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Abstract: Traceability technologies have great potential to improve sustainable performance in cold 
food supply chains by reducing food loss. In existing approaches, traceability technologies are se-
lected either intuitively or through a random approach, that neither considers the trade-off between 
multiple cost–benefit technology criteria nor systematically translates user requirements for tracea-
bility systems into the selection process. This paper presents a hybrid approach combining the fuzzy 
Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solu-
tion (TOPSIS) with integer linear programming to select the optimum traceability technologies for 
improving sustainable performance in cold food supply chains. The proposed methodology is ap-
plied in four case studies utilising data collected from literature and expert interviews. The pro-
posed approach can assist decision-makers, e.g., food business operators and technology compa-
nies, to identify what combination of technologies best suits a given food supply chain scenario and 
reduces food loss at minimum cost. 

Keywords: cold food chain; traceability technology; technology selection; fuzzy AHP; fuzzy TOP-
SIS; integer linear programming 
 

1. Introduction 
Cold food chains require systematic management of operations and temperature 

throughout production, processing, and distribution, to assure the quality and safety of 
perishable food products [1,2]. Failure to effectively manage operations and temperature 
in the cold chain can affect the freshness and marketability of food by causing excessive 
ripening, dehydration, softening, color or texture changes and growth of pathogens [3], 
and can lead to food loss throughout food supply chains (FSCs). Food loss is the main 
reason for diminishing sustainable performance in cold FSCs, causing significant resource 
depletion and environmental pollution. Studies [4,5] estimate that globally, 23–24% of to-
tal resources including water, land and fertilizers are consumed to produce the lost food 
that does not reach the consumer, a carbon footprint equivalent to 0.66 Gtonnes CO2 per 
annum. Despite extensive scientific research and application in practice, cold chain per-
formance can still be improved and there is a pressing need for further investigation to 
address this issue [6]. 

Traceability-based cold FSC management has emerged as a popular concept in recent 
years [7,8]. Traceability necessitates identification and recording of processing infor-
mation for all product lots or batches in a given process, conceptually known as traceable 
resource units (TRUs), and sharing of that information as the product (or TRU) moves 
along the supply chain [9,10]. Traceability is formally enabled by implementing an infor-
mation system comprising of a wide range of techniques and technologies that reduce 
food loss through various measures. These include perfect counting of inventories [11]; 
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real time monitoring of the environment and intrinsic product condition [12]; communi-
cation of the history and quality of the products [13]; and shelf-life-based product distri-
bution planning [14]. 

The benefits of traceability technologies in an FSC are not limited only to the mainte-
nance of food quality and safety [8]. Identification traceability technologies, e.g., radio-
frequency identification (RFID) and barcodes, linking food products to their producers, 
packaging, and pallets, reduces the time and effort involved in recalls, leading to a reduc-
tion in costs and improvement in the sustainable footprint for FSCs [8,9,15]. Environment 
monitoring technologies, e.g., wireless sensor network (WSN) and smart packaging indi-
cators (e.g., time/temperature indicators, gas indicators, freshness indicators, and biosen-
sors), not only improve supply chain transparency, but also offer an alternative to the 
laborious, expensive, and destructive analytical techniques currently applied to food 
products [16,17]. 

Technology planning is an important strategic decision that precedes all supply chain 
operations and must anticipate the costs and benefits of any new implementation [18]. 
Improper selection of technologies can jeopardize operational performance with subse-
quent economic loss to the organizations concerned [19] and an environmental impact 
through poor resource use and allocation. For example, when selecting a suitable RFID 
variant, consideration should be given to its security criteria. Applications that do not re-
quire high security (e.g., automatic identification of inhouse lots or tools) would be made 
unnecessarily expensive by the incorporation of RFID with cryptological capability. 
Whereas, in high-security applications (e.g., access control), omission of security criteria 
can be an expensive oversight if manipulated RFID tags are used to gain access to services 
without authorization [20]. Therefore, selection of technologies to meet a specific supply 
chain need requires decision support methods that can consider how various technology 
alternatives influence a range of performance measures [21,22]. 

Only a limited number of approaches to select food traceability technologies have 
been found in the extant literature. Martínez-Sala et al. [23], comparing and contrasting 
benefits and cost of various technologies, highlight active RFID for automated pallet trace-
ability. However, their approach is completely descriptive rather than quantitative. On 
the other hand, identifying a set of requirements for real time product monitoring, Qi et 
al. [24] chose WSN and barcode technologies to match the intended requirements, alt-
hough no systematic methodology or cost estimation was considered. A more systematic 
decision tree-based framework considering cost and benefit criteria has been proposed by 
Óskarsdóttir and Oddsson [8]; however, their framework is more of an intuitive nature 
rather than quantitative, and seems complex while considering multiple conflicting crite-
ria or selecting a set of technologies for a single case [25]. Thus, a well-organized frame-
work underpinned by quantitative evaluation of cost benefit performance of traceability 
technologies to match the intended FSC requirement is not reported in the literature, and 
this presents a research gap.  

Multi-criteria decision making (MCDM) provides a normative approach to decision 
makers for selecting the most suitable technology option characterized by a trade-off 
among multiple, usually conflicting, criteria [19,26,27]. Efficacy of standard MCDM algo-
rithms, e.g., the Analytic Hierarchy Process (AHP) [28] and the Technique for Order Pref-
erence by Similarity to Ideal Solution (TOPSIS), has been proven in various technology 
evaluation studies such as: logistics information technologies [29], energy technologies 
[30], additive manufacturing technologies [31], and medical information technologies [32]. 
For ambiguous, subjective or incomplete technology datasets, fuzzy set theory [33] is often 
incorporated with both AHP and TOPSIS that cannot be handled with a deterministic ap-
proach [26,29]. These methods seem suitable for planning FSC traceability technologies as 
their associated criteria include both subjective and objective parameters [21]. No study 
has yet been performed that adopts these techniques in an FSC traceability case scenario 
[26]. 
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FSC traceability cases can become complex by requiring a set of different technolo-
gies and imposing a set of constraints to be complied with by them. For example, the real-
time temperature tracking of a low value food item requires a combination of identifica-
tion and temperature recording technologies that maximizes a measure of total intended 
benefits while also satisfying the embedded cost constraint. However, conventional 
MCDM methods are not adequate to fulfil these requirements as they cannot produce 
combinations of multiple alternatives satisfying the scenario-imposed constraints [34]. To 
fulfill these requirements, MCDM evaluation of alternatives is followed by a binary inte-
ger linear programming (ILP) that can choose a combination from the examined alterna-
tives by assessing the total benefit or cost objective and scenario-imposed constraints us-
ing the MCDM scores [34,35]. This type of integrated approach must maintain the con-
sistency of the rankings of technologies obtained in the MCDM stage throughout the final 
ILP technology selection stage [36]. 

With these basic premises established, this study aims to develop a new traceability 
technology selection methodology that can ensure the compatibility of the selected tech-
nology or combinations of technologies with FSC case-specific requirements. To that end, 
a hybrid approach is proposed which integrates standard MCDM methodologies, i.e., 
fuzzy AHP, fuzzy TOPSIS with ILP, and includes three main phases. The first phase is the 
Preparatory stage that identifies goals, decision constraints, technology alternatives and 
evaluation criteria. The next phase is the Technology evaluation stage, where scoring of the 
technologies is performed with fuzzy AHP and fuzzy TOPSIS. The third phase is the Tech-
nology portfolio selection stage that uses ILP to select the best technology portfolio maxim-
izing intended benefits while also satisfying the imposed constraints. To ensure the con-
sistency between the MCDM technology ranking and the final ILP technology selection, 
we adopted the augmented scoring approach proposed by Tavana et al. [35]. In this study, 
the proposed methodology has been tested for the four case studies adopted from 
Óskarsdóttir and Oddsson [8]. Similar to other technology evaluation literature [37], the 
technology and criteria information we analyzed here has been gathered through an ex-
tant literature review followed by expert validation via interviews. The proposed ap-
proach can help decision makers to choose the right traceability technologies at the mini-
mum cost for improved cold chain performance. This will increase FSC sustainability by 
reducing food safety incidents, product recalls and disposals with a direct environmental 
and economic impact. 

2. Traceability Technologies and Selection Criteria 
Following an iterative search, content analysis of academic and gray literature, in-

cluding technology company webpages, datasheets, e-commerce websites [38,39] and ex-
pert interviews, this paper captures, analyses and compares generic technology solutions 
across key selection criteria in the context of sustainable cold FCSs with traceability for 
identification and temperature monitoring. The comparative analysis of the technology 
solutions is shown in Table 1 and are briefly discussed below: 
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Table 1. Food traceability technologies compared across key criteria. 

    

  
Overal
l Cost 
(C1) 

Vulner
ability 

to 
Water 
 (C2) 

Flexibility 
(C3) 

Accuracy of 
Information  

(C4) 

Readin
g 

Range 
 (C5) 

Data 
Transfer 

Speed  
(C6) 

Multiple 
Tags 

Readability 
(C7) 

Identification 
Capacity  

(C8) 

Tag 
Writing 
Cycle  
(C9) 

Memory 
Capacity 

(C10) 

Environme
ntal 

Parameters 
Recording 

(C11) 

Real Time 
Location  

Recording 
(C12) 

Real Time 
Alert  
(C13) 

Durability 
of Data 
Carrier 
(C14) 

World-
Wide 

Standard 
(C15) 

Data 
Securit

y  
(C16) 

Manual 
Data 

Readabi
lity 

(C17) 

Paper 
based  

recording 

More 
than 

barcod
e for no 
encodi

ng 
[38,39] 
(Lowes

t) 

Most 
suscept
ible to 
damag

e [8]  
(Highe

st) 

High  
carrier 

weight for 
no 

encoding 
[40]  

(Lowest) 

Least accurate 
for human 
error [41]  
(Lowest) 

(Not 
applica

ble) 

Slowest 
data 

transfer 
[40]  

(Negligible
) 

(Not 
applicable) 

Item level unique 
identification  

(Highest) 

(Not 
applicable) 

(Not 
applicable) 

(Not 
applicable) 

(Certainly not) 
(Certainly 

not) 

Limited 
durability 
(Lowest)  

No 
standardi
zation [8] 
(Certainl

y not) 

No 
encrypt
ion or 

passwo
rd 

protecti
on  

(Certai
nly 
not) 

Manuall
y 

readable 
(Highest

) 

1D 
Barcode 

Encodi
ng 

capacit
y and 
lowest 
carrier 

cost 
[38,39] 
(Betwe

en 
negligi
ble and 
lowest) 

Noticea
ble 

perfor
mance 
downt

urn 
[40] 

(Fair) 

Light 
weight, 

printable 
and 

wearable 
tag [40]  

(Highest) 

Minimum 80% 
accuracy for 
human error, 
line-of-sight 
and harsh 

environment 
[40] (Medium 
high to high) 

Line-
of-sight 

and 
close-

contact 
readin
g up to 
10 cm 
[42] 

(Lowes
t) 

Line-of-
sight and 
shortest 
reading 
distance 
causes 

around 4 
s/read [20] 

(Low) 

Read tag 
individually 

[43]  
(Certainly 

not) 

