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ABSTRACT
We use the continuity equation to derive a method for measuring the pattern speed of the
Milky Way’s bar/bulge from proper motion data. The method has minimal assumptions but
requires complete coverage of the non-axisymmetric component in two of the three Galactic
coordinates. We apply our method to the proper motion data from a combination of Gaia
DR2 and VISTA Variables in the Via Lactea (VVV) to measure the pattern speed of the bar
as �p = (41 ± 3) km s−1 kpc−1 (where the error is statistical). This puts the corotation radius
at (5.7 ± 0.4) kpc, under the assumptions of the standard peculiar motion of the Sun and the
absence of non-axisymmetric streaming in the Solar neighbourhood. The obtained result uses
only data on the near side of the bar which produces consistent measurements of the distance
and velocity of the centre of the Galaxy. Addition of the data on the far side of the bar pulls the
pattern speed down to �p = (31 ± 1) km s−1 kpc−1 but requires a lower transverse velocity for
the Galactic centre than observed. This suggests systematics of 5 − 10 km s−1kpc−1 dominate
the uncertainty. We demonstrate using a dynamically formed bar/bulge simulation that even
with the limited field of view of the VVV survey our method robustly recovers the pattern
speed.

Key words: Galaxy: bulge – Galaxy: fundamental parameters – Galaxy: kinematics and dy-
namics.

1 IN T RO D U C T I O N

The pattern speed of the central bar of the Milky Way is a
fundamental parameter for characterizing our Galaxy. As the orbits
that support a bar do not exist much beyond corotation, the length of
a bar is set by its pattern speed (Aguerri, Beckman & Prieto 1998).
We naturally wish to understand how our Galaxy is structured and
how it compares to other barred spirals (Bland-Hawthorn & Gerhard
2016). The pattern speed is an essential parameter that allows us to
make such direct comparisons (Aguerri et al. 2015; Guo et al. 2019).
Interpretation of other Galactic observations require a robust under-
standing of the bar and its resonances – for example, observations
of the solar neighbourhood velocity substructure (Kalnajs 1991;
Dehnen 1999; Monari et al. 2017) or interpretation of the high-
velocity peaks seen in radial velocity surveys towards the Galactic
Centre (Molloy et al. 2015; Aumer & Schönrich 2015) or analysis of
the bimodal distribution of red clump magnitudes (Nataf et al. 2010;
McWilliam & Zoccali 2010). The pattern speed of the bar is related
to our understanding of when and how it formed, and how it has
subsequently interacted with other components in the Galaxy. For
instance, bars may be slowed significantly via dynamical friction
through interaction with a dark matter halo (Debattista & Sellwood
2000), whilst buckling instabilities can transform rapidly rotating
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bars into more sedately rotating peanut-shaped bars (Raha et al.
1991).

The pattern speed of the bar has proved to be an awkward
parameter to pin down. In part, this is because it is not trivially
related to the velocity of its constituent stars, but instead describes
the rate of figure rotation of the density and potential of the bar.
Stars or gas within the bar possess net streaming in the bar frame,
as the orbits that support a bar are preferentially prograde rotating
(e.g. Binney & Tremaine 2008). Gerhard (2011) summarizes the
methods used for the measurement of the pattern speed in the Milky
Way. Indirect methods include use of hydrodynamical simulations
to reproduce features in the Galactic longitude versus CO and HI
terminal velocity (�, v) maps (Fux 1999; Bissantz, Englmaier &
Gerhard 2003). This relies on the fact that gas traces the closed
orbital structure and so is an excellent probes of the gravitational
potential of the bar. Another indirect method identifies the Hercules
stellar streams in the local stellar velocity distribution with a
family of resonant orbits in a barred potential. Evidence for the
interpretation of the Hercules stream as a resonance has mounted
in recent years (Myeong et al. 2018; Hunt et al. 2018), though its
causation remains unclear. There is a dichotomy between models
producing the Hercules stream as the outer Lindblad resonance of
a short–fast bar (Dehnen 1999; Antoja et al. 2014) and those with a
long–slow bar that produce the Hercules stream as a corotation
resonance (Pérez-Villegas et al. 2017) or a 4:1 outer Lindblad
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resonance (Hunt & Bovy 2018). However, the most direct method
was introduced by Tremaine & Weinberg (1984) and is derived
from the continuity equation with minimal assumptions. It has now
been successfully applied to many external galaxies (Merrifield &
Kuijken 1995; Gerssen, Kuijken & Merrifield 1999; Debattista,
Corsini & Aguerri 2002a; Aguerri et al. 2015). Debattista, Ger-
hard & Sevenster (2002b) derived a version of the Tremaine &
Weinberg (1984) method applicable to line-of-sight velocity data
sets in the Galaxy and demonstrated its use on a sample of ∼700
OH/IR stars in the bar.

Bland-Hawthorn & Gerhard (2016) report a number of mea-
surements of the pattern speed. Recent hydrodynamical modelling
has obtained �p = 42 km s−1 kpc−1 (Weiner & Sellwood 1999),
30–40 km s−1 kpc−1 (Rodriguez-Fernandez & Combes 2008), and
40 km s−1 kpc−1 (Sormani, Binney & Magorrian 2015). Using the
Hercules stream tends to give higher values; Dehnen (2000) using
Hipparcos data originally found �p = (51 ± 4) km s−1 kpc−1,
while more recent studies have obtained (51.5 ± 1.5) (Minchev,
Nordhaus & Quillen 2007) and (53 ± 0.5) km s−1 kpc−1 (Antoja
et al. 2014). The only previous attempt to use the Tremaine &
Weinberg (1984) method for the Galactic bar gave one of the highest
values of the pattern speed of all, namely �p = (59 ± 15) km s−1

kpc−1 (Debattista et al. 2002b).
Additionally, a lowish pattern speed is supported by the fully

dynamical models of the stellar populations of the bar. For example,
Portail et al. (2015) used Made-to-Measure methods to reproduce
the 3D density of red clump giants, as well as the Bulge Radial
Velocity Assay (BRAVA) line-of-sight velocity data (e.g. Kunder
et al. 2012) in selected fields. This concluded that a still lower
pattern speed of �p = 25 − 30 km s−1 kpc−1 is favoured. Subse-
quent hydrodynamical simulations using the same gravitational
force field seem to confirm the low pattern speed as providing
the best fit to date to the observed (�, v) data (Li et al. 2016).
Since then, by incorporating additional kinematic data from the
Optical Gravitational Lensing Experiment (OGLE) (Rattenbury
et al. 2007) and Abundances and Radial Velocity Galactic Origins
Survey (ARGOS) surveys (Ness et al. 2016) into the Made-to-
Measure modelling, Portail et al. (2017) measured a somewhat
higher pattern speed of �p = (39 ± 3.5) km s−1kpc−1, consistent
with the recommended combined estimate of Bland-Hawthorn &
Gerhard (2016) of �p = (43 ± 9) km s−1 kpc−1 using pre-2016
literature estimates.

