑤𝑗 =
𝑥𝑤𝑗− 𝑥 𝑒𝑗

√𝑣𝑎𝑟𝑥𝑒𝑗

  

Where w is the gene of interest, j is the TF, x is the number of enhancers bound by the given TF at 

the given gene, and x ̄is the mean number of enhancers bound by the given TF across all genes with 

the equivalent number of enhancers. For example for a TF bound at two out of five of a genes 

enhancers, a z –score was computed using the theoretical mean and standard deviation of number 

of enhancers bound at genes with five enhancers for that particular TF. For each gene, the mean of 

the z-scores for all TFs bound at at least one enhancer was computed (termed modified enhancer 

similarity) as follows: 

 

(5)      𝑝𝑤 =
1

𝑇
 ∑ 𝑧𝑤𝑗

𝑇
𝑗=1  

 

Where T is the total number of unique TFs bound across a genes enhancers and z is the z-score 

for a given TF (j) at the given gene (w).   
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2.4.2 Enhancer similarity permutations  
 

Observed enhancer similarity was calculated for all genes with 2-10 enhancers using the enhancer 

similarity metric. To compute the expected enhancer similarity, the gene IDs were permuted so 

that enhancers were grouped by random instead of by gene that they were linked to, with the 

distribution of number of enhancers per random group matching that of the number of enhancers 

for actual genes. In addition, the number of TFs per enhancer within each random groups were 

matched to that of the number of TFs per enhancer linked to the same gene. For example if fifty 

out of the total genes had three enhancers bound by 5, 7 and 10 TFs, then the permuted set of 

enhancers would also contain 50 randomly grouped enhancers, where each group consists of an 

enhancer bound by 5, 7 and 10 TFs. 1000 permutations were carried out, and for each permutation 

the mean enhancer similarity of the randomly grouped enhancers was computed. The mean 

enhancer similarities of the permutations were used to calculate 95% confidence intervals.  

To test that CRMs on the same PIR were not influencing the results, observed enhancer similarity 

was computed limiting each gene to one CRM per PIR. For each gene with multiple CRMs mapping 

to a single PIR, one CRM was randomly selected per PIR. Enhancer similarity was then computed 

for these genes (across the one-per-PIR CRMs), as well as for genes which did not have multiple 

CRMs mapping to a single PIR. 1000 single-CRM-per-PIR draws were carried out, and the mean 

across the 1000 draws taken. To compute the expected enhancer similarity for genes with one CRM 

per PIR, for all PIRs a single CRM was randomly selected, and then the gene IDs permuted as 

described before. This was done in such a way that the distribution of number of CRMs per random 

group and number of TFs at each enhancer per group, matched that of the single-CRM-per-PIR 

genes. 1000 permutations were carried out. For each permutation the mean enhancer similarity of 

the randomly grouped enhancers was computed, and used to calculate 95% confidence interval.  

 

2.4.3 Enrichment analysis of “integrating” genes  
 

A set of genes with highly dissimilar enhancers were identified and a background set of genes, 

matched in distribution of both the number of enhancers per gene and number of unique TFs per 

gene, were generated. To identify genes with highly dissimilar enhancers, enhancer similarity (the 

modified metric described above) was calculated for all genes with up to a maximum of 11 

enhancers. Genes were grouped by number of enhancers (ten groups, 2-11 enhancers), and the 

bottom 10th percentile of genes from each group were selected based on enhancer similarity. 
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Genes with >11 enhancers were excluded due to very low numbers of genes with >11 enhancers 

(<100 genes). For each group of low enhancer similarity scoring genes, a background set of genes 

were selected from the remaining genes (with similarity scores greater than the 10th percentile) 

with equivalent numbers of enhancers. The background sets of genes were chosen so that the 

distribution of number of unique TFs per gene matched the equivalent group of the low scoring 

similarity genes. This was achieved by splitting all genes, for each number of enhancers, into 10 

groups based on 10th-quantiles of number of unique TFs across enhancers for a gene.  The number 

of genes sampled from each quantile in the background set for a given number of enhancers was 

then matched to the number of genes belonging to each quantile in the low enhancer similarity 

scoring set of genes (for the same given number of enhancers).  The groups of genes with highly 

dissimilar enhancers were then pooled (across genes with different TFs), as were the background 

groups of genes, to create one set of genes with highly dissimilar enhancers and one set of 

background genes.  

The g:Profiler package in R was used to carry out an enrichment analysis (Reimand, Kull, Peterson, 

Hansen, & Vilo, 2007) for Gene Ontology (GO) terms, regulatory pathways and human disease gene 

annotations. The default method was used for multiple testing correction, as this was shown to 

cope better with the complex structures of GO terms (Reimand et al., 2007). 

 

2.4.4 Identification of “lone” and “homotypic” binding TFs 
 

For each TF a binomial logistic regression was used to model the probability that the TF is bound at 

an enhancer as a function of the gene the enhancer belongs to (gene dependent model), as follows: 

 

(6) gene dependent model:  log [
𝑝𝐵𝑜𝑢𝑛𝑑

1−𝑝𝐵𝑜𝑢𝑛𝑑
] =  𝛽0 + 𝛽1𝑥̅ 

Where PBound is the probability of that an enhancer is bound by a given TF, and x is the id of the 

gene that the enhancer belongs to. In addition, for each TF a null binomial logistic regression was 

fitted, where the predicted value was fixed to the proportion of the total bound enhancers across 

all genes (i.e. gene independent). This is shown below, where PBound and x are the same as for 

equation (6): 
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(7) null model:   log [
𝑝𝐵𝑜𝑢𝑛𝑑

1−𝑝𝐵𝑜𝑢𝑛𝑑
] =  𝛽0  

 

For each TF the akaike information criterion (AIC) (Akaike, 1974) of the null model was subtracted 

from the AIC of the gene-dependent model, as follows: 

(8)  𝛥𝐴𝐼𝐶 =  (−2.𝐿𝐿(𝑔𝑒𝑛𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙) + 2𝑘) − (−2.𝐿𝐿(𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙) + 2𝑘) 

 Where LL is the log likelihood of the gene dependent/null logistic regression model respectively, 

and k are the total number of genes in the analysis. The AIC was calculated using the general linear 

model function in R. The difference in AIC between the fitted and null model for each TF (ΔAIC) was 

plotted against the total number of enhancers bound by the respective TF. A smooth curve was 

fitted using locally weighted polynomial regression (LOESS), and 95% confidence intervals 

calculated. Any TFs with an AIC difference greater than the upper confidence limit (95%) were taken 

as significantly “lone” binding, while any TFs with a difference in AIC less than the lower confidence 

limit were taken as “homotypic” binding.  

 

2.4.5 Comparative feature enrichment analysis of “lone” versus “homotypic” binding TFs 
 

Comparative feature enrichment analysis was performed using the ToppCluster webtool (Kaimal, 

Bardes, Tabar, Jegga, & Aronow, 2010). An FDR of 5% was used. Due to the two lists of genes being 

very comparable in number (“lone” TFs = 13, “homotypic” TFs= 12), FDR-corrected enrichment p-

values could be compared between the two sets of genes.  

 

2.5 Prediction of TF binding variants  
 

2.5.1 Downloading, filtering and integration of 1000 Genomes variant calls  
 

Variant calls from the 1000 Genomes Project were used. These represent a set of phased single 

nucleotide polymorphisms (SNPs), short insertions and deletions (INDELS) and structural variants 

called from a combination low-coverage sequencing, high coverage exome sequencing and high-

density micro-array genotyping of 2,059 LCLs. Variant calls for 359 LCLs of European ancestry (CEU, 

TSI, FIN, GBR, IBS) that overlapped with proximal and distal TF-bound regions for were downloaded 

from the 20130502 1000 Genomes Project release (Phase 3) using tabix and VCFTools (Auton et al., 
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2015a; Danecek et al., 2011). Multi-allelic variants and variants with a minor allele frequency <0.05 

within the 359 LCLs were filtered out.  

 

2.5.2 Variant sequences of TF bound regions obtained  
 

The GRCh37 genomic sequence for each TF bound region was accessed using the Bioconductor 

BSGenome package. The genotypes of all variants within the TF bound region for all 359 LCLs were 

examined, and unique haplotypes identified. Variant sequences for each TF bound regions were 

obtained by injecting the variants of each unique haplotype into the reference sequence for the 

respective TF bound region.  

 

2.5.3 PWMs for human TFs  
 

A collection of PWMs from the ENCODE TF ChIP-Seq experiments were used (Kheradpour & Kellis, 

2014). The PWMs were loaded into R using the motif library in the atSNP package (Zuo, Shin, & 

Keleş, 2015). 

 

2.5.4 Computation of normalised binding affinities  
 

Binding affinities of variant sequences for PWMs were predicted using TRAP, a biophysical model 

which calculates the total affinity of a sequence for a given TF (Roider, Kanhere, Manke, & Vingron, 

2007). This was chosen over the classical “hit”-based approach, which scans and returns a separate 

score for each segment of a sequence which are then thresholded to identify binding sites, as it 

naturally incorporates the effects of multiple variants and also takes into account multiple low 

affinity sites. Variant sequence affinities were computed using the tRap R package, with the 

pseudocount parameter changed to zero, to allow for using frequency as opposed to count 

matrices.  

Sequence binding affinities were normalised, so that changes in binding affinities could be 

compared between different PWMs, using a method proposed by Manke et al. (2008). In brief, they 

proposed using a statistical score (p-value), where the probability of observing a given affinity or 

higher in the background sequence is computed, with the aim of normalising the observed affinity 

in light of a random sequence model. They demonstrated that the affinity distribution (A) can be 
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parameterised by the general extreme value (gev) distribution, with the probability of observing an 

affinity score for a given TF as follows: 

(9)   𝑙𝑜𝑔𝐴 ~ 𝑃(𝑥̅|𝑎, 𝑏, 𝑐) = exp (− [1 + 𝑎
𝑥−𝑐

𝑏
]
−
1

𝑎
) 

 

Where a is the shape parameter, b is the scale parameter and c is the location parameter. To avoid 

estimating the gev distribution parameters (a, b and c) for a given PWM for all observed lengths of 

TF-bound regions individually (as affinity is length dependent), the parameters for a range of 

different lengths (L) were estimated and a regression approach used to predict the parameters for 

TF bound regions of other lengths, as suggested by Manke et al. (2008). The regression model used 

to estimate the scale parameter is shown (the other two parameters are estimated in an identical 

way): 

(10)     𝑐(𝐿) = 𝑐0 + 𝑐1𝐿𝑜𝑔𝐿 

This was done using the fit.gev function in the tRap R package. Parameters were estimated for 

sequence lengths 40, 100, 200, 250, 300, 400, 500, 800, 1000, 2000, 3000. These were chosen as 

they encompass the lengths of all TF-bound regions included in the analysis (min=42, median= 262, 

max=2875). For genomic background sequences, TF-bound regions not bound by the TF of the 

respective PWM were used, and extended to the required length, to ensure that DNA context of 

regulatory region was matched. 

  

2.5.5 Changes in TF affinity relative to GM12878 computed  
 

Change in binding affinity compared to GM12878 were computed for all PWMs for all unique 

haplotypes (excluding that of GM12878) for a given TF bound region. This was done by subtracting 

–log10(normalised affinity of GM12878 haplotype) from –log10(normalised affinity of alternative 

haplotype); resulting in negative values where the affinity of the variant haplotype was reduced 

compared to GM12878 for a given PWM. In cases where GM12878 was heterozygote for 

haplotypes, the highest affinity haplotypes was used. The reasoning being that this is likely the one 

underlying the TF binding observed in the ChIP-Seq data. There were a small number of cases where 

the normalised affinity for a PWM was zero. To avoid filtering out these cases, the lowest non-zero 

normalised affinity observed for that PWM was used instead.  
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For each TF bound region, the median change in binding affinity (as described above) was 

computed across all PWMs for a given TF for each unique haplotype. PWMs which had a normalised 

affinity score >0.1 in GM12878 were excluded (i.e changes in binding of these PWMs were not 

used). The rationale behind this being that not all PWMs likely represent the sequence responsible 

for the binding seen in GM12878, especially when a TF has multiple distinct PWMs. Different 

haplotypes may still show differences in affinity for PWMs which do not describe the given TF 

binding, which may result in a region being incorrectly identified as showing binding variation.  

Any regulatory regions for which at least one haplotype showed a median change in affinity relative 

to GM12878 >0.6 for a given TF, were taken as showing binding variation for the respective TF. This 

threshold was chosen based on dsQTL enrichment analysis. Haplotypes for a given regulatory 

region showing a change in binding relative to GM12878 >0.3 for a given TF were pooled and 

termed the low affinity allele. The GM12878 haplotype (highest affinity haplotype where GM12878 

is heterozygous) was termed the high affinity allele. For the rest of analysis individual genotypes 

were annotated based on these pooled haplotypes, with individuals either being homozygous for 

the high affinity allele for a given TF (i.e <0.3 change in affinity relative to GM12878), heterozygous 

for the high affinity allele or homozygous for the low affinity allele (i.e >0.3 change in affinity 

relative to GM12878).  

 

2.6 dsQTL enrichment analysis  
 

2.6.1 Downloading and processing of dsQTL data  

 

The dsQTL data were from Degner et al. (2012), available in Gene Expression Omnibus under 

accession number GSE31388 (Edgar, Domrachev, & Lash, 2002). The set of dsQTLs identified using 

a 2kb cis-candidate window were downloaded, and converted to GRCh37 using liftOver (Hinrichs 

et al., 2006).  

 

2.6.2 Testing for overlap with dsQTLs 

 

The variant/s underlying the affinity change at each regulatory region which showed an affinity 

change relative to GM12878 over a range of thresholds for any TF, were identified. The thresholds 

used were 0.00, 0.05, 0.11, 0.16, 0.21, 0.26, 0.32, 0.37, 0.42, 0.47, 0.53, 0.58, 0.63, 0.69, 0.74, 0.79, 

0.84, 0.89, 0.95, 1.00. It was not possible to use a threshold >1 due to having too few binding 
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variants (<100) showing changes over this threshold. These sets of binding variants were filtered to 

SNPs (INDELS were excluded) which were singly responsible for causing the change in the affinity 

(i.e SNPs which jointly impacted affinity were excluded). They were further filtered to SNPs with a 

MAF >0.05 in the 70 LCLs in the Degner et al (2012) analysis. For the control threshold of zero, for 

each regulatory region that showed no change in binding affinity for any TFs relative to GM12878, 

a single SNP was randomly selected (also with an MAF >0.05).  

To calculate the proportion of variant SNPs overlapping dsQTLs for each threshold, a 400bp window 

centred around each variant SNP was tested for overlap with dsQTL SNPs. For each set of variant 

SNPs identified at each of the thresholds, the same of number of SNPs were randomly drawn and 

the proportion of random SNPs that overlapped dsQTLs were computed. This was repeated 10,000 

for each different threshold level. The proportions for each random draw were used to calculate 

95% confidence intervals for each threshold.  