Product class/SKU 
identification 

[40,44] 
(Fair) 

Single 
writing tag 

[21]  
(Lowest) 

20–80 
alphanumeri
c characters 

(Lowest) 

(Certainly 
not) 

(Certainly not) 
(Certainly 

not) 

Limited 
durability 

for 
environme

ntal 
damage 

[22]  
(Lowest)  

Global 
symbolo

gy 
standard 

[40,45]  
(Highest) 

Simple 
encrypt
ion of 
data 

visible 
physica

lly 
[22,46] 
(Low) 

Manual 
readabil

ity by 
accomp
anied 

alphanu
meric 
code 
[40]  

(Highest
) 
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2D 
barcode 

Encodi
ng 

capacit
y with 
lowest 
carrier 

cost 
[38,39] 
(Betwe

en 
negligi
ble and 
lowest) 

Noticea
ble 

perfor
mance 
downt

urn 
[40] 

(Fair) 

Light 
weight, 

printable 
and 

wearable 
tag [40] 

(Highest) 

Minimum 80% 
accuracy for 
human error, 
line-of-sight, 

and harsh 
environment 
[40] (Medium 
high to high) 

Line-
of-sight 

and 
close-

contact 
readin
g up to 
10 cm 
[42]  

(Lowes
t) 

Line-of-
sight and 
shortest 
reading 
distance 
causes 

around 4 
s/read [20] 

(Low) 

Reads tag 
individually 

[43]  
(Certainly 

not) 

Item level unique 
identification  
[40] (Highest) 

Single 
writing tag 

[21] 
(Lowest) 

2335–4296 
alphanumeri
c and ASCII 
characters 
(Medium 

high) 

(Certainly 
not) 

(Certainly not) 
(Certainly 

not) 

Limited 
durability 

for 
environme

ntal 
damage 

[22]  
(Lowest) 

Global 
standard 

for 
symbolo
gy [40,45] 
(Highest) 

Deep 
encrypt
ion of 
data 

visible 
physica
lly [42] 
(Fair) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 

RFID 
passive LF 
read-only 

Higher 
tag cost 

than 
HF and 

UHF 
for 

heavier 
antenn

a 
design 
[38,39] 
(Fair) 

Waterp
roof 
[47]  

(Certai
nly 
not) 

Heavier  
than HF, 

UHF RFID 
tags and 
barcodes 

[47,48] 
(Fair) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Non-
line-of-

sight 
and 
close 

contact 
readin

g 
betwee
n 1–10 
cm [49] 
(Low) 

Data 
transfer at 
8 kb/s [50] 
(Between 
Low and 
medium 

low) 

Reads tag 
individually 

[20]  
(Certainly 

not) 

Item level unique 
identification [51]  

(Highest) 

No writing 
capacity 

[52]  
(Certainly 

not) 

64–96b TID 
written by 

manufacturer 
(Low) 

(Certainly 
not) 

(Certainly not) 
(Certainly 

not) 

10–20 years 
[53] 

(Highest) 

ISO11784
, ISO 

11785, 
ISO/IEC 

15963 
[20] 

(Highest) 

Binary 
encrypt
ion of 
data, 

invisibl
e 

outside 
but low 
protecti

on 
against 
unauth
orized 
memor

y 
access 

[20] 
(Fair) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 
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RFID 
passive LF 
read-write 

Higher 
tag cost 

than 
HF and 

UHF 
for  

heavier 
antenn

a 
design 
[38,39] 
(Fair)  

Waterp
roof 
[47]  

(Certai
nly 
not) 

Heavier  
than HF, 

UHF RFID 
tags and 
barcodes 

[47,48] 
(Fair) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Non-
line-of-

sight 
and 
close 

contact 
readin

g 
betwee
n 1–10 
cm [49] 
(Low) 

Data 
transfer at 
8 kb/s [50] 
(Between 
Low and 
medium 

low) 

Reads small 
number of 

tags at once 
[20] (Low) 

Item level unique 
identification [51]  

(Highest) 

Multiple 
writing tag 

[54] 
(Highest) 

128–256 b 
memory 
[38,39] 

(Medium 
Low) 

(Certainly 
not) 

(Certainly not) 
(Certainly 

not) 

10–20 years 
[53] 

(Highest) 

ISO/IEC 
15963, 

ISO/IEC 
14223, 

ISO/IEC 
18000-2 

[20] 
(Highest) 

Binary 
encrypt

ion, 
passwo
rd and 
crypto
graphic 
protecti
on [20] 
(Highe

st) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 

RFID 
passive HF 
read-only 

Lower 
tag cost 

and 
higher 
reader 

cost 
than LF 
[38,39] 
(Fair) 

Waterp
roof 

[47,55] 
(Certai

nly 
not) 

Thinner 
than LF 
tags but 
thicker 

than UHF 
tags [47,48] 

(High) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity 

[20] (Highest) 

Contac
tless 

readin
g 

betwee
n 10 
cm–1 
m [49  
(Fair) 

Data  
transfer at 
105.9 kb/s 
[56] (Fair) 

Reads more 
tags than LF 
simultaneous
ly [20] (Fair) 

Item level unique 
identification [51] 

(Highest) 

No writing 
capacity 

[52] 
(Certainly 

not) 

64–96 b TID 
written by 

manufacturer 
(Low) 

(Certainly 
not) 

(Certainly not) 
(Certainly 

not) 

10–20 years 
[53] 

(Highest) 

ISO/IEC 
15963, 

ISO/IEC 
15693, 

[20] 
(Highest) 

Binary 
encrypt

ed 
data, 

invisibl
e 

outside 
but low 
protecti

on 
against 
unauth
orized 
memor

y 
access 

[20] 
(Fair) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 

RFID 
passive HF 
read-write 

Lower 
tag 

cost, 
and 

higher 
reader 

cost 
than LF 
[38,39] 
(Fair) 

Waterp
roof 

[47,55] 
[Certai

nly 
not] 

Thinner 
than LF 
tags but 
thicker 

than UHF 
tags [47,48] 

(High) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Contac
tless 

readin
g 

betwee
n 10 
cm–1 
m [49] 
(Fair) 

Data 
transfer at 
105.9 kb/s 
[56] (Fair) 

Reads more 
tags than LF 
simultaneous
ly [20] (Fair) 

Item level unique 
identification [51] 

(Highest) 

Multiple 
writing tag 

[54] 
(Highest) 

256–1024 b  
[38,39] (Fair) 

(Certainly 
not) 

(Certainly not) 
(Certainly 

not) 

 
10–20 years 

[53] 
(Highest) 

ISO/IEC 
15963, 

ISO/IEC 
15693, 

ISO/IEC 
18000-3 

[20] 
(Highest) 

Binary 
encrypt

ion, 
passwo
rd and 
crypto
graphic 
protecti
on [20] 
(Highe

st) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 
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RFID 
passive HF 

with 
sensor 

 Lower 
tag 

cost, 
and 

higher 
reader 

cost 
than LF 
[38,39] 
(Fair) 

Waterp
roof 

[47,55] 
(Certai

nly 
not) 

Thinner 
than LF 
tags but 
thicker 

than UHF 
tags [47,48] 

(High) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Readin
g range 
impair
ed by 

onboar
d 

sensor 
[20] 

(Low) 

Data  
transfer at 
105.9 kb/s 
[56] (Fair) 

Reads more 
tags than LF 
simultaneous
ly [56] (Fair) 

Item level unique 
identification 

[33,51] (Highest) 

Multiple 
writing tag 

[54] 
(Highest) 

256–1024 b 
[38,39] (Fair) 

Records 
only when 
powered 
by reader 

[57,58] 
Fair) 

(Certainly not) 
(Certainly 

not) 

10–20 years 
[53] 

(Highest) 

ISO/IEC 
15963, 

ISO/IEC 
15693, 

ISO/IEC 
18000-3 

[20] 
(Highest) 

Binary 
encrypt

ion, 
passwo
rd and 
crypto
graphic 
protecti
on [20] 
(Highe

st) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 

RFID 
passive 

UHF read 
only 

Higher 
reader 

cost 
than 

HF and 
LF 

[38,39] 
(Mediu

m 
high) 

Affects 
readabi
lity [55] 
(Betwe

en 
mediu
m high 

and 
high) 

Thinner 
than HF 

tags [47,48] 
(Highest)  

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Contac
tless 

readin
g 

betwee
n 3 cm–

9 m 
[47] 

(High) 

Data  
transfer at 

40–640 kb/s 
[59] 

(Medium 
high to 
high) 

Reads more 
tags than HF 
simultaneous

ly [20] 
(Between 

medium high 
and high) 

Item level unique 
identification [51] 

(Highest) 

No writing 
capacity 

[52] 
(Certainly 

not) 

64–96 b TID 
written by 

manufacturer 
(Low) 

(Certainly 
not) 

(Certainly not) 
(Certainly 

not) 

10–20 years 
[53] 

(Highest) 

ISO/IEC 
15963, 

ISO/IEC 
18000-6, 

EPC gen2 
UHF 

protocol 
[20] 

(Highest) 

Binary 
encrypt

ed 
data, 

invisibl
e 

outside 
but low 
protecti

on 
against 
unauth
orized 
memor

y 
access 

[20] 
(Fair) 

No 
instant 
manual 
readabil
ity [20] 

(Certain
ly not) 

RFID 
passive 

UHF read-
write 

Higher 
reader 

cost 
than 

HF and 
LF 

[38,39] 
(Mediu

m 
high) 

Affects 
readabi

lity 
[55,60] 
(Betwe

en 
mediu
m high 

and 
high) 

Thinner 
than HF 

tags [47,48] 
(Highest) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Contac
tless 

readin
g 

betwee
n 3 cm–

9 m 
[47] 

(High) 

Data  
transfer at 

40–640 kb/s 
[59] 

(Medium 
high to 
high) 

Reads more 
tags than HF 
simultaneous

ly [20] 
(Between 

medium high 
and high) 

Item level unique 
identification [51] 

(Highest) 

Multiple 
writing tag 

[54] 
(Highest) 

256 b–8 kb 
[38,39] 

(Medium 
high) 

(Certainly 
not) 

(Certainly not) (Certainly 
not) 

10–20 years 
[53] 

(Highest) 

ISO/IEC 
15963, 

ISO/IEC 
18000-6C, 
EPC gen2 

UHF 
protocol 

[20]  
(Highest) 

Binary 
encrypt

ion, 
passwo
rd and 
crypto
graphic 
protecti
on [20] 
(Highe

st) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 
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RFID 
passive 

UHF read 
write with 

sensor 

Higher 
reader 

cost 
than 

HF and 
LF 

[38,39] 
(Mediu

m 
high)  

Affects 
readabi

lity 
[55,60] 
(Betwe

en 
mediu
m high 

and 
high) 

Thinner 
than HF 

tags [47,48] 
(Highest) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Readin
g range 
impair
ed by 

onboar
d 

sensor 
[20]  

(Fair) 

Data  
transfer at 

40–640 kb/s 
[59] 

(Medium 
high to 
high) 

Reads more 
tags than HF 
simultaneous

ly [20] 
(Between 

medium high 
and high) 

Item level unique 
identification [51] 

(Highest) 

