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Abstract  

Dissertation title: A new simplified vector-based model to support solar energy planning 

at urban scale 

 

Wei Liao 
  

Evaluation of solar potential is a necessary step for integrating solar technologies in 

buildings in order to properly assess the benefits of harvesting solar energy and draw well-

informed decisions in various design phases. Solar energy planning at urban scale requires 

large-scale solar analysis to support various decision-making contexts, such as making urban 

solar targets, prioritizing urban zones or buildings for solar integration, and optimizing solar 

technologies tailored for targeting buildings. Existing tools have the following major limitations 

to support such decision-making situations. (1) Current advanced simulation models based on 

ray trace and ray interception techniques are not effectively scalable to evaluate solar potential 

at urban scale due to the expensive modelling process and computational cost. (2) Simple and 

statistical models developed for large-scale analysis are not suitable to accurately predict solar 

irradiance on individual surfaces with proper consideration of urban shading and reflection. 

This dissertation addresses the need for developing scalable, efficient analysis methods to 

support the solar energy planning process.  

 

This dissertation has developed a simplified vector-based model that effectively predicts 

the solar potential of urban areas on the basis of consideration of the urban context. The 

proposed model is based on vector-based methods without the use of ray trace and ray 

interception techniques, and consists of new methods that suitably account for the non-uniform 

solar radiation of the sky, obstruction by urban surfaces, and reflection by urban surfaces in 

urban areas. The proposed model establishes three new methods to simplify the calculation in 

the context of urban applications: (1) a two-segment discretisation model, (2) an edge-angle 

detection obstruction model, and (3) a unified view-angle-based reflection model.  
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This dissertation demonstrates the usability of the new model in supporting decision-

making in the solar energy planning process. It addresses the following two hypotheses to 

examine the usability of the new model: (1) Simplified, vector-based model, tailored to urban 

applications, predict accurate solar radiation on urban surfaces to effectively support urban-

scale analysis and (2) solar analysis with full representation of urban surroundings is necessary 

in the calculation of urban shading and solar reflection to correctly support distributed PV 

planning. 

 

For the first hypothesis, the performance of the method is compared against the advanced 

daylight simulation program RADIANCE and measurements obtained from controlled 

experiments. The first comparison demonstrates the new method provides flexible setting 

options for different resolution and prediction accuracy requirements and generates reasonably 

accurate predictions. The second comparison further confirms the prediction accuracy against 

the measurements for the horizontal and vertical surfaces under different shading and reflection 

conditions. The comparison with the ray interception approach demonstrates the computational 

efficiency of the proposed obstruction model for solar analysis that substantially reduces 

calculation iterations for detecting sky and building obstructions. For the second hypothesis, 

predictions and decisions derived by the developed method are compared against those by a 

lower fidelity models to investigate the importance of modelling urban shading and reflection 

with full representation of urban surroundings in three decision making contexts of urban-scale 

distributed PV planning process. Additionally, the second hypothesis is furthered examined and 

highlighted by investigating the effect of an additional dynamic PV model on decision-makings 

in comparison with the effect of the proposed high-fidelity solar radiation model for urban 

shading and solar reflection. The new model is demonstrated to enable cost-efficient solar 

potential analysis based on urban contexts for supporting solar energy planning at urban scale.   
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Preface  

I remember the greyness in the sky every time when I travelled back home in China for a 

vacation. Looking down from the plane, it was like a thin sheet covering the cities, the towns 

or even the remote mountains and rice fields. There was not much detail to see from the plane, 

not because of the distance, but the air pollution hunting over the land. As someone who grew 

up in the southern part of the country, memory with the sky was not like that when I was little. 

After 30 years of continuous success of economic development, China transformed from a poor 

and underdeveloped country to an economic giant today. Life nowadays is much better for the 

people, but not so much for the air we breathe in. In fact, the air pollution has gotten so bad in 

the northern part of the country, during the winter season, the pollutions were blown across the 

sea all the way to Korea and Japan by the monsoon from Siberia. There started a war, a war 

announced against the polluted air, a difficult war to win as more than 70% of the energy 

generated in China is coal-based, the dirtiest source of energy knew for a long time. Due to the 

political concern of energy safety of an oil-dependent energy system, the Chinese government 

is reluctant to expand its gas plants, a relatively cleaner source of energy compared with coal-

based plants, and has no choice but turn to renewable energy. 

 

Under such background, I began my story of studying solar energy and its utilization in 

the built environment. During the study in my master course, I was lucky to participate in a 

project funded by the National Nature Foundation of China, where I studied the benefits and 

challenges of integrating semi-transparent PV on building facades. As it is important to 

understand how solar energy can be utilised on the building level, I soon realised it is not enough. 

Solar technologies should not be some fancy showcases on some fancy hi-tech looking 

architecture. If we ever want to win the war against air pollution, it needs to be applied in a 

much larger scale with a lot more people to participate to embrace this renewable energy. The 

current urban area needs to be more progressive in integrating solar technologies in the built 
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environment and future development. One key task to promote solar energy utilisation in urban 

buildings is to know how the solar resource is first distributed in our cities. And I found a 

research gap in the methods for properly and efficiently predict solar energy on such large-scale, 

I perused a further answer in my PhD course. I chased after the question of how we can better, 

more efficiently deliver a solar potential evaluation at urban-scale. The methods and tools I 

established in the study is an attempt to contribute a small but crucial part of what could help 

us to better fight in the environmental war against air pollution and energy crisis.  

     

Lastly, I declare that this dissertation is my own work and contains nothing which is the 

outcome of work done in collaboration with others, except as specified in the text and 

acknowledgements. The work in this dissertation is not substantially the same as any that I have 

submitted, or, is being concurrently submitted for a degree or diploma or other qualification at 

the University of Cambridge or any other University or similar institution except as declared in 

the Preface and specified in the text. I further state that no substantial part of my dissertation 

has already been submitted, or, is being concurrently submitted for any such degree, diploma 

or other qualification at the University of Cambridge or any other University or similar 

institution except as declared in the Preface and specified in the text. The dissertation does not 

exceed the prescribed word limit for the relevant Degree Committee. 
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Nomenclature  

 

BES building edge subdivision 

BVA solid angle of building view 

GVA solid angle of ground view 

SVA sky view angle 

SVF sky view factor 

SHS sky horizontal subdivision  

SIS strip inside subdivision 

SRSS sky radiance sampling subdivision 

UHA urban horizontal angle 

  

avg average 

B building  

diff diffuse 

dh diffuse horizontal  

G irradiance (W/m2) 

g ground  

K number of SIS 

low lower boundary of sky patch (rad) 

M number of SRSS 

N number of SHS 

norm normal 

R radiance (W. sr/m2) 

up upper boundary of sky patch 

𝛽 altitude of lowest blocked point (rad) 

𝜌 average reflectance 

𝜎 angle between surface normal and a line (rad) 

𝜙 altitude of sky patch (rad) 

𝜉 altitude of highest blocked point (rad) 

γ angle of plane sloped  

𝜓 
 

azimuth bandwidth 
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Chapter 1: Introduction  

 

 

 

 

 

 

 

 

1.1 Solar energy planning at urban scale  

Solar energy has been well recognised as a clean and almost inexhaustible energy. With 

the improvement of solar technology, continuously decreasing costs and increasing acceptance 

by the public, it has been considered as one of the most promising energy sources. Different 

solar technologies, including BIPV (building integrated photovoltaic), solar thermal collector 

(STC) and other solar design strategies in buildings, have been increasingly adopted by 

architects, developers, city planners and authorities as the way to provide clean energy and 

therefore reduce the demands of traditional fossil fuels.  

     

Through solar technologies, direct radiation from the sun, diffuse radiation from the sky 

and reflected radiation from surrounding environment reaches solar collectors that transfer the 

solar energy into various forms, such as electricity through Photovoltaics (PV) (Tripathi et al., 

2016), hot water through thermal collectors (Dupeyrat et al., 2014), or direct heat source 

through passive solar walls (Bansal et al., 1993; Stritih and Novak, 1996; O’Hegarty et al., 

2016). The annual available solar energy on a solar collector varies substantially in different 
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geological locations due to the diverse climate conditions (e.g. solar positions and paths, 

cloudiness, air mass) (Besharat, et al., 2013). Built environments also play an important role in 

creating shading on solar systems due to the surroundings, particularly when an intended solar 

application area is located in urban areas (Cheng et al., 2006). The available solar energy 

received on the surfaces of interests, such as building roofs or facades, can be referred to as 

solar potential (Cheng et al., 2006). Other names such as solar availability or daylight 

availability are also commonly used in different studies to evaluate the usability of solar energy 

in buildings (Compagnon, 2004; Chatzipoulka, et al., 2016). Assessment of available solar 

energy forms a foundation for successful solar applications as it provides key information about 

possible energy yields for solar projects. 

 

Evaluation of the the solar potential of urban surfaces is an important step in solar energy 

planning. Kanters and Wall (2016) comprehensively identified five different design phases for 

solar energy planning in urban environments: political phase, urban design phase, building 

design (new buildings) and renovation (existing buildings) phase, implementation and 

monitoring phase. The political phase where the solar potential of urban surfaces at a large scale 

is evaluated to inform policy-making and strategic plans for setting and achieving a solar target. 

For example, Byrd et al. (2013) investigated the maximum PV potential in areas located in the 

central business district (CBD) and low-density suburbs in Auckland, New Zealand. The study 

designed the energy generation capacity on the basis of the solar analysis that contributes to 

reducing the electricity load of a city, supplying energy for a mixture of building types and the 

charging of electric vehicles, and reducing peak electricity demand. The next level is the urban 

phase where the key task is “place-making: creating a vision for an area and then deploying the 

skills and resources to realise that vision” (Yeang, 2000). Solar potential analysis can inform 

urban designers by evaluating the effect of restrictions on variables such as maximum building 

height and density, extent of impervious surface and open space, and land use types and 

activities (Montavon, 2010). Furthermore, it is also used to identify the most potential areas for 

solar applications by providing solar maps of each building or block in an urban area for well-

informed decisions by house owners, developers and planners (Mapdwell, 2018). In the 
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building design and renovation phases, performance-based design (Lewis, 2014) for sustainable 

buildings requires a detailed analysis of the performance and economic assessment of the 

designed buildings. In this phase, for example, developers and building owners decide their 

investment in PV systems on the basis of the payback time of the PV investment given the 

evaluated solar potential (BRE, 2016; Kessler; 2017; Ingrams, 2018; ), and therefore a detailed 

model of PV systems have been added to the solar radiation prediction model to support 

investment decisions (Paul et al., 2010). Kanters and Wall (2016) pointed out that different 

levels of tools are necessary to provide useful information in different design phases. They also 

highlighted that the level of detail in the analysis model required for design phases increases as 

the design process goes from top (e.g., political phase and urban phase) to bottom (e.g., 

individual building and implementation phase). 

   

Specifically, the rise of distributed PV planning in urban areas places an urgent demand 

for proper evaluation of solar potential at urban scale. Different from a traditional and 

centralised PV plant in a remote location without the interference of urban shading, urban 

distributed PV, as the name suggests, integrate PV systems in individual buildings distributed 

in a complex urban environment. On one hand, the advantage of the distributed PV system in 

urban areas is that it provides energy directly in the buildings where energy is consumed. As a 

result, it reduces the need for extending infrastructure to transmit PV yield through long 

distances to consumers and avoids line losses of electricity during distribution. Besides, the 

distributed PV system can be grid-connected to sell the excess PV yield to the city grid as part 

of the urban energy system, and thus reduces the need of investing an energy storage system 

individually in individual buildings. On the other hand, however, urban distributed PV planning 

requires solar potential analysis of individual buildings across a large urban area where they 

suffer substantial PV yield losses due to urban shading from the surrounding buildings, and 

therefore requires careful assessment of potential PV yield with consideration of the urban 

context to draw well-inform design decisions. For example, urban solar maps have been used 

to assist in selecting locations with high solar availability for PV installation by providing 

information about predicted PV yield, estimated investment cost, and potential carbon emission 
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reduction (Berlin Solar Atlas, 2018; Mapdwell, 2018; Solarkataster, 2018). Some researchers 

further incorporated additional parameters, such as historical urban data including building 

types and ages for a comprehensive evaluation of solar applications in urban environment 

(Amado and Poggi, 2014; Berlin Environment Atlas, 2018). Researchers have also explored the 

electricity network compatibility to adopt the predicted PV yield electricity in urban areas. Wall 

(2012) generated hourly and monthly PV yield predictions and coupled them with three 

different distribution grids at one planned urban area in Sweden to identify the maximum PV 

hosting capacity and accordingly the resulting overload capacity given a maximum PV yield 

potential in the urban area. These studies above have demonstrated the importance of solar 

analyses at urban scale in evaluating solar projects for a large audience of planners, developers 

and property owners in terms of economic and environmental benefits.   

 

1.2 Current methods for urban-scale solar potential analysis    

Several research studies have attempted to derive generic relationships between urban 

morphology and solar potential through statistical analyses. Mohajeri et al. (2016) characterised 

the urban morphology in terms of compactness measures, including site coverage, plot ratio, 

and building density, and found the received solar radiation in the tested urban area is strongly 

correlated with its distance to the dense city centre, and with the average building height in that 

urban area. The author also confirmed various correlation coefficient between the yield of 

different active and passive solar applications in relation to urban compactness. The research 

provides general guidelines for evaluating the solar potential of large urban areas; for example, 

solar irradiance differs up to 30%–40% depending on the compactness of an urban area, and 

annual solar irradiation in the suburban area is generally 10–15% higher than that in the city 

centre. However, this level of information is not sufficient to support a wide range of design 

and planning projects for other cities nor provides the detailed information needed to identify a 

group of building areas with the maximum solar potential within the urban area and optimise 

the design of solar systems for the identified areas. Another study carried by Sarralde et al. 

(2015) used an extensive set of urban form parameters (18 parameters) to capture variability in 

the urban morphology of about 4700 neighbourhoods to define the correlation between the 
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urban morphology and the solar potential of the neighbourhood. However, this study provides 

aggregated-level information about the correlation between the overall urban morphology and 

the solar potential of the entire neighbourhood. This level of information may be useful if the 

same design strategies are applied to all the buildings in the neighbourhood area, but it is not 

sufficient to prioritise buildings for solar integration, nor tailor the design of solar technologies 

for individual buildings.  

 

Another approach for urban-scale solar analysis is to perform a simulation of solar 

irradiance by using urban fabric as an input, to generate the outcomes of solar potential for a 

specific urban case in the decision-making process. Different types of models and methods have 

been developed for predicting solar potential. In terms of how the urban context is considered 

in the model, they can be grouped into classic models, historical satellite data, canyon-based 

models, 2.5D raster-based models, and 3D-vector-based models.  

 

Classic approaches (Besharat et al., 2013; Fortin et al., 2008; Freitas et al., 2008) that 

ignore urban shading and solar reflection from surrounding buildings have been long used for 

a quick estimation of PV yield on roofs where usually shading and reflection is less significant 

than those on walls. Historical satellite data have been used to provide annual or monthly 

predictions of available solar energy at different locations (Sabbagh et al., 1977; Tarpley, 1979; 

Cano et al., 1986; Gueymard et al., 2011). This approach, however, does not provide predictions 

of solar energy on vertical surfaces. The low spatial resolution of satellite data is also an issue 

because it prohibits the proper distinction of individual surfaces in urban areas.  

 

Some models are based on a simplified urban representation to consider urban shading 

and solar reflection. For example, canyon-based approaches (Arnfield, 1990; Robinson and 

Stone, 2004; Bozonnet et al., 2005) are based on the urban canyon concept that assumes that 

buildings that contribute to radiation obstruction and reflection have the same height without 

skyline variation. They only consider the surrounding buildings within the canyon while 

ignoring variation in the building height in an urban area. Others such as 2.5D raster-based 
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approaches (Redweik et al., 2013; Lindberg et al., 2015) are based on actual urban footprints 

with varying building heights for the representation of dynamic skyline obstruction. However, 

due to the 2.5 D representation of an urban geometry, vertical surfaces such as walls and façades 

are defined as binary pixel points. Therefore, an additional process is required with additional 

hyperpoints assigned within each pixel to represent different height positions for the 

determination of daylight obstruction at each hyperpoint. As a result, the process for calculating 

shadings on walls/façades is fairly complicated and fundamentally requires computationally 

expensive ray-interception algorithms to aid the process, and calculating reflection from 

surrounding buildings is not possible. 

 

3D-vector-based approach is based on a full representation of surrounding buildings and 

allows for an accurate reflection of urban shading and solar reflection in a unified manner as 

3D points with vector information (i.e., knowing the facing direction) do not need to be pre-

classified and can be passed on for calculating daylight obstruction and reflection in the exact 

same manner. For instance, the advanced daylight simulation tool RADIANCE (Ward, 1994), 

uses an urban geometry model in a complete 3D format with information of surface vectors and 

uses computational techniques such as ray tracing or ray interception for complex calculation 

of detailed obstruction and reflection. 

 

However, current vector-based, high-fidelity models, especially the ones relying on ray-

based algorithms, tend to be expensive in terms of modelling and computational costs. A 

simplified radiosity algorithm was developed by Robinson and Stone (2004) to improve 

computational efficiency for solar analysis in urban contexts. However, even after the 

implementation of simplifications to these methods, they are fundamentally based on ray-

tracing or ray intercept algorithm with a complex sky discretization model, and consequently 

tend to result in heavy computational burdens for detecting obstruction and calculating 

reflections among building and ground surfaces. Furthermore, detailed data on individual 

surface properties are typically unavailable for urban-scale solar analyses. Given the scale of 

solar analysis, it is not possible to obtain a detailed level of information about individual 
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building envelope details (e.g., balcony, windows and parapets) and associated surface 

properties. Even if all surface albedos are set to the same values in RADIANCE, for example, 

the calculation process is still the same as that for the case with different albedos. Setting the 

same albedo for all surfaces does not reduce the computational cost of RADIANCE. Hence, 

there is room for developing a simplified method tailored to urban applications with typically 

available urban data. 

 

Therefore, two major limitations regarding the current methods at delivering solar 

potential at urban scale are identified as follows:  

 

(1) Current advanced simulation models based on ray trace and ray interception 

techniques are not effectively scalable to evaluate solar potential at urban scale due to 

the expensive modelling process and computational cost.  

 

(2) Simple and statistical models developed for large-scale analysis are not suitable to 

accurately predict solar irradiance on individual surfaces with proper consideration of 

urban shading and reflection. 

 

The two identified research gaps place a significant obstacle to accurately and efficiently 

delivering a solar potential analysis at urban scale in aid of urban solar energy planning. For 

the political decision-making phase that often requires solar potential at national or regional 

scale, one of the key interests is the total amount of solar yield at large scale rather than 

individual building scale. The current advanced simulation models could not properly scale up 

to urban level due to high computational and modelling cost, while simple methods could not 

properly consider urban shading and reflection and lead to inaccurate predictions. The same 

problem occurs in urban design phases where prioritizing buildings/areas for solar integration 

requires solar potential evaluation on all individual buildings in the planned urban area. Hence, 

there is a need for new analysis methods tailored to aid solar energy planning at urban scale to 

resolve the two major limitations of the current methods.  
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1.3 Research objectives and methodology  

The objective of this dissertation is to develop a new model for solar potential analysis 

that can effectively support solar energy planning at urban scale. To overcome the limitations 

of current methods, the new method achieves the following major features: 

 

 It is a solar analysis model tailored for urban applications with consideration of 

the urban context. 

 It does not require any ray tracing or ray interception.  

 It provides easy and flexible setting options for different levels of required 

accuracy.  

 

The dissertation proposes a simplified vector-based model without the use of ray trace and 

ray interception techniques, yet consists of new methods that suitably account for the 

nonuniform solar radiation of the sky, obstruction by urban surfaces, and reflection by urban 

surfaces. Three new model components are created to simplify the simulation process: (1) a 

two-segment discretisation model, (2) an edge angle detection obstruction model, and (3) a 

unified view-angle-based reflection model. Unlike the commonly used current simulation 

models developed to suit the various daylight applications, the simplified method is developed 

specifically to reflect the context of urban-scale solar analysis, which potentially reduce the 

computational cost to effectively support large-scale analyses, while achieving the prediction 

accuracy required for the solar applications. Furthermore, the proposed method is designed to 

provide easy and flexible setting options for different resolution and prediction accuracy 

requirements. 

 

This dissertation demonstrates the feasibility of the new model in supporting decision-

making in the solar energy planning process. It addresses the following two hypotheses to 

examine the usability of the new model:  
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 Simplified, vector-based model, tailored to urban applications, predicts accurate solar 

radiation on urban surfaces to effectively support urban-scale analysis.  

 Solar analysis with full representation of urban surroundings is necessary in the 

calculation of urban shading and solar reflection to correctly support distributed PV 

planning.  

 

The first hypothesis is examined by evaluating the model performance of the proposed 

model. First, the study compares the predictions of the developed method against the advanced 

daylight simulation program RADIANCE and measurements obtained from controlled 

experiments through a case study of an urban area located in Wuhan, China. Before 

comparisons, different configurations and settings of the developed method are first tested for 

achieving a good balance between prediction accuracy and computational efficiency. The first 

comparison evaluates the prediction accuracy of the new model against RADIANCE. The 

second comparison against controlled experiment measurement further tests the accuracy of the 

new model to predict solar radiation in a real physical environment. Next, the computational 

efficiency of the new method for detecting surrounding solar obstructions is tested against the 

current ray-based algorithm.  

 

The second hypothesis is examined by comparing predictions and decisions by the 

developed method with those of a lower fidelity models to investigate the importance of 

modelling urban shading and reflection with full representation of urban surroundings. Three 

decision-making contexts are considered in an urban-scale distributed PV planning process. 

Additionally, the hypothesis is furthered examined and highlighted by investigating the effect 

of an additional dynamic PV model on decision-making in comparison with the effect of the 

high-fidelity model for urban shading and solar reflection.   
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1.4 Structure of the dissertation 

The research outline is illustrated in Figure 1 with the following chapters presented in the 

dissertation. 

