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Extremal problems in the cube and the grid and other

combinatorial results

Eero-Pekka Johannes Räty

Abstract

This dissertation contains results from various areas of combinatorics.

In Chapters 2, 3 and 4 we consider questions in the area of isoperimetric inequalities. In

Chapter 2, we �nd the exact classi�cation of all subsets A ⊆ {0, 1}n for which both A and

Ac minimise the size of the neighbourhood, which answers a question of Aubrun and Szarek.

Harper's inequality implies that the initial segments of the simplicial order satisfy these condi-

tions, but we prove that in general there are non-trivial examples of such sets as well.

In Chapter 3, we consider the zero-deletion shadow, which is closely related to the general

coordinate deletion shadow introduced by Danh and Daykin. We prove that there is a certain

order on [k]n = {0, . . . , k − 1}n, the n-dimensional grid of side-length k, whose initial segments

minimise the size of the zero-deletion shadow.

In Chapter 4, we consider the following generalisation of the Kruskal-Katona theorem on

[k]n. For a set A ⊆ [k]n, de�ne the d-shadow of A to be the set of all points x obtained from

any y ∈ A by replacing one non-zero coordinate of y by 0. We �nd an order on [k]n whose initial

segments minimise the size of the d-shadow.

In Chapter 5, we consider a certain combinatorial game called Toucher-Isolator game that is

played on the edges of a given graph G. The value of the game on G measures how many vertices

of G one of the players can achieve by using the edges claimed by her. We �nd the exact value of

the game when G is a path or a cycle of a given length, and we prove that among the trees on n

vertices, the path on n vertices has the least value of the game. These results improve previous

bounds obtained by Dowden, Kang, Mikala£ki and Stojakovi¢.

In Chapter 6, we consider a problem in Ramsey Theory related to the Hales-Jewett theorem.

We prove that for any 2-colouring of [3]n there exists a monochromatic combinatorial line whose

active coordinate set is an interval, provided that n is large. This disproves a conjecture of

Conlon and Kam£ev.

In Chapter 7, we give a construction of a graph G that is P6-induced-saturated, where P6 is

the path on 6 vertices. This answers a question of Axenovich and Csikós.
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Chapter 1

Introduction

In this dissertation, we consider six questions in the area of extremal combinatorics.

Chapters 2, 3 and 4 are concerned with questions in the area of discrete isoperimetric in-

equalities. Perhaps the best-known discrete isoperimetric inequality is Harper's theorem on

the n-dimensional hypercube Qn = {0, 1}n. We say that vertices x, y in Qn are neighbours if

they di�er in exactly one coordinate, and more generally de�ne the distance of x and y to be

d (x, y) = |{i : xi 6= yi}|. The neighbourhood of a set A ⊆ Qn consists of the set A itself together

with all other elements that are a neighbour of some element of A. The classical result of Harper

[23] states that among the sets of a given size, the initial segment of the simplicial order has the

smallest neighbourhood.

Let A be an initial segment of the simplicial order. Since its complement Ac is also isomorphic

to an initial segment of the simplicial order, Harper's theorem implies that both A and Ac have

neighbourhoods of minimal size. Aubrun and Szarek [1] asked if the initial segments are the

only sets (up to isomorphism) for which both A and Ac have neighbourhoods of minimal size. In

Chapter 2, we give a negative answer to their question. We go on to give an exact classi�cation

of all subsets A for which both A and Ac have neighbourhoods of minimal size.

De�ne the exact Hamming ball of radius r centered at x to beB (x, r) = {y ∈ Qn : d (x, y) ≤ r},
and de�ne A to be a Hamming ball if there exist x and r so that B (x, r) ⊆ A ⊂ B (x, r + 1).

It turns out that all the extremal sets A are contained between two exact Hamming balls with

the same center and radius di�ering by 2 - that is, there exist x and r for which B (x, r) ⊆ A ⊂
B (x, r + 2). Rather surprisingly, it turns out that the only Hamming balls which are extremal

are the initial segments of the simplicial order. This chapter is based on [41].

Another well-known discrete isoperimetric inequality is the Kruskal-Katona theorem [25, 28].

Let {0, 1}nr denote the set of all {0, 1}-sequences of length n containing exactly r coordinates

that equal 1. The lower shadow of A ⊆ {0, 1}nr is the set of points in {0, 1}nr−1 that can be

obtained by �ipping exactly one 1-entry to 0 from a point in A. Similarly, the upper shadow of

A ⊆ {0, 1}nr is the set of points in {0, 1}nr+1 obtained by �ipping exactly one 0-entry to 1 from a

point in A. The Kruskal-Katona theorem states that the size of the lower shadow is minimised

by the initial segments of the colexicographic order, or equivalently, the size of the upper shadow

is minimised by the initial segments of the lexicographic order.

Instead of changing the value of a coordinate, it is also natural to de�ne an operator which

acts by deleting a coordinate. For A ⊆ [k]n = {0, . . . , k − 1}n, de�ne the coordinate deletion
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shadow of A to be the set of points obtained by deleting exactly one coordinate from a point in

A. Danh and Daykin [16] proved that the initial segments of the simplicial order minimise the

size of the coordinate deletion shadow when k = 2. However, Leck [30] proved that no such order

exists when k ≥ 3. Bollobás and Leader [9] proved that the exact subcubes [m]n have minimal

coordinate deletion shadow in [k]n for all m. Furthermore, they conjectured that for all m and

r, the subset of [m]n containing the sequences with at most r coordinates that equal m− 1 has

minimal coordinate deletion shadow. This conjecture remains open.

De�ne the rank of a sequence to be the sum of its coordinates. The usual lower shadow

decreases the rank by 1 and preserves the dimension n, while the coordinate deletion shadow

decreases the dimension by 1 but there is no control on how it changes the rank. There is, however,

an operator called zero-deletion shadow which preserves the rank but reduces the dimension by

one, and hence comes `between' the lower shadow and the coordinate deletion shadow. De�ne

the zero-deletion shadow of A ⊆ [k]n to be the set of points obtained by removing one coordinate

that equals 0 from any point in A.

Note that the zero-deletion shadow of any subset of {1, . . . , k − 1}n ⊆ [k]n is empty, and

in order to minimise the size of the zero-deletion shadow in general, it seems natural to choose

points with as few zeroes as possible. In particular, it is natural to guess that for each 0 ≤ i ≤ n
the sets containing all points with at most i zeroes have zero-deletion shadow of minimal size.

In Chapter 3 we prove that the initial segments of a certain order minimise the size of the

zero-deletion shadow, and indeed points with fewer zeroes are preferred by this order. As a

consequence, it follows that the sets containing all points with at most i zeroes indeed have

zero-deletion shadow of minimal size. This chapter is based on [38].

Various generalisations of the Kruskal-Katona theorem itself has been studied in general grids

[k]n. One such generalisation of the upper shadow was considered by Clements [13]. For a set

A ⊆ [k]n, de�ne the d+-shadow of A to be the set of all points x obtained from any y ∈ A by

replacing one coordinate of y that equals 0 by any element in {1, . . . , k − 1}. Clements found an

order whose initial segments minimise the size of the d+-shadow. In Chapter 4, we consider the

following closely related operator. For a set A ⊆ [k]n, de�ne the d-shadow of A to be the set of

all points x obtained from any y ∈ A by replacing one coordinate of y that is in {1, . . . , k − 1}
by 0.

Again, it seems natural to prefer points containing as many zeroes as possible, and this indeed

turns out to be the case. We prove that there is a certain order whose initial segments minimise

the size of the d-shadow, and it follows that the sets containing points with at least i zeroes have

d-shadow of minimal size. Furthermore, we prove that the restrictions of the initial segments

of our order minimise the size of the d-shadow on levels containing points with a given number

of zeroes. We have recently learnt that the main result of this chapter may be deduced from a

result of Frankl, Füredi and Kalai [19], and of London [32]. Given that, this chapter should be

viewed as giving a new proof of their result. This chapter is based on [36].

In Chapter 5, we consider the following combinatorial game introduced by Dowden, Kang,

Mikala£ki and Stojakovi¢. The game is played on the edges of a given graph G by two players,

Toucher and Isolator. They claim edges on alternating turns, with the �rst move given to

Toucher. Toucher is aiming to maximise the number of vertices incident with some edge she
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has claimed, and Isolator is aiming to minimise this number. Equivalently, Isolator is trying to

maximise the number of vertices so that she has claimed all of their incident edges.

We say that a vertex is isolated if it is not incident with any of the edges claimed by Toucher.

De�ne the value of the game u (G) to be the number of isolated vertices at the end of the game

when both players play under optimal strategies. Dowden, Kang, Mikala£ki and Stojakovi¢ had

speci�c interest in the case when G is a tree, and they gave bounds for the value of the game in

terms of the degree sequence of G. As a consequence, they proved that when G is a tree, the

asymptotic proportion of isolated vertices is between 1/8 and 1/2. Note that the upper bound is

attained when G is a star on n vertices. For certain trees they noted that the general bounds can

be improved. As an example, they proved that for Pn, the path on n vertices, the asymptotic

proportion of isolated vertices is between 3/16 and 1/4. Furthermore, they conjectured that the

correct asymptotic proportion of isolated vertices on the path should be 1/5.

In Chapter 5, we improve both the general bound and the bound on the path. We prove that

1/5 is the correct asymptotic proportion of isolated vertices for a path, and in fact, we �nd the

exact value of the game for a path. We also �nd the exact value of the game for a cycle. Our

other main result is to improve the general lower bound for trees, and we prove that the value

of the game for any tree T with n vertices is at least as large as the value of the game for Pn.

Therefore, the asymptotic proportion of isolated vertices in a tree is at least 1/5. These results

are based on [37, 40].

In Chapter 6, we consider a problem related to the Hales-Jewett theorem [22]. A set L ⊆ [k]n

is called a combinatorial line if there exist a non-empty set S and integers ai ∈ [k] so that

L = {(x1, . . . , xn) : xi = ai for all i 6∈ S and xi = xj for all i, j ∈ S} .

The set S is called the active coordinate set of L. The Hales-Jewett theorem states that whenever

[k]n is r-coloured, there is a monochromatic combinatorial line provided that n is large enough.

The least such n is denoted by HJ (k, r).

Following Shelah's proof [42] of Hales-Jewett theorem, it can be shown that provided n is

large, one can always �nd a monochromatic combinatorial line whose active coordinate set is

a union of at most HJ (k − 1, r) intervals. Since HJ (2, r) = r, it follows that one can �nd a

monochromatic combinatorial line in [3]n whose active coordinate set is a union of at most r

intervals. Conlon and Kam£ev proved that this bound is tight when r is odd, and they conjectured

the same to be true when r is even. In this chapter we prove that whenever [3]n is 2-coloured and

n is su�ciently large, there exists a monochromatic combinatorial line whose active coordinate

set is actually an interval. This disproves the conjecture of Conlon and Kam£ev. This chapter

is joint work with Leader based on [29].

In Chapter 7, we consider a graph saturation question. A graph G is said to be H-induced-

saturated if G does not contain H as an induced subgraph, but removing any edge from G or

adding any edge from Gc to G creates an induced copy of H. It is easy to see that an empty

graph is P2-induced-saturated and a clique is P3-induced saturated, where again Pn denotes the

path on n vertices. Martin and Smith studied a similar problem, and their results imply that

there is no graph that is P4-induced-saturated. Axenovich and Csikós gave examples of families

of trees for which an induced saturated graph exists. However, they noted that these results did
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not cover Pn for any n ≥ 5, and they asked whether Pn is induced saturated for any n ≥ 5. In

Chapter 7 we give a construction which proves that P6 is induced saturated. This chapter is

based on [39].

Throughout the thesis, we use standard graph theoretic and combinatorial notation. We write

[k] for {0, . . . , k − 1} and [k]n for {0, . . . , k − 1}n, and we often use the shorthandX = {1, . . . , n}.
As usual, for any set A we write A(r) for {B ⊆ A : |B| = r}, and also A(≤r) for {B ⊆ A : |B| ≤ r}
and A(≥r) for {B ⊆ A : |B| ≤ r}.
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Chapter 2

Uniqueness in Harper's

vertex-isoperimetric theorem

2.1 Introduction

The n-dimensional hypercubeQn has vertex-set the power set P ({1, . . . , n}) with metric d (x, y) =

|x∆y|. We can also view Qn as {0, 1}n, the set of {0, 1}-sequences of length n, with the met-

ric d (x, y) = |{i : xi 6= yi}|. For a subset A of the hypercube Qn, de�ne the neighbourhood

of A to be the set N (A) = {x ∈ Qn : d (x,A) ≤ 1} where d (x,A) = miny∈A d (x, y). Also

more generally for each t > 0 de�ne N t (A) = {x ∈ Qn : d(x,A) ≤ t}, and note that we have

N t (A) = N
(
N t−1 (A)

)
.

In order to state Harper's vertex-isoperimetric theorem we need a few de�nitions. For any

n and 0 ≤ r ≤ n de�ne the lexicographic order on {x : x ⊆ {1, . . . , n} , |x| = r} to be given by

x <lex y if min (x∆y) ∈ x, and de�ne the colexicographic order to be given by x <colex y if

max (x∆y) ∈ y. De�ne the simplicial order on Qn to be given by x <sim y if

|x| < |y| or (|x| = |y| and x <lex y) .

Theorem 1. (Harper, [23]). Let A be a subset of Qn and let B be the initial segment of the

simplicial order of size |A|. Then we have |N (A)| ≥ |N (B)|.

For a general introduction to the vertex-isoperimetric theorem, see e.g. Bollobás [6, Chapter

16].

It turns out that the sets for which Harper's theorem holds with equality are not in general

unique. As a trivial example, any subset of Q2 of size 2 has minimal vertex boundary and not

all such sets are isomorphic. There are more interesting and less trivial examples as well.

It is easy to verify that if A is an initial segment of the simplicial order then so is N (A).

Hence Harper's theorem implies that among the subsets A ⊆ Qn of a given size, the size of

N t (A) is minimised when A is chosen to be the initial segment of the simplicial order. We say

that N t (A) is minimal if
∣∣N t (B)

∣∣ ≥ ∣∣N t (A)
∣∣ for all B ⊆ Qn satisfying |B| = |A|. Let C be the

initial segment of the simplicial order of size |A|. It is useful to observe that Harper's theorem

implies that N t (A) is minimal if and only if
∣∣N t (A)

∣∣ =
∣∣N t (C)

∣∣.
5



We say that two subsets A and B of Qn are isomorphic if there exists an isometry θ of Qn

satisfying θ (A) = B. In this chapter we consider the following question of Aubrun and Szarek

[1, Exercise 5.66]: If A ⊆ Qn for which both N t (A) and N t (Ac) are minimal for all t > 0, does

it follow that A is isomorphic to an initial segment of the simplicial order? For convenience, we

say that A is extremal if N t (A) and N t (Ac) are minimal for all t > 0. Let C be the initial

segment of the simplicial order of size |A|. Since Cc is isomorphic to the initial segment of the

simplicial order of size |Cc|, it follows from Harper's inequality that A is extremal if and only if

we have
∣∣N t (A)

∣∣ =
∣∣N t (C)

∣∣ and ∣∣N t (Ac)
∣∣ =

∣∣N t (Cc)
∣∣ for all t > 0. In particular, the initial

segments of the simplicial order are extremal.

De�ne the exact Hamming ball of radius r centred at x to beB (x, r) = {y ∈ Qn : d (x, y) ≤ r},
and de�ne A to be a Hamming ball if there exist x and r for which we have B (x, r) ⊆ A ⊂
B (x, r + 1). Note that B (∅, r) is the initial segment of the simplicial order of size

∑r
i=0

(
n
i

)
, and

every initial segment of the simplicial order is a Hamming ball. Later in the chapter we some-

times consider exact Hamming balls of radius r centred at x in P ({1, . . . , n} \ {i}) rather than
in P ({1, . . . , n}). In order to highlight this di�erence, we write Bi (x, r) for the exact Hamming

ball of radius r centred at x with respect to ground set {1, . . . , n} \ {i}.
Note that requiring only N t (A) to be minimal for all t > 0 is not a strong enough condition

to guarantee that A should be isomorphic to an initial segment of the simplicial order. Indeed,

as a trivial example one could take A = B (x, r) \ {x} for r ≥ 1. Then N t (A) = B(x, r + t) for

all t > 0, and hence N t (A) is always minimal, yet A is not isomorphic to an initial segment of

the simplicial order.

It turns out that the answer to the question of Aubrun and Szarek is negative, and we present

a counterexample in Section 2.2. It turns out that all the extremal sets are contained between

two exact Hamming balls with the same centre and radius di�ering by 2 - that is, if A is extremal,

there exist x and r with B (x, r) ⊆ A ⊂ B (x, r + 2). Rather surprisingly, it turns out that the

only Hamming balls which are extremal are the initial segments of the simplicial order.

The second aim of this chapter is to classify all the extremal sets A up to isomorphism.

In order to state the result, we need some notation. We write X = {1, . . . , n}, X(r) =

{x ⊆ X : |x| = r}, X(≥r) = {x ⊆ X : |x| ≥ r}, X(≤r) = {x ⊆ X : |x| ≤ r}, Xi = {1, . . . , n} \ {i}
and Xi,j = {1, . . . , n} \ {i, j}. Throughout this chapter, we denote the elements of Qn by lower

case letters, the subsets of Qn by upper case letters and the set systems on X(r) by calligraphy

letters.

De�ne the maps πi : X(r+1) → X
(r)
i ∪X

(r+1)
i by setting πi (x) = x \ {i} for all x ∈ X(r+1).

For a set system B ⊆ X(r+1) de�ne πi (B) = {πi (x) : x ∈ B}. Note that πi is a bijection from

X(r+1) to X
(r)
i ∪X

(r+1)
i , and hence it follows that |πi (B)| = |B| for all i.

It is known that the exact Hamming balls are the only sets of their respective sizes for which

the inequality in Harper's theorem holds with equality. That is, if A ⊆ Qn is a set of size∣∣X(≤r)∣∣ for which the size of N (A) is minimal among the subsets of Qn of the same size, then

A = B (x, r) for some x ∈ Qn. Hence if A ⊆ Qn is an extremal set of size
∣∣X(≤r)∣∣ for some r, it

certainly follows that A has to be isomorphic to the initial segment of the simplicial order.

Note that if A is extremal, then so is Ac, as the de�nition of extremality is symmetric under

taking complements. Let Gr = X(≤r) ∪
{
b ∈ X(r+1) : 1 ∈ b

}
. It is easy to check that we have
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|Gr| + |Gn−r−2| = 2n for all r. Hence if A ⊆ Qn satis�es |A| 6=
∣∣X(≤r)∣∣ for all r, then at least

one of the inequalities
∣∣X(≤r)∣∣ < |A| ≤ |Gr| or ∣∣X(≤r)∣∣ < |Ac| ≤ |Gr| is satis�ed for some r.

Hence it is su�cient to only classify the extremal sets A ⊆ Qn for which there exists r such that∣∣X(≤r)∣∣ < |A| ≤ |Gr|.
For convenience, we write fr = fn,r =

∣∣X(≤r)∣∣ =
∑r

j=0

(
n
j

)
and gr = gn,r = |Gr| =

∑r
j=0

(
n
j

)
+(

n−1
r

)
. In both cases, the dependence on n will not be highlighted if the value of n is clear from

the context.

Let s be an integer of the form s = fr + k for some 0 ≤ k ≤
(
n−1
r

)
. Note that for a �xed

n, the value of s uniquely determines the values of r and k. Furthermore, observe that we have

fn +
(
n−1
r

)
= gr. Hence the set of integers that can be written as fr + k for some 0 ≤ k ≤

(
n−1
r

)
is exactly the set of those integers s′ for which there exists r satisfying fr ≤ s′ ≤ gr.

Given an integer s of the form s = fr + k, let A be the initial segment of the lexicographic

order on X(r+1) of size k. For A ⊆ P (Xi) write {i} + A for the family {{i} ∪ a : a ∈ A}. For

each i de�ne

Ai = X(≤r) ∪ ({i}+ πi (A)) .

Note that we have πi (A) ⊆ X
(r)
i ∪ X

(r+1)
i , and hence {i} + πi (A) is a well-de�ned subset of

X(r+1)∪X(r+2) of the same size as A. In particular, the sets X(≤r) and {i}+πi (A) are disjoint,

and hence each set Ai contains exactly s elements. We also have A ⊆ {1}+X
(r)
1 since k ≤

(
n−1
r

)
.

Hence it follows that {1}+π1 (A) = A, and thus A1 is the initial segment of the simplicial order.

Note that some of the sets Ai might be isomorphic to each other.

Now we are ready to state the classi�cation of extremal sets.

Theorem 2. (Classi�cation of extremal sets). Let A ⊆ Qn be a subset of size s, where s = fr+k

for some r and k ≤
(
n−1
r

)
. Let A1, . . . , An be the sets de�ned as above for these choices of r and

k. Then A is extremal if and only if A is isomorphic to some Ai.

It is natural to ask what happens if we weaken the notion of extremality. A natural way to do

this is to seek subsets A ⊆ Qn for which both N (A) and N (Ac) have minimal sizes among the

subsets of Qn of the same sizes. We say that A ⊆ Qn is weakly extremal if for all B ⊆ Qn with

|B| = |A| we have |N (B)| ≥ |N (A)| and |N (Bc)| ≥ |N (Ac)|. Let C be the initial segment of

the simplicial order of size |A|. Again, by Harper's theorem, weak extremality of A is equivalent

to having |N (A)| = |N (C)| and |N (Ac)| = |N (Cc)|. Rather surprisingly, we prove in Section

2.4 that the notions of weak extremality and extremality coincide.

Theorem 3. Let A ⊆ Qn be a subset for which every B ⊆ Qn with |B| = |A| satis�es |N (B)| ≥
|N (A)| and |N (Bc)| ≥ |N (Ac)|. Then for all t > 0 and B ⊆ Qn with |B| = |A| we have∣∣N t (B)

∣∣ ≥ ∣∣N t (A)
∣∣ and ∣∣N t (Bc)

∣∣ ≥ ∣∣N t (Ac)
∣∣.

Hence it immediately follows that Theorem 2 holds when extremality is replaced with weak

extremality. In fact, Theorem 3 follows from the following slightly stronger Theorem which we

also prove in Section 2.4.

Theorem 4. Let A ⊆ Qn be a subset for which every B ⊆ Qn with |B| = |A| satis�es |N (B)| ≥
|N (A)|. Then for all t > 0 and B ⊆ Qn with |B| = |A| we have

∣∣N t (B)
∣∣ ≥ ∣∣N t (A)

∣∣.
7



The plan of this chapter is as follows. In Section 2.2 we construct an extremal set which is

not isomorphic to an initial segment of the simplicial order. In Section 2.3 we prove Theorem 2.

In Section 2.4 we consider weakly extremal sets and prove Theorem 3.

Recall that exact Hamming balls are the unique sets of their respective sizes for which equality

holds in Harper's inequality. In Section 2.5 we prove another near-uniqueness result: we show

that there exists only one set Br of size gr, apart from the initial segment, for which equality

holds in Harper's inequality. In fact, the set Br is also an extremal set, and we describe it already

in Section 2.2.

2.2 Construction of an example

In this section we �nd for every r an extremal set Br ⊆ Qn satisfying |Br| = gr for which Br is

not isomorphic to an initial segment of the simplicial order. Let Cr be the initial segment of the

simplicial order of size gr on Qn. Then Cr can be written as Cr = B (∅, r) ∪ B ({1} , r). De�ne
Br = B (∅, r)∪B ({1, 2} , r). That is, Br is the union of two exact Hamming balls of same radius

and centres within distance 2 apart from each other.

Note that if B (s, r) ⊆ Br ⊆ B (s, r + 1) holds for some s ∈ Qn, then the �rst inclusion

implies that we have s = ∅ or s = {1, 2}. However, the second inclusion is violated in both cases.

Hence Br is not a Hamming ball, and hence it cannot be isomorphic to an initial segment of the

simplicial order.

It is easy to verify that we have N t (Cr) = Cr+t and N
t (Br) = Br+t for all t > 0. Hence in

order to prove thatN t (Br) are minimal for all t > 0, it su�ces to prove that we have |Bm| = |Cm|
for all m. Observe that Br can be written as Br = X(≤r) ∪

(
{1, 2}+

(
X

(r−1)
1,2 ∪X(r)

1,2

))
. Hence

it follows that

|Br| = fr +

(
n− 2

r − 1

)
+

(
n− 2

r

)
= fr +

(
n− 1

r

)
= gr,

and thus we have |Br| = |Cr| for all r.
Since

Ccr = B ({1, . . . , n} , n− r − 1) ∩B ({2, . . . , n} , n− r − 1) ,

it is easy to check that we have

Ccr = B ({1, . . . , n} , n− r − 2) ∪B ({2, . . . , n} , n− r − 2) .

Hence Ccr is isomorphic to Cn−r−2 under the isometry θ : Qn → Qn given by θ (a) = ac for all

a ∈ Qn. In particular, it follows that gr + gn−r−2 = 2n.

Similarly we have

Bc
r = B ({1, . . . , n} , n− r − 1) ∩B ({3, . . . , n} , n− r − 1)

and our aim is to show that this implies that

Bc
r = B ({1, 3, . . . , n} , n− r − 2) ∪B ({2, . . . , n} , n− r − 2) . (2.1)
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Indeed, note that for any x ∈ B ({1, 3, . . . , n} , n− r − 2) we have

d (x, {1, . . . , n}) ≤ d (x, {1, 3 . . . , n}) + d ({1, 3, . . . , n} , {1, . . . , n}) ≤ (n− r − 2) + 1 = n− r − 1

by the triangle inequality. One can similarly deduce that we have d (x, {3, . . . , n}) ≤ n− r − 1.

Hence it follows that

B ({1, 3, . . . , n} , n− r − 2) ⊆ B ({1, . . . , n} , n− r − 1) ∩B ({3, . . . , n} , n− r − 1) ,

and similarly we have

B ({2, . . . , n} , n− r − 2) ⊆ B ({1, . . . , n} , n− r − 1) ∩B ({3, . . . , n} , n− r − 1) .

These two observations imply that the ⊇-part of (2.1) holds.
Note that B ({1, 3, . . . , n} , n− r − 2) ∪ B ({2, . . . , n} , n− r − 2) is isomorphic to Bn−r−2

under the isometry φ given by φ (a) = a∆ {2, . . . , n} for all a ∈ Qn. Hence we have

|B ({1, 3 . . . , n} , n− r − 2) ∪B ({2, . . . , n} , n− r − 2)| = |Bn−r−2| = gn−r−2 = 2n−|Br| = |Bc
r| .

This, together with the fact that the inclusion holds in the ⊇-direction, implies that (2.1) holds.

In particular, Bc
r is isomorphic to Bn−r−2.

Hence N t (Bc
r) is isomorphic to Bn−r+t−2 and N

t (Ccr) is isomorphic to Cn−r+t−2 for all t > 0.

Since |Bn−r+t−2| = |Cn−r+t−2|, it follows that
∣∣N t (Bc

r)
∣∣ =

∣∣N t (Ccr)
∣∣ for all t > 0, and hence

N t (Bc
r) are minimal for all t > 0. Therefore Br is an extremal set.

2.3 Classifying all extremal sets

Recall that fr =
∑r

i=0

(
n
i

)
is the size of the exact Hamming ball of radius r, and gr =

∑r
i=0

(
n
i

)
+(

n−1
r

)
is the size of the initial segment X(≤r) ∪

(
{1}+X

(r)
1

)
. It is convenient to exclude the sets

of size fr from the classi�cation, and this is possible due to the following result.

Proposition 5. Let A ⊆ Qn be a set satisfying |A| = fr and suppose that for any B ⊆ Qn

satisfying |B| = fr we have |N (B)| ≥ |N (A)|. Then A = B (x, r) for some x ∈ Qn.

Since this is a well-known fact, the proof is omitted. This could be deduced by induction on

n and applying Lemma 6 of Katona from [24]. A similar technique will be used in Section 2.5 in

the proof of Claim 1 in Theorem 21.

Since the classi�cation of extremal sets A ⊆ Qn satisfying |A| = fr for some r is covered by

Proposition 5, it is enough to consider only those sets A ⊆ Qn satisfying fr < |A| < fr+1 for some

r. Furthermore, since gr + gn−2−r = 2n and fr + fn−1−r = 2n, by considering Ac if necessary,

it is enough to classify only those extremal sets A ⊆ Qn satisfying fr < |A| ≤ gr for some r.

Hence, from now on, we will assume that A ⊆ Qn is an extremal set satisfying fr < |A| ≤ gr for
some r.

Lemma 6. Let A ⊆ Qn be an extremal set satisfying fr < |A| ≤ gr for some r. Then there

exist x, y, z ∈ Qn with y 6= z satisfying d (x, y) ≤ 1, d (x, z) ≤ 1 and for which B (x, r) ⊆ A ⊆

9



B (y, r + 1) ∩B (z, r + 1).

Since d (x, y) ≤ 1, the condition A ⊆ B (y, r + 1) implies that we also have A ⊆ B (x, r + 2).

Hence it follows that there exists an element x ∈ Qn for which we have B (x, r) ⊆ A ⊆
B (x, r + 2). This implies that the interesting behaviour in the set A occurs only on two layers

of the cube, namely on those which are distance r + 1 and r + 2 apart from x.

Proof. Let A ⊆ Qn satisfying the condition fr < |A| ≤ gr. Let Cr be the initial segment of

size gr, and recall from Section 2.2 that we have N t (Cr) = Cr+t. Since |A| ≤ gr and A is

extremal, it follows that
∣∣Nn−r−2 (A)

∣∣ ≤ ∣∣Nn−r−2 (Cr)
∣∣ = gn−2 = 2n − 2. Hence there exist

distinct elements u, v ∈ Nn−r−2 (A)c. Let y = uc and z = vc. By the choice of u and v, it

follows that B (u, n− r − 2) ∪B (v, n− r − 2) ⊆ Ac. Taking complements implies that we have

A ⊆ B (y, r + 1) ∩B (z, r + 1).

Since |A| > fr, it follows that |Ac| < fn−r−1. Combining this with the extremality of A,

it follows that |N r (Ac)| ≤ |N r (B (∅, n− r − 1))| = fn−1 = 2n − 1. Hence there exists x ∈
(N r (Ac))c and therefore we have B (x, r) ⊆ A. Combining this with the previous observations

implies that B (x, r) ⊆ A ⊆ B (y, r + 1) ∩ B (z, r + 1). Since B (x, r) ⊆ B (y, r + 1), we must

have d (x, y) ≤ 1, and similarly it follows that d (x, z) ≤ 1.

The proof of Lemma 6 gives some insight on why it is convenient to assume that the size of

A satis�es the condition fr < |A| ≤ gr rather than only fr < |A| < fr+1. Indeed, the condition

fr < |A| < fr+1 would not be strong enough to guarantee the existence of both y and z.

Given this result, we can split the rest of the classi�cation into two parts: considering those

A which are Hamming balls, i.e. for which there exist x ∈ Qn and r satisfying B (x, r) ⊆ A ⊆
B (x, r + 1), and considering those A for which no such x and r exist. It turns out that all

the extremal sets apart from the initial segment appear in the second case. This is proved in

Proposition 11, but before that we need a few preliminary results. Many of these preliminary

results are used later as well.

ForA ⊆ Qn, de�ne the i-sections Ai,+ andAi,− ofA by settingAi,+ = {a \ {i} : a ∈ A, i ∈ a}
and Ai,− = {a : a ∈ A, i 6∈ a}. Note that Ai,+ and Ai,− are subsets of P (Xi) which is naturally

isomorphic to Qn−1. If the direction i is clear from the context, they will be denoted as A+ and

A−.

We often want to relate the neighbourhood of A to the neighbourhoods of the i-sections Ai,+

and Ai,−. However, for Ai,+ and Ai,− the neighbourhood is always taken inside P (Xi), i.e.

with respect to the ground set Xi rather than X. Since for i-sections Ai,+ and Ai,− we always

consider the neighbourhood with respect to Xi, and otherwise we always consider neighbourhood

with respect to X, we will use the same notation N (A) and N (Ai,±) in both cases to avoid

excessive use of subscripts. In the second case the neighbourhood N (Ai,±) that is considered is

a neighbourhood of an i-section, and hence it should always be understood as the neighbourhood

with respect to the ground set Xi.

Lemma 7. For all r ≥ 0 and for any distinct elements x, y ∈ Qn we have |B (x, r) ∪B (y, r)| ≥
gr, with equality if and only if d (x, y) ≤ 2.

Proof. We may assume that y * x. Set A = B (x, r) ∪ B (y, r). Recall that Bi (x, r) denotes

the exact Hamming ball of radius r centred at x with respect to the ground set Xi. For any
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i ∈ y \ x we have Ai,− = Bi (x, r) ∪Bi (y \ {i} , r − 1) and Ai,+ = Bi (x, r − 1) ∪Bi (y \ {i} , r).
In particular, we have Bi (x, r) ⊆ Ai,− and Bi (y \ {i} , r) ⊆ Ai,+, and thus it follows that

|A| = |Ai,+|+ |Ai,−| ≥ 2fn−1, r.

Let C be the initial segment of the simplicial order of size gn, r, and recall that we have C =

B (∅, r)∪B ({1} , r). Note that Ci,− = Ci,+ = B1 (∅, r), and hence it follows that gn, r = 2fn−1, r.

In particular, we obtain that |A| ≥ gn, r.
Note that the equality holds if and only if Ai,− = Bi (x, r) and Ai,+ = Bi (y \ {i} , r).

Hence we must have Bi (y \ {i} , r − 1) ⊆ Bi (x, r) and Bi (x, r − 1) ⊆ Bi (y \ {i} , r), which are

satis�ed if and only if d (y \ {i} , x) ≤ 1. Since i ∈ y \ x, this inequality is satis�ed if and only if

d (x, y) ≤ 2.

Lemma 8. Let G be the set of isometries φ of Qn satisfying φ (∅) = ∅. For each σ ∈ Sn, de�ne
φσ by setting φσ (a) = {σ (i) : i ∈ a} for a ∈ Qn. Then we have G = {φσ : σ ∈ Sn}.

Proof. It is clear that each φσ is an isometry satisfying φσ (∅) = ∅. Let g ∈ G. Since g (∅) = ∅, it
follows that for all i ∈ X we have d (g ({i}) , ∅) = 1, and thus g ({i}) is a set containing exactly

one element. Denote this unique element by gi, and de�ne σ by setting σ (i) = gi. Since g is a

bijection, it follows that σ : X → X is an injection, and hence we have σ ∈ Sn.
Our aim is to prove that we have g (a) = φσ (a) for all a ∈ Qn. We prove this by induction

on the number of elements in a. Note that the claim is true for any a ∈ Qn with |a| ∈ {0, 1} by
the construction of σ and the fact that g (∅) = ∅.

Suppose that the claim is true for all b ∈ Qn with |b| ≤ m − 1 where m ≥ 2, and let

a ∈ Qn with |a| = m. For each i ∈ a we have g (a \ {i}) = φσ (a \ {i}) by induction. Note

that |φσ (a \ {i})| = |a| − 1 = m − 1 and |g (a)| = d (g (a) , ∅) = d (a, ∅) = m. We also have

d (g (a) , g (a \ {i})) = d (a, a \ {i}) = 1. In particular, g (a) is a set containing m elements,

g (a \ {i}) is a set containing m−1 elements and the symmetric di�erence of g (a) and g (a \ {i})
contains one element. Hence it follows that g (a) = g (a \ {i})∪{j} = φσ (a \ {i})∪{j} for some

j 6∈ g (a \ {i}).
Note that d (g (a) , g ({i})) = d (a, {i}) = m − 1. Combining this with the previous obser-

vations |g (a)| = m and |g ({i})| = |{σ (i)}| = 1, it follows that σ (i) ∈ g (a). Since σ (i) 6∈
φσ (a \ {i}), we must have j = σ (i). Hence it follows that g (a) = φσ (a \ {i})∪{σ (i)} = φσ (a),

as required.

Note that φσ induces a bijection on X(r) for every σ ∈ Sn. We say that A ⊆ X(r) and

B ⊆ X(r) are isomorphic as subsets of X(r) if there exists φσ for which we have φσ (A) = B. In
order to avoid confusion between this notion and the notion of being isomorphic on Qn, we will

explicitly write down `isomorphic as subsets of X(r)' rather than `isomorphic'. The aim of the

following lemma is to relate these two notions.

Lemma 9. Let A and C be subsets of Qn of the form A = B (∅, r) ∪ A and C = B (∅, r) ∪ C
for some A, C ⊆ X(r+1). If A and C are isomorphic, then A and C are isomorphic as subsets of

X(r+1).

Proof. Note that it su�ces to show that if A and C are isomorphic, then there exists φσ ∈ G
with φσ (A) = C. Let g be an isometry mapping A to C. Hence g also maps Ac to Cc. If

g (∅) = ∅, we are done by Lemma 8, and hence we may assume that g (∅) 6= ∅.
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Since g is an isometry, it follows thatB (g (∅) , r) = g (B (∅, r)), and hence we haveB (g (∅) , r) ⊆
C. Thus B (∅, r)∪B (g (∅) , r) ⊆ C, and by Lemma 7 we have |C| ≥ gr. Furthermore, the equality

holds if and only if C = B (∅, r) ∪B (g (∅) , r) and d (g (∅) , ∅) ≤ 2.

Since B ({1, . . . , n} , n− r − 2) ⊆ Ac, it follows similarly that B (g ({1, . . . , n}) , n− r − 2) ⊆
Cc. Since g is an isometry with g (∅) 6= ∅, it follows that g ({1, . . . , n}) 6= {1, . . . , n} as ∅ and
{1, . . . , n} are antipodal points. Hence we have

B ({1, . . . , n} , n− r − 2) ∪B (g ({1, . . . , n}) , n− r − 2) ⊆ Cc

and thus Lemma 7 implies that |Cc| ≥ gn−r−2.
Since gr+gn−r−2 = 2n, the equality must hold in both cases. Thus C = B (∅, r)∪B (g (∅) , r),

and since C ⊆ B (∅, r + 1) we must have d (g (∅) , ∅) = 1. Hence A = B
(
g−1 (∅) , r

)
∪ B (∅, r),

and we also have d
(
g−1 (∅) , ∅

)
= 1 since g is an isometry.

Let i, j ∈ X be chosen so that g (∅) = {i} and g−1 (∅) = j. Since A = B ({j} , r)∪B (∅, r) and
C = B ({i} , r) ∪B (∅, r), by choosing σ = (ij) ∈ Sn it follows that φσ (A) = C, as required.

Lemma 10. Let t be a �xed positive integer, A ⊆ Qn and let j be a direction for which we have

|Aj,−| ≥ |Aj,+|. Let Cj,− and Cj,+ be the initial segments of the simplicial order on P (Xj) with

|Cj,−| = |Aj,−| and |Cj,+| = |Aj,+|. If N t (A) is minimal and Cj,− ⊆ N (Cj,+), then N t (Aj,−)

and N t (Aj,+) are minimal and we have N t−1 (Aj,+) ⊆ N t (Aj,−) and N t−1 (Aj,−) ⊆ N t (Aj,+).

The idea of comparing the neighbourhoods of A+ and A− with the neighbourhoods of C+

and C− was used similarly by Bollobás and Leader [8].

Proof. For simplicity we denote the j-sections by A+, A−, C+ and C−. De�ne C ⊆ Qn by setting
C = C− ∪ (C+ + {j}). It is easy to observe that we have

(
N t (A)

)
+

= N t−1 (A−)∪N t (A+) and(
N t (A)

)
− = N t−1 (A+) ∪N t (A−). Hence it follows that

∣∣N t (A)
∣∣ =

∣∣N t−1 (A−) ∪N t (A+)
∣∣+
∣∣N t−1 (A+) ∪N t (A−)

∣∣ . (2.2)

Since C+ and C− are initial segments of the simplicial order on P (Xj) with |C+| ≤ |C−|,
it follows that C+ ⊆ C− as initial segments are nested. Hence we also have N t−1 (C+) ⊆
N t−1 (C−) ⊆ N t (C−), as taking neighbourhoods preserves the inclusion of sets, and a set is

always contained in its neighbourhood. Similarly the assumption C− ⊆ N (C+) implies that we

have N t−1 (C−) ⊆ N t (C+). Applying (2.2) for C implies that

∣∣N t (C)
∣∣ =

∣∣N t (C+)
∣∣+
∣∣N t (C−)

∣∣ . (2.3)

Since C+ and C− are initial segments, Harper's inequality implies that we have
∣∣N t (A+)

∣∣ ≥∣∣N t (C+)
∣∣ and ∣∣N t (A−)

∣∣ ≥ ∣∣N t (C−)
∣∣. In particular, it follows that

∣∣N t−1 (A−) ∪N t (A+)
∣∣ ≥ ∣∣N t (A+)

∣∣ ≥ ∣∣N t (C+)
∣∣ (2.4)

and ∣∣N t−1 (A+) ∪N t (A−)
∣∣ ≥ ∣∣N t (A−)

∣∣ ≥ ∣∣N t (C−)
∣∣ . (2.5)
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Hence combining (2.2), (2.3), (2.4) and (2.5) it follows that

∣∣N t (A)
∣∣ ≥ ∣∣N t (C)

∣∣ . (2.6)

However, since |A| = |C| and N t (A) is minimal, the equality must hold in (2.6), and in particular

it must hold in (2.4) and (2.5). Thus (2.4) implies that we have
∣∣N t (A+)

∣∣ =
∣∣N t (C+)

∣∣, and
since C+ is the initial segment of the simplicial order, it follows that N t (A+) is minimal. Since

equality holds in (2.4), we also obtain that N t−1 (A−) ∪ N t (A+) = N t (A+). Hence it follows

that N t−1 (A−) ⊆ N t (A+). Similarly the fact that equality holds in (2.5) implies that N t (A−)

is minimal, and that N t−1 (A+) ⊆ N t (A−).

Proposition 11. Suppose that A ⊆ Qn is an extremal set for which there exist t ∈ Qn and r

so that B (t, r) ⊆ A ⊆ B (t, r + 1). Then A is isomorphic to an initial segment of the simplicial

order.

Proof. The proof is by induction on n. When n ≤ 2 it is easy to verify that the claim is true.

Suppose that the claim holds for n− 1, and let A ⊆ Qn be an extremal set for which there exist

t ∈ Qn and r so that B (t, r) ⊆ A ⊆ B (t, r + 1). By the symmetry of Qn, we may assume that

t = ∅.
If A satis�es |A| = fr, then Proposition 5 implies that A is an exact Hamming ball of radius r.

