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ABSTRACT 

Compulsive behaviors are driven by repetitive urges and typically involve the experience of 

limited voluntary control over these urges, a diminished ability to delay or inhibit these 

behaviors, and a tendency to perform repetitive acts in a habitual or stereotyped manner. 

Compulsivity is not only a central characteristic of obsessive-compulsive disorder (OCD) but is 

also crucial to addiction. Based on this analogy, OCD has been proposed to be part of the 

concept of behavioral addiction along with other non-drug-related disorders that share 

compulsivity, such as pathological gambling, skin-picking, trichotillomania and compulsive 

eating. In this review, we investigate the neurobiological overlap between compulsivity in 

substance-use disorders, OCD and behavioral addictions as a validation for the construct of 

compulsivity that could be adopted in the Research Domain Criteria (RDoC). The reviewed data 
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suggest that compulsivity in OCD and addictions is related to impaired reward and punishment 

processing with attenuated dopamine release in the ventral striatum, negative reinforcement in 

limbic systems, cognitive and behavioral inflexibility with diminished serotonergic prefrontal 

control, and habitual responding with imbalances between ventral and dorsal frontostriatal 

recruitment. FThese frontostriatal abnormalities of compulsivity are promising targets for 

neuromodulation and other interventions for OCD and addictions. We conclude that 

compulsivity encompasses many of the RDoC constructs in a trans-diagnostic fashion with a 

common brain circuit dysfunction that can help identifying appropriate prevention and treatment 

targets. 

 

Introduction 

Compulsivity in obsessive-compulsive disorder (OCD) is related to the feelings of limited 

voluntary control and being compelled to perform repetitious, self-defeating behaviors (Denys, 

2011; Robbins et al., 2011). Based on analogies between these compulsive characteristics of 

OCD and the cognitive and behavioral characteristics of substance-use disorders, some 

researchers have proposed to view OCD as a behavioral addiction (Holden, 2001; Denys et al., 

2004), together with several other non-substance disorders, including pathological gambling, 

trichotillomania, skin-picking, compulsive eating, compulsive computer use, compulsive sexual 

behavior, and compulsive buying (Holden, 2001; Grant et al., 2006). The study of different 

aspects of compulsivity and their neural correlates in these disorders may help to test the 

behavioral-addiction paradigm and to define shared brain networks.  

 In OCD, compulsivity represents a key symptom. Although patients suffering from OCD 

may present with various types of obsessions and compulsions that may be accompanied by 
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other symptoms such as anxiety and depression, a compulsive drive with a perceived loss of 

control appears to be a crucial factor.  

In addiction, two theories describe the development from initial (impulsive) drug use to 

chronic (compulsive) drug taking. One theory forwarded by Everitt and Robbins (2013) 

emphasizes the progression from initial action-outcome (reward-based) learning to stimulus-

response (habitual) learning.  Another theory forwarded by Koob and Le Moal (2005) 

emphasizes the transition from positively reinforced drug-taking (impulsive stage) to negatively 

reinforced (removal of aversive state) compulsive drug-use (compulsive stage). These theories 

are not mutually exclusive, but they do suggest different processes in the development of 

compulsivity. 

In behavioral addictions, compulsivity is less well studied, especially compared to other 

relevant constructs such as impulsivity. On the 1st of May 2015, the search terms compulsivity 

and behavioral addiction resulted in 68 Pubmed listings, whereas the terms impulsivity and 

behavioral addiction resulted in 6268 listings.  

 Like impulsivity, compulsivity may be decomposed into various factors with a mainly 

cognitive, affective or motivational nature. First, compulsivity, as engagement in self-defeating 

repetitive behaviors, hints at impaired reward and/or punishment processing. Second, the 

diminished ability to stop or divert unwanted ideas and actions suggests the presence of cognitive 

and behavioral inflexibility. Third, habitual responding and diminished goal-directed control 

suggests excessive habit-learning. In this narrative review, we will study the neural overlap of 

these different aspects of compulsivity in OCD, substance-use disorders and behavioral 

addictions, including human imaging studies and animal models of compulsive behavior and 

associated neurotransmitters. Our goal is to use these data to define which neural processes are 
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central to compulsivity and to use this knowledge as a pathophysiological validation for the 

possible adoption of compulsivity in the Research Domain Criteria (RDoC; Insel et al., 2010; 

Casey et al. 2013).   