It is apparent that, despite a lot of effort, the pattern speed of the
bar has resisted an easy concensus. Given the advent of new proper
motion catalogues from the Gaia satellite (Gaia Collaboration et al.
2016, 2018) and elsewhere (Smith et al. 2018), now seems a
propitious moment to generalize the Tremaine & Weinberg (1984)
method to transverse motions and apply it to the Galactic bar anew.

In a companion paper (Sanders, Smith, Evans & Lucas 2019,
hereafter Paper I), we extracted the velocity field of the bar/bulge
from the proper motions of ∼45 million stars across the Vista
Variables in the Via Lactea (VVV, Minniti et al. 2010; Saito et al.
2012) survey. We used proper motions from a combination of
Gaia DR2 and the VVV Infrared Astrometric Catalogue (VIRAC)
catalogue. The VIRAC catalogue used the multi-epoch data from
VVV to compute relative proper motions which were fixed to an
absolute frame using Gaia DR2. In this paper, we use the results
of Paper I to measure the pattern speed of the bar/bulge. Our data
do not cover the long bar which may be rotating differentially with
respect to the bar/bulge. In Section 2 ,we derive new expressions
for estimating the pattern speed from proper motion data using
the continuity equation. In Section 3, we apply these expressions

to the bar/bulge data. In Section 4, we demonstrate how well the
method works when applied to a simulation of a dynamically formed
bar/bulge and test the limitations and assumptions of the presented
method. In Appendix A we extend our pattern speed expressions to
account for the Sun’s height above the plane, and in Appendix B
validate our choice of luminosity function using local Gaia data.

2 TH E PAT T E R N SP E E D O F T H E BA R

Tremaine & Weinberg (1984) introduced a method for measuring
the pattern speed of a barred disc galaxy using only the continuity
equation and the assumption that the pattern is steady. Kuijken &
Tremaine (1991) and Debattista et al. (2002b) adapted the formalism
for use with line-of-sight velocities in the Milky Way with Debattista
et al. (2002b) applying the formulae to OH/IR stars across the
Galactic disc. Whilst Tremaine & Weinberg (1984) and Kuijken &
Tremaine (1991) worked in 2D, we shall follow Debattista et al.
(2002b) who provided expressions for 3D density distributions (but
only in the case of line-of-sight velocities).

We assume the stars follow a tracer density ρ(x, t) rotating at a
constant pattern speed �p. In terms of the Cartesian coordinates (x,
y, z) in the non-rotating disc frame, the continuity equation is given
by

∂ρ

∂t
+ ∇ · (ρv) = �p

[
y

∂ρ

∂x
− x

∂ρ

∂y

]
+ ∇ · (ρv) = 0. (1)

Introducing the standard Galactic coordinates (�, b) along with
distance s, and corresponding transverse and line-of-sight velocities
v�, vb, v|| the continuity equation becomes

�p

[
−R0 cos b sin �

∂ρ

∂s
+

(
1−R0 cos �

s cos b

)∂ρ

∂�
+R0

s
sin � sin b

∂ρ

∂b

]

+ 1

s2

∂(s2ρv||)
∂s

+ 1

s cos b

∂(ρv�)

∂�
+ 1

s cos b

∂(ρvb cos b)

∂b
=0. (2)

R0 is the distance to the Galactic centre and the choice of coordinate
systems is such that �p > 0 for the Galactic bar (i.e. a left-handed
(x, y, z) system). Here and in the subsequent expressions, we have
assumed the Sun is in the Galactic plane (z = 0). In Appendix A, we
give the expressions incorporating the small offset (∼ 25 pc) due to
the Sun’s height above the Galactic plane. Mirroring the method of
Tremaine & Weinberg (1984), we multiply by s2cos b and integrate
with respect to s from 0 to ∞. We use the fact that s2ρ vanishes at
0 and ∞ (provided ρ falls off faster than s2 at ∞ – reasonable for a
barred tracer) and integrate once by parts to write

�p

[
2R0 cos2 b sin �

∫ ∞

0
ds sρ +

∫ ∞

0
ds (s2 cos b − R0s cos �)

∂ρ

∂�

+R0 sin � sin b cos b

∫ ∞

0
ds s

∂ρ

∂b

]

+
∫ ∞

0
ds s

∂(ρv�)

∂�
+

∫ ∞

0
ds s

∂(ρvb cos b)

∂b
= 0. (3)

Noting ∂/∂b(sin bcos b) = 2cos 2b − 1, we can combine the � and
b-derivatives with the first integral such that

�pR0 sin �
∂

∂b

∫ ∞

0
ds ρs sin b cos b

+�p
∂

∂�

∫ ∞

0
ds ρs(s cos b − R0 cos �)

+
∫ ∞

0
ds s

∂(ρv�)

∂�
+

∫ ∞

0
ds s

∂(ρvb cos b)

∂b
= 0. (4)
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We proceed by integrating in b from −π /2 to π /2 imposing the
condition that ρ(b = ±π /2) = 0 for all s (this is valid provided the
solar radius R0 encompasses the entirety of the non-axisymmetry).
This leaves only the second and third terms. A final integration
in � from −π to � (again requiring the non-axisymmetry to be
completely encompassed such that ρ(� = π ) = 0 for all s) reduces
the expression to

�p(�) =
∫ π/2

−π/2 db
∫ ∞

0 ds sρv�∫ π/2
−π/2 db

∫ ∞
0 ds sρ(R0 cos � − s cos b)

≡ 〈v�〉b,s

〈R0 cos � − s cos b〉b,s

, (5)

where we have introduced the notation 〈〉i, j to denote multiplying
by sρ and averaging over i and j. Here we have written �p as a
function of � to make clear that the right-hand side is a function
of �. However, provided the assumptions are satisfied, �p is a
constant. Note we are free to multiply numerator and denominator
by a general function f(�) and integrate over �. This is the equivalent
of Tremaine & Weinberg’s (1984) h(Y) which they recommend to
be odd to minimize the effect of centring errors. For our application,
it may be desirable to make f(�) the inverse of the variance of the
result for each �. We will see how we can combine the estimates
probabilistically.

We observe that the derived expression is independent of the
current bar angle α. For a bar with no azimuthal extent oriented at
α, ρ = |R|−1ρR(|R|)δ(φ − α)ρz(z), the Galactic longitude velocity
v�(�) = R�pcos (� + α) where R is the cylindrical polar distance
from the centre of the Galaxy to the intercept between the bar
and the line-of-sight (taking negative sign for � < 0). Therefore,
Rcos (� + α) = Rcos �cos α − Rsin �sin α = R0cos � − scos b as
R0 = scos bcos � + Rcos α and scos bsin � = Rsin α. We recover the
expected result.