In particular, A is isomorphic to the initial segment of the simplicial order, and the claim follows

in this case. Otherwise, by taking complements if necessary, we may assume that A satis�es

fr < |A| ≤ gr. Indeed, this follows from the earlier observation that extremality is preserved

under taking complements.

Since fr < |A| ≤ gr, Lemma 6 implies that there exist x, y and z with y 6= z satisfying

B (x, r) ⊆ A ⊆ B (y, r + 1) ∩ B (z, r + 1), d (x, y) ≤ 1 and d (x, z) ≤ 1. We split the rest of the

proof into two cases based on whether we have |A| = gr or fr < |A| < gr.

Case 1 . The size of A satis�es |A| = gr.

Since A ⊆ B (y, r + 1)∩B (z, r + 1), it follows that B (yc, n− r − 2)∪B (zc, n− r − 2) ⊆ Ac.
Since yc 6= zc, Lemma 7 implies that we have |Ac| ≥ gn−r−2. Since |Ac| = 2n − gr = gn−r−2, the

equality must hold. In particular, we must have Ac = B (yc, n− r − 2) ∪ B (zc, n− r − 2), and

hence it follows that A = B (y, r + 1) ∩B (z, r + 1).

If d (y, z) = 1, by applying a suitable isometry of Qn if necessary we may assume that y = ∅
and z = {1}. Hence A equals B (∅, r + 1)∩B ({1} , r + 1) = X(≤r) ∪

(
{1}+X

(r)
1

)
, which is the

initial segment of the simplicial order of size gr. If d (y, z) = 2, note that the only elements s

satisfying the condition A ⊆ B (s, r + 1) are s = y and s = z. However, since d (y, z) = 2, it

follows that neither of B (y, r) nor B (z, r) is a subset of A. This contradicts the existence of t

satisfying B (t, r) ⊆ A ⊆ B (t, r + 1). Hence A has to be isomorphic to an initial segment of the

simplicial order.

Case 2 . The size of A satis�es fr < |A| < gr.

Recall that t = ∅ is the element satisfying the condition B (t, r) ⊆ A ⊆ B (t, r + 1), and that

x, y and z are elements with y 6= z satisfyingB (x, r) ⊆ A ⊆ B (y, r + 1)∩B (z, r + 1), d (x, y) ≤ 1
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and d (x, z) ≤ 1. If x 6= ∅, Lemma 7 implies that we have |A| ≥ |B (∅, r) ∪B (x, r)| ≥ gr, which

contradicts the assumption |A| < gr. Hence we must have x = ∅.
Since y 6= z, it follows that at least one of y and z does not equal ∅, and hence we may

assume that y 6= ∅. Hence the condition d (y, x) ≤ 1 implies that y = {i} for some i, and by

applying a suitable isometry we may assume that i = 1. Since A ⊆ B (y, r + 1) and B (∅, r) ⊆
A ⊆ B (∅, r + 1), it follows that B (∅, r) ⊆ A ⊆ B (∅, r + 1) ∩ B ({1} , r + 1). Hence there exists

B ⊆ X(r)
1 for which we have A = X(≤r) ∪ ({1}+ B).

Consider the j-sections in the direction j = 1, and for simplicity denote them by A+ and A−

for the rest of the proof. Since A = X(≤r) ∪ ({1}+ B), it follows that A+ = X
(≤r−1)
1 ∪ B and

A− = X
(≤r)
1 . Let C+ and C− be the initial segments of the simplicial order of the same sizes as

A+ and A− on P (X1).

Since we have fn−1, r−1 ≤ |C+| < |C−| = fn−1, r, it follows that C− ⊆ N (C+). Since A is an

extremal set, it follows that N t (A) are minimal for all t > 0. Hence Lemma 10 applied for all

t > 0 implies that N t (A+) and N t (A−) are minimal for all t > 0.

Let D− and D+ be the initial segments of the simplicial order of the same sizes as Ac−

and Ac+ on P (X1). Since we have fn−1, n−r−2 =
∣∣Ac−∣∣ < ∣∣Ac+∣∣ ≤ fn−1, n−r−1, it follows that

Dc
+ ⊆ N

(
Dc
−
)
. Hence Lemma 10 implies that N t

(
Ac+
)
and N t

(
Ac−
)
are minimal for all t > 0,

and thus both A+ and A− are extremal, although note that the extremality of A− is also evident

from the fact that A− = X
(≤r)
1 .

The extremality of A+ implies that X
(≤r−1)
1 ∪ B is extremal as a subset of P (X1). Since

B1 (∅, r − 1) ⊆ X
(≤r−1)
1 ∪ B ⊆ B1 (∅, r), the inductive hypothesis implies that X

(≤r−1)
1 ∪ B is

isomorphic to an initial segment of the simplicial order on P (X1). Recall that the initial segment

of the simplicial order of size |A+| on P (X1) is of the form X
(≤r−1)
1 ∪ C, where C ⊆ X

(r)
1 is the

initial segment of the lexicographic order on X
(r)
1 of size |B|. Hence Lemma 9 implies that one

can choose the isomorphism to be of the form φσ for some σ ∈ Sn. Hence we have φσ (B) = C,
which implies that B is isomorphic to an initial segment of the lexicographic order on X

(r)
1 as

subsets of X
(r)
1 . Thus {1}+ B is isomorphic to an initial segment of the lexicographic order on

X(r+1) as subsets of X(r+1), and hence A = X(≤r)∪({1}+ B) is isomorphic to an initial segment

of the simplicial order.

De�ne the lower shadow of a set system A ⊆ X(r) by setting ∂−A = {b \ {i} : b ∈ A, i ∈ b},
and the iterated lower shadow by setting ∂−tA = ∂−

(
∂−(t−1)A

)
. Similarly de�ne the upper

shadow ofA ⊆ X(r) by setting ∂+A = {b ∪ {i} : i ∈ X \ b, b ∈ A}, and the iterated upper shadow
by setting ∂+tA = ∂+

(
∂+(t−1)A

)
. Note that the upper shadow depends on the ground set, which

will be X unless otherwise highlighted in the notation. For A ⊆ X(r) de�ne A = {ac : a ∈ A}.
Note that we have

∣∣A∣∣ = |A| and A ⊆ X(n−r). It turns out that the upper and lower shadows

can be related to each others via ∂+A = ∂−A.
It is natural to ask how one should choose a set system A ⊆ X(r) of a given size in order to

minimise the size of the lower shadow. Note that answering this question would answer the same

question concerning the upper shadow by using the fact that ∂+A = ∂−A. These questions are
answered by the Kruskal-Katona theorem.
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Theorem 12. (Kruskal-Katona theorem [25, 28])

1. Let A ⊆ X(r), and let B ⊆ X(r) be the initial segment of the colexicographic order of size

|A|. Then we have |∂−A| ≥ |∂−B|.

2. Let A ⊆ X(r), and let C ⊆ X(r) be the initial segment of the lexicographic order of size |A|.
Then we have |∂+A| ≥ |∂+C|.

Note that the lower shadow of an initial segment of the colexicographic order on X(r) is an

initial segment of the colexicographic order on X(r−1), and similarly the upper shadow of an

initial segment of the lexicographic order on X(r) is an initial segment of the lexicographic order

on X(r+1). Hence we can strengthen the conclusion of Theorem 12 by replacing |∂−A| ≥ |∂−B|
with

∣∣∂−tA∣∣ ≥ ∣∣∂−tB∣∣ for all t > 0, and by replacing |∂+A| ≥ |∂+C| with
∣∣∂+tA∣∣ ≥ ∣∣∂+tC∣∣ for all

t > 0.

Let A ⊆ X(r), let B be the initial segment of the colexicographic order on X(r) of size |A|
and let C be the initial segment of the lexicographic order on X(r) of size |A|. We say that ∂−tA
are minimal for all t > 0 if we have

∣∣∂−tA∣∣ =
∣∣∂−tB∣∣ for all t > 0, and we say that ∂+tA are

minimal for all t > 0 if we have
∣∣∂+tA∣∣ =

∣∣∂+tC∣∣ for all t > 0. Since the Kruskal-Katona theorem

implies that we always have
∣∣∂−tA∣∣ ≥ ∣∣∂−tB∣∣ and ∣∣∂+tA∣∣ ≥ ∣∣∂+tC∣∣ for all t > 0, in order to

verify minimality it su�ces to prove that we have
∣∣∂−tB∣∣ ≥ ∣∣∂−tA∣∣ and ∣∣∂+tC∣∣ ≥ ∣∣∂+tA∣∣ for all

t > 0.

Let C be an initial segment of the lexicographic order on X(r), and let B = X(r)\C. Then B is

isomorphic to an initial segment of the colexicographic order as subsets of X(r). Hence it follows

that ∂+tC are minimal for all t > 0 and ∂−tB are minimal for all t > 0. We now prove that if

A ⊆ X(r) for which ∂+tA are minimal for all t > 0 and ∂−t
(
X(r) \ A

)
are minimal for all t > 0,

then A and the initial segment of the lexicographic order on X(r) of size |A| are isomorphic as

subsets of X(r).

Corollary 13. Let A ⊆ X(r) and set D = X(r) \ A. Suppose that ∂+tA and ∂−tD are minimal

for all t > 0. Then A and the initial segment of the lexicographic order of size |A| are isomorphic

as subsets of X(r).

Proof. Let A = X(≤r−1) ∪ A, and note that Ac = X(≥r+1) ∪ D. Let C ⊆ X(r) be the initial

segment of the lexicographic order of size |A|. Then C = X(≤r−1) ∪ C is the initial segment of

the simplicial order of size |A|. De�ne B = X(r) \ C, and note that we have Cc = X(≥r+1) ∪ B.
Since ∂+tA are minimal for all t > 0 and C is the initial segment of the lexicographic order on

X(r) of size |A|, it follows that
∣∣∂+tA∣∣ =

∣∣∂+tC∣∣ for all t > 0. Since N t (A) = X(≤r+t−1) ∪ ∂+tA
and N t (C) = X(≤r+t−1) ∪ ∂+tC, it follows that

∣∣N t (A)
∣∣ =

∣∣∣X(≤r+t−1)
∣∣∣+
∣∣∂+tA∣∣ =

∣∣∣X(≤r+t−1)
∣∣∣+
∣∣∂+tC∣∣ =

∣∣N t (C)
∣∣ (2.7)

for all t > 0.

Since ∂−tD are minimal for all t > 0 and B is isomorphic to the initial segment of the

colexicographic order of size |D| as subsets of X(r), it follows that
∣∣∂−tD∣∣ =

∣∣∂−tB∣∣ for all t > 0.

Note that similarly we also have N t (Ac) = X(≥r−t+1) ∪ ∂−tD and N t (Cc) = X(≥r−t+1) ∪ ∂−tB.
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Hence it follows that

∣∣N t (Ac)
∣∣ =

∣∣∣X(≥r−t+1)
∣∣∣+
∣∣∂−tD∣∣ =

∣∣∣X(≥r−t+1)
∣∣∣+
∣∣∂−tB∣∣ =

∣∣N t (Cc)
∣∣ (2.8)

for all t > 0. Hence A is extremal.

Since B (∅, r − 1) ⊆ A ⊆ B (∅, r), Proposition 11 implies that A is isomorphic to the initial

segment of the simplicial order, and hence A is isomorphic to C. Thus Lemma 9 implies that

there exists σ ∈ Sn for which we have φσ (A) = C. Since φσ maps the elements of X(r) to

the elements of X(r), it follows that φσ (A) = C. Hence A and C are isomorphic as subsets of

X(r).

For convenience, we recall the de�nition of the sets Ai and restate Theorem 2. De�ne the

maps πi : X(r+1) → X
(r+1)
i ∪ X(r)

i by setting πi (x) = x \ {i} for all x ∈ X(r+1), and for a set

system B ⊆ X(r+1) de�ne πi (B) = {πi (x) : x ∈ B}. Let s be an integer of the form s = fr + k

for some 0 ≤ k ≤
(
n−1
r

)
. Let A be the initial segment of the lexicographic order on X(r+1) of

size k. Finally, for each i set

Ai = X(≤r) ∪ ({i}+ πi (A)) ,

and note that we have |Ai| = s for all i.

Theorem 2. Let A ⊆ Qn be a subset of size s, where s = fr + k for some r and k ≤
(
n−1
r

)
. Let

A1, . . . , An be the sets de�ned as above for these choices of r and k. Then A is extremal if and

only if A is isomorphic to some Ai.

Proof. Let 0 ≤ r ≤ n, 0 ≤ k ≤
(
n−1
r

)
and set s = fr + k. Let A1, . . . , An be the subsets of Qn

de�ned as above for these choices of n, r, k and s. We start by proving that every extremal set

A ⊆ Qn of size s is isomorphic to Ai for some i, and then we prove that each Ai is extremal.

The second part is much easier, but since it follows very quickly as a consequence of the �rst

part, we start with the more di�cult part.

If k = 0, it follows that |A| = fr. Hence Proposition 5 implies that A is an exact Hamming

ball of radius r, and so is each of the sets Ai. Hence the result follows in this case. Hence we

may assume that k > 0.

Since fr < |A| ≤ gr, Lemma 6 implies that there exist x, y, z ∈ Qn with y 6= z satisfying

d (x, y) ≤ 1, d (x, z) ≤ 1 and B (x, r) ⊆ A ⊆ B (y, r + 1) ∩ B (z, r + 1). We may also assume

that x = ∅. If y = ∅ or z = ∅, then we have B (∅, r) ⊆ A ⊆ B (∅, r + 1) and hence Proposition

11 implies that A is isomorphic to the initial segment of the simplicial order, and thus A is

isomorphic to A1. Hence we may assume that y 6= ∅ and z 6= ∅, and thus we have y = {i} and
z = {j} for distinct elements i, j ∈ X.

The condition B (x, r) ⊆ A ⊆ B (y, r + 1) ∩ B (z, r + 1) guaranteed by Lemma 6 can be

rewritten as

X(≤r) ⊆ A ⊆ X(≤r) ∪
(
{i, j}+

(
X

(r−1)
i,j ∪X(r)

i,j

))
.

Hence it follows that A = X(≤r) ∪ ({i, j}+A1) ∪ ({i, j}+A2) where At ⊆ X
(r−2+t)
i,j for both

t ∈ {1, 2}. De�ne a set system F ⊆ X(r+1) by setting F = ({i, j}+A1) ∪ ({i}+A2), and

C ⊆ Qn by setting C = X(≤r) ∪F . Note that F can be written as F = {i}+ (({j}+A1) ∪ A2).
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We start by verifying that it su�ces to prove that C is extremal. If C is extremal, C

is isomorphic to the initial segment of the simplicial order of size |A| by Proposition 11, and

Lemma 9 implies that this isomorphism can be chosen to be of the form φσ for some σ ∈ Sn.
Hence σ (F) is the initial segment of the lexicographic order on X(r+1) of size |F|.

We will show that such σ always exists with σ (i) = 1, and hence suppose that we have

σ (i) 6= 1. Since F ⊆ {i} + X
(r)
i , we also have σ (F) ⊆ σ (i) + X

(r)
σ(i), and since σ (F) is

an initial segment of the lexicographic order on X(r+1) with |σ (F)| ≤
(
n−1
r

)
, it follows that

σ (F) ⊆ {1}+X
(r)
1 . Hence every element of σ (F) contains {1, σ (i)} as a subset. Thus σ′ given

by σ′ = (1σ (i))σ also maps F to the initial segment of the lexicographic order, and hence we

may assume that σ (i) = 1.

It is easy to see that we have φσ (A) = Aσ(j) whenever σ maps F to the initial segment of

the lexicographic order and satis�es σ (i) =1. Hence in order to prove that A is isomorphic to

one of A1, . . . , An, it su�ces to show that C is extremal.

Let ∂+i,j denote the upper shadow operator with respect to the ground set Xi,j . Note that we

have

∂+tF =
(
{i, j}+

(
∂+ti,jA1 ∪ ∂+(t−1)

i,j A2

))
∪
(
{i}+ ∂+ti,jA2

)
,

and hence it follows that

∣∣N t (C)
∣∣ =

∣∣∣X(≤r+t)
∣∣∣+
∣∣∂+tF∣∣ =

∣∣∣X(≤r+t)
∣∣∣+
∣∣∣∂+ti,jA1 ∪ ∂+(t−1)

i,j A2

∣∣∣+
∣∣∣∂+ti,jA2

∣∣∣ . (2.9)

On the other hand, we have

N t (A) = X(≤r+t) ∪
(
{i, j}+

(
∂+ti,jA1 ∪ ∂+(t−1)

i,j A2

))
∪
(
{i, j}+ ∂+ti,jA2

)
,

and hence it follows that

∣∣N t (A)
∣∣ =

∣∣∣X(≤r+t)
∣∣∣+
∣∣∣∂+ti,jA1 ∪ ∂+(t−1)

i,j A2

∣∣∣+
∣∣∣∂+ti,jA2

∣∣∣ . (2.10)

Combining (2.9) with (2.10) we obtain that
∣∣N t (A)

∣∣ =
∣∣N t (C)

∣∣ for all t > 0.

Let B1 = X
(r−1)
i,j \ A1 and B2 = X

(r)
i,j \ A2. Let Sr =

{
x ∈ X(r) : {i, j} 6⊆ x

}
, i.e. Sr =

X(r) \
(
{i, j}+X

(r−2)
i,j

)
. It is easy to verify that we have

Ac = X(≥r+3) ∪ ({i, j}+ (B1 ∪ B2)) ∪ Sr+1 ∪ Sr+2. (2.11)

It is easy to see that ∂−tSm = Sm−t for any m > t. Also note that we have

{i, j}+ ∂−tBm ⊆ ∂−t ({i, j}+ Bm) ⊆
(
{i, j}+ ∂−tBm

)
∪ Sr+m−t

for both m ∈ {1, 2}. Hence (2.11) implies that we have

N t (Ac) = X(≥r−t+3) ∪
(
{i, j}+

(
∂−tB2 ∪ ∂−(t−1)B1

))
∪
(
{i, j}+ ∂−tB1

)
∪ Sr−t+1 ∪ Sr−t+2.

(2.12)

Note thatX(≥r−t+3), {i, j}+
(
∂−tB2 ∪ ∂−(t−1)B1

)
, Sr−t+2 , {i, j}+∂−tB1 and Sr−t+1 are pairwise
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disjoint subsets of Qn. Indeed, the �rst one has only sets containing at least r − t+ 3 elements,

whereas the next two contain only sets of size r− t+ 2 and the last two contain only sets of size

r − t+ 1. Also, Sr−t+2 and Sr−t+1 do not have any sets contained in {i, j}+ P (Xi,j), whereas

the second and fourth set systems are contained in {i, j}+ P (Xi,j).

Combining these observations together with (2.12), we obtain that

∣∣N t (Ac)
∣∣ =

∣∣∣X(≥r−t+3)
∣∣∣+
∣∣∣∂−tB2 ∪ ∂−(t−1)B1∣∣∣+

∣∣∂−tB1∣∣+ |Sr−t+1|+ |Sr−t+2| . (2.13)

Note that we have
∣∣∣X(r−1)

i,j

∣∣∣ +
∣∣∣X(r)

i,j

∣∣∣ =
(
n−2
r−1
)

+
(
n−2
r

)
=
(
n−1
r

)
for all r. Since Sr = X(r) \(

{i, j}+X
(r−2)
i,j

)
, it follows that

|Sr−t+1|+ |Sr−t+2| =
∣∣∣X(r−t+1)

∣∣∣+
∣∣∣X(r−t+2)

∣∣∣− (∣∣∣X(r−t−1)
i,j

∣∣∣+
∣∣∣X(r−t)

i,j

∣∣∣) (2.14)

=
∣∣∣X(r−t+2)

∣∣∣+

(
n

r − t+ 1

)
−
(
n− 1

r − t

)
=
∣∣∣X(r−t+2)

∣∣∣+

(
n− 1

r − t+ 1

)
.

Combining (2.13) and (2.14) together with the fact that
∣∣∣X(r−t+1)

i

∣∣∣ =
(
n−1
r−t+1

)
, it follows that

∣∣N t (Ac)
∣∣ =

∣∣∣X(≥r−t+2)
∣∣∣+
∣∣∣X(r−t+1)

i

∣∣∣+
∣∣∣∂−tB2 ∪ ∂−(t−1)B1∣∣∣+

∣∣∂−tB1∣∣ . (2.15)

Let G = X(r+1) \F . Since F ⊆ X(r+1) and C = X(≤r)∪F , it follows that Cc = X(≥r+2)∪G.
Hence we have ∣∣N t (Cc)

∣∣ =
∣∣∣X(≥r−t+2)

∣∣∣+
∣∣∂−tG∣∣ (2.16)

for all t > 0. We now �nd an expression for
∣∣∂−tG∣∣ in terms of B1 and B2.

Recall that F can be written as F = {i} + (({j}+A1) ∪ A2). Hence it follows that G =

X
(r+1)
i ∪ ({i, j}+ B1) ∪ ({i}+ B2), and it is easy to verify that we have

∂−tG = X
(r−t+1)
i ∪

(
{i, j}+ ∂−tB1

)
∪
(
{i}+

(
∂−(t−1)B1 ∪ ∂−tB2

))
. (2.17)

Note that the sets X
(r−t+1)
i , {i, j}+ ∂−tB1 and {i}+

(
∂−(t−1)B1 ∪ ∂−tB2

)
are pairwise disjoint.

Indeed, this follows by noting that the sets in X
(r−t+1)
i do not contain i, the sets in {i, j}+∂−tB1

contain both i and j, and the sets in {i}+
(
∂−(t−1)B1 ∪ ∂−tB2

)
contain i but not j. Hence (2.16)

and (2.17) imply that

∣∣N t (Cc)
∣∣ =

∣∣∣X(≥r−t+2)
∣∣∣+
∣∣∣X(r−t+1)

i

∣∣∣+
∣∣∂−tB1∣∣+

∣∣∣∂−(t−1)B1 ∪ ∂−tB2∣∣∣ . (2.18)

In particular, (2.15) and (2.18) imply that we have
∣∣N t (Cc)

∣∣ =
∣∣N t (Ac)

∣∣ for all t > 0. Hence C

is extremal, and thus by our earlier observations it follows that A is isomorphic to Ai for some i.

Conversely, suppose that A = Ai for some i. De�ne the set systems A1, A2, B1, B2, F and

G as before. By the construction of the set Ai, it follows that F is isomorphic to an initial

segment of the lexicographic order as subsets of X(r+1). As before, de�ne C = X(≤r) ∪F . Then
C is isomorphic to an initial segment of the simplicial order, so C is extremal. Then (2.9) and

(2.10) imply that
∣∣N t (A)

∣∣ =
∣∣N t (C)

∣∣ for all t > 0, and similarly (2.15) and (2.18) imply that
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∣∣N t (Ac)
∣∣ =

∣∣N t (Cc)
∣∣ for all t > 0. Since A and C are subsets of the same size and C is extremal,

it follows that A is an extremal set as well, which completes the proof.

Note that if s = fr for some r, then Proposition 5 implies that if A is an extremal set of size

s, then A is isomorphic to the initial segment of the simplicial order. We now show that for all

other sizes s there exists a non-trivial extremal set of size s.

Corollary 14. For all n and for all s 6∈ {f0, . . . , fn} there exists an extremal set A ⊆ Qn of size

s which is not isomorphic to the initial segment of the simplicial order.

Proof. If s = gr for some r, we may take A = Br where Br is the set de�ned in Section 2.2.

Hence by taking complements if necessary, we may assume that fr < s < gr for some r. Let

k = s− fr, and let D be the initial segment of the lexicographic order of size k on X(r+1). Let

Di,+ and Di,− be the i-sections of D. Since D 6= ∅, there exists i for which Di,− 6= ∅.
Consider the set Ai for this particular choice of i, and note that Ai is given by Ai = X(≤r) ∪

({i}+Di,+) ∪ ({i}+Di,−). Since Di,− 6= ∅, it follows that Ai ∩ X(r+2) 6= ∅. Since s < gr,

it follows that B (∅, r) is the unique exact Hamming ball of radius r contained in Ai. Indeed,

if B (x, r) ⊆ A for some x 6= ∅, then Lemma 7 implies that |A| ≥ |B (∅, r) ∪B (x, r)| ≥ gr,

which contradicts the fact that |A| < gr. Thus at least one of the conditions B (x, r) ⊆ Ai and

Ai ⊆ B (x, r + 1) is violated for any x ∈ Qn. The �rst condition is violated for any x 6= ∅, and
the second one is violated for x = ∅ since Ai ∩ X(r+2) 6= ∅. In particular, it follows that Ai is

not a Hamming ball, and thus Ai cannot be isomorphic to an initial segment of the simplicial

order.

It is natural to ask when the sets Ai and Aj are isomorphic as subsets of Qn. Let D be the

initial segment chosen so that the sets Ai are obtained from D. If σ = (ij) ∈ Sn satis�es the

condition φσ (D) = D, then Ai and Aj are certainly isomorphic. The aim of the following lemma

is to prove that this is the only case when such an isomorphism occurs.

Lemma 15. Let 0 ≤ r ≤ n, 0 ≤ k ≤
(
n−1
r

)
, s = fr + k, and let Ai be the sets de�ned before

Theorem 2 for these choices of n and s. Let D be the initial segment of the lexicographic order

of size k on X(r+1). Then Ai and Aj are isomorphic if and only if φσ (D) = D for σ = (ij).

We say that D ⊆ X(r) is left compressed if for all i < j and a ∈ D we have

(j ∈ a and i 6∈ a)⇒ (a \ {j}) ∪ {i} ∈ D.

As an example, if D is an initial segment of the lexicographic order or the colexicographic order,

then D is left compressed.

Proof. If s = fr, then D = ∅ and we have Ai = B (∅, r) for all i. Hence for every i and j the sets
Ai and Aj are isomorphic. We also have φσ (D) = D for all σ = (ij), and therefore the claim

follows.

If s = gr, we have D = {1} + X
(r)
1 . Hence we have φσ (D) = D for σ = (ij) if and only if

1 6∈ {i, j}. On the other hand, note that A1 is isomorphic to the initial segment of the simplicial

order, and for j ≥ 2 each Aj is isomorphic to the set Br de�ned in Section 2.2. Hence the claim

is true when s = fr or s = gr, and from now, on we may assume that fr < s < gr.

19



If φσ (D) = D for σ = (ij), it follows that φσ (Di,−) = Dj,− and φσ (Di,+) = Dj,+. Hence it
follows that φσ (Ai) = Aj , and thus Ai and Aj are isomorphic.

Suppose that Ai and Aj are isomorphic and we have i < j. Since s < gr, Lemma 7 implies

that B (∅, r) is the unique exact Hamming ball of radius r contained in each set At. Hence if g

is an isometry mapping Ai to Aj , then it follows that g (∅) = ∅. Thus Lemma 8 implies that we

have g = φσ for some σ ∈ Sn. Hence it follows that Ai ∩X(m) is mapped to Aj ∩X(m) for all

m, and in particular it follows that |Di,−| = |Dj,−| and |Di,+| = |Dj,+|. In order to prove that

φ(ij) (D) = D, we need to prove the following two claims

1. For all a ∈ D with i 6∈ a and j ∈ a we have (a \ {j}) ∪ {i} ∈ D.

2. For all a ∈ D with i ∈ a and j 6∈ a we have (a \ {i}) ∪ {j} ∈ D.

Since i < j and D is an initial segment of the lexicographic order, the �rst claim follows

immediately from the fact that D is left-compressed.

De�ne Ti = {a ∈ D : i ∈ a, j 6∈ a}, Tj = {a ∈ D : j ∈ a, i 6∈ a} and Ti,j = {a ∈ D : i ∈ a, j ∈ a}.
Note that we have Di,+ = Ti ∪ Ti,j and Dj,+ = Tj ∪ Ti,j . Since Ti, Tj and Ti,j are disjoint sets,
the condition |Di,+| = |Dj,+| is equivalent to the condition |Ti| = |Tj |.

Since D is left compressed, it follows that the map a → (a \ {j}) ∪ {i} is a well-de�ned

injection from Tj to Ti. Since |Ti| = |Tj |, this map is a bijection, and its inverse is given by b→
(b \ {i})∪{j}. Hence the second claim must be true as well, and thus we have φ(ij) (D) = D.

It is natural to ask whether for all t there exist n and s for which there are t pairwise non-

isomorphic extremal sets B1, . . . , Bt of size s on Qn. One can use Lemma 15 to conclude that

this turns out to be true. Indeed, for a given t it su�ces to �nd n, r and an initial segment A
of the lexicographic order on X(r) with |A| ≤

(
n−1
r−1
)
for which the sizes |Aji,+| are distinct for

some j1, . . . , jt ∈ X.

Recall that if A is isomorphic to an initial segment of the colexicographic order, then

X(r) \ A is isomorphic to an initial segment of the lexicographic order. Also note that |Aj,+|+∣∣∣(X(r) \ A
)
j,+

∣∣∣ =
(
n−1
r−1
)
for all j ∈ X. Hence it su�ces to �nd an initial segment A of the

colexicographic order on X(r) with |A| ≥
(
n
r

)
−
(
n−1
r−1
)

=
(
n−1
r

)
for which the sizes of Aji,+ are

distinct for some j1, . . . , jt ∈ X.

For all t, we inductively construct a proper subset At of {1, . . . , 2t}(t) satisfying
∣∣∣(At)2i,+∣∣∣ <∣∣∣(At)2j,+∣∣∣ for all 1 ≤ j < i ≤ t and with |At| ≥

(
2t−1
t

)
. As the base case t = 1 we can certainly

take A1 = {{1}}.
Now suppose that t ≥ 2 and that the claim holds for t − 1, and consider the set system

At+1 = {1, . . . , 2t+ 1}(t+1) ∪ (At + {2t+ 2}). First of all, At+1 is certainly an initial segment of

the colexicographic order on {1, . . . , 2t+ 2}(t+1) as At is an initial segment of the colexicographic

order on {1, . . . , 2t}(t), and we also have |At+1| ≥
(
2t+1
t+1

)
.

Note that for all 1 ≤ i ≤ t we have (At+1)2i,+ =
(
2t
t

)
+
∣∣∣(At)2i,+∣∣∣ ≥ (2tt ). Hence the inductive

hypothesis implies that we have
∣∣∣(At+1)2i,+

∣∣∣ < ∣∣∣(At+1)2j,+

∣∣∣ for all 1 ≤ j < i ≤ t. On the other

hand, note that
∣∣∣(At+1)2t+2,+

∣∣∣ = |At| <
(
2t
t

)
, as At is a proper subset of {1, . . . , 2t}(t). Hence we
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have
∣∣∣(At+1)2t+2,+

∣∣∣ < ∣∣∣(At+1)2i,+

∣∣∣ for all 1 ≤ i ≤ t+ 1. Hence for n = 2t there exists a suitable

s with ft−1 ≤ s ≤ ft−1 +
(
2t−1
t−1
)
for which the sets A2, A4, . . . , A2t are pairwise non-isomorphic.

2.4 The weak version

Suppose we weaken the notion of extremality so that we only require N (A) and N (Ac) to have

minimal size among the sets A ⊆ Qn of a given size. The aim of this section is to prove that this

weaker condition actually implies that we have
∣∣N t (B)

∣∣ ≥ ∣∣N t (A)
∣∣ and ∣∣N t (Bc)

∣∣ ≥ ∣∣N t (Ac)
∣∣

for all B ⊆ Qn of size |A| and for all t > 0, i.e. that such a set A is extremal. From now on,

we say that A is weakly extremal if for all B ⊆ Qn of size |A| we have |N (B)| ≥ |N (A)| and
|N (Bc)| ≥ |N (Ac)|.

Füredi and Griggs [20] proved that if D ⊆ X(r) is a set system for which the size of ∂−D is

minimal among the subsets of X(r) of a given size, then ∂−tD are minimal for all t > 0. Our

aim is to prove that a similar conclusion holds for subsets of Qn as well. That is, if A ⊆ Qn is a

subset for which the size of N (A) is minimal among the subsets of Qn of size |A|, then the size of

N t (A) is also minimal for all t > 0 among the subsets of Qn of size |A|. This result immediately

implies that the notions of weak extremality and extremality coincide. Hence the main task is

to prove the following theorem.

Theorem 4. Let A ⊆ Qn be a subset for which every B ⊆ Qn with |B| = |A| satis�es |N (B)| ≥
|N (A)|. Then for all t > 0 and B ⊆ Qn with |B| = |A| we have

∣∣N t (B)
∣∣ ≥ ∣∣N t (A)

∣∣.
Let A ⊆ Qn be a set satisfying the conditions of Theorem 4. A natural way to prove

Theorem 4 is to use induction on the dimension n. Let Ai,+ and Ai,− be the i-sections of A

for some direction i, and let Ci,+ and Ci,− be the initial segments of the simplicial order on

P (Xi) of sizes |Ai,+| and |Ai,−| respectively. Without loss of generality assume that we have

|Ai,+| ≤ |Ai,−|. If the sets Ci,+ and Ci,− satisfy the conditions of Lemma 10 when t = 1, i.e.

we have Ci,− ⊆ N (Ci,+), then applying Lemma 10 with t = 1 implies that both N (Ai,+) and

N (Ai,−) are minimal, and hence the claim follows from a relatively straightforward application

of (2.2). However, we cannot apply this argument if the conditions of Lemma 10 are not satis�ed,

i.e. if N (Ci,+) is a proper subset of Ci,−. It is easy to verify that this may happen even when

A is an initial segment of the simplicial order. For example, if A = B (∅, r) ∪ {{1, . . . , r + 1}},
then N (Ai,+) is a proper subset of Ai,− for every i > r + 1.

Note that in the previous example there were some directions i for which the sets Ci,− and

Ci,+ satisfy the conditions of Lemma 10, for example any i ≤ r + 1 would work. Conveniently,

it turns out that for any set A ⊆ Qn satisfying the conditions of Theorem 4 there is always a

direction i for which both Ci,+ and Ci,− satisfy the conditions of Lemma 10.

We start with some preliminary results which are Lemmas 16, 17 and 18. In a sense, Lemmas

17 and 18 are just necessary tools for subsequent results, and the proofs are mostly calculational,

while Lemma 16 is a direct consequence of a result proved in Section 3.3. These statements are in

�avour similar to Harper's theorem and the Kruskal-Katona theorem, but it seems that there is

no straightforward way of deducing them directly from Harper's theorem or the Kruskal-Katona

theorem.
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Armed with those, we move on to Lemma 19 in which we prove that there exists a direction

i for which Ci,+ and Ci,− satisfy the conditions of Lemma 10. Given Lemma 19, the proof of

Theorem 4 follows almost immediately, and we deduce that weak extremality implies extremality

in Theorem 3.

Lemma 16. Let A, B ⊆ X(r) be initial segments of the colexicographic order with |A| + |B| ≤(
n
r

)
, and recall that A+ = {a \ {1} : 1 ∈ a, a ∈ A}. Let C ⊆ X(r) be the initial segment of the

colexicographic order of size |A|+ |B| on X(r). Then we have |A+|+ |B+| ≥ |C+|.

Proof. Let I and J be initial segments of the colexicographic order on X(r) with |I| ≥ |J |,
and let K be the initial segment of the colexicographic order on X(r) of size |I \ J |. Since

|K|+ |J | = |I|, Lemma 31 from Section 3.3 states that we have |K+| ≥
∣∣(I \ J )+

∣∣.
We apply this Lemma for I = C and J = A, and these conditions imply that we have K = B.

Since A ⊆ C, it follows directly that we have |C+| =
∣∣(C \ A)+

∣∣+ |A+|. Since Lemma 31 implies

that
∣∣(C \ A)+

∣∣ ≤ |B+|, it follows that |A+|+ |B+| ≥ |C+|.

Lemma 17.

1. Let A, B ⊆ X(r) be non-empty initial segments of the lexicographic order satisfying |A| +
|B| ≤

(
n
r

)
and let C be the initial segment of the lexicographic order of size |A| + |B| on

X(r). Then we have |∂+A|+ |∂+B| > |∂+C|.

2. Let A, B ⊆ X(r) be non-empty initial segments of the colexicographic order satisfying |A|+
|B| ≤

(
n
r

)
and let C be the initial segment of the colexicographic order of size |A| + |B| on

X(r). Then we have |∂−A|+ |∂−B| > |∂−C|.

Note that the Kruskal-Katona theorem certainly implies that we have |∂+A|+ |∂+B| ≥ |∂+C|
and |∂−A|+|∂−B| ≥ |∂−C|. However, there does not seem to be a straightforward way to directly

conclude the strict inequalities from the Kruskal-Katona theorem.

Proof. Let A be an initial segment of the lexicographic order and let A = {ac : a ∈ A}. Recall
that we have |A| =

∣∣A∣∣, ∂−A = ∂+A and that A is isomorphic to an initial segment of the

colexicographic order. Hence these claims are equivalent, so it su�ces to prove the second one.

The proof is by induction on r. When r = 1, we have |∂−A| = |∂−B| = |∂−C| = 1 as each of

the set systems A, B and C is non-empty. Hence we may assume that r > 1, and that the claim

holds for r − 1.

Recall that A+ = {a \ {1} : 1 ∈ a, a ∈ A} and A− = {a : 1 6∈ a, a ∈ A}. Since 1 is the

smallest element in X and A is an initial segment of the colexicographic order and hence left

compressed, it follows that ∂−A.− ⊆ A+. Since A = ({1}+A+) ∪ A−, it follows that

∂−A =
(
{1}+ ∂−A+

)
∪
(
A+ ∪ ∂−A−

)
=
(
{1}+ ∂−A+

)
∪ A+,

and hence we have

|A| = |A+|+
∣∣∂−A+

∣∣ . (2.19)

Similarly (2.19) holds for B and C as well. Since A, B and C are non-empty initial segments

of the colexicographic order, it follows that A+, B+ and C+ are non-empty initial segments of
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the colexicographic order on X
(r−1)
1 . Thus Lemma 16 implies that we have

|A+|+ |B+| ≥ |C+| . (2.20)

Since the lower shadow of a smaller initial segment cannot have larger size than the lower shadow

of a larger initial segment, the inductive hypothesis implies that we have

∣∣∂−A+

∣∣+
∣∣∂−B+∣∣ > ∣∣∂−C+∣∣ . (2.21)

Combining (2.19), (2.20) and (2.21) we obtain that

∣∣∂−A∣∣+
∣∣∂−B∣∣ =

∣∣∂−A+

∣∣+
∣∣∂−B+∣∣+ |A+|+ |B+|

≥
∣∣∂−A+

∣∣+
∣∣∂−B+∣∣+ |C+| >

∣∣∂−C+∣∣+ |C+| =
∣∣∂−C∣∣ ,

which completes the proof of Lemma 17.

Lemma 18. Let A ⊆ Qn and suppose that for all B ⊆ Qn with |B| = |A| we have |N (B)| ≥
|N (A)|. Let D+ be the initial segment of the simplicial order on Qn−1 of the largest size for which

the initial segment D− of the simplicial order on Qn−1 of size |A|− |D+| satis�es N (D+) ⊆ D−.
Then for any direction i we have |Ai,+| ≥ |D+|. Furthermore, we must have |Ai,+| = |D+|
whenever |N (Ai,+)| ≤ |Ai,−|.

Proof. For simplicity, denote the i-sections by A+ and A−. Let D+ and D− be de�ned as in the

statement, and let D = D− ∪ ({n}+D+).

Suppose that we have |A+| < |D+|, and note that then we must also have |A−| > |D−|.
Since D− is an initial segment of the simplicial order, Harper's theorem implies that |N (A−)| ≥
|N (D−)|. Since N (D+) ⊆ D−, and hence D+ ⊆ N2 (D+) ⊆ N (D−), (2.2) implies that we have

|N (D)| = |N (D−)|+ |D−| .

On the other hand, (2.2) implies that

|N (A)| ≥ |N (A−)|+ |A−| > |N (D−)|+ |D−| = |N (D)|

as |A−| > |D−| and |N (A−)| ≥ |N (D−)|. This contradicts the fact that |N (D)| ≥ |N (A)|.
Hence we must have |A+| ≥ |D+|.

In order to prove the second part, suppose that we have |N (A+)| ≤ |A−|. Let C+ and

C− be the initial segments of the simplicial order on P (Xi) of sizes |A+| and |A−|. Harper's

theorem implies that we have |N (A+)| ≥ |N (C+)|, and since |A−| = |C−| it follows that

|N (C+)| ≤ |C−|. Since C+ and C− are initial segments of the simplicial order on P (Xi), it

follows that N (C+) ⊆ C−, so C+ and C− satisfy the conditions required from D+ and D−.

Thus by the maximality condition it follows that |C+| ≤ |D+|. By the �rst part, we know that

|A+| ≥ |D+|. Since |A+| = |C+|, these two inequalities imply that |A+| = |D+|.

Lemma 19. Let A ⊆ Qn be a set satisfying |A| 6= fr for all r, and so that for all B ⊆ Qn with

|B| = |A| we have |N (B)| ≥ |N (A)|. Let D+ and D− be de�ned as in the statement of Lemma
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18 for A. Then there exists a direction i for which we have min (|Ai,+| , |Ai,−|) > |D+|.

Proof. Let D+ and D− be de�ned as in the statement of Lemma 18. For I ⊆ X, note that the set

AI ⊆ Qn de�ned by AI = {x∆I : x ∈ A} is isomorphic to A. By taking I = {i : |Ai,+| > |Ai,−|},
it is easy to see that we may assume that the condition |Ai,+| ≤ |Ai,−| holds for all i. Hence it
su�ces to show that under this condition there exists i satisfying |Ai,+| > |D+|.

Suppose that the claim is false. Then, by Lemma 18, we must have |Ai,+| = |D+| for all i.
Let r be chosen so that fr < |A| < fr+1, and note that such r exists as |A| 6= fs for all s. Since

N (Bn−1 (∅, r − 1)) = Bn−1 (∅, r) and fn−1, r−1 + fn−1, r = fn, r, it follows from the maximality

assumption that we have |D+| ≥ fn−1, r−1. On the other hand, since fn−1, r +fn−1, r+1 = fn, r+1,

the condition N (D+) ⊆ D− will be violated if |D+| ≥ fn−1, r. These two conditions imply that

we have

fn−1, r−1 ≤ |D+| < fn−1, r. (2.22)

Hence there exists a set system D ⊆ X
(r)
n so that D+ = X

(≤r−1)
n ∪ D. Since N (D+) ⊆ D−, it

follows that X
(≤r)
n ∪ ∂+n D ⊆ D−.