Multiple 
writing tag 

[54] 
(Highest) 

256 b–8 kb 
[38,39] 

(Medium 
high) 

Records 
only when 
powered 
by reader 

[57,58] 
(Fair) 

(Certainly not) 
(Certainly 

not) 

10–20 years 
[53] 

(Highest) 

ISO/IEC 
15963, 

ISO/IEC 
18000-6C, 
EPC gen2 

UHF 
protocol 

[20] 
(Highest) 

Binary 
encrypt

ion, 
passwo
rd and 
crypto
graphic 
protecti
on [20] 
(Highe

st) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 

Semi 
passive 
RFID 

Higher 
tag cost 

than 
UHF 

due to 
battery 
[38,39] 
(Betwe
en high 

and 
highest

) 

Affects 
readabi

lity 
[55,60] 
(Betwe

en 
mediu
m high 

and 
high) 

Heavier 
than 

passive LF 
due to 

onboard 
battery 
[8,47] 

(Lowa) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Contac
tless 

readin
g 

betwee
n 3 cm–

15 m 
[20] 

(High) 

Larger 
reading 

speed than 
UHF due 
to battery 

[20] (High) 

Reads more 
tags than HF 
simultaneous

ly [20] 
(Between 

medium high 
and high) 

Item level unique 
identification [51] 

(Highest) 

Multiple 
writing tag 

[20] 
(Highest) 

Up to 20 kb 
[38,39]  
(High)  

Real time 
recording 
of product 
physical 

data with 
onboard 

battery [61] 
(Highest) 

Real time 
recording of 
location with 

onboard 
battery and 
sensor [8] 
(Highest) 

Connect alert 
module with 

onboard 
battery [8] 
(Highest) 

 2–7 years 
for limited 
battery life 
[20] (Fair to 

medium 
high) 

ISO/IEC 
15963, 

ISO/IEC 
18000-6 

[20] 
(Highest) 

Binary 
encrypt

ion, 
passwo
rd and 
crypto
graphic 
protecti
on [20] 
(Highe

st) 

No 
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 

Active 
RFID 

Higher 
tag cost 

than 
semi 

passive 
due to 

transmi
tter 

[38,39] 
(Highe

st) 

Waterp
roof 
[13] 

(Certai
nly 
not) 

Heaviest 
tag with 
onboard 

battery and 
transceiver 

[47]  
(Certainly 

not) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20] (Highest) 

Contac
tless 

readin
g up to 
100 m 
[49] 

(Highe
st) 

Maximum 
read speed 

for high 
frequency, 

battery, 
and 

transceiver 
[20] 

(Highest) 

Reads 
maximum 
number of 

tags 
simultaneous

ly as tags 
include own 
batteries and 
transceivers 

(Highest) 

Item level unique 
identification [51] 

(Highest) 

Multiple 
writing tag 

[54] 
(Highest) 

More than 20 
kb [38,39] 
(Highest) 

Real time 
recording 
of product 
physical 

data with 
onboard 

battery [23] 
 (Highest) 

Real time 
recording of 
location with 

onboard 
battery and 
sensor [8] 
(Highest) 

Connects 
alert module 
with onboard 

battery[8] 
(Highest) 

2–7 years 
for limited 
battery life 
[20] (Fair to 

medium 
high) 

ISO/IEC 
15963 
[20] 

(Highest) 

Binary 
encrypt

ion, 
passwo
rd and 
crypto
graphic 
protecti
on [20] 
(Highe

st) 

No  
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 
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NFC 

No 
additio

nal 
reader 
cost as 
smartp
hone 

readin
g is  

possibl
e 

[38,39] 
(Low) 

Waterp
roof 

[Error! 
Refere

nce 
source 

not 
found.] 
(Certai

nly 
not) 

Thinner 
than LF 

tags [47,48] 
(High) 

Most accurate 
for minimum 

human 
dependency 

and 
environment 
insensitivity  

[20]  (Highest) 

Contac
tless 

readin
g 

betwee
n 1–3 

cm 
(Low) 

Data  
transfer at 
105.9 kb/s 
[56] (Fair) 

Reads 
multiple tags 
simultaneous

ly as HF 
RFID [20] 

(Fair) 

Item level unique 
identification [51] 

(Highest) 

Multiple 
writing tag 

[62] 
(Highest) 

256 –1024 b 
[38,39] (Fair) 

(Certainly 
not) 

(Certainly not) 
(Certainly 

not) 

10–20 years 
[53] 

(Highest) 

ISO14443
A, 

ISO/IEC 
18000-3 

[20]  
(Highest) 

Binary 
encrypt

ion, 
passwo
rd and 
crypto
graphic 
protecti
on [20] 
(Highe

st) 

No  
instant 
manual 
readabil
ity [40] 

(Certain
ly not) 

WSN 

Highes
t cost 
as a 

node 
compri

sing 
multipl

e 
compo
nents 

[38,39] 
(Highe

st) 

Waterp
roof [8] 
(Certai

nly 
not) 

Heaviest 
node 

consisting 
of several 

component
s [8] 

(Certainly 
not) 

Can be as high 
as ±0.5°C for 
temperature 
sensors [63] 

(Highest) 

Contac
tless 

readin
g up to 
100 m 
[64] 

(Highe
st) 

Data  
transfer at 
250 kb/s 

[64] 
(Between 
fair and 
medium 

high) 

(Not 
applicable) 

(Not applicable) 
(Not 

applicable) 

Limited 
memory 

capacity [63] 
(Low) 

Real time 
recording 
of product 
physical 

data with 
onboard 

battery [65] 
(Highest) 

Real time 
recording of 
location with 

onboard 
battery and 
sensor [8] 
(Highest) 

Includes real 
time alert 

module [63] 
(Highest)   

2–7 years 
for limited 
battery life 
[8]  (Fair 

to medium 
high) 

IEEE 
802.15.4 
Zigbee 

protocol 
and 

computer 
readable 

data 
standard 

[66,62] 
(Highest) 

Passwo
rd and 
crypto
graphic 
protecti

on 
against 
unauth
orized 
access 

[67] 
(Highe

st) 

No  
instant 
manual 
readabil
ity [24] 

(Certain
ly not) 

Smart 
packaging 
indicator 

High 
cost 

due to 
absenc

e of 
reuse  

capabil
ity 

[38,39] 
(High) 

Waterp
roof 
[63]  

(Certai
nly 
not) 

Light 
weight, 

printable 
and 

wearable 
[8]  

(Highest) 

Can be as high 
as ±0.5°C for  

TTIs 
[63] (Highest) 

(Not 
applica

ble) 

Slowest 
manual 

data 
transfer  

[63] 
(Negligible

) 

(Not 
applicable) 

(Not applicable) 
(Not 

applicable) 

Records full 
temperature 
history [68]  
(Highest) 

Records 
environme

ntal 
parameters 
with own 

battery [13] 
(Highest) 

(Certainly not) 

Can emit a 
signal in 

response to 
any change 

[13] (Highest)

Single use 
only [8] 
(Lowest) 

No 
technical 
or data 

standard 
[24] 

(Certainl
y not) 

No 
encrypt
ion or 

passwo
rd 

protecti
on [8] 
(Certai

nly 
not) 

Manual 
readabil
ity [24] 

(Highest
) 
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2.1. Technologies 
Seven main technologies with their respective variability for monitoring identifica-

tion and environment parameters are assessed in this paper. Among these, paper-based 
recording is not actually a technology, rather a traceability technique, and is considered 
in this comparison as it is a default approach for traceability, especially for small and mi-
cro-businesses [10]. Barcodes, a commonly used identification technology, consisting of 
scanning devices and symbology, contains mainly two distinct variations: one-dimen-
sional (1D) and two-dimensional (2D) codes [22,40]. RFID uses radio frequency to identify 
products and comprises three necessary hardware components: an electronic tag, a 
reader, and a supervising computer [69]. Among RFID variations, we consider the three 
major tag energizing categories: passive, semi-passive, and active, and their subsequent 
alternatives based on tag memory programmability: read-only and read-write, as well as 
transmission frequencies of LF (low frequency 125/134 KHz), HF (high frequency 13.56 
MHz) and UHF (ultra-high frequency 860–960 MHz) [20]. In addition, we consider Near 
Field Communication (NFC), a variation of HF passive RFID, as well as environment 
monitoring technologies, WSN and smart packaging indicators. The technology alterna-
tives are briefly discussed below: 

2.1.1. Paper-Based Recording 
The simplest form of traceability is found as manual documentation of data in pre-

printed paper forms [70]. The method involves the writing of every relevant piece of in-
formation on paper that follows the flow of material through the supply chain. For effec-
tive traceability, the paper documents must be stored and archived in a searchable manner 
in a timescale that is deemed appropriate by contractual partners. 

2.1.2. 1D Barcode 
One -dimensional (1D) barcode symbology encodes information into the form of par-

allel lines, i.e., bars and spaces [Error! Reference source not found.]. Barcodes can be 
printed on various types of materials and are scanned via special dedicated optical scan-
ners or smartphones with special applications [22,40,71]. Some popular 1D barcode sym-
bology includes: Code 128, Code 93, Code 39, ITF-14, EAN-13, UPC-A, DataBar-14 [21,72]. 
To avoid unexpected information loss from damaged tags, many 1D barcodes are accom-
panied with their corresponding alphanumeric codes that are manually readable [40]. 

2.1.3. 2D Barcode 
Two-dimensional (2D) barcodes, possessing higher memory capacity, encrypt more 

information in the form of matrices of geometric patterns, e.g., rectangles, dots, or hexa-
gons, than their 1D counterpart [21,73]. Available standard 2D barcode symbology in-
cludes: Data Matrix, QR code, MaxiCode, and PDF417 [21,72]. 

2.1.4. RFID Passive LF Read-Only 
RFID tags in this category only send information when energized by their readers’ 

electromagnetic field, as they do not possess their own power source onboard. Due to the 
low frequency design, they typically operate under a short reading range (i.e., 1–10 cm), 
requiring insertion or tapping of the tag against the reader with a transmission rate of 8 
kbit/s [47,50]. They usually include 64–96b PROM (programmable read-only memory) 
that contains only the tag identifier (TID), a unique serial number based on ISO/IEC 
15963:2009 protocol, permanently embedded by the tag manufacturer [74]. The TID is then 
used by supply chain operators for identifying an item attaching the tag, which can be 
read numerous times but cannot be changed [52,59]. 
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2.1.5. RFID Passive LF Read-Write 
Read-write passive LF RFID comprises of similar characteristics as read-only passive 

LF except for memory capacity. Instead of PROM, they include EEPROM (electronically 
erasable and programmable read-only memory) which users can use to add or modify 
product data (typically 100,000–1,000,000 times) [52,74]. Based on our e-market survey, a 
typical passive LF read-write RFID tag possesses 128 b to 256 b memory. 

2.1.6. RFID Passive HF Read-Only 
Passive HF read-only RFID possesses similar technical characteristics as passive LF 

read-only, except for their frequency band, resulting in a higher reading range and read-
ing speed. The near-field inductive coupling transmission principle is used in HF RFIDs 
with a typical read range of up to 1 m and reading speed of 105.9 kb/s [56]. 