 

2.7 Testing for association between variants and gene expression 
 

2.7.1 Downloading and processing RNA-Seq data  
 

The RNA-Seq data used was from the GEUVAIDS sequencing project, which carried out RNA-

sequencing on LCLs across seven laboratories (Lappalainen, Sammeth, Friedländer, ’t Hoen, et al., 

2013b). PEER-factor normalised RPKMs, filtered to genes in the top 50th percentile, were 

downloaded Gene Expression Omnibus under accession number E-GEUV-1 for 356 LCLs (Edgar et 

al., 2002). PEER-factor normalisation was used by GEUVADIS to remove technical variation from 

the RNA-sequencing data; the PEER algorithm uses a factor-analysis based approach to infer hidden 

factors (PEER factors) that explain much of the transcriptome-wide expression variability, which 

are then removed from the data by regression. The PEER-factor normalised RPKMs were 

transformed to a standard normal distribution, as linear regression, which was used to test for 

association between variants and expression, is sensitive to outliers, which RNA-Seq data is prone 

to, and assumes a normal distribution.  

2.7.2 Identifying variant-expression associations  
 

As described in Section 4.55, individuals were pooled according to their haplotype for each 

regulatory region for a given TF. Individuals with two alleles showing a binding affinity change <0.3 

relative to GM12878 were classified as homozygote for the high affinity allele for the given TF and 
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individuals with two alleles showing >0.3 change in affinity relative to GM12878 were classified as 

homozygous for the low affinity allele. Individuals with one high affinity and one low affinity allele 

(as just described) were classified as heterozygote. Where the same variant was predicted to 

impact binding of multiple different TFs, these were collapsed into one multi-TF binding variant and 

only tested once. Linear regressions were performed to test for association between binding type 

(homozygous for the high affinity allele, heterozygous, and homozygous for the low affinity allele) 

and expression of the target gene (as assigned using Promoter Capture Hi-C). For genes linked with 

multiple TF binding variants, a multiple regression was used, where each predicted binding variant 

was used as a predictor. An ANOVA was used to test the overall significance of each regression 

model, and multiple testing was performed via FDR estimation (10%) on the gene-level p-values. 

For genes with multiple variants that were significant at the gene-level (at 10% FDR), Wald tests 

were used to get individual p-values for the variants; variants with p<0.05 were taken as significant.  

 

2.8 Analysis of expression-associated variants  
 

2.8.1 Comparison with GEUVADIS eQTLs 
 

All significant eQTLs called by GEUVADIS (Lappalainen et al., 2013) on European LCLs were 

downloaded from the Gene Expression Omnibus under accession number E-GEUV-1 (Edgar et al., 

2002). GEUVADIS eQTLs were compared to significant predicted binding variant-expression 

associations identified in my approach (but using a multiple testing correction of 5% instead of 10% 

FDR), for which the change in binding affinity of the predicted binding variation was caused by a 

single variant (i.e. predicted binding variation that was driven by multiple variants were excluded).  

For testing the increased sensitivity of my approach, I used a dataset of all GEUAVDIS eQTLs (i.e. 

included non-significant associations) which I received from the authors via personal 

communication. Multiple testing was performed at both 5% and 10% FDR across all variants for all 

genes.  

To compare the proportion of significant associations between the prioritised variants and 

randomly selected ones, variant-gene pairings were drawn at random (the same number as the set 

of prioritised variants) and the number significant at 5% FDR level was computed. 1000 random 

draws were carried out, and the number of significant associations per draw used to compute a 

95% confidence interval.  
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2.8.2 Investigating properties of distal variant-expression associations  
 

To identify variants that fall at restriction fragments containing another gene TSS, restriction 

fragments containing variants linked via Promoter Capture Hi-C to a distal gene were annotated 

with TSS interacting fragments were annotated for TSSs using the bioMart package in R with 

Ensembl TSSs for GRCh37 (Smedley et al., 2015).  

In calculating the distances between the variant and TSS on the same fragment, the closest Ensembl 

TSS to the variant was used. The genome segmentation data for GM12878 (broad HMM bed file) 

used for the analysis were downloaded from the ENCODE USCS portal ENCODE Project Consortium, 

2012a; Ernst et al., 2011; Ernst & Kellis, 2010). 

For the expression analysis genes were classified as unexpressed if they were in the lower 50th 

percentile according to normalised PEER residuals.  All variants lying on the same fragment as a TSS 

were within 9kb of the TSS, and as such had already been tested for association with expression of 

the gene as a “proximal” variant. These FDR adjusted gene level p-values from the previous 

regression were used (Section 4.72) to determine if they were significantly associated with 

expression of the gene on the same fragment. 
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3 Regulation by multiple enhancers 
 

3.1 Introduction  
 

Many enhancers that concurrently regulate genes bind highly similar sets of TFs, as demonstrated 

for hundreds of Drosophila developmental genes (Cannavò et al., 2016; Hong et al., 2008). 

However, it remains to be seen whether this is a common feature of multi-enhancer logic. The 

finding that enhancers with diverse patterns of TF occupancy can also give rise to highly similar 

spatiotemporal expression patterns suggests that genes could use enhancers with differing TF 

occupancies (Liberman & Stathopoulos, 2009a; Zinzen, Girardot, Gagneur, Braun, & Furlong, 2009). 

Indeed several genes regulated by enhancers that recruit different sets of TFs have been identified. 

For example, expression of krüppel was found to be driven by two enhancers that, although show 

highly similar patterns of expression, are activated by different sets of TFs (Wunderlich et al., 

2015a). There are also examples of genes that use enhancers with differing activities, such as 

hunchback that is controlled by two enhancers that show distinct but overlapping patterns of 

expression (Perry, Boettiger, & Levine, 2011). This was thought to be due to the binding of different 

TFs at each of the enhancers (Perry et al., 2011).  

Here I have investigated TF binding across enhancers targeting the same gene globally, with respect 

to whether they bind similar or diverse sets of TFs. To do this I used a human lymphoblastoid cell 

line (LCL) as a model system. LCLs were chosen due to the availability of both a Promoter Capture 

Hi-C dataset (Mifsud et al., 2015) as well as ChIP- Seq data for 49 different TFs from ENCODE 

(ENCODE Project Consortium, 2012) for the same LCL. LCLs are developed by infecting human B-

lymphocytes with Epstein Barr virus in-vitro, which immortalises resting B-cells into an actively 

proliferating B-cell population (Hussain & Mulherkar, 2012; Sie, Loong, & Tan, 2009). The LCL on 

which the Promoter Capture and the series of TF ChIP-seq experiments were performed was 

derived from a healthy individual. Significantly, through the integration of the Capture Hi-C dataset 

with the ENCODE TF binding maps, a set of multi-enhancer genes in this LCL can be identified, and 

TF binding annotated at their enhancers. Throughout this section enhancers binding similar sets of 

TFs will be referred to as “shadow” enhancers, while enhancers binding diverse sets of TFs will be 

referred to as “integrating” enhancers.  
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3.2 Results  
 

3.2.1 TF binding profiled at multi-enhancer genes 
 

I first used Promoter Capture Hi-C data to identify promoter interacting regions (PIRs) for ~18,000 

promoters; the other ~4000 baited fragments were discarded as they contained promoters for 

multiple genes. Promoter Capture Hi-C data normalisation and signal detection using the CHiCAGO 

pipeline (Cairns et al., 2016) resulted in the identification of 63,753 significant cis-interactions, 

involving 11,770 baited promoters. I asked whether PIRs tended to be occupied by chromatin marks 

predictive of regulatory activity. To this end, I compared the percent overlap of all PIRs with a given 

histone mark/TF to that of a control set of distance matched interactions. Both enhancer-

associated (H3K4me1 and H3K27ac), active (H3K4me3), as well as repressive histone marks 

(H3K27me3 and H3K9me3) were significantly enriched at PIRs. PIRs were also significantly enriched 

for the binding of CTCF, Rad21 and Smc3 (Figure 3.1); proteins thought to play a role in enhancer-

promoter loop formation (Dixon et al., 2012; Rao et al., 2014a). The enrichment of both regulatory-

associated histone marks and architectural proteins suggests that the interactions identified are 

likely to be of a regulatory nature.  

 

Figure 3.1 PIRs are significantly enriched for regulatory-associated histone marks and structural factors 

Blue bars show the number of PIRs that overlap with regions containing the genomic feature (histone mark, 

structural factor or DNaseHS). Grey bars show the mean number of overlaps observed in distance-matched 

control regions over 100 permutations. Error bars show 95% confidence intervals across the permutations. 

PIRs were significantly enriched for all genomic features tested (permutation test p-value <0.01). 
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Next, I identified cis-regulatory modules (CRMs) at this set of PIRs. CRMs were defined by taking 

the union of all TF bound regions from ENCODE for 49 TFs; any composite region bound by at least 

three different TFs was taken as a CRM. This resulted in the identification of ~133,000 CRMs 

genome-wide. The CRMs were then overlapped with PIRs, and assigned as distal regulatory 

elements to the interacting gene. To illustrate this, two examples of genes for which I identified 

multiple distally interacting CRMs, GADD45A and UBALD2, are shown. For GADD45A, three CRMs 

were found to overlap with PIRs detected by Promoter Capture Hi-C, and were consequently 

assigned as distal regulatory elements (Figure 3.2a). The CRM lying at a PIR 486 kb downstream of 

GADD45A (in the gene body of Il23R) skips over two neighbouring genes to regulate GADD45A; I 

would have been unable to assign this to GADD45A using the traditional proximity-based method, 

demonstrating the benefits of using Promoter Capture Hi-C in assigning enhancers to target genes. 

For UBALD2 I identified four CRMs overlapping with three PIRs (Figure 3.2b), illustrating how 

multiple CRMs can overlap with a PIR. In instances where multiple CRMs overlapped with a PIR, 

each CRM was taken as a discrete distal regulatory element. For both GADD45A and UBALD2, the 

distally interacting CRMs were defined as active enhancers in genome segmentation of GM12878 

(Ernst et al., 2011; Kheradpour et al., 2013; Figure 3.2).  

Out of the 11,770 genes for which PIRs were identified, 4,651 contained at least two CRMs at their 

respective PIRs. These genes were taken as “multi-enhancer” genes, and used in the following 

analysis. For these multi-enhancer genes the median number of distal CRMs per gene was four, 

with 50% of the genes having between two and seven distal CRMs (Figure 3.3a). The median 

number of PIRs per gene was three (Figure 3.3b). This is lower than the median number of PIRs due 

to multiple TF bound regions often mapping to a single PIR. 

 

3.2.2 A metric to quantify the similarity of enhancer TF binding occupancies.  
 

I first wanted to address whether in general, enhancers targeting the same gene in the same cell 

type tend to be bound by similar or diverse sets of TFs i.e. do genes tend to display a shadow or 

integrating enhancer architecture? In order to answer this question, I needed a method to quantify 

how similar a given gene’s enhancers were in terms of TFs bound. To this end I devised a simple 

metric, the mean fraction of a gene’s enhancers bound by each TF (present at the given gene), to 

quantify enhancer similarity in terms of TF occupancy (for formal definition see Section 2.4.1). To 

illustrate how the metric works I have quantified enhancer similarity of three hypothetical genes 

(X,Y and Z) that differ in terms of their TF binding across enhancers (Figure 3.4). Gene X has an  



47 
 

 

 

Figure 3.2 TF binding annotated at multi-enhancer genes 

Genome browser representations of distal interactions for GADD45A and UBALD2S involving a fragment 

containing at least one cis-regulatory module (CRM). Significant interactions (as detected by Promoter 

Capture Hi-C) are shown as pink arches, with one end of the interactions containing the promoter and the 

other ends a promoter interacting region containing a CRM. CRMs were defined as regions bound by at least 
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3 different TFs according to ChIP- Seq data from ENCODE for 49 TFs (ENCODE Project Consortium, 2012a); 

the TFs bound at the respective regions are depicted beneath the browser representation (orange filled box 

indicates presence of TF). Genome segmentation tracks for GM12878 are shown (red, active promoter; 

orange, strong enhancer; yellow, weak enhancer; dark green/green, transcribed/weakly transcribed; grey, 

heterochromatin (Ernst et al., 2011; Kheradpour et al., 2013). (A) For GADD45A three CRMs were found to 

overlap with PIRs detected by Promoter Capture Hi-C. Each CRM was consequently assigned as a distal 

regulatory element, with GADD45A classified as having three enhancers in following analyses. (B) For 

UBALD2S four CRMs were found to overlap with three PIRs, with two CRMs mapping to the most distal PIR. 

Each of the four CRMs was taken as a discrete regulatory element, as such UBALD2S was classified as having 

four enhancers in following analyses. 

 

 

Figure 3.3 Multi-enhancer genes 

Multi-enhancers genes were defined as those with at least two CRMs overlapping a PIR/s. (A) Boxplot shows 

the distribution of the number of CRMs assigned as distal regulatory elements for multi-enhancer gene. As 

multi-enhancer genes were defined as having at least two CRMs, the minimum number of observed CRMs is 

two. (B) Boxplot shows the distribution of number of PIRs for per multi-enhancer gene. 

 

extreme shadow enhancer architecture, with exactly the same TFs bound at each of its enhancers 

(Figure 3.4a). In contrast, Gene Y has a different set of TFs bound at each of its enhancers, and as 

such is an example of a gene with an integrating enhancer architecture (Figure 3.4b). Gene Z falls 

between the two extremes in TF enhancer organisation, with some TFs bound at multiple 

enhancers and some TFs bound at a subset of enhancers (Figure 3.4c). I quantified enhancer 

similarity for gene X, resulting in a score of 1; each TF is bound at all three enhancers, giving a mean 
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number of enhancers bound of 3/3 = 1 (Figure 3.4a). I further quantified enhancer similarity for 

genes Y and Z, resulting in scores of 1/3 and 1/2 respectively (Figure 3.4b and c). The metric 

effectively distinguishes between the three hypothetical genes, with a higher score indicating a 

more “shadow” type architecture (Gene X) and a lower score indicating a more “integrating” 

architecture (Gene Y). An advantage of this metric is that it is easily interpretable, for example a 

similarity score of 1/3 means that on average a TF is bound at one third of a gene’s enhancers.  

 

Figure 3.4 Quantifying similarity in TF occupancies across enhancers 

Three hypothetical genes (X, Y and Z) are shown, each of which has three distal regulatory elements (black 

filled boxes) bound by three TFs (filled circles). For each gene the proportion of TFs bound across 1/3, 2/3 

and 3/3 of the genes regulatory elements are displayed in a histogram. Enhancer similarity, calculated as the 

mean proportion of enhancers bound by a TF, is shown. (A) Gene X is bound by the same three TFs (A,B and 

C) at each of it’s regulatory elements. As each TF is bound at 3/3 of the gene’s enhancers, the mean 

proportion of enhancers bound by a TF is 3/3 = 1. (B) Gene Y is bound three different TFs at each of it’s 

regulatory elements. Each of the nine TFs is bound across 1/3 of a genes enhancers, resulting in a mean 

proportion of enhancers bound by a TF of 1/3. (C) For Gene Z, TF A is bound across 3/3 of the gene’s 

regulatory elements, TF B is bound across 2/3 of the gene’s regulatory elements and the remaining four TFs 

(C, D, E and F) are bound across 1/3 of the gene’s enhancers. This average fraction (across the six TFs) of 

enhancers bound by a TF is 1/2. 