 

 Chapter 1 presents motivations for solar potential analysis in aid of solar energy 

planning at urban scale, summarises the limitations of current methods, and proposes a 

new method that can support solar energy planning at urban scale. 

 Chapter 2 presents a simplified vector-based model tailored to solar irradiance 

prediction in an urban context in comparison to current standard models with limited 

capabilities for urban-scale solar analysis.   

 Chapter 3 validates the developed model by comparing the performance of the developed 

method against the advanced daylight simulation program RADIANCE and 

measurements obtained from controlled experiments. The computational efficiency of 

the proposed method of detecting surrounding solar obstructions is tested against the 

standard ray-based algorithm.   

 Chapter 4 demonstrates and examines the usability of the proposed method by 

examining the relevance of the two key modelling features associated with solar 

potential evaluation in the solar energy planning process. 

 Chapter 5 summarises the dissertation with conclusions and suggestions for future research. 
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Figure 1. Research outline with the sequence and links between the individual chapters. 
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Chapter 2: A simplified vector-based model for urban-

scale irradiance prediction 

 

 

 

 

 

 

 

This chapter presents a new modelling approach for solar potential prediction at urban-

scale. This chapter first summarises the current methods and tools used for the analysis of solar 

potential at urban scale. A key part in solar analysis for urban applications is how complex 

urban surroundings are represented for the prediction of shading and solar reflection among 

urban surfaces. Based on the literature review, the current methods were grouped into five 

categories, mainly in terms of the spatial dimensions of the urban geometry considered for 

predicting urban shading and reflection. Then, the chapter summarises the key model 

components for irradiance prediction at urban scale: sky discretisation model, obstruction 

model and reflection model. The limitations of the standard models used for urban applications 

were identified, and a simplified vector-based model was developed to effectively predict solar 

irradiance at urban scale with proper consideration of urban contexts.  

 

 

 

 



 

CHAPTER 2: A SIMPLIFIED VECTOR-BASED MODEL FOR URBAN-SCALE IRRADIANCE PREDICTION 

- 13 - 

 

2.1  Current approaches for modelling urban contexts in solar analysis   

2.1.1 Classic approach 

Classic approaches (Bugler, 1977; Klucher, 1979; Ma and Iqbal, 1983; Hay and McKay, 

1985) have been well established and used to estimate global solar radiation on a surface of 

interest, typically with the assumption that a building is stand-alone without surrounding 

buildings. Without the consideration of urban context, calculating solar radiation on a surface 

of interest is straightforward and consists mainly of two steps: calculating the received sunlight 

by accumulating hourly direct normal irradiance (i.e., the beam sunlight) on a surface given the 

surface tilt angle and corresponding altitude angle and surface-solar azimuth and calculating 

the skylight (i.e. diffused irradiance) by estimating the irradiance received from the partly 

visible sky dome using a isotropic sky model that assumes all of the diffuse radiation is 

uniformly distributed over the complete skydome. Given the fact that the isotropic sky model 

is less accurate in weather conditions that are not cloudy and overcast, some researchers (Van 

Brink, 1987; Hay and McKay, 1988) explored the use of an anisotropic sky to improve the 

prediction accuracy of diffuse irradiance in various weather conditions. Muneer (1997) applied 

simple angle calculations given an assumed albedo of the ground surface to calculate irradiance 

reflected from the ground for a tilted plane, but this approach assumes the ground is completely 

visible to a plane of interest without any obstruction by surrounding urban surfaces.   

 

Given the fact that shading and reflection in urban areas are mainly due to the surrounding 

built environment, the basic classic models without any consideration of urban shading can 

only provide a very crude estimation of received solar radiation in urban environment. Although 

classic approaches do not account for shading and reflection from surrounding buildings in 

urban contexts, efforts (Dubayah and Rich,1995; Hofierka and Suri, 2002) have been made to 

extend the capability of classic models to account for large-scale terrain obstruction such as 

obstruction from the surrounding mountains represented by GIS-based digital elevation models 

(DEM). These approaches calculate the obstructed part of sky diffuse irradiance by using the 

concept of sky view factor (SVF) (i.e., the fraction of visible sky to entire skydome). The 

consideration of terrain obstruction improves the model performance for calculating solar 
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radiation in an open field in mountainous regions. However, given the fact that shading and 

reflection in urban areas are mainly due to the surrounding built environment, the improved 

classic models are still not sufficient to predict radiation in urban contexts.  

 

2.1.2 Statistical model-based approach   

Historical satellite data have been used to provide annual or monthly predictions of 

available solar energy at different locations (Sabbagh et al., 1977; Tarpley, 1979; Cano et al., 

1986; Gueymard et al., 2011). In this approach, predictions of solar energy on vertical surfaces 

are not available. The low spatial resolution of satellite data is also an issue because it prohibits 

proper distinction of individual surfaces in urban areas. Typically, meteorological solar 

radiation data have been used in large-scale solar analyses in the form of a constant hourly 

irradiance value across the entire city, without consideration of mutual shading among 

neighbouring buildings. A modified and improved version of the constant approach, PVWatts, 

was developed by the National Renewable Energy Laboratory (NREL) to calculate the monthly 

average daily total insolation (sun and sky) on a horizontal surface on the basis of a 40 km 

square-grid of a typical meteorological year (TMY) dataset for the entire United States (Marion 

et al., 2001). Although this method accounts for PV panel tilted angle, orientation, and 

meteorological air temperature in the calculation of energy production, nevertheless, it ignores 

the shading and reflection effect of the urban context on the solar energy distributed over the 

urban area.  

 

Meanwhile, existing studies have explored surrogate-model-based approaches based on 

historical data. Several research papers applied artificial neural networks (ANNs) as a new 

approach to predict solar irradiance in urban areas (Sözen et al., 2008; Koca et al., 2011; Senkal 

and Kuleli, 2009). The ANN models used a location of the urban area (e.g. longitude, latitude 

and altitude), time (e.g. year and month) and historical solar measurements (e.g. mean diffuse 

radiation and mean beam radiation) as inputs to generate average solar radiation predictions on 

the ground or roofs for a specific city. Although prediction results showed good agreement with 

measurements, lacking the ability to predict solar irradiance on specific urban surfaces is a 
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major limitation. A recent study developed statistical models to provide more location-specific 

predictions for building roofs (Karteris et al., 2013). However, the statistical models have 

limitations to extend to predict solar irradiance at fine temporal and spatial resolutions, 

especially for dense urban areas in which detailed urban morphology needs to be considered as 

inputs for prediction.    

 

2.1.3 2.5D raster/pixel-based approach  

Raster-based approaches based on digital elevation models (DEMs) have been developed 

to represent the urban landscape on a pixelised 2.5D raster grid for solar irradiance prediction. 

In these approaches, the solar irradiance received by a target object is calculated by determining 

whether an object pixel can be observed from either direct or diffuse sunlight.  

 

Early efforts (Dubayah and Rich,1995; Hofierka and Suri, 2002) in developing raster-

based methods aimed to account for large-scale terrain obstruction such as obstruction from the 

surrounding mountains represented by DEMs. In these approaches, whether sunlight is 

obstructed for each object pixel is determined through producing a shadow map on the DEM, 

and whether diffuse skylight is obstructed for each pixel is determined by using the concept of 

sky view factor (SVF) (i.e., the fraction of visible sky to entire skydome). Algorithms for 

calculating SVF tailored for large-scale terrains (Dozier et al., 1981) were used to pixelise the 

DEM into grid-based points and run a screening process to identify the nearest grid points that 

cause the maximum obstruction on each pixel point, which is similar to a radar detecting 

potential terrain obstructions. The raster-based approaches, considering terrains for solar 

predictions have been used in regional-scale applications such as precision farming (Reuter et 

al., 2005), soil moisture studies (Wilson and Gallant, 2000), ecologic assessment (Kumar and 

Skidmore, 2000), and Hydrology studies (McVicar et al., 2007). Meanwhile, these raster-based 

approaches have been adopted in some of the tools, such as the Solar Analyst (Fu and Rich, 

1999), used to generate solar maps of urban areas. The Solar Analyst is integrated within the 

ArcGIS environment and has been extensively used to-this-date to generate many solar maps, 

such as those of New York (CUNY, 2017) and Salt Lake City (Solar Simplified, 2018) for urban 
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roofs, without consideration of shading and reflection from surrounding buildings. In general, 

models with consideration of shading due to the terrain level lack the ability to calculate detailed 

shading by surrounding buildings in urban areas due to their inability of calculating shadow 

maps and SVF for every point of urban surfaces. To overcome such limitation, improved GIS-

based methods tailored for urban applications were later developed. 

 

Improved algorithms and methods have been developed to replace traditional raster-based 

approaches for urban applications. The latest raster-based methods use digital surface models 

(DSM) to accurately represent the effect of the surrounding urban morphology on solar 

irradiance on the 2.5D raster grid. Light detection and ranging (LiDAR) technology is now 

extensively used to detect objects in urban areas, categorize them into vegetation, ground, and 

building façades, and provide associated detailed geometric information that allows the creation 

of DSMs that represent the actual urban context in detail. With DSMs as model inputs, 

researchers (Lindberg et al., 2015; Redweik et al., 2013) have developed different raster-based 

shadow calculation methods to determine the obstruction of solar irradiance on building roofs 

and facades owing to surrounding buildings. For instance, the shadow model developed by 

Redweik et al. (2013) creates hyperpoints for each pixel in the raster grid and examines whether 

each hyperpoint is inside (i.e., obstructed) or outside (i.e., unobstructed) of the shadow cast by 

surrounding buildings to predict direct irradiance.  

 

The latest raster-based approaches greatly improve the capability of predicting solar 

irradiance on both roofs and facades. However, due to the 2.5 D representation of an urban 

geometry, vertical surfaces such as walls and façades are defined as binary pixel points (i.e., 1: 

vertical; 0: non-vertical). Therefore, an additional process is required with additional 

hyperpoints assigned within each pixel to represent different height positions for the 

determination of daylight obstruction at each hyperpoint. As a result, the process for calculating 

shadings on walls/façades is fairly complicated, and calculating reflection from surrounding 

buildings is not possible. Furthermore, they tend to be computationally expensive for large-

scale irradiance predictions as they are based on shadow cast or volume calculations that 
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fundamentally requires ray-interception algorithm to aid the process (Figure 2). The creation of 

DSMs often relies on LiDAR technology that is usually expensive and not easily accessible. 

Indeed, processing data from LiDAR is an intensive process that requires expert skills, thereby 

making it difficult to use this technology as part of common practices in the building domain. 

The GIS data is another type of available urban data that can be straightforwardly translated 

into DSMs for the existing urban infrastructure. 

 

Figure 2. Shadow cast algorithm for obstruction detection aid by ray-interception 

algorithm (Liang, et al., 2014) 

   

2.1.4 Urban canyon-based approach  

Another type of methods for urban solar analysis is based on the urban canyon concept 

that approximates urban geometry under the assumption that the buildings are identical and 

regularly distributed in the urban environment. Radiation exchange between surfaces is 

calculated under this key assumption that allows for translating 3-dimensional urban 

surroundings into a 2-dimensional canyon elevation. One of the earliest models, developed by 

Arnfield (1976), is based on canyon geometry and associated surface properties to compute 

solar and longwave irradiances. The model computes energy exchanges on a canyon cross-

section and the solar radiation reflected by canyon surfaces is calculated with the assumption 

that the reflected radiation is Lambertian (i.e., fully diffused). On the basis of the model, 

Arnfield (1982) evaluated the effect of canyon albedo, emissivity and other factors for different 
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land-use zones within Columbus, Ohio and later assessed the role of canyon geometry on solar 

radiation access (Arnfield, 1990). More recently, Robinson and Stone (2004) developed a 

canyon-based method in which obstruction from the street across is simplified as a constant 

horizontal altitude to reflect urban shading for a view point. An obstructing wall from a view 

point is calculated in terms of angles to upper and lower obstructing surfaces normal to the 

point of interest for calculating solar irradiance in use with an anisotropic sky model (Figure 3). 

Bozonnet et al. (2005) developed a simplified method for calculation of radiant interchange 

among urban surfaces by translating a studied zone into a section of an infinite long street 

canyon (W/L ≪ 1 and H/L ≪ 1) as shown in Figure 4.   

 

Figure 3. Canyon elevation for solar calculation. (Robinson and Stone,2004) 

 

Figure 4. Illustration of a common canyon geometry. (Bonzonnet et al., 2005) 

 

    The approximation of an urban geometry into street canyon suggested by the studies 

mentioned above brings a great advantage in terms of relatively low modelling cost, since it is 

much more cost-efficient to derive canyon information such as canyon aspect ratio (e.g., H/W) 

than processing the entire 3D urban geometry for calculating urban shading and reflection. The 



 

CHAPTER 2: A SIMPLIFIED VECTOR-BASED MODEL FOR URBAN-SCALE IRRADIANCE PREDICTION 

- 19 - 

 

canyon concept may sufficiently capture the urban geometric characteristics in a “flat” city in 

which buildings indeed have similar heights and are regularly distributed along streets, such as 

Paris and many of the European cities (Figure 5, left-subfigure). However, the canyon concept 

cannot capture a more complex urban landscape (Figure 5, right-subfigure) in which the 

distribution of buildings is significantly heterogeneous in terms of building height and shape.   

  

Figure 5. Typical street canyons in a “flat” city (left) in Paris, Europe and “vertical” city in 

Hongkong, China (right). 

 

2.1.5 3-dimensional vector-based approach 

Three-dimensional vector-based simulation models have the highest-fidelity 

representation of complex urban morphology for solar analyses. In these models, physical 

objects are modelled individually as vector objects in three dimensions, which gives us great 

advantages to accurately compute any angle of solar radiation onto individual surfaces as vector 

objects tell us not only where they are located by 3D coordinates but also which direction they 

face to by their normal vectors.  

 

Either an isotropic or anisotropic sky model is used in this approach to represent the sky 

radiation and calculate the diffuse solar radiation on a test point from the visible sky. 

Traditionally, high-fidelity, vector-based simulation software, such as RADIANCE and Daysim, 

are commonly used for indoor daylight simulations or image rendering. Daysim (Reinhart and 

Breton, 2009), using RADIANCE as the simulation engine, provides an effective workflow 

well-tailored for indoor daylight simulations with a more user-friendly interface. More recently, 

the simulation software has been used to perform irradiance simulation for generating detailed 
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city solar maps (Jakubiec and Reinhart, 2012), or for evaluating and improving solar irradiance 

availability for buildings in urban environments (Kämpf et al., 2010). However, vector-based 

models used in RADIANCE and Daysim are computationally expensive as they are based on 

complex algorithms (e.g., raytracing method) in association with the use of a sky discretisation 

model designed to be generally applicable for various daylight applications. Raytracing is 

commonly used for detecting light obstruction and reflection. Although forward ray tracing 

(Nadal and Moll, 2012) can accurately capture light phenomenon such as refraction and Fresnel 

effect, it is very inefficient as it generates many light rays that never reach the final viewpoint. 

In addition, as refraction and Fresnel effect is much less significant for daylight assessment in 

buildings and urban environments, backward raytracing (Arvo,1986) is more commonly used 

in the field. The commonly used daylight simulation software programs, including Daysim, use 

backward raytracing with the daylight coefficient method and Perez sky model to perform 

indoor daylight simulation for prediction of daylight illuminance and glare. Recently, the hybrid 

ray-tracing method that combines the two mentioned methods were introduced (Chan and 

Tzempelikos, 2012), but it is nevertheless a naturally heavy and computationally aggressive 

approach. Furthermore, detailed information on the surface properties of urban surfaces are 

required as model inputs, and may not be attainable for urban-scale applications for which very 

limited data exists for individual surface characteristics (e.g., surface reflectance, roughness, 

specular reflectance, etc.) in urban areas. Indeed, the urban solar studies described above on the 

basis of the simulation model have often used a single value to describe the surface properties 

of all building surfaces, and have assumed that all the surfaces in the studied urban area have 

the same reflection characteristics. For vector-based approaches, both computational cost and 

urban data availability are currently the two key issues for large-scale urban simulation. 

Therefore, there is room for developing new models to cope with such issues. It should be noted 

that there is a growing effort to collect ground-based and remote-sensed survey data (Romanoni, 

et al., 2017; Sun et al., 2012), which can be used to estimate individual surface properties in a 

cost-effective manner in the future.    
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Simplifications to the vector-based models have been suggested by researchers to reduce 

the computational burden of simulations for urban-scale applications. Erdélyi et al. (2014) 

developed a three-dimensional solar radiation model (SORAM) and tested it against 

measurements from a real urban area. SORAM ignores reflected irradiance but uses the high-

resolution sky model and ray tracing method to detect obstructions. The accuracy of SORAM 

was validated against real measurements, but the computational efficiency of the method for 

large-scale urban applications was not discussed. Robinson and Stone (2004) developed a 

simplified radiosity algorithm (SRA). In SRA, the reflection model is simplified on the basis 

of the assumption that all reflected surfaces are Lambertian. With the use of the Tregenza sky 

model, SRA calculates solid angles of each sky patch in relation to a viewpoint to compute 

uniform radiance of the sky patch on to the viewpoint. A technique of cumulated sky radiance 

is incorporated in SRA, where both hourly direct and diffuse radiance are pre-processed and 

computed into one single sky radiance map beforehand in order to reduce the number of 

calculation iterations for longer simulation periods (e.g., monthly and annual predictions). SRA 

also uses the mathematical technique of matrix inversion to reduce the computational cost for 

reflection calculation. The same authors demonstrated that SRA provides accurate predictions 

in comparison to RADIANCE. SRA is used in SunTool (Robinson et al., 2007) and CitySim 

(Walter and Kämpf, 2015) developed for simulation and optimization of urban sustainability.  

 

Among the existing methods described above, the vector-based simulation methods offer 

functionalities that provide accurate predictions for solar analyses. However, even after the 

implementation of simplifications to these methods, they are fundamentally based on ray-

tracing or ray intercept algorithm with a complex sky discretisation model and, consequently, 

tend to result in heavy computational burdens for detecting obstruction and calculating 

reflections among building and ground surfaces. Furthermore, detailed data on individual 

surface properties are typically unavailable for urban-scale solar analyses. Given the scale of 

solar analysis, it is not possible to obtain a detailed level of information about individual 

building geometry and associated surface properties. Even if all surface albedos are set to have 

the same values in RADIANCE, for example, the calculation process is still the same as that 
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for the case with different albedos. Setting the same albedo for all surfaces does not reduce the 

computational cost of RADIANCE. Hence, there is room for developing a simplified method 

tailored to urban applications with typically available urban data. 

 

2.1.6 Current simulation software  

Table 1 lists some of of the software on the basis of different methods discussed above for 

solar potential analyses at different design scales. Tools such as Solei-32 and SolarFlux target 

regional-scale solar analyses that need to take into consideration geographical features of an 

area of interest and, therefore, deploy the basic raster-based models that do not consider 

complex urban morphology and resulting urban shading and reflection. Tools such as CitySim 

and SORAM are specifically designed for urban-scale simulation and deploy high-fidelity 3D 

vector-based models that account for urban shading and reflection. Tools such as RADIANCE 

and Daysim are well known for their ability to provide a detailed simulation of indoor daylight 

environment in buildings, and require a high level of data inputs for modelling the geometry of 

objects in a building and associated surface properties for prediction of daylight distribution 

across indoor spaces. For PV system design, PV engineers use tools such as PVSyst to test the 

performance of a designed PV plant or designed PV systems on a building, and the tools offer 

users an option to consider shading on the designed PV module of interest due to nearby 

buildings. Among the software, the ones used for prediction of irradiance on urban surfaces at 

urban-scale rely on computationally heavy techniques such as ray-based and shadow-volume 

calculation (fundamentally requiring ray-interception). The current simulation software 

developed initially for different targeting applications are not suitable to effectively predict 

irradiance distributed over urban surfaces with proper consideration of complex urban 

morphology in dense urban areas.   
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Table 1. Current tools for solar analyses  

Tools  Functionality  Radiation 

model type 

Initial 

release 

Latest update Reference 

Solei-32 Predictions of solar energy on tilted 

planes with different orientations 

and shadow from the surrounding 

topography 

2.5 D 1993 No longer 

available 

online 

Mészároš et 

al., 2002 

SolarFlux Predictions of total direct and 

diffuse radiation, direct sun 

duration, SVF and fisheye 

projections of sky obstructions 

2.5 D 1993 No longer 

available 

online 

Hetrick et al., 

1993 

RADIANCE Light-backwards ray-tracing 

algorithm for prediction of direct 

radiation, diffuse and specular 

reflections from urban obstructions 

in a volumetric 3D model 

3D 1994 2018 Ward, 1994 

Daysim Indoor daylight simulation tool 

powered by RADIANCE  

3D 2000 2013 Reinhart and 

Breton, 2009 

PVSyst Predictions of the performance of 

different PV system configurations 

for design and evaluation of PV 

systems 

Classic 

and 3D 

 

1992 2018 Mermoud, 

1994 

EnergyPlus Building energy performance 

simulation tool able to calculate 

irradiance on building surfaces with 

identified shading components 

3D 2001 2018 Crawley et 

al., 2001 

AutoCAD 

Solar Analyst 

(Ecotect) 

Building performance analysis tool 

able to calculate irradiance/shading 

fraction/daylight hours on given 

surfaces with easy access and 

friendly interface 

3D 2004 2015 Roberts and 

Marsh, 2001 

ArcGIS Solar 

Analyst 

 

 

 

 

An extension delivering a set of 

various radiation maps, fisheye 

equivalent photograph and a 

viewshed analysis 

 

  

2.5D 1999 2018 Fu and 

Rich,1999 
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Table 1 

(continued) 

r.sun Irradiance raster maps, reflectance 

and shadow maps for horizontal or 

inclined surfaces, fitting to overcast 

and clear-sky conditions 

3D 1997 2013 Hofierka, 

2002 

DIVA Daylighting and energy modelling 

plug-in for the Rhinoceros, using 

the SRA method with ray-tracing 

technique 

3D 2011 2016 Jakubiec, 

2011 

CitySim Energy simulation tool aiming at 

urban scale, able to calculated solar 

irradiance on building surface in a 

given time period 

3D 2011 2015 Walter and  

Kämpf, 2015 

Solar3DBR Google SketchUp plug-in for 

shading factor and the irradiation 

determination on surfaces of 3D 

models 

3D 2013 2013 Melo et al., 

2013 

SORAM 

(codes) 

Predictions of direct and diffuse 

solar radiation incident on a sloping 

PV cell in an urban environment 

using ray-tracing technique 

3D Unavailabl

e online 

 Erdélyi et al., 

2014 

Ladybug and 

Honeybee 

Outdoor and indoor daylight 

simulation tool powered by 

RADIANCE 

3D 2013       2018  Roudsari et al., 

2013 

 

2.2  Main features of the proposed models  

Based on the identified limitations of current approaches at handling urban shading and 

reflection, this dissertation developed a simplified, physics-based method that allows the 

efficient modelling of the solar potential in urban areas. The proposed method consists of three 

model components: (a) two-segment sky discretisation method, (b) edge-angle-detection 

obstruction method, and (c) unified view-angle-based reflection method, as an improved 

alternative to the current standard methods. With the reflection of the urban context, the two-

segment sky discretisation method allows for reducing the unnecessarily large number of sky 
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patches required for the prediction of irradiance on urban surfaces. Also, the edge-angle-

detection method together with the view-angle-based reflection method can substantially 

reduce the number of iterations in the calculation process. Furthermore, the new method 

provides users with flexible control parameter settings related to the analysis setup for various 

requirements of prediction accuracy.    