 

Neurocognitive factors 

Reward processing 

Compulsivity in OCD and addiction may in part be explained by dysfunctional brain 

reward systems, driving the development of a restricted behavioral repertoire at the cost of 

healthy rewarding actions and a relative failure to switch to more adaptive, goal-directed 

behaviors. Indeed, patients with OCD displayed attenuated reward anticipation activity in the 

ventral striatum compared to controls (Figee 2011 and 2014), which matches blunted reward 

anticipation signals of the ventral striatum in alcohol (Wrase et al.,2007), nicotine (Martin-

Soelch et al., 2003; Bühler et al., 2009) and cannabis dependence (van Hell et al., 2010), in a 

behavioral addiction like pathological gambling (Reuter et al., 2005; de Greck et al., 2010; 

Balodis et al., 2012; Choi et al., 2012), and in binge-eating disorder (Balodis et al., 2013). 

However, not all studies of substance-use disorders and behavioral addictions show this pattern. 

For example, mixed findings were reported in cocaine dependence (Balodis and Potenza, 2015) 

and pathological gambling (Van Holst et al., 2010 and 2012).  Blunted striatal responsiveness in 

OCD is paralleled by increased striatal activity in response to symptom-provoking stimuli 

(Menzies et al., 2007; Rotge et al., 2008), which appears to be analogous to ventral striatal 

hyperactivation associated with disorder-specific stimuli in drug addiction (Wrase et al., 2007; 

Diekhof et al., 2008; Kühn et al., 2011). Similar findings have been observed in some (Hollander 

et al., 2005; van Holst et al., 2012), but not all (Potenza et al. 2003) studies of pathological 
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gambling and may also hold true for food consumption and weight gain (Stice et al., 2010). This 

suggests that the ventral striatum may be less responsive when recruited for healthy reward 

processing due to its bias toward drugs in addiction, and due to its bias to disease-specific stimuli 

in OCD and behavioral addictions. Importantly from a treatment perspective, effective deep-

brain stimulation (DBS) for OCD has been related to a normalization of anticipatory reward 

responses in the ventral striatum (Figee et al, 2014).  

It should be noted that there are also diverging reward-processing findings. First, some 

studies showed no blunted striatal reward anticipation in OCD (Jung et al., 2011; Choi et al., 

2012), or blunted reward anticipation only in prefrontal regions (Kaufmann et al., 2013). Second, 

a more generalized pattern of diminished activity in both prefrontal and striatal areas during 

reward anticipatory as well as outcome phases is usually found in drug addiction (Hommer et al., 

2011) and binge-eating disorder (Balodis et al., 2013). These conflicting data do not challenge a 

common reward hypothesis of compulsivity, but hint at some heterogeneity of reward 

processing. Patients with OCD may have primarily difficulties in estimating the value of a 

potential rewarding situation rooted in striatal dysfunction, whereas in substance-use disorders 

and behavioral addictions, outcome-related or consummatory aspects of reward processing in the 

medial prefrontal cortex may also impaired. 

 In summary, compulsivity in OCD and addictions is related to impaired reward 

processing in the ventral striatum, which may in part mediate compulsive behaviors at the cost of 

healthy rewarding actions. 
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Punishment sensitivity 

Individuals engaged in compulsive behaviors may be less capable of noticing its self-

damaging consequences, which suggests impairment of neural processes underlying harm 

avoidance and sensitivity to punishment. Although studies in OCD confirm dysfunctional 

processing of punishments, the results are diverging, with brain activity during monetary loss 

anticipation in OCD patients being either normal (Figee et al., 2011) or increased in the medial 

prefrontal cortex (Kaufmann et al., 2013), or decreased in the ventral striatum (Jung et al., 2011). 

The latter finding suggests decreased striatal sensitivity to punishment in OCD, which matches 

with decreased striatal loss-anticipation signals in pathological gambling (Choi et al., 2012) but 

not in alcohol addiction (van Holst et al., 2014). The study by Choi et al (2012) also found that 

pathological gamblers and OCD patients share decreased loss-anticipation signals in the insula. 

The insula is involved in the mediation of bodily interoceptive signals for processing negative 

cues, and this region has also been associated with drug craving (Naqvi et al., 2007). Therefore, 

we speculate that insula dysfunction may be involved in compulsivity in OCD and addictive 

behaviors contributing to a diminished ability to foresee the negative consequences of 

compulsive actions. 

Animal models have arguably provided more convincing links between compulsive drug-

seeking and impaired punishment-sensitivity. Compulsive drug-seeking in these models is 

oftentimes operationalized by pairing an operant drug-seeking response that eventually leads to 

drug access with the delivery of an aversive event (e.g., foot shock), aiming at modeling the 

human symptom of seeking access to a drug despite the knowledge of negative consequences. 