50 
 

 

I next quantified enhancer similarity for the set of multi-enhancer genes that I identified in 

GM12878. Figure 3.5 shows the resulting distributions of enhancer similarities across genes, split 

by number of enhancers. It can be observed that genes with a greater number of enhancers tend 

to have lower similarity scores (Figure 3.5). This is in part a property of the metric, with the lowest 

bound equal to 1/N, where N is the number of enhancers per gene. To ensure the metric is able to 

distinguish between actual genes with differing enhancer similarities, I identified the genes with 

the lowest similarity scores (10th percentile) and highest similarity scores (90th percentile), and 

visualised their corresponding TF arrangements. Given that the metric depends on the number of 

enhancers (Figure 3.5), this was done separately for genes with different numbers of enhancers. 

Examples of the TF arrangements for genes with three, five and seven enhancers are shown in 

Figure 3.6. It can be seen that the genes with the most dissimilar enhancers (as defined by the 

enhancer similarity metric), have a much larger proportion of TFs bound at just one enhancer than 

genes with a high similarity score. Conversely, genes with a high similarity score have a much larger 

proportion of TFs bound across multiple regulatory elements. In conclusion the metric effectively 

enables the separation of genes based on similarity of enhancers, as well as the identification of 

groups of genes with both shadow (highly similar) and integrating (highly dissimilar) enhancers. 

 

3.5 Distribution of enhancer similarities for genes with 2 -11 enhancers 

Enhancer similarity, the mean proportion of enhancers bound by a TF, was computed for all genes with 

between two to eleven enhancers. Genes with >11 enhancers were excluded due to very low (<100) numbers 
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of genes in these categories. Boxplots show the distributions of enhancer similarities for genes split by 

number of enhancers. The number of genes in each category (i.e. with a given number of enhancers) are 

shown above the boxplot. 

 

 

Figure 3.6 Enhancer similarity metric is able to identify genes with “shadow” and “integrating” enhancer 

architectures 

Genes were split according to number of enhancers, and genes with the lowest similarity scores (10th 

percentile) and highest similarity scores (90th percentile) were identified. Two examples of the lowest scoring 

genes and highest scoring genes are shown for genes with three, five and seven enhancers. For each example 

gene the proportion of TFs bound at each number of a genes enhancers (1 to N, where N= total number of 

enhancer for a given gene) are shown in a histogram 

Genes with 
“shadow” 

enhancers 

Genes with “integrating” 
enhancers 
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3.2.3 Genes appear to favour a shadow enhancer architecture.  
 

Having established an effective method to quantify enhancer similarity, I was able to ask whether 

in general enhancers targeting the same gene are bound by more or less similar TFs than would be 

expected by chance (ie. do genes tend to have a more “shadow” or “integrating” architecture than 

expected). To test this I grouped genes according to their number of enhancers and for each group 

permuted enhancers, resulting in enhancers grouped by random as opposed to by gene. This was 

repeated 1000 times and for each permutation the mean enhancer similarity of enhancers grouped 

by random was calculated. Given the relationship between number of TFs at each enhancer and 

enhancer similarity, the number of TFs across the randomly grouped (permuted) enhancers were 

matched to that of enhancers clustered by target genes. Enhancers linked to the same gene 

consistently show a small but significant increase in enhancer similarity compared to enhancers 

grouped by random (permutation test p-value <0.001 for genes with 2-10 enhancers; Figure 3.7a). 

However for many genes multiple enhancer elements were assigned via the same promoter 

interacting regions (PIR), and therefore are close in linear distance. Although TF binding events, 

unlike histone marks, are not thought to spread along the DNA, enhancers close in linear distance 

might show a correlation in TF binding. I reasoned that the significant increase observed in 

similarity for enhancers grouped by target gene might therefore be driven by genes which have 

enhancers in close linear proximity that show correlated TF binding. In order to rule out this 

possibility, I repeated the previous analysis, but this time limiting genes with multiple enhancers 

lying on the same PIR to one enhancer element per PIR. The mean similarities of the “filtered” 

enhancers linked by target gene were significantly higher than those grouped by random 

(permutation test p-value <0.001 for genes with 2-10 enhancers; Figure 3.7b). This suggests the 

previous observation, that enhancers belonging to the same gene tend to be bound by more similar 

TFs than expected, was not driven by enhancers in very close linear proximity on the same PIR. In 

conclusion, it appears that genes with multiple regulatory elements tend to favour a more 

“shadow” type enhancer architecture rather than an “integrating” architecture.  
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Figure 3.7 Genes tend to adopt a shadow enhancer architecture 

Enhancers linked to the same gene are significantly more similar in terms of TF occupancy than enhancers 

randomly linked to genes, matched for numbers of TFs bound at each enhancer. (A) Blue bars show the mean 

similarities of enhancers linked to the same target gene (split by number of enhancers linked to each gene), 

and yellow bars show the mean similarities of enhancers randomly linked to genes over 1000 permutations 

(also split by number of enhancers). Error bars show 95% confidence intervals across permutations. 

Enhancers linked to the same gene are significantly more similar in terms of TFs bound than those linked to 

(permutation test p-value <0.001 for all numbers of enhancers). (B) Similar to (A), however here enhancers 

linked to the same gene were limited to one enhancer (CRM) per PIR for each gene. The green bar shows the 

mean similarity of enhancers over 1000 single-CRM-per-PIR draws across all PIRs and genes. Yellow bars show 

the mean similarities of enhancers randomly linked to genes over 1000 permutations, also limited to a single 

enhancer per PIR for each gene and matched for numbers of TFs at each enhancer. Error bars show 95% 



54 
 

confidence intervals. Enhancers linked to the same gene, limited to one enhancer per PIR, are significantly 

more similar than would be expected by chance (permutation test p-value <0.001 for all numbers of 

enhancers). 

 

3.2.4 Genes with highly dissimilar enhancers have diverse biological functions 
 

While in general genes tend to display a “shadow” enhancer architecture, clearly some genes adopt 

more of an “integrating” architecture (Figures 3.5 and 3.6). I hypothesized that genes displaying an 

“integrating” architecture might be involved in specific biological processes for which the binding 

of different sets of TFs across enhancers might be advantageous. In order to test whether genes 

targeted by highly dissimilar enhancers are involved in specific biological processes, I first needed 

to identify a set of genes with low enhancer similarities. While the enhancer similarity metric can 

be used to identify genes with highly dissimilar sets of enhancers, it is sensitive to the variable 

quality of ChIP experiments. In instances where a TF is detected at a low proportion of a gene’s 

enhancers, it cannot be ruled out that the TF is bound more abundantly, yet not detected by ChIP. 

To ensure that the identification of genes with “integrating” enhancer architectures is not 

confounded by TF ChIP- Seq quality, I modified the enhancer similarity metric to take into account 

the number of ChIP- Seq peaks. To do this I made the assumption that the numbers of ChIP- Seq 

peaks would be generally similar for TFs binding at “shadow” versus “integrating” enhancer 

architectures. In brief, for a given gene the proportion of enhancers bound by each TF was 

converted to a z-score, based on the expected distribution of number of enhancers bound for a 

given number of enhancer ChIP- Seq peaks, and the mean of z-scores was taken across all TFs 

binding to all enhancers of this gene (see Section 2.4.1 for the equation). Figure 3.8a shows the 

proportion of enhancers bound by each TF and their corresponding z-scores for an example gene, 

AURKAIP1. As an example, both ATF3 and POU2F2 are bound at just one enhancer, and as such 

with the similarity metric would each contribute a score of 1/5 to the mean. However, the TFs differ 

in their expected distributions of proportions of enhancers bound due to having different numbers 

of ChIP- Seq peaks (Figure 3.8b). For ATF3 the expected distribution is skewed to the left 

(mean=0.23) reflecting the fact that it has a relatively lower number of ChIP- Seq peaks, whereas 

for POU2F2 the expected distribution is less skewed (mean= 0.47) due to having a greater number 

of ChIP- Seq peaks than ATF3 (Figure 3.8b). As a result the z-score for ATF3 is less negative than 

that of POU2F2 (-0.4 and -1.2 respectively). This approach therefore normalises for the total 

number of TF ChIP- Seq peaks at enhancers.  
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Figure 3.8 Normalising enhancer similarity score for number of TF ChIP- Seq peaks 

(A) The left hand (LH) barplot shows the proportion of AURKAIP1 enhancers bound by each TF (that is bound 

at at least one enhancer of AURKAIP1). The RH barplot shows the proportion of AURKAIP1 enhancers bound 

by each TF, normalised for total number of ChIP- Seq peaks for the corresponding TF. This results in a mean 

normalised enhancer similarity of 0.77. (B) The expected distributions of proportions of enhancers bound 

(based on number of TF ChIP- Seq peaks) used in the normalisation are shown for five TFs. The expected 

distributions of proportion of enhancers bound (based on the number of TF ChIP-Seq peaks) are shown for 

ATF3 and POU2F2 (each bound at one enhancer of AURKAIP1), as well as SP1, CHD2 and ZBTB33 (all bound 

at three of AURKAIP1’s enhancers). The more left-skewed the distributions are, the fewer the total number 

of ChIP-Seq peaks for the respective TF. The expected distributions are used to compute a z-score for 

proportion of enhancers bound at AURKAIP1 by each TF, normalising the proportion of enhancers bound for 

number of TF ChIP-Seq peaks. 

 

I defined a set of genes with “integrating” enhancer architectures, by taking genes in the bottom 

10th percentile according to the modified enhancer similarity metric. I first asked whether the 

number of unique TFs bound across enhancers differed between genes with “integrating” enhancer 

architectures and the remaining genes that fell between the 10th and 100th percentile for modified 

enhancer similarity (termed background). I observed that the background genes were bound by a 

greater number of unique TFs across their enhancers (median = 22) than the set of “integrating” 

genes (median =16) (Figure 3.9a). This difference in number of unique TFs bound across enhancers 
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between “integrating” and background genes may confound the analysis; genes bound by a 

reduced number of TFs may also be involved in distinct biological processes. To avoid number of 

unique TFs confounding the TF arrangement across enhancers, I thus decided to select a 

background set of genes that matched the unique TF distribution of the “integrating” set of genes 

(for details on how this was done see Section 2.4.3). This resulted in a set of background genes with 

a median modified enhancer similarity score of -0.02, compared to that of the integrating genes 

which have a median score of -0.51 (Figure 3.9b). An example of a highly “integrating” gene, 

ZBTB80S, and a background gene, PGLYRP4, are shown (Figure 3.10a and 3.10b). Both genes have 

three enhancers, bound by comparable numbers of unique TFs (15 for ZBTB80S, and 14 for 

PGLYRP4). However, whilst for PGLYRP4 three of the 14 unique TFs are bound across multiple 

enhancers, for ZBTB80S, all 15 unique TFs are bound at only one enhancer i.e. each enhancer 

contains a different set of TFs (Figure 3.10b).  

 

Figure 3.9 Number of unique TFs and modified enhancer similarity scores of “integrating” versus 

background genes 

Integrating genes were taken as those in the bottom 10th percentile for modified enhancer similarity (this 

was done separately for genes with different numbers of enhancers, and the bottom 10th percentile from 

each category then combined). The remaining genes (between 10th and 100th percentile for modified 

enhancer similarity) were classified as background. (A) Boxplot shows the distribution of the number of 

unique TFs bound across all of a genes enhancers for “integrating” and background genes. (B) Boxplot shows 
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the distribution of modified enhancer similarity scores for integrating genes, background genes and a set of 

background genes matching the unique TF distribution of the “integrating” set of genes. 
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Figure 3.10 TF binding at enhancers of an integrating and background gene 

Integrating genes were defined as those in the bottom 10th percentile according to the modified similarity 

metric, for genes split by number of enhancers. WashU browser representation of an example integrating 

gene (A), ZBTB80S, and background (B) gene, PGLYRP4. Significant interactions (as detected by Promoter 

Capture Hi-C) are shown as pink arches, with one end of the interactions containing the promoter and the 

other ends a promoter interacting region containing a CRM. CRMs were defined as regions bound by at least 

3 different TFs according to ChIP-Seq data from ENCODE for 49 TFs (ENCODE Project Consortium, 2012a); the 

TFs bound at the respective regions are depicted below the browser representation (orange filled box 

indicates presence of TF). Genome segmentation tracks for GM12878 are shown (red, active promoter; 

orange, strong enhancer; yellow, weak enhancer; dark green/green, transcribed/weakly transcribed; grey, 

heterochromatin (Ernst et al., 2011; Kheradpour et al., 2013). (A) An example of a gene defined as having an 

“integrating” enhancer architecture. (B) An example of a gene in the background set. (C) Horizontal barplot 

showing the proportion of enhancers bound by each TF (as indicated by the dark blue squares). Only TFs 

bound at at least one enhancer of either of the two genes are included in the barplot. Where a TF is not 

present at any of the enhancers of the gene, the row corresponding to the TF is shaded in pale grey (as 

opposed to light blue which is used where a TF is bound at at least one, but not all of the gene’s, enhancers). 

 

Using these newly defined sets of “integrating” and background genes, I was able to ask if genes 

with more “integrating” enhancer architectures are enriched for certain biological functions. To do 

this I performed a gene ontology (GO) term enrichment analysis on the set of “integrating” genes. 

No GO terms were significantly enriched at the “integrating” genes, however this may be due to 
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the small number of “integrating” genes (total number= 101) which reduces the power of GO term 

enrichment analysis.  

 

3.2.5 Properties of TFs driving the “shadow” and “integrating” architectures  
 

I next reasoned that genes favouring different regulatory architectures might be bound by distinct 

TFs, which could offer insights into either the functions of genes or logic of these regulatory 

architectures. Following from this, I asked whether I could identify TFs that are bound across a 

higher (“homotypic” binding) or lower proportion (“lone” binding) of enhancers than would be 

expected. The problem of identifying TFs bound across a high versus low proportion of a gene’s 

enhancers can be re-framed to instead ask how TF binding events are distributed amongst genes. 

If a TF favours homotypic enhancer binding, binding events will be clustered at the enhancers of a 

subset of genes, and as a result the probability of TF binding at an enhancer is dependent upon the  

gene. In contrast for a TF favouring “lone binding”, the probability of a binding event at an enhancer 

is equal across genes. This difference in enhancer binding probabilities (gene dependent versus 

gene independent) between the two binding preference extremes enables a logistic regression to 

be used to distinguish between TFs of different binding preferences (see Section 2.4.4 for details).  

 

For each TF I compared the fit of logistic regression modelling the probability that the TF is bound 

at an enhancer as a function of the gene the enhancer belongs to, to that of a null model where 

the predicted value was constant across all genes (i.e. gene independent). A greater difference in 

fit indicates a preference for “lone” binding, whilst a smaller difference in fit suggests homotypic 

enhancer binding is favoured. As previously mentioned TF-antibody affinity and thus ChIP quality 

can vary greatly between TFs; TFs which appear to favour lone binding might instead be TFs that 

immune-precipitated less well during the ChIP. To test if binding preference correlates with number 

of ChIP-Seq peaks, I plotted differences in model fits for each TF against the total number of TF 

ChIP-Seq peaks at enhancers. There is a clear correlation between binding preference and number 

of ChIP-Seq peaks at enhancers; TFs with fewer enhancer ChIP-Seq peaks tend to exhibit “lone” 

enhancer binding (Figure 3.11). To ensure that the identification of “lone binding” TFs was not 

driven by ChIP-quality, difference in model fit was regressed against the number of TF ChIP-Seq 

peaks at enhancers, and the resulting residuals used instead. This resulted in the identification of a 

group of 13 TFs that were bound across a significantly lower proportion of a genes enhancers than 

would be expected, which I termed “lone” binding TFs (Figure 3.11). I was also able to identify a 
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group of 12 TFs that were bound across a significantly higher proportions of a genes enhancers 

than expected, which I termed “homotypic” binding TFs (Figure 3.11).  