 

Figure 6 shows a process of predicting irradiance in urban areas using the proposed method. 

Three-dimensional urban geometry data is a key input to the proposed method. For a long time, 

obtaining three-dimensional urban geometry data has been a major obstacle for urban-scale 

simulations. Manual creation of an urban model is labour intensive, and model creation based 

on LiDAR requires expensive equipment and experts to collect and process the measured data. 

Alternatives are the growing databases of 3D urban models. For instance, simplified urban 3D 

models for UK cities are available in EDiNA (EDiNA, 2017). The proposed method is able to 

take in any 3D vector-based geometry, either processed from LiDAR or GIS or manually 

created in tools such as CAD or SketchUp. However, these models only provide geometric 

information, but do not provide information on the surface properties of buildings and roads, 

such as albedos, that impact reflected solar irradiance. Given that detailed information about 

individual urban surfaces will not be accessible in the near future, the proposed method uses 

two albedos: one for all buildings, and the other for all the roads. Other important inputs to the 

model are weather data, particularly direct normal incident (DNI), global horizontal irradiance 

(GHI), and dew point temperature data. These constitute typical weather data such as by TMY2. 

The all-weather sky model introduced by Perez et al. (1993; 1987) is used to predict sky diffuse 

radiance distributed over the skydome. With simplified urban geometry, surface albedos and 

weather data, the proposed model outputs direct sunlight radiation, diffuse skylight radiation, 

and irradiance reflected by the surrounding buildings. By accumulating the three outputs, the 

total solar irradiance received on any point-of-interest in a testing urban area is thus obtained. 

Sections 2.2.1, 2.2.2, and 2.2.3 provide a detailed description of the sky discretisation, 

obstruction, and reflection models, respectively.  
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Figure 6. Structure of the proposed model. 

 

2.2.1 Sky discretisation model  

2.2.1.1 Current standard model  

Existing irradiance simulation models use an anisotropic sky model, particularly the sky 

model proposed by Perez et al. (1987, 1993), to reflect diffuse solar radiance unevenly 

distributed over the skydome. The brightness of a specific point on the skydome in a sunny day 

depends on its relative position to the sun and the zenith of the sky. Sky discretisation techniques 

have been developed to capture the non-uniform distribution. The Tregenza method (Tregenza, 

1987) is the most extensively used discretisation method in existing irradiance simulation 

models. The method divides the sky vault into 145 patches, and each patch has a relatively 
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equal area subdivided on the basis of 8 bands with an equal altitude width as illustrated in Figure 

7. Any point within a similarly sized patch is considered as uniformly bright. The method was 

later recommended by the Commission Internationale de l'Eclairage (CIE) as a standard model 

for the purpose of a detailed daylight simulation. For cases where higher prediction accuracy is 

needed, a more refined sky model can be created on the basis of the same principles in Tregenza 

method; for instance, the tool Ladybug and Honeybee allows for creating a skydome with 577 

smaller-sized patches, known as Reinhart Sky (Roudsari et al., 2013). It is stated in the tool 

Ladybug and Honeybee that increased discretisation will result in a considerably increased 

calculation time for the simulation. Several other proposals of sky discretisation also follow 

similar principles with different discretisation resolutions (Freitas et al., 2015).  

 

In these methods, each altitude band must have a different integer number of azimuth 

segments to create all-sky patches with similar areas. As certain combinations of altitude and 

azimuth bandwidths are required in this approach, users do not have full flexibility to create 

different sky subdivisions tailored for their targeting applications. Alternatively, a triangle-

based discretisation approach was developed by Song et al. (2002) for the projection of an 

equal-area global grid onto the sky. Schöttl et al. (2016) developed a triangle-based sky 

discretisation that reduces the computational load by pre-processing and identifying the visible 

sky nodes before the onset of the iterative calculation process. However, all these methods aim 

to discretize the entire sky dome in a uniform manner.   

 

In urban areas, most buildings are considered solid masses built on the ground with varying 

heights as shown in Figure 7. Thus, it is very unlikely that parts of the buildings block only 

some patches in the middle of the sky, as illustrated in Figure 8 (left subfigure). Indeed, 

buildings typically obstruct the sky at various levels, starting from the ground level up to a 

certain height, as illustrated in Figure 8 (right subfigure). Hence, the existing methods that are 

based on uniform sky discretisation do not allow for efficiently representing the diffuse solar 

radiation of the unobstructed skydome with the use of the minimal number of sky patches 

required for reliable predictions. In fact, the number of sky patches used in the simulation 
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significantly impacts the computational efficiency, as the number of sky patches determines the 

number of calculation iterations required to assess whether each viewpoint has an unobstructed 

view to each sky patch on the dome. Alternatively, if the highest point blocked by buildings and 

projected on the sky is calculated first, all the sky patches vertically below the highest point are 

completely invisible, and all of the patches above are visible from this viewpoint. Therefore, 

there is no need to divide the obstructed sky dome into small-sized patches. As illustrated in 

Figure 9, the existing uniform discretisation methods create a substantial number of 

unnecessary sky patches. 

 

 

Figure 7. Fisheye images of real urban obstructions in London(left) and New York (right) 

 

Figure 8. Unrealistic obstruction in the urban context (left) and realistic obstruction in the 

urban context (right).  
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Figure 9. Lower sky patches do not need to be processed for obstruction.  

 

2.2.1.2 Proposed model  

As an alternative to the uniform discretisation method, this dissertation proposes a two-

segment discretisation method tailored for irradiance prediction in urban environments. Given 

that buildings block the sky from the ground up to a certain level, depending on their heights, 

the proposed method divides one sky strip into two segments: one segment blocked by buildings 

(from the ground to the highest point of the buildings projected to the skydome), and another 

segment with an unobstructed view to the sky (from the highest point to the zenith of the sky), 

as shown in Figure 10. Accordingly, the proposed method does not account for daylight beneath 

elevated structures such as bridges and elevated streets and highways, and hence a small part 

of daylight coming underneath them is ignored in the proposed method. As a result, for 

viewpoints near the elevated structures, the proposed method may slightly underestimate the 

solar radiation received on the viewpoints. However, the impact of this limitation as small 

because infrastructures are usually elevated at a low level if elevated and available solar 

radiation beneath them may be already blocked by surrounding buildings in most cases. 

Daylight coming beneath treetops is more of a problem as trees are often present in a relatively 

low-density urban environment. In such case, if trees are modelled as solid geometry, daylight 

predictions may be underestimated to some extent. However, information about building details, 

detailed urban structures and trees are rarely available in the GIS data, and they are typically 
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ignored in urban-scale solar analysis.       

 

In the proposed method, the skydome is divided into N number of strips, referred to as sky 

horizontal subdivision (SHS). On the basis of the same SHS applied to all viewpoints, the two-

segment discretisation method calculates the altitude of the highest blocked point per sky strip 

for each viewpoint. As a result, each viewpoint may have a different pattern of two segments 

and consequently different sky view factor. In the proposed method, all-sky strips have the same 

azimuth bandwidth, 𝜓 =2𝜋/𝑁, and the sky view factor (SVF) of the ith sky strip is defined in 

terms of the altitude of the highest blocked point on the corresponding sky strip, 𝜉𝑖, from a 

viewpoint as formulated in Eq. (1) below, 

 

𝑆𝑉𝐹𝑖 = 1− sin𝜉𝑖                                                   
(1) 

  

 

Figure 10. Two-segment sky discretisation method.  

 

Figure 11 demonstrates the captured skylines using the proposed method with different 

SHS settings against Tregenza-based methods. All images were generated using angular fisheye 

projection for visualisation convenience. SVF values were calculated on the basis of 

orthographic fisheye projection for examining the accuracy of the proposed method in capturing 

surrounding buildings as obstacles. Although SVF is mostly useful for the isotropic sky model, 

it is still a useful indicator for evaluating the model performance of accurately representing the 
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visible sky. A viewpoint on the ground in a high-density area (Figure 11) was selected for the 

test. An image of the skyline viewed at the chosen location was rendered using RADIANCE 

(Figure 11a). Results of Tregenza-based methods were generated by a ray tracer based on 

Möller-Trumbore ray interception algorithm (Möller and Trumbore, 2005). Figure 11g shows 

that the accuracy of the captured skyline noticeably improved as the SHS setting changed from 

24 to 500. With the SHS value of 80 (Figure 11d), the proposed sky discretisation method 

showed a good representation of the skyline, and with the SHS value higher than 120 (Figure 

11e and 11f), the captured skyline was almost identical to the rendered image (Figure 11a). In 

terms of the calculated SVF, the absolute error decreased from 0.026 to 0.006 as SHS increased 

from 24 to 120. For Tregenza-based methods, the absolute error of SVF is 0.019 and 0.005 for 

145-subdivided sky (Figure 11h) and 577-subdivided sky (Figure 11i), respectively. This 

comparison highlights that the proposed method was able to obtain more accurate results with 

a SHS value of 40 than the standard Tregenza sky with 145 subdivisions. In addition, the 

concept of SHS gives users an easy control and high flexibility of assigning any intended 

resolution to the sky as long as SHS is set as an integer number, while Tregenza-based method 

follows a more complicated subdivision scheme that offers users limited options such as 

Tregenza 145 or 577 sky subdivision.       

 

 

(a) Rendered skyline; SVF value: 0.396 
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    (b)  SHS: 24; SVF value: 0.372          (c) SHS: 40; SVF value: 0.385 

 

    (d)   SHS: 80; SVF value: 0.390        (e) SHS: 120; SVF value: 0.392 

 

   (f) SHS: 500; SVF value: 0.396               (g) Overlap of three captured skylines 
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(h) Tregenza 145 subdivision; 

SVF value: 0.379 

(i) Tregenza 577 subdivision; 

SVF value: 0.391 

 

Figure 11. Captured skylines using the proposed method with different SHS settings against 

Tregenza-based methods 

 

For dense urban areas in which many buildings have different heights, one may need to 

increase SHS to correctly capture the obstructed skyline at the expense of increased 

computational costs. Instead of increasing SHS, the proposed method includes an optional step 

that calculates an average altitude of the highest blocked point and SVF per sky strip subject to 

the consideration of varying building heights within one sky strip. This step further subdivides 

each sky strip into K number of slices. Here, K is referred to as the strip inside the subdivision 

(SIS). The highest block point of the ith sky strip is given as, 

 

𝜉avg, 𝑖=(∑ 𝜉௝
௄
௝ୀଵ )/K (2) 

 

and the average SVF of the ith sky strip is defined by, 

 

SVFavg,i = (∑ 𝑆𝑉𝐹௝
௄
௝ୀଵ )/K (3) 

 

SIS was introduced to make the proposed method with a relatively low SHS capture a 

more accurate representation of the skyline. SVF results shown in Figure 11 are based on 



 

CHAPTER 2: A SIMPLIFIED VECTOR-BASED MODEL FOR URBAN-SCALE IRRADIANCE PREDICTION 

- 34 - 

 

different SHS values and the fixed SIS value of 3. To demonstrate the effects of SIS, another 

viewpoint in the relatively high-density area was selected. Figure 12 exhibits the captured 

skylines with the same SHS value of 40 and varying SIS values set at 1(Figure 12a), 2 (Figure 

12b) and 3 (Figure 12c). As it is hard to see differences among different SIS settings at first 

glance, key differences in the results were highlighted in three locations. It was observed that 

an increase in the SIS settings helped correct a sudden change of skyline. Especially, when the 

SIS changed from 1 (indicating no SIS) to 2, the absolute error significantly improved from 

0.053 to 0.025 and further improved to 0.014 when SIS was set at 3. 

 

(a)  SIS: 1 (no SIS); SVF value: 0.270      (b) SIS: 2; SVF value: 0.298 

 

 (c)  SIS: 3; SVF value: 0.309               (d) Rendered skyline; SVF value: 0.323 

Figure 12. Captured skylines using the proposed method with different SIS settings against 
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the rendered image. 

For the calculation of the non-uniform irradiance received from the visible sky, each sky 

strip is assigned to M sampling points, referred to as sky radiance sampling subdivision (SRSS) 

as shown in Figure 13. A higher setting of SRSS leads to a higher resolution of vertical 

subdivisions for each sky strip. Different from Tregenza-based methods, the SRSS is a semi-

independent subdivision in relation to SHS. Although the azimuth bandwidth is pre-determined 

after SHS is decided, it is completely up to the user to determine the number of SRSS along 

each sky strip. With a defined SRSS, each sampling point is given one single sky radiance value 

calculated by the Perez (1993, 1987) all-weather sky model. Each SRSS point represents a sky 

patch with a uniform radiance. For example, radiance sample points shown in Figure 13 are 

based on the SRSS value of 8 and the SHS value of 36. Only visible sampling points that fall 

within unblocked segments are selected for further skylight calculations. A higher SRSS setting 

discretises the visible sky into more patches and, therefore, more accurately captures the 

variation of the anisotropic sky. Each received diffuse sky irradiance from the selected qth SRSS 

sampling point on the ith sky strip, Gdiff,q,i, can then be calculated on the basis of (Robinson and 

Stone, 2004), 

 

Gdiff,q,i= Rq,i cos(αdiff,q,i)(sin𝜙up,q,i- sin𝜙low,q,i) 𝜓 (4) 

  

where Rq,i is the sky diffuse radiance of the sampling point calculated by the Perez model (Perez 

et al. 1993, 1987), αdiff,q,i is the incident angle between the normal at the viewpoint and the qth 

sampling point, 𝜓 is the azimuth bandwidth of sky strips described previously, and 𝜙up,q,i and 

𝜙low,q,i are the altitude of the upper and lower bounds of each patch where one sampling point is 

positioned. For the patch where the highest blocked point falls into, the lower bound altitude 

𝜙low equals to the altitude 𝜉௜ of the highest block point. A received surface is discretized into 

a grid depending on the size of the grid set by users. Then, each point in a grid is an individual 

viewpoint in which received radiation is calculated. The case study in the later section used a 3 

meter ×3 meter grid to calculate the total direct irradiance of individual urban surfaces.  
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Figure 13. Illustration of radiance sampling points of the proposed method.  

 

    Direct sunlight on a viewpoint is calculated by first checking whether the sun is visible 

from that viewpoint. If the solar altitude is higher than the altitude of the highest blocked point 

on the sky strip in which the sun is located, direct irradiance is calculated by,  

 

𝐺𝑑𝑖𝑟𝑒𝑐𝑡 = cos(𝛼𝑑𝑖𝑟𝑒𝑐𝑡) G𝐷𝑁𝐼     (5) 

 

where GDNI is the direct normal irradiance derived from the weather data, αdirect is the incident 

angle between the direct beam and the normal at the viewpoint. 

 

One of performance indicators often used for solar potential analysis is the total solar 

energy harvested during a certain period of time (e.g., monthly or annual). One way to obtain 

aggregated solar energy production is to run the simulation for each time step (e.g. hourly) 

given the weather data and then accumulate hourly results for a final outcome. Alternative way 

is to pre-process the sky diffuse radiance to output a cumulated sky radiance map. By doing so, 

only one iteration of final calculation is required and thus reduces the computational load. By 

using this approach, existing daylight simulation enhances the computational efficiency, and so 

does the proposed method. The proposed method can be easily integrated with a cumulative 

sky model to further enhance the computational efficiency.  
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2.2.2  Obstruction model  

2.2.2.1 Current standard model  

The ray-tracing method has been commonly used to detect surfaces that obstruct daylight, 

starting from either the light source (forward raytracing) or from the view point (backward 

raytracing). This method relies on the ray intersection algorithm (Möller and Trumbore, 2005). 

In analytic geometry as an example shown in Figure 14, the ray intersection algorithm detects 

the intersection between a line drawn between a specific viewpoint to a target area and a plane 

(i.e., potential obstruction) by computing a) the empty set (i.e., indicating the absence of any 

intersections), b) a point (i.e., where intersection occurs), or c) a line (i.e., the case at which the 

ray and plane are parallel such that they do not intersect). An alternative is the radiosity method 

that does not account for specular reflections (i.e., it only handles diffuse reflections) to reduce 

the computational load of tracing specular reflections. However, ray tracing or ray interception 

technique is still necessary to determine whether a viewpoint can see a sky patch of interest. 

For example, the image-based approach using rendered fisheye image was applied to check 

obstruction at the viewpoint (Grimmond et al., 2001), but rendering images essentially require 

ray tracing. Another more practical technique is using the ray interception method. In this 

method, the total number of ray interception iterations equals to the number of viewpoints 

multiplied by the number of potential obstructed surfaces, and further multiplied by the number 

of sky patches. Figure 15 on the left side illustrates the basic concept of the ray interception 

method. As ray interception can take up to 95% of the total simulation time (Amanatides and 

Woo, 1987), it is not an efficient calculation approach for large-scale problems. 
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Figure 14. Illustration of ray interception between a ray with origin and a surface on an 

object of interest. 

 

2.2.2.2 Proposed model 

As an alternative to the ray-tracing method or shadow calculation algorithm, this 

dissertation proposes a computationally efficient approach that identifies and computes the 

highest blocked point in buildings from a specific viewpoint. Figure 15 (right-subfigure) 

illustrates the basic concept of the proposed method in comparison with the ray interception 

approach (Figure 15 left-subfigure). First, building edge lines are divided by building edge 

subdivision (BES) in terms of the distance between subdivided points. For example, if BES is 

set at three, there will be a subdivided point every three meters along the building edge. After 

calculating all the altitude angles of the subdivided points from the specific viewpoint under 

consideration, calculated angles are grouped for each sky strip. For the ith sky strip, the highest 

block-point altitude, 𝜉𝑖, is the maximum value of the ith group of angles. Similarly, the lowest 

block-point altitude of the ith sky strip, βi, is the minimum value of the group, which will be 

used to calculate the reflected radiation in the next section. The proposed method requires a 

much smaller number of calculation iterations than the ray intersection method given that the 

required number of iterative calculations for the proposed method is the product of the number 

of viewpoints and the number of subdivided points. Furthermore, the proposed method allows 
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users to flexibly set up (adjust) the subdivision level.  

 

 
Figure 15. Ray interception method (left) and edge angle detection method 

(right).  

 

The resolution of BES should be paired properly with SHS, meaning that a high setting of 

SHS requires a relatively high resolution of BES. If the sky is subdivided into a high number 

of strips, each sky strip’s azimuth bandwidth is small. If the BES setting is not high enough for 

that SHS setting, it may lead to some building edges not being properly recognized as there is 

no BES point projected onto some sky strips. Figure 16 shows such error due to the mismatch 

in the two settings as an example. Figure 16 (left-subfigure) demonstrates the result of sky 

obstruction with setting SHS at 180 and BES at 1 meter. It was observed that one building edge 

was broken due to several missing BES points. By increasing the resolution of BES to 0.5 

meters, this problem was solved (Figure 16 right-subfigure). But, it should be noted that this 

example used a very high number of SHS to demonstrate the potential problem and a much 

lower SHS was found to be suitable for dense urban areas as shown in the case study in the 

later section. In order to avoid misrepresentation of sky obstruction, different pairings of SHS 

and BES was examined in various viewpoints, and recommended BES settings are given in 

Table 2 according to the SHS setting.  
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Figure 16. Misrepresentation of sky obstruction (left); proper representation of all building 

edges (right). 

 

Table 2 Recommendations of recommended BES settings according to the SHS setting. 

SHS < 24 24 – 40 40 - 80 80 – 200 > 200 

BES (meters) < 8 < 5 < 3 < 1 < 0.5 

 

 

2.2.3  Reflection model  

2.2.3.1 Standard model  

In urban areas, building surfaces and roads reflect both direct beams and diffuse radiations. 