Importantly, similar to humans, only a subset of animals allowed access to drug in this model 

develops compulsive drug seeking (Pelloux et al., 2007 and 2012; Deroche-Gamonet et al., 2004; 
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Vanderschuren and Everitt 2004). Exclusively in these “addicted” animals, prolonged cocaine 

self-administration was shown to permanently impair long-term depression (LTD) in the ventral 

striatum (Kasanetz et al., 2010), thus potentially cementing rigid, compulsive drug seeking by 

eradicating synaptic plasticity in a brain region central to reward-related learning. In addition, 

pyramidal neurons in the prelimbic cortex that project to the ventral striatum have been shown to 

be hypoactive in animals that seek cocaine despite foot-shock punishment, but less so in animals 

sensitive to punishment (Chen et al., 2013). Conversely, compensating for this hypoactivity, 

optogenetic stimulation significantly prevented compulsive cocaine seeking, whereas 

optogenetic inhibition significantly increased compulsive cocaine seeking (Chen et al., 2013). 

Furthermore, it was shown that pharmacological inactivation of the prelimbic cortex, but not the 

orbitofrontal cortex, increased compulsive drug-seeking in animals with limited access to 

cocaine in a conditioned suppression model (Limpens et al., 2014). However, inconsistent results 

were reported by a lesion study that targeted the anterior cingulate, prelimbic, infralimbic, 

orbitofrontal and anterior insular cortices without altering compulsive drug-seeking (Pelloux et 

al., 2013). This indicates that prefrontal cortical, top-down inhibitory control over limbic–striatal 

mechanisms of drug-seeking behavior do not necessarily control all aspects of compulsive drug-

seeking, but it may nonetheless be implicated in conditioned suppression and shock suppression 

after compulsivity has developed. In contrast, Pelloux et al. (2013) report that lesions of a 

projection region of the prelimbic cortex, the basolateral amygdala, did increase compulsive 

drug-seeking. Interestingly, inactivation of the connected central nucleus of the amygdala 

induced robust resistance to punishment in rats with prolonged access to cocaine (Xue et al., 

2012). Finally, inactivation of sensorimotor striatal areas that are not directly connected to the 
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above-described limbic neural substrates can also lead to inhibition of compulsive drug seeking 

(Jonkman et al., 2012).  

 In summary, compulsive drug seeking may be associated with dysfunctional neural 

processing of punished behavior in ventral corticostriatal pathways, with some evidence 

suggesting similar impairments underlying compulsivity in OCD and pathological gambling.  

 

Negative reinforcement 

Compulsive behaviors may be performed to avoid aversive or anxiety-inducing outcomes. 

Indeed, a prominent theory in addiction research emphasizes the increasingly important role of 

negative reinforcement when drug taking becomes more compulsive over time (Koob 2015). In 

many patients drug taking is initially driven by its pleasurable effects, however over time their 

motivation seems to shift increasing the role of negative reinforcement that accompanies the 

development of compulsive drug use. Negative reinforcement that can drive drug use includes 

removal of an aversive state, whether this is physical withdrawal symptoms or a negative 

emotional state such as anxiety, stress or depression. There are even addicted patients who report 

never to have experienced pleasure and for who negative reinforcement like relief of stress or 

coping with negative emotions was their main drive throughout the course of drug use (Heilig et 

al. 2010; Kennett et al 2013). Recruitment of anti-reward brain systems associated with aversive 

or stress-like states may underlie negative reinforcement in compulsive drug use. An important 

region implicated in these anti-reward systems is the extended amygdala (bed nucleus stria 

terminalis, BST) and more recently also the lateral habenula. Adaptations of these systems 

persist during and often beyond drug abstinence creating a condition of chronic dysphoria and 

increasing the risk relapse in a (compulsive) attempt to self-medicate this unwanted condition 
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(Koob 2005; Vollstädt-Klein 2010). In addition, medial prefrontal-amygdala circuits involved in 

fear conditioning have also been implicated in persistent drug-seeking behavior (Peters et al, 

2009). Similarly, in chronic problem gambling, excessive responses in the amygdala and insula 

may be linked to craving elicited by gambling pictures (Goudriaan et al, 2010), suggesting that 

negative reinforcement circuits could also have a role in compulsivity in behavioral addiction.   

In many OCD patients negative reinforcement is an important drive of their compulsions 

from the start of the disorder. Traditionally, OCD is viewed as an anxiety disorder and for many 

patients the need to reduce anxiety or stress contributes to the persistence of the compulsions as 

supported by experiments that show decreases in anxiety or discomfort when patient are allowed 

to execute compulsive behavior after being exposed to symptom provoking situations (Rachman, 

et al 1976). However, contrary to findings in drug addiction, brain anti-reward systems such as 

the BST or lateral habenula have not yet been directly linked to OCD. Nevertheless, schedule-

induced polydipsia in rats, which might model aspects of human compulsivity, is associated with 

changes in the firing behavior of BST neurons (Welkenhuysen et al., 2013). In addition, the BST 

is currently being investigated as a DBS target for OCD (Nuttin et al, 2013), although effective 

ventral striatal DBS for OCD did not affect BST-related contextual anxiety (Baas et al, 2014). 