2.1.7. RFID Passive HF Read-Write 
Read-write passive HF RFID comprises similar characteristics to their read-write pas-

sive LF counterparts, except for the frequency range used. Due to the HF transmission 
band, they can operate up to a 1 m reading range with 105.9 kb/s data rate [56]. Due to 
having a higher data rate than LF, these RFIDs are normally provided with higher data 
memory that falls within 256 b to 1024 b, according to our e-market survey. 

2.1.8. RFID Passive HF with Sensor 
Some passive HF read-write RFID tags are implanted with low power sensors for 

recording parameters, e.g., temperature. Due to the RF signal being consumed by these 
sensors, the tag operation requires a closer reading range than the typical HF RFIDs with-
out sensors [20]. 

2.1.9. RFID Passive UHF Read Only 
Passive UHF read-only RFID possesses similar technical criteria as passive LF and 

HF read-only, except for their operating frequency band, resulting in a higher reading 
range and reading speed. A passive UHF RFID system, using backscatter coupling, can 
transmit data between its tag and reader at a distance up to 9 m with a 40–640 kb/s data 
transmission speed [47,59]. 

2.1.10. RFID Passive UHF Read-Write 
Passive UHF read-write RFID possesses similar reading range and reading speed as 

the passive UHF read-only. Like read-write categories under LF and HF bands, these 
RFIDs contain EEPROM that can be used for multiple writing cycles [52]. As is seen in e-
market webpages, these RFIDs possess 256 b to 8 kb memory. 

2.1.11. RFID Passive UHF with Sensor 
UHF passive read-write RFIDs can also be embedded with sensors for measuring 

temperature, but at the expense of their reading range [75,76]. 

2.1.12. Semi-Passive RFID 
Semi-passive transponders, despite having onboard batteries, transmit data by har-

vesting energy from readers [20,48]. The on-tag batteries enable them to accommodate a 
wider range of sensors and GPS, and they provide a slightly longer reading range while 
operating at the same passive UHF band 860–960 MHz [3,20,75]. These tags can be pro-
grammed to record the required product data either on command or at specified time 
intervals [61]. 
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2.1.13. Active RFID 
The active transponders, having an active transmitter and often also a high-quality 

receiver, transfer data to the reader, using their own battery, by emitting a high-frequency 
electromagnetic field at 433.04–434.79 MHz [21]. Due to this high transmitting power, ac-
tive RFID can offer the highest data transfer speed and longest reading range of up to 100 
m [20,49]. Similar to semi-passive, active RFID tags can also be equipped with various 
sensors and GPS technologies for real time monitoring [20,77]. 

2.1.14. NFC 
NFC is a subgroup of HF RFID, thus operating in the RF band of 13.56 MHz, and 

supports data rates of 105.9 kb/s [78]. NFC tags do not need a dedicated reader; rather, 
they can be read by any smartphone with near-field communication capability [79]. Like 
RFID, multiple NFC tags can be read at a time and are capable of read-write programma-
bility [62]. 

2.1.15. WSN 
WSN refers to a network of spatially dispersed and dedicated sensors that collect 

data on various physical or environmental parameters and communicate them to a data-
base server through a base station or central node, using a network, e.g., GPRS (General 
Packet Radio Service) [59,80]. WSNs can be built of numerous nodes and each node con-
sists of radio transceivers, microcontrollers, memory capacity, an energy source, and sen-
sors [62]. WSN offers a high contactless reading speed, but is not suitable for identification 
purposes like RFIDs [64,80,81]. 

2.1.16. Smart Packaging Indicator 
Smart packaging indicators are made with various sensors to convey information re-

garding the history of the package and/or the quality of the food [13,16,68]. These indica-
tors can convey either qualitative information, e.g., electric, or colorimetric responses, or 
quantitative data, e.g., time–temperature history or shelf-life characteristics [13]. In this 
paper we gather data on the time–temperature indicator (TTI), a specific smart packaging 
indicator that records temperature and/or indicates the influence of temperature on the 
food quality [68]. 

2.2. Technology Criteria 
Traceability technology selection criteria are scattered throughout the existing litera-

ture [8,44,60]. In this section we consolidate the criteria related to sustainable FSCs, 
namely product identification and temperature monitoring, into a set of seventeen char-
acteristics that can be used to determine the performance of the aforementioned technol-
ogies. 

2.2.1. Cost (C1) 
Cost is one of the key determinants of supply chain sustainability; the lower the cost, 

the higher the sustainability. Based upon expert interviews, literature, and an e-market 
survey [38,39], we consider an overall cost for each technology (Table 1). The overall cost 
for paper-based traceability systems is considered higher than barcodes, as they require 
resources such as paper, printers, photocopiers, and other office supplies [40]. On the 
other hand, barcodes, condensing large amounts of information into small spaces, are con-
sidered as almost negligible cost due to the savings on the tag materials and the multiple 
reusability of the readers [40]. The overall cost of various RFID categories is found to be 
higher than barcodes and paper forms. Among these technologies, HF and LF are consid-
ered as being of a similar cost because HF tags are cheaper and require more expensive 
readers, while LF tags are costlier but require low-cost readers [20,47]. All UHF RFIDs 
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require significantly more costlier readers than LF and HF [47,48]. Active and semi-pas-
sive RFIDs cost more than passive alternatives due to onboard batteries and transceivers. 
WSNs are also found to have the highest cost among the technologies examined, while 
TTIs are comparatively less expensive though can be used only single time and the addi-
tional cost of recycling packaging in which they are embedded has not been considered 
here [8]. 

2.2.2. Vulnerability to Water (C2) 
A technology’s capacity to work in a cold chain environment is determined by its 

ability to be impervious to water. All traceability technologies are not equally efficient in 
the presence of water. For both the 1D and 2D barcode technologies, presence of water 
may cause a noticeable performance downturn due to the requirements for a clean clear 
optic and line-of-sight [40]. Whereas, RFID tags using LF and HF can easily be read while 
attaching objects containing water and other liquids, UHF passive and semi-passive tags 
cannot transmit data if the attaching products are high in water content as the UHF wave 
is absorbed by water [47,55,60]. The performance of active RFID, WSN and smart packag-
ing indicators is not impaired by water [8,60,63]. 

2.2.3. Flexibility (C3) 
Flexibility implies the ability of a data carrier involving a technology to be light-

weight, printable, and wearable for ease of attachment to a product [82]. This criterion is 
highly important while choosing a technology to label products within a supply chain 
scenario, e.g., the point of sale for the final customers. Barcode labels, being lightweight, 
printable, and wearable, provide the highest flexibility [40]. Although RFID tags can store 
more information than barcodes, the tag components altogether are heavier than bar-
codes. Among RFID variants, UHFs are the lightest, followed by HFs and then LFs, while 
active and semi-passive tags are the heaviest due to onboard batteries [47,48]. 

2.2.4. Accuracy of Information (C4) 
Accuracy of recorded information is another criterion essential for many cold chain 

scenarios, e.g., processing, warehousing, and transportation. Accuracy can be determined 
by the amount of error in a piece of recorded information; the smaller the error, the greater 
the accuracy. Lack of accuracy can lead to problems such as inventory discrepancy, i.e., 
the difference between actual physical inventory and associated inventory records, and is 
influenced by the potential for spoilage during storage and transportation [83,84]. Mini-
mizing product spoilage is a key component of a sustainable supply chain management 
plan so accuracy of data is important. Manual data collection is highly susceptible to error 
[41]. Error of barcode reading can also be as high as 20% due to its high reliance on human 
intervention, line-of-sight, and its vulnerability to harsh environments [40]. In contrast, 
minimum human dependency, non-line-of-sight and insensitivity to harsh industrial en-
vironments enable RFIDs to offer the highest level of read accuracy [20]. For sensing en-
vironmental parameters, e.g., temperature, both WSNs and smart packaging indicators 
provide a similar level of accuracy with around ±0.5°C error [63]. 

2.2.5. Reading Range(C5) 
Reading range is defined as the farthest distance between a tag or node and a reader 

or gateway at which a successful data reading can take place [60]. This criterion is appli-
cable to auto-id technologies, barcode, RFID, NFC, and sensing technology, WSN. For 
these technologies, the three main variations of the reading range observed are: line-of-
sight, close-contact reading, and contactless reading. Operational frequency is the major 
factor that determines whether the data can be read at close contact or contactless [20,60]. 
The cold chain scenario-imposed constraints ultimately determine the choice of the tech-
nology read range [60]. For example, close-contact reading is primarily used in supply 
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chain situations that do not require fast reading and are subject to strict security require-
ments such as payment at the point-of-sale; while contactless reading is highly important 
for moving items, such as pallets carried with forklifts or a conveyor belt passing through 
a checkpoint [3,20]. Close contact reading is offered by LF RFID [49]. Among contactless 
reading technologies, HF RFID offers 10 cm to 1 m reading range; NFC offers up to 3 cm; 
UHF passive can be used from 30 cm to 9 m; and active RFID and WSN both offer up to 
100 m reading range [47,49,64]. 

2.2.6. Data Transfer Speed (C6) 
Data transfer speed is a composite criterion combining data reading speed and han-

dling of the data carrier (or tag) for the respective technology [20]. Data transfer from pa-
per records is fully manual and hence considered as the slowest. Similarly, automated 
data acquisition is also not possible from smart packaging indicators, as physical action is 
required to check the indicator and manually register the data [24,63]. Although barcode 
technologies offer higher data transfer speed than manual paper forms, with the require-
ments of high operator handling due to line-of-sight and close contact reading, barcode 
data transfer can be as slow as 4 s/read [20]. RFID technologies are not dependent on line-
of-sight, however LF RFIDs, requiring close contact reading, are slow and their data read 
rate is 8 kb/s [50]. In contrast, HF passive RFID and NFC offer contactless reading with a 
data read rate of 105.9 kb/s [56]; while RFIDs in the UHF band can perform data reading 
at 40–640 kb/s [59]. Semi-passive RFIDs can offer slightly higher reading speeds than UHF 
passive technologies due to the onboard batteries [3,20,75]. Active RFIDs offer the highest 
read speed due to onboard transceivers and batteries [20]. WSN offers contactless data 
transfer to a base station at a speed of 250 kb/s [63,64]. 

2.2.7. Multiple Tags Readability (C7) 
Multiple tags readability refers to the ability to read multiple tags simultaneously, 

and this criterion is only applicable to auto-id technologies. Multiple tag readability de-
pends on the anti-collision property enabled by implementing algorithms, e.g., time divi-
sion-based binary-tree and ALOHA for tags and readers [85]. The higher the data transfer 
rate of an RFID system, the greater the capacity to accommodate an efficient anti-collision 
algorithm and hence the faster the product tracking. LF RFIDs have limited anti-collision 
properties, though HF, NFC, UHF, semi-passive and active RFIDs generally embed anti-
collision properties in their design [20]. 