In the commonly used backward ray-tracing method, multiple rays are sent out from a 

viewpoint tracing back to light sources (e.g. the skydome), and if a ray hits a surface, then more 

rays are generated from the hit point to compute the amount of reflected radiation. This 

computationally aggressive “bouncing” process is repeated until a certain satisfying 

convergence is achieved. Robinson and Stone (2004) developed a simplified radiosity 

algorithm (SRA) based on the assumption that surfaces are Lambertian. Since the radiosity 

method only handles diffuse reflections, the need for propagating reflected specular rays at 

exponential growth is avoided. Although SRA substantially reduces the number of iterations in 

the reflection calculation, this simplified method is still computationally demanding as it 

iteratively detects where reflection takes place on every surface. On the other hand, existing 

research showed evidence that prediction improvement from calculating multiple inter-

reflections may not be substantial for solar analysis in urban environment. One recent study 
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(Waibel et.al., 2017) examined the effects of specular reflection bounces in urban environments 

with multiple test points sampled on every surface of a case building in Zurich, Switzerland 

using computational simulations. The study showed that on average, less than 5W/m2 

differences were observed, and up to 20W/m2 marginal differences were observed in 

comparison to the annual value of around 250W/m2. It is worth mentioning that errors due to 

ignoring multiple-bounce reflections might be higher for urban areas with a significant amount 

of glazed buildings. Additionally, north-facing surfaces located in an urban canyon may likely 

receive more reflected daylight from the opposite buildings with relatively high reflective 

surfaces, and the error for north-facing surfaces is likely to be higher particularly for cities in 

warm dry climates. Additionally, high-fidelity simulation of reflection does not guarantee 

accurate results for urban-scale solar analysis as detail information about individual surface 

properties (e.g. albedos) is usually unavailable and urban-scale applications often apply the 

assumed surface properties to all building surfaces. Using building typologies for classifications 

according to building age, form and function might provide more information about variation 

in surface properties.  

 

2.2.3.2 Proposed model  

The proposed method follows the methodology formulated in the previous study by 

Robinson and Stone (2004) that assumes that all surfaces are Lambertian. In addition, two major 

simplifications are implemented in the proposed method. First, the proposed method uses only 

two average solar reflectance values: one for all building surfaces and the other for ground 

surfaces. Second, only solar irradiances reflected in the first bounce are considered. Based on 

these major assumptions, reflected irradiance can be calculated simply by using the solid angle 

to the buildings and the ground. The concept of the building’s view angle (BVA) and ground 

view angle (GVA) is illustrated in Figure 17. 



 

CHAPTER 2: A SIMPLIFIED VECTOR-BASED MODEL FOR URBAN-SCALE IRRADIANCE PREDICTION 

- 42 - 

 

 

Figure 17. Illustration of the use of building and ground view for the calculation of 

reflected radiation. (Image adapted from Liao and Heo, 2017) 

 

BVA and GVA are defined as the solid angles of a particular viewpoint to either the 

building or ground surfaces, respectively. In the ith sky strip, BVAi and GVAi are given as, 

 

BVAi = 2𝜋𝑁 (sin(𝜉i) + |sin(βi)|) (6) 

GVAi = 2𝜋𝑁 |sin(βi)| (7) 

 

where N is the SHS, and 𝜉i and βi are the altitudes of the highest and lowest blocked points on 

the ith sky strip, respectively. Once the BVAs and GVAs are obtained, the proposed method 

calculates the reflected irradiance based on the following three-step process. First, average 

reflectance values are estimated for buildings (ρb) and for the ground (ρg) on the basis of a 

general observation of a case study area. It would be ideal to obtain the measured albedos of all 

buildings inside the case area. However, as such a detailed level of data is usually unavailable, 

measured surface albedos for certain types of buildings in the case area can be useful to estimate 

an average albedo value for buildings. Second, the first-received irradiance on every sampling 

point of building and ground surfaces is calculated. For example, in the case study described in 

Section 3, the study used a 3 meter × 3 meter grid on every surface of all urban surfaces, which 

was used as the grid for the entire analysis process. By doing so, the method avoids creating a 

separate grid for calculating first received irradiance. In this step, the first-received irradiance 
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of each sampling point is then calculated by adding received skylight from equation (4) and 

received sunlight from equation (5), denoted as Rb,i and Rg,i, respectively, for the ith sky strip. 

Then, the method calculates a view angle to the buildings and ground, BVAi and GVAi, for the 

ith sky strip to calculate the amount of reflected irradiance from the surroundings viewed by the 

sampling point. The first-received irradiance Rb,i on the nearest building surface to the 

viewpoint of interest for the ith sky strip is then passed on to calculate first-bounce irradiance. 

If there are multiple sampling points on the nearest building surface, an average Rb,i of all the 

sampling points on that surface is used as the first-bound irradiance of the surface. It is 

computationally convenient to identify the nearest surface as the distance array was generated 

as a by-product from calculating view angles using the BES technique and there is no need for 

another iteration of distance calculation. As the unified view-angle based method accounts for 

all urban surfaces to calculate the building view angle, it is likely to cause overestimation of 

received diffuse reflected irradiance if there is a very tall building in distance from a view point. 

However, in most relatively dense urban areas, building-view angles for a view point is likely 

to dominantly depend on surrounding buildings near the view point. The total first-bounce 

irradiance reflected to a viewpoint from buildings Gbuilding,i and that from the ground Gground,i for 

the ith sky strip are then formulated as, 

 

Gbuilding,i = Rb,i BVAi cos(σb)ρb (8) 

Gground,i = Rg,i GVAi cos(σg)ρg (9) 

 

where σb,i and σg,i denote the angles between the normal at the viewpoint and the line which 

connects the viewpoint to the centre point of the building and the ground view, respectively, for 

the ith sky strip. 

 

Because the proposed method considers only one bounce of reflection, it may likely 

underestimate the reflection prediction. Given that reflected irradiance is commonly considered 

as much less than the directly received irradiance, several research studies (Redweik et al., 2013; 

Lindberg et al., 2015) also used the one-time reflection approach for ground reflection and 
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ignored reflections among buildings completely. Lindberg et al. (2015) compared their model 

outputs against measurements and showed a good agreement between predictions with 

considering only one-time reflection and measurements. Studies above suggest the relatively 

limited impact of adopting one-time reflection assumption on the prediction accuracy. 

 

 

2.3  Surface subdivisions  

 Partial shading is one key problem when it comes to predicting solar potential on a large 

surface, such as an entire building façade. Partial shading refers to the uneven distribution of 

solar radiation caused by the changing Sun path and the relative position of a receiving surface 

against a daylight obstructer, such as the opposite building across a street. The method follows 

a standard procedure of surface subdivision where a surface of interest is divided into patches 

in a grid form. At each centre point of a subdivided patch is where the proposed method can be 

applied to calculate the received solar irradiance (W/m2) accordingly. The predicted received 

solar irradiance on each patch is then assumed to be the same as that of its centre point. Here, 

the centre points act as sampling test points and the density of the test points on a surface can 

be determined by a user. A higher density of sampling test point gives a more accurate prediction 

in terms of reflecting the variation of received solar irradiance on a surface. The study uses 3 

*3 meters grids on all the buildings in the latter case studies in Chapter 3 and Chapter 4. Figure 

18 shows the prediction of the annual solar radiation in an urban case visualised by using the 

software Grasshopper as an example. The density of 3*3 grids properly reflects the variation of 

received solar energy within a building façade in such a case.  
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Figure 18. Visualisation of the annual prediction of received solar radiation based on a 

surface subdivision in 3 *3 meters grids. 

 

2.4  Implementation    

The method was implemented in the programming environment of Python 2.7. In this 

section, key steps in the implementation of the proposed method are described.  

 

In the first step, urban 3D geometry consisting of building surfaces and ground surfaces 

in the form of .obj file are imported to create an 2D array that stores all the information of 

surfaces as vertices and their normal vectors. Then, a surface subdivision is carried out where 

all the surfaces are divided into patches in a grid form where the density of the grids in the unit 

of meter can be set accordingly, such as 3, 5 or 10, meaning a 3m * 3m, 5m * 5m and 10m * 

10m mesh grid, respectively. The new sets of the centre points of the grids are then stored in a 

new 2D array that will be used as the points where solar irradiance was calculated for. Building 

edge subdivision is also carried out in this process where a new set of 2D array is created to 

store all the vertices of the subdivided BES points given the setting of BES in the unit of meters, 

such as 3,5 or 10, meaning one BES point every 3 meters, 5 meters and 10 meters, respectively. 

Next, the proposed sky discretisation method was implemented where the sky horizontal 

azimuth boundary is stored as a 1D array for each sky strip given the setting of SHS and SIS. 

After the sky strips are defined, Perez all-weather sky model is then implemented given the 



 

CHAPTER 2: A SIMPLIFIED VECTOR-BASED MODEL FOR URBAN-SCALE IRRADIANCE PREDICTION 

- 46 - 

 

imported hourly weather file in the .txt format, the imported geographical location as longitude 

and latitude, and the defined time period for calculation. An accumulated skydome technique 

is used where only one radiance skymap is created by accumulating the calculated hourly sky 

radiance by Perez model into each SRSS point given the setting of SRSS and the previously 

generated sky discretisation 1D array. Following that, we now have a new 2D array that stores 

the brightness (i.e. radiance) for each SRSS point given in each sky strip and its sky horizontal 

altitude.  

 

Given the above processing, we now have three key sets of 2D array that stores the 

information of sky brightness, surface subdivision centre points and BES points. Next, the 

proposed obstruction model is implemented where each surface subdivision centre point is 

looped to calculate their angles to each BES points. In the process, the identified highest 

blocked point and lowest block points are stored as sky altitude angles for each surface 

subdivision centre point in a new 2D array sorted by each sky strip. Then, SVF, BVA and GVA 

and their according solid angles are calculated using the stored sky altitude angles. Next, the 

first received solar irradiance is calculated by accumulating the radiance from all the visible 

sky SRSS points determined by the SVF, and a 2D array is created to store the first received 

irradiance for each surface subdivision centre point. In the final step, the proposed unified view-

angle based method is implemented by looping each surface centre point for their received first-

bounce irradiance given the BVA and GVA for each sky strip. The final results are then stored 

in a 2D array where each surface subdivision centre point is paired with its first received 

irradiance, first-bounce irradiance (i.e. received reflected irradiance) and the sum of the two.  

 

    Besides the implementation of calculating the accumulated solar energy given a period of 

time, if the hourly prediction is required, there is no need to calculate the obstruction map since 

the method calculates the SVF, BVA and GVA first hand and therefore it is time efficient for 

calculating hourly prediction using the proposed method as well.  
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2.5  Summary  

The chapter identified limitations of current standard approach at handling urban shading 

and reflection, the study then developed and presented a simplified, physics-based method that 

allows the efficient modelling of the solar potential in urban areas. The proposed method 

consists of three model components: (a) two-segment sky discretisation method, (b) edge-

angle-detection obstruction method, and (c) unified view-angle-based reflection method, as 

improved alternatives in regard to the current standard models.  

 

With the reflection of the urban context, the two-segment sky discretisation method is 

supposed to reduce the unnecessarily large number of sky patches required for the prediction 

of irradiance on urban surfaces. Also, the edge-angle detection method together with the view 

angle-based reflection method could substantially reduce the number of iterations in the 

calculation process. The new method also provides users with a flexible control parameter 

setting related to the analysis setup, including Sky Horizontal Subdivision (SHS), Strip Inside 

Subdivision (SIS), Sky Radiance Sampling Subdivision (SRSS), and Building Edge 

Subdivision (BES) for various requirement of prediction accuracy.  Compared to the standard 

Tregenza sky discretisation model at two different resolutions, the tested two-segment sky 

discretisation more accurately captured the urban skyline with less required number of 

discretisation. The optional SIS setting can better capture the sudden change of skyline while 

keeping the same number of required discretisation SHS and therefore avoiding unnecessary 

computational load. The resolution of BES should be paired properly with SHS to avoid 

possible misrepresentation of the skyline. A range of pairing resolutions of the two settings was 

suggested and given in the chapter. The chapter also demonstrated the suitability of the 

procedure of surface subdivisions in use with the proposed method. Key steps of the 

implementation of the proposed method were described.   
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Chapter 3: Model validation  

 

 

 

 

 

 

 

 

3.1  Model validation framework  

This chapter investigates the performance of the proposed model in comparison to both 

high-fidelity simulation results and measurements from controlled experiments. Two sets of 

comparisons were designed using the urban area which spans 0.72 km2 (1.2 km×0.6 km), 

located in the Hankou district in Wuhan, China. Figure 19 illustrates the model validation 

framework on the basis of the two sets of comparisons. First, the predictions of the proposed 

method were compared against those of the existing high-fidelity simulation tool RADIANCE. 

An urban geometry model of the study area was generated and used for both the proposed model 

and RADIANCE with the input of a Chinese standard weather data (CSWD) created by the 

China Meteorological Bureau (China Meteorological Administration, 2018). Second, irradiance 

predictions by the proposed method were compared against measurements from physical 

experiments. Two sets of physical micro urban models of the selected urban area were designed 

and constructed to collect data during the summer in 2017 in Wuhan. The collected solar 

measurements with quantified measurement uncertainties were used to validate the proposed 

method. On-site weather data were carefully collected and used as the weather input for 
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simulation. In addition to the prediction accuracy, the computational performance of the 

proposed model was also tested against the standard ray interception algorithm.  

 

Figure 19. Framework of the two comparisons in the study 

 

3.2  The studied urban area 

The studied area is part of a city area that spans 0.72 km2 (1.2 km×0.6 km), located in the 

Hankou district in Wuhan, China, as shown in Figure 20. This area is part of the city centre of 

Wuhan where a mixture of commercial, office and residential buildings exist. Building heights 

and sizes vary significantly in the studied area, creating complex urban shading and reflecting 

effect. This urban area represents a commonly seen urban landscape in major cities in Asian 

countries and is used as an example of medium-to-high density urban environment.  

  

The computational urban model of this urban area was constructed based on the urban data 

provided by Wuhan Planning and Design Institute and Google Map. As the GIS data of Wuhan 

is not currently well developed like most of the Chinese cities, on-site visits were also carried 
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out to help achieve a better representation of the real urban environment. The resulting urban 

geometry data were used for the proposed method, RADIANCE and controlled experiments. 

Figure 20 shows three locations chosen in terms of the relative urban density in the studied area 

for comparison of the proposed model against RADIANCE. Locations in the studied area used 

for comparison against measurements are different and will be described in Section 3.4.1.  

 

Figure 20. Studies area indicating the three tested locations.   

 

3.3  Comparison against RADIANCE 

In the comparison against RADIANCE, Ladybug and HoneyBee were used to create an 

urban model and predict solar radiation on the three tested locations with different urban 

densities, as shown in Figure 20. In each location, a flat plane was used at different tilted angles 

to generate accumulated irradiances during the test hours (8:00 am to 4:00 pm). The sizes of 

the flat planes were identical and set to be 20 m × 20 m, and the accumulated radiation during 

the test hours was calculated by averaging the solar radiation of 36 test points spaced by a 3 m 

× 3 m grid. All building envelopes and ground albedo values were set to be 0.2 and 0.1, 

respectively, for both the RADIANCE and the proposed model. The CSWD weather file was 

used to provide hourly direct and diffuse radiation and dew-point temperature data. March 1st 

was selected as a simulation period as this day presents both direct and diffuse daylight with 

changes within a day while representing typical weather conditions as shown in Figure 21. A 



 

CHAPTER3:  MODEL VALIDATION 

- 51 - 

 

RADIANCE simulation setting was made “medium” defined by Ladybug and Honeybee with 

the following parameter settings: number of ambient bounces = 3; ambient divisions = 2048; 

ambient resolution = 64; number of ambient super-samples = 2048. The same urban geometry 

model and weather data used in the proposed model were imported into Grasshopper as inputs 

to generate comparable results. 

 

Figure 21. Daylight conditions of the tested day used in the simulation comparison between 

the proposed method and RADIANCE. 

3.3.1 Effect of model setting parameters 

As a necessary step before the intended comparison, the effects of the model setting 

parameters were investigated in terms of both the prediction accuracy and computational 

efficiency. The resolution-control parameters include the sky horizontal subdivision (SHS), 

strip inside subdivision (SIS), sky radiance sampling subdivision (SRSS), and building edge 

subdivision (BES). Table 5 shows the ranges of the four control parameter values. Differential 

sensitivity analyses were performed to examine the effects of individual control parameters by 

changing one parameter value at a time, while keeping the rest of the parameters fixed at the 

base value. The resulting outcomes is a stability test for optimising the control parameter 

settings in order to achieve a balance between prediction accuracy and computational efficiency. 

Table 5 provides chosen settings based on the sensitivity results, which were used in the case 
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study for comparisons of the proposed model against RADIANCE and measurements.  

 

Table 5. Ranges of values for the control parameters. 

Setting parameter Range Chosen value 

SHS 3 - 36 24 

SIS 1 - 4 2 

SRSS 3 - 18 9 

BES 1 - 11 3 

 

Figure 22 shows the cumulated solar radiation (Wh/m2) during the test hours and 

associated computational costs with different parameter settings for the three urban locations 

shown previously in Figure 20. Overall, SHS (Figure 22 a) is the most dominant parameter that 

has the highest impact on the prediction accuracy in comparison to the other parameters. For 

SHS, incremental changes up to 18 significantly impacted the prediction results, especially for 

the high-density scenario. Further increases in SHS did not impact the prediction accuracy 

despite the linear increase in the computational time. SIS (Figure 22 b) exhibited a similar trend, 

and the prediction accuracy noticeably improved until SIS increased to the value of two. SRSS 

(Figure 22 c), however, did not elicit a substantial impact on the prediction accuracy, and did 

not noticeably increase the computational cost. Because the computational cost did not change 

much with the increase of SRSS, SRSS was set to be nine for further analyses. Additionally, 

changes in BES (Figure 22 d) did not change the prediction accuracy although the use of the 

finer resolution of 1 m for BES exponentially increased the computational cost. Hence, BES 

was set to be three for the following case studies. Overall, the results suggest that for the low-

density case crude control settings provided prediction outcomes as accurately as some of the 

refined control settings. For high-density urban areas, however, the control settings need to be 

carefully designed to provide sufficiently accurate predictions with minimal computational cost.  
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Figure 22 a. Effect of SHS.                   Figure 22 b. Effect of SIS. 

 

Figure 22 c. Effect of SRSS.                 Figure 22 d. Effect of BES. 

 

3.3.2 Results  

This section evaluates the predictive power of the proposed method in comparison to 

RADIANCE through the case study of the urban area described in Section 3.3. Tables 6-8 

summarize cumulated solar radiation (Wh/m2) during the test hours predicted by the proposed 

method and RADIANCE for the three urban density areas. Overall, the proposed method 

yielded predictions that were in good agreement with RADIANCE. The proposed method 

yielded predictions with average differences of 3%, 4%, and 6%, in comparison to RADIANCE 

for the low-, medium-, and high-density areas, respectively. The differences in the irradiance 

prediction between the two methods increased within a small range for the studied urban area 

with a higher density. In addition, the proposed method tended to overestimate the total 

irradiance on the horizontal or slightly tilted planes and underestimate that on the vertical or 
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nearly vertical surfaces. As the proposed method approximated the contours of the buildings, 

the method may likely ignore details in the real contour that obstruct the irradiance on the test 

point and, consequently, cause an overestimation of the total irradiance. Nevertheless, the 

magnitude of the overestimation can be regarded as negligibly small. Underestimated irradiance 

predictions for vertical surfaces may be due to the simplified reflection model that considers 

only the first-bounce reflection. Indeed, vertical surfaces (mostly walls) receive increased 

radiation from multiple reflections by the surrounding surfaces than horizontal surfaces. 

Nevertheless, the absolute magnitude of the underestimation is small. 

 

Table 6. Comparison of the predictions of the two tested models for the high-density area. 
Tilted angle 
(°) 

RADIANCE 
(Wh/m2) 

Proposed method 
(Wh/m2) 

Absolute difference 
(Wh/m2) 

Difference 

0 2176 2295 119 5.47% 

20 2422 2593 171 7.06% 

40 2437 2621 184 7.55% 

60 2189 2325 136 6.21% 

80 1693 1702 9 0.53% 

90 1392 1261 -131 -9.41% 

 

 

Table 7. Comparison of the predictions of the two tested models for the medium-density area. 
Tilted angle 
(°) 

RADIANCE 
(Wh/m2) 

Proposed method 
(Wh/m2) 

Absolute difference 
(Wh/m2) 

Difference 

0 2711 2795 84 3.10% 

20 2986 3132 146 4.89% 

40 2979 3086 107 3.59% 

60 2657 2712 55 2.07% 

80 2082 1971 -111 -5.33% 

90 1715 1588 -127 -7.41% 

 

 

Table 8. Comparison of predictions of the two tested models for the low-density area. 
Tilted angle 
(°) 
   

RADIANCE  
(Wh/m2) 

Proposed method 
(Wh/m2) 

Absolute difference 
(Wh/m2) 

Difference 

0 2941 3133 192 6.53% 

20 3267 3372 105 3.21% 

40 3353 3412 59 1.76% 

60 3079 3125 46 1.49% 
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80 2463 2434 -29 -1.18% 

90 2142 2081 -61 -2.85% 

 

Table 9 shows the root mean square errors (RMSE) between hourly predictions by the 

proposed method and those by RADIANCE for the medium-density area. RMSE values ranged 

between 11.41 Wh/m2 and 21.02 Wh/m2 for the different tilted planes. The percentages of the 

RMSE values to their average hourly predictions ranged between 3% and 9%. Further 

correlation analysis on the basis of the Pearson’s coefficient gives the R-squared value of 0.993 

between the two sets of hourly predictions as illustrated in Figure 23.  

 

Table 9. RMSE of the proposed method against that of RADIANCE for the medium-density 

area. 
Tilted angle (°) 0 20 40 60 80 90 

RMSE (Wh/m2) 11.41  21.77  20.99  9.04  21.02  18.51  

Percentage  3.37% 5.83% 5.64% 2.72% 8.08% 8.63% 

 

 
Figure 23. Correlation between the hourly predictions by the proposed method and those by 

RADIANCE. 