 

 

 

Figure 3.11 “Lone” versus “homotypic” binding preferences of TFs 

For each TF a logistic regression was used to model the probability that the TF is bound at an enhancer as a 

function of the gene the enhancer belongs to (gene dependent). The Akaike information criterion (AIC) 

(Akaike, 1974) of a null model (where the predicted value is fixed/gene independent) was subtracted from 
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the AIC of the gene dependent model for each TF. A greater difference in model fit indicates a preference for 

“lone” binding (bound at a low proportion of a gene’s enhancers) and a smaller difference a preference for 

“homotypic” binding (bound at a high proportion of a gene’s enhancers). (A) Difference in model fits plotted 

against number of enhancer TF ChIP-Seq peaks for each TF (depicted by the coloured circles). The smooth 

curve fitted (using LOESS) is shown in blue; the dashed blue lines show the 95% confidence limits. TFs 

(coloured circles) above the 95% confidence upper limit (coloured red) were taken as “lone” binding TFs; TFs 

below the 95% confidence lower limit were taken as “homotypic” binding TFs (also coloured red). (B) 

Residuals from the fitted curve for “homotypic” and “lone” binding TFs. 

I next examined the properties of the “lone” versus “homotypic” binding TFs, reasoning that this 

may give an insight into the different regulatory logics conferred by the contrasting TF enhancer 

distributions. I first observed that the “lone” binding TFs were, with the exception of SP1, all key B-

cell specific TFs, whilst the homotypic binding TFs, with the exceptions of Batf and Bc1lla, tended 

to be more general TFs. This could suggest that house-keeping genes, which you might expect to 

be regulated by more general TFs, tend to adopt a more “shadow” style architecture, and 

conversely genes activated in a cell type specific manner have more distinct regulatory information 

at their enhancers. However this is speculative, and further investigation would be needed to 

confirm this hypothesis. I wanted a more systematic way to compare properties between the two 

groups of TFs. To this end, I performed a comparative feature enrichment analysis on the two sets 

of TFs. As expected both groups of TFs were significantly enriched for positive regulators (log p-

value =10), however strikingly only “homotypic” TFs were enriched for negative regulators (log p-

value = 5.44), with 7 out of the 11 TFs having negative regulatory potential, compared to one of 12 

“lone” binding TFs. “Lone” binding TFs were significantly enriched for responses to external stimuli 

(5 out of the 11 TFs, log p-value=4.38), which may be expected given the previous observation that 

the majority of “lone” binding TFs are cell-type specific. 

Given the finding that “homotypic” binding TFs tend to have negative regulatory potential, I 

hypothesized that negatively regulated genes may favour a “shadow” regulatory architecture. If 

this is the case, I reasoned that genes with a “shadow” architecture might be more lowly expressed 

than those with an “integrating” architecture. To test this I used the modified similarity metric to 

select genes targeted by the most similar enhancers, and compared their expression level to a 

background set (matched for number of unique TFs). No significant difference was found between 

the median expression levels of genes targeted by the most similar enhancers and the background 

genes (p>0.05). This does not rule out the possibility that genes under negative regulation favour a 

“shadow” architecture; it is likely that many positively regulated genes also adopt this 

arrangement, potentially masking any expression differences, especially given the small number of 

genes tested. Given that all but one of the “homotypic” TFs with negative regulatory potential can 
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also act as positive regulators, the lack of difference in expression may alternatively suggest that 

they are not acting exclusively as negative regulators when they are bound “homotypically”. 

 

3.3 Discussion 
 

The aim of this chapter was to investigate how TFs are arranged across multiple enhancers targeting 

the same gene, particularly with respect to whether enhancers tend to bind similar (“shadow” 

enhancers) or diverse sets of TFs (“integrating” enhancers). I observed that a gene’s enhancers 

show more similar TF occupancies than would be expected at random suggesting a “shadow” 

architecture is prevalent. However, numerous examples of genes with “integrating” enhancers 

were observed, where the same gene showed large variation in TF binding across enhancers. 

Distinct groups of TFs were found to associate with these contrasting models of TF enhancer 

binding.  

The binding of similar sets of TFs at enhancers has been previously observed for hundreds of 

Drosophila developmental loci (Cannavò et al., 2016; Hong et al., 2008). However, since these 

studies only focused on genes with enhancers bound by similar sets of TFs, the extent to which 

genes are targeted by enhancers binding diverse sets of TFs remained unknown. Due to only 

examining developmental genes, it was also unclear whether this phenomenon extended beyond 

developmental genes. Examples of individual genes targeted by enhancers with both similar and 

diverse sets of TFs had been observed in both Drosophila and mammals (Hay et al., 2016; Staller et 

al., 2015). The work in this section has thus provided the first global insight into TF binding across 

enhancers targeting the same gene, revealing that, at least in B cells, they generally bind similar 

TFs. This suggests that in B cells the shadow architecture is pervasive and not limited to key 

developmental genes. Although it is clear that genes still bind a considerable number of TFs at only 

a subset of their enhancers, perhaps differing from the image where almost identical sets of TFs 

are bound at enhancers presented by Hong et al (2008). Although the degree of similarity in TF 

binding across enhancers, and consequent classification of shadow versus integrating, depends on 

both the number and identity of TFs included in the analysis, as well as the metric used. 

Consequently, caution should be applied when comparing these results with other studies that 

have examined TF binding at enhancers regulating the same gene. It is also perhaps misleading to 

classify enhancers as shadow versus integrating, as the degree of similarity is on a continuous scale.  

Further to the global nature of this approach, another unique aspect was the use of Promoter 

Capture Hi-C to assign enhancers to target genes. Much of the work on multi-enhancer logic is 
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carried out on single loci in Drosophila, with enhancers for a given gene identified based on their 

ability to drive endogenous expression patterns of reporter constructs. This can result in some 

enhancers remaining unidentified, as often when the expression pattern is fully recapitulated the 

search for further enhancers is stopped. It is also plausible that not all enhancers regulating a gene 

will drive expression of a reporter construct when tested individually, especially when they act 

synergistically with other enhancers. This was found to be the case for several enhancers of the 

mammalian Troponin I genes (Guerrero et al, 2010). The authors discovered secondary enhancers 

for each of the three Troponin genes that showed no activity in reporter assays, but acted 

synergistically with the previously characterised enhancers in-vivo to increase expression level (ten-

fold) and spatial precision (Guerrero et al., 2010). This may bias the discovery of enhancer’s towards 

those that have the same activity and act redundantly or additively; enhancers that are perhaps 

more likely to bind similar TFs. Using Promoter Capture Hi-C to assign enhancers is not likely to be 

subject to these potential biases. Often, even when epigenetic features such as TF binding are used 

to identify enhancers, they are assigned to the closest active gene, as was the case for Cannavò et 

al. (2016). Many enhancers have been shown not to regulate the closest gene, which may result in 

enhancers being mis-assigned (Mifsud et al., 2015; Sanyal et al., 2012). While linking enhancers to 

target genes with Promoter Capture Hi-C overcomes these limitations/biases, the caveat is that the 

enhancers have not been functionally validated in the cell line used.  

This analysis presented several challenges, a major one of which was quantifying the similarity of 

TF occupancy across enhancers belonging to the same gene. This was key in enabling the 

investigation of TF binding across enhancers targeting the same gene on a global scale. While the 

binding of an individual TF across enhancers can be simplified as a binary event, with the presence 

versus absence of a ChIP-Seq peak, enhancers are bound by multiple TFs. Quantifying similarity in 

TF occupancy thus needs to capture similarities in the binding across enhancers of these multiple 

different TFs. In addition, different genes have different numbers of enhancers, which presents a 

further challenge due to introducing another level of multiplicity. For this analysis I used the 

average fraction of a gene’s enhancers bound by each TF (present at the given gene) to characterise 

genes in terms of enhancer occupancies across enhancers. Using this metric has enabled the 

investigation of TF occupancies across enhancers targeting the same gene, giving the first global 

insight into TF binding at multi-enhancer genes. However, the metric is by no means perfect. Genes 

with different numbers of enhancers could not be analysed simultaneously. As a result for gene 

level analyses, genes with different numbers of enhancers had to be treated separately, (i.e. a 

matched control group for each generated) and following this were pooled. The metric is also 

influenced by the number of TFs bound at each enhancer. For example, one enhancer bound by a 
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much large number of TFs than other enhancers, will reduce the total similarity of TF occupancy 

across the enhancers. TFs are also treated independently; however, it is known that many TFs show 

preferences for binding with certain combinations of other TFs (Bernstein et al., 2012; Gerstein et 

al., 2012; Stefflova et al., 2013). It may be interesting in the future to incorporate co-binding 

patterns into the metric.  

One caveat with using ChIP-data to annotate TF binding is the potentially limited sensitivity of this 

assay. Binding events may not be detected due to aspects of the ChIP protocol, for example the 

antibody not binding to the TF. Alternatively the region may have shown an enrichment in the ChIP-

Seq experiment, but fall under a signal threshold used for peak-calling. The extent to which this 

impacts the results could be investigated by examining the raw read counts or lowering the 

thresholds for peak calling at other enhancers, when at least one enhancer is found to harbour a 

peak above the threshold. Another potential confounding factor in the detection of TF binding is 

that the enhancers targeting a given gene are in close spatial proximity to each other. It has been 

shown that TF binding at one region may be picked up by ChIP-Seq of another region in close spatial 

proximity, termed an indirect ChIP-Seq peak (J. Liang et al., 2014). In theory (although unlikely, as 

discussed below), this could result in overestimating the extent to which TFs are bound across 

multiple enhancers. However it was found that these indirect ChIP-Seq peaks have lower intensity, 

and the majority fall under standard thresholds used for peak detecting (J. Liang et al., 2014). As 

such it not likely that this phenomenon significantly affects the main conclusions of my analysis.  

Enhancers occupied by highly similar TFs are likely to exert comparable effects on the promoter. 

The pervasive use of shadow enhancer architecture seen here therefore suggests that genes tend 

to use multiple enhancers with similar activities, possibly to confer robustness as seen in Drosophila 

(Frankel et al., 2010;Perry et al., 2010). However it is becoming apparent that enhancers bound by 

diverse TFs are also able to exert similar effects on the promoter (Liberman & Stathopoulos, 2009b; 

Zinzen et al., 2009). One such example are the two krüppel enhancers in Drosophila which drive 

near identical patterns of expression despite binding non-overlapping sets of activators 

(Wunderlich et al., 2015). Many of the integrating enhancers may therefore also act redundantly 

and potentially confer robustness. As such, the use of enhancers with similar activities may be even 

more pervasive than was observed here.  

Given that extrinsic fluctuations often affect TF abundance and activity, it is tempting to speculate 

that the degree of similarity in TF binding across enhancers might influence the level of potential 

robustness conferred to such fluctuations. It could be hypothesized that a reduction in 

concentration of a TF which is only bound at a subset of a gene’s enhancers will have less of an 
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impact on regulation than a TF that is bound across a larger proportion of a gene’s enhancers. This 

is due to the activity of only one of the enhancers being impacted. Alternatively, it is possible that 

having a TF bound across a larger proportion of enhancers may confer robustness. For example if 

a gene is activated in response to a specific stimuli by a TF, having an increased number of 

enhancers with binding sites for the TF will increase the probability of it binding at least one of the 

enhancers. If at least one enhancer is sufficient to achieve expression, as has been demonstrated 

for numerous genes, this may ensure robust activation (Hay et al., 2016; Xiong, Kang, & Raulet, 

2002). Potentially this is analogous to how having several binding sites for a given TF at an individual 

regulatory element (homotypic binding) increase robustness to mutations (Kilpinen et al., 2013; 

Spivakov et al., 2012). This may be the case for the two snail enhancers in Drosophila, both of which 

bind Dorsal, and upon reduction in the level of Dorsal confer robustness to expression (Perry et al., 

2010). 

While reduced expression variability is advantageous for many genes, for some genes stochastic 

expression may be important to poise a subset of cells for differentiation (Chang et al., 2008; Kalmar 

et al., 2009). For such genes it is tempting to speculate that this may be achieved in part through 

varying the degree of similarity in TF binding across enhancers. Single-cell RNA-Seq provides the 

opportunity to test this experimentally. Single cell RNA-Seq can give a measure of cell to cell 

variability in expression, and as such could be used to compare expression variability between 

genes binding similar versus diverse sets of TFs at their enhancers (Marinov et al., 2014). This may 

be an interesting area for future investigation.  

It remains possible that some of the integrating enhancers observed do possess different activities. 

The binding of different TFs at each enhancer might enable the gene to employ different regulatory 

logics at different enhancers. Several examples of this have been demonstrated. In mouse myeloid 

cells, two enhancers were found to act synergistically to drive high expression of the TF PU.1 in an 

auto-regulatory fashion. One of the elements was found to bind myeloid cell specific C/EBP-α, 

which was able to increase chromatin accessibility and permit PU.1 binding at the second element 

(Leddin et al., 2011). Expression of hunchback is also controlled by two enhancers with differing 

logics; the more distal enhancer appears to attenuate the activity of the proximal enhancer due to 

binding of repressors, restricting expression in the anterior pole of the Drosophila embryo ( Perry 

et al., 2011). As such, enhancers with differing regulatory logics may be important in ensuring tight 

control of expression for genes where misexpression has severe consequences.  

The abundance and activity of TFs is often controlled by signalling cues (Zhang & Glass, 2013), thus 

the integrating enhancers discovered may enable genes to use different enhancers to respond to 
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different cellular signals. The TFs bounds at integrating enhancers, while all active in LCLs, may be 

differentially active at other developmental time points. This idea is supported by the finding of 

Cannavò et al. (2016) from Drosophila, that whilst enhancers associated with the same gene 

commonly showed overlapping activity in space and time, this overlap tended to be partial. The 

observation that many key B-cell specific regulators favoured “lone” binding (i.e were bound at a 

low proportion of a gene’s enhancers) might reflect the differential use of the enhancers at other 

points in development. Alternatively, the TFs bound at a subset of a gene’s enhancers may respond 

to very similar signalling and developmental inputs; high levels of redundancy have been 

demonstrated in regulatory networks, and thus many TFs lie downstream of individual master 

regulators (Macneil & Walhout, 2011). The integration of the TF binding profiles across enhancers 

with signalling networks may shed further light on whether TFs bound at a subset of a gene’s 

enhancers bring unique or the same cellular information. Incorporation of signalling networks may 

also be interesting with respect to the previously discussed potential role in robustness of 

integrating enhancers. The impact on robustness of varying levels of similarity in TF binding across 

enhancers may be influenced by whether TFs bound at a subset of enhancers are regulated by the 

same or different pathways.  