2.2.8. Identification Capacity (C8) 
This criterion indicates the ability of a technology to be able to identify a product at 

different granularity levels. Granularity refers to the level of detail of the product identi-
fication recorded by a technology and that depends particularly on the technology’s 
memory capacity [86]. Identification capacity is necessary for efficient inventory control, 
as well as tracking product history, and therefore considered as essential for sustainable 
FSC management. The 1D barcode technology, with limited memory, can only carry the 
product class or SKU identification, whereas 2D barcodes can encrypt an individual item 
number due to their higher memory capacity [40,44]. RFID and NFC, due to larger 
memory and data encoding capacities, are also able to offer item level unique identifica-
tion with electronic product code (EPC) identifiers, a tag data standard managed by the 
organization, GS1 [51]. 

2.2.9. Tag Writing Cycle (C9) 
A tag writing cycle reflects whether new data can be written in a technology’s 

memory during its use in a supply chain. Three variations have been observed for the 
studied technologies: no writing cycle, single writing cycle, and multiple writing cycles. 
Read-only RFIDs have no writing cycle for users as they only contain the manufacturer 
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embedded permanent TID which is unable to be modified during their use [52,59,74]. 
Read-only systems are used where only a small amount of data communication is re-
quired, such as identification of pallets, containers, gas bottles and even livestock [20]. 
Barcodes offer a single writing cycle as they can be written only once by the supply chain 
operator which then cannot be modified later [21]. On the other hand, RFIDs with read-
write capacity (including passive, semi passive and active) and NFCs provide the option 
of multiple writing cycles. These technologies are important where additional product 
information (e.g., processing parameters, date of manufacture) is required to be embed-
ded along with the product ID to facilitate data exchange [21,54]. The attribute of a tag 
writing cycle is not applicable to paper records, WSN and/or smart packaging indicators 
as they do not include a tag. 

2.2.10. Memory Capacity (C10) 
Memory capacity determines how much information a technology data carrier can 

store and thus is an essential element to consider for communication of sustainability re-
lated data, e.g., temperature to FSC operators, or carbon footprint data to final customers. 
Various types of 1D and 2D barcodes can store 20 to 80 and 2335 to 4296 alphanumeric 
and ASCII characters, respectively [40,72]. For RFID technology, high memory capacity 
results in higher prices and requires faster information reading to prevent slowing the 
response of the system [12]. For this reason, LF RFIDs are normally provided with a 
smaller memory capacity in comparison to HF and UHF passive with a longer read range 
[20]. Moreover, read-only RFIDs in all frequency bands are embedded with smaller 
memory size (generally 64 b or 96 b) to include only the TIDs. Conversely, RFIDs and 
NFCs with read-write capacity include larger memory for users to write data during their 
use. As per our e-market survey, read-write RFIDs in the HF band are available with 256 
b to 1024 b memory size that can increase up to 8 kb for their UHF counterparts. However, 
active RFID can offer more than 20 kb. WSNs are also embedded with limited memory 
capacity, though larger memory is found in TTIs to enable them to record partial through 
to complete temperature history [68]. 

2.2.11. Environmental Parameters Recording (C11) 
The HF and UHF passive RFIDs, normally without a power supply of their own, can 

only include certain low power sensors for measuring physical parameters, such as tem-
perature, moisture, and shock, at the expense of their reading range [75,76]. The product 
physical data recording and communication becomes real-time only if a tag is stationary 
and receives power continuously from the reader, though recording of temperature his-
tory is not possible [57,58]. The active and semi-passive RFID tags, with onboard batteries, 
can record temperatures and integrate them in a temperature history that can be commu-
nicated through readers/gateways [61,87]. WSN technologies can communicate discrete 
temperature in real time, though recording of temperature history is not possible; how-
ever, that option can be offered by smart packaging indicators, e.g., TTI [13,65]. 

2.2.12. Real-Time Location Recording (C12) 
Among identification technologies, only semi-passive and active RFIDs, with 

onboard batteries, can be embedded with global positioning system (GPS) to obtain real-
time location information [8]. GPS inclusion is also common for WSN technologies [65]; 
however, smart packaging indicators do not possess that capacity [8]. 

2.2.13. Real-Time Alert (C13) 
Real-time alerts are an essential element of sustainable cold FSC management, as real-

time action can limit product loss and therefore reduce environmental impact of product 
disposal. Real-time alert systems, informing on emergency food conditions, e.g., loss of 
temperature control, requires a continuous power supply which means it is not possible 
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to support such systems by passive RFIDs. However, semi-passive and active RFIDs with 
onboard power sources can accommodate real-time alert systems [20]. WSN, on the other 
hand, can also include an alarm module to indicate any changes in environment or the 
physical condition of the food [63]. Smart packaging indicators are also able to identify 
potential quality problems and emit alerts (e.g., electric and colorimetric signals) [13]. Au-
tomatic alert systems are not applicable to barcode technologies and manual paper rec-
ords [8]. 

2.2.14. Durability of Data Carrier (C14) 
Passive RFID systems are completely insensitive to manufacturing environment is-

sues, e.g., dust, moisture, oils, coolants, gases, high temperatures, and hence are durable 
for as long as 10 to 20 years [53]. Active and semi-passive RFIDs are also impervious to 
harsh environmental conditions, however with onboard limited lifetime batteries, they 
can last around 2 to 7 years depending on the level of use [20]. Manual paper forms can 
be easily damaged, misplaced or lost, and hence are considered as least durable of the 
technologies; barcodes are comparatively more resilient, though they can be easily dam-
aged (soiled, scratched) by harsh environmental conditions and handling beyond their 
readable limit [22]. 

2.2.15. World-Wide Standard (C15) 
Consistency of symbology and technical specification is important, especially when 

a product moves from one FSC party to another, so that its accompanying information is 
understood and accepted by all parties involved. This requirement leads to the progres-
sion of globally accepted technology standards enabling interoperability and coordination 
of traceability data shared among multiple stakeholders. The two most widely used bar-
code symbology standards, the Universal Product Code (UPC) and the European Article 
Numbering (EAN) led to the foundation of the EAN/UPC barcode standards for con-
sumer products (retail) [40]. ISO/IEC 15963 is a generic standard for TID in RFID tags 
complying with various standardization requirements, e.g., the GS1 numbering scheme 
[74]. Some other standards, such as ISO 18000 series, define technical specifications of 
RFID technologies for item management in FCSs [88]. There are also some specific stand-
ards such as ISO 11784, ISO 11785, and ISO 14223 for identification code and technical 
specification of animal ear tags; and ISO/IEC 14443 and ISO/IEC 15693 for HF RFID and 
NFC cards [20]. Whereas WSNs are usually built with IEEE 802.15.4 Zigbee protocol and 
data structure standards, e.g., XML [62,66], TTIs do not possess any technical or computer 
readable data standards that they need to comply with [24]. 

2.2.16. Data Security (C16) 
Like many other information technologies, traceability technologies are also subject 

to the potential risk of security loss, e.g., data accessibility or manipulation [22]. In a closed 
area (e.g., processing facility), where the traceability system operator and user are not sep-
arate parties, data security is not important [20]. However, in situations where a third 
party is involved (e.g., transportation, retail store), data security is an essential criterion. 
Manual paper forms with no encryption are highly susceptible to security risks as they 
can be easily edited, mishandled, or damaged; whereas barcodes with simple encryption 
provide comparatively more security, although the encrypted data situating outside on a 
tag surface may still suffer cloning or modification [22,46]. In contrast, information rec-
orded in RFIDs is not physically visible from outside [46,83]. RFID with read-write capac-
ity can further be protected with passwords and even cryptographic measures to enable 
it for high-security applications such as access control [20]. For WSNs, high data security 
can also be attained with both password and cryptographic protection, whereas with 
smart packaging indicators, data is physically visible, providing the lowest or no data 
security against unauthorized access [8,67]. 
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2.2.17. Manual Data Readability (C17) 
Manual data readability is important if the data is intended for the final customers or 

infield workers who do not carry special data reading devices and/or need instant infor-
mation. Furthermore, damage (e.g., tears and scratches) to data carrying technologies, and 
unavailability of electricity or internet or phone networks may lead to users opting for 
manual reading [Error! Reference source not found.]. To avoid unexpected information 
loss from damaged tags, 1D barcodes are often accompanied with their corresponding 
alphanumeric codes that are manually readable, holding a distinct advantage over alter-
native technology; for example, RFID cannot be read without a dedicated scanner [40,72]. 
Among environment parameters recording technologies, time–temperature indicators 
can provide instant shelf-life information and temperature history to infield personnel 
(e.g., operators and customers), though WSN requires a special gateway to obtain this 
information [24]. 

3. Proposed Framework 
The proposed technology portfolio selection framework, developed in this research, 

comprises three main phases: the preparatory stage, the technology evaluation stage, and 
the technology portfolio selection stage. This technology portfolio selection framework is 
shown in Figure 1 and discussed in the following paragraphs. 

 
Figure 1. Technology portfolio selection framework. 
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3.1. Phase 1: Preparatory Stage 
The preparatory stage includes the three following steps: 
P1. Identify the main goal, subgoals and decision constraints: Technology portfolio 

selection for any scenario or case generally starts with defining an overarching goal [18]. 
The goal for traceability technology selection is the main requirement, either derived from 
a particular FSC scenario, or demanded by a corresponding actor, e.g., food business op-
erator or end customer [19]. A relatively broad goal is further broken down into specific 
subgoals such that the main goal is achieved through accomplishing the subgoals [18]. For 
example, temperature tracking of a food product can be further divided into two subgoals: 
product tracking and temperature monitoring. Apart from goals and subgoals, each case 
also includes some decision constraints [35], for example, traceability of a low value food 
item imposing a cost/budget constraint, or the requisite of selecting among mutually ex-
clusive technologies, putting a constraint on the total number of selected technologies. 

P2. Identify available technology options: Shortlisting of candidate technologies is 
another important step in any technology selection process [19]. In real life settings, these 
types of selections are normally performed by technology experts who consider the tech-
nologies available and the intended benefits for the traceability system. However, in this 
paper, technology information is gathered through the literature review and e-market 
webpages followed by expert interviews (Table 1). The focus was to identify the most 
commonly used technologies for product identification and temperature monitoring.  

P3. Identify technology evaluation criteria: To achieve the goal/subgoals defined in 
step P1, selection criteria for the technologies considered in step P2 are identified. Alt-
hough in a real case scenario, decision makers, e.g., technology experts can do this job, in 
this study, we followed a similar approach to Büyüközkan et al. [37] and consolidated a 
set of decision criteria from the traceability technology literature (discussed in Section 2 
and Table 1) that are most appropriate in the context of sustainable cold FSC management. 
A specific set of criteria were picked out from this list for each case goal, based on the 
opinion of our technology experts. 

3.2. Phase 2: Technology Evaluation Stage 
The technology evaluation stage constitutes the four following steps: 
E1. Determine criteria weight using fuzzy AHP: The relative weights for all technol-

ogy criteria identified in step P3 are determined using fuzzy AHP. In fuzzy AHP, a fuzzy 
scale comprising a series of fuzzy numbers is used to define the verbal expression of de-
cision makers in a pairwise criteria comparison matrix [25]. The main stages comprising 
fuzzy AHP are described below and is further demonstrated in the context of this paper 
in Section 4. 

E1.1. Decision makers are asked to allocate values according to the fuzzy criteria rat-
ing scale to construct the pairwise criteria comparison matrix. 