Also note that not all OCD patients report anxiety or stress and that negative reinforcement may 

contribute differently to the compulsions of OCD patients. In some cases of OCD, compulsive 

behaviors may start with anxiety and harm avoidance but gradually evolve into more habitual or 

impulsive responding with progression of the disease (Kashyap et al. 2012). In other cases, OCD 

may develop first as a propensity to compulsive behaviors, followed by anxiety and obsessive 

thoughts in response to these compulsive urges (Robbins et al., 2011). In line with the latter 

notion, structural and functional imaging studies in OCD and case-studies of acquired OCD after 
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brain injuries have often failed to demonstrate clear pathology of the limbic system such as 

found in anxiety disorders, but rather indicate that compulsivity may primarily stem from basal 

ganglia-prefrontal dysfunction (Whiteside et al., 2004; Radua et al., 2010; Figee et al, 2013).  

In summary, compulsivity in addictions and OCD may in part be driven by negative 

reinforcement, i.e. avoidance of dysphoria, stress or anxiety, with underlying abnormalities in 

brain anti-reward and anxiety circuits, such as BST, amygdala and medial prefrontal cortex.  

 

Cognitive and behavioral flexibility 

Cognitive and behavioral inflexibility represent core features of compulsivity in OCD 

(Chamberlain et al., 2006; Menzies et al., 2007), substance-use disorders (Izquierdo and Jentsch 

2012; Ersche et al., 2008; van Holst et al., 2011) and some behavioral addictions (Goudriaan et 

al., 2006; Vanes et al., 2014). Contingency-related flexibility refers to the adaptation of behavior 

or cognitive strategies after positive or negative contingencies. Contingency-related flexibility 

has been linked to the orbitofrontal cortex (OFC) (Bechara et al., 2000). Abundant evidence 

implicates abnormalities of the OFC in OCD, such as decreased OFC volume and increased OFC 

symptom-related activity. Probabilistic reversal-learning tasks tap into the construct of 

contingency-related flexibility, and OCD patients compared to controls demonstrate defective 

OFC recruitment during these tasks (Remijnse et al., 2006; Chamberlain et al., 2008; Freyer et 

al.,  2011). Similarly, substance-use disorders have been associated with reduced OFC volume 

(Franklin et al.,  2002), OFC hyperactivation during drug taking and dysfunctional reversal-

learning OFC responses (Izquierdo and Jentsch 2012). Moreover, a study directly comparing 

OCD and stimulant-dependent individuals showed that compulsive symptom scores were 

significantly correlated with reduced orbitofrontal connectivity in both groups (Meunier et al., 
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2012). Finally, diminished reversal-learning speed along with dysfunctional OFC responses 

during reversal-learning have also been found in individuals with pathological gambling (de 

Ruiter et al., 2009; Vanes et al., 2014). 

 Cognitive flexibility can also be measured with attentional set-shifting tasks in which 

attention is required to switch between multiple stimuli or tasks, requiring activation of the 

ventrolateral prefrontal cortex (Hampshire and Owen, 2006). Impaired set-shifting may promote 

perseveration and compulsive actions (Stalnaker et al., 2009). Set-shifting is found to be 

impaired in adult patients with OCD (Watkins et al., 2005; Chamberlain et al., 2006) and in 

pediatric OCD, which was associated with decreased frontostriatal activation (Britton et al.,  

2010). Comparable set-shifting impairments have also been found in individuals with gambling 

problems (Goudriaan et al., 2006; Odlaug et al.,  2011; but see: Boog et al., 2014). On the other 

hand, set-shifting was intact in individuals with compulsive buying (Derbyshire et al., 2014). 

Finally, impaired set-shifting was also reported in individuals with opioid- (Ornstein et al., 2000) 

and stimulant- (Woicik et al., 2011) use disorders.  

The neural correlates of behavioral flexibility have also been widely studied in animals 

using reversal-learning as well as attentional set-shifting tasks. Results from these studies 

confirm that corticostriatal circuits comprising the OFC, medial prefrontal cortex and striatum 

are implicated in behavioral flexibility (Clarke et al., 2008; Izqueirdo and Jentsch 2012). 

Furthermore, these models suggest that reversal-learning impairments may be linked specifically 

to dysfunction of serotonin in the OFC (Clarke et al., 2004, 2005, 2007) and dysfunction of 

dopamine in the striatum (Clarke et al., 2011), with selective serotonin reuptake inhibition 

(citalopram) rescuing behavioral flexibility via normalization of the OFC serotonergic tone 

(Barlow et al., 2015).  
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 In summary, cognitive and behavioral inflexibility appear to be shared aspects of 

compulsivity in OCD and addictions reflecting corticostriatal dysfunction, in particular impaired 

serotonergic top-down control of orbitofrontal and ventrolateral prefrontal cortices.  