The identification of distinct groups of TFs that favour “lone” versus “homotypic” binding is 

challenging to interpret. As previously mentioned the observation that cell-type specific TFs tend 

to bind at a low proportion of a gene’s enhancers, might reflect the modular use of enhancers 

throughout development. The finding that most TFs which tend to bind across a large proportion 

of a gene’s enhancers can act as positive or negative regulators is intriguing. A recent study found 

that at the eve locus in Drosophila, the TF hunchback activates one enhancer for strip seven and 

represses the other (Auton et al., 2015). If bi-functional TFs are commonly bound across multiple 

enhancers for a gene, and exert opposing effects on enhancer activity this may underlie these 

observations.  

In conclusion the work in this section has provided a global insight into TF binding across multiple 

enhancers targeting the same gene, revealing that genes tend to favour a shadow enhancer 

architecture (enhancers bind similar sets of TFs). Future work on multi-enhancer logic is likely to 

shed further light on the role and significance of these contrasting enhancer architectures. 
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4 Investigating the effect of TF binding variation on target gene 

expression 
 

4.1 Introduction 
 

Recent advances in DNA sequencing technologies have provided an unparalleled insight into 

human genetic variation. This has revealed that variation amongst humans is extensive, with over 

80 million DNA sequence variants identified (Auton et al., 2015). Some of this variation falls at non-

coding, regulatory regions and has been implicated in expression variation between individuals and 

disease (Albert & Kruglyak, 2015; Corradin & Scacheri, 2014). Here I have utilised this naturally 

occurring genetic variation to investigate the effects of TF binding changes at distal regulatory 

regions on target gene expression, with the ultimate aim of further elucidating principles of 

enhancer regulation. To do this I took advantage of a panel of lymphoblastoid cell lines (LCLs) 

derived from 359 healthy individuals, which have been genotyped by the 1000 Genomes Project, 

and for which RNA-Seq data are publicly available from the GEUAVDIS project (Auton et al., 2015; 

Lappalainen et al., 2013). I used TF binding models to computationally predict which variants found 

in these individuals impact TF binding. I then utilised a Promoter Capture Hi-C (PCHi-C) dataset for 

one of the LCLs (Mifsud et al., 2015) to link predicted TF binding variants to their target promoters, 

making it possible to test their association with target gene expression.  

The approach taken here differs from the classical eQTL approach in that only variants that are 

predicted to impact TF binding and are in close physical proximity to the promoter are tested for 

association with gene expression. This vastly reduces the number of association tests performed 

per gene, reducing the multiple testing burden and consequently increasing the power to detect 

expression-modulating variants. The reduced number of tests performed per gene also enables the 

effects of multiple variants linked to the same gene to be jointly tested. Both the increased power 

and joint testing may be especially relevant for the discovery of enhancer variants, which often 

have a lower effect on expression individually.  
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4.2 Results 
 

4.2.1 TF binding variation predicted across 359 LCLs 
 

I first set out to predict TF binding variation at regulatory regions, including distal enhancers, across 

a panel of 359 LCLs derived from healthy individuals. The approach I took is outlined in the 

schematic (Figure 4.1). First, I used the PCHi-C dataset to link distally interacting regions to target 

genes in an LCL derived from one individual, NA12878, which I then integrated with TF binding data 

for 52 TFs from ENCODE for the same LCL, to annotate TF binding at these distally interacting 

regions. Promoter Capture Hi-C is unable to detect interactions with either of the fragments 

immediately adjacent to the baited fragment due to high levels of noise. To identify proximal and 

short-range regulatory regions that may have been missed due to this, I profiled TF binding in a 

proximal window around the TSS of all genes. The proximal window size was set to the average 

length of three HindIII restriction fragments (TF-bound, and either baited or significantly interacting 

restriction fragments) which is 18kb. To illustrate this the resulting regulatory binding annotation 

for an example gene, KIAA0141, is shown in Figure 4.2a. A region lying 231kb upstream of 

KIAA0141, and a second region 35kb further upstream, were detected as interacting with KIAA0141 

by PCHi-C. Each fragment was found to harbour a single regulatory region, with three and eight TFs 

respectively. In addition, three proximal TF-bound regions were identified. Carrying this out for all 

genes resulted in a map of TF binding at regulatory regions for 13,080 genes in one LCL. 

LCLs derived from 359 different individuals have been genotyped by the 1000 Genomes Project, 

enabling variants falling at the TF bound regions in the LCL derived from NA12878 to be identified. 

I reasoned that some of these variants might disrupt the TF binding motifs, potentially impacting 

binding in individuals with the respective allele. Without TF binding data for the remaining 359 

LCLs, the impact of variants on binding cannot be directly assessed. However, position weight 

matrices (PWMs), which model the sequence binding preferences of TFs and enable sequences to 

be scored based on their binding energy for respective TF, can be used to predict when sequence 

variants might impact TF binding. Following from this rationale, I used PWMs to assess the impact 

of variants on the binding of TFs found at the respective regulatory regions in GM12878 (see Section 

2.4.5 and 2.5.5 for further details). Notably I tested the joint effect of the combination of all variants 

at each regulatory region, resulting in a binding impact prediction for entire the TF bound region. 

The rationale behind this is that multiple variants, in particular SNPs, may fall at the same TF binding 

site, and thus their joint effect needs to be assessed. For the previous example gene, KIAA0141, 

binding variation was predicted for one TF, SPI1, at the distal regulatory region lying 266kb 
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upstream of the gene. At this 509bp distal regulatory region, a single G to A substitution reduced 

the predicted total affinity of the sequence for SPI1 by 1.7 fold (Figure 4.2b). 

  

Figure 4.1 Schematic outlining binding variant predictions 

(A) Promoter capture Hi-C (Mifsud et al., 2015a) was used to identity significant promoter-interacting regions 

at HindIII restriction fragment resolution in the LCL GM12878. The baited restriction fragment is depicted by 

an orange rectangle, and non-baited restriction fragments as green rectangles. Two significant promoter 

interacting regions (linked to baited fragment by pink arches) were identified for this hypothetical gene. An 

18kb proximal window was defined, centred on the mid-point of the promoter-containing fragment. (B) TF 

ChIP-Seq data for 52 TFs from ENCODE (ENCODE Project Consortium, 2012b) was used to annotate TF binding 

at promoter interacting regions and the promoter proximal window. TF-bound regions for four TFs are shown 

here, depicted by solid white boxes. TF-bound regions for all TFs were overlapped, to produce a set of 
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composite TF-bound regions which are depicted by the grey shaded regions. (C) Variants from the 1000 

Genomes Project (Auton et al., 2015b) overlapping with TF-bound regions at the promoter-interacting 

fragments and promoter-proximal region (red bars) were identified. (D) For TF bound region containing at 

least one variant, the genotypes of all 359 LCLs were examined to identify a set of unique haplotypes for the 

region. Three SNPs fall at the hypothetical TF bound region highlighted, and LCLs were found to have one of 

three unique haplotypes (TCC (GM12878 haplotype), TGA or CGC) at their alleles. (E) The genome sequence 

of the TF bound region was extracted, and the genotypes for each haplotype “injected” to create a haplotype-

specific sequence. For each of the TFs bound at the region for which a position weight matrix (PWM) was 

available (41 out of 52 TFs), PWMs from ENCODE ( Kheradpour & Kellis, 2014) were used to calculate a 

normalised TF binding affinity for each of the haplotypes. The fold change in affinity relative to that of 

GM12878 was calculated for each TF at each alternative haplotype; haplotypes with changes over a threshold 

were taken as binding variants for that given TF, and labelled as a low affinity allele. For the highlighted TF 

bound region normalised binding affinities for BATF and SPI1 (found bound in GM12878) were computed for 

each haplotype. SPI1 binding affinity at the alternative haplotype 1 (but not alternative haplotype 2) showed 

a decrease relative to GM12878, resulting in this haplotype being classified as low affinity and the TF bound 

region as harbouring an SPI1 binding variant. No change over the threshold was found between the 

alternative haplotypes and GM12878 haplotype for BATF binding affinity. 
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Figure 4.2 TF binding mapped at distal and proximal regulatory regions of KIAA0141, and TF binding 
variation predicted an SPI1 binding variant identified 

(A) Promoter capture Hi-C identified two fragments (shaded in in pale blue, and linked by pink arches) 

significantly interacting with KIAA0141 in the LCL GM12878. ChIP-Seq data for 52 TFs were used to map TF 

binding at these distal fragments and within a proximal window around the TSS of KIAA0141 in GM12878. 

The location of the TF bound regions are shown in blue; the TFs found at each of these regions are listed 

below. For each of the TF bound regions, the different haplotypes amongst 359 other LCLs were identified; 

PWMs for each of the TF bound were used to predict changes in binding affinity for each of the haplotypes 

compared to GM12878. In this way binding variation was predicted for SPI1 at the distal region lying 266kb 

away from the promoter of KIAA0141. (B) An example of one of the SPI1 PWMs used to identify haplotypes 

(of the 520bp TF-bound region) with altered SPI1 binding affinity compared to GM12878. Amongst 

haplotypes predicted to show reduced SPI1 affinity compared to GM12878, a single G to A substitution at an 

8bp SPI1 binding site was responsible for the predicted reduction in SPI1 binding affinity. 

 

Using the approach outlined above I predicted 1,491 TF binding variants, at 1,244 out of 41,399 TF 

bound regions (2.4%). This resulted in a set of 1,765 genes with predicted binding variation at a 

regulatory region. The number of genes with a binding variant at a regulatory region exceeds the 

number of predicted TF binding variants because some enhancers connect to multiple genes. I 

examined the proportion of variants that lie at regulatory regions targeting multiple genes, 

revealing that 45% (665) of the binding variants connect to multiple genes (Figure 4.3a). Out of 

these multi-gene binding variants just over half were linked to more than two genes. Given that 

the majority of genes are targeted by multiple regulatory elements, I next asked whether there are 

some genes which have multiple predicted binding variants across their regulatory regions. Indeed, 

I found that 37% (660) of genes were predicted to have multiple binding variants, out of which 43% 

were predicted to have more than two binding variants (Figure 4.3b). 

 

4.2.2 Predicted TF binding variants are enriched for sites of differential chromatin 

accessibility.  
 

To validate this set of predicted TF binding variants, I took advantage of a DNase I sensitivity (a 

measure for chromatin accessibility) quantitative trait loci (dsQTLs) dataset by Degner et al. (2012). 

This consists of ~9000 dsQTLs in LCLs derived from 70 Yoruba individuals. Given that dsQTLs 

frequently associate with changes in TF binding (Degner et al., 2012), if my predicted TF binding 

variants reflect actual differences in TF binding I hypothesised that would be enriched for dsQTLs. 

To test this, I compared the proportion of SNPs predicted to alter TF binding that are detected as 

dsQTLs by Degner et al. (2012) to the same proportion for randomly selected TF-bound SNPs not 

predicted to alter TF binding (Figure 4.4). This also presents an opportunity to examine how the  
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Figure 4.3 Multi-connectivity between TF binding variants and genes in the LCL GM12878 

A single predicted binding variant can be linked (via Promoter Capture Hi-C or a promoter proximal window) 

to multiple genes (A), whilst a given gene can also be targeted by multiple binding variants (B). (C) A barplot 

shows the percent of binding variants (out of all those connected to at least one gene) that contact a single 

gene versus those that contact more than one gene (as illustrated in (A)). Out of the binding variants that 

contact multiple genes, the proportion of binding variants contacting two, three, four and five or more genes 

are shown in a piechart. (D) A barplot shows the percent of genes which are targeted by a single binding 

variant versus multiple binding variants. Out of the genes that harbour multiple binding variants across their 

regulatory regions, the proportion containing two, three, four and five or more binding variant are shown in 

a piechart. 

 

choice of threshold used for defining what magnitude change in TF binding affinity constitutes a 

change in binding (is “binding-altering”), affects potential dsQTL enrichment. To this end, I used a 

range of thresholds to define sets of “binding-altering” SNPs. I observed that SNPs predicted to 

alter binding were significantly enriched for dsQTLs compared to predicted binding-invariant SNPs 
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for all thresholds used (excluding the control threshold of zero), and that the enrichment tends to 

increase with increasing threshold level (Figure 4.4). The observed enrichments suggest that the 

predicted “binding-altering” variants are more likely to be dsQTLs, providing evidence that the 

predicted TF binding variants likely reflect actual binding differences in vivo. The increase in the 

proportion of binding variants that are dsQTLs with increasing threshold plateaus at a threshold of 

around 0.3. I therefore chose this threshold of 0.3 for defining predicted TF binding variants. At this 

threshold, SNPs predicted to alter binding show a 1.8-fold enrichment for dsQTLs than those not 

predicted to alter TF (Figure 4.4).  

 

Figure 4.4 Predicted TF binding variants are significantly enriched for DNase hypersensitivity QTLs 
(dsQTLS) 

SNPs underlying the affinity changes at each regulatory region that showed an affinity change relative to 

GM12878 over a range of thresholds (x-axis) for any TF, were identified (“predicted TF affinity variants”). The 

proportion of predicted affinity variants identified at each threshold overlapping with dsQTLs are shown (red 

points). For each threshold a control set of SNPs (matched in number to the predicted binding variants) falling 

at regions showing no affinity change/no affinity change under threshold were randomly selected, and the 

proportion overlapping with dsQTLs were calculated. This was repeated 1000 times and the mean proportion 

of binding invariant SNPs overlapping with dsQTLs calculated for each threshold (blue points). The grey 

shaded area indicates the limits of the 5% and 95% confidence intervals. Predicted TF binding variants at all 

thresholds excluding zero were significantly enriched for dsQTLs (p<0.0001 for all thresholds). 

 



74 
 

4.2.3 Identification of expression-modulating TF binding variants  
 

Having predicted TF binding variation at regulatory regions across a panel of 359 LCLs, I next set 

out to investigate the effect of binding variation on target gene expression. I first filtered the set of 

predicted binding variants to those connected to genes whose expression ranked in the top 50th 

percentile, to avoid spurious associations caused by genes with low read counts which are typically 

nosier. This resulted in a set of 1,194 predicted binding variants connected to 1,530 genes. In brief, 

for the 1,110 genes (out of 1,530) with a single predicted TF binding variant, I used linear regression 

to test for association between target gene expression (obtained from the GEUVADIS project) and 

the binding variant genotype in the corresponding LCL (homozygote for the high-affinity binding 

allele, heterozygote and homozygote for the low-affinity binding allele). The presence of a 

significant association suggests that the binding variant affects gene expression. To illustrate this, 

the data for an example gene, KLF6, for which I detected a significant positive association between 

a binding variant and target gene expression, is shown in Figure 4.5. For KLF6 I predicted variation   

 

Figure 4.5 Expression of KLF6 significantly associates with a predicted BATF binding variant located at a 
distal element 88kb away from the KLF6 promoter 

(A) Genome browser representation of the distal promoter interactions (pink arches) of KLF6 in the LCL 

GM12878, as detected by Promoter Capture Hi-C (Mifsud et al., 2015). Two out of the three fragments 

interacting with KLF6 are shown; the third fragment, which is located 850kb away from the KLF6 promoter 
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and contains the gene LINC00705, was omitted due to space constraints. Genome segmentation tracks for 

GM12878 are shown (Ernst et al., 2011; Kheradpour et al., 2013). TF bound regions at the two distally 

interacting fragments and TSS-proximal window are depicted in azure blue. The far-right TF bound region, 

which interacts with the KLF6 promoter 88kb away, harbours a variant predicted to impact BATF binding 

across an additional panel of 359 LCLs. (B). Boxplot showing mRNA levels (as measured with RNA-seq) of the 

LCLs, split according to their predicted BATF binding type (homozygote for the predicted high affinity allele, 

heterozygote and homozygote for the low affinity allele). KLF6 expression is significantly associated with 

BATF binding type (p-value=1.8x10-4, effect size =1.51); LCLs with one or two copies of the allele with reduced 

BATF affinity show increased KLF6 expression. RNA-Seq data from Lappalainen et al. (2013) was used, where 

the PEER algorithm had been applied to remove hidden confounding factors, resulting in PEER residuals 

which were further transformed to a normal distribution. 