    In addition, the accuracy of predictions was evaluated in the context of large-scale 

applications, whereby the total or average amount of solar energy obtained in the entire urban 

area was the core interest. The entire case study area included 337 buildings, and the total 

radiation of all the building surfaces during the testing day was selected as a performance 

indicator for large-scale applications for model comparisons. Table 10 compares the total solar 
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radiation predicted and the according computational time cost by the two methods for the entire 

set of building surfaces. The calculation time was recorded on a PC system geared with Intel i5 

4590 CPU, 12 Gigabytes dual-channel DDR3 RAM, implemented on a 64-bit Windows 10 

operating system. The predicted results of the proposed method were in close agreement with 

RADIANCE. The total calculation time for our method is 266 seconds, a relatively low run 

time given the scale of the studied case compared to the much longer calculation time in 

RADIANCE. It should be noted that computational time cost heavily relates to several factors, 

including parameter settings in the software, the used programming language, programmer 

efficiency. In order to compare the computational efficiency of the proposed methods with 

existing methods that rely on the ray-tracing technique in a fair manner, an elementary 

comparison of key computational steps against the ray-tracing technique was carried out and 

presented in the Section 3.5.     

 

Table 10. Total irradiance of a large-scale urban area. 

 RADIANCE 

 

Proposed method Difference 

Irradiance 

(kWh) 

1,574,473 

 

1,515,531 

 

3.74% 

Time cost 21643s 266 s  

 

 

3.4  Comparison against controlled experiments 

3.4.1 General design  

A physical micro urban geometry model was constructed in a scale of 1:150 of the case 

urban area. Figure 24 (upper-right sub-figure) shows the physical urban model used for the 

controlled experiments. Owing to the limited budget, part of the case study area described 

previously was created as the physical model. The physical model was made of thin wood 

boards cut by a digital laser cutting machine. The physical model was placed on the roof of a 

four-story building located in the campus of the Huazhong University of Science and 

Technology, Wuhan, China. The building avoided most of the shading from surrounding 
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environments. However, two main surrounding objects may potentially impact the results of 

the experiments: an annex room built on the roof and trees located close to the roof, as seen in 

Figure 24. As they are close to the experiment site, they may impact both the shading and the 

reflection on the physical model. Thus, they were included in the 3D urban geometry model 

used for predictions. The size of the annex room and trees were measured using photo-based 

three-dimensional scanning, as shown in the bottom of Figure 24. The surrounding trees to the 

north of the site were approximated as a rectangular box in the model.    

 

Figure 24. The physical urban model used for controlled experiments. 

 

Two sets of controlled experiments were designed to investigate the model performance 

in terms of the total irradiance prediction with and without reflected irradiance. Figure 25 shows 

one urban geometry model with different surface albedo values. Set 1 (left) has black-painted 

surfaces to minimize the reflection among surfaces as much as possible. Set 2 (right) has light 

grey-painted surfaces for the buildings and darker grey-painted surfaces for the roads to 

appropriately represent real albedo values of urban surfaces in urban environments. A 

comparison of the proposed model against the two sets of measurements allowed the 

investigation on whether the reflection model based on significant simplifications suitably 
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capture major reflection phenomena.  

 

 
Figure 25. Two urban geometry models. Model for Set 1 (left), and model for Set 2 

(right). 

 

Four full-range spectrum radiometers (Jinzhou Sunshine TBQ-2) were used in the 

experiments to collect solar irradiance measurements on selected test points. They were 

installed inside building boxes, as shown in Figure 26. The radiometers were carefully installed 

to ensure that they were parallel and aligned to the installed building surface, and that they 

properly collected the irradiance on test points. To include more test points in the model 

evaluation, the radiometers were installed in different locations on each day of the measurement 

period. Figure 27 shows test points used for data collection in the two sets of experiments, 

including 11 test points for Set 1, and 14 test points for Set 2.  

 

 

Figure 26. Photos of the TBQ–2 radiometers installed in the physical model. 
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Figure 27. Test points used in Set 1 (left) and Set 2 experiments (right). 

 

3.4.2 Construction of the physical urban geometry 

As the physical urban geometry is a physical representation of the urban case to collect 

solar measurements for result comparison, it is important to make sure the representation is 

correct and matches the 3D computational geometry model in the simulation using the proposed 

method.  

 

To construct the physical model, CAD file of the computational geometry model was 

exported to a digital laser cutter. Then, a total number of thirty-two 2mm thick A0 size wood 

boards were printed, cut and labeled with numbers for each piece that resembles each roof and 

wall of the buildings in the study urban area. Figure 28 (left-subfigure) shows the wood boards 

before dissembling them for reconstruction. After each piece from the wood boards was 

retracted, each building (Figure 28 right-subfigure) was manually assembled with the number-

labeled pieces of wood board in superglue to make sure the correct pieces are assembled for the 

correct building. After this process, all the initial building “boxes” were ready for further 

assembling as Figure 29 shows. 
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Fig 28. Wood boards cut by digital laser cutter (left); the process of reassembling the 

buildings from pieces of the cut board.(right) 

 

Figure 29. Building “boxes” of the physical geometry model. 

 



 

CHAPTER3:  MODEL VALIDATION 

- 61 - 

 

The next step is to apply paint to control the albedos of the building models (Figure 30). 

As previously described, there are two sets of controlled albedos for the two comparisons. This 

was simply done by first applying the physical model with grey paint. After measurements for 

the set were collected, black paint was then applied to the same physical geometry model and 

carried on to collect the measurements the other set.  

    

 

Figure 30. Building “boxes” painted in light grey. 

 

The next step is to create a plan for the urban layout. This was done by printing out the 

building footprints from the CAD file and attached the prints on top of another layer of 

corrugated fiberboard as Figure 31 shows. Next, a controlled albedo for the ground surface was 

applied onto the board and left out the building footprint area so that building models can be 

correctly placed on top of the baseboard. After the baseboard was painted, each building box 

was placed and glued on to the board. Additionally, an elevated surface was placed under the 

physical model to eliminate the shading effects from the parapet on the roof as Figure 32 shows.  
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Figure 31. Printed sheet of urban layout on top of the baseboard. 

 

Figure 32. Painting process of the ground of the physical urban model. 
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Another important step of the model construction was making sure the facing direction is 

correct. A GPS device was used to draw the absolute south on the ground as a reference to 

adjust the facing direction of the physical model. Finally, the finished physical urban geometry 

model (Figure 33) was ready for further installing the solar collectors on to the test points.  

 

Figure 33. Image of the physical urban geometry model.  

 

3.4.3 Weather measurements  

Three weather variables are required as weather inputs to the proposed model, namely the 

diffuse horizontal irradiance (DHI), direct normal incident (DNI), and dew-point temperature. 

In a typical weather file such as TMY2 and TMY3, DHI and DNI are calculated by the common 

standardized procedure described in (Vignola et al., 2016) using the measurements from a 

pyranometer (i.e. solar meter) with a shadow band (Figure 34, left-subfigure) and a pyranometer 

without any obstruction (Figure 34 right-subfigure). First, a shadow-band radiometer that 

obstructs the direct sunlight measured a raw horizontal diffuse irradiance. The raw diffuse 

irradiance was then calibrated with an additional shadow-band correction factor to make up the 
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loss of sky diffuse radiance blocked by the shadow-band and allowed computation of the DHI. 

The global horizontal irradiance directly measured by a pyranometer (Figure 34, right-subfigure) 

was used to compute DNI on the basis of the location of the sun. 

 

Figure 34. Radiometers used in the experiments for weather input measurements. 

 

In addition, the proposed model used dew point temperature data measured by a mini-

weather station located on the roof next to the location of our experiment setup, which was 

provided by the School of Architecture of the Huazhong University of Science and Technology. 

The experiments spanned two weeks, and were carried out from May 26th 2017 to June 8th 2017. 

However, measurements were not collected during rainy days owing to the unavailability of 

waterproof equipment. Thus, measurements were obtained only during sunny or cloudy days. 

Table 3 lists the weather conditions for different test points during the experimental period.  

 

Table 3. Weather conditions during the measurement period.  

Test points  Date Measurement 

duration  

Weather condition Temperature range 

(°C) 

Set 1 1, 2, 3 June 6th 6:00 – 10:00; 

13:00 – 18:00 

Partly cloudy 18.6 – 25.2 

4, 5, 6, 7 June 7th 6:00 – 18:00 Sunny  20.9 – 31.3 

8, 9, 10, 11 June 8th 6:00 – 18:00 Partly cloudy 23.6 – 32.5  

 

Table 3. (Continued)    

Set 2 12, 13, 14, 

15 

May 26th 6:00 – 18:00 Sunny  21.5 - 31.3  
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16, 17, 18, 

19 

May 28th 6:00 – 18:00 Sunny  24.0 - 33.7  

20, 21 May 29th 6:00 – 18:00 Sunny  24.4 – 34.1   

22, 23, 24 May 30th 6:00 – 16:40 Cloudy  27.7 – 31.9  

 

3.4.4 Measurements uncertainty 

Two major sources of uncertainties associated with the process of generating the weather 

inputs are the radiometer measurement error and the shadow-band correction factor. The 

measurement error of the solar radiometer was provided by the manufacturer and quoted to 

range between ±2%. The shadow-band correction (F) factor depends on the algorithm used to 

compensate for the obstructed diffuse irradiance owing to the shadow band, according to the 

shading bandwidth, solar position, and geographic location. Even though the two algorithms 

(Drummond, 1956; Robinson and Stoch, 1964) are extensively adopted in practice, Zhang et al. 

(1997) found that the F values from the referred methods did not match the observations in the 

Chinese weather stations. Correspondingly, they developed a statistical model to generate 

monthly average F values for different geographic locations of major cities in China. All the 

three methods were used to calculate F values, and the resulting values ranged between 1.23 

and 1.27, as summarised in Table 4. Given that dew-point meters measure dew point 

temperature with high accuracy, and the dew point temperature has a much smaller impact on 

the irradiance than the other two weather variables, the measurement uncertainty of the dew-

point temperature was ignored in the model evaluation process. Additionally, the maximum and 

minimum values of surface albedos were obtained by measuring them multiple times in 

different locations of the physical model (Figure 35). In total, six uncertain model inputs were 

considered, as listed in Table 4. 
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Figure 35. Albedo values measured using the PLKCN C84–III reflectivity meter. 

 

 

Table 4. Listed ranges of parameter uncertainties.    

 F-value Radiometer 

error 

Albedos of 

buildings 

in Set 1 

Albedos of 

ground in  

Set 1 

Albedos of 

buildings 

in Set 2 

Albedos of 

ground in 

Set 2 

Maximum 1.27 +2% 0.023 0.029 0.29 0.22 

Minimum 1.23 -2% 0.009 0.013 0.27 0.20 

 

The ranges of parameter uncertainties in Table 4 were used in the proposed model to 

compute the maximum and minimum predictions. As all the parameters listed above were found 

to be positively correlated with the model output, the model predicted two outputs: one with all 

the parameters set to their minimum values and the other with all the parameters set to their 

maximum values.  

 

3.4.5 Impact of parameter uncertainty on the prediction 

Table 11 shows the ranges of total average irradiance predictions due to the identified input 

uncertainties for all the test points in terms of both the absolute differences of the maximum 

and minimum outputs and the percentage of the difference compared to the maximum output. 

The table also presents the orientation and obstruction level of the test points represented by 

SVF, calculated by the proposed method. The differences between the maximum and minimum 
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outputs ranged between 4–30 W/m2 and between 4–13%. As the ranges of the predictions due 

to the input uncertainties are relatively small, averages of the maximum and minimum outputs 

were used for the comparison against the measurements. 

 

Table 11.  

Differences in maximum and minimum model output given considerations of the input 

uncertainties. 

 

 

 

 

Sets of  

viewpoints 

 

Orientation  

 

Obstruction level  

(by SVF) 

Difference of maximum and 

minimum outputs  

W/m2 % 

Set 1     
 Test point 1 South 0.37  7.08 8.94% 
 Test point 2 North 0.36  8.34 11.71% 
 Test point 3 Horizontal 0.61  15.36 4.97% 
 Test point 4 East 0.44  17.44 6.91% 
 Test point 5 South 0.39  11.79 13.22% 
 Test point 6 North 0.43  13.47 12.97% 
 Test point 7 Horizontal 0.68  22.86 4.36% 
 Test point 8 West 0.34  10.97 5.20% 
 Test point 9 West 0.38  11.23 5.37% 
 Test point 10 East 0.44  12.73 7.24% 
 Test point 11 Horizontal 0.72  22.00 4.61% 

Set 2  

 Test point 12 South 0.42  15.19 10.66% 
 Test point 13 East 0.40  17.32 5.97% 
 Test point 14 West 0.37  18.33 7.02% 
 Test point 15 Horizontal 0.72  26.38 4.39% 
 Test point 16 West 0.34  14.16 4.94% 
 Test point 17 West 0.38  15.11 5.46% 
 Test point 18 East 0.44  17.69 6.43% 
 Test point 19 Horizontal 0.72  26.32 4.26% 
 Test point 20 East 0.44  20.06 6.48% 
 Test point 21 Horizontal 0.68  25.44 4.15% 
 Test point 22 South 0.37  4.69 7.82% 
 Test point 23 North 0.36  5.82 9.06% 
 Test point 24 Horizontal 0.61  11.37 5.89% 
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3.4.6  Results  

Figure 36 compares hourly irradiance predictions (W/m2) against measurements during 

the test day period (6 am – 5 pm) for the 24 test points. There are missing measurements for 

rainy days and for the specific two-hour intervals of 11 am – 12 pm owing to equipment failure. 

Overall, the proposed method was able to reproduce the actual measurements accurately and 

elicited only a small range of discrepancies. The magnitude of discrepancies showed variations 

depending on the position of the test point and weather conditions. For horizontal surfaces with 

a high sky view factors (test points 7, 11, 15, 19, and 21), the method tended to overpredict the 

irradiance noticeably when the irradiance increased at the middle of the day. For all the vertical 

surfaces, the magnitude of the predicted errors did not seem to be time-dependent. The method 

tended to underpredict the irradiance, but the differences were relatively small. Figure 37 plots 

the hourly predictions in comparison to measurements for all the test viewpoints. A Pearson’s 

coefficient of the two datasets was the R-squared value of 0.974. Higher differences between 

hourly predictions and measurements were observed when the magnitude of irradiance 

increased. Nevertheless, overall the high correlation coefficient indicates a good agreement 

between the hourly predictions and measurements. It is worth mentioning that the correlation 

between the predictions and the measurements (R2=0.974) is slightly lower than that (R2=0.993) 

between the proposed method’s predictions and RADIANCE’s predictions shown in the 

previous section. A key difference between the two sets of comparisons is that both the 

prediction models are based on the Perez Sky model (Perez et al., 1993) whereas the 

measurements are based on the actual sky radiance conditions that may differ from the Perez 

model outcomes. To exclude the possible errors due to the Perez model in the comparison, 

advanced equipment, such as an artificial sky or sky scanner that directly measures the sky 

radiance, can be adopted in physical experiments in the future study. 
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Figure 36 a. Comparison of hourly model predictions against measurements for test points 1–

3  

 

Figure 36 b. Comparison of hourly model predictions against measurements for test points 4–

7. 
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Figure 36 c. Comparison of hourly model predictions against measurements for test points 8–

11. 
 

 

Figure 36 d. Comparison of hourly model predictions against measurements for test points 

12–15. 
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Figure 36 e. Comparison of hourly model predictions against measurements for test points 

16–19. 
 

 

 
Figure 36 f. Comparison of hourly model predictions against measurements for test points 

20–21. 
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Figure 36 g. Comparison of hourly model predictions against measurements for test points 

22–24. 

 

Figure 37. Correlation between hourly predictions and measurements. 

 

Furthermore, the differences between the predictions and measurements were investigated 

in terms of the cumulated solar radiation during the tested day period, as presented in Table 12. 

In general, the differences between model outputs and measurements ranged from 3.31 Wh/m2 

up to 87.14 Wh/m2 (from 0.96% to 14.79%), and most test points resulted in a deviation of 

approximately 5% or less. For vertical surfaces, no consistent trend was observed in the 
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recorded differences when the model predictions were compared against Sets 1 and 2. It was 

expected that the simplified reflectance model may result in a higher difference for vertical 

walls which received reflected irradiance from reflective surrounding surfaces. However, Set 1 

(black-colored surfaces) yielded increased differences in some cases (test points 1, 2, 5, and 6) 

than Set 2 (grey-colored surfaces). Noticeably, the proposed model tended to overpredict the 

irradiance on the horizontal surfaces. In contrast, for vertical surfaces, the differences between 

the predictions and measurements varied for different test points.  

 

Table 12. Differences between cumulated solar radiation prediction and measurements.   

Set 1 
Absolute error  

(Wh/m2) 
Percentage Set 2 

Absolute error 

(Wh/m2) 
Percentage 

Horizontal roofs and ground   

Test point 3 20.9  3.4% Test point 15 75.2  6.7% 

Test point 7 49.0  4.2% Test point 19 64.2  5.4% 

Test point 11 87.1 11.1% Test point 21 61.4  5.2% 
   Test point 24 25.7  5.6% 

Vertical walls      

Test point 1 -24.0 -11.8% Test point 12 -3.9  -1.6% 

Test point 2 -26.9  -13.2% Test point 13 26.3  4.9% 

Test point 4 -18.3  -3.2% Test point 14 -5.8  -1.3% 

Test point 5 -48.8  -14.8% Test point 16 -5.9  -1.2% 

Test point 6 -34.8  -9.4% Test point 17 -4.8  -1.0% 

Test point 8 5.2  1.4% Test point 18 -13.2  -2.5% 

Test point 9 9.2  2.4% Test point 20 -6.9  -1.1% 

Test point 10 -28.8  -6.7% Test point 22 3.3  2.1% 
   Test point 23 -5.9 -3.6% 

 

To further investigate major factors that determine the trend of prediction errors, the 

prediction discrepancies for all test points were correlated to the SVFs of the test points (Figure 

38). The prediction discrepancy was defined in terms of the absolute prediction discrepancy 

and the percentage of discrepancy. Results showed that the absolute discrepancy was highly 

and positively correlated (R2 = 0.69) with SVF, indicating that the proposed model tended to 

overpredict the irradiance for test points with lesser obstruction, such as the roofs. For the walls 

for which there was increased shading, the proposed model had a tendency to underpredict the 

irradiance. In terms of the discrepancy reported as a percentage, the results also led to the same 

conclusion, but the correlation was smaller (R2 = 0.39). Overall, the irradiance predicted by the 
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proposed model yielded average absolute differences of 6% and 5% in comparison to the 

measurements for the horizontal and vertical surfaces, respectively. Although there is the gap 

between the predictions and measurements, the proposed method with significant 

simplifications promised to be a suitable approach to achieve a satisfactory accuracy for urban-

scale solar analyses, and concurrently complied with the required computational efficiency. 

 

 

Figure 38. Correlation R2 between SVF and prediction discrepancy.  

 

3.5  Computational efficiency  

This section examines the computational efficiency of the proposed method in a 

programming environment Python 2.7. The computer hardware platform was a laptop with an 

i7 8700 CPU, running on 32G DDR4-2666 Ram in a Windows 10 operating system. Using the 

study case and the settings described previously, the computational process was decomposed 

into several key steps and the calculation time of key steps was recorded in terms of their shares 

of the total calculation time, as shown in Table 13. Calculating view angles for obstruction 

detection took up the highest portion of 60%, followed by calculating first received irradiance, 

and calculating the first-bounce reflection. The rest of the steps in the process took very little 

time in comparison to the three steps.  
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Table 13. Shares of key steps in total computational time.  

Reading geometry <0.01% 

Geometry subdivision 0.11% 

Calculation of view angles 59.97% 

Reading weather file <0.01% 

Creating sky radiance  0.17% 

Calculation of first received irradiance 36.10% 

Calculation of the first-bounce reflection 3.65% 

 

This section also tested the computational cost of the method in calculating view angles 

for two different numbers of viewpoints in the same studied urban area to compute obstructed 

skylines. Table 14 shows the total run time, run time per viewpoint for two cases with a different 

number of viewpoints. The total calculation time is in linear relation to the number of 

viewpoints. With 100,000 viewpoints, the method completed the calculation for around 8 

minutes. It is worth mentioning that Python is not necessarily the most efficient programming 

language in terms of computational cost, especially compared to C languages. The 

computational cost of the method can be improved further by using a more efficient 

programming language in the future.  

 

 

Table 14. Run time of the proposed edge angle detection obstruction model 

Number of 

viewpoints 

Total runtime 

(s) 

Runtime per 

viewpoint (s) 

1,000 5.49 0.0055 

100,000 532.02 0.0053 

 

For comparison against ray-trace/ray interception, a ray tracer was implemented in Python 

2.7 on the basis of the Möller-Trumbore ray interception algorithm (Möller and Trumbore, 

2005). It is a fast and popular method for calculating the intersection of a ray and a triangle in 

three dimensions without needing precomputation of the plane equation of the plane containing 

the triangle. Standard codes for implementation can be found in (Scratchpixel, 2018). Using the 

case study area and settings described in Section 3.3, first the average time cost was obtained 

per elementary operation for obstruction detection. As the proposed method and ray 

interception fundamentally have a different approach for obstruction detection, an elementary 
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operation in the proposed method is calculations between a viewpoint and BES points on a 

surface edge whereas an elementary operation in the ray interception method is ray interception 

between a viewpoint and a sky patch where the Tregenza 145 sky was used in this comparison. 

Second, the number of required iterations (elementary operations) for one viewpoint against 

the entire case area was compared for both the methods. In the view angle method, the total 

number of iterations for one viewpoint is the number of surfaces, and in the ray interception 

method it is the product of the number of sky patches and that of the urban surfaces. Table 15 

shows that the proposed method has a slightly lower time cost per iteration and a much lower 

number of required iterations for detecting obstruction than the ray interception method. 

Furthermore, the proposed method uses a very simplified approach for reflection calculation 

that only takes up less than 5% of total calculation time, overall the computational efficiency 

of the proposed method cost is considered to be improved for large-scale urban applications. 

However, it needs to be pointed out that computational cost depends on not only the algorithm, 

but the nature of programming environments, programmer’s proficiency in addition to the 

complexity and scale of a testing urban area. None the less, the comparison provides evidence 

of a better computational efficiency offered by the proposed method against the ray interception 

approach.   