We can return to equation (4) and proceed in a similar fashion.
We integrate instead in � from −π to π and b from −π /2 to b to
find

�p(b) = − 〈vb〉�,s
R0 sin b〈sin �〉�,s . (6)

The sin b in the denominator naturally makes this estimator poorly
suited to measuring �p as any noise in vb is amplified for small b.
The equivalent expression for the line-of-sight velocities is obtained
by multiplying the continuity equation by cos b, integrating over all
� and b (integrating by parts once) and integrating s from ∞ to s:

�p(s) = 〈v|| cos b〉�,b
R0〈sin � cos2 b〉�,b . (7)

This expression is given by Debattista et al. (2002b) who proceed
to multiply both numerator and denominator by a general function
f(s) and integrate over all distance, s. Note that our three estimators
have all reduced the 3D continuity equation to considering flows in
a single dimension by integrating over the other two coordinates.
Each expression in essence measures the rotational velocity divided
by the distance to the Galactic centre. However, they are not exactly
equivalent. This is because a bar is preferentially supported by
prograde orbits. As Qin et al. (2015) showed, simply using the
rotational velocity at a few spatial locations to estimate the pattern
speed leads to biases. The geometric factors and averaging in the
estimators are a necessary component.

These estimators are valid provided (i) the pattern is steady, (ii)
the integration encompasses the entirety of the non-axisymmetry
and (iii) there is a single pattern speed. It is likely that the pattern

speed of the bar is evolving slowly – the impact of this can be
tested using our reference simulation. The validity of the second
and third assumptions is less clear, particularly in the presence
of other non-axisymmetries such as spiral arms. Our modelling
extracts non-axisymmetries only in the red giant populations which
do not trace recent star formation and so are likely free from small-
scale non-axisymmetries. It is likely that the entire bar rotates at
a single pattern speed as differentially rotating triaxial structures
rapidly exchange angular momentum.

2.1 Using heliocentric velocities

Our expressions were derived using velocities measured in the
Galactic rest frame. For heliocentric velocities (denoted by primes),
we must first correct for the solar reflex motion as

v|| = v′
|| + u
 cos � cos b + v
 sin � cos b + w
 sin b,

v� = v′
� − u
 sin � + v
 cos �,

vb = v′
b − u
 cos � sin b − v
 sin � sin b + w
 cos b, (8)

where (u
, v
, w
) is the solar velocity in the Galactic rest frame
(positive u towards the centre of the Galaxy and positive v in the
direction of Galactic rotation). Our pattern speed expressions in
terms of heliocentric coordinates are then given by

�p(s) = v

R0

+ 〈(v′
|| + u
 cos � cos b + w
 sin b) cos b〉�,b

〈R0 sin � cos2 b〉�,b . (9)

�p(b) = v

R0

− 〈v′
b − u
 cos � sin b + w
 cos b〉�,s

〈R0 sin � sin b〉�,s . (10)

�p(�) = v
 − u
 tan � + F
R0 − K , F = 〈v′

�〉b,s

〈cos �〉b,s

,

K = 〈s cos b〉b,s

〈cos �〉b,s

(11)

Note that for �p(s) and �p(b), the pattern speed is completely
degenerate with v
/R0 for all �, b, s, whilst for �p(�) the degeneracy
is more complex and depends on the geometric factor K. In the thin
bar limit,K = R0 when the viewing angle is orthogonal to the bar as
in this case v� contains no contribution from the azimuthal rotation.

The impact of the solar velocity depends on the estima-
tor employed. u
 and w
 are well measured as u
 = (11.1 ±
0.7 ± 1 sys.) km s−1 and w
 = (7.25 ± 0.36 ± 0.50 sys.) km s−1

(Schönrich, Binney & Dehnen 2010, although the local standard of
rest may have a non-zero u velocity). Uncertainties in u
 primarily
affect �p(s) as �p(�) contains u
tan � (and |�| < 10 deg). Assuming
Sgr A∗ is a rest with respect to the bulge, v
/R0 is well constrained
from the proper motion of Sgr A∗ as μ�,A∗ = −v
/(4.74R0) =
(−6.379 ± 0.026) mas yr−1 (Reid & Brunthaler 2004). Therefore,
we conclude that the uncertainty in the pattern speed estimators,
�p(s) and �p(b), comes primarily from the unknown Galactic centre
distance R0. Fixing μ�, A∗ and ignoring the impact of u
 and w
,
we have that both �p(s) and �p(b) fall with R0 like �p = k1 + k2/R0

whilst for �p(�) we find

�p(�) = −4.74μ�,A∗R0 + F
R0 − K . (12)

This more complex behaviour allows the possibility of measuring
R0 and �p from the data. However, with μ�, A∗ fixed, inference of R0

is degenerate with a fractional distance systematic (i.e. a constant
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absolute magnitude offset). The combination of both �p(s) and
�p(�) puts stronger restrictions on R0, v
, u
, and �p, potentially
testing the assumption of steady state. However, such an analysis
would require a spectroscopic dataset distributed over all b and �.

2.2 Estimators from Jeans’ equations

We briefly discuss the possibility of using higher order equations de-
rived from the collisionless Boltzmann equation (CBE) to measure
the pattern speed. These could provide tighter constraints on the
pattern speed. After the continuity equation, the next two equations
(obtained by multiplying the CBE by vj and vjvk respectively and
integrating over all velocities) are

∂(ρvj )

∂t
+ ∂(ρvivj )

∂xi

+ ρ
∂�

∂xj

= 0,

∂(ρvjvk)

∂t
+ ∂(ρvivj vk)

∂xi

+ vjρ
∂�

∂xk

+ vkρ
∂�

∂xj

= 0, (13)

where we have introduced the potential �. Using the first of these
equations combined with the continuity equation and integrating
over all space (cf. Binney & Tremaine 2008), we find the tensor-
virial theorem in the form (Chandrasekhar 1969)

2Kij + Wij + �2
p(Jij − δ3iJ3j ) + 2εik3�p

∫
V

d3x ρwkxj = 0, (14)

where the velocities are in the rotating frame wi = vi − εi3k�pxk

and the tensors are

Kij =
∫

V

d3xρwiwj , Wij =
∫

V

d3xρxiaj , Jij =
∫

V

d3xρxixj .

(15)

Imposing triaxial symmetry removes the final Coriolis-like term
leaving a balance between random kinetic energy, potential energy
and the rotational energy of the figure. Also, all off-diagonal
relations are zero. We are then left with three relations between
the pattern speed and the three unknown potential energy tensor
diagonal components. We therefore cannot use these relations to
infer the pattern speed without more knowledge of the potential
(e.g. that the density is ellipsoidally stratified).