 

in the binding of the TF BATF at a distal region located 88kb away from the KLF6 promoter. KLF6 

expression correlates with BATF binding affinity (p-value=1.8x10-4, effect size=1.51), with 

individuals homozygous for the high-affinity binding allele for BATF showing the lowest expression, 

and individuals homozygous for the low-affinity binding alleles showing the highest level of 

expression (Figure 4.5B). This suggests that BATF acts as a negative regulator of KLF6. For the 

remaining 420 genes with at least two TF binding variants across their regulatory regions, I used a 

multiple regression to jointly test the effects of the variants on gene expression. This is not usually 

possible with a standard eQTL analysis since the number of terms (i.e. variants tested per gene) in 

the regression model would be overwhelmingly high. 

Out of the 2,268 binding variant-target gene expression associations tested, 261 (12%) showed a 

significant association at a gene-level FDR of 10% (refer to Methods for details on multiple testing 

correction), involving 245 genes. Out of these 261 associations, 101 involved variants at distal 

regulatory regions and 160 variants at proximal regions. I next compared the proportion of distal 

versus proximal variants that associate with gene expression. I found that 6% of distal variant-

expression associations were significant, compared to 26% of proximal-variant expression 

associations (Figure 4.6). Despite detecting a lower proportion of distal-variant expression 

associations, an appreciable number of distal variants still showed significant association with gene 

expression and were considered further.  
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Figure 4.6 Proportion of proximal and distal predicted TF binding variants that associate with target gene 
expression 

All predicted TF binding variants were tested for association with target gene expression, by regressing target 

mRNA level against binding variant genotype in 359 LCLs. Significant variant-expression associations were 

selected at a gene-level 10% FDR. The percent of proximal binding variants (assigned to target gene via a 

proximal window around the TSS) and distal binding variants (assigned to target gene using promoter capture 

Hi-C) that significantly associate with target gene expression are shown. 

 

4.2.4 The majority of variant-expression associations identified are novel  
 

I first asked how the significant distal and proximal variant-expression associations compared to 

those identified by the GEUVADIS consortium, which carried out a traditional eQTL analysis on the 

same panel of LCLs with the same genotype and expression data. As GEUVADIS used an FDR of 5% 

to correct for multiple testing across genes (as opposed to 10% FDR used here), I adjusted the 

multiple testing correction I used to 5% FDR to make the results comparable. As such, any 

associations identified here but not by GEAUVDIS will be due to either looking at distal regions 

mapping larger than their “cis”-window, increased sensitivity due to a reduced multiple testing 

burden or using a multiple regression to jointly test variants. Out of the 209 binding variant-

expression associations I identified that were still significant at 5% FDR and were caused by a single 

underlying SNP, 81 (39%) were identified in the GEUVADIS analysis whilst the remaining 128 (61%) 

were not identified by the GEUVADIS analysis and thus novel (Figure 4.7). Strikingly 39% of the 

novel associations identified involve a variant outside a promoter region, resulting in 51 novel distal 

variant associations (Figure 4.7). Interestingly, of the novel associations identified, 57% involved 

genes already identified as eGenes (73 genes) by GEUAVDIS but with different variants, whilst 43% 
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were with genes for which GEUVADIS found no significant associations (55 genes) – and as such are 

novel eGenes. However, GEUVADIS were able to identify significant associations with 3,124 genes 

for which I found no association; the variants underlying these associations were not predicted to 

affect TF binding and therefore not considered in my approach.  

 

 

Figure 4.7 The majority of the variant-expression associations were not previously identified by a 
standard eQTL analysis carried out on the same data 

Significant variant-expression associations were compared to those previously identified by the GEUAVDIS 

consortium, which carried out a standard eQTL analysis on the same LCLs, using both the same variation and 

RNA-Seq data (Lappalainen, Sammeth, Friedländer, ’t Hoen, et al., 2013b). The barplot shows the percent of 

significant variant-expression associations identified in this study which were also discovered by the 

GEUAVDIS analysis (39%) versus those that were not previously identified by GEUAVDIS (61%). The bars are 

split according to whether the variant was defined as proximal (falling within 9kb of the target gene TSS; dark 

blue) or distal (at an interacting fragment detected by Promoter Capture Hi-C; light blue) in this study. The 

piechart shows the proportion of novel variant-expression association which involve genes for which the 

GEUVADIS analysis identified other variant-expression associations (73) versus those that involve genes for 

which GEUVADIS did not identify any significant variant-expression associations (51). 

 

All of the novel associations found had distances <1MB between the binding variant and affected 

gene, and were therefore tested in the GEUVADIS analysis. As such, they have been detected here 

due to either the increased sensitivity of my approach or the use of a multiple regression to jointly 

test variants connected to the same gene. Increased sensitivity may enable detection of 

associations with smaller effect sizes (betas). To test if I was able to identify associations with 

smaller betas than GEUAVDIS, I compared the betas of associations identified by both GEUVADIS 

and my approach, to those only identified in my approach. Given that significant associations 

detected uniquely by my approach have a higher proportion of distal variants compared to those 
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also identified by GEUVADIS, I compared the coefficients separately for proximal and distal 

associations. The coefficients were squared, and the square root then taken to make them all 

positive, allowing the magnitudes to be compared. Coefficients detected uniquely in my approach 

show a significantly smaller coefficient than those also identified by GEUVADIS for both proximal 

and distal variants (Figure 4.8, two-sample Wilcoxon test, proximal: w=737, p-value=5.0x10-12; 

distal: w=204, p-value=9.4x10-5).  

 

Figure 4.8 Comparison of the magnitude of regression coefficients between significant expression-variant 
associations also found by GEUVADIS and novel associations 

The regression coefficients of all significant variant-expression associations (at 5% gene-level FDR) were 

squared and the square root taken, to transform to absolute values. The boxplot shows the transformed 

coefficients for associations involving proximal (within 9kb of the target gene TSS) versus distal (on fragments 

interacting with the target gene as detected by promoter capture Hi-C) variants, split by whether the 

associations were previously identified by the GEUAVDIS analysis (cyan) or not (orange). 
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To demonstrate that the increased sensitivity of my approach is due to the reduced multiple testing 

burden, I compared the proportion of multiple testing-corrected GEUVADIS association p-values 

that were above the significance threshold, performing the correction for all variants tested by 

GEUVADIS versus or for only those variants prioritised in my approach (those predicted to alter TF 

binding at regulatory regions). Applying multiple testing across only prioritised variants resulted in 

a higher percentage of significant associations than when multiple testing correction was applied 

across all GEUVADIS tested variants (11% and 7% respectively at 5% FDR). This also held at 10% 

FDR, where 14% of p-values corrected for multiple testing across prioritised variants were 

significant, compared to 8% when correcting across all GEUAVDIS tested variants (Figure 4.9a). This  

 

Figure 4.9 Increased sensitivity over GEUAVDIS analysis due to reduced multiple testing burden 

(A) Proportion of GEUVADIS association p-values, for variants prioritised in this study, that were above the 

significance threshold, correcting for multiple testing across all variants tested by GEUVADIS versus correcting 

for multiple testing across only those variants prioritised in my approach (those predicted to alter TF binding 



80 
 

at regulatory regions). Correcting for multiple testing across only prioritised variants retained a higher 

percentage of significant associations (11% at 5% FDR, 14% at 10% FDR) than when multiple testing correction 

was applied across all GEUVADIS tested variants (7% at 5% FDR, 8% at 10% FDR) (B) The proportion of 

prioritised variants that are eQTLs versus the proportion of randomly selected variants (matched in number 

to the prioritised variants) that are eQTLs. The mean proportion of random variants that are eQTLs is shown 

from 1000 permutations. The error bar represents 95% confidence interval. 

 

demonstrates that the variant prioritisation approach that I took does indeed increase sensitivity 

through reducing the burden of multiple testing. It is possible that the prioritisation approach 

reduces the multiple testing burden, and thus increases the power, simply through testing a 

reduced number of variants; perhaps the same number of randomly selected variants would allow 

the recovery of a comparable number of significant associations? To test this, I compared the 

proportion of significant variant-expression associations between the prioritised variants and 

randomly selected variants. Almost none of the randomly chosen variants showed significant 

associations with this approach (Figure 4.9b). Thus, the identity of the variants prioritised is 

important in reducing the multiple testing burden.  

  

4.2.5 Genes impacted by multiple TF binding variants  
 

I next asked whether I was able to identify any genes with multiple independent TF binding variant-

expression associations. Out of the 420 genes for which I predicted more than a single TF binding 

variant, using a multiple regression I was able to identify 16 genes whose expression showed 

significant associations with multiple independent TF binding variants. A further 61 genes showed 

an association with a single one of the variants. As an example, a gene for which I detected two 

expression-associated binding variants located at discrete distal regulatory regions is shown (Figure 

4.10a). Expression of the nuclear receptor gene, NR2F6, was significantly associated with variation 

in SMC3 binding at a distal regulatory region 41 kb away, as well as in the binding of SRF at a distal 

element 19 kb away (multiple regression p-value=4.1x10-7, SMC3 term p-value=3.0x10-4, effect 

size=0.26; SRF term p-value=1.2x10-7, effect size= 0.61). To illustrate that the effects of the SMC3 

and SRF binding variants on expression are independent, for each binding variant I limited the 

analysis to LCLs with just one genotype for the other variant, and plotted expression against the 

genotype of this binding variant (Figure 4.10b and c). The expression of NR2F6 increases with both 

the loss binding of SRF and SMC3, even when the genotype of the other binding variant is constant, 
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demonstrating that the effects are indeed independent (Figure 4.10b and c). 

 

Figure 4.10 Expression of NR2F6 significantly associates with two independent binding variants 

(A) Genome browser representation of NR2F6 promoter distal interactions (represented by pink arches) as 

detected by promoter capture Hi-C (Mifsud et al., 2015a) in the LCL GM12878. The genome segmentation 

track for GM12878 is also shown (Ernst et al., 2011; Kheradpour et al., 2013). TF bound regions at the distally 

interacting fragments (pale blue) and NR2F6 TSS-proximal window are depicted in azure blue. The distal 

fragment downstream of NR2F6 contains two discrete TF bound regions which harbour predicted TF binding 

variants: one 44kb away from the NR2F6 promoter and the other 19kb away, containing variants predicted 

to impact SMC3 and SRF binding respectively across the 359 LCLs. (B) The left hand (LH) plot shows the SRF 

and SMC3 variant genotypes of the LCLs. Each dot represents an LCL derived from a different individual, and 

is plotted in one of the nine squares according to the SRF and SMC3 binding type of the LCL. For example, an 

LCL in the bottom far left square has two high affinity alleles for SRF and also two high affinity alleles for 

SMC3. Positions of the LCLs within each of the squares do not mean anything, they are randomly scattered 
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to allow all LCLs to be visualised. LCLs homozygote for the high affinity SRF allele were selected (LCLs within 

red box on LH plot), and their expression level plotted against SMC3 genotype in the RH boxplot. (C) The LH 

plot again shows the SRF and SMC3 variant genotypes of the LCLs. This time LCLs heterozygote for the high 

affinity SMC3 allele were selected (LCLs within red box on LH plot), and their expression level plotted against 

SRF genotype in the RH boxplot. 

 

4.2.6 TF binding variation at promoters affects expression of distally interacting genes  
 

I next focused the analysis on the set of 101 distal expression modulating binding variants 

(described in Section 4.2.3), predicted to affect expression of the associated gene via impacting 

enhancer activity. Unexpectedly, I observed cases where the binding variant mapped to the 

promoter of another gene. One such example is the TCF12 binding variant, which is located at the 

promoter of BEND6, yet affects the expression of RAB23 that is located 266kb away (p-

value=4.1x10-12, effect size=-0.19; Figure 4.11). Strikingly 62 out of the 107 distal variant-expression 

associations detected involved variants that lay on a restriction fragment containing another gene’s 

promoter (illustrated in Figure 4.12a). The median length of significantly interacting TF-bound 

restriction fragments is 6000bp, and they can be much larger; it is thus possible that these variants 

may be located outside the promoter region, for example, mapping to a close-range enhancer. To 

establish if these variants are more likely to be at proximal enhancers or promoters, I examined the 

distance between the binding variant and the TSS of the nearest gene. I also took advantage of the 

publicly available genome segmentation data for the LCL GM12878 to investigate the chromatin 

state of the regions surrounding the TF binding variants. The median distance between the binding 

variant and TSS of the closest gene was ~700bp, consistent with their likely location within the 

promoter region (Figure 4.12b). Furthermore, I found that 70% of the binding variants have 

promoter-associated chromatin states, with just under 60% defined as active promoters and ~10% 

defined as weak or poised promoters (Figure 4.12c). The remaining 30% of binding variants were 

largely defined as having an active enhancer state. This suggests that the majority of binding 

variants fall within promoter regions, while a subset of them are likely at close-range enhancers.  

Two possible scenarios may lead to the observed associations between a promoter variant and 

expression of a distal gene. Binding variation at the promoter might impact expression of the 

proximal gene, the protein product of which is involved in regulation of the distal gene, either 

directly or indirectly via downstream signalling processes. Alternatively, the promoter might act in 

an enhancer-like manner for the distal gene. If the former scenario is true, the expression of the 

gene whose promoter contains the binding variant must also be associated with the variant, which 

is not a requirement for the latter model. I therefore investigated whether the expression of the  
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Figure 4.11  A TCF12 binding variant sat at the promoter of BEND6 associates with expression of the 
distally interacting RAB23 across 359 LCLs 

(A) Genome browser representation of the distal interactions detected by promoter capture Hi-C (Mifsud et 

al., 2015a) for RAB23. Three significant distal interactions were detected, all with fragments containing 

promoters of other genes. The genome segmentation track for GM12878 is shown (Ernst et al., 2011; Pouya 

Kheradpour et al., 2013). TF bound regions (depicted in dark blue) identified at each fragment using TF ChIP-

Seq data from ENCODE (ENCODE Project Consortium, 2012) and proximal RAB23 TSS window are also shown. 