Let us consider that  ,  , …   are criteria identified in step P3 and ,  denotes 
the preference rating given by  decision maker for criterion  relative to criterion , 
where , = 1,2, … , . ,  is a triangular fuzzy number (TFN) that can be represented by 
a triplet such that , = , , , , , , where ,  and  are the smallest possible, most 
probable, and largest possible values of , respectively. The ×   sized decision matrix 
for the  decision maker is given in Equation (1).                   ⋯  

= ⋮ , ,, , ⋯ ,⋯ ,⋮ ⋮, , ⋮ ⋮⋯ ,
   (1)
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E1.2. For multiple decision makers, the geometric mean is obtained for preference 
ratings for each criteria comparison given by all decision makers [89] by using Equation 
(2) 

, = ( , , , , , ) = ,
/ , ,

/ , ,
/

 

 , = 1,2, … ,  

(2)

where ,  is combined preference rating obtained for p number of decision makers. 
E1.3. The combined preference ratings ,  are integrated into a combined decision 

matrix as shown in Equation (3).                     ⋯  

= ⋮ , ,, , ⋯ ,⋯ ,⋮ ⋮, , ⋮ ⋮⋯ ,  
(3)

E1.4. The fuzzy weight values are calculated for all criteria using Equation (4) 

= ×  (4)

where 

= 1∑ , 1∑ , 1∑  (5)

E1.5. The fuzzy weights are then defuzzified to obtain their crisp values for all criteria 
using Equation (6). Among numerous defuzzification methods, the one proposed in Chen 
and Huang [90] is found herein to present the best non-fuzzy performance measure for 
the collected dataset. = = + +3  (6)

E2. Measure technology performance on each criterion: Performance is measured for 
the technologies shortlisted in the preparatory step P3 by presenting various units that 
quantify the technologies’ performance on selected criteria. Linguistic variables and asso-
ciated fuzzy rating scale are often used to indicate these performance levels [91]. In real 
case scenarios, the linguistic variables presenting technology performance are gathered in 
a technology performance table through accumulating experts’ knowledge [29]. In this 
present study, we construct a technology performance table (shown in Table 1) based on 
the data gathered from literature and expert opinion. The construction of this table in the 
context of this paper is demonstrated in Section 4. 

E3. Obtain scores and rank of technologies using fuzzy TOPSIS: Fuzzy TOPSIS is ap-
plied on the technology performance table constructed in the step E2. Similar to the meth-
odology of Lupo and Bellomo [92], in this paper we first convert the technology perfor-
mance matrix in its crisp form and then follow the classical TOPSIS algorithm for a regular 
real number [27]. Our Fuzzy TOPSIS procedure comprises the following steps: 

E3.1. Obtain fuzzy technology performance matrix: Assume , , … ,   are  pos-
sible technology alternatives and  , ,  ⋯  are selected criteria in step P3. ,   
is a TFN such that ,  = , , , , ,  denoting the performance rating for technology 

 on criterion  , where = 1,2, … ,  and = 1,2, … , . Therefore, the ×   sized 
technology performance matrix can be written as Equation (7). 
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                 ⋯  

= ⋮ , ,, , ⋯ ,⋯ ,⋮ ⋮, , ⋮ ⋮⋯ ,  
(7)

E3.2. Obtain defuzzified technology performance matrix: The technology perfor-
mance matrix  is defuzzified using Equation (6) as given in Equations (8) and (9) 

                                            ⋯  

= ( ) = ⋮ , ,, , ⋯ ,⋯ ,⋮ ⋮, , ⋮ ⋮⋯ ,  
(8)

where 

, = , = , + , + ,3        = 1,2, … ,   = 1,2, … ,  
(9)

E3.3. Obtain normalized technology performance matrix: The normalized technology 
performance matrix is calculated as follows: 

                                        ⋯  

= ( ) = ⋮ , ,, , ⋯ ,⋯ ,⋮ ⋮, , ⋮ ⋮⋯ ,  
(10)

where 

, = ,∑ ,        
= 1,2, … ,   = 1,2, … ,  

(11)

E3.4. Obtain weighted normalized technology performance matrix: The weighted 
normalized technology performance matrix is calculated by multiplying the normalized 
performance matrix with corresponding criteria weight  obtained in step E1.5 of the 
technology evaluation stage. 
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                                               ⋯  

= ℎ  ( ) = ⋮ , ,, , ⋯ ,⋯ ,⋮ ⋮, , ⋮ ⋮⋯ ,  
(12)

, = , ×  (13)

E3.5. Calculate positive ideal and negative ideal solutions: The positive ideal and 
negative ideal solutions  and   are determined using Equations (14) and (15), re-
spectively: = , … , = max , | ∈ , min , | ∈  (14)= , … , = min , | ∈ , max , | ∈  (15)

where  is a set of benefit criteria and  is a set of detriment criteria. 
E3.6. Calculate distances of each alternative from positive ideal and negative ideal 

solutions: The separation for each technology from positive and negative ideal solutions 
are measured using Equations (16) and (17), respectively: 

= ( , − ) , = 1,2, … ,  (16)

= ( , − ) , = 1,2, … ,  (17)

E3.7. Calculate closeness coefficients to score and rank the alternatives: The relative 
closeness of each technology alternative  to the ideal solutions  and   is defined 
by its closeness coefficient  that is determined using Equation (18): = ( + ) , = 1,2, … ,  (18)

Technologies are ranked according to their  values. ∈ [0,1]  and a higher 
value of  means that the technology  has a longer distance from the negative ideal 
solution, a shorter distance from the positive ideal solution, and hence a higher rank com-
pared to the other alternatives, and vice versa.  can also be considered as the MCDM 
score of an examined technology. 

E4. Compute augmented scores of technologies: After evaluating and ranking, the 
highest scored technology cannot be chosen straightforwardly without considering the 
constraints and preferences prevailing in a certain FSC case situation [34]. Therefore, the 
constraints and preferences are integrated in an ILP formulation where the objective func-
tion is to maximize the sum of the binary variables assigned to the considered technology 
alternatives, each one multiplied by its MCDM score calculated in the previous step. How-
ever, this ILP formulation does not necessarily maintain the preference order derived from 
the MCDM ranking of the technologies. This is because the ILP can select a combination 
of technologies with the highest combined MCDM scores, even if the individual technol-
ogies within this combination were not initially prioritized by the MCDM technique. As 
a result, the portfolio of technologies providing the highest benefit cannot be chosen. 

Therefore, Kabli [36] states that hybrid approaches should maintain coherence 
throughout these portfolio selection steps. As a result, it is important to maintain the con-
sistency of the rankings of technologies obtained in the technology evaluation stage 
through to the final phase, technology portfolio selection. To this end, we adopt a similar 
approach to Tavana et al. [35] and replace the MCDM scores of technology alternatives, 
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 with augmented scores  in the ILP objective function. By applying the augmented 
scores, the problem of underestimating high benefit technologies is solved, and the initial 
MCDM ranking of the technologies is maintained throughout the ILP selection process. 

The key tactic here is to assign augmented scores to technologies so that the aug-
mented score of ℎ technology is always greater than the sum of the scores of all the 
technologies worse than , based on the rankings obtained through . To do so, if we 
assign a score of 1 to the worst technology, the next technology score is (1 + 1) = 2, the one 
after is 1 + 2 + 1 = 4, and so on. Following this approach, the augmented score  of the ℎ technology will be 2 − 1, as shown in Equation (19) as follows: = 2 − 1 (19)

3.3. Phase 3: Technology Portfolio Selection Stage 
The technology portfolio selection stage comprises the following six steps. 
S1. Formulate constraints equations and objective function as an ILP model: The ini-

tial preferences and constraints identified in phase 1 are converted into constraint equa-
tions and objective function of an ILP model. The objective function and some exemplary 
constraints that may affect the food traceability technology selection decision are shown 
below: 

(i) Objective function: 

 = ×  (20)

Where   is the total amount of benefit obtained from the selected portfolio;  is an in-
dex such that = 1,2, … ;  is a binary integer variable where = 1 if technology   
is selected,  = 0 otherwise; and  is the augmented scores of technologies. 

Subject to: 
(ii) Total number of technologies in the portfolio: 

≤  (21)

 is a constant number denoting the maximum preferred number of technologies in the 
selected portfolio. 

(iii) Necessary technology in the portfolio: = 1 (22)

Say,  must be present in the selected portfolio. 
(iv) Mutually exclusiveness of technologies: + ≤ 1 (23)

Say, technology 1 and technology 2 cannot be simultaneously present in the selected port-
folio. 

(v) Interdependency of technologies: ≤  (24)

Say, technology 4 must be selected to select technology 2. 
(vi) Cost constraint: 

× ≤  (25)

The summation of technology costs   in the selected portfolio must not exceed the 
maximum allowable budget  
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S2. Solve the model: The model constructed in step S1 is solved to obtain the opti-
mum portfolio of technologies. 

S3. Obtaining solution: It is necessary to check whether the optimal solution is found 
in step S2. If the optimal solution is not found, the ILP model needs to be checked and 
reformulated. 

S4. Number of optimal solutions: If a single optimal solution is obtained, step S6 can 
be taken; however, for multiple optimal solutions, step S5 is followed. 

S5. Perform fuzzy TOPSIS to obtain the best solution: The decision makers need to 
assign new weights for the criteria. It is necessary to realize that a particular technology 
performance on a criterion will be different than that for a portfolio containing that tech-
nology, as the interaction among technologies within the portfolio will also come into con-
sideration. In this way, the best portfolio with the highest score can be identified. 

S6. Select the portfolio solution: The best portfolio of technologies is selected for pilot 
implementation. 

The framework is now applied to the case studies demonstrated in Section 4. 

4. Case Study 
In this section we demonstrate the applicability of the proposed framework with four 

case studies adopted from the work by Óskarsdóttir and Oddsson [8]. TFN scales are used 
in this study for assigning ratings for both the criteria and technology alternatives. The 
criteria rating scale is approximated from Saaty’s 9-point scale [25] that is shown in Table 
2. 

Table 2. Criteria rating fuzzy scale. 

Saaty’s Scale Linguistic Term Fuzzy Number 
1 Equally important (1, 1, 1) 
2 Between equally and weakly important (1, 2, 3) 
3 Weakly important (2, 3, 4) 
4 Between weakly and fairly important (3, 4, 5) 
5 Fairly important (4, 5, 6) 
6 Between fairly and strongly important (5, 6, 7) 
7 Strongly important (6, 7, 8) 

8 
Between strongly and absolutely im-

portant 
(7, 8, 9) 

9 Absolutely important (9, 9, 9) 

The technology rating scale (shown in Table 3) is an 8-point scale starting with (0, 0, 
0), signifying certainly not/negligible/not applicable, up to (0.8, 0.9, 1.0) that stands for the 
highest performance level. 

Table 3. Technology performance rating fuzzy scale. 