  

Habit learning 

Habits can be defined as automatic, inflexible behaviors performed regardless of their 

consequences. Although it has long been speculated that habits may be a hallmark of OCD, 

excessive habits were first demonstrated in animal models of addiction in association with 

defective goal-directed behaviors that are mediated by frontostriatal mechanisms (Everitt and 

Robbins 2005; Everitt et al., 2008). These animal studies suggest a gradual progression from 

hedonic to habitual drug use over time associated with a shift from recruitment of ventral to more 

dorsal regions of the striatum (e.g., Belin and Everitt, 2008; Willuhn et al., 2012). One imaging 

study in humans suggested some indirect support for this ventral to dorsal shift by showing 

increased cue-induced activity in the ventral striatum in social drinkers and increased cue-

induced activity in the dorsal striatum in heavy drinkers (Vollstädt-Klein et al., 2010). The first 

study directly investigating habits in addicted humans confirmed the presence of an imbalance 

between goal-directed and habitual control and between ventral and dorsal frontostriatal 

recruitment (Sjoerds et al., 2013). Patients with alcohol dependence compared to healthy controls 

showed a decrease in goal-directed learning associated with decreased activity in the 

ventromedial prefrontal cortex and the anterior putamen and an increase in habit learning 

associated with increased activity in the posterior putamen. Moreover, ventromedial prefrontal 

cortex activation (goal-directed learning) was negatively associated with alcohol dependence 

duration. Excessive habit learning was also demonstrated in OCD (Gillan et al., 2011). However, 
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contrary to addiction, recent neuroimaging data do not support a ventral to dorsal transition 

underlying habit formation in OCD, but rather hyperactivation of the ventral striatum (caudate) 

leading to impaired goal-directed control over behavior (Gillan et al., 2014). In accordance with 

a shared dysfunction of these motivational brain systems in various disorders of compulsivity, 

lower gray-matter volumes of the caudate and medial orbitofrontal cortex were associated with 

excessive habit formation in OCD patients as well as in individuals with stimulant addiction and 

individuals with binge-eating (Voon et al., 2014). 

 Inappropriate habitual and repetitive responding in experimental animals resulting, for 

instance, from defective feedback mechanisms can be assessed in instrumental-learning tasks 

such as the so-called “signal-attenuation” procedure (Joel and Avisar, 2001). In this particular 

task, rats are trained to withhold lever pressing in response to signals that previously indicated 

food but have now been extinguished (signal attenuation). Importantly, in line with the 

therapeutic efficacy in OCD patients (Fineberg et al., 2012), selective serotonin reuptake 

inhibitors have been found to reduce the expression of compulsive-like behavioral responding in 

this task (Joel and Doljansky, 2003; Joel et al., 2004). In terms of the underlying brain circuits 

mediating compulsive-like responding in the signal-attenuation task, the OFC and basal ganglia 

nuclei such as the subthalamic nucleus and globus pallidus appear crucial (Albeda and Joel, 

2012).  

In summary, habitual behaviors that are performed regardless of their consequences may 

be central to compulsivity in OCD and addictions, reflecting imbalances between ventral and 

dorsal frontostrial recruitment.  
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Frontostriatal connectivity 

In line with a general dysregulation of the frontostriatal network in compulsivity, resting-

state functional imaging studies have consistently demonstrated excessive functional 

connectivity between the striatum and the prefrontal cortex in OCD patients (Harrison et al., 

2009 and 2013; Sakai et al., 2011; Figee et al., 2014) and positive correlations with disease 

severity (Harrison et al., 2009). Similarly, opioid dependence is associated with increased 

frontostriatal connectivity (Upadhyay et al., 2010), and a study in cocaine users found this 

frontostriatal hyperconnectivity to be positively correlated with compulsive aspects of drug use 

(Hu et al., 2015). Thus, excessive frontostriatal connectivity may be a common neural substrate 

of compulsivity in OCD and substance-use disorders. Importantly, frontostriatal connectivity 

may be normalized with DBS of the ventral striatum and with repetitive transcranial magnetic 

stimulation (rTMS) of the medial prefrontal cortex. Moreover, these normalizations also 

correlate with obsessive-compulsive symptom improvement (Figee et al., 2014; Dunlop et al., 

2015). Prelimary evidence suggests that the effects of DBS and rTMS in individuals with 

substance-use disorders depend on similar changes in frontostriatal connectivity (de Ridder et al., 

2011; Valencia-Alfonso et al., 2012).  