One of the TF bound regions at the most distally interacting fragment (266kb from the RAB23 promoter) 

harbours a predicted TCF12 binding variant. A zoomed-in view of this fragment is shown below the main 

genome browser view. The TCF12 variant falls at the annotated TSS of BEND6; a region defined as an active 

promoter in genome segmentation of GM12878. (B) The association between RAB23 expression and TCF12 

binding variant. The 359 LCLs were split according to their genotype at the predicted TCF12 binding variant 

(homozygote for the high affinity TCF12 allele, heterozygote for the high affinity TCF12 allele and homozygote 

for the low affinity TCF12 allele) and their RNA-levels plotted in a boxplot. Publically available RNA-Seq data 

was used (Lappalainen, Sammeth, Friedländer, ’t Hoen, et al., 2013b), where the PEER algorithm had been 

applied to remove hidden confounding factors, resulting in PEER residuals which were then further quantile 

normalised. RAB23 expression significantly associates with TCF12 binding type (p-value=4.1x10-12, effect 

size=-0.19); LCLs with two copies of the TCF12 low affinity allele show the lowest expression. 
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genes containing these variants at their promoters also associates with the respective variant. 

Interestingly, for 15% of the genes containing a distal expression-modulating variant, no 

measurable gene expression was detected by RNA-seq. One example of such a gene is the 

previously mentioned BEND6. BEND6 contains a predicted TCF12 binding variant at its promoter 

region which associates with expression of the distal gene RAB23, yet BEND6 expression is 

undetectable by RNA-Seq (Figure 4.11). Out of the genes which contained a distal expression 

associated variant at their promoter and for which expression was detected, 60% showed no 

association between the binding variant and expression. This suggests that, at least for the majority 

of observed cases where a binding variant sits at the promoter of a gene yet affects expression of 

another distal gene, the promoter might indeed act in an enhancer-like manner as opposed to 

affecting the gene expression in trans.  

 

Figure 4.12 Characterisation of variants at promoter-containing fragments that associate with expression 
of a distal gene 

(A) Schematic illustrating the situation where a binding variant associates with expression of a distally 

interacting gene and sits on the same HindIII restriction fragment (used by promoter capture Hi-C to link to 

other genomic regions) as another promoter. The analyses described in (B) and (C) was carried out on this 
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specific subset of variants. (B) Boxplot displaying the distances between variants (see (A)) and the closest TSS 

on the HindIII restriction fragment. (C) Barplot showing the proportion of variants (see (A)) overlapping each 

genome segmentation category (Ernst et al., 2011; Kheradpour et al., 2013) for GM12878. 

 

I next asked how many predicted binding variants at promoters that contact other genes, associate 

with expression of the distal gene. Carrying this out revealed that 6% of such variants (mapping to 

promoter-containing fragments and distally interacting with another gene promoter) significantly 

associated with expression of the distal gene. Strikingly this is comparable to the proportion of 

variants sat at non-promoter containing fragments that impact expression of distally interacting 

genes (7%; typical enhancer variant). This suggests that promoter-promoter interactions involved 

in such cis-regulation may be widespread.  

 

4.3 Discussion 

 

In this section, I have used a population genetics approach to investigate the effects of changes in 

TF binding at regulatory regions, in particular at distal elements, on target gene expression using 

LCLs as a model system. As expected, only a small proportion of predicted TF binding variation in 

LCLs associated with expression of the target promoter. This is likely due to the known buffering of 

regulatory variation, especially at distal regions (Cannavò et al., 2016). Nonetheless, hundreds of 

expression-associated binding variants were identified, the majority of which were not discovered 

by a previous eQTL analysis using the same panel of LCLs and as such are novel. Strikingly, the 

majority of predicted TF binding variants showing association with distal gene expression were 

located within the promoter regions of other genes that physically contacted the target gene. This 

suggests that some promoters may act as enhancers of other genes (“epromoters”; (Dao et al., 

2017)).  

 

4.3.1 Use of epigenomic and interactome data in population-based genetic approaches 
 

Numerous other studies have also utilised epigenomic data in population genetic based approaches 

to study the effects of sequence variation. Many of these have used epigenomic data post-

eQTL/GWAS analysis to collectively examine the properties of expression/trait-associated, with the 

aim to infer global causal mechanisms. For example, examining the enrichment of eQTLs/GWAS-
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loci at TF binding peaks, histone modifications and promoter-interacting regions as detected by 

high resolution chromosome capture conformation techniques (e.g. Blauwendraat et al., 2016; 

Javierre et al., 2016; Lappalainen et al., 2013). Epigenomic data has also been used to fine-map the 

causal variant. Due to LD, a large number of variants will associate with a given trait/expression of 

a certain gene and the strongest association is not always the causal one. This has led to efforts to 

identify the casual variants within LD blocks, which amongst other methods includes integrating 

epigenomic data.  

The use of epigenomic data in fine-mapping eQTLs and GWAS loci follows a similar rationale to that 

of this approach: variants that lie in regions harbouring regulatory marks such as DNase HS, 

promoter/enhancer-associated histone marks and TF binding peaks are assumed more likely to be 

the causal variant. The epigenomic data can be incorporated post GWAS/eQTL analysis to identify 

causal eQTL/GWAS loci amongst those in LD. Several tools have now been developed that enable 

the large-scale systematic annotation of millions of variants with both epigenomic data, and also 

binding variant predictions (McLaren et al., 2016; Wang, Li, & Hakonarson, 2010). Recently several 

studies have used Promoter Capture Hi-C to identify variants at distally interacting fragments (Jäger 

et al., 2015; Javierre et al., 2016; Martin et al., 2015). Alternatively, functional annotations can be 

incorporated before association testing, as priors in Bayesian fine-mapping approaches; this 

effectively up-weights variants with regulatory annotations (e.g. Kichaev et al., 2014; Wen et al., 

2015). The approach taken in this section thus represents a novel way to incorporate epigenomic 

data; like the Bayesian fine-mapping strategies it is incorporated before association testing, but 

differs in that annotations are used to prioritise a reduced set of predicted functional variants (as 

opposed to as priors). As a result, this approach offers increased power due a reduced multiple 

testing burden. Perhaps most significantly though, this approach is the first global eQTL-type 

analysis to integrate both Promoter Capture Hi-C and TF affinity predictions. 

 

4.3.2 Many known eQTLs are not prioritised in this approach  
 

While I was able to identify novel distal and proximal associations due to increased power, 

compared to the standard eQTL approach far fewer total associations were found. In fact, the vast 

majority of GEUVADIS eQTLs were not detected in this study. The eQTLs identified uniquely by 

GEUVADIS were not in LD with any prioritised variants, suggesting a large number of non-prioritised 

variants affect expression. This begs the question: through what mechanism might these variants 

impact gene expression?  
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A significant number of such variants may still impact expression through altering TF binding, but 

could not be detected as TF binding variants and thus not tested for association. To predict TF 

binding variants, I first required the TF to be detected as bound in the LCL GM12878 by ChIP-seq. 

As such TF variant predictions were limited to TFs for which ChIP-Seq data and PWMs were 

available– a total of 41 TFs. While the total number of TFs expressed in LCLs are unknown, the 

number of TFs surveyed here likely represent only a small fraction. For example current estimates 

for the total number of human TFs are ~1900 (Messina et al., 2004; Vaquerizas et al., 2009). It is 

thus plausible that eQTLs detected only by GEUVADIS impact binding of TFs not included in this 

study.  

It is also possible that there are many cases where the impact of a variant falling at the binding site 

of a TF, which was included in this study, was not assessed. Some of these instances may be due to 

binding of the given TF in GM12878 not being detected by ChIP-seq. Also any variant which perturbs 

binding at both alleles in the LCL GM12878 was not be analysed – due to requiring evidence of 

binding in this individual to restrict the false positive rate of PWM binding predictions. Another 

possibility is that a variant alters binding at a low affinity site, which due to requiring a PWM score 

over a certain threshold in GM12878, will not be detected. There is emerging evidence to suggest 

that low affinity TF binding at enhancers may be functionally important (Burgess, 2016; Crocker, 

Preger-Ben Noon, & Stern, 2016). For example several studies have demonstrated that mutating a 

low affinity site to a high affinity one at an enhancer results in ectopic expression of the target 

gene. How widespread the use of low affinity TF binding at enhancers is remains to be seen. For 

example Wang et al. found that one TF binds and regulates genes containing both high and low 

affinity binding sites at regulatory regions ( Wang et al., 2015). However a study in Drosophila 

embryos suggested that a large proportion of such low affinity TF binding might be non-functional 

( Li et al., 2008). If some low affinity binding is functional it also presents the intriguing possibility 

that, when TF affinity variants associate with expression, perhaps the high affinity allele is the 

“deleterious” one?  

Out of all TF bound regions, only a tiny fraction were predicted to show TF binding variation across 

this panel of LCLs. This fits with findings from recent studies that suggest only a minority of variants 

at motifs disrupt binding (Cavalli et al., 2016; Kilpinen et al., 2013b; Maurano et al., 2012c; Spivakov 

et al., 2012; Tehranchi et al., 2016b). For example one such study found between 0.5 % and 3% of 

TF bound variants resulted in changes in binding as detected by ChIP-Seq (Tehranchi et al., 2016b). 

However there is growing evidence to suggest that a significant proportion of variation in TF binding 

does not result from disruption of known motifs (Gallone et al., 2017; Tehranchi et al., 2016; Wong 
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et al., 2016). There is currently much work being done to learn additional sequences features, both 

within and outside of the core site, that influence TF binding (Dror et al. , 2015; Levo et al., 2015).  

Another possibility is that eQTLs identified by GEUAVDIS impact expression through mechanisms 

other than TF binding. A large number of histone modification QTLs and DNA methylation QTLs 

have been identified, which are often associated with eQTLs (Alasoo et al., 2017; Banovich et al., 

2014b; Chen et al., 2016; Degner et al., 2012; Kasowski et al., 2013; Kilpinen et al., 2013; McVicker 

et al., 2013). However, recent studies suggest these chromatin-QTLs may be primarily driven by 

changes in TF binding, and as such most expression-associated changes should be captured through 

examining changes in TF binding (Kilpinen et al., 2013; Lee et al., 2015). Alternatively, variants may 

impact expression via posttranscriptional mechanisms, for example, through affecting rate of RNA-

decay and miRNA binding. RNA decay QTLs, as well as miRNA binding QTLs are often associated 

with eQTLs, and as such might underlie variation in expression (Lu & Clark, 2012; Pai et al., 2012; 

Wang et al., 2009). In LCLs it was estimated that 19% of eQTLs might be driven by differences in 

rate of mRNA decay (Pai et al., 2012). The impact of variants on post-transcriptional mechanisms 

has tended to receive less attention, in part due to challenges with assaying post-transcriptional 

mechanisms on a large scale.  

 

4.3.3 Expression is robust to regulatory variation  
 

The finding that only a small fraction of predicted binding variants associate with changes in target 

gene expression, is consistent with the notion that regulatory variation is often buffered (does not 

impact gene expression) (Spivakov, 2014). Buffering can occur at the level of TF binding, whereby 

a TF is still recruited despite disruption of its binding motif. For example, cooperative binding may 

enable a TF to be recruited via TF-TF interactions (Spivakov et al., 2012). Alternatively, other TFs at 

the regulatory element may act to “buffer” the loss of a certain TF by maintaining the activity of 

the regulatory element. The fact that many experimental TF binding perturbations do not result in 

changes in gene expression support this notion (Cusanovich et al., 2014; Drewell, 2011; Spivakov 

et al., 2012). It is likely that the identity of the TF whose binding is perturbed affects the impact on 

the regulatory activity. For example, Tehranchi et al (2016) found that SNPs falling at CTCF motifs 

were associated with changes in binding of five other TFs, as assayed by pooled ChIP-seq. This 

suggests that CTCF may be a “pioneer” TF, potentially altering the chromatin environment to permit 

the binding of other TFs (Tehranchi et al., 2016). Binding variation at such pioneer TFs is more likely 

to disrupt the regulatory activity of the element, and impact expression. In addition, many 
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enhancers have been shown to act redundantly, with gene expression unaffected by removal of an 

individual enhancer under normal conditions (Frankel et al., 2010; Lam et al., 2015; Perry et al., 

2010; N. Xiong et al., 2002). As such, the activity of an entire regulatory element can be buffered 

by the presence of another redundant enhancer. This enhancer level buffering may explain why a 

smaller proportion of distal variation associated with target gene expression than proximal 

variants.  

The approach taken in this study provides a unique opportunity to test the effect of other features 

of regulatory architecture on buffering TF binding variation, potentially identifying novel features 

that may contribute to robustness to genetic perturbations. This is due to having distinct sets of 

binding variants (for which the identity of the perturbed TF is inferred) which do and do not 

associate with target gene expression, and importantly for which the regulatory architecture of the 

target gene is known. In particular the other TFs binding at the regulatory element harbouring the 

variation are known, as well as those binding other regulatory elements of the loci. A regression 

approach can be used to learn features of regulatory architecture or the affected TFs that increase 

the likelihood that expression will be impacted. Alternatively the effects of multiple variants on 

gene expression across multiple genes can be analysed jointly based on their shared properties 

(pooled by the properties of the target genes or affected TFs), which has the advantage of further 

increasing the sensitivity of such analyses.  

 

4.3.4 Epromoters 
 

My finding of promoters acting as enhancers for other genes is consistent with two very recent 

studies. The first of them used a high throughout reporter-based assay to initially assess enhancer 

activity of all promoters in human coding genes; they found that 2%-3% of all promoters have 

enhancer activity, which they termed “epromoters” (Dao et al., 2017). They then used CRISPR/Cas9 

to delete several of these epromoters and demonstrate that they are involved in cis-regulation of 

distal gene expression in-vivo, and as such function as true enhancers (Dao et al., 2017). The second 

study carried out a high-throughput CRISPR/Cas-mediated-mediated mutagenesis screen around 

the POU5F1 locus to identify sequences with enhancer function (Diao et al., 2017). They found 40% 

of the identified cis-regulatory sequences contained annotated promoters of other genes, and 

these formed spatial contact with the POU5F1 promoter, analogous to enhancers (Diao et al., 

2017). Whilst these two studies were the first to demonstrate the function of epromoters in vivo, 

as well as giving as indication of their prevalence, they followed on from an accumulating body of 
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evidence suggesting that promoters may be able to function as enhancers. Emerging similarities 

between promoter and enhancers, for example chromatin marks and bidirectional transcription, 

led to the idea the promoter-enhancer distinction may not be as clear as initially thought 

(Andersson, 2015; Core et al., 2014; Kim & Shiekhattar, 2015). In addition the finding that 

promoters are frequently engaged in interactions with other promoters, suggested that they may 

have a regulatory role (Li et al., 2012a; Sanyal et al., 2012; Schoenfelder et al., 2015). Previous 

reporter assays have also found that promoters were able to function as enhancers (Arnold et al., 

2013; G. Li et al., 2012; Nguyen et al., 2016; Zabidi et al., 2014). The work in this section has thus 

added to a growing body of evidence supporting an enhancer-like role for promoters, and 

suggested that this type of regulation may be common. Significantly, it also provides a catalogue of 

potential epromoters for which, unlike those identified in reporter assays, the distal target gene 

has been identified. This may be of use in the further characterisation of epromoter properties.  

What might be the role of such epromoters? The dual promoter-enhancer function may ensure co-

ordinated regulation of the gene associated with the epromoter and the distally interacting gene. 