Table 15. Elementary time cost for obstruction determination for one viewpoint. 
 View angle method Ray interception 

Time cost per elementary operation (s) 3.03E-06 3.81E-06 

Number of elementary 

operations(iterations) 
1691 245195 

Total time cost for one viewpoint (s) 0.0051 0.9330 

 

3.6  Summary 

This chapter examined the hypothesis: Simplified, vector-based model, tailored to urban 

applications, predicts accurate solar radiation on urban surfaces to effectively support urban-

scale analysis.  

 The developed simplified vector-based model is texted in sets of comparisons using the 

case study of an urban case in Wuhan, China. The comparison study proved that the new method 

provides reasonably accurate predictions with flexible control settings and fewer model inputs 
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to effectively support large-scale solar analyses. In comparison to RADIANCE, the new 

method yielded predictions with the average differences of 3%, 4%, and 6%, for the low-, 

medium-, and high-density areas, respectively. The second comparison against measurements 

revealed that the method tended to overpredict the irradiance received on surfaces with a high 

sky view factor such as roofs and underpredict that on vertical surfaces with a low sky view 

factor. However, the average absolute differences between predictions and measurements were 

relatively small and of the order of 6% and 5% for horizontal and vertical surfaces, respectively. 

The computational efficiency of the new model was proven to be sufficiently improved in 

comparison to the current ray interception algorithms. The new model greatly reduced the 

iterations required for obstruction calculation that consumes most of the computational load 

and, therefore, greatly reduced the computational cost for large-scale solar simulation.  
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Chapter 4: Relevance of the new model in the urban 

solar energy planning process 

 

 

 

 

 

 

 

 

4.1  Introduction   

The chapter demonstrates the usability of the proposed vector-based method by examining 

the relevance of the developed method in the urban solar energy planning process, specifically, 

in the distributed PV planning process. The two modelling features crucial to the fidelity of 

distributed PV yield prediction at urban scale are a level of fidelity for modelling urban shading 

and solar reflection, and a level of fidelity for modelling PV system operation. Therefore, two 

key modelling features associated with solar potential evaluation are investigated in the solar 

energy planning process: (a) a level of fidelity for calculating urban shading and solar reflection 

and (2) dynamic PV system model.  

 

The relevance of the models with different fidelity levels in decision-making was 

investigated through a case study of an urban area in Wuhan, China under three decision-

making contexts: setting a solar target, place-making, and economic assessment for urban-scale 

distributed PV integration. The chapter examined the hypothesis: Solar analysis with full 
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representation of urban surroundings is necessary for the calculation of urban shading and solar 

reflection to correctly support distributed PV planning. Predictions and decisions by the 

developed method are compared against those of a lower fidelity models to investigate the 

importance of modelling urban shading and reflection with full representation of urban 

surroundings. Additionally, the hypothesis is furthered examined and highlighted by 

investigating the effect of an additional dynamic PV model on decision-making in comparison 

with the effect of the high-fidelity model for urban shading and solar reflection. 

 

Figure 39 illustrates the study framework used to evaluate the effects of the key modelling 

features on decision support for three major decision-making contexts associated with the solar 

planning process.  

 

Figure 39. The study framework. 
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For examination of the level of fidelity of calculating urban shading and solar reflection 

with full representation of urban surroundings, two levels of relatively low- and high-fidelity 

models were selected to account for urban shading and solar reflection from surrounding 

buildings for comparison. For predicting received solar radiation on roofs, a classic model 

(Freitas, et al., 2015) without any consideration of urban shading was chosen as a low-fidelity 

model. As the classic model does not predict substantial shading on vertical walls, its 

applicability has been limited mainly to roofs. As vertical walls suffer a much worse daylight 

obstruction than roofs (Liao et al., 2018), the canyon-based approach (Robinson and Stone, 

2004) was selected to roughly represent urban surroundings for daylight obstruction and 

reflection, as a relatively low-fidelity model for walls. The vector-based model tailored for 

urban applications proposed in the dissertation was selected as a high-fidelity model. The two 

levels of models were deployed in the three decision-making contexts to predict received solar 

radiation on surfaces of interest in a studied area in Wuhan, China. In this comparison, the two 

levels of models use the same static PV model to convert their predictions into PV yield. 

Therefore, differences in the results in this comparison are only due to whether urban shading 

and solar reflection are properly reflected. 

 

For examination of the level of fidelity of a dynamic PV system model, two PV yield 

models were chosen for comparison. The static PV model assumes the PV system performs at 

a constant PV conversion rate regardless of its dynamic working conditions and corresponding 

PV cell operational temperature. In contrast, the dynamic PV model accounts for dynamic 

working conditions and, accordingly, yields dynamic conversion rates. 5 temperature-

dependent PV models were used to generate a range of plausible PV yield predictions as the 

result of dynamic working conditions. In this comparison, the solar radiation predicted by the 

proposed vector-based model was used to evaluate the effect of modelling dynamic PV system 

operation in relation to the effect of the high-fidelity model for urban shading and reflection.   
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4.2  Urban distributed PV planning process  

Distributed PV technology has been rising in urban areas where individual PV systems are 

integrated in buildings instead of a conventional centralized PV station in a distant location. 

The advantage of the distributed PV system in urban areas is that it provides energy directly in 

the building where energy is consumed. As a result, it reduces the need for extending 

infrastructure to transmit PV yield through long distances to consumers and avoids line losses 

of electricity during distribution. Besides, the distributed PV system can be grid-connected to 

sell the excess PV yield to the city grid as part of the urban energy system, and thus reduces the 

need of investing an energy storage system individually at the individual building level.  

 

Models for solar potential evaluation at urban level have been developed to inform 

decision makings during various design phases for PV integration in urban buildings. For 

example, urban solar maps have been used to assist in selecting locations with high solar 

availability for PV installation by providing information about predicted PV yield, estimated 

investment cost, and potential carbon emission reduction (Mapdwell, 2018; Berlin Solar Atlas, 

2018; Solarkataster, 2018). Some researchers further incorporated additional parameters, such 

as historical urban data including building types and ages for a comprehensive evaluation of 

solar applications in urban environment (Amado and Poggi, 2014; Berlin Environment Atlas, 

2018). Researchers have also explored the electricity network compatibility to adopt the 

predicted PV yield electricity in urban areas. Wall (2012) generated hourly and monthly PV 

yield predictions and coupled them with three different distribution grids at one planned urban 

area in Sweden to identify the maximum PV hosting capacity and accordingly the resulting 

overload capacity given a maximum PV yield potential in the urban area. These studies above 

have demonstrated the importance of the methods in evaluating solar projects for a large 

audience of planners, developers and property owners in terms of economic and environmental 

benefits.   

 

In the process of solar planning and design, various methods have been used to support 

solar potential evaluation. Kanters and Wall (2016) described a process map of solar energy 
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planning for buildings in the urban environment. The planning process consists of the following 

phases: political phase, urban design phase, building design (new buildings) and renovation 

(existing buildings) phase, implementation and monitoring phase. Based on a vast literature 

review on existing research and projects, Kanters and Wall (2016) pointed out that different 

levels of tools are necessary to provide useful information in different design phases. They also 

highlighted that the level of detail in the analysis model required for design phases increases as 

the design process goes from top (e.g., political phase and urban phase) to bottom (e.g., 

individual building and implementation phase).  

 

4.2.1 Political phase   

For the political phase that often requires solar potential at a national or regional scale, one 

of the key interests is the total amount of solar yield at large scale rather than individual building 

scale. For instance, the Chinese government set the solar target of reaching installed PV 

capacity of more than 110 GW, in which 60 GW should be distributed PV by 2020 in its 13th 

five-year plan for energy (Gosen et al., 2017). However, the plan does not specify how the 

national goal is broken down to the lower provincial and city levels. EU proposed a 7 Mtoe (1 

Mtoe is equivalent to 11,630 GWh) target for total PV installation by 2020 (INEN, 2013). In its 

renewable energy directive, EU also set up a target in which renewable energy will provide 20 

and 27 percent of the total energy consumption by 2020 and 2030, respectively (EU, 2009), 

along with individual renewable energy targets for all EU countries in their national action plans 

(Beurskens et al., 2011). By estimating energy demands and exploring possible alternative 

renewable energy options for different sectors in each EU member, the EU established the 

shares of each renewable technology responsible to meet the final targets.  

 

Several research studies have performed analyses for solar potential evaluation at large 

scale. Wiginton et al. (2010) evaluated the potential of rooftop PV systems in a large-scale 

residential area by comparing the total estimated electricity demands against the total peak PV 

yield calculated on the basis of annual meteorological solar radiation data for roofs and static 

PV conversion rates of different PV technologies. The study showed the relevance of solar 
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potential analyses to inform policy-making decisions. Particularly, the study pointed out one 

key consideration for large-scale deployment of rooftop PV is prioritisation of roofs for PV 

integration with the additional consideration of the existing city grid capacity to receive 

additional PV yield. In the European Commission, Šúri et al. (2007) estimated the required PV 

capacity for producing a certain amount (e.g., 1%) of total energy consumption through PV 

systems installed on both roofs and facades in the EU member states. They used the tool r.sun 

(Hofierka and Suri, 2002) for predicting solar radiation without consideration of urban shading 

and corresponding PV yield with a static PV performance ratio of 0.75 given the output power 

of a PV module operating at standard test condition. This study (Hofierka and Suri, 2002) 

predicted the theoretical potential of PV yield at both state scale and regional scale to identify 

the potential region for future PV installations while taking into account geographical 

variability. Byrd et al. (2013) investigated the maximum PV potential using the simulation tool 

Ecotect (Roberts and Marsh, 2001) with a static PV conversion rate for building envelopes in 

study areas located in the central business district (CBD) and low-density suburbs in Auckland, 

New Zealand. The study demonstrated that the energy generation capacity designed on the basis 

of PV yield analysis contributes to reducing the electricity load of a city, supplying energy for 

a mixture of building types and the charging of electric vehicles, and reducing peak electricity 

demand.  

 

4.2.2 Urban design phase 

    In the urban design phase, the key task is “place-making: creating a vision for an area and 

then deploying the skills and resources to realise that vision” (Yeang, 2000). In the context of 

integrating PV, place-making can be interpreted into two types of decision making; (1) for new 

development, it is optimisation of urban design to maximise solar availability by using zoning 

methods to control the physical characteristics of developing landscapes by imposing 

restrictions on variables such as maximum building height and density, extent of open space, 

and land use types and activities (Wilson et al., 2003); (2) for existing urban areas, it is 

identification of the most potential areas for solar applications and integration. For type (1), 

several studies (Cheng et al, 2006; Sarralde et al., 2015; Compagnon, 2004) investigated the 
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relationship between urban form and solar potential and found that urban parameters related to 

density such as plot ratio, building height, and site coverage strongly impact solar availability. 

Some studies developed methods of optimising urban form and building layouts to increase the 

solar potential of a site (Montavon, 2010; Amado and Poggi, 2014; Kanters and Horvat, 2012). 

Tools such as Solar Envelop are based on the pixelized sunlight shadow volume method for 

forming and optimising a group of buildings’ envelopes over urban sites in terms of the least 

obstruction of sunlight to the designing buildings and the surrounding buildings (Knowles, 

2003; Morello and Ratti, 2009). For type (2), solar maps have been developed to assist designers, 

developers, and property owners in PV investment decision-making by providing information 

about the solar energy potential, economic and environmental gains of a targeting area for PV 

installation (Mapdwell, 2018; Berlin Solar Atlas, 2018; Solarkataster, 2018). So far, existing 

solar maps are limited to provide solar potential evaluation of roofs as solar potential evaluation 

of walls and facades requires detailed consideration of urban shading and reflection. Several 

studies have developed analysis tools that predict solar irradiance on walls and façades in urban 

environments with consideration of mutual shading (Redweik et al., 2013; Lindberg et al., 

2015). Existing tools such as Ladybug and Honeybee, using RADIANCE (Compagnon, 1997) 

as the simulation engine, and Solar Analysis in AutoCAD (formerly known as EcoTect) based 

on ray-tracing method were developed to generate received solar radiation on all building 

surfaces on the basis of hourly weather data and detailed urban geometry.  

 

4.2.3 Building design phase 

In the building design and renovation phases, performance-based design (Lewis, 2004) for 

sustainable buildings requires a detailed analysis of PV system performance and economic 

assessment. In the phases, the payback time of the PV investment is a key interest for developers 

and building owners to decide their investment in PV systems. Since the PV conversion rate 

directly determines the amount of electricity yield from a certain amount of received solar 

radiation, factors affecting the conversion rate have been considered in the economic analysis 

of PV investment at the individual building scale. Among all variables of PV system 

characteristics, an increased PV cell operational temperature during PV operation was found to 
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be the second most influential factor that creates PV yield losses (NREL, 2018), following the 

shading factor due to surrounding buildings. Other factors such as PV inverter losses, cable 

losses and solar loss due to improper maintenance (e.g., dust accumulation on the solar panel) 

were found to be less influential.  

   

4.2.4 Summary of decision-making contexts selected for analysis   

    Following the solar planning roadmap proposed by Kanters and Wall (2016), three 

decision-making contexts were selected to evaluate the role of the new method: (a) solar targets: 

setting a solar target of a studied urban area on the basis of its maximum solar potential, (b) 

place-making: prioritising buildings and locations for an intended PV integration, and (c) 

economic assessment: assessing the economic viability of PV integration for developers, 

individual property owners and designers.  

  

Table 16 lists performance indicators used for the three decision-making contexts. For 

evaluating the maximum solar potential, the total amount of annual PV yield potential (GWh) 

over the urban area of interest was selected as the indicator. As mentioned earlier in the literature 

review, the percent of energy production to the total energy consumption has been used as an 

indicator in many policies worldwide. The total PV yield potential is an essential information 

to calculate this indicator. For place-making, annual PV yield per area (kWh/m2) on building 

surfaces, including both roofs and walls, was used to identify and prioritise the most potential 

buildings in a studied urban area for PV installation. For economic assessment, a common cost-

effectiveness measure, simple pay-back time (year) for returning initial investment, was used 

to inform the economic viability of intended PV integrations.  
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Table 16. Typical decision-making contexts and associated decision indicators. 

Decision-making 

contexts 

Decisions  Indicator  

Solar targets  Maximum PV potential  The total amount of annual PV 

yield (GWh)  

Place-making  Prioritised buildings for PV 

installation  

Annual PV yield per area 

(kWh/m2)  

Economic 

assessment 

Economically viability of an 

intended PV installation on 

buildings 

Simple payback time (year) 

 

An urban area located in the Hankou district in Wuhan, China was used as a studied area 

to compare the results generated by the selected models and their effects on decision-making 

in the three contexts. Figure 40 shows the studied area that spans 320,000 m2 (800m×400m). 

Urban geometry was simplified and assumed to be flat as slope roofs or curved envelopes are 

not common in the chosen area. This studied area represents a medium-to-high density form of 

typical urban layouts commonly seen in Asian countries.   

 

 

Figure 40. Urban geometry of the studied area. 
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4.3  Radiation prediction model  

A key part of solar potential evaluation in urban areas is a solar radiation model responsible 

to predict solar irradiance on individual urban surfaces. Existing models can be grouped into 

three types in terms of their modelling considerations: (a) no consideration of urban shading; 

(b) crude consideration of urban shading and solar reflection among buildings with a simplified 

representation of urban morphology; (c) high-fidelity urban shading and solar reflection with 

accurate representation of surrounding buildings.  

 

4.3.1 Classic model 

Classic approaches (Fortin et al., 2008; Freitas et al., 2008; Besharat et al., 2013) that 

ignore urban shading and solar reflection from surrounding buildings have been long used for 

a quick estimation of PV yield on roofs where usually shading and reflection is less significant 

than those on walls. For a flat roof, the received solar irradiance equals to global horizontal 

irradiance Ig that is directly provided in most of the available weather files. The global 

horizontal irradiance (GHI) is calculated through the following expression (Freitas et al., 2015): 

 

Ig = Inorm CosZ +Idh                                                                                (10) 

 

where Inorm is the direct normal irradiance or sometimes referred to as direct normal 

incident, Idh is the diffuse horizontal irradiance, and Z is the Sun׳s zenith angle. If tilted roofs 

are the surfaces of interest, usually an additional isotropic sky radiance model is applied to 

calculate the received diffuse irradiance from the partly visible sky and ground reflection 

(Freitas et al., 2015). As roofs are flat in the studied urban area, the classic model used in the 

case study is therefore in its simplest form. Nonetheless, for all urban surfaces, the model does 

not consider urban shading and solar reflection from the surrounding buildings and, therefore, 

represents the simplest approach in the studied models.  
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4.3.2 Canyon-based model 

Several studies (Arnfied, 1990; Robinson and Stone, 2004; Bozonnet et al., 2005) adopted 

the concept of an urban canyon that approximates the urban form for calculating obstructions 

and reflected radiation due to nearby buildings in urban environment. The canyon-based model 

assumes that buildings that contribute to radiation obstruction and reflection have the same 

height without skyline variation. They only consider the surrounding buildings within the 

canyon while ignoring variation in the building height in an urban area. A key assumption in 

these studies is that radiation obstruction and reflection in regard to a view point is calculated 

by translating 3-dimensional urban surroundings into a 2-dimensional canyon elevation. This 

gives a great advantage in terms of model simplicity as there is no need to model and process a 

complete 3D urban geometry and, therefore, greatly reduces the modelling and computational 

cost. Robinson and Stone (2004) described a canyon-based method in which an obstructing 

wall from a view point is calculated in terms of urban horizontal angle (UHA) u for calculating 

solar irradiance given a Perez’s anisotropic sky (Figure 41). The method computes diffuse 

irradiance Idb on a plane sloped with an angle γ and nearby obstructions defined as u as follows: 

 

Idiff = Idh[(1-F1) [1 + cos(γ + u)]/2 + B F1a0/a1 + S F2 sin γ]                     (11)  

 

where F1, F2 are Perez’s coefficients responsible for the brightness of circumsolar and horizon 

region in relation to that of sky background, a0 and a1 are the relative solid angles of the 

circumsolar region (refer to Perez’s work (Perez et al., 1993) for details). B is the Boolean 

operator that accounts for whether the solar disc can be seen from a view point, S is a scaling 

coefficient according to the proportion of the Perez’s horizon band. A detailed description of 

the model can be found in (Robinson and Stone, 2004). As the procedure for detecting an 

obstructing wall (e.g. adjacent obstructions) was not clearly provided, a horizontal azimuth 

band of 1/9 𝝅 (i.e., 1/18 of the sky azimuth 2 𝝅) was used in the case study to calculate the 

UHA for each view point.  
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Figure 41. Concept of using an urban canyon for nearby obstruction and reflected radiation. 

(Image adapted from Robinson and Stone, 2004) 

 

4.3.3 High-fidelity vector-based model 

3D-vector-based approach is based on a full representation of surrounding buildings and 

allows for an accurate calculation of urban shading and solar reflection in a unified manner as 

3D points with vector information (i.e., knowing the facing direction) do not need to be pre-

classified and can be passed on for calculating daylight obstruction and reflection in the exact 

same manner. For instance, the previously mentioned tool, RADIANCE, uses an urban 

geometry model in a complete 3D format with information of surface vectors and uses 

computational techniques such as ray tracing or ray interception for complex calculation of 

detailed obstruction and reflection. However, as such a high-fidelity approach tends to cause an 

expensive computational cost, the simplified radiosity algorithm was developed by Robinson 

and Stone (2004) to improve computational efficiency for solar analysis in urban contexts.  

 

The model proposed in the dissertation is chosen as the high-fidelity model that considers 

urban shading and solar reflection with an accurate representation of surrounding buildings. 

Detailed model description can be found in Chapter 2.  

 



 

CHAPTER 4: RELEVANCE OF THE NEW MODEL  
IN THE URBAN SOLAR ENERGY PLANNING PROCESS 

- 90 - 

 

4.4  PV system model 

Another part of the model for solar potential evaluation is a PV system model for 

estimating PV output power on the basis of PV system operational characteristics. Existing PV 

system models can be grouped into two types: (a) static PV system models and (b) dynamic PV 

system models. The PV conversion efficiency decreases when the PV cell operational 

temperature rises due to heat gains from the sun and the surrounding ambient environment. 

Radziemska (2003) found that different PV operational temperatures affect the amount of PV 

yield as much as 30% in extreme conditions. However, large-scale solar planning projects often 

deploy static PV system models that use pre-determined static PV yield conversion rates 

without considering dynamic PV operational characteristics depending on PV working 

conditions. Dynamic PV system models, on the other hand, are based on either physic-based or 

statistical models to calculate the dynamic PV conversion rate according to the PV cell 

operational temperature.  

 

4.4.1 Static PV model  

Static PV models assume the PV module operates at a fixed temperature all the time 

regardless of dynamic PV working conditions. Using a constant temperature always yields a 

fixed PV conversion rate throughout the year. The most commonly used constant temperature 

models are standard test condition temperature (STC) and nominal operational cell temperature 

(NOCT). 

Standard test conditions are specific laboratory conditions that represent peak sunshine on 

a surface directly facing the sun in a day without clouds. PV modules are tested under STC as 

follows: irradiance of 1000W/m2; a surface temperature of 25℃; a light spectrum that closely 

simulates sunlight; air mass at 1.5G given a standard temperature and water vapour content 

(Munoz et al., 2011). These idealized conditions do not reflect real PV system operation 

conditions. Indeed, PV systems often operate at a different temperature due to the heat received 

from the sunlight and heat exchange with surrounding ambient environments. An alternative 

method, NOCT, was established to better reflect actual PV operation conditions. A NOCT is 
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measured under a test irradiance of 800 W/m2, which takes into account the fact that PV 

modules don't always face the sun. The test conditions also consider atmospheric or geographic 

conditions that may diminish sunshine. Heat convection is also considered with a wind speed 

of 1 m/s at 20°℃ ambient temperature (Koehl, et al., 2011). Under the conditions, the measured 

cell temperature of a testing PV module is then defined as NOCT, which is reported by PV 

manufacturers as part of manufacturer’s catalogues. The reported NOCT is a lot higher than 

STC and common NOCT values are between 40℃ to 50℃ (HOMER, 2017). 