 

Neurotransmitters 

Dopamine 

Results from studies assessing dopamine are in accordance with the reward circuitry as a 

potential link between compulsivity in OCD and addictions. Receptor-binding studies indicate 

hyperactivity of the striatal dopaminergic system in OCD, with decreased striatal availability of 

dopamine D1 receptors (Olver et al., 2009) and D2-like receptors (Denys et al., 2004; Perani et 
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al., 2008) in patients versus controls, which is also found in individuals with substance-use 

disorders (Volkow et al., 2009) and in some studies with obese patients (Wang et al., 2001; 

Volkow et al., 2008; de Weijer et al., 2011). In addicted individuals, low levels of dopamine D2-

like receptors are related to greater craving responses (Volkow et al., 2009) and speculatively, 

low levels of dopamine D2-like receptors in OCD could drive compulsions to overcome feelings 

of anxiety and discomfort. In line with this hypothesis, OCD patients display excessive ventral 

striatal activity related to loss avoidance (Jung et al., 2011).  

 The acute reinforcing effects of drugs of abuse have been linked to activation of the 

mesolimbic dopamine system (Koob and Volkow, 2010). Imaging studies in humans have 

convincingly shown the presence of dopamine release in the ventral striatum after smoking 

(Brody et al., 2009) and stimulant use (Volkow et al., 1995), with mixed results for alcohol and 

cannabis use (Bossong et al., 2009; Heilig et al., 2010; Kuepper et al., 2013) and negative 

findings for heroin (Daglish et al., 2008). Dopamine release in the ventral striatum is important 

for focusing on potential alerting and rewarding environmental stimuli that can be used for 

modulation of behavior by reinforcement-related learning (Schultz, 1998). Chronic drug-induced 

dopaminergic hyperactivity could compromise dopaminergic responsiveness to natural rewards. 

Indeed, amphetamine-induced D2-like-receptor displacement, mimicking natural dopamine 

release, is attenuated in drug addiction (Volkow et al., 1997 and 2012; Martinez et al., 2012) and 

probably also in obese patients (van de Giessen et al., 2012). In OCD patients, the only 

amphetamine-challenge imaging study to date revealed no significant blunting of dopamine 

release (Denys et al., 2013), although plasma investigations suggest attenuated apomorphine-

induced dopamine release in some patients (Pichot et al., 1996; Brambilla et al., 1997). In 

pathological gambling, increased rather than diminished dopamine release was demonstrated 
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recently (Boileau et al., 2014). In addition to impaired natural reward sensitivity, attenuated 

dopamine release may also reduce sensitivity for drug rewards resulting in compulsive drug 

taking and drug seeking (Berridge et al., 2007; Robinson and Berridge, 2008; Rothkirch et al., 

2012; Volkow et al., 2011) or even habitual use as an automatic response to internal or external 

stimuli (Everitt et al., 2008). Medial-caudate-dopamine-depleted monkeys were impaired in their 

ability to reverse stimulus-reward associations (Clark et al., 2011). In stimulant-dependent 

humans, dopaminergic enhancement with the dopamine D2-like agonist pramipexole reversed 

abnormal perseverative responding and associated caudate dysfunction; however, no 

perseverative abnormalities or pramipexole-induced changes were observed in OCD patients 

(Ersche et al., 2011). No molecular imaging studies are currently available that have tested the 

role of dopamine specifically with habit paradigms.  

 Recent evidence from animal models implicates dopamine D1-like receptors and NMDA 

receptors underlying compulsive-like responding in signal-attenuation tasks (for review, see 

Albeda and Joel 2012). Comparable to the signal-attenuation procedure measuring inappropriate 

repetitive behavioral responses, compulsive-like behavioral responses may also be provoked by 

repeated challenges with dopaminergic agents. For instance, repeated exposure to the dopamine 

D2-like-receptor agonist quinpirole is found to robustly induce repetitive checking behavior 

(Szechtman et al., 1998) and more recently in a novel instrumental-learning task (Eagle et al., 

2014), the latter allowing for further determination of the cognitive processes that might underlie 

this checking behaviour. These models stress the importance of dopamine transmission in the 

development and expression of compulsive-like behaviour. For example, the dopamine D2–like-

receptor antagonist sulpiride has been found to remediate quinpirole-induced compulsive-like 

behaviour (Eagle et al., 2014). Lesioning and DBS studies have indicated that quinpirole-induced 
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repetitive checking involves the ventral striatum and subthalamic nucleus (Mundt et al., 2009; 

Winter et al., 2008b), whereas in control subjects (vehicle-treated animals) lesions of the ventral 

striatum and the OFC were found to induce different aspects of repetitive checking (Dvorkin et 

al., 2010). Finally, quinpirole-induced compulsive lever pressing correlated with diminished 

dopamine signaling in the ventral tegmental area, which was proposed to reflect lower base-line 

dopamine burst firing and higher stimulus-driven dopamine activity as a characteristic of 

compulsivity (Sesia et al., 2013).   