Another approach is to combine the two expressions in equa-
tion (13) to eliminate the potential derivatives (Kuijken & Tremaine
1991)

∂σ 2
jk

∂t
+ σ 2

ik

∂vj

∂xi

+ σ 2
ij

∂vk

∂xi

+ vi

∂σ 2
jk

∂xi

+ 1

ρ

∂(ρσ 3
ijk)

∂xi

= 0, (16)

where σ 2
ij ≡ (vi − vi)(vj − vj ) and σ 3

ijk ≡
(vi − vi)(vj − vj )(vk − vk). If we neglect the third-order moments
σ 3

ijk then this equation gives a simple conservation law for the
kinetic pressure. Assuming a constant pattern speed, we can
perform the same replacement giving

�p

[
y

∂σ 2
jk

∂x
− x

∂σ 2
jk

∂y

]
+ σ 2

ik

∂vj

∂xi

+ σ 2
ij

∂vk

∂xi

+ vi

∂σ 2
jk

∂xi

= 0. (17)

However, here we observe that the right-hand side involves all three
velocity components and all three components of σ 2

ij (for fixed j).
This is not a limitation in the Tremaine–Weinberg method where
terms involving unknown velocities are integrated out. However,
we cannot write the terms on the right-hand side of this equation
purely as sums of derivatives making replication of the Tremaine–
Weinberg method hard. With a full knowledge of the velocity field,
this equation (with or without the inclusion of the σ 3

ijk term) offers

an attractive way to measure the pattern speed from the dispersion
(and mean velocity) field without knowledge of the potential.

2.3 Probablistic approach

We develop a framework for the application of the estimator �p(�)
provided in the previous section that accounts for uncertainty in the
observables as well as the Galactic parameters. Such an approach is
necessary for a robust estimate of �p with associated uncertainties.
The problem is essentially equivalent to a linear regression with
correlated uncertainties in both ‘x’ and ‘y’ (e.g. Merrifield & Kuijken
1995) and a prior on the intercept.

We consider as our measurements at each � the ‘vector’ X i =
(F ,K)i with corresponding covariance �X i . Both the numerator
and denominator of �p(�) tend to zero for � → 0 i.e. the centre of
the bar/bulge is not translating with respect to the Galaxy and the
centre is located at R0. Therefore, both numerator and denominator
can be modelled by a power series with no constant coefficient:

f (�)=v
−u
 tan �+F=�p(R0−K)=�pR0

n=Nmax∑
n=1

cn(tan �)n. (18)

We expand in terms of tan � as for a needle-thin bar at angle α R0 −
K = R0 tan �/ tan(� + α). Inspecting our reference simulation (see
Section 4), we find that 1 � Nmax � 3 is appropriate, so we set
Nmax = 3 for application to the data. This approach is chosen rather
than modelling �p(�) directly as the uncertainty in �p(�) becomes
larger as � → 0 whilst F and K are well behaved.

We construct the likelihood

X i ∼ N ( f (�i), �X i + �f ),

f (�i) = λ
(
f (�i) − v
 + u
 tan �i, R0 − f (�i)

�p

)
,

�f = diag(σ 2
F , σ 2

K),

(19)

where N (μ, �) is a multidimensional normal distribution with
mean μ and covariance matrix �. The diagonal covariance matrix
�f represents an intrinsic scatter in F and K which could arise from
the neglected boundary terms. λ is a fractional distance systematic,
so all observed distances are a factor λ too large. We adopt the
following priors:

R0/ kpc ∼ N (μR0, σR0),

μ�,A∗/ mas yr−1 ∼ N (−6.379, 0.026),

λ ∼ N (1, 0.05),

u/ km s−1 ∼ N (11.1, 1.2),

ln σF/km s−1 ∼ U(−10, 10),

ln σK/kpc ∼ U(−10, 10), (20)

where N (μ, σ ) is a normal with mean μ and standard deviation
σ and U(a, b) is uniform between a and b. For R0, we consider
three priors: N (8.12 kpc, 0.03 kpc) from Gravity Collaboration
et al. (2018), N (8.2 kpc, 0.09 kpc) from McMillan (2017) (where
it should be noted that McMillan (2017) uses the proper motion of
Sgr A∗ in the estimate of R0 leading to a covariance between v
 and
R0) and N (8.12 kpc, 2 kpc). The second prior is approximately that
suggested by Bland-Hawthorn & Gerhard (2016) from combining
estimates from multiple studies. The third prior is an uninfor-
mative prior. We also consider an uninformative prior on μ�, A∗
of N (−6.379 mas yr−1, 1 mas yr−1). Our prior on λ corresponds
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approximately to considering magnitude systematics of ∼ 0.1 mag.
We write the model in Stan and sample using the No U-turn sampler
(NUTS) sampler (Hoffman & Gelman 2011).

3 A PP LIC ATION TO DATA

We apply the derived framework to the data produced in Paper I.
In that work, we derived the mean transverse velocities v� and vb

and corresponding uncertainties as a function of distance across the
bar/bulge region from ∼45 million giant stars in VVV. We used a
combination of proper motions from Gaia DR2 (Gaia Collaboration
et al. 2018) and VIRAC v1.1 (Smith et al. 2018), an astrometric
catalogue derived from the VVV observations calibrated absolutely
using Gaia DR2. In small fields of 0.2 deg × 0.2 deg across the
VVV bulge footprint, the bulge giants (both red giant branch and
red clump) were selected in a unextincted colour–magnitude box
of 0.4 < (J − Ks)0 < 1 and 11.5 < Ks0 < 14.5 using a 2D
extinction map from the method of Gonzalez et al. (2011). First, the
density in each field was measured assuming a luminosity function
(taken from Simion et al. 2017) and accounting for incompleteness,
and then the density distribution was used to extract the first two
moments of the transverse velocity distributions as a function of
distance by probabilistically considering the possible velocities
for each star given its Ks0 magnitude. Here, we utilize the mean
longitudinal transverse velocities with location v�(�, b, s) and the
density field ρ(�, b, s) computed on a grid in log(distance), � and
b. The integrals are computed using the trapezoidal rule but using
Simpson’s rule instead gives very similar results. We fill in the region
5 < b/ deg < 10 using −10 < b/ deg < −5 assuming reflection
symmetry in b = 0. This increases the estimates of the pattern
speed by ∼ 2 km s−1kpc−1. The uncertainties �X i are computed
through propagation of uncertainties in density and velocity. We
recall that due to the procedure in Paper I the uncertainties in
the velocities are probably underestimated as they only account
for proper motion uncertainties not uncertainties in the density (or
luminosity function) which propagate to increased uncertainties in
the physical velocities.

In Table 1, we show the results of applying the method to different
subsets of the data and the different priors. We report the estimates
of R0, μ�, A∗, and �p as well as the chi-squared per data point which
is given by

χ2/N ≡ 1

N

N∑
i

(�p − �p(�i))2

σ 2
�(�i)

, (21)

where �p is the median from the Markov Chain Monte Carlo
(MCMC) chain, �p(�i) the estimate for bin i, and σ�(�i) the
associated uncertainty (from propagating the uncertainties in F
and K).

We see that when using all of the data with the ‘tight’ prior, we
obtain �p = (37.2 ± 3.3) km s−1kpc−1, but the χ2/N = 19.7 is poor
and μ�, A∗ is 2σ away from the prior. Using the ’loose’ prior, we
find the pattern speed remains similar, the χ2/N = 12.3 reduces but
still μ�, A∗ is in tension. Relaxing the R0 prior further only weakly
improves χ2/N, but R0 does not stray significantly. Using a weak
prior on μ�, A∗, we see the data ‘wants’ to reduce |μ�, A∗| producing
a low pattern speed of �p = (23.7 ± 2.7) km s−1 but not with a
significantly improved χ2/N.