Let C be the initial segment of the simplicial order of size |A| on Qn. Since fr < |A| < fr+1,

it follows that C = X(≤r)∪C for some C ⊆ X(r+1). Combining the conditions |A| = |D+|+ |D−|,
D+ = X

(≤r−1)
n ∪ D and X

(≤r)
n ∪ ∂+n D ⊆ D−, it follows that |C| ≥ |D|+ |∂+n D|.

For B ⊆ Qn de�ne f (B) =
∑

x∈B |x|. It is easy to see that among the sets B ⊆ Qn of a given
size, f (B) attains its minimum value when B is taken to be the initial segment of the simplicial

order. In particular, we have f (A) ≥ f (C). It is easy to verify that

f (C) =
r∑
j=0

j

(
n

j

)
+ (r + 1) |C| = n

r−1∑
j=0

(
n− 1

j

)
+ (r + 1) |C| . (2.23)

Let I {i ∈ x} denote the indicator function of the event {i ∈ x} for x ∈ Qn. Then for any B ⊆ Qn
we have

f (B) =
∑
x∈B
|x| =

∑
x∈B

n∑
i=1

I {i ∈ x} =

n∑
i=1

∑
x∈B

I {i ∈ x} =

n∑
i=1

|Bi,+| . (2.24)

Since |Ai,+| = |D+| for all i, it follows that

f (A) = n |D+| = n
r−1∑
j=0

(
n− 1

j

)
+ n |D| . (2.25)

Since f (A) ≥ f (C), (2.23) and (2.25) imply that we have

n |D| ≥ |C| (r + 1) (2.26)

Since |C| ≥ |D|+ |∂+n D|, (2.26) implies that

(n− r − 1) |D| ≥ (r + 1)
∣∣∂+n D∣∣ . (2.27)
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The Local LYM inequality [31, 35, 44] for upper shadow states that for D ⊆ X(r)
n we have

(r + 1)
∣∣∂+n D∣∣ ≥ ((n− 1)− r) |D| , (2.28)

and the equality holds if and only if D = ∅ or D = X
(r)
n . Combining (2.27) with (2.28), we

obtain that the equality must hold in (2.28).

If D = ∅, then (2.26) implies that C = ∅. Hence |A| = fr, which contradicts our earlier

assumption. If D = X
(r)
n , then D+ = X

(≤r)
n and hence X

(≤r+1)
n = N (D+) ⊆ D−. Therefore

|A| = |D+|+ |D−| ≥ fr+1, which contradicts the assumption that |A| < fr+1. Thus there exists

a direction i satisfying min (|Ai,+| , |Ai,−|) > |D+|.

Now we are ready to prove Theorem 4.

Theorem 4. Let A ⊆ Qn be a subset for which every B ⊆ Qn with |B| = |A| satis�es |N (B)| ≥
|N (A)|. Then for all t > 0 and B ⊆ Qn with |B| = |A| we have

∣∣N t (B)
∣∣ ≥ ∣∣N t (A)

∣∣.
Proof. The proof is by induction on n. When n ≤ 2, it is easy to verify that the result holds.

Hence we may assume that n ≥ 3 and that the result holds for n− 1.

Let A ⊆ Qn be a subset so that for all B ⊆ Qn with |B| = |A| we have |N (B)| ≥ |N (A)|.
By the argument presented in the proof of Lemma 18, we may assume that |Ai,+| ≤ |Ai,−| holds
for all directions i. Let D+ and D− be de�ned as in the statement of Lemma 18. Then Lemma

19 implies that there exists a direction i satisfying |Ai,+| > |D+|. For notational convenience,

denote the i-sections in this direction by A+ and A−.

Let C+ and C− be the initial segments of the simplicial order on P (Xi) of the same sizes

as A+ and A− respectively, and set C = C− ∪ ({i}+ C+). Then |C+| = |A+| > |D+|, and
the maximality assumption on D+ implies that we have C− ⊆ N (C+). Since |C+| ≤ |C−|, it
certainly follows that C+ ⊆ N (C−). Hence Lemma 10 with t = 1 implies that N (A+) and

N (A−) are minimal, i.e. we can apply the inductive hypothesis on them, and that we have

A± ⊆ N (A∓) . (2.29)

SinceN (A+) andN (A−) are minimal, the inductive hypothesis combined with Harper's theorem

implies that for all t > 0 we have

∣∣N t (A±)
∣∣ =

∣∣N t (C±)
∣∣ . (2.30)

By taking neighbourhood t−1 times from (2.29), it follows that we haveN t−1 (A±) ⊆ N t (A∓)

for all t > 0. Since C± ⊆ N (C∓), we also have N t−1 (C±) ⊆ N t (C∓) for all t > 0. Thus (2.2)

implies that we have ∣∣N t (A)
∣∣ =

∣∣N t (A+)
∣∣+
∣∣N t (A−)

∣∣ (2.31)

and ∣∣N t (C)
∣∣ =

∣∣N t (C+)
∣∣+
∣∣N t (C−)

∣∣ (2.32)

for all t > 0. Combining (2.30), (2.31) and (2.32), we obtain that
∣∣N t (A)

∣∣ =
∣∣N t (C)

∣∣ holds
for all t > 0. Thus Harper's inequality implies that for all B ⊆ Qn with |B| = |A| we have∣∣N t (B)

∣∣ ≥ ∣∣N t (A)
∣∣, which completes the proof of Theorem 4.
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Now we can immediately apply Theorem 4 to prove that weak extremality implies extremality.

Theorem 3. Let A ⊆ Qn be a weakly extremal subset. Then A is extremal.

Proof. Since for all B ⊆ Qn with |B| = |A| we have |N (B)| ≥ |N (A)|, Theorem 4 implies that

for all B ⊆ Qn with |B| = |A| we have
∣∣N t (B)

∣∣ ≥ ∣∣N t (A)
∣∣. Similarly applying Theorem 4

to Ac implies that for all B ⊆ Qn with |B| = |A| we have
∣∣N t (Bc)

∣∣ ≥ ∣∣N t (Ac)
∣∣. Hence weak

extremality implies extremality.

Thus we can conclude the classi�cation of weakly extremal sets.

Corollary 20. Theorem 2 holds when extremality is replaced with weak extremality.

2.5 A uniqueness result for certain sizes

Recall that in Section 2.2 we de�ned an extremal set Br of size gr by setting Br = B (∅, r) ∪
B ({1, 2} , r). The aim of this section is to prove that up to isomorphism the sets Br introduced

in Section 2.2 are the only sets of size gr, together with the initial segment, for which N (A) is

minimal. Recently Keevash and Long [26] studied stability in the vertex isoperimetric inequality.

Theorem 21 follows as a consequence of their more general result.

Theorem 21. Let r ≤ n− 1, and let A ⊆ Qn satisfying |A| = gr for which the size of N (A) is

minimal among the subsets of Qn of size gr. Then either A is isomorphic to the initial segment

of the simplicial order or A is isomorphic to Br.

Proof. The main idea of the proof is to carefully analyse the codimension-1 compressions. Let

A ⊆ Qn satisfying |A| = gr for which N (A) is minimal. As in the proof of Lemma 19, by

considering AI = {a∆I : a ∈ A} if necessary for a suitably chosen I ⊆ X, we may assume that

we have |Ai,+| ≤ |Ai,−| for all directions i.
Choose a direction i. Let Ci,+ and Ci,− be the initial segments of the simplicial order with

|Ci,+| = |Ai,+| and |Ci,−| = |Ai,−|, and de�ne C = Ci,− ∪ ({i}+ Ci,+). Let D be the initial

segment of the simplicial order of size gr, i.e. D = X(≤r) ∪
(
{1}+X

(r)
1

)
. Recall that we have

N (D) = X(≤r+1) ∪
(
{1}+X

(r+1)
1

)
and |N (D)| = gr+1. Our �rst aim is to �nd bounds for the

sizes of Ai,− and Ai,+. Since their sizes are the same as the sizes of Ci,− and Ci,+, it su�ces to

prove these bounds for the sizes of Ci,− and Ci,+.

If |Ci,−| > gn−1, r, we have |Ci,+| < gn−1, r−1. Hence it follows that |N (Ci,+)| ≤ gn−1, r <

|Ci,−|, and thus we have N (Ci,+) ⊆ Ci,−. In particular, (2.2) implies that

|N (C)| = |N (Ci,−)|+ |Ci,−| > gn−1, r+1 + gn−1, r = gn, r+1.

Since |N (Ai,−)| ≥ |N (Ci,−)| holds by Harper's inequality, (2.2) implies that

|N (A)| ≥ |N (Ai,−)|+ |Ai,−| ≥ |N (Ci,−)|+ |Ci,−| = |N (C)| > gn, r+1. (2.33)

This contradicts the minimality of the size of N (A). Hence we must have |Ci,−| ≤ gn−1, r.

26



Since |Ci,−| ≥ |Ci,+|, it follows that |Ci,−| ≥ 1
2gn, r = fn−1, r. These two conditions imply

that we have fn−1, r ≤ |Ci,−| ≤ gn−1, r. Our next aim is to show that |Ci,−|, which equals |Ai,−|,
must always be either fn−1, r or gn−1, r.

Claim 1 . For each direction i we have |Ci,−| = fn−1, r. or |Ci,−| = gn−1, r.

Proof of Claim 1. Since fn−1, r ≤ |Ci,−| ≤ gn−1, r and |C| = gn, r, it follows that gn−1, r−1 ≤
|Ci,+| ≤ fn−1, r. In particular, we have Ci,− ⊆ N (Ci,+), and we also trivially have Ci,+ ⊆
N (Ci,−).

Let j be the least element in Xi, i.e. j = 1 if i 6= 1 and j = 2 if i = 1. Since Ci,− is an

initial segment of the simplicial order on P (Xi) satisfying fn−1, r ≤ |Ci,−| ≤ gn−1, r , it follows

that Ci,− = X
(≤r)
i ∪ ({j}+A) where A is an initial segment of the lexicographic order on X

(r)
i,j .

Similarly one can deduce that Ci,+ = X
(≤r−1)
i ∪

(
{j}+X

(r−1)
i,j

)
∪B, where B is an initial segment

of the lexicographic order on X
(r)
i,j . Note that

|A|+ |B| = |A| − fn−1, r−1 − fn−1, r −
∣∣∣X(r−1)

i,j

∣∣∣
= gn, r − fn, r −

(
n− 2

r − 1

)
=

(
n− 1

r

)
−
(
n− 2

r − 1

)
=

(
n− 2

r

)
. (2.34)

It is easy to verify that

N (Ci,−) = X
(≤r+1)
i ∪

(
{j}+ ∂+i,jA

)
and

N (Ci,+) = X
(≤r)
i ∪

(
{j}+X

(r)
i,j

)
∪ ∂+i,jB,

where again ∂+i,j denotes the upper shadow operator with respect to the ground set Xi,j . In

particular, it follows that

|N (Ci,−)| = fn−1, r+1 +
∣∣∣∂+i,jA∣∣∣ (2.35)

and

|N (Ci,+)| = gn−1, r +
∣∣∣∂+i,jB∣∣∣ . (2.36)

Note that fn−1, r+1 + gn−1, r = gn, r+1 −
(
n−2
r+1

)
. Since Ci,+ ⊆ N (Ci,−) and Ci,− ⊆ N (Ci,+),

combining (2.2) together with (2.35) and (2.36) we obtain that

|N (C)| = |N (Ci,+)|+ |N (Ci,−)| = gn, r+1 +
∣∣∣∂+i,jA∣∣∣+

∣∣∣∂+i,jB∣∣∣− (n− 2

r + 1

)
. (2.37)

Applying the Local LYM inequality to A as a subset of X
(r)
i,j , it follows that∣∣∣∂+i,jA∣∣∣ ≥ n− r − 2

r + 1
|A| , (2.38)

and the equality holds if and only if Ai,j = X(r) or A = ∅. Certainly (2.38) holds for B as well.
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Adding these two inequalities together we obtain that∣∣∣∂+i,jA∣∣∣+
∣∣∣∂+i,jB∣∣∣ ≥ n− r − 2

r + 1
(|A|+ |B|) . (2.39)

Since |A|+ |B| =
(
n−2
r

)
and n−r−2

r+1

(
n−2
r

)
=
(
n−2
r+1

)
, it follows that

∣∣∣∂+i,jA∣∣∣+
∣∣∣∂+i,jB∣∣∣ ≥ (n− 2

r + 1

)
. (2.40)

Combining (2.40) with (2.37), we obtain that

|N (C)| ≥ gn, r+1. (2.41)

As in (2.33), Harper's inequality implies that we have |N (A)| ≥ |N (C)|. Since |N (A)| = gn, r+1,

(2.41) implies that the equality holds in both applications of the Local LYM inequality. In

particular, we must have A = ∅ or A = X
(r)
i,j . In the �rst case we have |Ci,−| = fn−1, r and in

the second case we have |Ci,−| = gn−1, r, as required.

If |Ai,−| = fn−1, r for some direction i, we could use Proposition 5 to deduce that Ai,− and

Ai,+ must be exact Hamming balls. The aim of the next claim is to prove that such a direction

i must always exist.

Claim 2 . There exists a direction i for which we have |Ai,−| = fn−1, r.

Proof of Claim 2. Suppose that the claim is false. Then by Claim 1 it follows that |Ai,−| = gn−1, r

for all i. As in the proof of Lemma 19, for B ⊆ Qn de�ne f (B) =
∑

x∈B |x|. Recall that among

the sets B ⊆ Qn of a given size, f (B) attains its minimum value when B is taken to be the

initial segment of the simplicial order. Also recall that f (B) =
∑n

i=1 |Bi,+| for any B ⊆ Qn.
Since |Ai,−| = gn−1, r for all i, it follows that |Ai,+| = gn−1, r−1 for all i. Hence f (A) =

ngn−1, r−1. Let D = X(≤r) ∪
(
{1}+X

(r)
1

)
be the initial segment of the simplicial order of size

gn, r. It is easy to verify that we have |D1,+| = fn−1, r and |Di,+| = gn−1, r−1 for all i ≥ 2. Hence

it follows that f (D) = fn−1, r + (n− 1) gn−1, r−1. Since D is the initial segment of the simplicial

order of the same size as A, it follows that f (A) ≥ f (D). Hence we must have gn−1, r−1 ≥ fn−1, r,
which is only true when r = n − 1. However, this case can only occur when A = Qn, in which

case we also have |Ai,−| = 2n−1 = fn−1, n−1. This completes the proof of Claim 2.

Let i be a direction for which we have |Ai,−| = fn−1, r, and note that we also have |Ai,+| =
fn−1, r. Hence we have Ci,+ ⊆ N (Ci,−) and Ci,− ⊆ N (Ci,+), and thus Lemma 10 with t = 1

implies that both N (Ai,+) and N (Ai,−) are minimal. Since |Ai,+| = |Ai,−| = fn−1, r, Propo-

sition 5 implies that Ai,− and Ai,+ are exact Hamming balls on P (Xi) with radius r. Hence

Ai,+ = Bi (x, r) and Ai,− = Bi (y, r) for some x, y ∈ Qn, and by symmetry we may assume that

x = ∅.
Note that (2.2) implies that

|N (A)| = |Ai,+ ∪N (Ai,−)|+ |Ai,− ∪N (Ai,+)|

= |Bi (∅, r) ∪Bi (y, r + 1)|+ |Bi (∅, r + 1) ∪Bi (y, r)| .
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Recall that |N (A)| = gn, r+1 = 2fn−1, r+1 by the minimality of |N (A)|. Since |Bi (y, r + 1)| =

|Bi (∅, r + 1)| = fn−1, r+1, we must have Bi (∅, r) ⊆ Bi (y, r + 1) and Bi (y, r) ⊆ Bi (∅, r + 1). In

particular, we must have d (y, ∅) ≤ 1.

If y = ∅, it follows that A is isomorphic to the initial segment of the simplicial order, and the

isomorphism is given by any φσ with σ (i) = 1. If y = {j} for some j ∈ Xi, then A is isomorphic

to the set Br, and the isomorphism is given by any φσ with σ (i) = 1 and σ (j) = 2.
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Chapter 3

Coordinate deletion of zeroes

3.1 Introduction

We start by recalling the Kruskal-Katona theorem concerning the lower shadow of a set system.

However, this time we work with {0, 1}-sequences, i.e. we view Qn as {0, 1}n which is the set of

{0, 1}-sequences of length n. In this framework, the lower shadow of A is de�ned to be the set

of points that can be obtained by �ipping exactly one 1-entry to 0 from a point in A.

The rank of a point x ∈ [k]n = {0, . . . , k − 1}n is de�ned to be |x| =
∑n

i=1 xi. Note that the

lower shadow operator on {0, 1}n decreases the rank of a point by 1. For a given r, it is natural

to ask how one should choose a set A ⊆ {0, 1}n of a given size containing only points of rank r

to minimise the size of the lower shadow. This question was answered by Kruskal and Katona

[24, 25].

Recall that the colexicographic order on {x ∈ {0, 1}n : |x| = r} is de�ned by setting x ≤colex y
if x = y or max (X∆Y ) ∈ Y , where X = {i : xi = 1} and Y = {i : yi = 1} . The Kruskal-Katona
theorem states that for a set A ⊆ {0, 1}n of a given size containing only points of rank r, the size

of the lower shadow is minimised when A is chosen to be the initial segment of the colexicographic

order.

Instead of changing the values of the coordinates, it is also natural to de�ne an operator

which acts by deleting the coordinates. For A ⊆ [k]n, de�ne the coordinate deletion shadow to

be the set of points that can be obtained by deleting one coordinate from a point in A. The

coordinate deletion shadow of A is denoted by ∆ (A). For example, the coordinate deletion

shadow of {000, 001, 002, 121} is {00, 01, 02, 12, 11, 21}.
Again, it is natural to ask which subsets of {0, 1}n minimise the size of the coordinate deletion

shadow among the sets of a given size. Recall that the simplicial order <sim is de�ned on {0, 1}n

by setting

x <sim y if |x| < |y| or (|x| = |y| and min (X∆Y ) ∈ X) .

Danh and Daykin proved that among the subsets of {0, 1}n of a given size, the initial segment

of the simplicial order minimises the size of the coordinate deletion shadow [16]. They also

conjectured a certain order as the best in [k]n for k ≥ 3, but Leck [30] showed that this turned

out to be false. In fact, he proved that there is no order in general whose initial segments have

minimal coordinate deletion shadow.
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Bollobás and Leader [9] pointed out that the exact subcubes [t]n ⊆ [k]n have minimal co-

ordinate deletion shadow. Indeed, for a set B ⊆ [k]n we de�ne Bi to be the projection of B

onto the hyperplane excluding the ith direction. Then the Loomis-Whitney inequality [33] im-

plies that we have (
∏n
i=1Bi) ≥ |B|

n−1. Since for any i we have Bi ⊆ ∆ (B), it follows that

|∆ (B)|n ≥ |B|n−1. In particular, when |B| = tn we have |∆ (B)| ≥ tn−1, which proves that [t]n

has minimal coordinate deletion shadow among the subsets of [k]n of size tn.

In addition, Bollobás and Leader made the following conjecture that certain other types of

sets also have minimal coordinate deletion shadow.

Conjecture 22. (Bollobás, Leader [9]). For each t ≤ k and r ≤ n, let Br,t ⊆ [k]n be the set

containing all the points whose coordinates are in [t] = {0, . . . , t− 1} and which have at most r

coordinates that equal t− 1. Then the sets Br,t have minimal coordinate deletion shadow among

the subsets of [k]n of the same size.

Even the case t = k in the conjecture is unknown.

There is, however, a notion that comes `between' the lower shadow and the coordinate deletion

shadow. The usual lower shadow operator decreases the rank by 1 and preserves the dimension

n, while the coordinate deletion shadow decreases the dimension by 1 but there is no control on

how it changes the rank. Hence it is natural to consider the following operator which preserves

the rank, but reduces the dimension by one.

De�ne the zero-deletion shadow of A ⊆ [k]n to be the set of points in [k]n−1 obtained by

removing one coordinate that equals 0 from a point in A. We denote the zero-deletion shadow of

A by δ (A). For example, we have δ ({00011, 00101}) = {0011, 0101} and δ ({112, 113, 123}) = ∅.
For convenience, we say that A has minimal zero-deletion shadow if for any B ⊆ [k]n satisfying

|B| = |A| we have |δ (B)| ≥ |δ (A)|.
How can we �nd sets A with minimal zero-deletion shadow? If |A| ≤ (k − 1)n, the question

is trivial as one can take any subset of {1, . . . , k − 1}n of the given size. In general, it is natural

to choose A to contain points with as few zeroes as possible. Furthermore, it is natural to guess

that for each 0 ≤ i ≤ n, the sets containing all points with at most i zeroes have minimal

zero-deletion shadow.

Our main result in this chapter is to �nd an order on [k]n whose initial segments have minimal

zero-deletion shadow. In particular, it follows that the sets containing all points with at most i

zeroes have minimal zero-deletion shadow.

In order to state the main result, we need a few de�nitions. For a point x ∈ [k]n, let

R (x) = {i : xi = 0} and let w (x) = |R (x)|. Let Lr (n) = {x ∈ [k]n : w (x) = r}. Note that the
zero-deletion operator maps the elements in Lr (n) to elements in Lr−1 (n− 1).

For x ∈ [k]n, de�ne its reduced sequence to be the sequence obtained by removing all coor-

dinates of x that equal 0. Denote the reduced sequence of x by re(x). Note that for any point

s and for any t ∈ δ ({s}) we have re (s) = re (t), as removing a coordinate which equals 0 does

not change the reduced sequence. Hence we can split Lr (n) into equivalence classes which are

characterised by the reduced sequences.

We start by proving that inside an equivalence class one should choose points x so that the

set system containing the sets R (x) is an initial segment of the colexicographic order. This is a

straightforward consequence of the work of Danh and Daykin in [16].
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Since [k]n splits into equivalence classes based on the reduced sequences, and we know that

the initial segments of the colexicographic order minimise the size of the zero-deletion shadow

inside each equivalence class, we are left with the question on how to split the points into di�erent

equivalence classes. We go on to prove that in order to minimise the zero-deletion shadow of a

subset of [k]n, one should prioritise points in Lr (n) over points that are in Ls (n) for r < s, and

inside Lr (n) one should choose all points from one equivalence class before choosing points from

another equivalence class. As a consequence, we obtain an order whose initial segments have

minimal zero-deletion shadow.

For r ∈ [k], de�ne Rr (x) = {i : xi = r} and wr (x) = |Rr (x)|. Note that we have R = R0

and w = w0. For each i, de�ne the order ≤c on {1, . . . , k − 1}i as follows. For distinct x, y ∈
{1, . . . , k − 1}i let r ∈ {1, . . . , k} be the minimal index satisfying Rr (x) 6= Rr (y). We say that

x ≤c y if and only if max (Rr (x) ∆Rr (y)) ∈ Rr (y).

Finally, de�ne the order ≤ on [k]n as follows. For distinct x, y ∈ [k]n we set x ≤ y if one of

the following conditions holds.

1. w0 (x) < w0 (y)

2. w0 (x) = w0 (y), re (x) 6= re (y) and re (x) ≤c re (y)

3. w0 (x) = w0 (y), re (x) = re (y) and R0 (x) ≤colex R0 (y)

Note that for any distinct x and y exactly one of x ≤ y and y ≤ x is satis�ed. Hence ≤ de�nes

an order on [k]n.

Now we are ready to state our main theorem.

Theorem 23. Let A ⊆ [k]n and let B be the initial segment of the ≤-order of size |A|. Then we

have |δ (A)| ≥ |δ (B)|.

In particular, it follows that the sets of the form L≤r (n) =
⋃r
i=0 Li (n) have minimal zero-

deletion shadow. Note that the zero-deletion shadow is a�ected only by the location of non-zero

coordinates and not on their exact values. Hence all the equivalence classes of Lr (n) behave

in the same way. Thus for any �xed r, one could replace the ≤c-order with any other order on

{1, . . . , k − 1}r in the de�nition of the ≤-order.
The plan of this chapter is as follows. In Section 3.2 we prove that in order to minimise the

size of the zero-deletion shadow inside an equivalence class, one should choose points x so that

the set system containing the sets R (x) forms an initial segment of the colexicographic order.

In Section 3.3 we prove Theorem 23. In Section 3.4 we generalise the zero-deletion shadow to

allow deleting a coordinate that is in the set {0, . . . , r} for a chosen r instead of just deleting a

coordinate which equals 0. In this case we show that the sets {x :
∑r

i=0wi (x) ≤ s}, which are

analogous to the sets L≤s (n), minimise the size of the shadow for each 0 ≤ s ≤ n. In this general

case we do not know what happens for sets of other sizes.

As in the previous chapter, we write X = {1, . . . , n} and X(r) = {A ⊆ {1, . . . , n} : |A| = r}.
We write Lr instead of Lr (n) if the value of n is clear. When k = 1, we may also write

{0, 1}nr instead of Lr (n). This notation will be used to highlight that we are working with

{0, 1}-sequences.
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3.2 Deletion on {0, 1}-sequences

In this section we always work with subsets of {0, 1}n or {0, 1}nr . Danh and Daykin proved in

[16] the following result for the coordinate deletion shadow on {0, 1}n .

Theorem 24. (Danh, Daykin). Let A ⊆ {0, 1}n and let B be the initial segment of the simplicial

order of size |A|. Then we have |∆ (A)| ≥ |∆ (B)|.

Recall that there is a natural correspondence between {0, 1}n and the power-set P (X). For

our purposes, it is convenient to choose this correspondence to be given by mapping a sequence

(xi) to the set R0 (x) = {i : xi = 0}. In this way we can identify a set A ⊆ {0, 1}nr with

the set system A ⊆ X(r) containing the images of the elements of A under this bijection. This

correspondence enables us to translate questions related to the zero-deletion shadow to questions

related to the properties of the set systems A ⊆ X(r) instead. We start by proving that the

subsets A of {0, 1}nr with minimal zero-deletion shadow are the ones whose corresponding set A
is an initial segment of the colexicographic order.

Lemma 25. Let A ⊆ {0, 1}nr and let B ⊆ {0, 1}nr be the initial segment of the colexicographic

order of size |A|. Then we have |δ (A)| ≥ |δ (B)|.

Proof. De�ne C1 = A ∪ L>r (n) and C2 = B ∪ L>r (n), where L>r (n) =
⋃n
i=r+1 {0, 1}

n
i . Note

that C2 is isomorphic to an initial segment of the simplicial order, where the isomorphism is

given by the map which reverses the sequence. Since this map also preserves the size of the

coordinate deletion shadow, Theorem 24 implies that we have

|∆ (C1)| ≥ |∆ (C2)| . (3.1)

It is easy to check that we have ∆ (C1) = L>r (n− 1)∪δ (A) and ∆ (C2) = L>r (n− 1)∪δ (B).

Indeed, L>r (n− 1) is certainly contained in both ∆ (C1) and ∆ (C2), and the only contribution

to the coordinate deletion shadow outside L>r (n− 1) arises by removing 0 from a point which

contains exactly n− r coordinates that equal 1. Hence we have

|∆ (C1)| = |L>r (n− 1)|+ |δ (A)| (3.2)

and

|∆ (C2)| = |L>r (n− 1)|+ |δ (B)| . (3.3)

Thus (3.1), (3.2) and (3.3) imply that we have |δ (A)| ≥ |δ (B)|.

Lemma 25 implies that the initial segments of the colexicographic order have minimal zero-

deletion shadow among the subsets of {0, 1}nr . Before moving on to the general case from {0, 1}-
sequences, we �nd a way to relate the size of δ (A) to a certain property of the associated set

system A for A ⊆ {0, 1}nr . For convenience, from now on, we say that A ⊆ {0, 1}nr is an initial

segment of the colexicographic order if the associated set system A is an initial segment of the

colexicographic order. For A ⊆ P (X) de�ne A1 = {B ∈ A : 1 ∈ B}.

Lemma 26. Let A ⊆ {0, 1}nr be an initial segment of the colexicographic order, and let A be the

set system associated to A. Then we have |δ (A)| = |A1|.
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Proof. The proof is by induction on the size of A; note that the statement certainly holds when

|A| = 1. Suppose that the statement holds for A, and let B be the initial segment satisfying

|B| = |A|+ 1. Let x be the unique element in B \A, and write x = x1 . . . xn.

We start by proving that either δ (B) \ δ (A) is empty or it contains only one element which

is x2 . . . xn. Indeed, suppose that t ∈ δ (B) \ δ (A) and that t is obtained by removing the

rth coordinate of x. Hence t = x1 . . . xr−1xr+1 . . . xn and xr = 0. Let i = min {j : xj = 1},
and consider the particular element y = 0t. If i ≤ r, we have yj = xj for all j ≤ i − 1 and

yi = 0 < 1 = xi. Hence we have y <colex x. However, as t ∈ δ ({y}) ⊆ δ (A), this contradicts the

fact that t ∈ δ (B) \ δ (A). Hence we must have i > r, which implies that x1 = · · · = xr = 0.

In particular, it follows that t = x1 . . . xr−1xr+1xn = x2 . . . xn, and thus δ (B) \ δ (A) is either

empty or contains only one element x2 . . . xn.

Note that 0x2 . . . xn is the least element with respect to the colexicographic order for which

the element x2 . . . xn is contained in its zero-deletion shadow. Hence it follows that x2 . . . xn ∈
δ (B) \ δ (A) if and only if x = 0x2 . . . xn. In particular, we have

|δ (B)| =

 |δ (A)|+ 1

|δ (A)|

if x1 = 0

if x1 = 1
.

Since B = A ∪ {R0 (x)} and the set R0(x) contains 1 if and only if x1 = 0, it follows that

|B1| =

 |A1|+ 1

|A1|

if x1 = 0

if x1 = 1
.

Hence we have |δ (B)| = |B1| by induction.

3.3 The main theorem

Let H be the bipartite graph on the vertex set [k]n ∪ [k]n−1 whose edges are precisely the pairs

s, t with s ∈ [k]n and t ∈ δ ({s}). Note that δ (A) is the neighbourhood of A ⊆ [k]n in the

graph H. Observe that both vertex classes of H can be partitioned as [k]n =
⋃n
i=0 Li (n) and

[k]n−1 =
⋃n−1
i=0 Li (n− 1), and by de�nition of the zero-deletion shadow it is clear that there are

edges only between Li (n) and Li−1 (n− 1), with the convention L−1 = ∅.
Let C be a non-trivial connected component in H, i.e. a connected component satisfying

[k]n ∩ C ⊆ Li (n) for some i > 0. Recall that the reduced sequence of a point y ∈ δ ({x}) is

always the same as the reduced sequence of x. Since C is a connected component, it follows that

every z ∈ C has the same reduced sequence. Conversely, it is easy to check that for each i > 0,

all the elements in Li (n) ∪ Li−1 (n− 1) with the same reduced sequence are also in the same

connected component. Hence the non-trivial connected components of H are characterised by

the reduced sequences.

Lemma 27. For s ∈
⋃r
i=1 {1, . . . , k − 1}i de�ne

Cs = {x ∈ [k]n : re (x) = s}
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and

Ds =
{
x ∈ [k]n−1 : re (x) = s

}
.

Then the sets of the form Cs ∪Ds are the non-trivial connected components of H.

Note that the only points outside the non-trivial connected components are the points in

{1, . . . , k − 1}n, and their zero-deletion shadows are always empty.

Broadly speaking, we only need to understand how to minimise the size of the zero-deletion

shadow inside a connected component, and to determine how to distribute the points into di�erent

connected components in order to minimise the size of the zero-deletion shadow. It turns out

that inside a connected component one should choose points x so that the set system consisting

of the sets R (x) forms an initial segment of the colexicographic order.

Lemma 28. Let C ⊆ Li (n)∪Li−1 (n− 1) be a connected component corresponding to a reduced

sequence x = x1 . . . xn−i. Let B ⊆ Li ∩ C and let A ⊆ Li ∩ C be the set of points of size |B|
chosen so that {R0 (x) : x ∈ A} is an initial segment of the colexicographic order. Then we have

|δ (B)| ≥ |δ (A)|.

Proof. Note that the order of the coordinates is preserved under the zero-deletion shadow, and

recall that the reduced sequence is preserved under the zero-deletion shadow. Moreover, the

exact values of the coordinates in the reduced sequence do not a�ect the zero-deletion shadow,

and hence the behaviour of the connected component depends only on the value of i, and not on

the exact values of the coordinates x1, . . . , xn−i.

In particular, all connected components containing points with equal number of zeroes have

the same size and they all behave in the same way under the zero-deletion shadow. Hence each

connected component is identical to the connected component corresponding to the reduced

sequence x1 = · · · = xn−i = 1. Since this particular component is {0, 1}ni , the result follows from
Lemma 25.

Our next aim is to understand how to �ll di�erent connected components. We will prove

that it is optimal to �rst prioritise points in Li (n) over points in Li+1 (n), and that it is also

optimal to choose all points in one connected component on a level Li (n) before choosing points

from another component on the same level.

From now on, we call the sets Cs connected components. That is, by a connected component

we refer to the intersection of a connected component with [k]n.

For s, t ∈
⋃r
i=0 {1, . . . , k − 1}i de�ne the s, t-compression operator as follows. For A ⊆ [k]n,

its compression B = Cs,t (A) is given by setting

1. B∩Cs to be the initial segment of the colexicographic order of size min (|A ∩ (Cs ∪ Ct)| , |Cs|)

2. B∩Ct to be the initial segment of the colexicographic order of size max (0, |A ∩ (Cs ∪ Ct)| − |Cs|)

3. B \ (Cs ∪ Ct) = A \ (Cs ∪ Ct)

It is clear that we have |Cs,t (A)| = |A| for all s and t. As usual, we say that A ⊆ [k]n is

s, t-compressed if Cs,t (A) = A.

In order to prove Theorem 23, we need the following two results.
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Lemma 29. For any A ⊆ [k]n and s, t ∈ {1, . . . , k − 1}n−i we have |δ (A)| ≥ |δ (Cs,t (A))|.

Lemma 30. For any A ⊆ [k]n, s ∈ {1, . . . , k − 1}n−i and t ∈ {1, . . . , k − 1}n−i−1 we have

|δ (A)| ≥ |δ (Cs,t (A))|.

In order to prove these results, we translate them to questions related to the properties of

the set systems on X(i). We now state the versions of these questions that are concerned with

set systems, and their proofs are given after the proofs of Lemma 29 and Lemma 30.

A set system B ⊆ X(i) is said to be a segment if there exist initial segments I and J of the

colexicographic order satisfying A = I \ J .

Lemma 31. The following claims are true.

Claim 1. Let A ⊆ X(i) be a segment and let I ⊆ X(i) be the initial segment of the colexico-

graphic order of size |A|. Then we have |I1| ≥ |A1|.
Claim 2. Let I ⊆ X(i) and J ⊆ X(i+1) be initial segments of the colexicographic order

satisfying |I| = |J |. Then we have |J1| ≥ |I1|.
Claim 3. Let A ⊆ X(i) be a segment and let I = X(i) \ J , where J is the initial segment of

the colexicographic order chosen so that
∣∣X(i) \ J

∣∣ = |A|. Then we have |A1| ≥ |I1|.
Claim 4. Let I∗ and J∗ be initial segments of the colexicographic order chosen so that I =

X(i) \ I∗ and J = X(i+1) \ J∗ satisfy |I| = |J |. Then we have |J1| ≥ |I1|.

Proof of Lemma 29. Let A ⊆ [k]n and B = Cs,t (A), and note that B depends only on the sizes

of A∩Cs and A∩Ct. Hence we may assume that Q = A∩Cs and R = A∩Ct are initial segments

of the colexicographic order by Lemma 28.

Let S = B ∩ Cs and T = B ∩ Ct. Let Q, R, S and T be the associated set systems in X(i).

By using Lemma 26 and the fact that B \(Cs ∪ Ct) = A\(Cs ∪ Ct), it follows that the conditions
|δ (A)| ≥ |δ (B)| and |Q1|+ |R1| ≥ |S1|+ |T1| are equivalent. We now split the rest of the proof

into two cases based on the sizes of Q and R.

Case 1 . Q and R satisfy |Q|+ |R| ≤ |Cs|.

By de�nition of B it follows that T = ∅ and |S| = |Q|+ |R|. Let I = S \ Q. Since S and Q
are initial segments of the colexicographic order, it follows that I is a segment of size |R|. Thus
Claim 1 implies that |R1| ≥ |I1|, and hence we have

|Q1|+ |R1| ≥ |Q1|+ |I1| = |S1| = |S1|+ |T1| ,

as required.

Case 2 . Q and R satisfy |Q|+ |R| > |Cs|.

In this case we have S = Cs and hence it follows that |T | ≤ |R|. Let I = R \ T , and
note that I is a segment. Let J = S \ Q = X(i) \ Q, and note that J is also a segment. Since

|S|+ |T | = |R|+ |Q|, it follows that |I| = |J |. Thus Claim 3 implies that |I1| ≥ |J1|. Combining
this together with the de�nitions of I and J , it follows that

|Q1|+ |R1| = |Q1|+ |I1|+ |T1| ≥ |Q1|+ |J1|+ |T1| = |S1|+ |T1| ,
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which completes the proof of Lemma 29.

Proof of Lemma 30. Let A ⊆ [k]n and B = Cs,t (A). As before, we may assume that both A∩Cs
and A ∩ Ct are initial segments of the colexicographic order, and again we set Q = A ∩ Cs ,

R = A∩Ct, S = B∩Cs and T = B∩Ct. Let Q and S be the associated set systems in X(i), and

R and T be the associated set systems in X(i+1). Again, Lemma 26 implies that the conditions

|δ (A)| ≥ |δ (B)| and |Q1|+ |R1| ≥ |S1|+ |T1| are equivalent. Again, we split the proof into two

cases based on the sizes of Q and R.

Case 1 . Q and R satisfy |Q|+ |R| ≤ |Cs|.

By de�nition of B, it follows that S is an initial segment of the colexicographic order of size

|Q| + |R| on X(i), and we also have T = ∅. Let I be the initial segment of the colexicographic

order of size |R| on X(i), and set J = S \ Q. Then J is a segment satisfying |J | = |R| = |I|.
Thus Claim 1 implies that we have |I1| ≥ |J1|. On the other hand, Claim 2 implies that we have

|R1| ≥ |I1|, and these two inequalities imply that |R1| ≥ |J1|. Hence it follows that

|R1|+ |Q1| ≥ |J1|+ |Q1| = |S1| = |S1|+ |T1| ,

as required.

Case 2 . Q and R satisfy |Q|+ |R| > |Cs|.

By de�nition of B it follows that S = X(i). Since |S| ≥ |Q|, it follows that |R| ≥ |T |. Hence
I = R \ T ⊆ X(i+1) is a segment satisfying R = I ∪ T . Let I∗ ⊆ X(i+1) be the initial segment

of the colexicographic order chosen so that K = X(i+1) \ I∗ is a segment of size |I|. De�ne

J = X(i) \ Q = S \ Q. Hence J is a segment of size |S| − |Q| = |R1| − |T1| = |I|.
Claim 3 implies that |I1| ≥ |K1| and Claim 4 implies that |K1| ≥ |J1|, and hence it follows

that |I1| ≥ |J1|. Thus we have

|R1|+ |Q1| = |I1|+ |Q1|+ |T1| ≥ |J1|+ |Q1|+ |T1| = |S1|+ |T1| ,

which completes the proof of Lemma 30.

Proof of Lemma 31. We start by proving Claim 1, and then we prove that the other results

follow from Claim 1.

Proof of Claim 1. Since A is a segment, there exist initial segments IA and JA of the colexico-

graphic order so that A = IA \ JA. Denote the set of points associated to these set systems by

IA and JA respectively. Let C be obtained from JA by adding 2n coordinates that equal 1 at the

start of each point, and let D be obtained from I by adding 2n coordinates that equal 1 at the

end of each point in I, where I is the set of points associated to I. Finally, we set B = C ∪D.

Due to the added 1's at the start of the elements of C and at the end of the elements of D,

it follows that δ (C) and δ (D) are disjoint sets. Also note that adding 1's to every point does

not change the size of the zero-deletion shadow. Hence we have |δ (B)| = |δ (C)| + |δ (D)| =

|δ (I)|+ |δ (JA)|. On the other hand, since I and JA are initial segments of the colexicographic

37



order, Lemma 26 implies that we have |δ (I)| = |I1| and |δ (JA)| = |(JA)1|. Hence it follows that

|δ (B)| = |I1|+ |(JA)1| . (3.4)

Since IA is an initial segment of the colexicographic order, Lemma 26 implies that |δ (IA)| =
|(IA)1|. Since IA is a disjoint union of JA and A, it follows that

|δ (IA)| = |(IA)1| = |(JA)1|+ |A1| . (3.5)

Since IA is an initial segment of the colexicographic order, the corresponding set of points IA has

minimal zero-deletion shadow inside a connected component. Since |B| = |IA|, it follows that

|δ (B)| ≥ |δ (IA)| . (3.6)

Thus (3.4), (3.5) and (3.6) imply that

|I1| ≥ |A1| , (3.7)

which completes the proof.

Claim 1 ⇒ Claim 3. Let A and I be de�ned as in the statement of Claim 3. For a set system

D ⊆ X(r), recall that D is de�ned by setting D = {Ac : A ∈ D}, and recall that we have
∣∣D∣∣ = |D|

and D ⊆ X(n−r). Furthermore, it is easy to check that if D ⊆ X(r) is an initial segment of the

colexicographic order then so is
(
X(r) \ D

)
. In particular, it follows that I is an initial segment

of the colexicographic order.

Since A is a segment, there exist initial segments K and L so that A = K \ L. This can be

rewritten as A =
(
X(r) \ L

)
\
(
X(r) \ K

)
, and hence it follows that

A =
(
X(r) \ L

)
\
(
X(r) \ K

)
=
(
X(r) \ L

)
\
(
X(r) \ K

)
.

Since
(
X(r) \ L

)
and

(
X(r) \ K

)
are initial segments of the colexicographic order, it follows that

A is also a segment. Hence A and I satisfy the conditions of Claim 1, and therefore we have

∣∣(I)
1

∣∣ ≥ ∣∣(A)
1

∣∣ . (3.8)

Note that for any set system B we have |B| = |B1| +
∣∣(B)

1

∣∣, as for every A ∈ B exactly one

of the conditions 1 ∈ A and 1 ∈ Ac is satis�ed. Thus it follows that

|I| = |I1|+
∣∣(I)

1

∣∣ (3.9)

and

|A| = |A1|+
∣∣(A)

1

∣∣ . (3.10)

Thus (3.8), (3.9) and (3.10) together with |I| = |A| imply that we have

|A1| ≥ |I1| , (3.11)

38



as required.