 

Although NOCT was developed to reflect more realistic PV cell operational temperature 

than STC temperature, it ignores actual dynamic weather conditions such as solar radiation and 

ambient temperature and, as a result, undermines the predication accuracy under dynamic 

weather conditions that vary from the assumed standard conditions. A study measured the PV 

cell operational temperatures of four different types of insulated PV panels for 9 months in 

Gaithersburg, Maryland, and revealed the unsuitability of using NOCT to predict the PV cell 

operational temperature under varied irradiance conditions as shown in Figure 42. (Davis et al., 

2002). NOCT did not represent the dynamic behaviour of PV systems, and the discrepancy 

between NOCT and measured temperatures was up to 20 °C. As STC is still dominantly used 

in the industry and studies, the STC was selected as a static model, and obtained a pre-

determined static PV conversion rate of 0.13 on the basis of the STC value for the case study.  

 

Figure 42. Temperature difference using NOCT compared to measurements. (Davis et al., 

2002) 
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4.4.2 Dynamic PV model  

A key element for the prediction of dynamic PV yield is predicting PV cell operational 

temperature that impacts PV system efficiency. Different models, ranging from high-fidelity 

physics-based models to simplified models, have been developed to predict PV cell operational 

temperature (Skoplaki et al., 2009; Dubey et al., 2013). Existing models can be grouped into 

two types: (1) physics-based models, and (2) statistical models. Physics-based methods are the 

most studied in the field, and a large number of models have been published in existing research 

papers. These models are based on a simplified form of the physical model and include 

correlation coefficients that capture the effect of key physical variables to simplify certain parts 

of the physical model. Statistical models, on the other hand, require fewer inputs as they are 

typically based on the simplest mathematical equation, often derived from the physical model, 

and derive unknown model coefficients by fitting the model to the measured PV yield data. 

Some of the latest statistical models use artificial intelligent methods to predict the PV cell 

operating temperature. Therefore, a key difference between the physics-based models and the 

statistical models is whether input parameters of the specific PV module are required. Physic-

based models either demand detailed parameters such as solar transmittance and solar 

absorptance of the PV module, or require semi-empirical coefficients depending on the specific 

PV modules. Meanwhile, statistical models do not require any input of PV module-related 

parameters and usually only demand inputs of the surrounding weather conditions. Further 

discussion of these models and methods will be provided in the subsections.  

 

Before investigating different PV cell operational temperature models, it is worth 

describing the role of PV cell operational temperature in computing the dynamic PV output 

power as defined in the equation (12): 

 

P = 𝐺்  𝛽௥௘௙ (1 +𝜂௥௘௙൫𝑇௖ − 𝑇௥௘௙൯) (12) 
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where, GT is the received solar irradiance, 𝛽ref is the PV conversion rate under the reference 

(STC) temperature (Tref = 25℃). 𝜂ref is the temperature coefficient of the PV module. Common 

values for 𝛽ref and 𝜂ref are summarised in Table 17, Tc is the PV cell operational temperature 

calculated by the models compared in this study.  

 
 
Table 17. PV module properties  

 

 Tref 𝜂ref 

polycrystalline-silicon PV 13.0% -0.48 % 

amorphous-silicon PV 5.5% -0.20% 

(Values provided through a survey by HOMER (2017))   

 
 

4.4.2.1 Physics-based methods 

Physics-based models have been developed to compute dynamic PV operational cell 

temperatures. For a detailed analysis of PV systems, high-fidelity dynamic simulation models 

have been used to accurately predict PV surface temperatures (Lobera and Valkealahti, 2013). 

However, for urban-scale analysis, relatively simple physics-based models are more suitable 

given the scale of analysis and limited data about individual buildings. Thus, three simplified 

physics-based models on the basis of the steady-state energy balance concept were investigated. 

 

Skoplaki et al. (2008) developed a physics-based algorithm to calculate actual PV cell 

operational temperatures in relation to NOCT that is measured and provided by the 

manufacturers’ catalogues. They developed the formula below, adopted by many studies, that 

predict PV cell operational temperatures on the basis of physical properties of the cell and 

weather conditions (i.e., ambient temperature, solar irradiance, and wind speed): 

 

𝑇௖ =
𝑇௔ + ቀ

𝐺்
𝐺ேை஼்

ቁ
ℎ௪,ேை஼்

ℎ௪
൫𝑇ேை஼் − 𝑇௔,ேை஼்൯[1 −

𝜂௡௘௙

𝜏𝛼
(1 + 𝛽௡௘௙𝑇௥௘௙)]

1 −
𝛽௡௘௙𝑇௥௘௙

𝜏𝛼
ቀ

𝐺்
𝐺ேை஼்

ቁ (
ℎ௪,ேை஼்

ℎ௪
)൫𝑇ேை஼் − 𝑇௔,ேை஼்൯

 

 

(13) 
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Where, GNOCT and Ta,NOCT denote standard settings used to measure NOCT; the first refers to 

the irradiance of 800W/m2, and the latter refers to the ambient temperature of 20℃. Ta,NOCT 

indicates NOCT (46.5 ℃ used in the case study). The solar transmittance of the PV panel is 

denoted as 𝜏, and the solar absorptance of the panel is denoted as α. α𝜏 value is commonly 

assumed to be 0.9 (Duffie and Beckman, 1991). GT indicates the magnitude of solar irradiance 

on the PV panel, which can be obtained by daylight simulation or provided by existing solar 

maps. Ambient temperature Ta is obtained from publicly available hourly weather data, but 

using this data assumes that ambient temperature in the entire urban area is the same. hw 

indicates convective heat transfer coefficient, which heavily depends on the wind speed. 

Among a wide range of convective heat transfer coefficient equations in the literature (Palyvos, 

2008), Skoplaki et al. (2008) used a linear regression model that correlates the coefficient to 

wind speed (Loveday and Taki, 1996) as below: 

 

hw= 8.91 + 2.0Vf (14) 

 

where Vf is the free-stream wind speed. Similar to the ambient temperature, publicly available 

wind speed data for the meteorological region corresponding to the case study area is used for 

the entire urban area. Hence, the equation (14) only captures the effect of regional weather 

conditions on the PV performance, but does not present different PV performances within the 

urban area due to varying microclimate conditions.  

 

Another model, simplified from the formula above, was developed by Duffie and 

Beckman (1991) as defined in equation (15). The model assumes the same convective heat 

transfer coefficient as the nominal conditions throughout the year. Except this assumption, the 

formula is almost identical to the Skoplaki’s model, and presents the effect of the PV system 

characteristics, solar irradiance, and ambient temperature on the PV operational temperature. 

Further description of the model is provided in (HOMER, 2017).  
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𝑇௖ =
𝑇௔ + ቀ

𝐺்
𝐺ேை஼்

ቁ ൫𝑇ேை஼் − 𝑇௔,ேை஼்൯[1 −
𝜂௡௘௙

𝜏𝛼
(1 + 𝛽௡௘௙𝑇௥௘௙)]

1 −
𝛽௡௘௙𝑇௥௘௙

𝜏𝛼
ቀ

𝐺்
𝐺ேை஼்

ቁ ൫𝑇ேை஼் − 𝑇௔,ேை஼்൯

 

 

(15) 

 

The third chosen model is another semi-empirical model with a Ross coefficient: 

 

𝑇௖ = 𝑇௔ + 𝑘𝐺் (16) 

 

In this linear expression, the Ross coefficient k expresses temperature rises above the ambient 

temperature due to the increasing solar flux (Ross, 1976): 

 

𝑘 = 𝛥(𝑇௖ − 𝑇௔)/Δ𝐺் (17) 

 

The Ross coefficient value suggested by existing studies ranges between 0.02–0.04 

Km2/W (Buresch, 1983; Ross, 1976). An IEA study provides standard Ross coefficient values 

depending on the level of integration and mounting types (Nordmann and Clavadetscher, 2003). 

Table 18 lists typical coefficient values for different mounting types provided by the IEA study. 

Table 18. Standard values of the Ross coefficient k for various mounting types 

PV array mounting type k (Km2/W) 

Free standing 0.021 

Flat roof  0.026 

Sloped roof: well cooled  0.020 

Sloped roof: not so well cooled 0.034 

Sloped roof: highly integrated, 

poorly ventilated 
0.056 

Façade integrated: transparent PV 0.046 

Façade integrated: opaque PVs  0.054 
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4.4.2.2 Statistical models  

In general, existing statistical models can be categorised into three types: artificial 

intelligence methods, semi-empirical models, and linear models. Artificial intelligence methods 

include artificial neural networks (Ceylan et al., 2014) or adaptive neuro Fuzzy inference 

system (Bassam et al., 2017). The main advantages of these methods are their versatility to 

capture complex trends, but as they are black-box models, they do not explicitly show 

relationships between explanatory variables and the dependent variables. Semi-empirical 

methods are created by estimating the model coefficients associated with a simplified version 

of the physics-based model. The simplified formula reduces the number of explanatory 

variables such as PV material properties and system-dependent properties while still keeping 

the intrinsic relationships between the key environmental variables and PV cell operational 

temperature. Linear models, on the other hand, are the simplest approach that captures linear 

trends between the key environmental variables and PV cell operational temperature.     

 

Two statistical models were chosen in this dissertation for comparison. The first one is the 

Skoplaki’s semi-empirical model, simplified version of the formula (13) mentioned previously: 

 

𝑇௖ = 𝑇௔ + (
0.32

8.91 + 2.0𝑉௙
)𝐺் (18) 

 

The formula correlates the PV cell operational temperature to the three environmental 

variables:  ambient temperature (Ta), free-stream wind speed (Vf), and solar irradiance 

received on the PV cell (GT). The temperature estimated by the model showed a difference of 

less than 3 ℃ in comparison to its original formula (13) (Skoplaki et al., 2008). However, as 

this statistical model was derived on the basis of the data collected from free-standing PV 

systems, its applicability to other forms of PV mounting needs to be investigated.  
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The second statistical model chosen in this study is Muzathik’s model (Muzathik, 2014): 

 

𝑇௖ = 0.943𝑇௔ + 0.0195𝐺் − 1.528𝑉௙ + 0.3529 (19) 

 

The model correlates Tc with the same set of three environmental variables. It was 

developed by fitting a linear regression model to measured data from a polycrystalline silicon 

PV module mounted on the wooden frame on a flat roof in Malaysia. This model was 

demonstrated to show less than 1.5 ℃ difference compared to measurements (Muzathik, 2014). 

However, unlike the semi-empirical models, the performance of the linear regression model 

without explicit expression of underlying physics highly relies on the training data used for 

model development. Hence, the applicability of the linear model to other climate conditions 

needs to be tested. 

 

4.4.3 Comparison among different PV cell temperature models 

Table 19 summarises the dynamic PV models described in the last section. The two 

different sets of methods predicted PV cell operational temperature Tc on the urban surfaces 

using the case urban area described in section 4.2.4. Results of the predicted PV cell operational 

temperatures are discussed in this section.  

 

Table 19. Existing models and methods  
 

Type Model Reference 

Physics-

based 

Skoplaki’s model (a) (Skoplaki et al., 2008) 

HOMER model (HOMER, 2017) 

Empirical Ross coefficient method (Ross, 1976) 

Statistical  Skoplaki’s model (b) (Skoplaki et al., 2008) 

Muzathik’s model (Muzathik, 2014) 

 

Figure 43 shows the average irradiance at noon throughout the year (365 noons) for 

individual roofs and walls in the studied urban area, predicted by the proposed vector-based 

radiation prediction model. The noon time represents the peak solar irradiance, which is used 
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as standard test conditions for constant temperature models. The standard solar intensity 

conditions (i.e., 1000 W/m2 for STC and 800 W/m2 for NOCT) are far higher than the range of 

solar radiation for roofs and walls in the studied urban area. More interestingly, the urban 

shading caused by surrounding buildings results in wide variation in the received irradiance for 

both roofs and walls. Especially for walls, received irradiances vary from 50W/m2 to 400W/m2. 

Differences in the received irradiance for roofs are relatively smaller since roofs are usually 

less shaded than walls.  

 

Figure 43. Average irradiance on all roofs and walls at noon.  

 

Given these various irradiance conditions, PV cell temperature was calculated using both 

the static model and dynamic model. Figure 44 shows the box plot of PV cell temperature of 

all building surfaces at noontime, calculated by among the different methods. Results show that 

NOCT is much higher than all the other predictions while STC is close to the average 

temperatures (denoted as *) calculated by the non-constant methods. Among the non-constant 

methods, Empirical Ross computes the highest value with an average of 28.2℃, followed by 

HOMER (Tc=25.9℃) and Skoplaki’s (b) (Tc=24.7℃). Muzathik linear model yields much 

lower values (Tc=18.72℃) than the other methods. This may be due to the inability of the 
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statistical model to extrapolate from the Malaysia weather data used for model development to 

Wuhan weather conditions. In addition, significant differences are observed in the range of PV 

cell temperatures predicted by the non-constant methods. Empirical Ross method results in a 

difference of 20℃ in the PV cell temperature whereas the other methods result in a difference 

of around 10 ℃. Since the same hour data of ambient temperature and wind speed is used for 

the entire studied area, differences in the predicted PV cell temperature at noon time are due to 

the differences in the received solar intensity as a result of different orientations and mutual 

shading conditions. However, for monthly and yearly predictions, the temporal variation in the 

ambient temperature and wind speed can be accounted for the prediction of the cell temperature 

depending on the choice of the model.  

 

Figure 44. predicted PV cell operational temperature of all urban surfaces at noon.  

 

As roofs and walls receive quite different levels of irradiance, results of predictions are 

presented separately for roofs and walls. PV cell temperature predictions at noontime for the 

roofs are shown in Figure 45. All the non-constant methods except Muzathik method yields cell 

temperatures approximately 5 to 10 Co higher than STC, but still much lower than NOCT. For 

the roofs, the variation in the cell temperature is very small (around 3 oC). The differences in 

the average PV cell temperature predicted by the non-constant methods are also very small. The 
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prediction results for the walls are shown in Figure 46. As the walls take up more than 70% of 

the total surfaces, the predictions of the PV cell temperature for the walls are quite similar to 

the overall results. A significant variation in the PV cell temperature is observed for the walls 

due to the shading effects of surrounding buildings in urban environments. In addition, 

Empirical Ross method results in a much wider range of the cell temperature predictions than 

the other methods as it uses a different coefficient depending on the PV mounting type. In 

general, STC seems a reasonable value used to predict PV peak yield for walls, but for roofs, 

neither STC nor NOCT reflects the results calculated by the non-constant models.   

 

 

 

 

Figure 45. predicted PV cell temperatures of roofs at noon.  
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Figure 46. predicted PV cell temperatures of walls at noon.  

 

So far, methods in terms of their predictions for the peak irradiance period were compared. 

However, one of the key performance indicators used for urban-scale solar analysis is the total 

PV yield throughout the year. Hence, monthly PV cell temperature and PV output power are 

used for further analysis. Figures 47 and 48 illustrate the monthly average PV cell operating 

temperature predictions during day time. The pattern of monthly temperature variations is quite 

similar between roofs and walls. However, the cell temperatures for roofs are constantly higher 

(2 - 8oC) than those for walls. The magnitude of differences in the temperature prediction 

between different methods for both walls and roofs is similar: approximately 7 oC and 10 oC 

difference for the summer and winter, respectively. In general, differences in the monthly 

prediction by the non-constant methods are much larger than the peak-time prediction. This is 

expected as solar radiation intensity, ambient temperature, and wind speed substantially vary 

depending on the season. Except for Muzathik’s method, all temperature-dependent methods 

compute similar PV cell operating temperature predictions. Muzathik’s method computes lower 

temperatures than the other methods, which are even lower than the ambient temperature. PV 

cell operating temperature is very unlikely to be below ambient temperature during day time 

due to solar heat gains. As Muzathik’s method is a linear regression model based on the hot 
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climate data, it does not properly predict the cell temperature for other locations with milder 

climate conditions.  

 

Figure 47. Monthly average PV cell temperatures for roofs. 

 

Figure 48. Monthly average PV cell temperatures for walls 

 

Figures 49 and 50 illustrate the predicted monthly average PV output powers (W/m2) for 

roofs and walls, respectively. It is obvious that PV power outputs for roofs are a lot higher than 

for walls if one assumes all walls, including heavily shaded ones, are implemented with PV. 

However, it does not mean that walls are not suitable for PV applications as a considerable 
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number of walls receive sufficient irradiance (Figure 43). This suggests that the solar potentials 

of walls should be carefully examined with consideration of the mutual shading for the selection 

of wall areas and the design of PV systems. Owing to the low average irradiance on walls, 

different methods do show very little difference in the PV power prediction. However, for roof 

predictions, they result in the difference, ranging between 4 to 10 W/m2. In general, STC yields 

PV power predictions close to the non-constant methods except the summer season where STC 

prediction is higher than the others. As NOCT uses a much higher cell temperature than the 

non-constant methods, it substantially under-predicts the PV yield in comparison to the non-

constant methods. Differences in the PV power predicted by the different non-constant methods 

are approximately between 1 - 4 W/m2. The differences are smaller during the winter than 

during the summer.  

 

 

Figure 49. Monthly average PV yields for roofs 
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Figure 50. Monthly average PV yields for walls 

 

Figure 51 and 52 show the relationship between and two key environmental variables (i.e., 

ambient temperature and received irradiance) and the PV cell temperature, respectively, using 

the Skoplaki’s model (a) as an example. Each plot presents the average cell temperature 

predictions of all urban surfaces in the studied area at noon (i.e. 365 data points). The model 

showed highly positive correlations between the ambient temperature and the PV cell 

temperature. Indeed, as PV modules work in the outdoor environment, convective heat transfers 

between the air and PV panels significantly impact the PV cell temperature. A positive 

correlation was seen between the received irradiance and PV cell temperature due to part of the 

received solar radiation heating up the PV cell. However, the magnitude of this correlation was 

smaller than that of the ambient temperature. It is worth mentioning that the typical weather 

file recorded in a weather station was used as the ambient temperature without the consideration 

of microclimate conditions in the urban area. Nevertheless, the results highlight differences 

between the static and dynamic PV models in taking into consideration the dynamic working 

conditions of a PV system.  
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Figure 51. Relationship between ambient temperature and predictions of PV cell temperature 

generated by the Skoplaki’s model (a). 

 

 

 

Figure 52. Relationship between received irradiance and predictions of PV cell temperature 

generated by the Skoplaki’s model (a). 
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Both the Static PV model (i.e., constant temperature) and Dynamic PV model (i.e. physics-

based and statistical methods) were compared in terms of the PV cell operating temperature 

and PV electricity yield prediction. STC yields the monthly PV power prediction in good 

agreement with the non-constant methods but over-predicts the monthly PV power during the 

summer time. On the other hand, as NOCT was much higher than PV cell temperatures 

predicted by the non-constant methods, it substantially under-predicted the monthly PV yield 

throughout the year. The non-constant methods resulted in quite similar results except 

Muzathik’s method, which highlighted the usefulness of maintaining underlying physics in a 

simplified empirical model. Results also showed the predicted PV cell temperature was highly 

correlated to ambient temperature and considerably correlated to received solar radiation. In 

general, the case study showed relatively significant differences in the PV cell temperature 

prediction but smaller impacts on the PV output power. 

     

4.5  Comparison in decision-making contexts 

This section compares predicted performance indicators and corresponding decisions 

derived by the chosen models in the three decision-making contexts. The first part of the section 

investigates the relevance of the high-fidelity urban shading and solar reflection model on 

decision-making, and the second part investigates the relevance of the dynamic PV system.  

 

4.5.1 Selected models for comparisons 

Table 20 summarises the list of models used for comparison and their key data 

requirements.  

 

Three solar prediction models are chosen to represent two levels of model fidelity. All 

solar radiation models require basic solar measurements, including global 

horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance. They are 

typical data commonly accessible from the current weather files such as TMY2/3. Both the 

canyon-based model and vector-based model require an anisotropic sky model for generating 

radiance inputs across the skydome, and both use the Perez’s all-weather sky model (Perez, et 
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al., 1993). A key difference between the two models is that the canyon-based model only 

demands partial urban geometry information such as canyon-related angles of an opposing 

street from viewpoints of interest while the vector-based model requires a complete 3D urban 

geometry with surface vectors to properly account for urban shading and solar reflection. 

 

As regards the PV yield model, both static and dynamic models require received solar 

radiation as the base value for converting solar radiation into PV yield. STC was chosen as the 

static model. The static model only requires a pre-determined static PV conversion rate, and 

typical conversion rates are those measured under the standard test condition assuming the PV 

panel operating at 25℃ (STC model). In contrast, the dynamic model embraces the dynamic 

PV cell operational temperature due to heat gains in the PV cell and consequently changing the 

conversion rate. As different dynamic PV models resulted in a varying range of PV cell 

temperatures as the previous section has suggested, all the five dynamic PV models discussed 

in the previous section were used to compute the plausible range of PV yields with 

consideration of dynamic working conditions for assessing maximum PV potential. However, 

one deterministic PV output generated by Skoplaki’s model (a) was used for place-making and 

economic assessment decision contexts.   
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 Table 20. List of models and their key data requirements. 

Solar radiation model  Key data requirements for model inputs 

Low-

fidelity 

 

High-

fidelity 

Classic model  

(for roofs) 

(1) Solar measurements*  

(2) Isotropic sky** 

(3) Roof tilt angle 

Canyon-based model  

(for walls) 

(1) Solar measurements*  

(2) Anisotropic sky diffuse radiance  

(3) Urban canyon information  

Proposed vector-based model  

(for all surfaces) 

(1) Solar measurements*  

(2) Anisotropic sky diffuse radiance  

(3) Complete 3D urban geometry with 

surface vectors 

PV yield model   

 Low-

fidelity 

 

Static PV model (1) Received solar radiation 

(2) PV conversion rate under standard test 

condition (STC) 

 High-

fidelity 

Dynamic PV model (1) Received solar radiation 

(2) PV temperature coefficient  

(3) PV system parameters*** (e.g., solar 

transmittance and absorptance of the PV 

panel)  

(4) Environmental measurements of the 

located solar panel (e.g. ambient 

temperature, wind speed) 

*required solar measurements vary according to specific models. 