We next have tried separating the data into � > 0 and �

< 0. The two models with lowest χ2/N are � < 0 ‘No R0’
with �p = (34.7 ± 5) km s−1 but producing an inconsistent R0 of
(9.42 ± 0.45) kpc and � > 0 ‘No R0’ with �p = (30.9 ± 1.2) km s−1

but producing an inconsistent μ�, A∗ of (−6.24 ± 0.01) mas yr−1. We
next tried removing the central regions |�| > 2.5 deg as these pro-
duce the noisiest estimates of �p as v� is small. The set of models for
� > 2.5 deg produce very satisfactory results with low χ2/N ≈ 1.3–
1.5 and both R0 and μ�, A∗ consistent with expectations both with
and without the prior. All models give �p ≈ (41 ± 3) km s−1kpc−1.
For � < −2.5 deg, the situation is less satisfactory with higher
χ2/N. The tension is illustrated by the ‘No R0’ model which
produces a much too high estimate of R0 but �p consistent
with � > 2.5 deg. When combining both positive and negative �,
we obtain �p ≈ (30 ± 1) km s−1kpc−1 but the χ2/N are higher
and we always recover μ�, A∗ many σ away from the measured
value.

We can understand these results by inspecting Fig. 1 which shows
the two terms in equation (11) that must be equal for the pattern
speed to be constant across the bar. We see a pattern speed of
�p = 40 km s−1kpc−1 produces a consistent result for � > 0 but
the magnitude of the velocities is too small (or the distances too
small) for � < 0. This is fixed by adopting �p = 25 km s−1kpc−1

or μ�,A∗ = −6.15 mas yr−1 (many σ from the measured value) but
produces a poorer fit for � > 0. Note the grey region |�| < 2.5 deg
where the estimator is noisy.

An alternative way of viewing the data is plotting F − u
 tan �

against K as shown in Fig. 2. The gradient in this plane gives the
pattern speed. We observe how the points with |�| < 2.5 deg are
significantly deviant any straight line fit validating their removal.
We see that the near side of the bar produces a linear fit with
gradient �p = 41 km s−1kpc−1 and intercept consistent with the
Galactic centre position and velocity. However, inclusion of the far
side reduces the gradient to �p = 31 km s−1kpc−1 but produces an
inconsistent intercept.

In Fig. 3, we show the results from our most successful model � >

2.5 deg with the ‘tight’ prior. We see the posteriors approximately
follow the priors for R0, μ�, A∗, and λ. The residuals in �p with
respect to the model clearly have small-scale systematic variations
and we see for � < 3.5 deg the pattern speed is biased high.

It is puzzling why � < 0 produces poor results. One reason could
be that we do not have sufficient coverage in distance. It appears
the pattern speed is increased if the nearby data (distance less than
6 kpc) is cut out. This hints that there is insufficient background
disc to counteract the foreground disc which is biasing the signal.
We have experimented with using a fixed distance range of data
relative to the bar major axis, but no one distance cut can reliably
be chosen over any other. A further concern is unreliable extinction
estimates which bias the velocities via incorrect distance estimates.
We are using a 2D extinction map which is poor near the plane.
For � � 0 the bar gets closer to the plane due to geometric effects
making this a bigger problem than for � > 0. In the bottom section of
Table 1, we have removed |b| < 1 deg which produces very similar
results – a pattern speed of ∼ 31 km s−1kpc−1 and a low −μ�, A∗ –
although the pattern speed is slightly higher (see later simulation
tests). Furthermore, in the analysis a proper motion systematic is
degenerate with the proper motion of Sgr A∗. In Fig. 4, we show the
mean proper motion averaged along the line of sight (accounting for
the incompleteness effects). We see the pattern of the Gaia scanning
law and associated systematic variations of the mean proper motion
of up to 0.5 − 1 mas yr−1. These systematics are particularly bad
for � < −2.5 deg but appear less severe in the region � > 2.5 deg
where our estimator is performing better. We have tested that this
systematic pattern is present irrespective of using Gaia data in
addition to VIRAC and irrespective of different cuts on proper
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The pattern speed from transverse velocities 4557

Table 1. Results of application of our method to the data. The first column describes the subset of data used. Second column
the priors employed (‘Tight’ is R0 = (8.12 ± 0.03) kpc and μ�,A∗ = (−6.379 ± 0.026) mas yr−1, ‘Loose’ is R0 = (8.2 ±
0.09) kpc and μ�,A∗ = (−6.379 ± 0.026) mas yr−1, ‘No R0’ is R0 = (8.12 ± 2) kpc and μ�,A∗ = (−6.379 ± 0.026) mas yr−1

and ‘No μ�, A∗’ is R0 = (8.12 ± 0.03) kpc and μ�,A∗ = (−6.379 ± 1) mas yr−1. Subsequent columns give the median and
standard deviation of the parameters. The final column gives the chi-squared per � bin which is an approximate reflection of
the goodness of fit.

Subset Prior R0 (kpc) −μ�,A∗ (mas yr−1) �p (km s−1kpc−1) χ2/N

All Tight 8.12 ± 0.03 6.30 ± 0.03 37.20 ± 3.33 19.70
Loose 8.21 ± 0.08 6.31 ± 0.03 36.85 ± 3.09 12.32
No R0 8.24 ± 0.14 6.30 ± 0.03 37.07 ± 3.21 11.36

No μ�, A∗ 8.14 ± 0.03 6.13 ± 0.04 23.75 ± 2.71 13.64
� < 0 Tight 8.12 ± 0.03 6.29 ± 0.03 27.08 ± 1.96 19.58

Loose 8.25 ± 0.08 6.36 ± 0.02 22.87 ± 1.92 19.11
No R0 9.42 ± 0.45 6.35 ± 0.03 34.65 ± 5.16 6.45

No μ�, A∗ 8.13 ± 0.03 6.31 ± 0.05 26.47 ± 3.03 20.83
� > 0 Tight 8.13 ± 0.03 6.24 ± 0.01 30.77 ± 1.16 13.52

Loose 8.22 ± 0.06 6.24 ± 0.01 30.81 ± 1.20 8.93
No R0 8.24 ± 0.08 6.24 ± 0.01 30.88 ± 1.18 7.31

No μ�, A∗ 8.13 ± 0.03 6.20 ± 0.01 30.94 ± 1.11 11.41
� > 2.5 Tight 8.12 ± 0.03 6.36 ± 0.02 42.09 ± 2.50 1.42

Loose 8.19 ± 0.08 6.37 ± 0.02 41.17 ± 2.60 1.37
No R0 8.18 ± 0.15 6.36 ± 0.02 41.25 ± 2.93 1.34