Claim 1 ⇒ Claim 2. Let I and J be de�ned as in the statement of Claim 2. For each i+1 ≤ j ≤
n let Sj = {A \ {j} : A ∈ J ,maxA = j}, and note that we have Sj ⊆ {1, . . . , j − 1}(i) ⊆ X(i).

Since J is an initial segment of the colexicographic order, it follows that Sj is an initial segment

of the colexicographic order on {1, . . . , j − 1}(i) for each j. Thus Sj is an initial segment of the

colexicographic order also on X(i), as the de�nition of the colexicographic order is independent

of the ground set.

Note that we can express J as a disjoint union J =
⋃n
j=i+1 (Sj + {j}). Hence it follows that

|J1| =
n∑

j=i+1

∣∣(Sj + {j})1
∣∣ =

n∑
j=i+1

∣∣(Sj)1∣∣ . (3.12)

Since each Sj is an initial segment of the colexicographic order onX(i) and we have
∑n

j=i+1 |Sj | =
|J | = |I|, applying Claim 1 n− i− 2 times implies the result.

Claim 2 ⇒ Claim 4. Let I, J , I∗ and J∗ be de�ned as in the statement of Claim 4. Since I∗
and J∗ are initial segments of the colexicographic order, the observation pointed out in the proof

of Claim 3 implies that I ⊆ X(n−i) and J ⊆ X(n−i−1) are initial segments of the colexicographic

order as well. Thus Claim 2 implies that we have

∣∣(I)
1

∣∣ ≥ ∣∣(J )
1

∣∣ . (3.13)

Combining this observation with

|I| = |I1|+
∣∣(I)

1

∣∣ (3.14)

and

|J | = |J1|+
∣∣(J )

1

∣∣ (3.15)

implies that |J1| ≥ |I1|.

This completes the proof of Lemma 31.

We are now ready to deduce Theorem 23. For convenience, we recall the de�nition of the

≤-order. For distinct x, y ∈ [k]n we set x ≤ y if one of the following conditions holds.

1. w0 (x) < w0 (y)

2. w0 (x) = w0 (y), re (x) 6= re (y) and re (x) ≤c re (y)

3. w0 (x) = w0 (y), re (x) = re (y) and R0 (x) ≤colex R0 (y)

Proof of Theorem 23. Let A be a subset of [k]n. For D ⊆ [k]n, de�ne

v(D) =

n∑
j=0

j |D ∩ Lj (n)| .

Note that for l ∈ {1, . . . , n}, s ∈ {1, . . . , k − 1}n−l and t ∈ {1, . . . , k − 1}n−l−1 we have v (D) ≥
v (Cs,t (D)), and the equality holds only when D is s, t-compressed.
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Starting with A0 = A, we construct a sequence (Ai) as follows. Given Ai, if there exist

l ∈ {1, . . . , n}, s ∈ {1, . . . , k − 1}n−l and t ∈ {1, . . . , k − 1}n−l−1 for which Ai is not s, t-

compressed, we set Ai+1 = Cs,t (Ai). Otherwise, we set Ai+1 = Ai. Since v (Ai) is a non-

increasing sequence of non-negative integers, it must eventually become constant, and hence the

sequence (Ai) is also eventually constant. In particular, there exists Am that is s, t-compressed

for all s ∈ {1, . . . , k − 1}n−l and t ∈ {1, . . . , k − 1}n−l−1. Hence there exists i for which we have

Lj (n) ⊆ Am for all j < i and Lj (n) ∩ Am = ∅ for all j > i. Note that Lemma 28 implies that

we have |δ (A)| ≥ |δ (Am)|.
Let Cs1 , . . . , Cst be the connected components in Li (n) so that su ≤c sv whenever u ≤ v,

and de�ne w (D) =
∑t

j=1 j
∣∣D ∩ Csj ∣∣. It is not too hard to check that for each u < v we have

w (D) ≥ w
(
Csu,sv (D)

)
, and the equality holds only when D is su, sv-compressed. Again, we

construct a sequence of sets starting with B0 = Am. Given Bi, if there exist u < v for which

Bi is not su, sv-compressed, we set Bi+1 = Csu,sv (Bi), and otherwise we set Bi+1 = Bi. As

before, w (Bi) is a non-increasing sequence of non-negative integers, and hence there exists M

so that BM is su, sv-compressed for all u < v. Hence there exist i and p so that Lj (n) ⊆ BM

for all j < i, Lj (n) ∩ BM = ∅ for all j > i, Csu ⊆ BM for all u < p and Csu ∩ BM = ∅ for all
u > p. Note that Lemma 29 implies that we have |δ (B0)| ≥ |δ (BM )|, and hence it follows that

|δ (A)| ≥ |δ (BM )|.
Let D = BM∩Csp and let B be the set obtained by taking B∩Csp to be the set corresponding

to the initial segment of the colexicographic order of size |D|, and by taking B \Csp = BM \Csp .
Thus Lemma 25 implies that we have |δ (BM )| ≥ |δ (B)|. It is not too hard to check that the

set B constructed in this way is an initial segment of the ≤-order. Since we have proved that

|δ (A)| ≥ |δ (B)|, this completes the proof.

3.4 An extremal result for the generalised shadow

So far we have considered an operator which allows us to delete a coordinate that equals 0. It is

natural to ask what happens if we generalise this set-up and allow the deletion of any coordinate

that is in some chosen set.

De�ne the δr-shadow of A ⊆ [k]n to be the set of points obtained by removing exactly one

coordinate that is in {0, . . . , r} from a point in A. In particular, we have δ = δ0 and ∆ = δk−1.

De�ne vr (x) =
∑r

i=0wi (x), i.e. vr (x) is the number of coordinates of x in the set {0, . . . , r}.
De�ne Ls (n) = {x ∈ [k]n : vr (x) = s} and L≤s (n) =

⋃s
i=0 Li (n). The aim of this section is to

prove that the sets L≤s (n) have δr-shadow of a minimal size. This follows directly from the

following result.

Proposition 32. Let A ⊆ [k]n and let As = A ∩ Ls (n). Then we have

|δr (A)| ≥ 1

n (r + 1)

n∑
s=0

s |As| .

Proof. Let r be a given integer with 0 ≤ r ≤ k − 1. Let X = [k]n, Y = [k]n−1, let H be de�ned

as in Section 3.4 and let H be a bipartite multigraph on X ∪Y whose edges are given as follows.

For each x ∈ X ∩ Ls (n) there are exactly s coordinates xi1 , . . . , xis which are in {0, . . . , r}.
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De�ne yj to be the element obtained by deleting the coordinate xij . Then we certainly have

yj ∈ δr ({x}), and some of the points yj may be equal. De�ne the edges of H to be the edges

xyj for all 1 ≤ j ≤ s counted with multiplicities. For example, when r = 1 the point x = 00121

is connected with 0121 by two edges, and with both 0012 and 0021 by one edge.

It is easy to check that for all y ∈ Y the degree of y is n (r + 1), as this corresponds to

adding an element in {0, . . . , r} to any of the n possible places in the sequence y. Note that

for all x ∈ X we have ΓH (x) = δr ({x}), and hence for any A ⊆ X we have δr (A) = ΓH (A).

By the construction of H we have d (x) = s for all x ∈ Ls (n), and as observed earlier we have

d (y) = n (r + 1) for all y ∈ Y . Since the connected components of H are contained in the sets

Ls (n)∪Ls−1 (n− 1), we have ΓH (A)∩Ls−1 (n− 1) = ΓH (A ∩ Ls (n)). Therefore it follows that

|ΓH (A)| =
r∑
s=0

|ΓH (As)| . (3.16)

For a set B ⊆ Ls (n) we have

s |B| = e (B,ΓH (B)) ≤ e (ΓH (B) , X) = |ΓH (B)|n (r + 1) ,

and hence it follows that

|ΓH (B)| ≥ s

n (r + 1)
|B| . (3.17)

Applying (3.17) to each term in the sum (3.16), we obtain that

|δr (A)| = |ΓHA| ≥
1

n (r + 1)

r∑
s=0

s |As| , (3.18)

which completes the proof.

Now we are ready to conclude that the sets L≤s (n) have δr-shadow of a minimal size.

Corollary 33. Let A be a subset of [k]n satisfying |A| = |L≤s (n)|. Then we have |δr (A)| ≥
|δr (L≤s (n))|, and the equality holds if and only if A = L≤s (n).

Proof. Let B = L≤s (n). We start by checking that the equality holds for B in (3.18). Note that

we have Bi = Li (n) for all i ≤ s and Bi = ∅ for all i > s. For i ≤ s, we have

|Bi| = |Li (n)| =
(
n

i

)
(r + 1)i (k − (r + 1)) n−i

and

|δr (Bi)| = |Li−1 (n− 1)| =
(
n− 1

i− 1

)
(r + 1)i−1 (k − (r + 1))n−i .

Therefore, we have |δr (Bi)| = i
n(r+1) |Bi| for each i ≤ s, and in fact, this also holds for each

i > s as in this case both sides are 0. Hence the equality holds in (3.17) for all i, and thus the

equality holds in (3.18) as well.

Given a set A of a �xed size for which we have |Ai| ≤ |Li (n)| for all i, it is not too hard

to check that the quantity 1
n(r+1)

∑r
t=0 t |At| is minimised if and only if A = L≤r (n) ∪ B for

a suitably chosen r and for any B ⊆ Lr+1 (n) of a suitable size. Given that the size of A

41



satis�es |A| = |L≤s (n)|, the quantity 1
n(r+1)

∑r
t=0 t |At| attains its minimum value uniquely

when A = L≤s (n).

Hence it follows that

|δr (A)| ≥ 1

n (r + 1)

r∑
t=0

t |At| ≥
1

n (r + 1)

s∑
t=0

t |Lt (n)| = |δr (L≤s (n))| , (3.19)

and the second inequality holds if and only if A = L≤s (n).
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Chapter 4

A grid generalisation of the

Kruskal-Katona theorem

4.1 Introduction

Recall that the lower shadow of A ⊆ {0, 1}n is de�ned to be the set of points that can be obtained

by �ipping exactly one 1-entry to 0 from a point in A, and it is denoted by ∂−A. Similarly, the

upper shadow of A is de�ned to be the set of points that can be obtained by �ipping exactly

one 0-entry to 1 from a point in A, and it is denoted by ∂+A. For x ∈ {0, 1}n, recall that in
the previous chapter we de�ned the rank of x to be the sum of its coordinates. However, for the

purposes of this chapter, it turns out to be more convenient to de�ne the rank w (x) of a {0, 1}-
sequence x by setting w (x) = |{i : xi ≥ 1}|. Even though this notion of rank coincides with the

previous notion for {0, 1}-sequences, these two notions will di�er for general k. We choose to

also call this new notion the rank given that it plays similar role with respect to the shadow

operator considered in this chapter. As before, we de�ne {0, 1}nr = {x ∈ {0, 1}n : w (x) = r}.
For a given r, recall that the Kruskal-Katona theorem [25, 28] states that for a set A ⊆ {0, 1}nr

of a given size, the size of the lower shadow of A is minimised when A is chosen to be the

initial segment of the colexicographic order. Given A ⊆ {0, 1}nr , recall that A is de�ned by

setting A = {xc : x ∈ A}. Recall from Chapter 2 that we have
∣∣A∣∣ = |A|, A ⊆ {0, 1}nn−r and

∂+A = ∂−A, and hence it follows that |∂+A| =
∣∣∂−A∣∣. Thus there is a close connection between

the lower shadow and the upper shadow, and in particular the Kruskal-Katona theorem implies

that the size of the upper shadow of A is minimised when A is chosen to be an initial segment

of the lexicographic order.

There are many natural generalisations of the lower shadow and the upper shadow for points

in [k]n, and one such generalisation can be obtained in the following way. De�ne the d-shadow

of a point x ∈ [k]n to be the set of points obtained by �ipping one of the coordinates of x that

is in {1, . . . , k − 1} to 0. Denote the d shadow of a point x by d ({x}). For A ⊆ [k]n, de�ne the

d-shadow of A by setting d (A) =
⋃
x∈A d ({x}). For example, we have d ({012}) = {002, 010}

and d ({000}) = ∅. It is clear that this operator agrees with the lower shadow operator when

k = 2.

De�ne the rank of a point x ∈ [k]n to be w (x) = |{i : xi ≥ 1}|. For 0 ≤ r ≤ n set [k]nr =

{x ∈ [k]n : w (x) = r}. Note that the rank of a point in d ({x}) is one lower than the rank of x.
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There is a super�cial resemblance to a result of Clements as we now describe. De�ne the

d+-shadow of a point x ∈ [k]n by setting d+ ({x}) to be the set of points obtained from x by

changing one of the coordinates of x which equals 0 to any number in {1, . . . , k − 1}, and we set

d+ (A) =
⋃
x∈A d

+ ({x}). Again, it is clear that the rank of a point in d+ ({x}) is one larger than
the rank of x.

Clements [13] found an order on [k]nr whose initial segments minimise the size of the d+-

shadow. Recall that the ordinary lower shadow and upper shadow can be related to each other

by using the fact that ∂+A = ∂−A. However, for k ≥ 3, it is clear that there is no similar natural

relation between the d+-shadow and the d-shadow. That is, given the Clements' result for the

d+-shadow, there seems to be no way to deduce results for the d-shadow.

There is also a super�cial resemblance to the Clements-Lindström Theorem [14]. Let k1, . . . , kn

be integers such that 1 ≤ k1 ≤ · · · ≤ kn, and let F be the set of all integer points (a1, . . . , an)

with 0 ≤ ai ≤ ki for all i. De�ne the shadow operator Γ by setting

Γ ((a1, . . . an)) = {(a1 − 1, a2 . . . , an) , (a1, a2 − 1, . . . , an) . . . , (a1, a2 . . . , an − 1)} ∩ F,

and Γ (A) =
⋃
a∈A Γ (a) for A ⊆ F . Let Fr be the set of points (a1, . . . , an) ∈ F with

∑n
i=1 ai = r.

Generalise the colexicographic order by writing (a1, . . . , an) <c (b1, . . . , bn) if there exists i such

that aj = bj for all j > i and ai < bi. The Clements-Lindström theorem states that the initial

segments of the colexicographic order minimise the size of the Γ-shadow on Fr.

The aim of this chapter is to �nd an order on [k]nr whose initial segments minimise the size

of the d-shadow among the subsets of a given size. In fact, we do this by �rst solving the

unrestricted version, i.e. we �nd an order on [k]n whose initial segments minimise the size of the

d-shadow among the subsets of a given size. Once we have proved the result for [k]n, the result

for [k]nr follows easily. We have recently learnt that our result may also be deduced from a result

of Frankl, Füredi and Kalai [19], and of London [32]; in this chapter we provide a new proof of

their result.

We start by de�ning the order whose initial segments minimise the size of the d-shadow for

the unrestricted version. For each i de�ne Ri (x) = {j : xj = i}. For a �xed k, de�ne the order

≤ on [k]n by setting x ≤ y if x = y or one of the following conditions holds.

1. |R0 (x)| > |R0 (y)|

2. |R0 (x)| = |R0 (y)| and for the largest index i satisfying Ri (x) 6= Ri (y) we have

max (Ri (x) ∆Ri (y)) ∈ Ri (y).

As usual, we say that x < y if x ≤ y and x 6= y. Now we are ready to state the unrestricted

version of our theorem.

Theorem 34. Let A be a subset of [k]n and let B be an initial segment of the ≤-order on [k]n

of size |A|. Then we have |d (A)| ≥ |d (B)|.

The proof of Theorem 34 is an inductive proof. As the proof of Theorem 34 is fairly long, we

split the proof it into four subsections. In the �rst subsection, we introduce certain codimension-

1 compression operators, and we prove that they cannot increase the size of the shadow. In
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particular, because of the compression operators, it su�ces to prove Theorem 34 for those sets

A that are stable under the compression operators.

Compression operators have been much utilised previously, see e.g. [7, 27]. For example, there

are very straightforward proofs using compression operators for Harper's vertex-isoperimetric

inequality on the hypercube and for the edge-isoperimetric inequality on the hypercube. In these

examples, it is straightforward to prove the desired isoperimetric inequality for the sets that are

stable under the compression operators. However, proving the inequality for the sets that are

stable under the compression operators is highly nontrivial in our main theorem. In particular,

the main part of the proof consists of dealing with the sets that are stable under the compression

operators.

Even though n = 1 is the base case in the proof, it turns out to be convenient to consider

the case n = 2 individually as well. Hence we consider the case n = 2 in the second subsection.

This special case turns out to be reasonably straightforward when restricted to the sets that are

stable under the compression operators.

We start the proof of the general case n ≥ 3 by making some observations on the structure of

the sets that are stable under the compression operators. As an example, we prove that it su�ces

to restrict our attention to the sets A for which there exists r such that A contains all the points

with at least r+1 zeroes and no point with at most r−1 zeroes, and which are also stable under

the compression operators. Let D be the set of points in A with exactly r zeroes. Since the d-

shadow operator preserves the rank, it su�ces to focus on analysing d (D). The fourth subsection

is dedicated to analysing d (D) by using the previous and some new structural observations. At

this stage of the proof, we need to split the proof into multiple subcases depending on the size

and the structure of A.

Denote the restriction of the ≤-order on Nnr = {x = x1 . . . xn : w (x) = r} also by ≤, where
we de�ne N = {0, 1, . . . }. This order is well-de�ned, as it is easy to check that [m]nr is an initial

segment of the restriction of the ≤-order on [k]nr for all k ≥ m, and these orders coincide on [m]nr .

Now we can state our main theorem.

Theorem 35. Let A be a subset of [k]nr and let B be an initial segment of the ≤-order on [k]nr
of size |A|. Then we have |d (A)| ≥ |d (B)|.

We end this section by introducing some notation. As before, we write X = {1, . . . , n},
X(r) = {A ⊆ X : |A| = r} and X(≤r) = {A ⊆ X : |A| ≤ r}. For convenience, we often write

Br = [k]nn−r = {x ∈ [k]n : |R0 (x)| = r}

and B≥r =
⋃n
i=r Bi for the set of points containing exactly r coordinates that are zeroes and

for the set of points containing at least r coordinates that are zeroes respectively. Note that Br

depends on the values of n and k, but since their values are often clear from the context, the

dependence is not highlighted. For x ∈ [k]n, we write d (x) instead of d ({x}).
For ai ∈ [k] and for positive integers ti ∈ N we de�ne (t1 · a1) (t2 · a2) . . . (tr · ar) to represent

the element a1 . . . a1a2 . . . a2 . . . ar . . . ar which has t1 a1's immediately followed by t2 a2's, and

so on. For example, we have (3 · 0) (2 · 4) 56 = 0004456.
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For y = y1 . . . yn−1 ∈ [k]n−1, s ∈ X and t ∈ [k] de�ne

tsy = y1 . . . ys−1tys . . . yn−1,

and for Y ⊆ [k]n−1 we write tsY = {tsy : y ∈ Y }. Note that we have tsx ≤ tsy if and only if

x ≤ y.
Finally, de�ne the binary order ≤bin on P (N) by settingX ≤bin Y ifX = Y or max (X∆Y ) ∈

Y . We write X <bin Y if X ≤bin Y and X 6= Y . Note that the second condition in the de�nition

of the ≤-order is equivalent to saying that for the largest index i satisfying Ri (x) 6= Ri (y) we

have Ri (x) <bin Ri (y).

4.2 Proof of Theorem 34

For convenience, we say that a set A ⊆ [k]n is extremal if the size of d (A) is minimal among the

subsets of [k]n of the same size. The proof of Theorem 34 is an inductive proof, and note that

the result is trivial when n = 1. Throughout this section we assume that Theorem 34 holds for

[k]n−1, and our aim is to prove it for [k]n.

4.2.1 The compression operators

For A ⊆ [k]n, t ∈ [k] and s ∈ X de�ne

As,t =
{
y ∈ [k]n−1 : tsy ∈ A

}
.

Let Bs,t ⊆ [k]n−1 be the initial segment of the ≤-order of size |As,t|, and set Cs,t = tsBs,t.

De�ne the Cs-compression of A by setting Cs (A) =
⋃k−1
t=0 Cs,t. We start by proving that the

Cs-compression operators cannot increase the size of the d-shadow.

Claim 1 . For all A ⊆ [k]n and s ∈ X we have |Cs (A)| = |A| and |d (A)| ≥ |d (Cs (A))|.

Proof of Claim 1. For a given s, note that the sets Cs,t are pairwise disjoint for t ∈ [k], as every

x ∈ Cs,t satis�es xs = t. Since |Cs,t| = |As,t| for all t ∈ [k], it follows that |Cs (A)| = |A|.
Note that we have

d (Cs (A)) = d

(
k−1⋃
t=0

tsBs,t

)
=

((
k−1⋃
t=1

0sBs,t

)
∪ 0sd (Bs,0)

)
∪

(
k−1⋃
t=1

tsd (Bs,t)

)
, (4.1)

and similarly we have

d (A) = d

(
k−1⋃
t=0

tsAs,t

)
=

((
k−1⋃
t=1

0sAs,t

)
∪ 0sd (As,0)

)
∪

(
k−1⋃
t=1

tsd (As,t)

)
. (4.2)

Observe that the k sets(
k−1⋃
t=1

0sBs,t

)
∪ 0sd (Bs,0) , 1sd (Bs,1) , . . . , (k − 1)s d (Bs,k−1)
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are pairwise disjoint as their sth coordinates are distinct. Hence we have∣∣∣∣∣d
(
k−1⋃
t=0

tsBs,t

)∣∣∣∣∣ =

∣∣∣∣∣
(
k−1⋃
t=1

0sBs,t

)
∪ 0sd (Bs,0)

∣∣∣∣∣+
k−1∑
t=1

|tsd (Bs,t)| , (4.3)

and similarly we have∣∣∣∣∣d
(
k−1⋃
t=0

tsAs,t

)∣∣∣∣∣ =

∣∣∣∣∣
(
k−1⋃
t=1

0sAs,t

)
∪ 0sd (As,0)

∣∣∣∣∣+

k−1∑
t=1

|tsd (As,t)| . (4.4)

Since Theorem 34 holds for [k]n−1, it follows that for any s and t we have

|tsd (As,t)| = |d (As,t)| ≥ |d (Bs,t)| = |tsd (Bs,t)| . (4.5)

Note that the image of an initial segment under the d-shadow is also an initial segment. Since

initial segments are nested, we have∣∣∣∣∣
(
k−1⋃
t=1

0sBs,t

)
∪ 0sd (Bs,0)

∣∣∣∣∣ = max (|Bs,1| , . . . , |Bs,k−1| , |d (Bs,0)|) . (4.6)

Combining the trivial estimate∣∣∣∣∣
(
k−1⋃
t=1

0sAs,t

)
∪ 0sd (As,0)

∣∣∣∣∣ ≥ max (|As,1| , . . . , |As,k−1| , |d (As,0)|) (4.7)

with (4.5), (4.6) and the fact that |As,i| = |Bs,i| for all 0 ≤ i ≤ k − 1, it follows that∣∣∣∣∣
(
k−1⋃
t=1

0sAs,t

)
∪ 0sd (As,0)

∣∣∣∣∣ ≥
∣∣∣∣∣
(
k−1⋃
t=1

0sBs,t

)
∪ 0sd (Bs,0)

∣∣∣∣∣ . (4.8)

Thus pairing up the terms in (4.3) and (4.4) in the natural way and applying (4.5) and (4.8), it

follows that

|d (A)| ≥ |d (Cs (A))| , (4.9)

which completes the proof.

We say that T ⊆ [k]n is compressed if for every s ∈ X we have Cs (T ) = T . We now make

the standard observation that it su�ces to prove Theorem 34 for compressed sets.

Claim 2 . Let A be a subset of [k]n. Then there exists a compressed set B ⊆ [k]n of size |A| for
which we have |d (A)| ≥ |d (B)|.

Proof of Claim 2. Consider a sequence (Am) with A0 = A obtained as follows. Given Am, if there

exists s ∈ X so that Cs (Am) 6= Am, we set Am+1 = Cs (Am). Otherwise, we set Am+1 = Am.

Let Ki be the ith set in [k]n with respect to the ≤-order. As in Chapter 3, de�ne f (A) =∑kn

i=1 iI {Ki ∈ A}, where I {Ki ∈ A} denotes the indicator function of the event Ki ∈ A. By the

construction of the compression operator Cs, it is easy to verify that we have f (Cs (A)) ≤ f (A)

for all s ∈ X, and for a given s the equality holds if and only if we have Cs (A) = A. Since f (A)
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is always a non-negative integer, it follows that the sequence f (Am) is eventually constant. Thus

there exists r for which the condition f (Cs (Ar)) = f (Ar) is satis�ed for all s, and hence Ar is

compressed.

By Claim 1, for all 0 ≤ i ≤ r − 1 we have |d (Ai)| ≥ |d (Ai+1)|. Hence it follows that

|d (A)| ≥ |d (Ar)|, and thus we may take B = Ar.

From now on, let A ⊆ [k]n denote an arbitrary compressed set, and let C denote the initial

segment of size |A| on [k]n. By Claim 2, it su�ces to prove that |d (A)| ≥ |d (C)|.

4.2.2 The special case n = 2.

Before moving on to the general case, we prove that Theorem 34 holds when n = 2. This turns

out to be convenient as n = 2 is too small in one part of the general argument.

Claim 3 . Theorem 34 holds for a compressed set A ⊆ [k]2.

Proof of Claim 3. The claim is trivial if |A| = 1. Let C denote the initial segment of [k]2 of size

|A|. If 2 ≤ |A| ≤ 2k−1, then C is a subset of B≥1, and hence it follows that d (C) = {00}. Thus
we evidently have |d (A)| ≥ |d (C)|.

Now suppose that |A| ≥ 2k. Write A as A = A0 ∪X, where A0 = A ∩B≥1 and

X = A \A0 = {x1x2 ∈ A : x1 6= 0 and x2 6= 0} .

Since |B≥1| = 2k − 1, it follows that |X| ≥ |A| − 2k + 1, and in particular X is non-empty.

Let x1, . . . , xr ∈ {1, . . . , k − 1} and y1, . . . , ys ∈ {1, . . . , k − 1} be chosen so that

d (X) = {0x1, . . . , 0xr, y10, . . . , ys0} .

Then we certainly have

X ⊆ {yjxi : 1 ≤ j ≤ s, 1 ≤ i ≤ r} ,

which implies that |X| ≤ rs. Since for non-negative integers r and s we have r+ s ≥
⌈√

4rs
⌉
, it

follows that |d (X)| ≥
⌈√

4 |X|
⌉
.

Since A is compressed and |A| > 1, it follows that A contains a point x1x2 6= 00 with x1 = 0

or x2 = 0. In particular, we must have 00 ∈ d (A). Hence it follows that d (A) = {00} ∪ d (X).

As |X| ≥ |A| − 2k + 1, we have

|d (A)| ≥ 1 +
⌈√

4 (|A| − 2k + 1)
⌉
.

If r2 + 2k ≤ |A| ≤ r2 + r+ 2k− 1 for some 1 ≤ r ≤ k− 2, it is easy to verify that C satis�es

C ⊆ B≥1 ∪ {x1x2 : 1 ≤ x1 ≤ r + 1, 1 ≤ x2 ≤ r}. In particular, we have

|d (C)| ≤ 1 + (r + 1) + r = 1 +
⌈√

4 (|A| − 2k + 1)
⌉
,

and hence it follows that |d (A)| ≥ |d (C)|. If r2 + r + 2k ≤ |A| ≤ (r + 1)2 + 2k − 1 for some

1 ≤ r ≤ k− 2, it is easy to verify that C satis�es C ⊆ B≥1 ∪ {x1x2 : 1 ≤ x1, x2 ≤ r + 1}. Again,
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we have

|d (C)| ≤ 1 + 2 (r + 1) = 1 +
⌈√

4 (|A| − 2k + 1)
⌉
.

Thus in either case we have |d (A)| ≥ |d (C)|.

4.2.3 General observations

From now on, we assume that n ≥ 3, and our aim is to prove that Theorem 34 holds for a

compressed set A ⊆ [k]n. As in the previous section, the proof is trivial when |A| = 1 or

2 ≤ |A| ≤ n (k − 1) + 1, as in these cases the d-shadow of the initial segment has size 0 or 1

respectively. Thus we may assume that |A| ≥ n (k − 1) + 2.

We say that B ⊆ [k]n is a down-set if for any points y ∈ B and x ∈ [k]n satisfying xj ≤ yj

for all j we have x ∈ B. In this subsection, we make some observations on the structure of a

compressed set A. We start by proving that a compressed set is also a down-set, and in fact,

this follows from a slightly stronger statement. Secondly, recall that for an initial segment C

there exists r satisfying B≥r+1 ⊆ C ⊆ B≥r. For a compressed set the same conclusion does not

necessarily hold, but as a second structural claim we prove that for a compressed set A there

exists r which satis�es d (B≥r+1) ⊆ d (A) ⊆ d (B≥r). Since we only consider the size of the

d-shadow of A, in a sense this is `equally good' for our purposes as having B≥r+1 ⊆ A ⊆ B≥r.

Note that the second observation allows us to focus only on d (A ∩Br).
Before proving that A and d (A) are down-sets, we start with a straightforward observation

that turns out to be even more useful. Given points x, y with x ≤ y and y ∈ A, suppose that

there exists an index i satisfying xi = yi, and for convenience set t = xi. Since A is compressed,

it follows that Ai,t is an initial segment. Let x′ and y′ be the points obtained from x and y by

removing their ith coordinate, and note that we have y′ ∈ Ai,t. Since x ≤ y and xi = yi, it

follows that x′ ≤ y′. Since A is compressed and y′ ∈ Ai,t, it follows that x′ ∈ Ai,t and hence we

also have x ∈ A. In summary, we have proved that

x ≤ y, y ∈ A, xi = yi for some i⇒ x ∈ A. (4.10)

This turns out to be a very useful fact that we will use throughout this chapter. As a simple

consequence, we now prove that A and d (A) are down-sets.

Claim 4 . Let A ⊆ [k]n be a compressed set. Then both A and d (A) are down-sets.

Proof of Claim 4. Let y ∈ A and let x ∈ [k]n be a point satisfying xi ≤ yi for all i. Let z ∈ [k]n

be obtained by taking z1 = x1 and zs = ys for all s ≥ 2, and note that we certainly have

x ≤ z ≤ y. Since y2 = z2 and x1 = z1, by using (4.10) we �rst obtain that z ∈ A, and applying

(4.10) again we obtain that x ∈ A. This completes the proof of the �rst part.

Let y ∈ d (A) and let x ∈ [k]n be a point satisfying xi ≤ yi for all i. Choose a point v ∈ A
for which we have y ∈ d (v), and let a be the unique index for which we have va 6= 0 and ya = 0.

Let u be the point obtained by setting ua = va and uj = xj for all j 6= a. Then for any j 6= a

we have uj = xj ≤ yj = vj . Since we also have ua = va, the �rst part implies that u ∈ A. Since
xa ≤ ya = 0, we must have xa = 0. Hence it follows that x ∈ d (u) ⊆ d (A), which completes the

proof.
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Before moving on to the second structural fact, we introduce some notation that will be used

throughout the rest of this section. For x = x1 . . . xn ∈ Nn, set m (x) = max (x1, . . . , xn) and

recall that for all i ∈ N we de�ned Ri (x) = {j : xj = i}. De�ne

c (x) =
(
m (x) , Rm(x) (x) , |R0 (x)|

)
.

That is, the �rst coordinate of c (x) is max (x1, . . . , xn), the second coordinate is the set of all

positions where this maximal value is attained and the last coordinate is the number of xi's that

equal 0. De�ne the component of x by setting Cx = {y ∈ [k]n : c (y) = c (x)}.
Note that we have x ∈ [k]n if and only if Cx ⊆ [k]n, as the maximal value among the coor-

dinates is the same for any y ∈ Cx. Moreover, since every y ∈ Cx also shares the same positions

of the coordinates that attain the maximal value and has the same number of coordinates that

equal 0, it follows that for any other class Cz either all the points in Cx occur before the points

in Cz with respect to the ≤-order, or all the points in Cx occur after the points in Cz. Hence we
can order the classes inside [k]n as C1, . . . , Cm such that whenever i 6= j, for points x ∈ Ci and
y ∈ Cj we have x ≤ y if and only if i < j.

Note that for all x, y ∈ Ci there exists r satisfying xr = yr. Indeed, any r ∈ Rm(x) (x) =

Rm(y) (y) works. Hence (4.10) implies that for any i we either have A ∩ Ci = ∅, or there exists
yi ∈ Ci such that A ∩ Ci = {x ∈ Ci : x ≤ yi}.

For �xed s and t, the classes of the form (s, A, t) for A ∈ X(≤n−t) occur consecutively with

respect to the ≤-order. Furthermore, from the de�nition of the ≤-order it is easy to verify that

the classes of the form (s, A, t) for given s and t occur in the order induced by the binary order on

X(≤n−t). In particular, if Ai and Ai+1 are two consecutive sets under the binary order satisfying

|Ai| ≤ n− t and |Ai+1| ≤ n− t, then (s, Ai, t) immediately precedes (s, Ai+1, t) in the order of

classes.

Recall that Bs is de�ned to be the set of points with exactly s coordinates that equal 0, i.e.

Bs = {x ∈ [k]n : |R0 (x)| = s} ,

and B≥s =
⋃n
i=sBi. Note that if X is an initial segment of the ≤-order, there exists r such that

B≥r+1 ⊆ X ⊂ B≥r. Our next aim is to prove that for any compressed set A there exists r for

which we have d (B≥r+1) ⊆ d (A) ⊆ d (B≥r).

Claim 5 . Let A be a compressed set and let 0 ≤ p ≤ n be the minimal index satisfying

A ∩ Bp 6= ∅. Then we have d (B≥p+1) ⊆ d (A) ⊆ d (B≥p). In particular, if r is chosen such

that |B≥r+1| < |A| ≤ |B≥r|, it su�ces to prove Theorem 34 for compressed sets A which satisfy

B≥r+1 ⊆ A ⊆ B≥r.

Proof of Claim 5. Let p be the minimal index for which we have A ∩ Bp 6= ∅, and let u be the

minimal point under the ≤-order in A ∩ Bp. Since A is a down-set and u ∈ Bp, it follows that
every coordinate of u must be either 0 or 1. Hence there exists a set X of size n − p for which

we have ui = I {i ∈ X}.
Let x ∈ B≥p+2 = d (B≥p+1). If R0 (x)∩X 6= ∅, choose i ∈ R0 (x)∩X and consider the point

y obtained by taking yj = xj for j 6= i and yi = 1. Since i ∈ X, it follows that ui = 1 = yi. On
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the other hand, since |R0 (y)| = p + 2 − 1 = p + 1 > p = |R0 (u)|, it follows that y ≤ u. Hence

(4.10) implies that y ∈ A, and hence it follows that x ∈ d (A).

If R0 (x) ∩X = ∅, choose any i ∈ R0 (x) and again consider the point y obtained by taking

yj = xj for j 6= i and yi = 1. Let j ∈ R0 (x) \ {i}, and note that such j exists as |R0 (x)| ≥
p + 2 ≥ 2. Since j 6∈ X, it follows that uj = 0 = xj = yj . Similarly as in the �rst case, we

have |R0 (y)| > |R0 (u)| and hence it follows that y ≤ u. Hence (4.10) implies that y ∈ A, and
therefore we have x ∈ d (A), which completes the proof of the �rst part.

For the second part, suppose that A′ is a compressed set satisfying |B≥r+1| < |A′| ≤ |B≥r| for
some r. Let C denote the initial segment of the ≤-order of size |A′|, and assume that Theorem 34

holds for any compressed set A ⊆ [k]n satisfying the conditions |A| = |A′| and B≥r+1 ⊆ A ⊆ B≥r.
Let p denote the least integer for which we have A′ ∩ Bp 6= ∅. Since |A′| > |B≥r+1|, it follows
that p ≤ r.

If p < r, the �rst part implies that we have d (B≥r) ⊆ d (B≥p+1) ⊆ d (A′), and since C ⊆ B≥r
it certainly follows that |d (A′)| ≥ |d (C)|. If p = r, the choice of p implies that we have A′ ⊆ B≥r,
and the �rst part implies that d (B≥r+1) ⊆ d (A′). Let D′ = A′ ∩ Br, and note that the last

two observations imply that d (A′) = d (B≥r+1) ∪ d (D′). Let C ′ = C ∩ Br, and note that since

|A′| = |C| and B≥r+1 ⊆ C, it follows that |C ′| ≤ |D′|. Let D be the set of |C ′| smallest points

in D′ under the ≤-order, and let A = B≥r+1 ∪D. It is easy to see that A is compressed and we

have |A| = |C| = |A′|. By the construction of A it follows that B≥r+1 ⊆ A ⊆ B≥r, and since

we have D ⊆ D′ and d (B≥r+1) ⊆ d (A′), it follows that d (A) ⊆ d (A′). In particular, we have

|d (A′)| ≥ |d (A)|, which implies the result.

4.2.4 Rest of the proof

Let A be a compressed set, let r be chosen so that |B≥r+1| < |A| ≤ |B≥r| and let C be

the the initial segment of the ≤-order of size |A|. By Claim 5 we may assume that we have

B≥r+1 ⊆ A ⊆ B≥r. From now on, we set D = A ∩ Br. Since |d (A)| = |B≥r+2| + |d (D)| and
|d (C)| = |B≥r+2|+ |d (C ∩Br)|, it su�ces to focus on comparing d (D) with d (C ∩Br).

We split the proof into two cases depending on whether we have |A| ≤ |B≥1| or |A| > |B≥1|.

Case 1 . |A| ≤ |B≥1|.

Since |A| ≤ |B≥1|, it follows that A = B≥r+1 ∪D for some D ⊆ Br and r ≥ 1. Recall that

Theorem 34 is trivial when |A| ≤ n (k − 1) + 1, and hence we may assume that r ≤ n− 2.

Note that each of the sets B≥r+1 ∪ ([s]n ∩Br) is an initial segment of the ≤-order, and
recall that [s]n = {0, . . . , s− 1}n. We start by comparing the sets d (D) and d ([s]n ∩Br) for an
appropriately chosen s.

Claim 6 . Let s = max {m (x) : x ∈ D} = max {xi : x1 . . . xn ∈ D}. Then we have d ([s]n ∩Br) ⊆
d (A). In particular, if r and s are chosen so that

|B≥r+1 ∪ ([s]n ∩Br)| < |A| ≤ |B≥r+1 ∪ ([s+ 1]n ∩Br)| ,

it su�ces to prove Theorem 34 for compressed sets A satisfying

B≥r+1 ∪ ([s]n ∩Br) ⊆ A ⊆ B≥r ∪ ([([s+ 1]n ∩Br)]) .
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Proof of Claim 6. When s = 1, the claim is equivalent to the condition B≥r+1 ⊆ d (A), which is

certainly true by the choice of A. Now suppose that s ≥ 2, and let x be the least point under

the ≤-order in D with m (x) = s. Since A is a down-set and s ≥ 2, the minimality of x implies

that there exists a unique index i satisfying xi = s.

Let v ∈ d ([s]n ∩Br). Since |R0 (v)| = r + 1 ≥ 2, it follows that there exists j 6= i for which

we have vj = 0. If xj 6= 0, consider the point z obtained by setting

zt =

 vt if t 6= j

xj if t = j
.

Otherwise, pick any p 6= j with vp = 0, and consider the point z obtained by setting

zt =

 vt if t 6= p

1 if t = p
.

Since vt ∈ [s] for all t and j is chosen so that xj 6= s, in either case we have z ∈ [s]n. In both

cases we certainly have v ∈ d (z) by the construction of z, and we have |R0 (x)| = |R0 (z)|. Since
m (x) > m (z), it follows that z ≤ x.

In the �rst case we have xj = zj , and hence (4.10) implies that z ∈ A. In the second case

we have zj = vj = xj = 0, so again (4.10) implies that z ∈ A. Hence in either case we have

v ∈ d (A), which completes the proof of the �rst part.

In order to prove the second part, suppose that A′ is a compressed set satisfying

|B≥r+1 ∪ ([s]n ∩Br)| <
∣∣A′∣∣ ≤ |B≥r+1 ∪ ([s+ 1]n ∩Br)|

for some r and s. Recall that by Claim 5 we may assume that B≥r+1 ⊆ A′ ⊆ B≥r. Let C be the

initial segment of the ≤-order of size |A′|, and note that we have C ⊆ B≥r+1 ∪ ([s+ 1]n ∩Br).
Let t = max (m (x) : x ∈ A′ ∩Br). Since |A′| > |B≥r+1 ∪ ([s]n ∩Br)|, we must have t ≥ s. If

t ≥ s+ 1, the �rst part implies that

d (B≥r+1 ∪ ([s+ 1]n ∩Br)) ⊆ d
(
A′
)
.

In particular, it follows that d (C) ⊆ d (A′), and thus we have |d (A′)| ≥ |d (C)|.
If t = s, it follows that A′ ⊆ B≥r+1 ∪ ([s+ 1]n ∩Br). Let X = {x ∈ A ∩Br : m (x) = s},

and note that we have X 6= ∅. Let Y be the set of k least points in X under the ≤-order, where
k = |A′| − |B≥r+1 ∪ ([s]n ∩Br)|, and consider A de�ned by A = B≥r+1 ∪ ([s]n ∩Br) ∪ Y . It is

clear that A is compressed, and we have |A| = |A′| = |C|.
By the construction of A it follows that B≥r+1 ∪ ([s]n ∩Br) ⊆ A ⊆ B≥r+1 ∪ ([s+ 1]n ∩Br).

By Claim 5 and the �rst part, we have d (B≥r+1 ∪ ([s]n ∩Br)) ⊆ d (A′). In particular, it follows

that d (B≥r+1 ∪ ([s]n ∩Br)) ∪ d (X) ⊆ d (A′). Since d (Y ) ⊆ d (X), we must have d (A) =

d (B≥r+1 ∪ ([s]n ∩Br))∪d (Y ) ⊆ d (A′). Hence it follows that |d (A′)| ≥ |d (A)|, which completes

the proof.

Let s = max (m (x) : x ∈ D). From now on, we suppose that A is a compressed set satisfying

B≥r+1 ∪ ([s]n ∩Br) ⊂ A ⊆ B≥r+1 ∪ ([s+ 1]n ∩Br).
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We split our proof into two subcases based on whether s = max (m (x) : x ∈ D) satis�es s = 1

or s ≥ 2. When s = 1, Theorem 34 is equivalent to the Kruskal-Katona Theorem, and hence the

case s ≥ 2 is the main part of the proof.