Linguistic Term Fuzzy Number 
Certainly not/negligible/not applicable (0.0, 0.0, 0.0) 

Lowest (0.0, 0.1, 0.2) 
Low (0.1, 0.2, 0.3) 

Medium low (0.2, 0.3, 0.4) 
Fair (0.3, 0.5, 0.7) 

Medium high (0.5, 0.7, 0.8) 
High (0.7, 0.8, 0.9) 

Highest (0.8, 0.9, 1.0) 
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As a part of the study, two decision makers are interviewed to ‘sense check’ and sup-
port the identified goal, subgoals, relevant criteria, constraints, and the formulation of the 
decision matrices for each FSC case. The technologies and their performance criteria are 
shortlisted from Table 1. The technology data in Table 1 are subjective, incomplete, inter-
mediary, or continuous, and therefore are approximated into qualitative performance 
measures using the fuzzy scale in Table 3 (written within parenthesis in Table 1) [93]. The 
quantitative values associated with these qualitative technology performance measures 
can be found in Table S1 in the supplementary material. The quantitative performance 
measures are further used to calculate the technology scores. 

We then calculate the augmented technology scores and use it in the ILP objective 
function with case-specific constraint equations. Finally, we determine the optimal tech-
nology solution/s that satisfy the objective function and associated constraints for a given 
case and explain the rationale that underpins this solution. 

4.1. Case 1 
Fresh arctic char (fish) is transported by truck and air from the production site in 

northern Iceland, through Keflavik airport, to New York. The product units, shipped as 
pallets, are often not placed in a cold storage immediately after arrival in New York, and 
instead are left outside in a temperature more than 30°C. As a result, shelf-life deteriora-
tion and spoilage occurs in the perishable arctic char. Hence, the associated FSC operators 
intend to monitor the real-time ambient temperature that the pallets are subjected to, so 
that the necessary actions can be taken immediately in the event of product temperature 
rise to minimise spoilage and sustainability loss. To obtain the optimum technology port-
folio, the proposed framework is used as follows: 

Phase 1: The goal of this case is to enable FSC partners to monitor the real-time am-
bient temperature of the pallets. This goal can be divided into two subgoals: online track-
ing of pallets and online real-time temperature monitoring. Online tracking of a pallet 
throughout its transportation is fulfilled by satisfying two requirements: automatic iden-
tification of the pallet and its carried product units. The technical criteria chosen for a 
pallet automatic identification are identification capacity (C8) and tag reading range (C5); 
while to enable identification of the product units carried by this pallet, a tag attaching the 
pallet needs to be capable of storing the carried products’ identification, which requires 
two more technical criteria: memory size (C10) and tag writing cycle (C9). 

The criteria chosen for online temperature monitoring include real-time environmen-
tal parameter recording (C11) and data transfer speed (C6). Some additional criteria are 
also considered for this scenario. Information accuracy (C4) is chosen for ensuring the 
transmission of correct information, while worldwide standard (C15) is required to obtain 
the data in a standard form capable of being directly sent to a web server-based traceabil-
ity information system that can be accessed, understood, and analyzed by multi-country 
FSC partners (e.g., Northern Iceland and New York). Data security (C16) is chosen for 
protection against security risks throughout the transportation from Northern Iceland to 
New York. Cost (C1) has also been included in the chosen criteria list as a driver for se-
lecting optimized technologies, as no data on technology budget is available from 
Óskarsdóttir and Oddsson [8], who consider the shipping unit (a pallet with Arctic char 
product units) as high valued. However, with appropriate budget information, cost can 
be used as a constraint under the ILP model. 

Three constraints are also identified in this case; maximum two technologies (consid-
ering two different goals of product tracking and environment monitoring) can be se-
lected; technologies with identification capacities are mutually exclusive; and technolo-
gies with environment parameter recording capacity are mutually exclusive. 

Phase 2: A pairwise comparison matrix for the selected criteria similar to Equation 
(1) is obtained for each decision maker, which are then combined using Equation (2) as 
shown in Table 4:
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Table 4. Combined pairwise criteria comparison matrix for two decision makers for case 1. 

Criteria. C4 C5 C6 C8 C11 C15 C16 C10 C9 C1 

C4 [1, 1, 1] 
[0.14, 0.17, 

0.2] 
[0.18, 0.22, 

0.29] 
[0.16, 0.19, 

0.24] 
[0.14, 0.17, 

0.20] 
[1, 2, 3] 

[2.45, 3.46, 
4.47] 

[0.29, 0.41, 
0.71] 

[0.29, 0.41, 
0.71] 

[2.45, 3.46, 
4.47] 

C5 [5, 6, 7] [1, 1, 1] 
[1.41, 2.45, 

3.46] 
[0.82, 1.23, 2] [0.58, 1, 1.7] [6, 7, 8] [7.94, 8.49, 9] 

[3.46, 4.47, 
5.48] 

[3.46, 4.47, 
5.48] 

[7.94, 8.49, 
9] 

C6 
[3.46, 4.47, 

5.48] 
[0.29, 0.41, 

0.71] 
[1, 1, 1] [0.45, 0.71, 1] 

[0.29, 0.41, 
0.71] 

[4.47, 5.48, 
6.48] 

[6, 7, 8] [2, 3, 4] 
[1.73, 2.83, 

3.87] 
[5.92, 6.93, 

7.94] 

C8 
[4.24, 5.29, 

6.33] 
[0.50, 0.82, 

1.22] 
[1, 1.41, 2.24] [1, 1, 1] 

[0.63, 0.87, 
1.16] 

[5.29, 6.33, 
7.35] 

[6.71, 7.35, 
7.94] 

[2.24, 3.46, 
4.58] 

[2.83, 3.87, 
4.90] 

[6.48, 7.48, 
8.49] 

C11 
[4.90, 5.92, 

6.93] 
[0.58, 1, 1.73] 

[1.41, 2.45, 
3.46] 

[0.87, 1.16, 
1.58] 

[1, 1, 1] 
[5.92, 6.93, 

7.94] 
[7.94, 8.49, 9] 

[3.46, 4.47, 
5.48] 

[3.16, 4.24, 
5.29] 

[7.35, 7.94, 
8.49] 

C15 [0.33, 0.50, 1] 
[0.13, 0.14, 

0.17] 
[0.15, 0.18, 

0.22] 
[0.14, 0.16, 

0.19] 
[0.13, 0.14, 

0.17] 
[1, 1, 1] 

[1.41, 2.45, 
3.46] 

[0.22, 0.29, 
0.41] 

[0.22, 0.29, 
0.41] 

[1.41, 2.45, 
3.46] 

C16 
[0.22, 0.29, 

0.41] 
[0.11, 0.12, 

0.13] 
[0.13, 0.14, 

0.17] 
[0.13, 0.14, 

0.15] 
[0.11, 0.12, 

0.13] 
[0.29, 0.41, 

0.71] 
[1, 1, 1] 

[0.17, 0.20, 
0.25] 

[0.17, 0.20, 
0.26] 

[0.58, 1, 
1.73] 

C10 
[1.41, 2.45, 

3.46] 
[0.18, 0.22, 

0.29] 
[0.25, 0.33, 

0.50] 
[0.22, 0.29, 

0.45] 
[0.18, 0.22, 

0.29] 
[2.45, 3.46, 

4.47] 
[4, 5, 6] [1, 1, 1] 

[0.577, 1, 
1.732] 

[3.873, 
4.899, 

 5.916] 

C9 
[1.414, 2.449, 

 3.464] 
[0.183, 0.224, 

 0.289] 
[0.258, 0.354, 

 0.577] 
[0.204, 0.258, 

 0.354] 
[0.189, 0.236, 

 0.316] 
[2.449, 3.464, 

 4.472] 
[3.873, 4.899, 

 5.916] 
[0.577, 1, 

1.732] 
[1, 1, 1] [4, 5, 6] 

C1 
[0.223, 0.289, 

 0.408] 
[0.111, 0.118, 

 0.126] 
[0.126, 0.144, 

 0.169] 
[0.118, 0.134, 

 0.154] 
[0.118, 0.126, 

 0.136] 
[0.289, 0.408, 

 0.707] 
[0.577, 1, 

1.732] 
[0.169, 0.204, 

0.258] 

[0.167, 
0.200, 

 0.250] 
[1, 1, 1] 
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Fuzzy weight values for the selected criteria are calculated by using Equations (4) 
and (5), which are then defuzzified using Equation (6) into crisp values: C1 = 0.0178, C4 = 
0.0400, C5 = 0.223, C6 = 0.137, C8 = 0.182, C9 = 0.068, C10 = 0.068, C11 = 0.217, C15 = 0.028, 
C16 = 0.0174. These criteria weights are then used in the technology evaluation. Criteria 
which are not shortlisted in Phase 1 are assigned 0 weight value to be excluded automat-
ically. 

The quantitative technology performance measures shown in Table S1 in the supple-
mentary material is used in this stage. Equations (8)–(18) are used to calculate the MCDM 
score  for each technology. After that, the augmented scores  are computed using 
Equation (19). The TOPSIS scores  and augmented scores  for the technology al-
ternatives are shown in ascending order in Table 5: 

Table 5. TOPSIS scores and augmented scores of technologies for case 1. 

                         Score 
    Technologies 

TOPSIS Score ( ) Augmented Score ( ) 

1D barcode  0.194035 1 
Paper-based records 0.244571 2 

2D barcode 0.292840 4 
RFID passive LF read-only  0.300240 8 
RFID passive LF read-write 0.323311 16 

NFC 0.355787 32 
RFID passive HF read-only 0.407741 64 
RFID passive HF read-write  0.430721 128 
Smart packaging indicator 0.456266 256 

RFID passive HF with sensor 0.497800 512 
RFID passive UHF read only 0.503904 1024 
RFID passive UHF read-write 0.525985 2048 

RFID passive UHF read-write with 
sensor 

0.631567 4096 

WSN 0.694005 8192 
Semi-passive RFID 0.916533 16,384 

Active RFID 0.962911 32,768 

Phase 3: The augmented scores are then used in the objective function of an ILP 
model. Three constraint equations are formed based on the constraints identified in Phase 
1. The model is solved, providing the optimum technology: Active RFID. As a single op-
timum solution is obtained that satisfies the main goal identified in phase 1, no further 
fuzzy TOPSIS evaluation (S5) is performed. 

4.2. Case 2 
Fresh fish is transported from Iceland to Europe using temperature-controlled con-

tainers. The FSC partner in Europe discovers that the cargo is spoiled and assumes that it 
has exited the temperature limits at some point during transportation. His main interest 
is to verify at the designated product checkpoints whether the product temperature was 
within limits throughout the whole transportation phase. Again, product loss is the key 
sustainability attribute considered here. 

Phase 1: The main goal identified for this case is to verify at the checkpoint whether 
product temperature has remained within the defined limit(s) at all stages of product 
movement. Two subgoals realised here are the automatic identification of the containers 
at the checkpoint and accessing its temperature history. The technical criteria chosen for 
enabling automatic identification are identification capacity (C8) and tag reading range 
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(C5); while to support temperature history accessibility, three technical criteria are real 
time environment parameters recording (C11), memory size (C10) and tag writing cycle 
(C9). Data transfer speed (C6) is also taken into consideration as the time window allowed 
for data reading can be incredibly small, considering the containers carried by forklifts 
passing quickly through a checkpoint [3]. As with Case 1, some additional criteria are 
chosen for case 2 and these are: recorded information accuracy (C4), worldwide standards 
(C15), data security (C16), and cost (C1). Three similar constraints to Case 1 are likely to 
influence the technology decision. 