No μ�, A∗ 8.12 ± 0.03 6.32 ± 0.04 39.41 ± 3.63 1.51
� < −2.5 Tight 8.13 ± 0.03 6.37 ± 0.02 23.26 ± 1.75 3.44

Loose 8.25 ± 0.08 6.36 ± 0.02 22.87 ± 1.92 3.74
No R0 9.42 ± 0.45 6.35 ± 0.03 34.65 ± 5.16 2.63

No μ�, A∗ 8.13 ± 0.03 6.31 ± 0.05 26.47 ± 3.03 2.60
|�| > 2.5 Tight 8.14 ± 0.03 6.26 ± 0.01 30.92 ± 0.82 2.98

Loose 8.24 ± 0.06 6.26 ± 0.01 30.96 ± 0.78 2.70
No R0 8.28 ± 0.08 6.26 ± 0.01 31.00 ± 0.77 2.58

No μ�, A∗ 8.14 ± 0.03 6.24 ± 0.01 30.86 ± 0.72 2.24
|�| > 2.5, |b| > 1 Tight 8.13 ± 0.03 6.21 ± 0.01 31.70 ± 0.69 4.13

Loose 8.22 ± 0.06 6.21 ± 0.01 31.70 ± 0.72 4.03
No R0 8.24 ± 0.08 6.21 ± 0.01 31.76 ± 0.68 4.11

No μ�, A∗ 8.13 ± 0.03 6.19 ± 0.01 31.29 ± 0.64 3.81

Figure 1. Terms in our pattern speed estimator (R0 − K) (black using R0 =
8.12 kpc) and (−4.74μ�,A∗R0 − u
 tan � + F )/�p (coloured) in units of
kpc and binned in �. When the two terms are identical, the pattern speed
is constant and correct across the bar. The blue dashed line uses μ�,A∗ =
−6.379 mas yr−1 and �p = 40 km s−1kpc−1, green dotted reduces �p =
25 km s−1kpc−1, and red dashed–dotted increases μ�,A∗ = −6.15 mas yr−1.
We see the far side of the bar requires a lower pattern speed or higher μ�, A∗.
Within the shaded region |�| < 2.5 deg, the estimator is noisy.

Figure 2. Terms in our pattern speed estimator K versus −u
 tan � + F
for each � bin (given by the colour). The gradient of this plot corresponds
to the pattern speed. The points with black edges have |�| < 2.5 deg and
clearly lie away from the trend. The red cross shows the Galactic centre (at
R0 = 8.12 kpc and −4.74μ�,A∗R0 = 245.5 km s−1). The black solid line
shows approximately our best fit to � > 2.5 deg with �p = 41 km s−1kpc−1

whilst the dashed line shows the best fit to the entire data with �p =
31 km s−1kpc−1 which does not pass through the Galactic centre.

motion quality. It is also independent of magnitude suggesting it
arises from the relative-to-absolute correction for the VIRAC v1.1
(see Paper I).

In conclusion, our ‘best’ model as measured by χ2/N is for � >

2.5 deg with any choice of prior (all produce similar results). This
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4558 J. L. Sanders, L. Smith and N. W. Evans

Figure 3. Posterior distributions for the model parameters when applied to
data with � > 2.5 deg. The grey dotted lines show the assumed prior. The
top right inset shows the pattern speed estimate at each � along with the
median and 1σ error band for the pattern speed. λ is a fractional distance
systematic.

yields a pattern speed of �p = (41 ± 3)km s−1kpc−1. Assuming a v

peculiar motion of the Sun of 12.24 km s−1 (Schönrich et al. 2010)
and no non-axisymmetric streaming in the solar neighbourhood, this
yields a corotation radius of (5.7 ± 0.4) kpc. We find an identical
result if we instead use the rotation curve from Eilers et al. (2019).

Our error bars here are formal and likely underestimate the true
uncertainty, particularly as systematic issues have not enabled a
consensus on the pattern speed to be formed across the observed
volume and we know the uncertainties in the mean velocities are
underestimated as we have not fully propagated the uncertainty in
the density field or in the luminosity function. In Appendix B, we
discuss our choice of luminosity function and demonstrate a broader
red clump magnitude distribution (0.12 mag instead of 0.067 mag)
gives near identical results.

4 R E C OV ERY O F THE PATTERN SPEED FROM
A SIM U LATION

We provide a series of tests of our method for measuring the pattern
speed from proper motion data using the continuity equation
by application to a simulation. We first describe the simulation
considered.

4.1 Reference simulation

For the interpretation and testing of our results, we construct a
simple reference simulation of a barred galaxy. This simulation
is designed to approximately match the properties of the Milky
Way although not to the level of detail of a full Made-to-Measure
model (Portail et al. 2017). We use the initial condition generation
mkgalaxy from McMillan & Dehnen (2007). The galaxy has three
components: a disc, a bulge, and a dark halo. We use the standard
parameters: a Dehnen (1999) disc with scale length Rd = 1, scale
height zd = 0.1, and mass Md = 1, a spherical Hernquist (1990)
bulge with scale length Rb = 0.2 and mass Mb = 0.2, and a spherical
Navarro, Frenk & White (1996) halo with scale length Rh = 6 and

Figure 4. On-sky line-of-sight averaged mean μ� (weighted by distance
pdf) and mean � velocity relative to Sgr A∗ (weighted by sρ as in the
pattern speed estimator). Near the plane for � < −2.5 deg, the Gaia scanning
law is clearly visible giving rise to proper motion systematics of ∼ 0.5 −
1 mas yr−1. The grey shaded region shows |�| < 2.5 deg which we ignore in
some of our fits.

mass Mh = 24. The disc contains 200 000 particles, the bulge 40 000,
and the halo 1 200 000. The disc has a Toomre Q parameter of 1.2
making it radially unstable to bar formation. Upon evolution for
200 time units with gyrfalcON (Dehnen 2000), the disc rapidly
forms a bar that slows to �p ≈ 0.4 by the end of the simulation.
We measure the pattern speed from consecutive snapshots using the
angular velocity of the second axis of the moment of inertia tensor
for particles within 1.5 simulation units of the centre. Using all
particles and only those between 0.2 and 0.5 simulation units away
from the midplane gives very similar results after 70 simulation time
units. We scale the final snapshot such that the scale length of the
disc is 2.5 kpc and the circular velocity of the disc 230 km s−1. This
produces a bar rotating with pattern speed �p = 45 km s−1 kpc−1

which we view at an angle of ∼ 33 deg relative to the major axis.
In Fig. 5, we show two consecutive snapshots from the simulation
scaled to the Milky Way.
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The pattern speed from transverse velocities 4559

Figure 5. Top-down view of the reference simulation at two consecutive
snapshots. The displayed particles have |z| < 2 kpc. Black lines delineate
the VVV footprint and the blue line shows the major axis of the bar. The
two snapshots are ∼ 8 Myr apart.