Case 1.1 . s = 1.

Since s = 1, it follows that D ⊆ {0, 1}n∩Br, and note that we have {0, 1}n∩Br = {0, 1}nn−r.
It is easy to check that the colexicographic order and the ≤-order coincide on {0, 1}nn−r. Hence
Kruskal-Katona theorem implies that Theorem 34 holds when s = 1.

Case 1.2 . s ≥ 2.

Since s ≥ 2, it follows that for any point x changing a value of a non-zero coordinate to 1

cannot increase the set Rs (x). As a consequence of Claim 6, from now on, we only need to focus

on the points in D that contain s as a coordinate.

Let A = X(≤n−r)\{∅}, and for X ∈ A denote the class Ci corresponding to the tuple (s,X, r)

by CX . Note that A characterizes all the classes containing points with exactly r zeroes and s as

a maximal coordinate. As noted before, the order of the classes under the ≤-order is the order
induced on A by the binary order.

Let T ∈ A be the largest set under the binary order satisfying CT ∩ D 6= ∅. We start by

proving that for any S ∈ A with S <bin T we have d (CS) ⊆ d (D). If S ∩ T 6= ∅, the claim

follows easily as CS ⊆ D holds by (4.10). We start by proving the claim when T contains only

one point, as in this case such an easy argument does not exist and the stronger conclusion

Cs ⊆ D may not always hold. In Claim 8 we deduce that for any S ∈ A with S <bin T we have

d (CS) ⊆ d (D) regardless of the size of T .

Claim 7 . Let X ∈ A be a set satisfying CX ∩D 6= ∅ and |X| = 1. Then for any S ∈ A with

S <bin X we have d (CS) ⊆ d (D).

Proof of Claim 7. Let i be chosen so that X = {i}, and de�ne the particular point

a = si (((n− r − 1) · 1) (r · 0)) .

Note that a is the least point in CX , and hence (4.10) implies that a ∈ D.

Let x ∈ d (CS). Since D ⊆ Br for some r ≥ 1, it follows that |R0 (x)| = r + 1 ≥ 2. Hence

there exist distinct elements l and m satisfying xl = xm = 0. In particular, we may assume that

m 6= i.

Let y be the point obtained by taking yj = xj for j 6= m and ym = 1, and let z be the point

obtained by taking zj = xj for j 6= l and zl = 1. Note that we have Rs (y) ⊆ S and Rs (z) ⊆ S,

and recall that Rs (a) = X . Since S <bin X, these conditions imply that y ≤ a and z ≤ a.

Note that by the construction of the elements y and z we have ym = 1 and zm = xm = 0. Since

m 6= i, it follows that am ∈ {0, 1}, and hence we either have am = ym or am = zm. Thus (4.10)

implies that we have y ∈ D or z ∈ D, and in either case it follows that x ∈ d (D).

Claim 8 . Let T ∈ A be the largest set under the binary order satisfying CT ∩D 6= ∅. Then for

any S ∈ A with S <bin T we have d (CS) ⊆ d (D).
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Proof of Claim 8. The result follows immediately from Claim 7 when |T | = 1. Hence we may

assume that |T | > 1, and de�ne T1 = {maxT}. Note that we have T1 ∩ T 6= ∅ and T1 <bin T .
Hence (4.10) implies that CT1 ⊆ D.

Let S ∈ A be a set satisfying S <bin T . If maxS = maxT , then (4.10) implies that CS ⊆ D,

and in particular it follows that d (CS) ⊆ d (D). If maxS < maxT , it follows that S <bin T1. By

applying Claim 7 for the set T1 which contains only one point, we obtain that d (CS) ⊆ d (D),

which completes the proof.

Now we are ready to �nish the proof of Case 1.2. Let C be the initial segment of the ≤-order of
size |A|. Recall that r and s are chosen so that B≥r+1∪([s]n ∩Br) ⊆ A ⊆ B≥r+1∪([s+ 1]n ∩Br).
Since C is an initial segment, it follows that there exist T1 ∈ A and x ∈ T1 so that

C = B≥r+1 ∪ ([s]n ∩Br) ∪

 ⋃
S∈A, S<binT1

CS

 ∪ {y : y ≤ x, y ∈ CT1} .

Since |A| = |C|, we must have T1 ≤bin T . If T1 < T , we have d (CS) ⊆ d (A) for all S with

S ∈ A and S ≤bin T1 by Claim 8. In particular, it follows that d (C) ⊆ d (A), and therefore we

have |d (A)| ≥ |d (C)|.
Now suppose that T1 = T . Let z ∈ CT be chosen so that we haveA∩CT = {y : y ≤ z, y ∈ CT }.

Since C is the initial segment of the ≤-order of size |A|, it follows that x ≤ z. Hence we have

d ({y : y ≤ x, y ∈ T1}) ⊆ d (A), and it follows that d (C) ⊆ d (A). This completes the proof of

Case 1.2.

Case 2 . |A| > |B≥1| .

Recall that A is of the form A = B≥1 ∪ D for some D ⊆ B0 = {1, . . . , k − 1}n. Note that

Theorem 34 holds when |A| = |B≥1| + 1 as |d (x)| = n for any x ∈ B0. From now on, we will

assume that |A| > |B≥1| + 1. Hence it follows that |D| > 1, and thus s = max (m (x) : x ∈ D)

satis�es s ≥ 2.

Ideally, we would like to use an approach that is similar to the one used in the proof of Case

1. However, it turns out that some di�culties may arise with the appropriate versions of Claims

6 and 8. We start with a preliminary result which states that (4.10) also holds for points inside

d (D). Then we move on to prove an appropriate version of Claim 6. When T 6= {1}, we again
have d ({1, . . . , s− 1}n) ⊆ d (A). When T = {1}, one speci�c point from d ({1, . . . , s− 1}n)

might not be contained in d (A).

Claim 9 . Let y ∈ d (D), and let x be a point satisfying the conditions |R0 (x)| = 1 and x ≤ y.

Furthermore, suppose that there exists an index i satisfying xi = yi. Then we have x ∈ d (D).

Proof of Claim 9. Let x and y be points satisfying the conditions described above, and note that

we may assume that x < y. Since y ∈ d (D), there exists v ∈ D for which y ∈ d (v). Thus there

exists b satisfying vj = yj for j 6= b, where yb = 0 and vb 6= 0. Since A is a down-set, we may

assume that vb = 1. Note that b is the unique index for which we have yb = 0 as |R0 (y)| = 1.

Since |R0 (x)| = 1, there exists a unique index a with xa = 0. Let u be the element obtained

by taking uj = xj for j 6= a and ua = 1, and observe that we have x ∈ d (u).
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Our aim is to prove that u ∈ D. Let t be the largest index satisfying Rt (x) 6= Rt (y), and

note that for this choice of t we have max (Rt (x) ∆Rt (y)) ∈ Rt (y). Observe that we must have

t ≥ 1, as for any point z the sets Rt (z) are disjoint and their union equals {1, . . . , n}.
First note that by the construction of the points u and v it follows that Rs (u) = Rs (x) and

Rs (v) = Rs (y) for s ≥ 2. In particular, it follows that Rs (u) = Rs(v) for all s > t.

We start by proving that t = 1 implies u = v. Indeed, by the previous observation we have

Rs (u) = Rs (v) for all s > 1, and we also have R0 (u) = R0 (v) = ∅. Since for any point c the

sets Rs (c) are disjoint and their union equals {1, . . . , n}, we must also have R1 (u) = R1 (v). In

particular, it follows that u = v.

If t ≥ 2, it follows that Rs (u) = Rs (x) and Rs (v) = Rs (y) for all s ≥ t. In particular, it

follows that max (Rt (u) ∆Rt (v)) ∈ Rt (v), and thus we have u < v.

Recall that there exists an index i satisfying xi = yi. If i 6∈ {a, b}, it follows that ui = xi and

vi = yi by the construction of the points u and v. In particular, we have ui = vi, and thus (4.10)

implies that u ∈ D.

Now suppose that i ∈ {a, b}. Since xa = 0 and yb = 0, we must have xi = yi = 0. Since

both R0 (x) and R0 (y) are sets containing only one point, it follows that a = b = i. Thus by the

construction of u and v it follows that ui = vi = 1. As before, (4.10) implies that u ∈ D, which

completes the proof.

Claim 10 .

1. If T 6= {1} we have d ({1, . . . , s− 1}n) ⊆ d (A).

2. If T = {1} we have d ({1, . . . , s− 1}n) \ {0 ((n− 1) · (s− 1))} ⊆ d (A).

Proof of Claim 10. We start with the case T 6= {1}, and recall that we have s ≥ 2. Let j =

max (T ), which by assumption is at least 2. De�ne the particular point a = sj ((n− 1) · 1) which

is the least point in C{j}. Let z be a point in CT ∩ D. Since a ≤ z and aj = zj = s, (4.10)

implies that we have a ∈ D. De�ne the particular point b = sj−1 ((n− 1) · 1), and note that b is

well-de�ned as j > 1. Since 2 (n− 1) > n, there exists an index i satisfying ai = bi = 1 by the

pigeonhole principle. Thus (4.10) implies that b ∈ D.

Let x ∈ d ({1, . . . , s− 1}), and let i be the unique index satisfying xi = 0. Let y be obtained

by taking yr = xr for r 6= i and yi = 1. Since s ≥ 2, it follows that y ∈ {1, . . . , s− 1}n, and
hence we have y ≤ a and y ≤ b.

We have ai = yi = 1 whenever i 6= j, and we have bi = yi = 1 whenever i = j. Since a, b ∈ D,

in either case we have y ∈ D by (4.10). This completes the proof of the �rst part.

Now suppose that T = {1}. For convenience, de�ne the points w = 0 ((n− 1) · (s− 1))

and a = s ((n− 1) · 1). Note that a is the least point in CT , and thus we have a ∈ D. For

every 2 ≤ i ≤ n de�ne the points bi = 1i ((n− 1) · (s− 1)). Then (bi)i = 1 = ai and bi ≤ a

for all i, so (4.10) implies that we have bi ∈ d (D) for all i. For 2 ≤ i ≤ n de�ne the points

ci = 0i ((n− 1) · (s− 1)), and note that we have ci ∈ d (bi) for all i. Hence it follows that

ci ∈ d (D) for all 2 ≤ i ≤ n.
Let x be a point satisfying x ∈ d ({1, . . . , s− 1}n) and x 6= w. If xi = 0 for some i ≥ 2, we

have xl ≤ (ci)l for every l. Since d (A) is a down-set by Claim 4, it follows that x ∈ d (D).
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Now suppose that x is a point with x1 = 0 and x 6= w. Since x 6= w, it follows that Rs−1 (x) is

a proper subset of {2, . . . , n}. Note that Rs−1 (c2) = {1, 3, . . . , n} is larger than any proper subset

of {2, . . . , n} under the binary order, and hence we have x ≤ c2. Let k ∈ {2, . . . , n} \ Rs−1 (x),

and consider v obtained by taking vl = (c2)l for l 6= k and vk = xk. Then we have x ≤ v ≤ c2, and
hence applying Claim 9 twice implies that x ∈ d (D). Thus we have d ({1, . . . , s− 1}n) \ {w} ⊆
d (D), which completes the proof.

De�ne the particular points w = 0 ((n− 1) · (s− 1)) and ai = i ((n− 1) · (s− 1)) for 1 ≤ i ≤
s−1. It is easy to verify that we have w ∈ d (x) for x ∈ [s]n∩B0 if and only if x = ai for some i.

In order to deal with the case T = {1}, we prove that adding suitably many consecutive points

to an initial segment must increase the size of the d-shadow. This is done in Claim 12, but �rst

we need a preliminary result. For x ∈ [k]n, de�ne the point x+ to be the successor of x, i.e. x+

is the least point under the ≤-order satisfying x < x+.

Claim 11 . Let x ∈ D and suppose that we also have y = x+ ∈ D. Then the following claims

are true.

1. There exists a unique index i satisfying yi > xi.

2. If yj < xj for some j then we have yj = 1.

3. If yj ≥ 2 for every j, we must have yj > xi for every j, where i is the unique index satisfying

yi > xi.

Proof of Claim 11. Let t be the largest index satisfying Rt (x) 6= Rt (y), and since x < y we

must have Rt (x) <bin Rt (y). Let i = max (Rt (x) ∆Rt (y)), and since i ∈ Rt (y) it follows that

yi > xi.

Consider the point z obtained by taking zj = min (xj , yj) for every j 6= i and zi = yi. By

the construction of the element z we have zj ≤ yj for each j, and hence we have z ≤ y. For all

s > t we have Rs (x) = Rs (y), and hence by the construction of z it follows that Rs (x) = Rs (z)

for all s > t. Similarly, it is easy to see that we have Rt (x) ∩ Rt (y) ⊆ Rt (z). Since we also

have i ∈ Rt (z), it follows that max (Rt (x) ∆Rt (z)) = i ∈ Rt (z), which implies that x < z.

Combining these two observations, we obtain that x < z ≤ y, and since y = x+ it follows that

y = z. Thus for any j 6= i we have yj = min (xj , yj) ≤ xj , which completes the proof of the �rst

part.

Let X = {j : yj < xj}, and let u be the element obtained by taking uj = 1 for every j ∈ X
and uj = yj for every j 6∈ X. Since yj > 0 for every j, we must have uj ≤ yj for every j, and

hence we certainly have u ≤ y. Let t and i be de�ned as in the previous part. As in the previous

part, it is easy to check that we have Rs (x) = Rs (u) for all s > t and max (Rt (u) ∆Rt (x)) = i.

Therefore we have x < u. Combining these two observations we obtain that x < u ≤ y, and

since y = x+ it follows that y = u. Hence the condition yj < xj implies that yj = 1, which

proves the second part.

Suppose that we have yj ≥ 2 for every j. Combining the �rst and the second part, it follows

that there exists a unique i so that yj = xj for all j 6= i and yi > xi. Since y is the successor of

x, it evidently follows that yi = xi + 1. Our aim is to prove that xi is strictly smaller than any

other xj .
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First assume that there exists k satisfying xk < xi. Consider the point v obtained by taking

vj = xj for j 6= k and vk = xk + 1, and note that we certainly have x < v. For convenience,

set a = xi and b = xk. By the construction of v it follows that Rs (x) = Rs (y) = Rs (v)

for all s ≥ a + 2. Since b < a, it follows that Ra+1 (y) = Ra+1 (x) ∪ {i}, while we have

Ra+1 (v) = Ra+1 (x). Hence we also have v < y, which contradicts the fact that y is the

successor of x.

Again, let a = xi, and note that when a = 1 the claim follows evidently. Now suppose that

for all j we have xj ≥ a and |Ra (x)| ≥ 2. Let v be the point obtained by taking vj = xj for

all j 6∈ Ra (x), vi = a + 1 and vj = 1 for all j ∈ Ra (x) \ {i}. Note that for all s ≥ a + 2 we

have Rs (x) = Rs (v) = Rs (y). However, we also have Ra+1 (y) = Ra+1 (v) = Ra+1 (x) ∪ {i},
Ra (y) = Ra (x) \ {i} and Ra (v) = ∅ since a > 1. Since Ra (x) contains at least two elements, it

follows that x < v < y, which contradicts the fact that y = x+.

Hence for each j 6= i we have xj > xi. Since yj 6= 1 for all j, the second part implies that we

have yj ≥ xj for all j. Hence for all j 6= i we have yj ≥ xj > xi, and by the choice of i we have

yi > xi. This completes the proof of the third part.

Claim 12 . Let x1, . . . , xL−1 ∈ {1, . . . , L− 1}n be consecutive points under the ≤-order. Let

X and Y be the initial segments of the ≤-order on [k]n de�ned by X = {y : y ≤ xL−1} and

Y = {y : y ≤ x1}. Then we have |d (X)| = |d (Y )| if and only if xi = (i) ((n− 1) · (L− 1)) for

all 1 ≤ i ≤ L− 1.

Proof of Claim 12. Let x ∈ {1, . . . , L− 1}n, and consider the initial segment Z de�ned by Z =

{y : y < x}. We start by proving that |d (Z ∪ {x})| = |d (Z)| if and only if R1 (x) = ∅. Suppose
that there exists an element z ∈ d (Z ∪ {x}) \ d (Z), and let j be the unique index satisfying

zj = 0. Let a1, . . . , aL−1 be the points obtained by taking (ai)k = zk for k 6= j, and (ai)j = i. It

is clear that we have a1 < · · · < aL−1. Furthermore, for an element u ∈ {1, . . . , L− 1}n we have

z ∈ d (u) if and only if u ∈ {a1, . . . , aL−1}. In particular, it follows that z ∈ d (Z ∪ {x}) \ d (Z)

if and only if Z ∩ {a1, . . . , aL−1} = ∅ and x ∈ {a1, . . . , aL−1}. Since Z is an initial segment

and x is the least element in Zc under the ≤-order, we must have x = a1. Hence the condition

|d (Z ∪ {x})| = |d (Z)| implies that R1 (x) = ∅. Conversely, if xi = 1 for some i, consider the

element u obtained by taking uj = xj for j 6= i and ui = 0. By using a similar argument, it is

easy to see that we have u ∈ d (x) \ d (Z).

Let X and Y satisfy the conditions of the claim and suppose that we have |d (X)| = |d (Y )|.
Then the previous observation implies that we have R1 (xi) = ∅ for all 2 ≤ i ≤ L− 1.

Let m (i) denote the value of the smallest coordinate of the point xi. Since R1 (xi) = ∅ for
2 ≤ i ≤ L − 1, the third part of Claim 11 implies that we have (xi+1)j > m (i) for all j. In

particular, it follows that m (i+ 1) > m (i), i.e. m is strictly increasing. Since R1 (x2) = ∅, we
have m (2) ≥ 2, and hence we must also have m (i) ≥ i for all i. In particular, it follows that

m (L− 1) ≥ L − 1, and thus we must have xL−1 = (n · (L− 1)). Since the points xi occur

consecutively under the ≤-order, it is easy to verify that we have xi = (i) ((n− 1) · (L− 1)) for

all 1 ≤ i ≤ L− 1.

As a consequence of the following claim, it su�ces to prove Theorem 34 only for compressed

sets A satisfying the condition B≥1 ∪ ([s]n ∩B0) ⊆ A ⊆ B≥1 ∪ ([s+ 1]n ∩B0) for some s.
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Claim 13 . Let A be a compressed set with |A| ≥ |B≥1| + 2, and let s ≥ 2 be chosen so that

|B≥1 ∪ ([s]n ∩B0)| < |A| ≤ |B≥1 ∪ ([s+ 1]n ∩B0)|. Then there exists a compressed set B of size

|A| satisfying B≥1 ∪ ([s]n ∩B0) ⊆ B ⊆ B≥1 ∪ ([s+ 1]n ∩B0) for which we have |d (A)| ≥ |d (B)|.

Proof of Claim 13. Let q = max (m (x) : x ∈ D), and note that the condition on the size of A

implies that we have q ≥ s. Let T be the largest point under the binary order so that the class

CT has a non-empty intersection with A.

First suppose that T = {1}, and let C be the initial segment of the ≤-order of size |A|. De�ne
the particular points w = 0 ((n− 1) · (q − 1)) and wi = i ((n− 1) · (q − 1)) for 1 ≤ i ≤ q − 1.

Thus Claim 10 implies that we have d ([s]n) \ {w} ⊆ d (A).

We start by verifying that C ∩ CT ⊆ A ∩ CT . If q > s, the inclusion is trivial as we have

C ∩ CT = ∅. If q = s, it follows that A \ (B≥1 ∪ ([s]n ∩B0)) = A ∩ CT , and similarly we have

C \ (B≥1 ∪ ([s]n ∩B0)) = C ∩CT (as T = {1} is the �rst non-empty set under the binary order).

Since C is an initial segment of size |A|, we have |A ∩ CT | ≥ |C ∩ CT |. As A∩CT is of the form

{y ∈ CT : y ≤ x} for some x ∈ CT , the inclusion follows.

First consider the case when we also have w ∈ d (A). Then Claim 10 implies that we have

d ([s]n) ⊆ d (A), and since we also have d (C ∩ CT ) ⊆ d (A), it follows that d (C) ⊆ d (A). Thus

we may take B = C.

Now suppose that we have w 6∈ d (A). We �rst deal with the easy case q > s. Note that we

have d (C) ⊆ d (B≥1 ∪ ([s+ 1]n ∩B0)). Since q ≥ s+ 1, Claim 10 implies that d ([s+ 1]n ∩B0)\
{w} ⊆ d (A), and hence it follows that d (C) \ d (A) ⊆ {w}. Since q ≥ s+ 1, A contains a point

u ∈ ([q]n \ [s]n)∩B0. As n ≥ 2 and R0 (u) = ∅, d (u) contains a point having a coordinate which

is at least s+1. In particular, it follows that d (u) 6⊆ d (C), and hence we have |d (A) \ d (C)| ≥ 1.

Combining this with the earlier observation |d (C) \ d (A)| ≤ 1, it follows that |d (A)| ≥ |d (C)|,
and hence we may take B = C.

Now suppose that we have w 6∈ d (A) and q = s. By using the previous observation C ∩CT ⊆
A ∩ CT and Claim 10, it follows that d (C) \ d (A) = {w}. Since w 6∈ d (A) and q = s, it follows

that {w1, . . . , ws−1} ⊆ C \A, and in particular we have |(C \A) ∩ (B≥1 ∪ ([s]n ∩B0))| ≥ s− 1.

Since A \ (B≥1 ∪ ([s]n ∩B0)) = A ∩ CT and C \ (B≥1 ∪ ([s]n ∩B0)) = C ∩ CT , it follows that
|A ∩ CT | ≥ |C ∩ CT |+ s− 1.

Let x be the largest point in A and y be the largest point in C under the ≤-order. De�ne

X = {z : z ≤ x}, and note that C = {z : z ≤ y} as C is an initial segment. Note that we

have x, y ∈ CT , and hence we have |X| ≥ |C| + (s− 1). Thus Claim 12 with L = s implies

that we have |d (X)| > |d (C)|, unless x = (2) ((n− 1) · (s)) and y = (n · s). However, these

points are not in CT since T = {1}, and thus there exists an element u ∈ d (X) \ d (C). Since

u ∈ d ({z : x < z ≤ y}) ⊆ d (CT ∩A) ⊆ d (A), it follows that |d (A) \ d (C)| ≥ 1. Combining this

with the earlier observation |d (C) \ d (A)| = 1, it follows that |d (A)| ≥ |d (C)|.
Finally, consider the case when we have T 6= {1}. If q > s, Claim 10 implies that we have

d ([s+ 1]n ∩B0) ⊆ d (A), and thus we can take B = C. If q = s, let X = A \ (B≥1 ∪ ([s]n ∩B0))

and k = |A| − |B≥1 ∪ ([s]n ∩B0)|. Let Y be the set of k least points in X under the ≤-order,
and let B = B≥1 ∪ ([s]n ∩B0) ∪ Y . We certainly have |A| = |B|, and since q = s it follows that

B ⊆ B≥1 ∪ ([s+ 1]n ∩B0). Furthermore, as A is compressed, it follows that B is compressed

as well. Since T 6= {1}, Claim 10 implies that we have d ([s]n ∩B0) ⊆ d (A). Since Y ⊆ X, it
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follows that d (B) ⊆ d (A), and thus B satis�es the required conditions.

From now on, we assume that A is a compressed set for which there exists s ≥ 2 so that

B≥1 ∪ ([s]n ∩B0) ⊆ A ⊆ B≥1 ∪ ([s+ 1]n ∩B0). As before, we set T to be the largest set under

the binary order for which we have CT ∩A 6= ∅. Our next aim is to prove an appropriate version

of Claim 8.

Claim 14 .

1. If |T | 6= 1, then for all S with S <bin T we have CS ⊆ A.

2. Let T = {j} and U = {1, . . . , j − 1} where j 6= 1. Then for all S with S <bin U we have

d (CS) ⊆ d (A). De�ne the particular point wj = 0j (((j − 1) · s) ((n− j) · (s− 1))). Then

we also have d (CU ) \ {wj} ⊆ d (A).

Proof of Claim 14. We start by proving the �rst part. Let j = max (T ) and set U = {1, . . . , j − 1}.
Since |T | 6= 1 it follows that U ∩ T 6= ∅, and hence (4.10) implies that we have CU ⊆ A. Given

any S ∈ A with S <bin T , note that we must either have S ⊆ U or j ∈ S. If S ⊆ U , we also have
S ≤bin U and since CU ⊆ A, (4.10) implies that we also have CS ⊆ A. If j ∈ S, we certainly

have S ∩ T 6= ∅. Since S <bin T , (4.10) implies that CS ⊆ A. In particular, for all S <bin T we

have CS ⊆ A, which completes the proof of the �rst part.

Now suppose that we have T = {j} for some j with j 6∈ {1, n}. The assumption j < n is

used in the proof when we are considering the (j + 1)th coordinate of a point. Again, let U =

{1, . . . , j − 1}. De�ne the particular points a = sj ((n− 1) · 1) and b = ((j − 1) · s) ((n− j + 1) · 1).

Note that a is the least point under the ≤-order in CT and b is the least point in CU . Since

CT ∩ A 6= ∅, (4.10) implies that we have a ∈ A. Since U <bin T and aj+1 = bj+1 = 1, (4.10)

implies that we have b ∈ A, and thus we also have CU ∩ A 6= ∅. Let S be a set satisfying the

conditions S <bin T and S 6= U . Since S ⊂ U and CU ∩ A 6= ∅, (4.10) implies that we have

CS ⊆ A.
Let x ∈ d (CU ) \ {wj} and let i be the unique index satisfying xi = 0. If i 6= j, consider the

point y obtained by taking yt = xt for t 6= i and yi = 1. Since j 6= i, it follows that yi = ai = 1.

We also have Rs (y) ⊆ U , and hence it follows that y ≤ a. Since a ∈ A, (4.10) implies that we

have y ∈ A, and hence we also have x ∈ d (A).

Now suppose that i = j. Since x ∈ d (CU ) \ {wj} and i = j, it follows that xt = s for all

t ≤ j−1, xj = 0, 1 ≤ xt ≤ s−1 for all t ≥ j+ 1, and there exists k ≥ j+ 1 satisfying xk ≤ s−2.

Let u be the point obtained by setting ut = xt for t 6= j and uj = 1, and let v be obtained by

setting vt = xt for all t 6∈ {j, k}, vj = s− 1 and vk = 1. It is easy to see that we have x ∈ d (u).

Since Rs (u) = Rs (v) and Rs−1 (v) = Rs−1 (u)∪{j}, it follows that u < v. Since k 6= j, it follows

that vk = ak = 1, and hence (4.10) implies that we have v ∈ A. Since u1 = v1 = s, (4.10) implies

that u ∈ A and hence we have x ∈ d (A).

Finally, suppose that T = {n}. Let U = {1, . . . , n− 1} and V = {2, . . . , n− 1}. Note that

for any S <bin T we either have S = U or S ≤bin V . De�ne the particular point a by setting

a = ((n− 1) · 1) s. Since a is the least point in CT , it follows that a ∈ A.
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Given a set S satisfying the condition S <bin T and a point x ∈ d (CS), and let i be the

unique index satisfying xi = 0. Note that we may certainly assume that x 6∈ d (CS′) for any

proper subset S′ of S, with the convention C∅ = [s]n∩B0. It is easy to see that this is equivalent

to assuming that i 6∈ S.
If S = U , the only possible point is x = ((n− 1) · s) 0 which is precisely the point wn. Hence

we are done in this case. Now suppose that S = V , and hence we have i ∈ {1, n}. Let u and v

be the points u = (1) ((n− 2) · s) (s− 1) and v = (s− 1) ((n− 2) · s) (1). Since a1 = u1 = 1 and

u < a, (4.10) implies that u ∈ A. Note that we have Rs (u) = Rs (v) and Rs−1 (v) <bin Rs−1 (u),

and hence it follows that v < u. Since n ≥ 3, we have u2 = v2 = s, and hence (4.10) implies that

we have v ∈ A.
For all 1 ≤ j ≤ s − 2 and 1 ≤ k ≤ s − 2 de�ne the points wj,k = (j) ((n− 2) · s) (k). Since

Rs−1 (wj,k) = ∅, it follows that wj,k < u. As (wj,k)2 = u2 = s, (4.10) implies that we have

wj,k ∈ A for all 1 ≤ j, k ≤ s− 2.

Since 0 ∈ {x1, xn}, we either have x = (0) ((n− 2) · s) (c) or x = (d) ((n− 2) · s) (0) for some

1 ≤ c, d ≤ s−1. If c = s−1 or d = s−1, we have x ∈ d (u) or x ∈ d (v) respectively. If c ≤ s−2

or d ≤ s− 2, it is easy to see that we have x ∈ d (w1,c) or x ∈ d (wd,1) respectively. In particular,

it follows that x ∈ d (A). This completes the proof when S = V .

In order to deal with the sets S with S <bin V , we �rst consider the case when we have

n ≥ 4. As noticed in the previous case, we have CV ∩ A 6= ∅. If S ∩ V 6= ∅, (4.10) implies

that we also have CS ⊆ A and hence the conclusion certainly follows. The only non-empty set

S satisfying S <bin V together with S ∩ V = ∅ is S = {1}. However, as n ≥ 4, it follows that

{1} <bin {1, 2} <bin V , and since {1} ∩ {1, 2} 6= ∅ and {1, 2} ∩ V 6= ∅, we also have C{1} ⊆ D.

This completes the proof when n ≥ 4.

Now suppose that n = 3. Then V = {2}, and thus the only non-empty set S satisfying

S <bin V is S = {1}. Let x ∈ d
(
C{1}

)
and let i be the unique index satisfying xi = 0. Recall

that we may assume that i ∈ {2, 3}. Let y be the point obtained by setting yj = xj for j 6= i

and yi = 1. Our aim is to prove that y ∈ D.

If i = 2 and y3 = s− 1, we have y3 = u3. Since y ≤ u, (4.10) implies that we have y ∈ D. If

i = 2 and y3 = c for some 1 ≤ c ≤ s− 2, then y3 = c = (w1,c)3, and since y ≤ w1,c it follows that

y ∈ D. Finally, if i = 3, we have y3 = v3 = 1, and since y < v it follows that y ∈ D. Thus in all

three cases we have y ∈ D, which completes the proof.

Now we have the necessary tools to �nish the proof of Theorem 34. Let A be a set satisfying

B≥1 ∪ ([s]n ∩B0) ⊆ A ⊆ B≥1 ∪ ([s+ 1]n ∩B0), and let C be the initial segment of the ≤-
order of size |A|. Since A and C have the same size, we must have B≥1 ∪ ([s]n ∩B0) ⊆ C ⊆
B≥1 ∪ ([s+ 1]n ∩B0). Let T1 be the largest set under the binary order satisfying CT1 ∩ C 6= ∅,
and since C is an initial segment we certainly have T1 ≤bin T .

First suppose that we have T1 <bin T , and set

X = B≥1 ∪ ([s]n ∩B0) ∪
⋃

S≤binT1

CS .

Note that we cannot have T = {1} as {1} is the least set under the binary order in A.
If |T | ≥ 2, for any S ∈ A with S ≤bin T1 we have S <bin T , and hence Claim 14 implies that
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we have CS ⊆ A. Hence it follows that X ⊆ A, and since C ⊆ X we must have C ⊆ A. Since A
and C are sets of the same size, it follows that A = C. However, this contradicts the assumption

T1 <bin T , so this case cannot actually occur when |T | ≥ 2.

If T = {j} for some j 6= 1, de�ne the particular point wj = 0j ((j − 1) · s) ((n− j) · (s− 1)).

Claim 14 implies that for all S <bin {1, . . . , j − 1} we have d (CS) ⊆ d (A), and for U =

{1, . . . , j − 1} we have d (CU ) \ {wj} ⊆ d (A). Since T1 <bin T , it follows that T1 ≤bin U ,

and hence we have d (X) \ {wj} ⊆ d (A). In particular, it follows that |d (X) \ d (A)| ≤ 1.

Pick any point v ∈ CT , and consider an element u ∈ d (v) obtained by �ipping the �rst

coordinate to 0. Since j 6= 1, it follows that uj = s. In particular, we must have u 6∈ d (X) as

T1 ≤bin U . Hence it follows that u ∈ d (A) \ d (X), and hence we have |d (A) \ d (X)| ≥ 1. In

particular, it follows that |d (A)| ≥ |d (X)|, and since C ⊆ X this completes the proof of this

case.

Hence we are only left with the case when T1 = T . It turns out to be convenient to split

the rest of the argument into two subcases based on the size of T . When T = {1}, there are no
non-empty sets S satisfying S <bin T . Hence we can deal with the cases T = {1} and |T | ≥ 2 at

the same time.

Case 2.1 . |T | ≥ 2 or T = {1}.

Let C be an initial segment of size |A|, and let s, T and T1 be chosen as before. Recall that

we have T1 = T . We prove that under these assumptions we must have A = C.

Let X be de�ned by X = B≥1 ∪ ([s]n ∩B0) ∪
(⋃

S<binT
CS

)
. Claim 14 implies that for all

S <bin T we have CS ⊆ A, and hence it follows that X ⊆ A. On the other hand, by the choice of

T we have A \X = A∩CT and C \X = C ∩CT . Since |A| = |C| and both of these sets contain

X as a subset, it follows that |A ∩ CT | = |C ∩ CT |. Since both sets A ∩ CT and C ∩ CT are of

the form {y ∈ CT : y ≤ x} for some element x ∈ CT , we must have A ∩ CT = C ∩ CT . Hence it
follows that A = C.

Case 2.2 . T = {j} where 2 ≤ j ≤ n.

As before, let C be the initial segment of size |A|, let s, T and T1 be chosen as before,

and recall that we have T1 = T = {j} for some 2 ≤ j ≤ n. De�ne the particular points

w = 0j ((j − 1) · s) ((n− j) · (s− 1)) and wi = ij ((j − 1) · s) ((n− j) · (s− 1)) for 1 ≤ i ≤ s− 1.

Note that if we have w ∈ d (x) for some element x ∈ CS with S ≤bin T , it follows that x = wi

for some i. As before, let X = B≥1 ∪ ([s]n ∩B0) ∪
⋃
S<binT

CS .

First consider the easy case when we have w ∈ d (A). Then Claim 10 implies that we have

d (CS) ⊆ d (A) for all S satisfying S <bin T , and hence we have d (X) ⊆ d (A). Since X ⊆ C

and we have C \X ⊆ CT and A \X ⊆ CT , it follows that |A ∩ CT | ≥ |C ∩ CT |. By using the

same argument as in the proof of Case 2.1, it follows that C ∩CT ⊆ A ∩CT , and thus it follows

that d (C) ⊆ d (A).

Now suppose that w 6∈ d (A), and hence we must have {w1, . . . , ws−1} ∩ A 6= ∅. Since

{w1, . . . , ws−1} ⊆ X ⊆ C, it follows that |C \X| ≥ |A \X| + s − 1, and thus it follows that

|A ∩ CT | ≥ |C ∩ CT | + s − 1. Let u and v be chosen so that A ∩ CT = {z ∈ CT : z ≤ u} and
C ∩CT = {z ∈ CT : z ≤ v}. Let W be the initial segment obtained by setting W = {z : z ≤ u},
and note that we have C = {z : z ≤ v}. Since |C \X| ≥ |A \X| + s − 1, it follows that

|W | ≥ |C|+ s− 1.
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Since n ≥ 3, it follows that (1) ((n− 1) · s) 6∈ CT , and hence must have v 6= (1) ((n− 1) · s).
Since |W | ≥ |C| + s − 1, Claim 12 with L = s + 1 implies that there exists an element a ∈
d (W ) \ d (C). Hence we have a ∈ d (A ∩ CT ), and thus it follows that |d (A) \ d (C)| ≥ 1.

Together with the previous observation |d (C) \ d (A)| = 1, it follows that |d (A)| ≥ |d (C)|.
This completes the proof of Theorem 34.

4.3 Minimal d-shadow for a given rank

Recall that we de�ned [k]nr = {x ∈ [k]n : w (x) = r} to be the set of points with exactly r non-

zero coordinates, and consider the restriction of the ≤-order on [k]nr . Since |R0 (x)| = n − r

holds for every point x ∈ [k]nr , it follows that for distinct x and y we have x ≤ y if and only if

max (Rj (x) ∆Rj (y)) ∈ Rj (y), where j is the largest index satisfying Rj (x) 6= Rj (y).

Note that for all m ≤ k, [m]nr is an initial segment of the ≤-order on [k]nr , and the restrictions

of the ≤-order on [m]nr and on [k]nr coincide on [m]nr . Thus the ≤-order naturally extends to an

order on Nnr = {x = x1 . . . xn : xi ∈ N, w (x) = r}, which we will also denote by ≤.
The notion of the d-shadow is still sensible for the subsets of Nnr as well. If A ⊆ Nnr , we

certainly have d (A) ⊆ Nnr−1. We now use Theorem 34 to deduce that among the subsets of Nnr
of a given �nite size, the initial segment of the ≤-order minimises the size of the d-shadow.

Theorem 35. Let A be a �nite subset of Nnr and let C be the initial segment of the ≤-order on
Nnr of size |A|. Then we have |d (A)| ≥ |d (C)|.

Proof. Let k be the size of A. Since A contains points of length n and with exactly r non-zero

coordinates, by relabeling the elements of the ground set if necessary we may assume that A ⊆
[nk]nr . Let B = [nk]n≤r−1 ∪A, where [nk]n≤r−1 = {x ∈ [nk]n : |R0 (x)| ≥ n− (r − 1)} = B≥n−r+1.

Let X be the initial segment of size |B| on [nk]n. Then X can be written as X = [nk]n≤r−1 ∪C,
where C is the initial segment of the ≤-order of size |A| on [nk]nr . Thus C is also the initial

segment of the ≤-order of size |A| on Nnr .
Note that we have

|d (B)| =
∣∣∣[nk]n≤r−1

∣∣∣+ |d (A)|

and

|d (X)| =
∣∣∣[nk]n≤r−1

∣∣∣+ |d (C)| ,

as

d (A) ∩ [nk]n≤r−1 = d (C) ∩ [nk]n≤r−1 = ∅.

Since |B| = |X| and X is an initial segment of the ≤-order on [nk]n, Theorem 34 implies that

we have |d (B)| ≥ |d (X)|. Hence it follows that |d (A)| ≥ |d (C)|, which completes the proof.
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Chapter 5

The Toucher-Isolator game

5.1 Introduction

Consider the following game, called the `Toucher-Isolator' game, introduced by Dowden, Kang,

Mikala£ki and Stojakovi¢ [17]. The two players, Toucher and Isolator, claim edges of a given

graph G alternately with Toucher having the �rst move. At the end of the game when all the

edges of G have been claimed, a vertex is said to be touched if it is incident with at least one of

the edges claimed by Toucher, and isolated otherwise. In particular, all the edges incident with

an isolated vertex must be claimed by Isolator. The aim of Toucher is to minimise the number

of isolated vertices and the aim of Isolator is to maximise the number of isolated vertices. Hence

Toucher-Isolator game is a `quantitative' Maker-Breaker type of game. De�ne the value of the

game u (G) to be the number of isolated vertices at the end of the game when both players play

under optimal strategies.

In [17], the authors studied the size of u (G) for graphs G belonging to certain families. For

a tree T , they gave bounds for u (T ) in terms of the degree sequence of T . As a consequence,

they proved that if T is a tree with n vertices, then

n+ 2

8
≤ u (T ) ≤ n− 1

2
. (5.1)

If T is a star with n ≥ 3 vertices, it is easy to verify that u (T ) =
⌊
n−1
2

⌋
regardless of how

Toucher and Isolator play the edges. Hence the upper bound in (5.1) is tight.

Let Pn be the path on n vertices and Cn be the cycle of length n. The authors proved in [17]

that when T = Pn, the general bound (5.1) can be improved to

3

16
(n− 2) ≤ u (Pn) ≤ n+ 1

4
,

and as an easy consequence it follows that

3

16
(n− 3) ≤ u (Cn) ≤ n

4
.

These bounds imply that the asymptotic proportion of isolated vertices is between 3/16 and 1/4 in

both cases. The authors asked in [17] what the correct asymptotic proportion of isolated vertices

is and suggested that the correct answer could be 1/5 for cycles and paths. In this chapter we
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prove that this is the correct asymptotic proportion, and in fact, we �nd the exact values of

u (Cn) and u (Pn) for all n.

Theorem 36. Let n ≥ 3. When both players play optimally, there will be
⌊
n+3
5

⌋
isolated vertices

on Pn and
⌊
n+1
5

⌋
isolated vertices on Cn.

Our other main result is to improve their lower bound of (5.1) for general trees. We prove

that paths are the `worst' for Isolator among the trees with n vertices.

Theorem 37. Let n ≥ 3 and let T be a tree with n vertices. When both players play optimally,

there will be at least
⌊
n+3
5

⌋
isolated vertices on T .

Although this chapter is self-contained, for a general background on Maker-Breaker type of

games see Beck [4]. There are many other papers dealing with achievement games on graphs �

see for example a classical paper of Chvátal and Erd®s [12], and subsequent papers [3, 21].

We start by outlining the proof of Theorem 36. For convenience, in the proof of Theorem 36

we work with the `dual version' of the game which is played on the vertices of a path or a cycle.

In the dual version, Isolator is aiming to claim as many pairs of consecutive vertices as possible,

and Toucher is aiming to minimise the number of such pairs claimed by Isolator. In addition, in

the dual version played on a path, claiming an endpoint of the path increases the score by one

as well.

Since Isolator is trying to maximise the score, it seems sensible for her to start by claiming

some suitably chosen vertex i, and then trying to claim as long a block of consecutive elements

as possible. Now suppose she has claimed a block of length t and she cannot proceed in this way.

This means that Toucher has claimed the points next to the endpoints of this block, or one of

the endpoints of the block is also an endpoint of the path. Removing this block together with

exactly one of its endpoints claimed by Toucher leaves a shorter path with no elements claimed

by Isolator and t−1 elements claimed by Toucher. This motivates us to de�ne a `delayed' notion

of the dual Toucher-Isolator game played on a path, where at the start of the game Toucher is

allowed to claim k points, and then the players claim elements alternately.