In summary, despite some outcome variability these data convincingly stress the 

importance of dopaminergic mesolimbic, corticostriatal and basal ganglia pathways in 

perseverative responding and compulsive checking.  

 

Serotonin  

OCD is associated with decreased presynaptic serotonin transporter availability in 

thalamic and midbrain-pons regions, along with increased postsynaptic serotonin (5-HT2A) 

receptor availability in cortical areas, indicating diminished serotonergic input into fronto-

subcortical circuits (for review, see Figee et al., 2010). Müller & Homberg (2015) suggest that 

diminished reactivity of the serotonergic system is also involved in the transition to compulsive 

drug use since studies have shown that carriers of the short allele of the serotonin transporter 

gene (5-HTTLPR S-allele carriers) are more likely to exhibit alcohol and drug (e.g., mostly 

cocaine) dependence (Enoch et al., 2012). The same serotonin transporter gene is arguably the 

best-supported risk variant for OCD, though this relates to the long (high-expressing function) 

alleles instead of the short alleles associated with addiction (Walitza et al., 2014).   
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 Animal studies have highlighted specific involvement of the 5HT2C receptor in 

modulating compulsive-like responding in signal-attenuation tasks (Flaisher-Grinberg et al., 

2008). In addition, rats that compulsively seek cocaine show decreased serotonin utilization in 

several forebrain regions including ventral and dorsal parts of both the prefrontal cortex (PFC) 

and the striatum, as well as in the amygdala (Pelloux et al., 2012). This compulsive drug seeking 

was reversed by the facilitating of serotonin transmission using a serotonin reuptake inhibitor or 

a 5-HT2C-receptor agonist. Vice versa, serotonin depletion and 5-HT2C-receptor antagonist were 

sufficient to produce compulsive drug seeking in rats without prolonged drug-access (Pelloux et 

al., 2012). 

 

GABA 

It has been suggested that the development of compulsive drug taking is mediated by 

impaired GABA-ergic inhibition of drug-related dopamine release (Goodman et al., 2008; 

Vlachou and Markou, 2010). Indeed, GABAB-agonizing agents are able to inhibit reinforcing 

effects of drugs and are promising treatment candidates for addictions (Filip et al., 2015). 

Impairment of GABA-ergic systems has also been found in OCD; e.g., decreased plasma GABA 

(Russo et al., 2013) and decreased GABA in the medial prefrontal cortex as measured with 

proton magnetic resonance spectroscopy (MRS; Simpson et al., 2012). Moreover, similar to the 

potential efficacy of GABA-agonizing agents for addictions, recent animal models indicate that 

selective GABA release in the striatum may explain the efficacy of DBS for OCD (Burguiere et 

al., 2013; Xie et al., 2014).  

 

Glutamate 
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Glutamatergic signaling is important for prefrontal top-down control over striatal 

dopamine (Arnsten et al., 2009). Converging evidence suggests aberrant frontostriatal 

glutamatergic signaling in OCD (Wu et al., 2012). Moreover, electrophysiological animal work 

indicates that the efficacy of ventral striatal DBS for OCD may depend on restored glutamatergic 

OFC control over striatal regions (McCracken et al., 2007; Yan et al., 2013), which might also 

explain the anti-compulsive effects of glutamatergic agents such as ketamine (Rodriguez et al., 

2013). It was recently hypothesized that glutamatergic frontostriatal changes may also be critical 

for the transition of regular to compulsive drug use (van Huijstee and Mansvelder, 2015) and 

glutamatergic agents are promising interventions for the treatment of substance-use and 

gambling disorders (Pettorruso et al., 2014).  

 
Discussion 
 

We reviewed the symptomatic, neurocognitive, and neurotransmitter overlap of 

compulsivity in OCD, substance-use disorders and behavioral addictions, to determine the 

processes that are central to compulsivity. First, the available data suggest that compulsivity in 

OCD and addictions are related to impaired reward and punishment processing in the ventral 

striatum and associated attenuated dopamine release, and with negative reinforcement in limbic 

and anti-reward systems, which may at least partly explain the presence of repetitive self-

defeating behaviors. Second, compulsivity in OCD and addictions entails cognitive and 

behavioral inflexibility, which may be rooted in a shared impairment of ventromedial prefrontal 

top-down regulation, along with prefrontal serotonergic defects and excessive dopamine and 

glutamate signaling. Finally, habitual responding regardless of its consequences is an aspect of 

compulsivity that might be related to imbalances between ventral and dorsal frontostriatal 

recruitment.  
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The Research Domain Criteria (RDoC) project does not cite compulsivity as one of its 

dimensional constructs or domains. However, features of compulsivity are grouped together 

within the RDoC positive valence system (i.e., reward processing and habits), and other aspects 

of compulsivity can be recognized within the negative valence and cognitive control domains. 