4.2 Application

We consider particles −10 < �/ deg < 10, −10 < b/ deg < 5,
and −6 < (s − 8.12)/ kpc < 6 for a solar location of
R0 = 8.12 kpc viewing the bar at ∼ 33 deg. Proper motions
are computed using the total solar velocity of (u, v, w)
 =
(11.1, −4.74μ�,A∗R0, 7.25) km s−1 and μ�,A∗ = −6.379 mas yr−1.

When testing with simulations, we require expressions equivalent
to those in Section 2 but appropriate for a finite sampling of
the underlying smooth functions. For a set of tracer particles,
ρ = ∑

i miδ
(3)(x − xi) we construct bins (indexed by n) in �, b,

or s depending on the free variable in the pattern speed expression.
The bins are centred on e.g. �n with width ��. We evaluate

�p(�n) =
∑

i miv�,i/(si cos bi)∑
i mi(R0 cos �i/(si cos bi) − 1)

, (22)

�p(bn) = −
∑

i mivb,i/si∑
i miR0 sin �i sin bi/si

, (23)

�p(sn) =
∑

i miv||,i/si∑
i miR0 sin �i cos bi/si

, (24)

where velocities are in the Galactic rest frame. As in Section 2, we
write the first of these expressions as

�p(�n) = v
 − u
 tan �n + F
R0 − K ,

F =
∑

i miv
′
�,i/(si cos bi)∑

i mi cos �i/(si cos bi)
, K=

∑
i mi

mi cos �i/(si cos bi)
, (25)

We use the probabilistic model in equation (19) to infer |μ�, A∗|,
R0, �p, and the distance systematic factor λ. The data covariance
matrix �X i is computed using 100 bootstrap resamples of the
particle properties in each bin.

In Fig. 6, we show the inference for our model using the two
Galactic centre distance priors. We have not applied any distance
systematic to the simulation data, we use bins in � of width
�� = 0.5 deg and we set Nmax = 2. The inset shows the �p(�)
estimate for each bin in �. We note that the central regions produce
noisy estimates of �p. This is probably because both numerator and
denominator in the estimator are small, but could also be because the
considered stars form part of the original bulge component which is
perhaps not rotating with the bar. We also see that negative Galactic
longitude produces more precise �p estimates as there are more
stars in the solid angle considered. From the inference, we find that
with both priors the pattern speed is well recovered (the expected
pattern speed is 45 km s−1kpc−1). The solar radius posterior follows
the adopted prior, the proper motion of Sgr A∗ is tighter than the
prior and the distance systematic is recovered as unbiased.

Figure 6. Inference of the pattern speed from simulation: corner plot shows
the recovery of the pattern speed using two different priors on R0 (blue from
McMillan 2017 and red from Gravity Collaboration et al. 2018). Above each
panel we show the mean and standard deviation inferred for each parameter.
The vertical/horizontal lines show the true values (in the top left panel, we
show the estimate of �p from the last 10 snapshots). The inset shows the
pattern speed estimator in bins of Galactic longitude for the true parameters.
Horizontal lines correspond to those in the top left corner panel. λ is a
fractional distance systematic.

Figure 7. Recovery of �p from our reference simulation at different times.
The grey line shows the pattern speed inferred from the moments of inertia of
consecutive snapshots. Red error bars show the recovery from our modelling
where we have multiplied the uncertainties by 5 for visibility.

We apply our method to nine snapshots from the simulation
where for each snapshot the bar is rotated to an angle 33 deg with
respect to the line of sight. We then observe simulation particles
within the VVV bulge region and use Nmax = 2, �� = 0.5 deg,
and (μR0, σR0) = (8.2, 0.09) kpc. The results are shown in Fig. 7.
We observe the decaying pattern speed of the bar. The recovery is
shown with red error bars (multiplied by 5 for visibility). At all
snapshots we recover the pattern speed with increasing precision
at later times when the bar is more established. At early times,
transient phenomena cause more uncertainty in the pattern speed.
For t < 0.5 Gyr, the pattern speed measured for all particles and
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4560 J. L. Sanders, L. Smith and N. W. Evans

those between 0.2 and 0.5 simulation units of the plane disagree
slightly suggesting the bar has not reached equilibrium yet.

We perform further experiments varying (i) the systematic dis-
tance bias used to construct the mock data, (ii) the minimum |�|
considered, (iii) the maximum |�| considered, (iv) the minimum
|b| considered, (v) the bin widths, (vi) number of polynomial
terms in the model Nmax, and (vii) the width of the solar radius
prior. The results are shown in Fig. 8. It is satisfying that varying
most parameters does not bias the pattern speed significantly.
Both distance systematics and uncertainty in the distance to the
Galactic centre are irrelevant to the recovery (due to the degeneracy
compensating one for the other). Using data with |�| > �min or |�| <
�max does not alter the results other than increasing the uncertainty
when less data are used (similar result for the bin size ��) – this
is expected as the estimator �p(�) does not require coverage in �.
The same is not true when considering only data with |b| > bmax.
The pattern speed is systematically biased when in-plane data are
excluded. We previously checked the pattern speed of stars between
0.2 and 0.5 simulation units of the plane (approximately b > 3 deg)
was near identical to using all particles. It appears the recovery is
satisfactory for bmax � 1.5 deg.

We have also attempted to use the �p(b) estimator on the
simulation but we find it is not reliable. This is possibly due to
lack of resolution but also could be due to the boundary terms
dominating the signal.

To summarize, we find that the recovery of �p is not affected by
distance systematics, bin sizes, number of polynomial terms used
Nmax, the range of � used and the prior on R0. If we filter out low
latitude data, |b| < bmin, we find the results are biased if bmin �
1.5 deg. R0 is completely degenerate with a distance systematic.

4.3 Boundary terms

When deriving the estimators for the pattern speed, we removed
terms by arguing that they vanish at the boundaries. In realistic
applications, we are unable to integrate over all space so our
estimators are biased by the non-zero contributions of the boundary
terms. A boundary term near constant in � will produce a constant
offset in the Galactic centre distance or the motion of Sgr A∗,
whereas the unlikely case where boundary contributions behave
like uncorrelated noise in � will not bias the results due to our
modelling excess scatter in F and K. The concerning case is for
near-linear variation in the boundary terms which masquerade as a
change in the pattern speed.