This has similarities to enhancer sharing, which is widespread and has been demonstrated to play 

a role in co-regulation (Jin et al., 2013; Schoenfelder et al., 2015). Dao et al. found that expression 

of the proximal and distal epromoter associated genes was highly correlated, however the same 

was seen for all physically interacting genes. Indeed several studies have shown that genes in close 

spatial proximity tend to show co-regulation (Li et al., 2012). Epromoters might represent one 

mechanism underlying the co-regulation of physically associated genes, along with enhancer-

sharing and common TF environment. If this is indeed the case, what unique properties might 

epromoters confer to coordinated regulation over for example enhancer sharing?  

Dao et al. suggested that epromoters may play a role in coordinating rapid responses to external 

stimuli. This followed from the observation that a significant number of epromoter associated 

genes were key interferon response genes. Indeed they were able to demonstrate for two loci that 

epromoters were necessary to activate distal expression in response to interferon. A similar finding 

was observed by Li et al., who found that loss of ERα binding at one promoter impacted expression 

of physically interacting genes, which do not bind ERα at their promoters (G. Li et al., 2012). The 

ability to activate expression in response to external stimuli is a well-characterised feature of 

enhancers, thus enhancer-sharing might also facilitate co-ordinated responses to stimuli. It is 

tempting to speculate epromoters versus enhancer-sharing might offer slightly different properties 

for such co-ordinated regulation. For example, a recent study found that the closer a given 

enhancer is to a gene, the more frequent the transcriptional bursts are it induces (Fukaya, Lim, & 

Levine, 2016). It is plausible that transcriptional bursts will be more frequent at the gene proximal 
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to the epromoter than the distal gene, whereas a shared enhancer may induce similar burst 

frequencies at both genes. Other key questions include whether the looping dynamics are similar 

to traditional enhancer-promoter contacts. In addition, what is the role of epromoters in 

transcription factories? Future studies will likely start to address these questions.  

Whilst there is initial evidence to support a role of epromoters in co-ordinated regulation, the 

finding that 15% of epromoter associated genes show no detectable expression suggests that this 

is not the case for all epromoters. This is consistent with Dao et al, who found between 14% and 

41% of epromoter associated genes did not have an active TSS in the given cell line (Dao et al., 

2017). They hypothesized that there are two distinct types of epromoters: one that co-ordinately 

regulates the proximal and distal gene, and another that can function as either a promoter or 

enhancer, thus regulating the proximal and distal genes in different cell types. Regulatory elements 

that appear to be able to function as either promoters or enhancers have been previously identified 

in a human cross-tissue/cell type study. Leung et al. observed that ~15% of strong promoters were 

predicted enhancers in other tissues/cell types (Leung et al., 2015). Further these regulatory 

elements were able to function according to their predicted role (enhancer or promoter) in a 

reporter assay. Similarly, a study in mice found that intragenic enhancers were able to act as 

alternative tissue-specific promoters (Kowalczyk et al., 2012). If the epromoters can indeed act as 

an enhancer in one cell type and a promoter in another, this presents an intriguing question. How 

does the gene proximal to the active enhancer, which is capable of acting as a promoter in another 

cell type, avoid activation? Perhaps insulator type elements prevent activation of the proximal 

gene. Examining properties of expressed versus non-expressed genes that harbour a distal 

expression-modulating variant at their promoter region, might lead to insights on how activation is 

avoided.  

One perplexing finding is that in the majority of cases where a variant at an epromoter impacts 

expression of the distal gene, expression of the proximal gene remains unperturbed. It is 

theoretically possible that expression of the proximal gene is also impacted, but not detected. 

However given that epromoters appear to be highly expressed, which increases power to detect 

changes, it seems unlikely that undetected associations explain all such instances. Furthermore, 

the allele frequency, which also influences power to detect associations, is identical in both the 

proximal and distal association tests as they are testing for association with the same variant. 

Another possibility is that the proximal gene may be under the control of an alternative promoter, 

as was discussed previously. However if the finding from Dao et al., that only ~30% of epromoter 

proximal genes have alternative TSSs, holds for this set of LCL epromoters, this would not explain 

all instances where expression of the epromoter proximal gene remains unaffected. If the 
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epromoter is indeed functioning simultaneously as a promoter and enhancer, an intriguing 

question is why only expression of the distal gene appears is impacted.  

One possible explanation for these findings is that change in TF binding at the epromoter results in 

a loss of physical interaction between the epromoter and distal gene. In this case activation of the 

distal gene by the epromoter would be completely lost, whereas expression of the proximal gene 

might be only slightly impacted due to loss of binding of the given TF or robust to this change. There 

are several examples of mutations at classical enhancers that disrupt looping, and consequently 

target gene expression (e.g. Majumder et al. 2008; Visser, Kayser, & Palstra, 2012). For example, 

Visser et al. (2012) demonstrated that a mutation at one allele that reduced binding of the TF HLTF, 

resulted in allele-specific reduction in looping to the pigment gene OCA2, accompanied by allele-

specific loss of expression. Loss of CTCF binding has also been shown to disrupt looping; a CTCF 

knockdown reduced physical interactions between an enhancer normally bound by CTCF, and the 

promoters of HLA-DRB1 and HLA-DQA1 (Majumder et al., 2008). The reduction in enhancer 

interactions led to a reduction in expression of the two contacted genes (Majumder et al., 2008). 

This hypothesis could be tested using putative epromoter variants identified in this study that are 

heterozygote in GM12878, by re-analysing the promoter capture Hi-C data to test for allele-specific 

looping interactions with the distal impacted gene. Further, the impacted TFs can be compared 

between epromoters that do and do not associate with proximal gene expression, with the 

hypothesis that those impact only distal expression may be factors involved in looping. 
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5 General Discussion  
 

In this thesis I have used a combination of functional genomic and population genetics approaches 

to interrogate principles of enhancer regulation. In Chapter 3 I found that genes regulated by 

multiple enhancers favour a “shadow” enhancer architecture, whereby their enhancers recruit 

similar sets of TFs. This provided the first global insight into the principles of TF binding at the 

enhancers concurrently regulating the same gene. In Chapter 4 I predicted hundreds of TF binding 

variants at distal regulatory elements, a small proportion of which were found to associate with 

target gene expression. Robustness observed by the “shadow” enhancers observed in Chapter 3 is 

likely one reason why most TF binding variants do not associate with gene expression changes 

under normal conditions. It will be interesting to see whether shadow enhancers also confer 

robustness under stress conditions, as has been observed in Drosophila (Frankel et al., 2010; Perry 

et al., 2010). Strikingly a large proportion of variants that impacted expression fell at the promoters 

of other genes, suggesting that promoters may be able to act in an enhancer-like manner 

(epromoters), as observed by two very recent studies (Dao et al., 2017; Diao et al., 2017). 

Significantly, with the identification of promoter variants that impact distal gene expression, this 

work has added to a small catalogue of predicted epromoters. These will likely be valuable in 

further elucidating the properties and biological significance of epromoters. In addition, the 

identification of sets of predicting binding variants at enhancers that do and do not associate with 

target gene expression provides a unique opportunity to learn properties of general regulatory 

architecture that confer robustness. This work has thus set the scene for many exciting follow-up 

studies.  

Population genomics approaches such as that used in Chapter 4 are likely to become an increasingly 

powerful way to study principles of enhancer regulation. As next-generation sequencing costs 

reduce, we are able to sequence the genomes and transcriptomes of an increasingly large numbers 

of individuals. For example, the recently launched 100,000 Genomes project aims to sequence the 

genomes of 70,000 cancer and rare-disease patients (Caulfield et al., 2017). Samples from each 

patient are being kept to enable RNA-Seq and epigenomic assays to be performed in the future 

(Caulfield et al., 2017). With increasing sample sizes and accompanying epigenomic information, 

population genomic approaches will be able to detect variants with weaker effects, complex 

interactions between variants as well as better detection of causal variants. These are likely to be 

accompanied by novel statistical techniques and approaches for incorporating epigenomic data. In 

addition, the increasing bulk of sequencing data may enable the application of deep learning 

algorithms to population genomic approaches. Deep learning algorithms have already been used 
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to predict molecular traits, including chromatin profiles and expression, from sequence (Kelley, 

Snoek, & Rinn, 2016; Leung et al., 2014; Xiong et al., 2015; Zhou & Troyanskaya, 2015). In these 

instances, the models were trained upon sequence features within a single genome. It could be 

envisioned that variation between individuals could also be used, for example, to train a model to 

predict when and when not variation at regulatory regions associates with changes in gene 

expression. Such algorithms may be particularly suited to learning complex features of regulatory 

architecture that confer robustness, as they cope well with non-linear dependencies and 

interaction effects that are likely to exist. With a combination of statistical and deep learning 

approaches, it is likely that the full potential of population genomics approaches for elucidating 

principles of enhancer function will be realised.  

Insights and findings from population genomic approaches, including those in this study, however 

still require experimental validation due to correlative nature of associations. Until very recently it 

was both challenging and time-consuming to directly perturb enhancers in their native context. 

Reporter assays, while easy to carry out, do not capture the genomic context within which the 

enhancer resides. For example, they may not acquire chromatin marks, and also enhancer-

promoter looping as well as the 3D genome environment is lacking. This is particularly relevant for 

validating and investigating the function of epromoters identified in this work, where 3D 

interactions are likely to play a key role. Recent developments in genome editing techniques, in 

particular the advent of the CRISPR-cas9 system (Cong et al., 2013; Mali et al., 2013), now enable 

perturbations to be introduced at endogenous loci relatively quickly and simply. Cas9 can be 

targeted to almost all genomic loci by sequence-specific guide RNAs to induce double stranded RNA 

breaks. These are repaired by non-homologous end joining which results in small insertions or 

deletions. In addition, cas9 can be used to produce targeted deletions through the use of two guide 

RNAs flanking the target region. Significantly inactivated cas9 can still be targeted specifically to 

DNA (Dominguez, Lim, & Qi, 2015). As such it can fused to either an activator, repressor or 

epigenetic regulator to directly modulate the activity or epigenetic state of a targeted enhancer 

(Dominguez et al., 2015; Lopes, Korkmaz, & Agami, 2016). Although the off-target effects still need 

to be investigated, as it is possible that the activator/repressor impacts promoter activity directly. 

Both the genome-editing and activity-modulating versions of CRISPR-cas9 offer a powerful way to 

validate and further explore the functional characteristics of predicted epromoters identified in this 

work.  

In this work, I have used Promoter Capture Hi-C to link enhancers to target genes. This has a 

resolution of 4kb on average, likely larger than most regulatory regions. In addition, it has a “blind” 

window, (approximately three restriction fragment in length) around the centre of the baited 
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fragment, which limits the detection of short-range enhancers. CRISPR-cas9, due to it’s amenability 

to high-throughput approaches, can be used to systematically interrogate sequences for regulatory 

potential (Lopes et al., 2016). Several studies have taken advantage of this, tiling hundreds of guide 

RNAs across regulatory regions for a handful of genes. This may be used, alongside Promoter 

Capture Hi-C, to pinpoint the regulatory regions at distal interacting regions, as well as to identify 

short-range enhancers. One caveat however is that redundant enhancers (at least under the 

conditions tested) will not be detected in a CRISPR-cas9 screen. Given the apparent pervasiveness 

of shadow enhancers, a large number of enhancers may act redundantly in humans. In addition, 

while many enhancers can be screened in parallel using high throughput CRISPR-cas9 approaches, 

the normally used bulk read-outs mean that it is limited to assaying the effects on a single gene.  

Excitingly several recent studies have overcome this limitation by combining CRISPR-cas9 

perturbations with high-throughput single cell sequencing, enabling global changes in gene 

expression to be measured simultaneously (Adamson et al., 2016; Dixit et al., 2016; Jaitin et al., 

2016; Xie et al., 2017). While the number of enhancers that can currently be screened with this 

combined approach is limited due to sequencing costs (Xie et al., 2017), with future reductions in 

sequencing costs this approach may enable genome-wide functional analysis of enhancers. Even 

the ability to assay the effects on a handful of genes simultaneously might be of use for 

investigating the role of epromoters in TF factories, where their effect on expression of multiple 

genes could be investigated. Xie et al. (2017) demonstrated that a single cell repressive CRISPR-

cas9 approach can also be used to investigate the combinatorial action of enhancers. They were 

able to show that several enhancers with a negligible effect on gene expression individually, elicited 

a big effect on expression in combination, suggestive of redundancy (Xie et al., 2017). If redundant 

enhancers are indeed pervasive in the human genome, this may represent an important strategy 

for identifying regulatory elements, as well as investigating multi-enhancer logic. In addition, the 

single-cell nature of the read out also offers a unique opportunity to investigate cell-to-cell 

variability in enhancer function.  

In conclusion the work in this thesis has shed further light on principles of enhancer regulation. 

Excitingly recent advances in experimental techniques now enable these findings and biological 

insights to be tested experimentally. 
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6 Appendix 
 

6.1 TFs used in analysis 
 

ATF3 

BATF 

BCL11A** 

BCL3** 

BCLAF1** 

BRCA1 

CHD2 

CTCF* 

EBF1 

EGR1 

ELF1 

ETS1 

FAM48A** 

FOS** 

GABPA 

IRF3 

JUND** 

KAT2A** 

MAX 

MEF2A 

MEF2C** 

MYC 

NFE2 

NFKB1 

NR2C2 

NRF1 

PAX5 

PBX3 

POU2F2 

RAD21* 

REST 

RFX5 

RXRA 

SIN3A 

SIX5 

SMC3* 

SP1 

SPI1 

SRF 

STAT1 

STAT3 

TAF1** 
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TBP 

TCF12 

USF1 

USF2 

WRNIP1** 

YY1 

ZBTB33 

ZEB1 

ZNF143 

ZZZ3** 
  

* TFs that were excluded from the analysis in Section 3. 

**TFs for which PWMs were not available for. These were therefore not included in the TF affinity 

analysis part of Section 4 (but were included in the initial TF binding annotation part of Section 4). 

 

6.2 List of abbreviations 

 
 
AIC Akaike information criterion 

ANOVA Analysis of variance  

ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing 

bp Base pairs 

ChIA-PET Chromatin Interaction Analysis by Paired-End Tag Sequencing 

CHiC Capture Hi-C 

ChIP Chromatin immunoprecipitation 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 

CRM Cis-regulatory module  

DNase Deoxyribonuclease 

DNase HS Dnase hypersensitivity  

dsQTL DNase I sensitivity quantative trait loci 

ENCODE Encyclopedia of DNA Elements 

eQTL expression quantative trait loci 

eRNA Enhancer RNA 

FDR False discovery rate  

FISH Fluorescent in situ hybridisation  

GO Gene ontology 

GTF General transcription factor 

GWAS Genome wide association study  

H3K27ac Histone H3 acetylation at lysine 27 

H3K4me1 Histone H3 mono-methylation at lysine 4  

HAT Histone acetly transferase 

IFN Interferon 

Ig Immunoglobulin 

Indel Insertion/deletion  

kb Kilobases 

LCL Lymphoblastoid cell line  
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LD Linkage disequilibrium  

miRNA MicroRNA 

MPRA Massively paralell reporter assay  

PCHiC Promoter capture Hi-C 

PCR Polymerse chain reaction  

PEER Probabilistic Estimation of Expression Residuals 

PIC Preinitiation complex 

PIR Promoter interacting region  

PWM Postion weight matrix 

RNA pol  RNA polymerase 

Shh Sonic hedgehog 

SNP Single nucleotide polymorphism  

TF Transcription factor 

TSS Transcription start site 
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