It turns out that following the idea described above, we can prove a good enough lower bound

for the delayed version of the Toucher-Isolator game. However, one has to be slightly careful

with the choice of the initial move whenever a new block is started. This is especially important

near the start of the game when the endpoints of the path are not yet claimed. Using such an

approach, we can prove the lower bound of Theorem 36.

By analysing the proof of the lower bound, one can observe that allowing Isolator to claim

multiple `long blocks' would allow Isolator to achieve a better score than the one stated in

Theorem 36. This suggests that Toucher should primarily claim an element next to the element

claimed by Isolator on her previous move. As a result of such a pair of moves, the initial path

splits into two disjoint paths. However, the endpoints of the paths obtained during the process

may behave in di�erent ways, as the vertex next to an endpoint before splitting the board may

have been claimed by Toucher or Isolator. Hence it turns out to be useful to de�ne three di�erent

games played on paths which essentially only di�er at the endpoints of the path. Given that

after every pair of moves the path splits into two disjoint paths, it is natural to analyse all three

types of boards simultaneously by considering games G played on boards that are disjoint unions
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of these three types of paths. By proving an upper bound for such generalised boards, we prove

the upper bound of Theorem 36.

We now outline the proof of Theorem 37. The approach is very similar to the proof of the

lower bound for u (Pn) in Theorem 36. At the early stages of the game, it seems natural for

Isolator to claim edges having a leaf as an endpoint, as claiming such an edge instantly increases

the score by one. When T = Pn, this naturally corresponds to claiming blocks of consecutive

elements near the endpoints at the start of the game. Note that after claiming such an edge, the

isolated leaf does not a�ect the rest of the game, and hence it may be discarded (together with

the edge that was occupied by Isolator). During the process, the other endpoint of the edge may

become a leaf, and in such case Isolator can continue claiming isolated leaves.

Suppose that at some point Isolator has no such move available. Let T1 be the tree obtained

as a result of the process and let C1 be the set of edges claimed by Toucher. Hence for every

leaf v ∈ T1 there exists an edge e ∈ C1 whose endpoint v is. Such a situation is very similar to

the delayed game introduced in the proof of Theorem 36, in which Toucher is allowed to claim

a certain number of edges at the start of the game and in which isolating endpoints does not

increase the score.

However, before we can de�ne a delayed game that is good enough for our purposes, the

structure of T1 and C1 may need to be modi�ed. Let v be a leaf in T1, and let w be the unique

neighbour of v. Similarly to leaves that are already isolated, the leaves that are already touched

are useless for the rest of the game, so it would be tempting to just delete them. However,

during the process we must keep in mind that w is already touched, even though the edge vw is

deleted during the process. Thus it will be convenient to declare a set X1 ⊆ V (T1) of `additional'

touched vertices for the delayed game.

It turns out that such a simple deletion is �ne whenever dT1 (w) = 2. Indeed, in this case

w becomes a leaf as its neighbour v is removed from the graph. When dT1 (w) ≥ 3, we need

to modify the structure of T1 in a slightly di�erent way. In this case, we duplicate w into two

vertices joined by an edge claimed by Toucher and split the original neighbours of w between

these two vertices so that both of these new vertices have at least one neighbour. As a result,

we may restrict ourselves to those delayed games where X1 is exactly the set of all leaves in T1.

When analysing the delayed game, we start by modifying the structure of the tree locally

even further. If T contains touched edges that are close to each other or a touched edge that

is close to a leaf, it seems intuitive that Toucher can prevent Isolator from increasing the score

near such local con�guration. Hence it would be convenient to delete such local con�gurations.

After the deletion of such con�gurations, we move on to analysing structures that are suitable

for Isolator. The structures we are looking for are local con�gurations that are similar to paths,

that is, neighbouring vertices of degree 1 or 2 that are not yet touched. If there are no such

con�gurations in T , then the vertices of degree 1 or 2 must be spread out or they are already

touched. Since every leaf of T is declared to be touched at the start of the delayed game, in both

cases T contains many vertices that are initially touched, which implies the result by induction.

The plan of this chapter is following. In Section 5.2.1 we prove the lower bound for u (Pn).

Of course, this lower bound could also be deduced from Theorem 37, but in this special case a

much simpler proof is available. Furthermore, some important ideas that are used in the proof
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of Theorem 37 are already introduced in the proof of the lower bound. In Section 5.2.2 we prove

the upper bound for u (Pn), and deduce Theorem 36. We start Section 5.3. by de�ning a suitable

notion that allows us to reduce the tree without changing the game too much, and in Section

5.3.1 we deal with the �rst phase of the game in which Isolator is claiming only leaves. In Section

5.3.2 we move on to analysing the speci�c delayed version of the game where leaves are initially

counted as touched vertices, and Toucher is allowed to claim a certain number of edges at the

start of the game. We then use such delayed games to deal with the second phase of the game,

and we deduce Theorem 37 from these results.

5.2 Toucher-Isolator game on a cycle and a path

Recall that in this section we work with the dual version of the Toucher-Isolator game. There is

a natural connection between the original and the dual version when the board is a cycle, but

we need to be more careful with paths due to irregular behaviour near the endpoints. De�ne the

game F (n) played on the elements of {1, . . . , n} with two players Isolator and Toucher claiming

elements in alternating turns with the �rst move given to Isolator. De�ne the score of this game

to be the number of pairs {i, i+ 1} for which both i and i + 1 are claimed by Isolator, and

as usual Isolator is aiming to maximise the score and Toucher is aiming to minimise the score.

Let α (n) be the score attained at the end of the game when both Isolator and Toucher play

optimally.

Consider the dual version of the Toucher-Isolator game played on a cycle with vertex set

{1, . . . , n}, and recall that the �rst move is given to Toucher. Due to the symmetry of the cycle,

we may assume that Toucher claims the element n on her �rst move. Hence after the �rst move,

the available pairs that can increase the score are the pairs {1, 2} , . . . , {n− 2, n− 1}. These

correspond to the pairs that can increase the score of the game F (n− 1), and since Isolator

has the next move, it follows that the subsequent game is equivalent to the game F (n− 1). In

particular, we have u (Cn) = α (n− 1).

The situation with the dual version on a path is slightly more complicated due to irregular

behaviour at the endpoints. De�ne the games G (n) and H (n) both played on {1, . . . , n}, with
the players Isolator and Toucher claiming elements in alternating turns with the �rst move given

to Isolator. On G (n), we increase the score by one for each pair {i, i+ 1} with both i and i+ 1

claimed by Isolator, and the score is also increased by 1 if Isolator claims the element 1. In a

sense, this can be viewed as a game on the board {0, . . . , n} with 0 assigned to Isolator initially.

Similarly on H (n), we increase the score by one for each pair {i, i+ 1} with both i and i + 1

claimed by Isolator, and additionally the score is increased by 1 for each element in the set {1, n}
claimed by Isolator. Again, this can be viewed as a game on the board {0, . . . , n+ 1} with both

0 and n+ 1 assigned to Isolator initially. De�ne β (n) and γ (n) to be the scores of these games

when both players play optimally.

Let B denote a Toucher-Isolator game played on a board that is of the form F (n), G (n) or

H (n) for some n. If Toucher plays her �rst move adjacent to Isolator's �rst move, the board B

splits into at most two disjoint boards, both of which are of the form F (m), G (m) or H (m) for

some m. However, note that these two boards are not in general of the same form or size, and

not necessarily of the same form as the original board. Hence in order to �nd an upper bound
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for the value of the game, it turns out to be useful to consider games G played on a board that

is a disjoint union of F (l1) , . . . , F (lr), G (m1) , . . . , G (ms) and H (n1) , . . . ,H (nt).

Finally, de�ne the game Hb (n) in the same way as H (n), but with the �rst move given to

Toucher, and let γb (n) be the score of this game when both players play optimally. It is easy to

see that the Toucher-Isolator game and Hb (n− 1) are equivalent, as the n − 1 edges naturally

correspond to the n − 1 elements of Hb (n− 1). Hence it follows that u (Pn) = γb (n− 1), and

thus it su�ces to �nd the value of γb.

5.2.1 The lower bound

We start by focusing on the game F (n) and �nding the value of α (n). Since Isolator is trying

to maximise the score, it seems sensible for her to start by claiming some suitably chosen i, and

then trying to claim as long a block of consecutive elements as possible. As long as i 6∈ {1, n},
she can certainly guarantee a block of length at least 2. Now suppose that she has claimed

a block of length t, and that she cannot proceed in this way. This means that Toucher must

have claimed the points next to the endpoints of the block (or one of the endpoints is 1 or n).

Removing this block together with exactly one of its endpoints claimed by Toucher leaves a path

with n− t− 1 elements containing exactly t− 1 elements claimed by Toucher, and no elements

claimed by Isolator.

This motivates the de�nition of the following game, which can be viewed as a delayed version

of F (n). Let F (n, k) be the game played on {1, . . . , n}, where at the start of the game Toucher

is allowed to claim k points, and then the players claim elements alternately with the �rst move

given to Isolator. The score of the delayed game is de�ned in the same way as the score of F (n),

and hence F (n) and F (n, 0) are identical games. Let α (n, k) be the score attained when both

players play optimally. We start by proving the following lower bound for α (n, k), which is later

used to deduce the lower bound for γb (n).

Lemma 38. For all n ≥ 2 and k ≤ n we have α (n, k) ≥
⌊
n−3k+2

5

⌋
.

Proof. Suppose that Toucher claims the elements s1, . . . , sk on her �rst move. These elements

split the path into k + 1 (possibly empty) intervals of lengths l0, . . . , lk, with li = si+1 − si − 1

(where s0 = 0 and sk+1 = n+ 1). By symmetry we may assume that l0 is the longest interval.

If l0 ≤ 2, then n ≤ k + 2 · (k + 1) = 3k + 2, and hence it follows that
⌊
n−3k+2

5

⌋
≤ 0. Thus

the claim evidently holds in this case, and hence we may assume that l0 ≥ 3. We treat the cases

l0 ≥ 4 and l0 = 3 individually. In both cases the proof follows the same idea, however the choice

of the initial move is slightly di�erent for l0 = 3 since an interval with only 3 elements is `too

short' for the general argument.

Case 1 . l0 ≥ 4.

The aim for Isolator is to build a long block of consecutive elements inside the interval.

Initially, she claims the element 3. Assuming she has already claimed exactly the elements in

{t, . . . , t+ r} for some t and r, she claims one of the elements t + r + 1 or t − 1, if possible. If

not, she stops.

Consider the point when the process terminates and suppose that at the point when the

process terminates, the elements claimed by Isolator are exactly the elements in {t, . . . , t+ r}.
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Since this set contains the element 3, we must have t+ r ≥ 3 and t ∈ {1, 2, 3}. Furthermore, the

element t+ r + 1 must be claimed by Toucher, and either t = 1 or the element t− 1 is claimed

by Toucher. Since l0 ≥ 4, it follows that the elements 2 and 4 are not claimed after Isolator's

�rst move. Since Toucher cannot claim both of these elements on her �rst move, it follows that

Isolator can always guarantee that r ≥ 1.

Let T1 = {t+ r + 2, . . . n} and let b be the number of elements claimed by Toucher in T1.

Note that Toucher has claimed k + r + 1 elements in total and one of them must be t + r + 1.

Furthermore, if t > 1 then one of them must be t − 1 as well. Hence it follows that b ≤ k + r,

and if t ≥ 2 we also have b ≤ k + r− 1. Also note that Isolator has not claimed any elements in

T1.

Note that Isolator has increased her score by r by claiming the elements {t, . . . , t+ r}, and
this is the only contribution arising outside T1. Thus the total score that Isolator can attain is

at least r + α (n− t− r − 1, b). By induction, it follows that the score is at least

r +

⌊
n− t− r − 1− 3b+ 2

5

⌋
. (5.2)

If t = 1, it follows that b ≤ k + r. Furthermore, the condition t + r ≥ 3 implies that r ≥ 2.

Hence (5.2) implies that Isolator can guarantee that the score is at least⌊
n− 3k + r + 1− t

5

⌋
≥
⌊
n− 3k + 2

5

⌋
.

If t ≥ 2, it follows that b ≤ k + r − 1. Recall that we always have t ≤ 3 and r ≥ 1. Hence

(5.2) implies that Isolator can guarantee that the score is at least⌊
n− 3k − t+ r + 4

5

⌋
≥
⌊
n− 3k − 3 + 1 + 4

5

⌋
=

⌊
n− 3k + 2

5

⌋
.

Hence in either case we have α (n, k) ≥
⌊
n−3k+2

5

⌋
.

Case 2 . l0 = 3.

Again, Isolator is aiming to claim as long a block of consecutive elements in {1, 2, 3} as

possible. Initially, she claims the element 2, and on the subsequent moves she claims one of the

remaining elements of the set, if they are available. Given that Toucher cannot pick both 1 and

3 on her �rst move, Isolator can always pick at least two of these elements. In particular, at the

end of such process exactly one of the following is true.

1. Isolator has claimed all three elements in {1, 2, 3}.

2. Isolator has claimed two consecutive elements in {1, 2, 3} and Toucher has claimed the

third element in {1, 2, 3}.

In both cases, consider the game played on T1 = {5, . . . , n}. Let a be the number of elements

Isolator has claimed in {1, 2, 3}. Note that in both cases Toucher claims all the other elements in

{1, 2, 3, 4} not claimed by Isolator, and thus Toucher claims 4− a elements in {1, 2, 3, 4}. Since
Toucher claims in total a+k elements, it follows that she claims k+ 2a−4 elements in T1. Since

Isolator has not yet claimed any elements in T1, it follows that on T1 Isolator can increase the
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score by α (n− 4, k + 2a− 4). Since she has achieved a score of a− 1 outside T1 with her block

of a consecutive elements, it follows that the total score achieved is a− 1 +α (n− 4, k + 2a− 4).

By induction, it follows that the score achieved is at least

a− 1 +

⌊
n− 4− 3 (k + 2a− 4) + 2

5

⌋
=

⌊
n− 3k − a+ 5

5

⌋
.

Since a ∈ {2, 3}, it follows that

α (n, k) ≥
⌊
n− 3k + 2

5

⌋
.

Thus Lemma 38 follows by induction.

Lemma 39. For all n ≥ 2 we have γb (n) ≥
⌊
n+4
5

⌋
, and γb (1) = 0.

Proof. When n = 1, the claim is trivial as the only move is given to Toucher. Now consider the

case when we have n ≥ 2.

At the start of the game, Isolator is aiming to claim as long a block of consecutive elements

as possible near both of the endpoints. Once this is no longer possible, she starts using the same

strategy as in Lemma 38. We start by describing this initial process formally.

Suppose that after Isolator's kth move the set of elements claimed by Isolator is of the form

{1, . . . t}∪{n− k + t+ 1, . . . , n} for some t ∈ {0, . . . , k}, with the convention that {1, . . . , t} = ∅
when t = 0 and {n− k + t+ 1, . . . , n} = ∅ when t = k. Note that this certainly holds when

k = 0, as Isolator has not claimed any elements before her �rst move. If at least one of the

elements t+1 or n−k+ t is not yet claimed before Isolator's (k + 1)th move, then Isolator claims

one of these elements which is still available, and thus the set of vertices claimed by Isolator is of

this form also after k+ 1 moves. If both t+ 1 and n− k+ t are claimed by Toucher, the process

stops.

The process terminates trivially, as Toucher must claim an element during the game. Let

k and t ∈ {0, . . . , k} be chosen so that the set of vertices claimed by Isolator at the end of the

process is {1, . . . t} ∪ {n− k + t+ 1, . . . , n}. Note that we must have k ≥ 1, as Toucher cannot

claim both of the elements 1 and n on her �rst move.

Let T = {t+ 2, . . . , n− k + t− 1}, and note that by the choice of k and t it follows that

Isolator has not claimed any elements in T . Since the process has terminated at this stage, it

follows that Toucher must have claimed both of the elements t+ 1 and n− k+ t. Since Toucher

started the game, she has claimed k+ 1 elements in total, and thus k− 1 of these elements must

be in T .

Note that any increment of the score arising outside T occurs from the sets {1, . . . , t} and
{n− k + t+ 1, . . . , n}. On the other hand, since Isolator has not claimed any elements in T and

Toucher has claimed k − 1 elements in T , the rest of the game on T is identical to the game

F (n− k − 2, k − 1). Hence Isolator can increase the score by at least α (n− k − 2, k − 1) during

the rest of the game played on T .

It is easy to check that the contribution of the score arising from the sets {1, . . . , t} and

{n− k + t+ 1, . . . , n} is exactly t+(k − t) = k for any choice of t. Thus by Lemma 38, it follows
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that Isolator can guarantee that the score is at least

k + α (n− k − 2, k − 1) ≥ k +

⌊
n− k − 2− 3 (k − 1) + 2

5

⌋
=

⌊
n+ k + 3

5

⌋
.

Since k ≥ 1, Isolator can always guarantee that the score is at least
⌊
n+4
5

⌋
, which completes the

proof.

5.2.2 The upper bound

In this section, all congruences are considered modulo 5 unless otherwise stated, and in such

cases we omit (mod 5) from the notation. Furthermore, we write n ≡ 0 or 1 instead of (n ≡ 0

or n ≡ 1), and n 6≡ 0 and 1 instead of (n 6≡ 0 and n 6≡ 1).

Lemma 40. Suppose that T is a Toucher-Isolator game played on a disjoint union of the

boards F (l1) , . . . , F (lr), G (m1) , . . . , G (ms) and H (n1) , . . . ,H (nt) with Isolator having the

�rst move. Let f (l; m; n) be the score of this game when both players play optimally. Let

N1 = |{i : li ≡ 3 or 4}|, N2 = |{i : mi ≡ 0 or 1}|, N3 = |{i : ni 6= 2 and ni ≡ 2 or 3}|, N4 =

|{i : ni = 2}| and N5 = |{i : ni = 1}|. Let ε ∈ {0, 1} be chosen so that N5 ≡ ε (mod 2). Then we

have

f (l; m; n) ≤
r∑
i=1

⌊
li + 2

5

⌋
+

s∑
i=1

⌊
mi + 5

5

⌋
+

t∑
i=1

⌊
ni + 8

5

⌋
−N4+ε−

⌊
N1 +N2 +N3 + ε

2

⌋
. (5.3)

By looking at the proof of Lemma 38, it is reasonable for Toucher to claim one of the points

next to the point claimed by Isolator on her �rst move, as in this case Toucher can restrict the

length of the interval created by Isolator. Such a �rst pair of moves splits the original board into

two new boards, which motivates the idea of considering unions of disjoint boards. It might be

tempting to say that Toucher can always follow Isolator to the board where she plays her next

move, and hence proceed by using an inductive proof. However, sometimes Toucher may gain an

`additional move' if one of these boards has no sensible moves left (i.e. the component is F (1)

or F (2)).

Ignoring such additional moves completely would make the proof much shorter, but the

bound obtained would not even be asymptotically good enough. Since Isolator is free to alternate

between these two boards, she has some control on the time of the game when Toucher is given

the additional move. In particular, we cannot assume that the additional moves are given at the

start of the game, which was the case in Section 5.2.1. In order to keep track of such additional

moves, we need to consider arbitrary disjoint unions of boards.

We start by brie�y outlining the structure of the proof and explaining the motivation behind

the upper bound in (5.3). The proof is an inductive argument, and we chose to apply the

induction on the sum of the lengths of the paths. The aim is to prove that for any possible

Isolator's initial move, there is a move for Toucher that can be used to show that (5.3) holds
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by induction. This move will in general depend on the position of the initial move modulo 5,

however, we have to be slightly careful if the initial move is close to an endpoint of the board.

For the same reason, one has to be careful with small components as well.

Since there are 3 possible types of boards, 5 possible locations of the initial move (modulo 5),

and two possible cases for the size of the initial length of the component (depending on whether

the initial length a�ects the values of N1, N2 or N3 or not), it follows that there are in some sense

30 cases to be considered. In addition, we have to individually consider some of the situations

when the initial move is near to an endpoint of the board. Fortunately, some of these cases can

be treated simultaneously, and in general the techniques used are very similar.

In a sense, the most di�cult part is rather to come up with a suitable upper bound in (5.3)

which is strong enough for an inductive argument to work than the proof itself. Once a suitable

upper bound is obtained, identifying the possible `response moves' for Toucher is a reasonably

easy task. Finally, the proof itself is mathematically not challenging, but it is tedious.

Why should we choose this particular upper bound in (5.3)? For B = F (l), G (m) or H (n)

(when n ≥ 3) it turns out that Toucher can always guarantee that the score is at most
⌊
l+2
5

⌋
,⌊

m+5
5

⌋
or
⌊
n+8
5

⌋
respectively. This explains the �rst three terms of the upper bound. Moreover,

if l ≡ 3 or 4, m ≡ 0 or 1 or n ≡ 2 or 3, it turns out that Toucher has a strategy which allows

her to force Isolator to either play the last non-trivial move, or Isolator can only attain a score

which is strictly less than the previously stated bound. Hence the quantity N1 + N2 + N3 is

measuring the number of such `additional moves'. Given such an additional move, Toucher can

make another component of the board slightly shorter, which either reduces the score by one, or

guarantees that she will also gain an additional move from the new board which she would not

have otherwise gained.

However, one has to be careful with small values of n. Indeed, it turns out that on H (2)

Isolator can only increase the score by 1 (instead of 2), and Toucher cannot gain an additional

move. This is the reason behind the −N4-term. Also on H (1), Isolator can increase the score by

2 (instead of 1), and Toucher gains an additional turn. Note that if the number of components

of the form H (1) is even, then Toucher can always claim a point on another component that

is of the form H (1). If the number of components of the form H (1) is odd, she can follow a

pairing strategy until the number of such boards decreases to 1. When the element on the last

board of the form H (1) has been claimed by Isolator, Toucher has to use the additional move

elsewhere. Hence only the parity of N5 a�ects the bound.

In a sense, dealing with the boards of the form H (n) is the most di�cult task due to irregular

behaviour at both endpoints, and in particular, when n is small. Hence we start the proof by

considering the boards of the form H (n), and during the proof we also introduce some standard

arguments that can be used when dealing with the boards of the form F (l) or G (m). In those

cases, we do not always give full justi�cation.

Note that the bound (5.3) may not always be tight, but by following a similar argument as

presented in Section 5.2.1, one could verify that the bound is tight when applied to a single board

of the form F (l), G (m) or F (n), which is good enough for our purposes. The reason why the

bound is not necessarily tight is the fact that sometimes Toucher could have a better place to

play her additional move, rather than the `worst case scenario' that is considered in the proof.

71



For convenience, de�ne

g (l; m; n) =
r∑
i=1

⌊
li + 2

5

⌋
+

s∑
i=1

⌊
mi + 5

5

⌋
+

t∑
i=1

⌊
ni + 8

5

⌋
−N4 + ε−

⌊
N1 +N2 +N3 + ε

2

⌋
,

y (l; m; n) =
r∑
i=1

⌊
li + 2

5

⌋
+

s∑
i=1

⌊
mi + 5

5

⌋
+

t∑
i=1

⌊
ni + 8

5

⌋
and

z (l; m; n) = −N4 + ε−
⌊
N1 +N2 +N3 + ε

2

⌋
.

For later purposes, it is convenient to observe that we may rewrite z as

z (l; m; n) = −N4 −
⌊
N1 +N2 +N3 − ε

2

⌋
. (5.4)

Proof of Lemma 40. De�ne N =
∑r

i=1 li +
∑s

i=1mi +
∑t

i=1 ni. The proof is by induction on N ,

and it is easy to check that the claim holds for all possible con�gurations when N = 1 or N = 2.

Suppose that the claim holds whenever we have N ≤ M − 1 for some M ≥ 3 and suppose that

l, m, n are chosen so that
∑r

i=1 li +
∑s

i=1mi +
∑t

i=1 ni = M .

We now split the proof into several cases depending on Isolator's �rst move. In each case, let

S (T ) be the maximum score that Isolator can attain given her �rst move and given that Toucher

plays optimally.

Case 1 . Isolator claims an element on H (nt) on her �rst move.

For convenience, we set n = nt. The game H (n) is played on {1, . . . , n}, and since both

endpoints of the board are symmetric, we may assume that Isolator claims an element j satisfying

j ≤
⌈
n
2

⌉
on her move. We prove that apart from small values of n, claiming one of j − 1 or j + 1

is a suitable choice for Toucher, where the choice is made depending on the value of j (mod 5),

as indicated in Table 5.1. If j ≥ 3, it is easy to see that after such �rst pair of moves the

H (n)-component of the board splits into disjoint union of two boards H (a) and G (b) for some

a, b with n = a + b + 2. However, since the boards H (1) and H (2) behave in a di�erent way

compared to other boards of the form H (n), it turns out to be convenient to consider the cases

j = 1, j = 2 and (j, n) = (3, 5) individually.

Indeed, if 4 ≤ j ≤
⌈
n
2

⌉
, the board splits into components H (a) and G (b) with a ≥ 3. If

j = 3, Toucher claims the element 2 as indicated in Table 5.1. Hence the original board splits

into two boards G (1) and H (n− 3), and the second one of these is of the form H (1) or H (2)

only when n = 5, as j ≤
⌈
n
2

⌉
. Hence j = 1, j = 2 and (j, n) = (3, 5) are the only special cases

which could change the number of boards of the form H (1) or H (2).

Denote the new set of parameters obtained after the �rst pair of moves by l′, m′ and n′, and

let si denote the increment of the score caused by Isolator's �rst move. Throughout the proof

it is convenient to de�ne the quantities d1 = z (l; m; n) − z
(
l′; m′; n′

)
and d2 = y (l; m; n) −

y
(
l′; m′; n′

)
. Note that we have g (l; m; n) = d1 + d2 + g

(
l′; m′; n′

)
.
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The inductive hypothesis implies that we have S (T ) ≤ g
(
l′; m′; n′

)
+ si. Since our aim is to

prove S (T ) ≤ g (l; m; n), it su�ces to prove that we always have d1 + d2 ≥ si. Indeed, we will

prove that for all possible Isolator's initial moves there exists a move for Toucher which satis�es

d1 + d2 ≥ si.
We start with the general case j ≥ 3 and n ≥ 6, and we deal with the special cases later.

Table 5.1: Choices for Toucher's �rst move depending on the value of j

F (n) Condition on a or b G (n) Condition on a or c H (n) Condition on a or b

j ≡ 0 j + 1 b ≡ 4 j − 1 a ≡ 3 j − 1 b ≡ 3

j ≡ 1 j − 1 a ≡ 4 j − 1 a ≡ 4 j − 1 b ≡ 4

j ≡ 2 j + 1 b ≡ 1 j + 1 c ≡ 1 j + 1 a ≡ 1

j ≡ 3 j − 1 a ≡ 1 j − 1 a ≡ 1 j − 1 b ≡ 1

j ≡ 4 j − 1 a ≡ 2 j + 1 c ≡ 3 j + 1 a ≡ 3

Case 1.1 . n ≥ 6, j ≥ 3.

In this case we have si = 0, so it su�ces to prove that we have d1 + d2 ≥ 0. It is easy to see

that N1, N4 and ε are una�ected in this case. Since N2 certainly cannot increase and N3 can

decrease by at most 1, it follows that d1 ≥ −1.

Note that we have d2 =
⌊
n+8
5

⌋
−
⌊
a+8
5

⌋
−
⌊
b+5
5

⌋
. By using the trivial upper and lower bounds

x− 1 ≤ bxc ≤ x and the fact that n = a+ b+ 2, it follows that d2 ≥ n+3
5 −

a+b+13
5 = −8

5 . Since

d2 is an integer, it follows that d2 ≥ −1. We now split the proof into two cases based on the

values of n and j in order to improve our bounds on d1 and d2.

Case 1.1.1 . n ≡ 2 or 3.

We start by improving the bound on d2. Since n ≡ 2 or 3, it follows that
⌊
n+8
5

⌋
≥ n+7

5 .

Hence by using the trivial bounds for the other terms, we obtain that d2 ≥ n+7
5 −

a+b+13
5 = −4

5 .

Since d2 is an integer, it follows that d2 ≥ 0.

First suppose that a ≡ 2 or 3. Then N3 cannot decrease, so in fact, we have d1 ≥ 0. Hence

we have d1 + d2 ≥ 0.

Now suppose that b ≡ 0 or 1. Then N3 decreases by at most 1 and N2 increases by 1. Hence

the sum N2 + N3 certainly cannot decrease. Thus we also have d1 ≥ 0, and it follows that

d1 + d2 ≥ 0.

Finally, suppose that a 6≡ 2 and 3 and b 6≡ 0 and 1. Then we have
⌊
a+8
5

⌋
+
⌊
b+5
5

⌋
≤ a+6

5 +
b+3
5 = a+b+9

5 . Note that the equality holds if and only if a ≡ 4 and b ≡ 2, but by Table 5.1

it follows that this can never happen. Hence the inequality must be strict, and it follows that

d2 >
n+7
5 −

a+b+9
5 = 0. Hence we must have d2 ≥ 1, and combining this with the trivial bound

d1 ≥ −1, it follows that d1 + d2 ≥ 0.

Case 1.1.2 . n 6≡ 2 and 3.

Since n 6≡ 2 and 3, it follows that N3 cannot decrease. Hence we must have d1 ≥ 0.
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First suppose that a ≡ 2 or 3 and b ≡ 0 or 1. Then both N2 and N3 increase by 1, and

hence it follows that d1 ≥ 1. Combining this with the trivial bound d2 ≥ −1, it follows that

d1 + d2 ≥ 0.

Now suppose that a 6≡ 2 and 3 or b 6≡ 0 and 1. In both cases we can improve the upper

bound of
⌊
a+8
5

⌋
+
⌊
b+5
5

⌋
to
⌊
a+8
5

⌋
+
⌊
b+5
5

⌋
≤ a+b+11

5 by following the argument presented in the

proof of Case 1.1.1. Note that the equality holds if and only if (a ≡ 4 and b ≡ 0) or (a ≡ 2

and b ≡ 2). However, both of these cases are impossible, as they are not compatible with

Toucher's moves indicated in Table 5.1. Hence the inequality must be strict, and thus we have

d2 >
n+4
5 −

a+b+11
5 = −1. Thus it follows that d2 ≥ 0, and hence we have d1 + d2 ≥ 0.

Case 1.2 . j = 1.

Here we split the proof into three cases based on the size of n. First, we consider the case

n ≥ 3, which should be viewed as the main part of the argument. Then we consider the cases

n = 2 and n = 1 individually, as these behave in a slightly di�erent way as these boards are

small. The case n = 1 turns out to be very tedious and lengthy, and it does not really contain any

interesting ideas either. In a sense, as Toucher is forced to play a move on another component

of the board, our aim is to prove that even in the worst case an additional move has a certain

positive e�ect for Toucher.

Case 1.2.1 . n ≥ 3.

Suppose that Toucher claims the element 2. Since Isolator claimed the element 1 on the

board H (n) satisfying n ≥ 3, it follows that si = 1. Hence it su�ces to prove that by claiming

the element 2 Toucher can guarantee that d1 + d2 ≥ 1 holds. First of all, note that the board

H (n) is replaced with G (n− 2) after such pair of moves, which is non-empty as n ≥ 3. Since

n ≡ 2 or 3 if and only if n− 2 ≡ 0 or 1 and n ≥ 3, it follows that N3 decreases by 1 if and only

if N2 increases by 1. In particular, it follows that d1 = 0. On the other hand, it is easy to see

that for any n we have d2 =
⌊
n+8
5

⌋
−
⌊
(n−2)+5

5

⌋
= 1. Hence we always have d1 + d2 = 1.

Case 1.2.2 . n = 2.

Suppose that Toucher claims the element 2. Since the board H (2) has only two elements, it

follows that all elements of the board have been claimed after this pair of moves. Note that we

certainly have si = 1 and d2 =
⌊
2+8
5

⌋
= 2. On the other hand, it is clear that N1, N2, N3 and

ε remain una�ected while N4 decreases by 1. Hence we have d1 = −1, and thus it follows that

d1 + d2 = 1.

Case 1.2.3 . n = 1.

Since n = 1, it follows that si = 2. First suppose that we have N5 > 1, and that Toucher

claims the only element on another board that is of the form H (1). Hence N5 decreases by 2

and ε remains una�ected, and thus we have d1 = 0. We also have d2 = 2
⌊
1+8
5

⌋
= 2, and hence

it follows that d1 + d2 = si.

Otherwise, we have N5 = 1, and hence it follows that ε = 1. Since the total number of points

on T is strictly more than 1, there exists another component B of T .

First suppose that B = H (2) and that Toucher claims the element 1. Then N2 increases by

1, N4 decreases by 1 and ε changes from 1 to 0. Hence N1 + N2 + N3 − ε increases by 2 and
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−N4 increases by 1, so we have d1 = 0. Note that d2 =
⌊
1+8
5

⌋
+
⌊
2+8
5

⌋
−
⌊
1+5
5

⌋
= 2, and hence

it follows that d1 + d2 = si.

Now suppose that B = H (m) with m ≥ 3. Suppose that Toucher claims the element 1, and

hence B is replaced with G (m− 1). Then N4 remains una�ected, N3 decreases by at most 1

and N2 increases by at most one. Since ε changes from 1 to 0, it follows that N1 +N2 +N3 − ε
cannot decrease, and hence we have d1 ≥ 0. Note that we have d2 =

⌊
1+8
5

⌋
+
⌊
m+8
5

⌋
−
⌊
m+4
5

⌋
,

and thus we have d2 ≥ 1.

If m ≡ 1, then m − 1 ≡ 0 and thus N2 increases by 1 but N3 does not decrease. Hence

N1 + N2 + N3 − ε increases by 2, and thus we have d1 ≥ 1. If m 6≡ 1, it certainly follows that⌊
m+8
5

⌋
−
⌊
m+4
5

⌋
= 1, and hence we have d2 ≥ 2. Hence in either case we have d1 + d2 ≥ 2.

Next suppose that B = G (m) and suppose that Toucher claims the element 1. Hence B is

replaced with F (m− 1). As above, it is easy to deduce that N4 remains una�ected and N1+N2+

N3 − ε cannot decrease, and hence we have d1 ≥ 0. We also have d2 =
⌊
1+8
5

⌋
+
⌊
m+5
5

⌋
−
⌊
m+1
5

⌋
,

and thus it follows that d2 ≥ 1.

If m ≡ 4, then m − 1 ≡ 3 and hence N1 increases by 1 but N2 does not decrease. As ε

changes from 1 to 0, we can similarly deduce that d1 ≥ 1. Otherwise, it is easy to see that we

have d2 ≥ 2. Hence in either case we have d1 +d2 ≥ 2. Note that the same argument also applies

even when m = 1 (with the convention that F (0) is the empty board).

Finally, suppose that B = F (m) and suppose that Toucher claims the elementm−2. Hence B

is replaced with disjoint union of boards F (m− 3) and F (2). The board F (2) can be discarded

as on this board Toucher can follow a pairing strategy and avoid any increment of the score.

Again, we know that N1 cannot decrease by more than 1, and since ε changes from 1 to 0 it

follows that d1 ≥ 0. We also have d2 =
⌊
1+8
5

⌋
+
⌊
m+2
5

⌋
−
⌊
m−1
5

⌋
, and hence we have that d2 ≥ 1.

If m ≡ 3, 4 or 5, we certainly have d2 ≥ 2. If m ≡ 1 or 2, then m − 3 ≡ 3 or 4, and hence

N1 increases by 1. Hence N1 + N2 + N3 − ε increases by 2, and thus we have d1 ≥ 1. In either

case, it follows that d1 + d2 ≥ 2.

Case 1.3 . j = 2.

Since j ≤
⌈
n
2

⌉
, it follows that n ≥ 3. Hence we split the proof into cases based on whether

we have n ≥ 5, n = 4 or n = 3.

Case 1.3.1 . n ≥ 5.

Suppose that Toucher claims the element 1. Hence it follows that si = 0, and the board

H (n) is replaced with H (n− 2) after such pair of moves. Since n − 2 ≥ 3, it follows that N4

and ε remain unchanged.

First suppose that n 6≡ 2 and 3. Note that in this case N3 cannot decrease, and hence it

follows that d1 ≥ 0. We also have d2 =
⌊
n+8
5

⌋
−
⌊
n+6
5

⌋
≥ 0, and therefore it follows that

d1 + d2 ≥ 0.

Now suppose that n ≡ 2 or 3. In this case N3 decreases by at most 1, and hence it follows

that d1 ≥ −1. We again have d2 =
⌊
n+8
5

⌋
−
⌊
n+6
5

⌋
, and since n ≡ 2 or 3, it follows that d2 ≥ 1.

Thus in either case we have d1 + d2 ≥ 0.
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Case 1.3.2 . n = 4.

Again suppose that Toucher claims the element 1. Hence si = 0, and since 4 is not congruent

to 2 or 3 modulo 5, it follows that N1, N2, N3 and ε remain una�ected. On the other hand, N4

increases by 1 as after this pair of moves the board becomes H (2). Hence we have d1 = 1. We

also have d2 =
⌊
4+8
5

⌋
−
⌊
2+8
5

⌋
= 0, and thus it follows that d1 + d2 = 1 > 0.

Case 1.3.3 . n = 3.

Again suppose that Toucher claims the element 1, and thus we have si = 0. After this pair

of moves the board becomes H (1), and it is easy to verify that d2 =
⌊
3+8
5

⌋
−
⌊
1+8
5

⌋
= 1.

It is clear that N1, N2 and N4 remain unchanged. It is easy to observe that N3 decreases by

1 and ε is replaced with 1− ε. Hence, in the worst case, N3− ε decreases by 2, and thus by (5.4)

it follows that d1 ≥ −1. Therefore we have d1 + d2 ≥ 0.

Case 1.4 . n = 5 and j = 3.

Suppose that Toucher claims the element 2. Hence the board B (5) splits into two boards of

the form G (1) andH (2), and we have si = 0. Hence N4 increases by 1, N2 increases by 1 and N1,

N3 and ε remain una�ected. Thus it follows that d1 ≥ 1. Since d2 =
⌊
5+8
5

⌋
−
⌊
2+8
5

⌋
−
⌊
1+5
5

⌋
= −1,

we have d1 + d2 ≥ 0.

This completes the proof of Case 1.

Case 2 . Isolator claims an element on G (ms) on her �rst move.

For convenience, we set n = ms. The game G (n) is played on {1, . . . , n}, and note that in

this case the board is not symmetric. Recall that claiming the element 1 increases the score by

1, but claiming the element n does not.

Assume that Isolator claims the element j on her �rst move. As before, we prove that claiming

j − 1 or j + 1 is a suitable choice for Toucher, and this choice is again determined by the value

of j (mod 5). We use the same notation as before, however in this case there are two options

on how the board might split: the board either splits into two components that are of the form

G (a) and G (b) if Toucher claims the element j− 1, or into two components that are of the form

H (c) and F (d) if Toucher claims the element j + 1. This time we only need to consider the

boundary cases j = 1, j = 2 and j = n individually, and note that hence we may assume that

n ≥ 4. We start by checking the special cases, and we skip some of the details when they are

identical or very similar to the arguments used in the proof of Case 1.

Case 2.1 . j = 1.

The proof is essentially identical to the proof of Case 1.2.1. Indeed, suppose Toucher claims

the element 2. After the �rst pair of moves the board becomes F (n− 2) and we have si = 1.

We have d2 =
⌊
n+5
5

⌋
−
⌊
n
5

⌋
= 1, and as in the proof of Case 1.2.1 N2 decreases by 1 if and only

if N1 increases by 1. Hence it follows that d1 = 0, and thus we have d1 + d2 = 1.

Case 2.2 . j = 2.

Suppose that Toucher claims the element 1. After the �rst pair of moves, the board becomes

G (n− 2) and we have si = 0. Note that N2 can decrease by at most 1, and hence it follows that

d1 ≥ −1. We also have d2 =
⌊
n+5
5

⌋
−
⌊
n+3
5

⌋
, and thus we certainly have d2 ≥ 0.

76



If n ≡ 0 or 1, it is easy to verify that we have d2 = 1, and hence it follows that d1 + d2 ≥ 0.

Otherwise, N2 cannot decrease, and hence we have d1 ≥ 0. Thus it follows that d1 + d2 ≥ 0 in

this case as well.

Case 2.3 . j = n.

Suppose that Toucher claims the element n − 1. After the �rst pair of moves, the board

becomes G (n− 2) and we have si = 0. Hence the proof follows by using the same steps as in

the previous case.

Case 2.4 . 3 ≤ j ≤ n− 1.

Suppose that Toucher chooses the appropriate move as indicated in Table 5.1 depending on

the value of j (mod 5). Note that depending on the value of j, the board may split into two

components of the form G (a) and G (b) or two components of the form H (c) and F (d). We

now split the proof into 4 subcases depending on the value value of n (mod 5) and depending on

how the board splits into two components. As in the proof of Case 1.1, it is easy to deduce that

we have the trivial lower bounds d1 ≥ −1 and d2 ≥ −1.

Case 2.4.1 . n ≡ 0 or 1.

Note that regardless of how the board splits into two components, in either case we have

d2 ≥
⌊
n+5
5

⌋
− n+8

5 by using the trivial upper bound bxc ≤ x. Since n ≡ 0 or 1, it follows that

d2 ≥ −45 and thus we have d2 ≥ 0.

Case 2.4.1.1 . j ≡ 0, 1 or 3.

In this case, Toucher claims the element j − 1, and hence the board splits into components

of the form G (a) and G (b). Hence it follows that d2 =
⌊
n+5
5

⌋
−
⌊
a+5
5

⌋
−
⌊
b+5
5

⌋
. Note that from

Table 5.1 we can conclude that we have a ≡ 1, 3 or 4.

First suppose that a ≡ 1 or b ≡ 0 or 1. Then N2 certainly does not decrease, so we have

d1 ≥ 0, and hence it follows that d1 + d2 ≥ 0.

Otherwise, we have a ≡ 3 or 4 and b ≡ 2, 3 or 4. Hence we have
⌊
a+5
5

⌋
+
⌊
b+5
5

⌋
≤ a+2

5 + b+3
5 =

n+3
5 . Since n ≡ 0 or 1, we have d2 ≥ n+4

5 −
n+3
5 > 0, and therefore it follows that d2 ≥ 1. Hence

we have d1 + d2 ≥ 0.

Case 2.4.1.2 . j ≡ 2 or 4.

In this case Toucher claims the element j + 1, and the board splits into two components of

the form H (c) and F (d). Since j > 2, it follows that j ≥ 4 and thus we have c ≥ 3. Hence N4

and ε remain una�ected. Again, we could split the proof into cases depending on whether one

of c ≡ 2 or 3 or d ≡ 3 or 4 holds or not. The details are the same as in the proof of Case 2.4.1.1,

and hence we omit the proof.