Phase 2: The combined pairwise criteria comparison matrix for two decision makers 
are shown in Table S2 in the Supplementary Material. The fuzzy weight values are calcu-
lated, which are then defuzzified into: C4 = 0.0615, C6 = 0.0510, C5 = 0.0641, C8 = 0.213, C9 
= 0.105, C10 = 0.192, C11 = 0.234, C15 = 0.043, C10.019, C16 = 0.0186. The criteria weights 
are then used for calculating MCDM scores  and augmented scores  (shown in 
Table S3 in the Supplementary Material). 

Phase 3: The augmented scores are used in the formulation of an ILP model including 
an objective function and three constraint equations. The optimum technology for this 
case is, again, Active RFID. 

4.3. Case 3 
A consumer wants to trace the origin information of fresh salmon she buys from a 

store. The consumer desires to be able to use her smartphone to scan the packet label to 
access a website informing her of the product origin including the producer, the salmon 
batch number, and which pen the fish has been raised in. The consumer wants to confirm 
this at the point of purchase. This aspect of sustainable supply chain verification by con-
sumers being able to confirm the origin of their product is gaining contemporary interest 
[94,95]. 

Phase 1: The main goal of this case is enabling the customer to access product origin 
information through a packet label, which is further divided into two subgoals; each 
salmon packet, being a low value consumer item, must be attached to a light weight, low 
value standard identification label readable by customers; and the label should carry 
product information. To satisfy the first requirement, cost (C1), identification capacity 
(C8), flexibility (C3) and worldwide standard (C15) are identified as essential criteria for 
consideration. Whereas, to fulfil the second requirement, information accuracy (C4), tag 
writing cycle (C9), writable memory size (C10) and data security (C16) are chosen, for 
many of the reasons outlined in previous cases. A single constraint considered here is to 
choose a single technology solution for ease of consumer access. 

Phase 2: The combined pairwise criteria comparison matrix is formulated (shown in 
Table S4 of Supplementary Material). The defuzzified criteria weights are: C3 = 0.178, C4 
= 0.178, C8 = 0.069, C9 = 0.027, C10 = 0.047, C15 = 0.103, C16 = 0.027, C1 = 0.371, which are 
then used to calculate the MCDM scores  and augmented scores  shown in Table 
S5 in the Supplementary Material. 

Phase 3: An ILP model is formulated with an objective function and one constraint 
equation. The optimum technology for this case is the 2D barcode with associated reading 
ability for the consumer, e.g., a phone app. 

4.4. Case 4 
A consumer wants to know that the fresh fish he buys from a retail store is fresh, i.e., 

it has not spoiled and has enough shelf-life. The consumer wants to verify this at the point 
of purchase. 

Phase 1: The goal is to inform customer of the temperature history of the fish, which 
can be subdivided into two further goals: tracing of packets of fish with a lightweight 
inexpensive, standard tag, and the tag providing a means to visualize product tempera-
ture history. The first requirement is the same as case 3 and thus similar criteria would be 
inevitable: cost (C1), identification capacity (C8), flexibility (C3) and worldwide standard 
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(C15). To fulfil the second requirement, environment parameter recording (C11), memory 
size (C10), manual data readability (C17), information accuracy (C4), and data security 
(C16) are considered as important criteria. The three constraints are the same as Case 1 
and 2 and are considered for the technology decision. 

Phase 2: The combined pairwise criteria comparison matrix for two decision makers 
are given in Table S6 in the Supplementary Material. The criteria weights are calculated 
which are then used to calculate the MCDM scores  and augmented scores  (pro-
vided in Table S7 of the Supplementary Material). 

Phase 3: An ILP model is formulated with an objective function and three constraint 
equations. The optimum technology combination found for this case is 1D barcode and 
time–temperature smart indicator on packaging. The findings are now discussed in Sec-
tion 5. 

5. Discussion 
This study aims to develop a systematic methodology for food traceability technol-

ogy selection that considers quantitative cost–benefit analysis of examined technologies 
and selects a single technology or a combination of technologies showing the maximum 
compatibility with the intended FSC case-specific requirements, that was absent in the 
literature. Therefore, a hybrid approach is proposed which integrates standard MCDM 
methodologies, i.e., fuzzy AHP, fuzzy TOPSIS with ILP, and includes three main phases. 
In the first phase, the main goal and subgoals, the constraints, the technologies, and their 
selection criteria are identified for an intended FSC case; in the second phase, the technol-
ogies are evaluated based on the shortlisted criteria; and finally, in the third phase, the 
technologies offering maximum cost–benefit performance and satisfying the predefined 
constraints are selected. 

Four case studies from extant literature [8] are used as a foundation to apply the pro-
posed methodology. For both the first and second cases, active RFID is found as the best 
solution that satisfies the main goals of the respective cases to allow FSC parties to monitor 
real-time pallet temperature and track product temperature history. Although informing 
specific FSC actors about product temperature history is also the main goal of the fourth 
case, the optimum solution obtained here is a combination of 1D barcode and time–tem-
perature indicator on the packaging. The reason for this alternative choice is, in the fourth 
case, the traceability goal is to inform consumers with the limited potential for reading, 
i.e., it must be visual and is intended for a low-value item (a packet containing a small fish 
portion); whereas the second case is concerned with verifying a high-value item (whole 
fish container) with FSC partners as the traceability beneficiaries. While fulfilling the main 
goals and cost–benefit criteria, optimal technologies for all these cases satisfy the decision 
constraints, i.e., the total number of selected technologies can be at most two with not 
more than one identification and one temperature monitoring technologies. The third case 
imposes a different constraint, i.e., selecting a single technology that derives from the main 
goal—identifying a low-cost label informing origin for a consumer item—and the optimal 
technology found here is 2D barcode or QR code. The outcomes of all these cases demon-
strate the fitness of our proposed framework in achieving the study objective across a 
range of FSC scenarios. 

In contrast to our result, the study of Óskarsdóttir and Oddsson [8] identified WSN, 
active RFID, QR code and time–temperature indicators as optimum technologies for cases 
1, 2, 3 and 4, respectively. We found same results for cases 2 and 3, although the model 
proposed in our study shows variances for cases 1 and 4. The reason for this is that we 
considered both the identification and temperature recording goals for all the cases, while 
the approach in Óskarsdóttir and Oddsson [8] seems to consider only the temperature 
recording goal for cases 1 and 4. However, traceability of temperature readings to a given 
product is not possible without product identification, and the technology cost–benefit 
analysis needs to cover both aspects of product identification and time–temperature mon-
itoring. 
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In our study, a single technology is determined as an optimum solution for the first 
three cases, while for case 4, a solution with two technologies is selected. This implies that 
the proposed technology selection approach is applicable in finding either an optimum 
single or a group of technologies for an intended FSC scenario, which builds on the pre-
vious traceability technology studies [8,21]. Use of fuzzy scales to measure technology 
performance in the proposed approach increases its adaptability in real case scenarios 
where data can be subjective, uncertain, or even incomplete [26]. Various FSC cases, re-
quiring a combination of technologies to satisfy case specific preferences or constraints, 
can also be served by our proposed methodology, although this paper is scoped to the 
cold food supply chain. 

We mainly consider the criteria which are applicable to cold FSC sustainability man-
agement through traceability of items and temperature measures. The study has com-
pared various technologies, but not various forms under a single technology, e.g., various 
barcode symbology standards, or size and shape of RFID tags. This could be seen as a 
limitation of the study, but this work sought to develop the methodology for technology 
selection and could be more nuanced in further developments to consider not only inter-
technology comparison, but intra-technology comparisons too. 

A potential limitation of our proposed approach is that we cannot formulate a 
cost/budget minimization objective function or a cost/budget constraint equation in our 
ILP analysis, as no quantitative data on the technology cost or budget is available from 
Óskarsdóttir and Oddsson [8]. Therefore, we approximate the quantitative ordinal cost 
values from the mixed (quantitative and qualitative) data collected through literature 
searches and expert interviews, and consider that under the MCDM evaluation phase be-
fore running constrained ILP maximization to optimize the technology selection. How-
ever, if our proposed approach is used for real industry owned technology solutions with 
practical cost or budget data for actual FSC cases, then cost could be used as a minimiza-
tion objective function or constraint equation under the ILP model, and even better results 
are expected to derive from that approach. 

Although we adopted fuzzy AHP, fuzzy TOPSIS and ILP methods in this study, 
other optimization techniques, e.g., PROMETHEE, weighted sum, weighted product, goal 
programming or any quick heuristic could also be used and tested under the proposed 
approach to calculate the time and effort required to complete the overall approach, and 
formulate the most effective and time-efficient technology selection method. 

Our proposed approach is intended as a decision-support tool to assist cold FSC in-
dustries in technology selection for sustainable FSC transformation, according to the sce-
nario-specific requirements. However, FSC traceability systems are complex, comprised 
of a multitude of processes across multiple stakeholders with diverse levels of information 
requirements, technology settings, capacity, knowledge, resources, and regulatory con-
trols. For successful traceability technology implementation, the technology planning de-
cision must be accompanied by appropriate managerial processes within, and between, 
individual food businesses across supply chains. Development of standardized traceabil-
ity practice guidelines, employee training, use of standard data lists, coherent identifier 
codes, consistent data semantics and data formats are some of the key measures that must 
be taken to underpin the decisions made regarding the traceability technology to adopt in 
a specific scenario. 

6. Conclusions 
Selection of traceability technologies aligning with a cold FSC scenario is a complex 

decision problem requiring combinatorial consideration of multiple cost–benefit criteria 
of multiple technology alternatives and case specific constraints or preferences. A system-
atic approach to address these requirements is currently absent in the literature. Therefore, 
we propose a hybrid approach combining fuzzy AHP, fuzzy TOPSIS and ILP, and apply 
it in four case studies. Use of such standard optimization methods for selecting case spe-
cific food traceability technologies is a new theoretical contribution made by this paper 
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that can further be refined into a standard traceability technology adoption framework. 
Expected users of the proposed approach could be managers, quality officers and tech-
nology experts in larger businesses or small and medium-sized operators, who intend to 
identify a suitable traceability solution or redesign the existing system, especially to im-
prove its sustainability performance. Selecting the right technologies can deliver im-
proved sustainability performance through reduced food loss, enhanced quality, product 
safety and productivity, quick and more focused responses in the event of recalls, and 
increased ease of operation. Other possible users could be technology developers, regula-
tors and certification bodies, who could use the approach to examine existing technologies 
that are in use and determine which solutions are required for different FSC scenarios as 
part of traceability system development and third-party verification activities. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/su13169385/s1, Table S1: Technology performance matrix; Table S2: Combined pairwise 
criteria comparison matrix for two decision makers for case 2, Table S3: TOPSIS scores and aug-
mented scores of technologies for case 2, Table S4: The combined pairwise criteria comparison ma-
trix for two decision makers for case 3, Table S5: TOPSIS scores and augmented scores of technolo-
gies for case 3, Table S6: Combined pairwise criteria comparison matrix for two decision makers for 
case 4, Table S7: TOPSIS scores and augmented scores of technologies for case 4. 
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