The current review suggests that compulsivity encompasses many of the RDoC constructs in a 

trans-diagnostic fashion with a shared dysregulation of frontostriatal circuits. The important 

question that remains to be answered in the future is whether compulsivity should be regarded 

one of the mono-dimensional building blocks of a new functional classification system or 

whether compulsivity can be better regarded as a combination of different one-dimensional 

constructs, which can be found in various DSM-5 diagnostic categories.  

Apart from the reviewed similarities between compulsivity in OCD and addictions, there 

are also many differences that may have contributed to their classification in separate categories 

in DSM-5 (American Psychiatric Association, 2013; Potenza et al., 2009). In contrast, 

similarities between pathological gambling and substance addictions led to the re-classification 

of gambling and substance-use disorders in an addictions category in DSM-5 (American 

Psychiatric Association, 2013; Potenza et al., 2006; Petry, 2006). Among the many differences 

between OCD and addictions are pharmacological treatments for the disorders, with selective 

serotonin-reuptake inhibitors showing efficacy for OCD but not for addictions, and opioid-

receptor antagonists showing efficacy for multiple addictions (Potenza et al., 2009) but generally 

not for OCD where opioid agonists rather than antagonists may have some efficacy (Goldsmith 

et al., 1999; Koran et al., 2005; Khazaal et al., 2006). However, certain OCD features like 

compulsivity may represent important trans-diagnostic domains that may be targeted in treatment 

efforts for both OCD and addictions.  
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In pathological gambling, there has been reported high levels of (self-reported and 

behavioral) compulsivity that may be responsive to OCD-like interventions (Blanco et al., 

20097), although this possibility warrants additional investigation. For further investigation of 

neurobiological features of compulsivity in OCD and addictive disorders, data-driven approaches 

and psychometric compulsivity measures may be particularly useful, for example using new 

compulsivity scales like the Dutch Dimensional Obsessive Compulsive Scale (DDOCS; in press) 

or the DSM-5 obsessive–compulsive spectrum scale (Le Beau et al, 2013). As an example of 

data-driven approaches, data-driven approaches may be particularly useful. For example, a factor 

structure derived from principal-components analysis assessing impulsivity-related measures in 

healthy and addicted individuals identified self-reported compulsivity as linking to measures of 

reward and punishment sensitivity (Meda et al., 2009). This factor grouping has been replicated 

in an independent college-gambling sample  (Ginley et al., 2014) and linked to cocaine addiction 

(Hyatt et al., 2012), a familial history of alcoholism (Yarosh et al., 2014) and changes in drinking 

behaviors among college students (Dager et al., 2014). Importantly, this self-reported 

compulsivity factor has been linked to left insular/inferior-frontal-gyral activation during 

successful response inhibition (DeVito et al., 2013), blunted ventral-striatal activation and 

activation of the ventral tegmental area during reward processing (Andrews et al., 2011; Patel et 

al., 2013) and dorsal caudate reward activation differing in current versus remitted cocaine users 

(Hyatt et al., 2012). These findings support the notions that compulsivity and sensitivities to 

reward and punishment are associated and that these in turn are linked to neurobiological 

constructs implicated in addictions. Such studies should also be undertaken in OCD to determine 

if similar or distinct findings are observed. Another approach warranting consideration involves 

the identification of latent classes. Such an approach was recently used to define classes of 
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obsessive-compulsive features that differed in quality and quantity and were linked to 

pathological gambling at diagnostic and genetic levels (Scherrer et al., 2015). The extent to 

which such latent classes relate to drug addictions warrants additional investigation.  

Finally, compulsivity and its associated frontostriatal dysfunction appear to be common 

targets for neuromodulation in OCD, drug addiction, pathological gambling, binge-eating, and 

compulsive shopping (Protasio et al., 2015). For example, DBS of the ventral striatum is able to 

improve compulsivity in OCD via a reduction of frontostriatal overconnectivity (Figee et al., 

2014) with similar changes suggested for DBS in addiction (Valencia-Alfonso et al., 2012). 

Likewise, cortical neuromodulation (e.g., rTMS of the medial prefrontal cortex) may change 

compulsivity in OCD and addiction through similar frontostriatal connectivity changes (Dunlop 

et al., 2015; de Ridder et al., 2011; Kravitz et al., 2015). Therefore, future studies of 

compulsivity and its neural correlates have great potential to advance neuromodulation for 

psychiatry. 

Taken together, these findings suggest that trans-diagnostic measures of compulsivity 

warrant additional study in substance and behavioral addictions, as well as in OCD and other 

conditions (skin-picking, trichotillomania. binge-eating/obesity, compulsive shopping, 

compulsive sexual behaviors, problematic Internet use), with the hope that such studies may 

identify appropriate targets for prevention and treatment initiatives. 
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