Case 2.4.2 . n 6≡ 0 and 1.

Now regardless of how the board splits into two components, we can deduce that d1 ≥ 0 as

none of the Ni's can decrease. Again, the rest of the proof is similar to the proof of Case 1.1.2

(with appropriate modi�cations similar to those done in Case 2.4.1). Hence we omit the details.

This completes the proof of Case 2.
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Case 3 . Isolator claims an element on F (lr) on her �rst move.

For convenience, we set n = lr. The game F (n) is played on {1, . . . , n}, and the board is

again symmetric. Hence we may assume that Isolator claims an element j satisfying j ≤
⌈
n
2

⌉
on

her �rst move. In this case, the only special case that needs to be considered is j = 1. Again, for

j ≥ 2 claiming either j−1 or j+ 1 is a suitable choice for Toucher, and this choice is determined

by the value of j (mod 5) as indicated in Table 5.1. Apart from the case j = 1, the board always

splits into two boards of the form F (a) and G (b) for some a and b with n = a+ b+ 2. We use

the same notation as in the earlier cases.

Case 3.1 . j = 1.

Suppose that Toucher claims the element 2. Then si = 0 and after the �rst pair of moves

the board is replaced with F (n− 2). Hence d2 =
⌊
n+2
5

⌋
−
⌊
n
5

⌋
, which is certainly always non-

negative. Since N1 decreases by at most 1, it follows that d1 ≥ −1.

If n ≡ 3 or 4, we have d2 ≥ 1 and hence it follows that d1 + d2 ≥ 0. Otherwise, N1 cannot

decrease and hence we have d1 ≥ 0. Thus in either case it follows that d1 + d2 ≥ 0.

Case 3.2 . j 6= 1 and n ≡ 3 or 4.

The proof is identical to the proof of Case 1.1.1.

Case 3.3 . j 6= 1 and n 6≡ 3 and 4.

The proof is identical to the proof of Case 1.1.2.

This completes the proof of Claim 3, and hence Lemma 40 holds by induction.

Recall from the Introduction that Hb (n) is the game played on the same board as H (n),

but with Toucher having the �rst move. Also recall that we have u (Pn) = γb (n− 1) and

u (Cn) = α (n− 1). We now deduce Theorem 36 from our earlier results.

Proof of Theorem 36. Let n ≥ 3. Lemma 39 implies that we have u (Pn) = γb (n− 1) ≥
⌊
n+3
5

⌋
.

In order to prove the upper bound, consider the game Hb (n− 1) and suppose that Toucher

claims the element n−1 on her �rst move. After the initial move, the subsequent game coincides

with the game G (n− 2). Hence it follows that γb (n− 1) ≤ f (∅; n− 2; ∅), and thus Lemma 40

implies that we have γb (n) ≤
⌊
(n−2)+5

5

⌋
. Therefore for all n ≥ 3 we have u (Pn) =

⌊
n+3
5

⌋
.

Recall that we have u (Cn) = α (n− 1). Hence Lemma 38 implies that u (Cn) ≥
⌊
(n−1)+2

5

⌋
,

and Lemma 40 implies that u (Cn) ≤ f (n− 1; ∅; ∅) =
⌊
(n−1)+2

5

⌋
. Therefore for all n ≥ 3 we

have u (Cn) =
⌊
n+1
5

⌋
. In particular, for both G = Pn and G = Cn the asymptotic proportion of

isolated vertices is 1/5 when both players play optimally.

5.3 Toucher-Isolator game on trees

Recall that it turned out to be good for Isolator to claim consecutive edges near the endpoints

when playing the Toucher-Isolator game on a path. When playing on a tree, it seems natural

for Isolator to start by claiming edges that have a leaf as an endpoint, as claiming such an edge

immediately increases the number of isolated vertices. Since the leaf isolated as a result of such

move does not a�ect the subsequent game, the edge claimed by Isolator can be discarded. After
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discarding the edge, the other endpoint of the edge may also become a leaf, and in such case

Isolator can continue claiming untouched leaves.

Now suppose that at some point of this process there is no move for Isolator which would

instantly increase the number of isolated vertices. Let T1 be the tree obtained as a result of the

process and let C1 be the set of edges claimed by Toucher. Thus for every leaf v ∈ T1 there

exists an edge e ∈ C1 whose endpoint v is, as Isolator cannot increase the number of isolated

vertices. Such a situation is very similar to the delayed game for paths introduced in the proof

of Theorem. This motivates us to de�ne a delayed version of the Toucher-Isolator game that is

more suitable for trees.

Let T be a tree, let C and D be disjoint subsets of the edges of T , and let X be a subset

of the vertices of T . De�ne the delayed game F (T,C,D,X, s) to be the Toucher-Isolator game

played on the edges of T with the edges in C and D given to Toucher and Isolator respectively

at the start of the game, and with the �rst move given to player speci�ed by the parameter

s ∈ {i, t}. De�ne the score of the game to be the number of isolated vertices in V (T ) \X at the

end of the game, and denote the score by α (T,C,D,X, s). Thus X should be viewed as a set

of vertices that are additionally declared to be touched at the start of the game, as they cannot

increase the score even if they are isolated.

For our purposes, we mostly focus on certain subclasses of such delayed games, and hence

some of the parameters can be omitted as they will be clear from the context. First of all, we

use F (T ) to denote the ordinary Toucher-Isolator game on T , i.e. F (T, ∅, ∅, ∅, t), and similarly

we use α (T ) to denote the score of F (T ). However, apart from this special case, it is more

convenient to choose Isolator to be the player having the �rst move in the delayed version of the

game, and hence s should be taken to be Isolator if it is omitted from the notation, with F (T )

being an exception. Similarly C and D should be taken to be empty if they are omitted from the

notation. We often either have X = ∅ or X = L, where L is the set of the leaves in T . Hence we

write F (T,C,X) = F (T,C, ∅, X, i), F (T,C) = F (T,C, ∅, ∅, i) and F (T,C, L) = F (T,C, ∅, L, i)
to simplify our notation.

Since some of the results used in the proof of Theorem 37 are proved by induction, it is

convenient to introduce a suitable reduction operation that allows us to reduce the tree without

increasing the score of the game. Our reduction operator is de�ned for the games of the form

F (T,C,D,X, s), and in general s is taken to be Isolator.

First we need to introduce some notation. As usual, let E and V denote the set of edges and

vertices of T respectively, and let C, D and X be de�ned as before. Let Ê = E \ (C ∪D) be

the set of edges that are not given to Toucher or Isolator at the start of the game, let I be the

set of vertices in V \X that are isolated by the edges in D, and let O be the set of vertices in

V \X that are touched by an edge in C. The vertices in O are called occupied and the vertices

in O∪X are called touched. Finally, we set U = V \ (I ∪X ∪O) and the vertices in U are called

unoccupied. Note that U is the set of those vertices that could still increase the score, and in a

sense they are the only interesting vertices left in the tree.

The de�nition of the reduction operation is quite tedious, but the ideas behind it are fairly

simple, and we start by outlining these ideas. Suppose that v1 and v2 are two touched vertices

and let e be an edge of the form uv1 that is not in C. Let T1 be the graph obtained by replacing
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the edge uv1 with uv2 in T and suppose that T1 is also a tree. This operation changes the

structure of T , but in a sense it does not a�ect the game at all. First of all, note that the process

only a�ects the vertices u, v1 and v2. However, in both T and T1 the vertices v1 and v2 are

already touched, only one edge with u as its endpoint is a�ected during the process and in both

trees the other endpoint of this edge is touched. Note that it does not matter which particular

vertex the other endpoint is, as long as in both trees the other endpoint is touched. Hence, in

fact, the game is not a�ected at any vertex during the process. One can also perform similar

operations to leaves that are an endpoint of an edge in C and whose only neighbour has degree

at least 3.

Recall that Ê = E \ (C ∪D). Let e ∈ Ê, and note that neither of the endpoints of e is in I.

De�ne the endpoint pattern of e to be P (e) ∈ {1, 2, 3}, where P (e) = 1 if both of the endpoints

of e are unoccupied, P (e) = 2 if exactly one of the endpoints is unoccupied and P (e) = 3 if

neither of the endpoints is unoccupied. Let T1 and T2 be trees with appropriate sets Ci, Di and

Xi. We say that a function f : Ê → Ê2 preserves the type of the endpoints if for every e ∈ Ê1, e

and f (e) have the same endpoint pattern. Finally, for a vertex v ∈ V (T ) de�ne E (v) to be the

collection of the edges whose endpoint v is.

We say that F (T1, C1, D1, X1, s) is a reduction of F (T2, C2, D2, X2, s) if D1 = ∅ and if there

exist injections fE : Ê1 → Ê2 and fV : U1 → U2 so that fE preserves the type of the endpoints

and we have E (fV (v)) = fE (E (v)) for all v ∈ U1, where fE (A) =
⋃
e∈A fE (a) for A ⊆ Ê1. The

�rst condition is intuitively clear, and the second condition implies that the neighbourhood of

an unoccupied vertex is preserved. The second condition guarantees that the process of isolating

an unoccupied vertex is the same in both T1 and T2. For convenience, we just say that T1

is a reduction of T2 if F (T1, C1, D1, X1, s) is a reduction of F (T2, C2, D2, X2, s), as the other

parameters are clear from the context.

In all of our applications, T1 is obtained by deleting some vertices from T2 or by changing

endpoints of a small number of edges. If only deletion of vertices is used in the process, we

usually take fE and fV to be the identity maps. For convenience, if fE and fV are taken to

be the identity maps we simply say that T1 is a reduction of T2 (without explicitly specifying

that the maps are taken to be identity maps). If the endpoints of some edges are changed, we

often still take fV to be the identity map and we take fE (e) = e for most of the edges, apart

from several exceptions involving the edges whose endpoints were changed. In such case we only

specify the map fE on such exceptional edges, and in general for any unspeci�ed vertices v ∈ U1

and edges e ∈ Ê1 we set fV (v) = v and fE (e) = e.

Our �rst aim is to prove that such a reduction cannot increase the score of the game, when

the e�ect of those vertices that are already isolated is taken into account. This essentially follows

by copying the optimal strategy on T1 to a strategy on T2 by using the function fE .

Lemma 41. Let T1 and T2 be trees with appropriate sets Ci, Di and Xi with D1 = ∅ and

suppose that T1 is a reduction of T2. Let I2 be the set of isolated vertices in T2. Then we have

α (T2, C2, D2, X2, s) ≥ |I2|+ α (T1, C1, D1, X1, s).

Proof. Let S1 be a strategy on T1 which guarantees that Isolator can isolate at least

α (T1, C1, D1, X1, s) vertices. Consider the strategy S2 on T2 obtained as follows. If on her

move Toucher claims an edge e ∈ Ê2 for which e is in the image of fE , suppose that the edge
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f−1E (e) is assigned to Toucher on the game T1. If she claims an edge e ∈ Ê2 that is not in the

image of fE , then assign an arbitrary edge to Toucher on T1. On a given turn of Isolator, suppose

that she should claim an edge g ∈ Ê1 on T1 according to the strategy S1. We de�ne the strategy

S2 by insisting that Isolator claims the edge fE (g) on T2 in such case. Once all the edges on T1

are claimed, Isolator plays an arbitrary edge on T2 on her move under the strategy S2.

By following this strategy, at the end of the game Isolator has isolated α (T1, C1, D1, X1, s)

vertices on T1. Since for all v ∈ U1 we have fE (E (v)) = E (fV (v)), it follows that for each isolated

vertex v ∈ U1 the appropriate vertex fV (v) is also isolated, and all of these vertices are distinct as

fV is an injection. In addition, all the vertices in I2 are also isolated by de�nition, and note that

we have I2 ∩U2 = ∅. Hence it follows that α (T2, C2, D2, X2, s) ≥ |I2|+α (T1, C1, D1, X1, s).

5.3.1 First phase of the game

At the start of the game we say that the game is in the �rst phase, and after a given move of

Toucher the game remains in the �rst phase if there exists an unoccupied vertex v for which

E (v) contains exactly one edge that is not already claimed by Isolator. Otherwise, the game

moves to the second phase, and note that this transition always occurs after Toucher's move. In

particular, the game is in the �rst phase as long as Toucher can increase her score on every move

by claiming a suitable edge - it turns out that choosing an arbitrary edge among the available

candidates will be good enough for our purposes.

Let C and D be the set of edges occupied by Toucher and Isolator when the game moves

from the �rst phase to the second phase. Recall that for a tree T we write L for the set of leaves

in T . Our �rst aim is to show that there exists a reduction T ′ of T with D′ = ∅, X ′ = L′ and

for which |T ′| − 3 |C ′| − 3 |L′| is not too small. This is done in Lemma 42. Note that the game

on T ′ corresponds to the delayed game F (T ′, C ′, L′), as X ′ = L′, D′ = ∅ and since Isolator has

the �rst move in the second phase. Thus in order to analyse the second phase, we need a lower

bound for α (T,C, L). In Lemma 43 we prove a lower bound for α (T,C, L) that depends on the

value of |T | − 3 |C| − 3 |L|.

Lemma 42. Let T be a tree with n ≥ 3 vertices. Suppose that Isolator has the next move and

that the game is in the �rst phase. Let Y be the set of those edges e in E that are not yet played

for which Isolator can immediately isolate a new vertex by claiming e on her current move.

Suppose that on each of her move Isolator claims an arbitrarily chosen edge from Y . Let r

be the number of edges Isolator claims during the �rst phase, and let C and D be the set of edges

claimed by Toucher and Isolator at the end of the �rst phase. Then there exists a reduction T ′

of the game F (T,C,D) with X ′ = L′, D′ = ∅ and |T ′| − 3 |L′| − 3 |C ′| ≥ |T | − 5r − 4.

Proof. Let C = {e1, . . . , er+1} and D = {f1, . . . , fr} be the set of edges claimed by Toucher and

Isolator respectively at the end of the �rst phase, ordered in a way that fi is claimed before fj

for i < j. Let vi be the vertex isolated by claiming the edge fi.

We start by verifying that T \ {v1, . . . , vi} is a tree for all i, and that claiming fi cannot

isolate both of its endpoints. Indeed, note that v1 must be a leaf, and since n ≥ 3 it follows that

no two leaves can be neighbours. Hence the claim is true when i = 1. If the claim is true for all

1 ≤ j ≤ i for some i, it follows that T \ {v1, . . . , vi} is a tree which does not contain any isolated
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vertices. Note that it also does not contain any edge claimed by Isolator on her �rst i moves, as

for every edge f1, . . . , fi at least one of the endpoints is deleted during the process. Thus vi+1

must be a leaf in T \ {v1, . . . , vi}, and note that the unique neighbour of vi+1 cannot be a leaf.

Indeed, this follows from the fact that T \ {v1, . . . , vi} contains an edge claimed by Toucher, and

hence it contains at least 3 vertices. Thus both claims follow by induction.

Let T ′ be the tree obtained by deleting the vertices v1, . . . , vr, and note that C ⊆ E (T ′)

as none of the vertices v1, . . . , vr is touched. Hence it follows that T ′ is a reduction of T when

we choose C ′ = C, D′ = ∅ and X ′ = ∅. Our aim is to reduce T ′ further by constructing a

suitable sequence of reductions T0, . . . , Tt for some t with T0 = T ′, and for which Tt satis�es

|Tt| − 3 |Lt| − 3 |Ct| ≥ |T | − 5r − 4. For each i de�ne gi = |Ti| − 3 |Xi| − 3 |Ci|.
The sequence T0, . . . , Tt is obtained as follows. First of all, we take T0 = T ′. Given Ti−1

together with appropriate sets satisfying Xi−1 ⊆ Li−1 ⊆ Xi−1 ∪ Oi−1 and Di−1 = ∅, we stop

the process if we have Xi−1 = Li−1. Otherwise, there exists a leaf v ∈ Ti−1 whose unique

neighbour w satis�es vw ∈ Ci−1. Indeed, since Xi−1 6= Li−1, it follows that there exists a leaf

v ∈ Li−1 \Xi−1 ⊆ Oi−1. Let w be chosen so that N (v) = {w}. Since v ∈ Oi−1, we must have
vw ∈ Ci−1.

Let v ∈ Li−1 and let w be the unique neighbour of v for which we have vw ∈ Ci−1. We will

prove that in every case we have gi ≥ gi−1 − 1, and that the property Xi ⊆ Li ⊆ Xi ∪ Oi is
preserved.

Case 1 . w satis�es dTi−1 (w) = 2.

Consider Ti obtained by deleting the vertex v and by setting Ci = Ci−1 \ {vw}, Di = ∅ and
Xi = (Xi−1 \ {v})∪{w}. Note that Ti is certainly a reduction of Ti−1 as w is a touched vertex in

both Ti−1 and Ti. We certainly have |Ci| = |Ci−1| − 1 and |Ti| = |Ti−1| − 1. Since we might also

have v 6∈ Xi−1, in the worst case we have |Xi| ≤ |Xi−1|+ 1. Hence it follows that gi ≥ gi−1 − 1,

and it is easy to see that we also have Xi ⊆ Li ⊆ Xi ∪Oi.

Case 2 . w satis�es dTi−1 (w) ≥ 3 and |E (w) ∩ Ci−1| ≥ 2.

Since |E (w) ∩ Ci−1| ≥ 2, it follows that there exists an edge uw ∈ Ci−1 with u 6= v. Consider

Ti obtained by deleting the vertex v and by setting Ci = Ci−1 \ {vw}, Di = ∅ and Xi =

(Xi−1 \ {v}). As before, this is a reduction of Ti−1, as w is touched in both Ti−1 and Ti since

uw ∈ Ci. Since dTi−1 (w) ≥ 3, it follows that w is not a leaf in Ti, and hence we have Xi ⊆ Li ⊆
Xi ∪Oi. It is easy to check that we have gi ≥ gi−1 + 2.

Case 3 . w satis�es dTi−1 (w) ≥ 3 and |E (w) ∩ Ci−1| = 1.

Let NTi−1 (w) \ {v} = {v1, . . . , vs}. Since dTi−1 (w) ≥ 3, it follows that s ≥ 2, and since

|E (w) ∩ Ci−1| = 1 it follows that wvj 6∈ Ci−1 for all j. Consider Ti obtained by replacing the

edge wv1 with vv1 and by setting Ci = Ci−1, Di = ∅ and Xi = Xi−1 \ {v}. Since vw ∈ Ei−1
and Ti−1 is a tree, it follows that Ti is a connected graph which does not contain a cycle, and

hence Ti is also a tree. Again, we obtain that Ti is a reduction of Ti−1 by taking fE (wv1) = vv1.

Indeed, this follows from the fact that both v and w are touched vertices.

Note that we have Li = Li−1 \{v}, as the only vertices whose degrees are a�ected during the

process are v and w, and since s ≥ 2 it follows that w is not a leaf in Ti. It is easy to see that

we have |Ti| = |Ti−1|, |Xi| ≤ |Xi−1| and |Ci| = |Ci−1|. Hence it follows that gi ≥ gi−1, and it is
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also easy to see that we have Xi ⊆ Li ⊆ Xi ∪Oi.

Note that we still need to verify that any sequence of such operations will terminate in a �nite

time. During every application of Case 1, the number of vertices in Ti decreases by 1, yet the size

of Ti remains una�ected in Cases 2 and 3. Thus Case 1 can be applied at most |T0| times. On

the other hand, the number of leaves in Ti decreases by 1 during every application of Cases 2 or

3, so the number of times Cases 2 or 3 can be applied consecutively without applying Case 1 is

at most the number of vertices at that particular stage. Hence the total number of applications

is at most |T0|(|T0|+1)/2, which proves that the process must terminate in a �nite time.

Let T0, . . . , Tt be the sequence of reductions obtained during the process, and let a be the

number of times Case 1 is applied. Since gi ≥ gi−1− 1 whenever Case 1 is applied, gi ≥ gi−1 + 2

whenever Case 2 is applied and gi ≥ gi−1 whenever Case 3 is applied, it follows that gt ≥ g0− a.
On the other hand, note that |Ci| = |Ci−1| whenever Case 3 is applied, yet |Ci| = |Ci−1| − 1

whenever Cases 1 or 2 are applied. Since |Ct| ≥ 0 and |C0| = r + 1, it follows that a ≤ r + 1.

Thus we must have gt ≥ g0 − (r + 1). Since Xt = Lt and X0 = ∅, it follows that

|Tt| − 3 |Lt| − 3 |Ct| ≥ |T0| − 3 |C0| − (r + 1) .

Since |T0| = |T | − r and |C0| = r + 1, it follows that

|Tt| − 3 |Lt| − 3 |Ct| ≥ |T | − 5r − 4.

Since Tt is a reduction of T , this completes the proof.

5.3.2 Delayed version of the game

Let Tt, Ct and Lt be the reduction provided by Lemma 42 and let r be the number of edges

claimed by Isolator during the �rst phase of the game. Then Lemma 41 implies that we have

α (T ) ≥ r + α (Tt, Ct, Lt). Since |Tt| − 3 |Lt| − 3 |Ct| ≥ |T | − 5r − 4, it su�ces to prove that

for all trees T with n vertices, l leaves and for any set of edges C ⊆ E we have α (T,C, L) ≥⌊
n−3l−3|C|+7

5

⌋
.

However, for the purposes of the inductive proof it turns out to be convenient to prove a

slightly stronger statement. Recall that O is the set of occupied vertices, and since X = L it

follows that O is the set of those vertices of degree at least 2 which are an endpoint of an edge

in C. Our aim is to prove the following result.

Lemma 43. Let T be a tree with n vertices and l leaves. Let O be the set of occupied vertices of

T and let C ⊆ E. Then we have

α (T,C, L) ≥
⌊
n− 3l − 3 |C|+ 7 +

∑
v∈O (d (v)− 2)

5

⌋
. (5.5)

In particular, it follows that α (T,C, L) ≥
⌊
n−3l−3|C|+7

5

⌋
.

The proof is an inductive proof �rst on the size of T and then on the number of leaves in T ;

however, for simplicity one could view it just as an inductive proof on the size of T . Given a
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tree T whose leaves are touched and with some edges claimed by Toucher at the start, our aim

is to either �nd suitable edges for Isolator that can help to isolate some vertices, or �nd suitable

substructures of the tree with many touched edges that could be removed without deleting too

many vertices that could possibly be isolated. In either case, our aim is to reduce the size of T

without reducing the lower bound.

The structures we are in general looking for are two neighbouring vertices of degree 1 or 2,

as near such vertices T behaves similarly compared to a path. If no such substructure exists, it

follows that the vertices of degree 1 or 2 must be spread out. In particular, there must be vertices

of higher degree, which implies that T contains plenty of leaves. The aim of the next Lemma is

to make this argument precise. As a consequence, it turns out that if no suitable substructure

of T exist, then lower bound of (5.5) cannot be positive, and hence the claim is certainly true.

Since there are several substructures we are considering, the proof splits into many cases and

the proofs of some cases are rather long. This is due to the fact that for each substructure,

the proof often splits into multiple subcases based on the structure of T on vertices near the

substructure. In general, the proofs are fairly easy within each case, and similar ideas are

repeatedly used in di�erent cases. In a sense, the most di�cult idea is to come up with a

suitable lower bound in (5.5) that is strong enough for an inductive argument.

Lemma 44. Let T be a tree with n ≥ 3 vertices containing no two adjacent vertices of degree 2

and no leaf adjacent to a vertex of degree 2. Then T contains at least n+5
3 leaves.

Proof. Let di be the number of vertices of degree i in T . Since a tree on n vertices contains n−1

edges, it is easy to verify that we have

n∑
i=1

idi = 2 (n− 1) (5.6)

and

d1 = 2 +

n∑
i=3

(i− 2) di. (5.7)

Let X be the set of vertices in T which have degree 1 or 2, and let Y be the set of vertices in

T which have degree at least 3. Note that there are no edges inside X. Indeed, trivially no two

leaves can be adjacent in any tree with at least 3 vertices, and by assumption no leaf is adjacent

to a vertex of degree 2 and no two vertices of degree 2 are adjacent. Hence it follows that

d1 + 2d2 = e (X,Y ) ≤
∑
y∈Y

d (y) =

n∑
i=3

idi. (5.8)

Thus (5.6) with (5.8) imply that
n∑
i=3

idi ≥ n− 1.

Since we have 3 (i− 2) ≥ i for all i ≥ 3, it follows that

n∑
i=3

(i− 2) di ≥
1

3

n∑
i=3

idi ≥
n− 1

3
.
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Thus (5.7) implies that d1 ≥ 2 + n−1
3 = n+5

3 , which completes the proof.

Now we are ready to prove Lemma 43.

Proof of Lemma 43. The proof is by induction on n, and for a �xed n we also induct on the

number of leaves. Let C = {e1, . . . , ek} be the set of edges claimed by Toucher at the start of

the game, and for convenience we write l = |L| and k = |C| throughout the proof. We start by

checking the base cases. For a �xed n, note that the claim follows if T is a path by Theorem

36. Hence for a given n, the base case for the induction on the number of leaves holds. Thus we

may always assume that T is not a path.

Next we prove that the claim holds whenever n ≤ 5. Since T is not a path, we must have

l ≥ 3. Note that we always have
∑

v∈O (d (v)− 2) ≤
∑

v 6∈L (d (v)− 2) = l − 2. Hence for n ≤ 5

and l ≥ 3 we have

n+ 7− 3l − 3k +
∑
v∈O

(d (v)− 2) ≤ n+ 5− 2l ≤ 4,

which completes the proof, since we always have α (T,C, L) ≥ 0. Thus, from now on, we may

assume that T has at least 6 vertices and that T is not a path.

We split the proof into cases based on whether T contains suitable substructures. At the

end we verify by using Lemma 44 that if T contains none of these substructures, we must have

n− 3l − 3k + 7 +
∑

v∈O (d (v)− 2) < 5, in which case the claim follows trivially.

In the �rst four cases we consider the situations when C contains two edges that are `close'

to each others or when C contains an edge close to a leaf. In those cases we prove that a suitable

part of the tree can be removed already before the start of the game in a way that the resulting

tree is a reduction of the original tree, and so that this reduction does not decrease the score. In

particular, note that we have D = I = ∅ in such cases. In the remaining two cases we consider

situations when T contains su�ciently many neighbouring vertices of degree 2. In such cases

Isolator can increase the score by claiming the edges joining such vertices.

Let us �rst focus on those cases in which we can simply reduce T before the game starts.

Given a reduction T1 of T with appropriate sets C1, L1 and D1 = ∅, for convenience we de�ne
d (k) = |C| − |C1|, d (l) = |L| − |L1|, d (n) = |T | − |T1| and

d (s) =
∑
v∈O

(dT (v)− 2)−
∑
v∈O1

(dT1 (v)− 2) .

For v ∈ V (T ), we de�ne

ds (v) = (dT (v)− 2) I {v ∈ O} − (dT1 (v)− 2) I {v ∈ O1} ,

where as usual I denotes the indicator function of an event, and note that we have

d (s) =
∑

v∈V ∪V1

ds (v) .

Finally, we de�ne D (T, T1) = d (n)− 3d (l)− 3d (k) + d (s). Note that this also depends on the

sets C and C1, but the dependence will not be highlighted in the notation as these sets are clear

85



Figure 5.1: Construction of T1. Red rigid edges are edges in T which are replaced with red
dotted edges.
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from the context.

Let

S (T ) =

⌊
n− 3l − 3k + 7 +

∑
v∈O (d (v)− 2)

5

⌋
,

and again note that S also depends on C. If d (n) > 0, the inductive hypothesis implies that

we have α (T1, C1, L1) ≥ S (T1). If we also had D (T, T1) ≤ 0, it would certainly follow that

S (T1) ≥ S (T ). Since T1 is a reduction of T , Lemma 41 implies that α (T,C, L) ≥ α (T1, C1, L1),

as D = ∅ implies that I = ∅. Combining these together, we obtain that α (T,C, L) ≥ S (T ).

Thus we can conclude that when |T | > |T1|, the inductive step follows if we can prove that

D (T, T1) ≤ 0. We now move on to considering various substructures of T .

Case 1 . T contains an unoccupied vertex of degree 2 both of whose neighbours are touched.

Since n ≥ 3, it follows that either both of the vertices are occupied, or one of them is occupied

and the other is a leaf. We start by reducing the �rst case to the second case.

Let v be the unoccupied vertex of degree 2, and let u and w be the neighbours of v. By

the assumption we know that u and w are occupied. Let N (u) \ {v} = {u1, . . . , ur}. Since u is

occupied and v is unoccupied, there exists j for which we have uuj ∈ C. Let a be a leaf in T so

that every path from a to u must go through w. Consider T1 obtained by deleting all the edges

with u as an endpoint apart from the edge uv and adding the edges au1, . . . aur, as illustrated in

Figure 5.1. We also set C1 to be the set containing all the edges in C that do not have u as an

endpoint, and together with the edges of the form aui for those i for which we also have uui ∈ C.
It is easy to see that T1 is a reduction of T by taking fE (uui) = aui. Indeed, this follows

from the fact that a is touched in T1 as auj ∈ C. It is also easy to check that we have d (k) = 0

and d (n) = 0. We also have L1 = (L \ {a})∪{u}, which implies that d (l) = 0. Note that a and

u are the only vertices whose degrees are a�ected during the process. Since we have ds (a) = 1−r
and ds (u) = r − 1, it follows that d (s) = 0. In particular, we have S (T ) = S (T1), and thus by

Lemma 41 it su�ces to only consider the case when one of the neighbours is a leaf.

Hence we may assume that T contains an unoccupied vertex v of degree 2 with neighbours

u and w so that u is a leaf and w is occupied. Let w1 be chosen so that ww1 ∈ C. Since T

has at least 6 vertices, we must have d (w) + d (w1) ≥ 4. We start by considering the cases

86



Figure 5.2: Construction of T1 when d (w) + d (w1) ≥ 5 and c = 0. Red rigid edge is the edge in
T that is replaced with the red dotted edge.
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corresponding to d (w)+d (w1) = 4, and it is easy to check that this condition is satis�ed exactly

when (d (w) , d (w1)) ∈ {(2, 2) , (3, 1)}.
If d (w) = d (w1) = 2, consider T1 obtained by deleting the vertices u, v and w, and by

taking C1 = C \ {ww1}. Since w1 is a leaf in T1, it follows that T1 is a reduction of T . Since

L1 = (L \ {v}) ∪ {w1}, it follows that d (l) = 0. It is also easy to check that we have d (n) = 3,

d (k) = 1 and d (s) = 0. Thus we have D (T, T1) = 0, and since |T | > |T1| the claim follows by

induction.

If d (w) = 3 and d (w1) = 1, let x be chosen so that N (w) = {x, v, w1}. Consider T1 obtained
by deleting the vertices u, v and w1, and by taking C1 = C \ {ww1}. Since NT (w) = {x, v, w1},
it follows that w is a leaf in T1, and hence T1 is a reduction of T . Note that we have L1 =

(L \ {u,w1})∪{w}, and w is the only vertex whose degree is a�ected during the process. Hence

we have d (n) = 3, d (l) = 1 and d (k) = 1, and since ds (w) = 1 we also have d (s) = 1. Hence it

follows that D (T, T1) = −2, and since |T | > |T1| the claim follows by induction.

Now suppose that we have d (w) + d (w1) ≥ 5. Let N (w1) \ {w} = {a1, . . . , ac} and N (w) \
{v, w1} = {ac+1, . . . , ad} where one of these sets might be empty. Note that the condition

d (w) + d (w1) ≥ 5 implies that we have d ≥ 2. Consider T1 obtained by deleting the vertices

u and v, and by taking E (T1) to be the set of those edges in T that do not have w or w1 as

their endpoint together with the edges ww1, w1a1 and wai for 2 ≤ i ≤ d. See Figure 5.2 for

illustration when c = 0. Finally, we take C1 to be the set containing the edge ww1, all the edges

in C that do not have w or w1 as an endpoint, and the unique edge in {wai, w1ai} ∩ E (T1) for

those i for which the one of wai or w1ai that is an edge in T is also contained in C. In particular,

it follows that |C1| = |C|.
Note that T1 is a reduction of T by taking f (wai) = a1ai for all 2 ≤ i ≤ c since both w and

w1 are touched in T and T1. It is easy to check that we have d (n) = 2, d (l) ≥ 1 and d (k) = 0.

It is also easy to see that the only vertices whose degrees are a�ected are v, w and w1. We have

ds (v) = 0, ds (w) = (d− c) − (d− 1) = 1 − c and ds (w) = max (c− 1, 0) − 0 ≤ c as c ≥ 0. In

particular, it follows that d (s) ≤ 1, and hence we have D (T, T1) ≤ 0. Since |T | > |T1|, the claim
follows by induction. This completes the proof of Case 1.

Case 2 . T contains an edge e 6∈ C both of whose endpoints are touched.

There are again two possibilities: either both endpoints of e are occupied or one of them is

occupied and the other one is a leaf. By using the same argument as in the proof of Case 1, we
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may assume that one of the endpoints is occupied and the other one is a leaf. Let u and v be

the endpoints of e so that u is a leaf and v is occupied, and let w be chosen so that vw ∈ C.
Again, we split the proof into cases based on the size of d (v) + d (w), and since T has at least 6

vertices, we have d (v) + d (w) ≥ 4. Again, the condition d (v) + d (w) = 4 implies that we have

(d (v) , d (w)) ∈ {(2, 2) , (3, 1)}.
If d (v) = d (w) = 2, consider T1 obtained by deleting the vertices u and v, and by taking

C1 = C \ {vw}. Since dT (w) = 2, it follows that w is a leaf in T1, and hence T1 is a reduction of

T . It is easy to check that we have d (n) = 2, d (l) = 0 and d (k) =1. Since w is the only vertex

whose degree is a�ected during the process and ds (w) = 0, it follows that d (s) = 0. Hence we

have D (T, T1) = −1, and since |T | > |T1| the claim follows by induction.

If d (v) = 3 and d (w) = 1, let T1 be the tree obtained by deleting the vertices u and w, and

by taking C1 = C \ {vw}. Since v is a leaf in T1, it follows that T1 is a reduction of T . It is easy

to check that we have d (n) = 2, d (l) = 1 and d (k) = 1. Note that v is the only vertex whose

degree is a�ected during the process, and since ds (v) = 1 it follows that d (s) = 1. Hence we

have D (T, T1) = −3, and since |T | > |T1| the claim follows by induction.

Finally, suppose that d (v) + d (w) ≥ 5. Let N (v) \ {u,w} = {a1, . . . , ac} and N (w) \ {v} =

{ac+1, . . . , ad}, where one of these sets might be empty. Note that the condition d (v)+d (w) ≥ 5

implies that we have d ≥ 2. Consider T1 obtained by deleting the vertex u, and similarly as in

the proof of Case 1 we take E (T1) to be the set of those edges in T that do not have v or w as

their endpoint together with the edges vw, va1 and wai for 2 ≤ i ≤ d. Again, we choose C1 to

be the set containing the edge vw, all the edges in C that do not have v or w as an endpoint,

and for those i for which the one of vai or wai that is an edge in T is also in C, the unique edge

in {vai, wai} ∩ E (T1) is also included in C1. As before, we have |C1| = |C|. As in the proof of

Case 1, since v and w are occupied in both T and T1, it follows that T1 is a reduction of T by

taking fE (vai) = wai for all 2 ≤ i ≤ c.
Note that we have d (n) = 1, d (l) ≥ 1 and d (k) = 0. Since v and w are the only vertices

whose degrees are a�ected during the process, and since we have ds (v) = c and ds (w) =

max (d− c− 1, 0)− (d− 2) ≤ 2− c, it follows that d (s) ≤ 2. Hence we have D (T, T1) ≤ 0, and

since |T | > |T1| the claim follows by induction. This completes the proof of Case 2.

Case 3 . There exists an edge e ∈ C whose endpoint is a leaf.

Let u and v be the endpoints of e with u being a leaf. First suppose that we have d (v) = 2.

Let T1 be the tree obtained by deleting the vertex u, and by taking C1 = C \ {uv}. Since v is

touched in both T1 and T , it follows that T1 is a reduction of T . It is easy to check that we have

d (n) = 1, d (l) = 0, d (k) = 1 and d (s) = 0. Thus we have D (T, T1) = −2, and since |T | > |T1|
the claim follows by induction.

Now suppose that we have d (v) ≥ 3, and let N (v)\{u} = {v1, . . . , vc} where c ≥ 2. Consider

T1 obtained by replacing the edge vv1 with uv1 and by taking C1 to be the set of all edges in C

that are also edges in T1, and if vv1 ∈ C then uv1 is also included in C1. It is easy to see that

T1 is a reduction of T by taking fE (vv1) = uv1 since u and v are touched vertices in T1 and

T . It is easy to check that we have d (n) = 0, d (l) = 1 and d (k) = 0. Note that u and v are

the only vertices whose degrees are a�ected during the process, and we clearly have ds (v) = 1

and ds (u) = 0. Hence it follows that d (s) = 1, and thus we have D (T, T1) = −2 ≤ 0. Since
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Figure 5.3: Construction of T1. Red rigid edges are edges in T which are replaced with red
dotted edges.
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the number of vertices remains the same and the number of leaves decreases by one, the claim

follows by induction. This completes the proof of Case 3.

Case 4 . There exist distinct edges ei, ej ∈ C which have a common endpoint.

Let u be the common endpoint of ei and ej , and let v and w be the other endpoints respec-

tively. By Case 3, we may assume that neither of v or w is a leaf. Let N (u)\{v, w} = {v1, . . . , vr}
with possibly r = 0. Consider T1 obtained by removing the vertex u together with all the edges

that have u as an endpoint, and by adding the edges vw and vvi for all 1 ≤ i ≤ r as illustrated

in Figure 5.3. It is easy to check that T1 is a tree. Let C1 be the set containing the edge vw,

all the edges in C that do not have u as an endpoint and all the edges vvi for those i for which

we also have uvi ∈ C. Since both u and v are touched, it follows that T1 is a reduction of T by

taking fE (uvi) = vvi for all i.

It is easy to check that we have d (n) = 1, d (l) = 0 and d (k) = 1. Note that the only vertices

whose degrees are a�ected during the process are u, v and w. Since neither of v or w is a leaf,

it is easy to check that ds (u) = r, ds (v) = (dT (v)− 2)− (dT (v) + r − 2) = −r and ds (w) = 0.

In particular, it follows that d (s) = 0, and hence we have D (T, T1) = −2. Since |T | > |T1|, the
claim follows by induction, and this completes the proof of Case 4.

From now on, we suppose that T contains no con�guration described in Cases 1-4, and hence

the edges in C are suitably `isolated'. We now consider the cases when T contains two adjacent

vertices of degree 2 that are both unoccupied. In such case the edges incident with these two

vertices could be suitable moves for Isolator. Our aim is to describe a sequence of moves for

Isolator that allows her to increase the score in a way that the resulting tree (together with the

new moves) has a reduction with su�ciently large score.

From now on, we change our notation slightly: let C ′ denote the set of edges claimed by

Toucher at the start of the delayed game and let O′ be the set of occupied vertices at the start of

the delayed game. Let D be the set of edges claimed by Isolator during the new moves, and let

Ĉ be the set of edges claimed by Toucher during the new moves, and for convenience we write

Ĉ =
{
f1, . . . , f|D|

}
. Finally, we set C = C ′ ∪ Ĉ, and hence C is the set of edges claimed by

Toucher at the end of the process, i.e. once the new moves have been played.

In all the cases we are about to consider, the edges in D form a path in T so that all the

vertices on this path apart from the endpoints have degree 2 in T , and the endpoints have degree

at least 3 or are touched at the end of the process. In particular, it follows that the number of

vertices isolated during the process is exactly |D| − 1.
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Our aim is again to seek for a suitable reduction T1 of T for these choices of C, D and

X = L, and as usual we require that D1 = ∅ and X1 = L1. Since there are exactly |D| − 1

isolated vertices, Lemma 41 implies that we have α (T,C,D,L) ≥ (|D| − 1) + α (T1, C1, D1, L1).

If |T | > |T1|, the inductive hypothesis implies that α (T1, C1, D1, L1) ≥ S (T1). Note that during

the process of claiming new edges we �x a suitable strategy for Isolator, but we allow Toucher to

play arbitrary edges on her moves. Hence it follows that α (T,C ′, L) ≥ α (T,C,D,L), as playing

the edges in D corresponds to a certain choice of strategy, which may or may not be optimal.

De�ne d (n) = |T | − |T1|, d (l) = |L| − |L1|, d (k) = |C| − |C ′| and let

d (s) =
∑
v∈O′

(d (v)− 2)−
∑
v∈O

(d (v)− 2) .

In particular, note that d (k) and d (s) are de�ned for the initial set-up of the delayed game, and

not for the set-up containing the new edges that are played. As before, we de�ne D (T, T1) =

d (n) − 3d (l) − 3d (k) + d (s). Again, if we had D (T, T1) ≤ 5 (|D| − 1), it would follow that

S (T1, C1) + (|D| − 1) ≥ S (T,C ′) and hence it would follow that α (T,C ′, L) ≥ S (T,C ′), where

the dependence on the set of claimed edges C ′ is highlighted in the notation for clarity. Hence

our aim is to prove that we always have D (T, T1) ≤ 5 (|D| − 1).

We now focus on the unoccupied vertices of degree 2. First we consider a case when there

exists such an unoccupied vertex whose neighbour is a touched vertex, although this case splits

into a large number of subcases. Note that if no such unoccupied vertex of degree 2 exists, then

by following a path of unoccupied vertices of degree 2 it follows that both of the endpoints of

such paths are unoccupied vertices of degree at least 3, and not touched vertices.

Case 5 . There exists an unoccupied vertex of degree 2 whose neighbour is touched.

Let v1 be an unoccupied vertex of degree 2 and let v0 be the neighbour of v1 that is touched.

Note that by using the same argument as in the proof of Case 1 we may assume that v0 is a leaf.

We start by constructing a sequence of vertices v0, v1, . . . , vm as follows: given an unoccupied

vertex vi of degree 2 with vi−1vi ∈ E, let vi+1 be chosen so that we have N (vi) = {vi−1, vi+1}.
Let m denote the index for which the process stops, i.e. m is the least positive integer for which

vm is touched or d (vm) ≥ 3. Since v1 is an unoccupied vertex of degree 2, it follows that m ≥ 2.

We now split the proof into main cases which mostly depend on the value of m. For conve-

nience, we say that a vertex v is initially touched if v is touched in the initial set-up. That is, if

v is unoccupied on the initial board but v is an endpoint of one of the edges claimed by Toucher

once the game has started, we do not consider v to be initially touched vertex (and we say that

v is initially untouched).