**required if tilted roofs are the surfaces of interest. 

***required in some physic-based PV models. 

 

4.5.2 Examination of radiation prediction models 

4.5.2.1 Solar targets: maximum PV potential  

Table 21 shows the total annual PV yield potential (GWh) of all the roofs generated by the 

classic model and vector-based model. The two models resulted in a difference of 1.6 GWh, 

which corresponds to 9.8% in terms of the percentage difference. Generally speaking, roofs 

receive less shading from the surrounding buildings in comparison to walls. Although the 

complex urban landscape of the case study inevitably affected and reduced the received 

radiation on certain roofs, a majority of the roofs still received a high amount of solar radiation 

in comparison to walls. Nevertheless, buildings’ heights in the studied area vary substantially 
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and caused observable shading on roofs. The prediction difference between the two methods 

may be smaller in urban landscapes where buildings have similar heights, such as cities in 

Europe. Given less than 10% of the difference between the two models, the results suggest that 

the classic model have the potential to give a reasonable prediction for evaluating the maximum 

PV yield of roofs at urban scale. 

 

Table 21. Total PV yield of all roofs in the studied urban area.  
 

Classic model Vector-based model 

Total PV yield potential  

（GWh） 
 17.8 16.2 

 

Table 22 shows the total annual PV yield (GWh) of all the walls in the case area by the 

canyon-based and vector-based models. The two models resulted in a difference of 5.9 GWh, 

which corresponds to 21.5% difference in terms of percentage. Table 23 summarizes the 

average PV yield of walls per building, computed by the two models and the standard deviation 

of differences between the two predictions. For individual buildings, differences in the two 

predictions amounted to a standard deviation of 0.061 GWh in comparison to average values 

of 0.179 GWh and 0.147 GWh by the two method. This comparison indicates predicting the 

accumulated PV yield by canyon-based model on all walls diminishes prediction discrepancies 

at the individual building level and leads to the total yield with a reduced prediction error. 

Despite the reduced prediction error at large scale, the results confirm the importance of the 

high-fidelity urban shading and reflection model for evaluation of maximum PV potential on 

walls.   

 

Table 22. Total PV yield of all walls in the studied urban area. 
 

Canyon-based model Vector-based model 

Total PV yield potential  

（GWh） 
 33.3 27.4 
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Table 23. Standard deviation of differences between the two predictions in comparison to the 

Average PV yield predictions for each building. 

 Canyon-based 

model 

Vector-based model  Standard deviation of 

differences   

Average PV yield of each 

building’s walls (GWh) 

0.179 0.147 0.061 

 

4.5.2.2 Place-making 

Figure 53 plots the predictions of annual PV yield per area (kWh/m2) on each roof in the 

urban area by the classic and vector-based models. As the classic method does not consider 

urban shading, it yielded the same PV yield of 146 kWh/m2 for all the roofs. The vector-based 

approach, on the other hand, produced varying results ranging from 92 kWh/m2 to 145 kWh/m2, 

with a calculated average of 131 kWh/m2 and a standard deviation of 11.9 kWh/m2. On the 

basis of Compagnon’s work (Compagnon, 2004) that set the minimum received radiation on 

roofs to be 1000kWh/m2 required for PV, a minimum yield of 130kWh/m2 (PV conversion rate 

of 0.13) was used as a threshold to consider PV as a suitable option. In the figure, all the 

predictions by the classic model are above the threshold since only one single prediction applies 

to all the roofs and, therefore, all the roofs are considered suitable for PV installation. On the 

other hand, the vector-based approach suggests that many roofs with severe shading did not 

pass the threshold and got rejected. Table 24 lists the number of roofs suitable for PV 

determined by each of the methods. The results show that almost half of the roofs were rejected 

by the vector-based approach while the classic method informed that all the roofs are suitable 

for PV installation. This indicates the importance of modelling urban shading for identifying 

roof areas with high potential for PV installation. Therefore, the classic method without 

consideration of urban shading is not sufficient to support place-making decisions for roofs.        
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Figure 53. Annual PV yield predictions by the two methods for roofs. 

 

 

Table 24. Amount of suitable and rejected roofs determined by the two models. 

 Number of  

suitable roofs 

Number of  

rejected roofs 

Number of suitable roofs 

agreed by both the methods 

Classic model  186 0 
104 

Vector-based model 104 82 

 

Table 25 shows the average, maximum, and minimum of annual PV yield predictions per 

wall area for all buildings in the urban area, computed by the canyon-based and vector-based 

models. Differences between the two predictions yielded a standard deviation of 17.3 kWh/m2, 

which is a significantly high value compared to their average predictions. Since the canyon-

based approach considers the approximate skyline obstruction only due to the opposite building 

walls, its calculated shading on walls may be severely overestimated or underestimated due to 

possibly improper representation of the surrounding obstructions.  

 

Figure 54 shows the potentials of all buildings (only walls) that are evaluated with a PV 

yield threshold of 58.4 kWh/m2. The PV yield threshold was derived to obtain a simple payback 
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time of twenty-five years with the current PV market price and local energy price in Wuhan 

found in (Suncyclopedia, 2018; Wood Mackenzie, 2018; Sate Grid, 2018). The two sets of 

results by the two methods showed a divergent trend. The two methods predicted very different 

outcomes to select building walls suitable for PV installation; they agreed to consider only a 

few buildings suitable for PV installation, while they yielded a disparate decision for a 

considerable number of buildings. Table 26 lists the number of buildings suitable for PV on 

walls determined by the two methods. As the canyon-based method tends to provide a higher 

PV yield prediction, it identified more buildings (57 buildings) suitable for PV than the vector-

based model (14 buildings). only 7 buildings are considered suitable for PV on walls by both 

the method. As the choice of PV yield threshold is subjective to decision-makers, the results 

clearly highlight that predictions by the canyon-based model severely deviate from those by the 

vector-based approach due to improper consideration of urban shading and reflection. 

Therefore, the high-fidelity model of urban shading and reflection is crucial for identifying 

buildings on walls for PV integration.    

 

 

Table 25. Annual PV yield per wall area for all buildings. 

(kWh/m2) Canyon-based model 

 

Vector-based model 

Average 54.3 41.6 

Maximum 112.5 70.8 

Minimum 14.2 16.7 

Standard deviation of differences 

between the two predictions 

17.3 
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Figure 54. Annual PV yield predictions by the two methods for walls per building. 

 

 

 

Table 26. Numbers of suitable and rejected walls determined by the methods. 

 

 Number of 

suitable 

buildings 

Number of 

rejected 

buildings  

Number of suitable buildings 

determined by both the 

method 

Canyon-based model 57 129 
7 

Vector-based model 14 172 

 

 

 

4.5.2.3 Economic assessment 

Figure 55 plots the annual PV yield per roof area calculated by the classic and vector-

based models and associated simple pay-back time. The classic method, similar to the previous 

analysis, predicted a single PV yield value for all roofs and therefore only yielded a single 

simple pay-back time of 10.1 years. The vector-based approach, predicted simple pay-back 

times, ranging from 10 years to over 15 years. Both the methods provided the simple pay-back 

times that are considered viable as currently the PV products in the market are expected to have 
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a lifespan of almost 30 years. Although both the models showed good economic values in all 

the roofs for PV integration, the vector-based approach stands out to better support economic 

assessment given the ability to provide specified predictions for each roof for well-informed 

decisions.  

 

Figure 55. Simple payback times of all roofs predicted by the two methods. 

 

Figure 56 shows the annual PV yield per wall area calculated by the two models and 

associated simple payback times. At first glance, it is obvious the simple payback times of the 

walls are much longer than those of the roofs due to severe shading on walls from the 

surrounding buildings. Indeed, the economic value of PV integration on the walls per area is 

less than that on the roofs. However, as the wall area is much larger than the roof area in an 

urban area, the potential PV capacity of walls and façades can be significant with applications 

of semi-transparent PV. Disagreements between the two predictions by the two methods are 

very noticeable. The canyon-based model predicted less than 30 year pay-back time for 117 

buildings while the vector-based model only for 72 buildings. Some extremely long payback 

times as well as some very short payback times were observed in the canyon-based model 

results unlike the more reasonable range of predictions by the vector-based model. This 

comparison again highlights the inability of using the canyon concept to reflect the effect of 
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actual complex urban surroundings on irradiance prediction and the importance of using the 

vector-based model to categorize buildings in terms of their economic values.   

 

 

 

Figure 56. Simple payback times of all building walls predicted by both the methods. 
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4.5.3 Examination of PV models  

4.5.3.1 Solar targets: maximum solar potential 

Table 27 shows the total annual PV yield (GWh) of all the roofs generated by the static 

and dynamic PV model with the use of the vector-based model for irradiance prediction. In 

comparison to the dynamic models, the static model overestimated the PV yield by 0.7 GWh to 

1.2 GWh, corresponding to approximately 4% to 7% difference, respectively. Small prediction 

differences of 0.9 to 1.9 GWh were observed for the walls as shown in Table 28. The dynamic 

model properly predicted higher PV cell operational temperatures caused by additional heat 

gains from the sun and ambient air during daytime and resulted in lower PV conversion rates 

while the static model kept the fixed cell operational temperature. A climate zone for the case 

urban area in Wuhan consists of hot summer and cold winter. Although the static model 

overestimated the PV conversion rate under reference temperature (i.e. 25℃) in the summer 

where the ambient temperature can reach as high as 40℃, the low ambient temperature in the 

winter counteracts the overestimation effect as a lower PV operating temperature results in 

higher PV conversion rate. Overall, the effect of modelling dynamic PV operational behaviour 

appears incremental, compared to the effect of modelling complex urban shading and reflected 

radiation discussed in the earlier section. 

 

Table 27. Total annual PV yield prediction of all roofs (GWh).  
Static PV model Dynamic PV model 

Total PV yield potential 

（GWh） 
16.2 15.0 - 15.5 

 

 

 

Table 28. The total annual PV yield prediction of all walls (GWh).  
Static PV model  Dynamic PV model 

Total PV yield potential 

（GWh） 
27.4 25.5 - 26.5 
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4.5.3.2 Place-making  

Figure 57 plots annual PV yield predictions for each roof in the urban area. Similar to the 

previous section, the static model over-predicted the PV yield, with a standard deviation of 4.1 

kWh/m2 differences between the two predictions. differences in the decisions on suitable roofs 

informed by the results appear slightly more noticeable in this context. Like the previous section 

3.1.1, the PV yield threshold of 130 kWh/m2 was applied to identify roofs for PV integration. 

104 roofs were selected as suitable for PV integration by the static model while 81 roofs were 

selected by the dynamic model. Annual PV yield predictions for walls are shown in Figure 57 

A small standard deviation of 2.38 kWh/m2 differences was recorded between the two 

predictions. With the PV yield threshold of 58.4 kWh/m2, 14 buildings were selected as suitable 

buildings for PV integration on walls by the static model while only 6 buildings selected by the 

dynamic model. Despite observed differences between the two results, the effect of modelling 

dynamic PV system on place-making is incremental when it is compared with the effects of 

modelling complex urban morphology on place-making; suitable roofs and walls selected by 

the vector-based model for PV integration were cut down from 186 to 104 and from 54 to 14, 

respectively. 

 
Figure 57. Annual PV yield predictions by the two method for all roofs. 
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Figure 58. Annual PV yield predictions by the two methods for all buildings on walls. 

 

4.5.3.3 Economic assessment 

As small differences were observed in PV yield predictions by the static and dynamic 

models, relatively small differences in calculated payback times by the two methods were 

expected. For both roofs and walls, the static model predicted shorter payback times than those 

predicted by the dynamic model and, therefore, yielded a slightly higher number of buildings 

within shorter payback times. However, as shown in Table 29, the two methods resulted in a 

difference of fewer than 20 buildings within each payback time category. The differences are 

noticeable, but can be regarded as incremental for urban-scale economic assessment in 

comparison to the significant difference due to the fidelity level of modelling urban shading 

and reflection shown in the previous section 4.5.2.3.  
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Table 29. Number of buildings that fall into each category of simple payback time. 

  
 

Simple payback time (year) 

< 14 < 13 < 12 < 11 < 10 

Number of roofs        
Static model 116 112 108 93 51  
Dynamic model 90 87 82 71 50 

 

  

  

Simple payback time (year) 

< 47 < 41 < 35 < 29 < 25 

Number of buildings (walls only)  
Static model 109 87 72 16 14  
Dynamic model 99 90 56 10 6 

 

4.6  Summary 

    The chapter demonstrated and examined the usability of the proposed method by 

examining the relevance of the following two key modelling features associated with solar 

potential evaluation in the solar energy planning process: (a) a level of fidelity for calculating 

urban shading and solar reflection and (2) dynamic PV system model. This chapter compared 

three different fidelities of modelling urban shading and reflection and two different levels of 

PV system models in terms of their relevance in major decision-making contexts for distributed 

PV integration at urban scale. The relevance of the models in the decision making was 

investigated and discussed through a case study of the urban area in Wuhan, China. Particularly, 

the chapter examined the effects of two major modelling features on decision-making: (1) 

modelling complex urban surroundings in for calculation of urban shading and reflection and 

(2) modelling dynamic PV operational behaviour for calculation of PV conversion rates. 

  

As regards the fidelity level of modelling complex urban shading and reflection, the 

proposed model with full representation of detailed urban surroundings was compared against 

the classic and canyon-based methods for roofs and walls, respectively, under three decision-

making contexts for urban-scale distributed PV applications. The comparison demonstrated that 

decisions derived by the high-fidelity vector-based model were substantially different from 

those derived by the classic and canyon-based models in the contexts of place-making and 
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economic assessment. The results indicate the high-fidelity model with an accurate reflection 

of urban morphology is important in calculating urban shading and reflection to correctly 

identify suitable buildings for PV integration and to evaluate the economic viability of intended 

PV integrations at urban scale. Although the classic model does not consider urban shading and 

reflection, it was found valuable for estimating the total maximum PV potential on roofs with 

acceptable accuracy for the studied urban area. It should be noted that the prediction accuracy 

of the classic model for roofs is likely to decrease when a studied urban area has a higher density 

with more variation in the building height than the case study area, and vice versa. For the 

evaluation of maximum PV potential on walls, the results demonstrated the importance of the 

high-fidelity urban shading and reflection model in comparison to the canyon-based model.  

 

As regards the fidelity level of modelling dynamic PV conversion rates, the five different 

temperature-dependent PV system models were compared against the static PV system model 

for predicting the PV cell operating temperature and corresponding PV conversion rate. In 

addition, the impact of using an additional dynamic PV model on decision-making was 

compared against that of the high-fidelity urban shading and reflection model. For all three 

decision-making contexts, the dynamic and static PV models computed similar PV yield 

predictions, and decisions derived from the two methods appeared similar with non-negligible 

differences. The comparison confirmed that the effect of the dynamic PV model on decision-

making is incremental in comparison to the effect of modelling complex urban shading and 

reflection.  
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Chapter 5: Conclusions and future work 

 

 

 

 

 

 

 

 

5.1  Summary and conclusions  

 Despite the existing efforts of the developed models and tools to enable solar potential 

analysis, current methods are not sufficient to support solar energy planning given the urban 

contexts at urban scale due to the two following reasons: (1) Current advanced simulation 

models based on ray trace and ray interception techniques are not effectively scalable to 

evaluate solar potential at urban scale due to the expensive modelling process and 

computational cost; (2) Simple and statistical models developed for large-scale analysis are not 

suitable to accurately predict solar irradiance on individual surfaces with proper consideration 

of urban shading and reflection.. 

  

 In order to overcome these limitations, this dissertation presented a simplified vector-

based model on the basis of consideration of the urban context to effectively predict the solar 

potential at urban scale. The proposed model is based on vector-based methods without the use 

of ray trace and ray interception techniques, yet consists of new methods that suitably account 
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for the non-uniform solar radiation of the sky, obstruction by urban surfaces, and reflection by 

urban surfaces in urban areas. The followings are the main novelties of the new method. 

 

 A sky discretisation tailored for urban contexts was established. The new model takes 

in the consideration of a typical urban view towards the sky. As buildings are typically 

solid masses with varying heights, starting from the ground level up to a certain height, 

the two-segment sky discretisation method was therefore designed to avoid 

unnecessary sky patches generated by the current standard Tregenza model. The two-

segment sky model fully reflects urban contexts and can efficiently capture a skyline 

for daylight obstruction calculation with a much less required number of discretised 

patches. Hence, the new sky discretisation model enhances the efficiency of 

computing urban shading in urban contexts. 

 

 The edge-angle-detection model, along with the unified view-angle-based reflection 

model, completely removes the current ray-interception/tracing algorithm in the 

modelling process. The new models substantially reduce the number of iterations in 

the calculation process of detecting obstruction and reflection in comparison to the 

current simplified ray-based methods such as SRA (Robinson, 2004). The new method 

takes a substantial step towards a much more efficient approach for calculating solar 

irradiance at urban scale.  

 

 The new vector-based method was established with flexible control parameter settings, 

including Sky Horizontal Subdivision (SHS), Strip Inside Subdivision (SIS), Sky 

Radiance Sampling Subdivision (SRSS), and Building Edge Subdivision (BES) for 

various requirements of prediction accuracy. Furthermore, data requirement is 

significantly reduced as surface properties are only required as an average value 

separately for the buildings and roads.  

  

The comparison study in Chapter 3 proved that the new model provides reasonably 

accurate predictions with flexible control settings and fewer model inputs to effectively support 
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large-scale solar analyses. In comparison to RADIANCE, the new model yielded predictions 

with the average differences of 3%, 4%, and 6%, for the low-, medium-, and high-density areas, 

respectively. The second comparison against measurements revealed that the model tended to 

overpredict the irradiance received on surfaces with a high sky view factor such as roofs and 

underpredict that on vertical surfaces with a low sky view factor. However, the average absolute 

differences between predictions and measurements were relatively small and of the order of 6% 

and 5% for horizontal and vertical surfaces, respectively. The computational efficiency of the 

new model was proven to be sufficiently improved in comparison to the current ray interception 

algorithms. The new model greatly reduced the iterations required for obstruction calculation 

that consumes the most of the computational load and, therefore, greatly reduced the 

computational cost for large-scale solar simulation.  

  

The case study demonstrated the usability of the proposed method by examining the 

relevance of the developed method in the urban solar energy planning process, specifically in 

the context of the distributed PV planning process for making solar targets, place-making and 

economic assessment. Two key modelling features associated with solar potential evaluation 

were investigated in the solar energy planning process: (a) a level of fidelity for calculating 

urban shading and solar reflection and (2) dynamic PV system model. Results demonstrated 

that decisions derived by the new vector-based model with a full representation of urban 

morphology were substantially different from those derived by the classic and canyon-based 

models in the contexts of place-making and economic assessment, indicating the high-fidelity 

model with an accurate reflection of urban morphology is important in calculating urban 

shading and reflection to correctly identify suitable buildings for PV integration and to evaluate 

economic viability of intended PV integrations at urban scale. As regards the fidelity level of 

modelling dynamic PV conversion rates, for all three decision-making contexts, the dynamic 

and static PV models computed similar PV yield predictions, and decisions derived from the 

two methods appeared similar with non-negligible differences. The contrast in the two 

comparisons further highlighted the importance of solar analysis with full representation of 

urban surroundings in the calculation of urban shading and solar reflection to correctly support 
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distributed PV planning.  

.  

5.2  Future research 

Several limitations of this modelling research should be noted, and future work should be 

initiated to resolve the following issues.  

 

 The new models tailored the data requirement to the current urban data availability 

where albedos are not commonly provided on individual buildings. However, there is 

a growing effort to collect ground-based and remote-sensed survey data (Romanoni, 

et al., 2017; Sun et al., 2012), which can be used to estimate individual surface 

properties at urban scale in a cost-effective manner in the future. It is worth to test 

such data availability of individual surface properties and to confirm its impact on the 

prediction of solar energy and urban solar planning process. Therefore, additional 

model options for different albedos assigned for individual buildings and ground 

surfaces need to be developed to take in the consideration of detailed urban data of 

surface properties.  

 

 The dissertation carried out controlled experiments for validating the model’s 

predictions. However, the physical micro-scale urban geometry used in the 

experiments is a simplified representation of a real urban environment with controlled 

surface properties. Although the model provided reasonably accurate predictions in 

comparison to the measurements from the controlled experiments, it has not been 

tested against measurements in real urban environments. The proposed model shall 

be further examined and tested, so that shading effects of the complex urban 

landscape such as urban vegetation can be better reflected in the results. 

 

 The new model was programmed in the environment of Python 2.7 that is not as 

computationally efficient as other programming languages, such as C. The advantages 

of the new method in computational efficiency was therefore not fully achieved. The 
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new model shall be implemented in a more proficient programmed scheme to fully 

exploit the benefits of the model algorithm. 

  

 The relevance of the proposed method in the solar planning process of urban 

distributed PV was investigated based on one urban area in Wuhan, a medium-to-high 

density urban morphology in a specific climate condition (i.e. Middle-latitude, hot 

summer cold winter). As PV cell operational temperature highly correlates to ambient 

temperature as the study suggested in Chapter 4, more case studies are in need to fully 

explore the results and draw more comprehensive conclusions in different urban 

forms and climate.     

 

 Currently, the method was only implemented in Python 2.7 in a programming script 

without a user interface, which greatly restricts its applicability in terms of being 

available for general users who do not have the required programming skills. 

Therefore, the implementation of the proposed method in a user-friendly tool should 

be considered in future research. Additionally, the tool shall be tailored to suit the 

needs for the decision-making process, such as urban design, urban retrofit or policy 

evaluation where their demands related to solar potential shall be further investigated, 

reflected and implemented so that the developed tool can indeed help the decision-

makers in the design process.     
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