Case 5.1 . m = 2.

Note that v2 cannot be touched by Case 1. Hence by the choice of m we must have d (v2) ≥ 3.

Suppose that Isolator claims the edge v1v2 on her �rst move. If Toucher claims the edge v0v1 on

her �rst move, we stop. Otherwise, Isolator claims the edge v0v1 on her second move, and we

stop after Toucher's second move.

First consider the case when Isolator managed to claim both of these edges, and consider T1

obtained by deleting the vertices v0 and v1. We set C1 = C ′ ∪ {f1, f2}, and recall that f1 and

f2 are the edges claimed by Toucher on her two moves. It is easy to see that T1 is a reduction
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of T , and we have d (n) = 2, d (l) = 1 and d (k) = −2. Note that v2 is the only vertex whose

degree changes during the process, and v2 is initially unoccupied. Hence we have d (s) ≤ 0, as

the additional two moves given to Toucher can only decrease the value of d (s). Since |D| = 2, it

follows that D (T, T1) = 5 ≤ 5 (|D| − 1).

Now suppose that Toucher claimed the edge v0v1. Again, consider T1 obtained by deleting

the vertices v0 and v1, but in this case we take C1 = C ′. It is easy to see that T1 is a reduction

of T , and similarly we have d (n) = 2, d (l) = 1, d (k) = 0 and d (s) = 0. Indeed, in this case

we have d (s) = 0, as Toucher claimed the edge v0v1 on her move. Since |D| = 1, it follows that

D (T, T1) = −1 ≤ 5 (|D| − 1).

Case 5.2 . m = 3 and v3 is initially touched.

Since T is a tree with least 6 vertices, it follows that v3 cannot be a leaf, and hence v3 is

occupied. Suppose that Isolator claims the edge v1v2 on her �rst move and one of the edges in

{v0v1, v2v3} on her second move. If Toucher has claimed the other one of these edges on one of

her �rst two moves, the process stops after Toucher's second move. Otherwise, Isolator claims

the other edge in {v0v1, v2v3}, and the process stops after Toucher's third move. The rest of our

analysis splits into cases based on the number of neighbours of v3.

Case 5.2.1 . d (v3) = 2.

Let v4 be chosen so that d (v3) = {v2, v4}. Since v3 is occupied, it follows that v3v4 ∈ C. We

also need to split the proof into cases based on the number of neighbours of v4, and note that v4

cannot be a leaf as T contains at least 6 vertices.

Case 5.2.1.1 . d (v4) = 2.

Let T1 be the tree obtained by deleting the vertices v0, v1, v2 and v3, and let C1 be the set

of those edges in C that are not deleted during the process. Since v4 is a leaf in T1 and occupied

in T , it follows that T1 is a reduction of T .

First suppose that Isolator claimed all three edges in {v0v1, v1v2, v2v3}. Since v4 is a leaf in

T1 and the edge v3v4 ∈ C is deleted during the process, it is easy to check that we have d (n) = 4,

d (l) = 0, d (k) = −2 and d (s) ≤ 0, as the new edges claimed by Toucher cannot increase the

value of d (s). Hence it follows that D (T, T1) ≤ 10 = 5 (|D| − 1).

Now suppose that Isolator claimed only two such edges. Hence one of the edges in

{v0v1, v1v2, v2v3} must be claimed by Toucher, and this edge is deleted together with the edge

v3v4 ∈ C. Hence it is easy to check that we have d (n) = 4, d (l) = 0, d (k) = 0 and d (s) ≤ 0,

and thus it follows that D (T, T1) ≤ 4 < 5 (|D| − 1).

Case 5.2.1.2 . d (v4) ≥ 3.

Let N (v4) \ {v3} = {u1, . . . , ua} where a ≥ 2. Let T1 be the tree obtained by deleting the

vertices v0, v1 and v2, and by replacing the edge v4u1 with v3u1. Let C1 be the set of all edges

in C that are also edges in T1, and if v4u1 ∈ C the edge v3u1 is also added to C1. Hence T1

is a reduction of T by taking f (v4u1) = v3u1. Note that the only vertices whose degrees are

a�ected during the process are v3 and v4, and it is easy to check that we have ds (v3) = 0 and

ds (v4) = (a+ 1− 2) − (a− 2) = 1. In particular, it follows that d (s) ≤ 1, and we also have

d (n) = 3 and d (l) = 1.
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If Isolator claimed all three edges, it follows that d (k) = −3. Hence we have D (T, T1) ≤
10 = 5 (|D| − 1). If Isolator claimed only two such edges, it follows that d (k) = −1. Hence we

have D (T, T1) ≤ 4 < 5 (|D| − 1).

Case 5.2.2 . d (v3) ≥ 3.

Let T1 be the tree obtained by deleting the vertices v0, v1 and v2, and note that T1 is a

reduction of T . Since v3 is the only vertex whose degree is a�ected during the process and

ds (v3) = 1, it follows that d (s) ≤ 1. We also have d (n) = 3.

If Isolator claimed all three edges, it follows that d (l) = 1 and d (k) = −3. Hence we have

D (T, T1) = 10 ≤ 5 (|D| − 1). If Isolator claimed only two such edges, it follows that d (l) = 1

and d (k) = −1. Hence we have D (T, T1) ≤ 4 < 5 (|D| − 1).

Case 5.3 . m = 3 and v3 is initially unoccupied.

Since v3 is initially unoccupied and m = 3, it follows that d (v3) ≥ 3. Again, suppose that

Isolator claims the edge v1v2 on her �rst move and one of the edges in {v0v1, v2v3} on her second

move. If Toucher has occupied the other one of these edges on her �rst two moves, the process

stops after the second move of Toucher. Otherwise, Isolator claims the other one of these edges

on her third move, and the process tops after the third move of Toucher.

First suppose that Isolator claimed all three edges, and let T1 be the tree obtained by deleting

the vertices v0, v1 and v2, and by taking C1 = C. Then T1 is a reduction of T , and the only

vertex whose degree is a�ected during the process is v3. Since v3 6∈ O′ it follows that d (s) ≤ 0,

and it is also easy to check that we have d (n) = 3, d (l) = 1 and d (k) = −3. Hence it follows

that D (T, T1) ≤ 9 < 5 (|D| − 1).

If Isolator claimed only the edges v1v2 and v2v3, consider the same reduction T1 as in the

previous case, and again we take C1 to be the set of those edges in C that are also edges in

T1. Again, it is easy to see that T1 is indeed a reduction of T , as the edge v2v3 is occupied by

Isolator. It is also easy to check that we have d (n) = 3, d (l) = 1, d (k) = −1 and d (s) ≤ 0, and

hence it follows that D (T, T1) ≤ 3 < 5 (|D| − 1).

Finally, suppose that Isolator claimed only the edges v0v1 and v1v2. Let N (v3) \ {v2} =

{u1, . . . , ua} where a ≥ 2. Consider T1 obtained by deleting the vertices v0 and v1, and replacing

the edge v3u1 with v2u1, and by taking C1 to be the set containing all the edges in C that are

also in T1, and if v3u1 ∈ C then v2u1 is also added to C1. Since both v2 and v3 are touched, it

follows that T1 is a reduction of T by taking fE (v3u1) = v2u1.

Note that v2 and v3 are the only vertices whose degrees are a�ected during the process. Since

both of them are initially unoccupied, it follows that d (s) ≤ 0. It is easy to check that we have

d (n) = 2, d (l) = 1 and d (k) = −2. Hence we have D (T, T1) ≤ 5 = 5 (|D| − 1).

Case 5.4 . m ≥ 4.

Suppose that Isolator claims the edge v2v3 on her �rst move. Suppose that before a given move

of Isolator the set of the edges claimed by Isolator is of the form {vivi+1, vi+1vi+2, . . . , vjvj+1}
for some i ≤ 2 and 2 ≤ j ≤ m−1. If j < m−1 and if the edge vj+1vj+2 is still available, Isolator

claims this edge on her next move. Otherwise, if i ≥ 1 and the edge vi−1vi is still available,

Isolator claims this edge on her next move. If neither of these edges is available, the process

stops.
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Let D = {vivi+1, . . . , vjvj+1} be the set of edges claimed by Isolator at the end of the process.

In particular, we have |D| = j− i+ 1. Hence the number of isolated vertices is j− i as the set of
isolated vertices is {vi+1, . . . , vj}. Note that we always have i ≤ 2, 2 ≤ j ≤ m− 1 and j − i ≥ 1,

as Toucher cannot claim both of the edges v1v2 and v3v4 on her �rst move. We now split the

proof into multiple cases, mostly based on the value of j but sometimes also based on whether

vm is touched or d (vm) ≥ 3.

Case 5.4.1 . j < m− 2.

Since j 6= m − 1 at the end of the process, it follows that Toucher has claimed the edge

vj+1vj+2 on one of her moves. Let T1 be the tree obtained by deleting the vertices v0, . . . , vj+1,

and by taking C1 to be the set of those edges in C that are also edges in T1. Since j < m− 2, it

follows that vj+2 is a leaf in T1. Hence T1 is a reduction of T , and it is easy to see that we have

d (n) = j + 2, d (l) = 0 and d (s) ≤ 0.

First suppose that we have i ∈ {1, 2}. Hence Toucher has claimed at least one of the edges

in {v0v1, v1v2}, and also note that the edge vj+1vj+2 claimed by Toucher is deleted. Since

Toucher has claimed exactly j − i+ 1 edges outside C ′ on her new moves, it follows that d (k) ≥
(i− j − 1) + 2 = 1 + i− j. Hence we have D (T, T1) ≤ 4j − 3i− 1, and by using the facts that

i ≤ 2 and j − i ≥ 1 we obtain that 5 (|D| − 1)−D (T, T1) ≥ j − 2i+ 1 ≥ 0.

Now suppose that we have i = 0. In this case it follows that d (k) = −j, as vj+1vj+2 is the

only deleted edge claimed by Toucher. Hence we have D (T, T1) ≤ 4j + 2, and since j ≥ 2, it

follows that D (T, T1) ≤ 5j = 5 (|D| − 1).

Case 5.4.2 . j = m− 2 and d (vm) = 2.

Since d (vm) = 2, it follows that vm is initially touched by the de�nition of m. Again, since

j 6= m−1, at the end of the process, Toucher has claimed the edge vm−1vm on one of her moves.

Let T1 be the tree obtained by deleting the vertices v0, . . . , vm−1, and by taking C1 to be the set

of those edges in C that are also edges in T1. Since d (vm) = 2, it follows that vm is a leaf in

T1. Hence T1 is a reduction of T , and it is easy to check that we have d (n) = m, d (l) = 0 and

d (s) ≤ 0.

If i ∈ {1, 2}, it follows that d (k) ≥ 1 + i − j = 3 + i −m by using the same argument as

in the proof of Case 5.4.1. Hence we have D (T, T1) ≤ 4m − 3i − 9, and thus it follows that

5 (|D| − 1) − D (T, T1) ≥ m − 2i − 1. Since j ≥ i + 1 and i ≤ 2, it follows that m = j + 2 ≥
i+ 3 ≥ 2i+ 1. If i = 0, it follows that d (k) = −j = 2−m. Hence we have D (T, T1) ≤ 4m− 6,

and since m = j + 2 ≥ 4, it follows that D (T, T1) ≤ 5 (m− 2) = 5 (|D| − 1).

Case 5.4.3 . j = m− 2 and d (vm) ≥ 3.

Since j 6= m − 1, Toucher has claimed the edge vm−1vm on one of her moves. Let N (vm) \
{vm−1} = {u1, . . . , ua} where a ≥ 2. Consider T1 obtained by removing the vertices v0, . . . , vm−2,

and by replacing the edge vmu1 with vm−1u1. Let C1 be the set of those edges in C that are

also edges in T1, and if vmu1 ∈ C then vm−1u1 is also added to C1. It is easy to see that T1 is a

reduction of T by taking f (vmu1) = vm−1u1, as both vm−1 and vm are touched.

If vm is initially unoccupied, it is clear that we have d (s) ≤ 0. Otherwise, we have ds (vm) =

(a+ 1− 2) − (a− 2) = 1 and ds (vm−1) = 0. Hence it follows that d (s) ≤ 1 in either case. We

also have d (n) = m− 1 and d (l) = 1.
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If i ∈ {1, 2}, Toucher has claimed at least one of the edges v0v1 or v1v2, and hence we have

d (k) ≥ i− j = i+ 2−m. Hence it follows that D (T, T1) ≤ 4m− 3i− 9, and hence we have

5 (|D| − 1)−D (T, T1) ≥ 5 (m− 2− i)− (4m− 3i− 9) = m− 2i− 1.

By using m = j + 2 ≥ i+ 3 and i ≤ 2, it follows that D (T, T1) ≤ 5 (|D| − 1).

If i = 0, we have d (k) = −j − 1 = 1 −m. Hence it follows that D (T, T1) ≤ 4m − 6. Since

m ≥ 4, we have D (T, T1) ≤ 5 (m− 2) = 5 (|D| − 1).

Case 5.4.4 . j = m− 1 and d (vm) ≥ 3.

Let T1 be the tree obtained by deleting the vertices v0, . . . , vm−1. Since Isolator has occupied

all the edges vivi+1, . . . , vm−1vm, it follows that T1 is a reduction of T regardless of whether vm

is touched or not. Since vm is the only vertex whose degree is a�ected during the process and

dT1 (vm) = dT (vm)− 1, it follows that d (s) ≤ 1. We also have d (n) = m and d (l) = 1.

If i ∈ {1, 2}, it follows that d (k) ≥ i+ 1−m. Hence we have D (T, T1) ≤ 4m− 3i− 5, and

thus it follows that

5 (|D| − 1)−D (T, T1) ≥ 5 (m− i− 1)− (4m− 3i− 5) = m− 2i.

Combining this with m ≥ 4 and i ≤ 2, we obtain that D (T, T1) ≤ 5 (|D| − 1).

If i = 0, it follows that d (k) = −m. Hence we have D (T, T1) ≤ 4m− 2, and since m ≥ 4, it

follows that D (T, T1) ≤ 5 (m− 1) ≤ 5 (|D| − 1).

Case 5.4.5 . j = m− 1 and d (vm) ≤ 2.

Since d (vm) ≤ 2, the de�nition of m implies that vm is touched. Since T is not a path, we

must have d (vm) = 2. Let vm+1 be chosen so that N (vm) = {vm−1, vm+1}. Since vm is touched

and vm−1vm 6∈ C, it follows that vmvm+1 ∈ C. We split the proof into subcases based on the

degree of vm+1. Note that vm+1 cannot be a leaf since T is not a path.

Case 5.4.5.1 . d (vm+1) = 2.

Let T1 be the tree obtained by deleting the vertices v0, . . . , vm. Since vm+1 is touched in T

and a leaf in T1, it follows that T1 is a reduction of T . We clearly have d (n) = m+ 1, d (l) = 0

and d (s) = 0.

If i ∈ {1, 2}, it follows that d (k) ≥ − (j − i+ 1)+2 = i−m+2, as at least two edges claimed

by Toucher are deleted during the process, namely vmvm+1 and one of v0v1 or v1v2. Hence we

have D (T, T1) ≤ 4m− 3i− 5, and thus it follows that

5 (|D| − 1)−D (T, T1) ≥ 5 (m− i− 1)− (4m− 3i− 5) = m− 2i.

Again, by using m ≥ 4 and i ≤ 2, we obtain that D (T, T1) ≤ 5 (|D| − 1).

If i = 0, it follows that d (k) ≥ − (j + 1) + 1 = 1−m, and thus we have D (T, T1) ≤ 4m− 2.

Since m ≥ 4, it follows that D (T, T1) ≤ 5 (m− 1) = 5 (|D| − 1).

Case 5.4.5.2 . d (vm+1) ≥ 3.

Let N (vm+1) \ {vm} = {u1, . . . , ua} where a ≥ 2, and let T1 be the tree obtained by deleting

the vertices v0, . . . , vm−1 and by replacing the edge vm+1u1 with vmu1. Let C1 be the set of those
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edges in C that are also edges in T1, and if vm+1u1 ∈ C then vmu1 is also added to C1. Then

T1 is a reduction of T by taking fE (vm+1u1) = vmu1. It is easy to see that we have d (n) = m

and d (l) = 0. Note that vm and vm+1 are the only vertices whose degrees are a�ected during

the process. Since ds (vm+1) ≤ 1 and ds (vm) = 0, it follows that d (s) ≤ 1.

If i ∈ {1, 2}, it follows that d (k) ≥ − (j − i+ 1) + 1 = i+ 1−m. Hence we have D (T, T1) ≤
4m− 3i− 5. Since m ≥ 4 ≥ 2i, it follows that

5 (|D| − 1)−D (T, T1) ≥ 5 (m− i− 1)− (4m− 3i− 5) = m− 2i ≥ 0.

If i = 0, it follows that d (k) = −m, and hence we have D (T, T1) ≤ 4m− 2. Since m ≥ 4, it

follows that D (T, T1) ≤ 5 (m− 1) ≤ 5 (|D| − 1), which completes the proof of Case 5.

Suppose that T does not contain any con�gurations described in Cases 1-5, and let v0, . . . , vm

be a maximal path of vertices in T for which vi is an unoccupied vertex of degree 2 for all

1 ≤ i ≤ m− 1, and for which we have vi ∈ N (vi−1) for all 1 ≤ i ≤ m. Since T does not contain

any con�gurations described in Cases 1-5, it follows that v0 and vm are also unoccupied, and the

maximality assumption implies that we must have d (v0) ≥ 3 and d (vm) ≥ 3. In our �nal case

we suppose that there exists such a path with m ≥ 3.

Case 6 . There exist m ≥ 3 and unoccupied vertices v0, . . . , vm satisfying vi ∈ N (vi−1) for all

1 ≤ i ≤ m, d (vi) = 2 for all 1 ≤ i ≤ m− 1, d (v0) ≥ 3 and d (vm) ≥ 3.

Suppose that Isolator claims the edge v1v2 on her �rst move. Suppose that before a given

move of Isolator, the set of edges claimed by Isolator is of the form {vivi+1, vi+1vi+2, . . . , vjvj+1}
for some i ∈ {0, 1} and j ≤ m−1. If j < m−1 and if the edge vj+1vj+2 is still available, Isolator

claims this edge on her move. Otherwise, if i = 1 and the edge v0v1 is still available, Isolator

claims this edge on her move. If neither of these conditions is satis�ed, the process stops.

Let {vivi+1, . . . , vjvj+1} be the set of edges claimed by Isolator at the end of such process.

Note that we have |D| = j − i + 1, i ∈ {0, 1}, 1 ≤ j ≤ m − 1 and j − i ≥ 1 as Toucher cannot

claim both of the edges v0v1 and v2v3 on her �rst move. We split the proof into several cases

based on the values of i and j.

Case 6.1 . i = 0 and j = m− 1.

Let S be the graph obtained by deleting the vertices v1, . . . , vm−1. It is easy to see that S

consists of two connected components, both of which are trees. Let a and b be leaves chosen

from distinct connected components and let T1 be the tree obtained by adding the edge ab to

the graph S as demonstrated in Figure 5.4, and set C1 = C ∪ {ab}. Note that the set of leaves
in T1 is exactly L \ {a, b} since dT1 (v0) ≥ 3 − 1 = 2 and dT1 (vm) ≥ 3 − 1 = 2. Hence we have

d (l) = 2. Since ab ∈ C1, it follows that T1 is a reduction of T .

Since v0 and vm are initially unoccupied, it is easy to see that we have d (s) ≤ 0. Note that

d (k) = −m − 1, as Toucher has claimed m new edges, and the edge ab is assigned to Toucher.

Finally, it is clear that we have d (n) = m−1. Since m ≥ 3, it follows that D (T, T1) ≤ 4m−4 ≤
5 (m− 1) = 5 (|D| − 1).
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Figure 5.4: Construction of T1. Green edges are edges claimed by Isolator. These edges are
deleted during the process, and the red dotted edge is assigned to Toucher.
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Case 6.2 . i = 0 and j < m− 1.

Since j < m− 1, it follows that Toucher has claimed the edge vj+1vj+2 on one of her moves.

Let S be the graph obtained by deleting the vertices v1, . . . , vj+1, and let a be a leaf in the

component of S containing v0. Consider the tree T1 obtained by adding the edge avj+2 to S, and

de�ne C1 by setting C1 = (C ∪ {avj+2})\{vj+1vj+2}. Note that T1 is a reduction of T as both a

and vj+2 are touched vertices in both T and T1. Finally, note that we have dT1 (v0) ≥ 3− 1 = 2,

and hence we have d (l) = 1.

Note that the only vertices whose degrees are a�ected during the process are a, v0 and vj+2.

Note that ds (a) = 0, and since v0, vj+2 6∈ O′ it follows that d (s) ≤ 0. It is easy to check that we

also have d (n) = j + 1 and d (k) = − (j + 1). Thus we have D (T, T1) ≤ 4j + 1, and since j ≥ 1

it follows that D (T, T1) ≤ 5j = 5 (|D| − 1).

Case 6.3 . i = 1 and j = m− 1.

Note that the case (i, j) = (1,m− 1) is equivalent to the case (i, j) = (0,m− 2), which is

covered by Case 6.2.

Case 6.4 . i = 1 and j < m− 1.

Since i = 1 and j < m − 1, it follows that Toucher has claimed both of the edges v0v1 and

vj+1vj+2. Let T1 be the tree obtained by deleting the vertices v1, . . . , vj+1, and by adding the

edge v0vj+2, and set C1 = (C ∪ {v0vj+2}) \ {v0v1, vj+1vj+2}. Note that T1 is a reduction of T

as both v0 and vj+2 are touched before and after the reduction.

Note that the degree of any vertex that is not deleted is not a�ected during the process.

Since v0 ∈ O′ \O1 and dT1 (v0) = dT (v0) ≥ 3, it follows that ds (v0) ≤ −1. Hence we must have

d (s) ≤ −1. Since the edges v0v1 and vj+1vj+2 claimed by Toucher are deleted during the process

and the edge v0vj+2 is given to Toucher, it follows that d (k) = 1−j, and it is easy to see that we

have d (n) = j+1 and d (l) = 0. Hence it follows thatD (T, T1) ≤ 4j−3. Since |D|−1 = j−1 and

j ≥ i+1 ≥ 2, it follows that we haveD (T, T1) ≤ 5 (|D| − 1), which completes the proof of Case 6.

Note that introducing the term
∑

v∈O (d (v)− 2) in order to strengthen the inductive hy-

pothesis was crucial in the proof of Case 6.4.

Let C = {e1, . . . , ek} be the set of edges claimed by Toucher at the start of the game. Our

aim is to prove that if T together with this particular collection C does not contain any of the
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Figure 5.5: Illustration of one stage of the process. The red edge uv ∈ Ci is deleted, and since
di = 3 the tree splits into 3 components.

u

v

u1

u2

v1

con�gurations described in Cases 1-6, we must have S (T ) ≤ 0. For each 1 ≤ i ≤ k let ei = aibi,

and let di = dT (ai) + dT (bi)− 2.

We say that a graph T is a forest if every connected component of T is a tree. We de�ne a

sequence of forests T0, . . . , Tk and collections of edges C0, . . . , Ck as follows. First of all, we set

T0 = T and C0 = C = {e1, . . . , ek}, and at every stage we have Ci = {ei+1, . . . , ek}.
Given Ti and Ci, letX be the connected component of Ti containing the edge ei, and note that

X is a tree since Ti is a forest. Let Y be the forest consisting of di trees obtained by removing the

vertices ai and bi and the edge aibi, and by adding one new vertex to each connected component

Sj of Y joined by an edge to the vertex of Sj that is a neighbour of ai or bi. Note that such a

vertex always exists in each connected component, and such vertex is also unique since X is a

tree. Finally, we set Ti+1 to be the union of Y and all the components of Ti apart from X. One

stage of the process is illustrated in Figure 5.5.

Note that by Claims 2, 3 and 4 it follows that all a1, . . . , ak, b1, . . . , bk are distinct vertices,

none of them is a leaf in T , and there are no other pairs of neighbours among these vertices apart

from the pairs aibi (before such an edge is deleted). By Claim 1 it follows that every connected

component of Tk contains at least 4 vertices, and also none of the ai or bi is a leaf in any Tj

(before they are deleted).

Note that during the ith step of the process, the number of connected components increases

by di − 1, as one connected component splits into di connected components. Hence the number

of connected components in Tk is

D = 1 +
k∑
i=1

(di − 1) = 1− k +
k∑
i=1

di. (5.9)

Let n1, . . . , nD be the number of vertices in each connected component and let l1, . . . , lD be

the number of leaves in each connected component. Note that during the ith stage of the process,

the number of vertices increases by di − 2, as we delete the vertices ai and bi, and add di new
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vertices that are leaves. Hence we have

D∑
i=1

ni = n+

k∑
i=1

(di − 2) = n− 2k +

k∑
i=1

di. (5.10)

Since none of the vertices a1, . . . , ak, b1, . . . , bk is a leaf at any stage of the process before they

are deleted, it follows that the number of leaves increases by di on the ith stage. Hence we have

D∑
i=1

li = l +
k∑
i=1

di. (5.11)

Let S be a connected component in Tk. Note that if S contains a vertex of degree 2 whose

neighbour is a leaf, we can backtrack the process and �nd a vertex of degree 2 in T whose

neighbour is a touched vertex, which contradicts Case 5. Hence we may assume that no vertex

of degree 2 in S has a leaf as a neighbour.

If S contains two vertices of degree 2 that are neighbours, it follows that there exists a path

of vertices v0, . . . , vt in S for some t ≥ 3 with d (v0) ≥ 3, d (vt+1) ≥ 3 and d (vi) = 2 for all

1 ≤ i ≤ t. Since none of these vertices is a leaf in S, it follows that these vertices also formed

a path satisfying the same condition in T , and all of these vertices were unoccupied in T . This

contradicts Case 6.

Hence in every connected component there is no vertex of degree 2 whose neighbour is a

leaf or another vertex of degree 2. Since each connected component is a tree with at least 4

vertices, Lemma 44 implies that we have 3li ≥ ni + 5 for all i. Adding these inequalities for all

i ∈ {1, . . . , D}, and by using (5.9), (5.10) and (5.11) we obtain that

3

(
l +

k∑
i=1

di

)
≥ n− 2k +

k∑
i=1

di + 5− 5k + 5
k∑
i=1

di.

This can be rearranged to

3l + 3k ≥ n+ 5 + 3
k∑
i=1

di − 4k. (5.12)

Note that O (T ) = {a1, . . . , ak, b1, . . . , bk}, and hence it follows that

∑
v∈O(T )

(d (v)− 2) =

k∑
i=1

(d (ai) + d (bi)− 4) =
k∑
i=1

(di − 2) = −2k +
k∑
i=1

di.

Hence (5.12) can be written as

3l + 3k ≥ n+ 5 +
∑

v∈O(T )

(d (v)− 2) + 2

k∑
i=1

di − 2k. (5.13)

Since none of ai or bi is a leaf, it follows that di = d (ai) + d (bi) − 2 ≥ 2. Hence we have
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2
∑k

i=1 di − 2k ≥ 2k ≥ 0. In particular, (5.13) implies that we have

n+ 7− 3k − 3l +
∑

v∈O(T )

(d (v)− 2) ≤ 2,

and thus we must have S (T ) ≤
⌊
2
5

⌋
= 0. Hence the claim follows trivially, as we always have

α (T,C, L) ≥ 0. Since we always have
∑

v∈O(T ) (d (v)− 2) ≥ 0, the second part of the Lemma

follows immediately.

We are now ready to prove Theorem 37.

Proof of Theorem 37. Let T be a tree with n vertices. Suppose that during the �rst phase of

the game Isolator follows the strategy speci�ed in Lemma 42, and let r be the number of edges

claimed by her during the �rst phase of the game. Let T ′, C ′ and X ′ = L′ be given by Lemma

42. Since |I| = r, it follows that α (T ) ≥ r + α (T ′, C ′, L′). Since the second phase is equivalent

to the delayed game F (T ′, C ′, L′), Lemma 43 implies that we have

α
(
T ′, C ′, L′

)
≥
⌊
|T ′| − 3 |C ′| − 3 |L′|+ 7

5

⌋
.

Since Lemma 42 guarantees that we have

∣∣T ′∣∣− 3
∣∣C ′∣∣− 3

∣∣L′∣∣ ≥ n− 5r − 4,

it follows that

α (T ) ≥ r +

⌊
n− 5r − 4 + 7

5

⌋
=

⌊
n+ 3

5

⌋
,

which completes the proof of Theorem 37.

There are many questions that are open concerning the value of u (G) for general G. Dowden,

Kang, Mikala£ki and Stojakovi¢ [17] gave bounds for u(G) that depended on the degree sequence

of the graph G. In particular, they concluded that if the minimum degree of G is at least 4, we

have u (G) = 0. They also proved that there exists a 3-regular graph satisfying u (G) > 0, and

they proved that for all 3-regular graphs we have u (G) ≤ n
8 . It would be interesting to know

what the largest possible proportion of isolated vertices in a connected 3-regular graph is.
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Chapter 6

Intervals in the Hales-Jewett theorem

6.1 Introduction

In order to state the Hales-Jewett theorem we need some notation. Given positive integers k and

n, note that the cube [k]n can be viewed as the set of all words in symbols {0, . . . , k − 1} of length
n. A set L ⊂ [k]n is called a combinatorial line if there exist a non-empty set S ⊆ {1, . . . , n}
and integers ai ∈ [k] for all i 6∈ S such that

L = {(x1, . . . , xn) : xi = ai for all i 6∈ S and xi = xj for all i, j ∈ S} .

The set S is called the active coordinate set of L.

Theorem 45. (Hales-Jewett, [22]). For any k and r there exists N so that whenever [k]n is

r-coloured for n ≥ N , there exists a monochromatic combinatorial line.

As noted by Conlon and Kam£ev [15], by following Shelah's proof of the Hales-Jewett the-

orem [42] it can be shown that for su�ciently large n one can always �nd a monochromatic

combinatorial line whose active coordinate set S is a union of at most HJ (k − 1, r) intervals,

where HJ (k − 1, r) is the smallest integer n for which the Hales-Jewett theorem holds for k− 1

and r.

In the case k = 3, since HJ (2, r) = r, this says that one can always �nd a monochromatic

line whose active coordinate set is a union of at most r intervals. Conlon and Kam£ev proved

in [15] that this bound is tight for r odd: in other words, they showed that for each odd r there

exists an r-colouring of [3]n for any n for which every monochromatic line has active coordinate

set made up of at least r intervals. They conjectured that this would also be the case for r even.

In particular, for r = 2, they conjectured that for all n there exists a 2-colouring of [3]n for which

there exists no monochromatic combinatorial line whose active coordinate set is an interval.

In this chapter we prove that, perhaps surprisingly, their conjecture is false when r = 2. This

can be stated in the following form.

Theorem 46. For all su�ciently large n, whenever [3]n is 2-coloured there exists a monochro-

matic combinatorial line whose active coordinate set S is an interval.
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6.2 Proof of Theorem 46

The idea of the proof is as follows. By applying Ramsey's theorem, we will pass to a subspace on

which the colour of a word depends only on its `pattern' of intervals, and not on its `breakpoints'

which are the places where the word changes from one letter to another. Once this is done, we

can consider some particular small patterns.

For a word w, de�ne the pattern w to be the word obtained from w by contracting every

interval on which w is constant to a single letter. We de�ne the particular words s1 = 021,

s2 = 0121, s3 = 0201, s4 = 02121 and s5 = 02021. Set ti to be the length of the word si. De�ne

recursively n0 = 4, and for i ≥ 1 let ni = R(ti−1) (ni−1) where R(t) (s) = R(t) (s, s) is the t-set

Ramsey-number. Finally, set N = n5 + 1.

Suppose that n ≥ N and let c be a 2-colouring of [3]n. For a word w, de�ne the set of

breakpoints T (w) by setting T (w) = {a1, . . . , am} if wai−1+1 = · · · = wai and wai 6= wai+1 for

all 1 ≤ i ≤ m + 1, with the convention a0 = 0, am+1 = n. For example, w = 0011222000 has

breakpoints T (w) = {2, 4, 7}.
Let s be a word of length t and let T1 = {a1, . . . , at−1} ⊆ {1, . . . , n− 1} be a set of size t− 1.

We say that w ∈ [3]n has breakpoints in T1 with pattern s if T (w) = T1 and w = s. For example,

w = 0011222000 has breakpoints in T (w) = {2, 4, 7} with pattern s = 0120. Note that if w = s,

then there exists a unique set T1 of size |s| − 1 for which w has breakpoints in T1 with pattern s.

Set Y5 = {1, . . . , n− 1}. Given a set Yi satisfying |Yi| ≥ ni and a certain speci�c pattern

p, we will recursively de�ne a set Yi−1 satisfying |Yi−1| ≥ ni−1 so that the words w which have

breakpoints in Y with pattern p for some Y ⊆ Yi−1 all have the same colour.

Recall that ti is the length of the word si de�ned at the start of the theorem. For all

A ∈ {1, . . . , n− 1} (ti−1) de�ne sAi to be the unique word which has breakpoints in A with pattern

si. Let ci denote the 2-colouring of the set Y
(ti−1)
i given by ci (A) = c

(
sAi
)
. By Ramsey's theorem

and the choice of ni, there exists Yi−1 ⊆ Yi with |Yi−1| ≥ ni−1 for which Y (ti−1)
i−1 is monochromatic,

say with colour di. In particular, if w is a word with w = si and T (w) ⊆ Yi−1, then we have

c (w) = di. Thus we obtain sets Y0 ⊆ Y1 ⊆ · · · ⊆ Y5 with |Y0| ≥ 4 and colours d1 . . . , d5 so that

ci restricted to Y
(ti+1−1)
i is a constant di+1.

Note that it is impossible to choose colours d1, . . . , d5 without at least one of the following

sets
N1 = {d1, d2}
N2 = {d1, d3}
N3 = {d2, d4}
N4 = {d3, d5}

N5 = {d1, d4, d5}

having just one element (i.e. all colours being equal). Indeed, if the �rst four sets contain both

colours, we must have d2 = d3 and d1 = d4 = d5, and the second condition implies that the last

set contains only one colour.

Let a1 < a2 < a3 < a4 be elements in Y0. We use the shorthand w = [b1b2b3b4b5] for the

word which has wi = bj for all aj−1 < i ≤ aj , with the convention a0 = 0 and a5 = n. Note that

we allow bi = bi+1. Hence we have T (w) ⊆ {a1, . . . , a4} ⊆ X0 and w = b1b2b3b4b5.

Set w1 = [02221], w2 = [01121], w3 = [02001], w4 = [02121] and w5 = [02021]. It is easy to
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verify that for all i we have wi = si and T (wi) ⊆ Y0 ⊆ Yi−1. Furthermore, set v1 = [00021],

v2 = [00121], v3 = [02011] and u1 = [02111]. As before, it is easy to verify that we have vi = si,

u1 = s1, and by construction we have T (vi) ⊆ Y0 ⊆ Yi−1 and T (u1) ⊆ Y0. Thus by the choice

of the sets Yi, it follows that we have c (wi) = di, c (vi) = di and c (u1) = d1.

It is straightforward to verify that

� v1, w2, w1 forms a combinatorial line l1 with S1 = {a1 + 1, . . . , a3}

� w3, u1, w1 forms a combinatorial line l2 with S2 = {a2 + 1, . . . , a4}

� v2, w2, w4 forms a combinatorial line l3 with S3 = {a1 + 1, . . . , a2}

� w3, v3, w5 forms a combinatorial line l4 with S4 = {a3 + 1, . . . , a4}

� w5, w4, w1 forms a combinatorial line l5 with S5 = {a2 + 1, . . . , a3}

It is clear that the colours used to colour the points of the line li are exactly the colours in the

set Ni. As observed earlier, one of the sets Ni contains only one colour, which implies that the

associated line li is monochromatic. Since the active coordinate set of each line li is an interval,

this completes the proof.
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Chapter 7

Induced saturation of P6

7.1 Introduction

A graph G is said to be H-saturated if G does not contain a copy of H, but adding any edge

from Gc to G creates a copy of H. It is clear that for any non-empty H there exists such G with

a given number of vertices.

The notion of saturation can be generalised to induced subgraphs in the following way. A

graph G is said to be H-induced-saturated if G does not contain an induced copy of H, but

removing any edge from G creates an induced copy of H and adding any edge of Gc to G creates

an induced copy of H.

It is not clear whether for a given H there exists a graph G which is H-induced-saturated.

Martin and Smith [34] studied a similar problem from a quantitative perspective, and they proved

that for H = P4 there is no such G satisfying the property, where Pn denotes the path on n

vertices. For convenience, we say that H is induced saturated if there exists some G which is H-

induced-saturated. Behrens, Erbes, Santana, Yager and Yeager [5] proved that graphs belonging

to a few simple families are induced saturated, and they also proved some quantitative results.

It is natural to ask what happens when H = Pn for other values of n. The cases H = P2 and

H = P3 are trivial, as one can take G to be an empty graph or a clique respectively. Axenovich

and Csikós [2] gave examples of families of graphs that are induced saturated, and they also gave

an easier proof of the fact that P4 is not induced saturated. However, their examples of induced

saturated families did not include Pn for any n ≥ 5, and they asked whether the graphs H = Pn

are induced saturated for n ≥ 5. The aim of this chapter is to provide an example which shows

that P6 is induced saturated.

7.2 The construction

Theorem 47. There exists a graph with 16 vertices which is P6-induced-saturated.

Proof. Let F = F2 (α) /
(
α4 + α+ 1

)
be the �nite �eld of order 16, and note that α is a generator

of the multiplicative group F×. Let S be the set of non-zero cubes in F, i.e.

S =
{

1, α3, α2 + α3, α+ α3, 1 + α+ α2 + α3
}
.
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De�ne a graph G whose vertex set is F and whose edges are given by xy ∈ E (G) if and only

x − y ∈ S. This graph is an example of a Cayley graph, and it is also known as the Clebsch

graph. For later purposes, it will be convenient to use the algebraic way of de�ning the graph.

First of all, note that the map x→ α3ix+ β is an automorphism of G for any i ∈ {0, . . . , 4}
and β ∈ F. Indeed, let θ (x) = α3ix + β for some i and β. Then for all x, y ∈ F we have

θ (x)− θ (y) = α3i (x− y). Thus θ (x)− θ (y) is a non-zero cube in F if and only if x− y is, and

thus θ (x) θ (y) ∈ E (G) if and only if xy ∈ E (G).

Given any edge xy ∈ E (G), let i be chosen so that x − y = α3i. Then θ de�ned by

θ (z) = α3iz + y is an automorphism of G satisfying θ (0) = y and θ (1) = x. In particular, the

edge 01 is mapped to the edge xy under this automorphism, and hence it follows that for any

two edges e, f ∈ E (G) there exists an automorphism θ satisfying θ (e) = f , i.e. the group of

automorphisms acts transitively on the edges of G.

For convenience, we call the edges of Gc as non-edges. De�ne the particular non-edges

f1 = 0α10 and f2 = 0α14. Given a non-edge e = xy, since E (G) consists of pairs xy satisfying

x− y = α3i for some i, it follows that there exists i for which one of the conditions x− y = α3i+1

or x − y = α3i+2 is satis�ed. In the �rst case, note that θ given by θ (z) = α3i−9z + y maps f1

to e, and in the second case note that θ given by θ (z) = α3i−12z + y maps f2 to e. By taking

inverses, it follows that for an arbitrary non-edge e there exists an automorphism θ mapping e

to either f1 or f2.

We will now check that G satis�es all the required properties.

Claim 1 . G does not contain an induced copy of P6.

Proof of Claim 1. Suppose that G contains an induced copy of P6. Since the group of automor-

phisms acts transitively on E (G), we may assume that 0 is one of the endpoints of the induced

path, and 1 is the only neighbour of 0 on this induced path. Thus T = N (0)c ∩N (1)c contains

an induced path on three vertices.

It is easy to verify that

T =
{
α, 1 + α, α2, 1 + α2, α+ α2, 1 + α+ α2

}
.

Hence G [T ] is a union of three disjoint edges corresponding to the pairs {α, 1 + α},
{
α2, 1 + α2

}
and

{
α+ α2, 1 + α+ α2

}
. Thus G [T ] does not contain an induced path on three vertices, so G

cannot contain an induced copy of P6.

Claim 2 . Adding any non-edge to G creates an induced copy of P6.

Proof of Claim 2. By the earlier observations, it su�ces to consider the cases when the non-edge

is 0α10 or 0α14. Consider the particular elements x1 = 0, x2 = α+α3, x3 = α, x4 = α+α2 +α3,

x5 = α2, x6 = α10 = 1 + α + α2 and x7 = α14 = 1 + α3, and let R = {x1, . . . , x7}. It is easy

to verify that G [R] is a union of induced P5 whose vertices are x1, x2, x3, x4, x5 in this order,

together with two isolated vertices x6 and x7. Hence adding either of the non-edges 0α10 or 0α14

creates an induced copy of P6 in G.
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Claim 3 . Removal of any edge from G creates an induced copy of P6.

Proof of Claim 3. By our earlier observation we may assume that the edge removed is 01. It is

easy to check that v1 = α + α2 + α3, v2 = 1, v3 = 1 + α3, v4 = α3, v5 = 0 and v6 = α2 + α3

forms an induced copy of P6 in this case.

From the claims above it follows that G is P6-induced-saturated graph.

We now mention some other recent work on induced saturation of paths. Cho, Choi and Park

[11] found the �rst in�nite family of induced saturated paths. They generalised our construction

of G and proved that P3n is induced-saturated for every n ≥ 2. In addition, they gave examples

of some other graphs G that are Pn-induced-saturated for some speci�c small values of n. As an

example, they noted that the Petersen graph is also P6-induced-saturated.

Inspired by this observation, Dvo°ák [18] proved that for all n ≥ 6 there exists a graphGn that

is Pn-induced saturated, where the graphs Gn are natural generalisations of the Petersen graph

obtained as follows. For each n, the vertex set of Gn is {v1, . . . , vn−1, w1, . . . , wn−1}, with the

edges viwi, vivi+1, v1vn and wjwk for any i and for any j and k satisfying j−k 6≡ ±1 (mod n− 1).

Finally, the case n = 5 was settled by Spiegel [43], and independently by Bonamy, Groenland,

Johnston, Morrison and Scott [10] who proved that P5 is induced saturated. As a consequence

of these results, it follows that Pn is induced saturated whenever n 6= 4.
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