When deriving the �-estimator, there are six boundary terms we
discount:

(1)
[ ∫ �

−π

d�

∫ bmax

bmin

db s2ρv|| cos b
]smax

smin

,

(2)
[ ∫ �

−π

d�

∫ smax

smin

ds sρvb cos b
]bmax

bmin

,

(3) −
[ ∫ �

−π

d�

∫ bmax

bmin

db s2ρ cos2 b sin �
]smax

smin

�pR0,

(4)
[ ∫ �

−π

d�

∫ smax

smin

ds sρ sin b cos b sin �
]bmax

bmin

�pR0,

(5) −
[ ∫ bmax

bmin

∫ smax

smin

ds sρ(R0 cos � − s cos b)
]

�=−π
�p,

(6) −
[ ∫ bmax

bmin

∫ smax

smin

ds sρv�

]
�=−π

. (26)

Figure 8. Recovery of �p from our reference simulation using different
setups: (i) including a relative distance systematic, (ii) using data with |�|
> �min, (iii) using data with |�| < �max, (iv) using data with |b| > bmin, (v)
varying the bin width ��, (vi) varying the number of polynomial coefficients
in the model, and (vii) increasing the width of the prior on R0. The dark
solid line is the ‘true’ pattern speed and the fainter lines the pattern speed
from the last 10 snapshots.
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The pattern speed from transverse velocities 4561

Figure 9. Amplitude of the boundary terms neglected in our derivation of
the pattern speed estimator �p(�). The thick black lines show the two terms
used in the estimator (〈v�〉b, s [solid] and �p〈R0cos � − scos b〉b, s [dashed]),
the grey line is their difference and the thinner black line is the sum of
the neglected boundary terms. The neglected boundary terms are of order
10 percent the terms used in the estimator.

The first of these terms involves the line-of-sight velocities so in
the absence of full spectroscopic coverage of the sky we must use
simulations to estimate its amplitude. The second term involves
the latitudinal velocities so in theory could be estimated from
proper motion data, except we require proper motion data outside
the observational volume to evaluate the � integral. The third and
fourth terms involve no velocities so can be evaluated from the data
modulo the same considerations about integrating over �. The final
two terms are the lower limits of the � integrals which cannot be
evaluated from the data.

As we are unable to truly estimate the boundary terms from
the data, we instead use our reference simulation. We convert the
integrals into sums over particles as, for example,

[ ∫ �

−π

d�

∫ bmax

bmin

db s2ρv|| cos b
]smax

smin

≈ 1

2�s

[ ∫ s+�s

s−�s

ds ′
∫ �

−π

d�

∫ bmax

bmin

db s ′2ρv|| cos b
]s=smax

s=smin

= 1

2�s

[ ∑
i

mi

∫ s+�s

s−�s

ds ′
∫ �

−π

d�

∫ bmax

bmin

db s ′2v|| cos bδ(x−xi)
]s=smax

s=smin

= 1

2�s

[ ∑
i,(�i ,bi ,si )∈V

mivi,||
]s=smax

s=smin

, (27)

where the sum is over the particles inside the volume V defined by
� = (− π , �), b = (bmin, bmax), and s

′ = (s − �s, s + �s). We set
�s = 1 kpc and �b = 0.2 deg.

In Fig. 9, we show the amplitude of the boundary terms estimated
from the reference simulation. We use the pattern speed measured
from consecutive snapshots. We observe the sum of the boundary
terms is of order the difference in the estimator quantities and is
approximately 10 percent the magnitude of the estimator quantities.
We see that near � = 0, the boundary terms are significant
relative to the estimator quantities as v� approaches zero here. This
corresponds to the poor estimates of �p seen in Fig. 6. We have
found that individual terms (1)–(4) in the sum of the boundary
terms can be of order the estimator quantities, but their sum is
much smaller. When deriving the estimator formulae we assumed
each of the terms was small but this does not appear to be true. It

is perhaps fortuitous that their sum is negligible, but this appears
to explain the degree of accuracy obtained through application of
estimators to the simulation. The b-boundary terms can be made
smaller if a symmetric interval is used, as we have done in the
analysis of the data by assuming symmetry in b = 0. Employing
bmax = 10 deg instead of 5 deg reduces the sum of the boundary
terms to � 1 percent for � < 0 and 2 − 8 percent for � > 0.
Additionally, we observe that the individual boundary terms, as
well as their sum, are near constant with � so will lead to systematic
offsets in the properties of the Galactic centre rather than the pattern
speed.

5 C O N C L U S I O N S

We have measured the pattern speed of the Milky Way bar as
�p = (41 ± 3) km s−1 kpc−1 using proper motion data from VVV
and Gaia DR2. This places corotation at (5.7 ± 0.4) kpc. This
result was obtained from the more reliable near side of the bar
and when the entire bar region is considered we obtain �p =
(31 ± 1) km s−1 kpc−1 but an inconsistent position and velocity of
the Galactic centre. This suggests systematic uncertainties in our
measurement of 5 − 10 km s−1kpc−1.

To establish this, we developed new estimators for the pattern
speed using transverse velocity data derived from the Galactic
proper motion components. These estimators use the Tremaine–
Weinberg method of integrating the continuity equation. Our new
estimators are tailored for use specifically in the Milky Way.
Using our longitudinal velocity estimator, we build a probabilistic
model that allows for full propagation of uncertainties. We have
demonstrated the performance of the method through application to
a disc galaxy simulation that has formed a dynamical bar. Although
we only consider a selection of the simulation comparable to the
VVV survey volume, we find our method robustly recovers the
pattern speed at a number of simulation times. The only biases we
detect are when excluding in-plane stars |b| � 1.5 deg when the
method overestimates the pattern speed. When applying to data,
only fields with � > 2.5 deg appear to produce reliable estimates
possibly due to insufficient distance coverage, extinction effects or
proper motion systematics.
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University of Arizona, University of Colorado Boulder, University
of Oxford, University of Portsmouth, University of Utah, University
of Virginia, University of Washington, University of Wisconsin,
Vanderbilt University, and Yale University.

This publication made use of the PYTHON science stack: NUMPY

(Walt, Colbert & Varoquaux 2011), SCIPY (Jones et al. 2001),
MATPLOTLIB (Hunter 2007), IPYTHON (Pérez & Granger 2007), and
PANDAS (McKinney 2010).

RE FER ENCES

Aguerri J. A. L. et al., 2015, A&A, 576, A102
Aguerri J. A. L., Beckman J. E., Prieto M., 1998, AJ, 116, 2136
Antoja T. et al., 2014, A&A, 563, A60
Aumer M., Schönrich R., 2015, MNRAS, 454, 3166
Barbuy B., Chiappini C., Gerhard O., 2018, ARA&A, 56, 223
Binney J., Tremaine S., 2008, Galactic Dynamics: Second Edition. Princeton

Univ. Press, Princeton, NJ
Bissantz N., Englmaier P., Gerhard O., 2003, MNRAS, 340, 949
Bland-Hawthorn J., Gerhard O., 2016, ARA&A, 54, 529
Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero C., Rubele S.,

Nanni A., 2012, MNRAS, 427, 127
Chandrasekhar S., 1969, Ellipsoidal Figures of Equilibrium. Yale Univ.

Press, New Haven, CT
Debattista V. P., Sellwood J. A., 2000, ApJ, 543, 704
Debattista V. P., Corsini E. M., Aguerri J. A. L., 2002a, MNRAS, 332, 65
Debattista V. P., Gerhard O., Sevenster M. N., 2002b, MNRAS, 334, 355
Dehnen W., 1999, AJ, 118, 1201
Dehnen W., 2000, ApJ, 536, L39
Eilers A.-C., Hogg D. W., Rix H.-W., Ness M. K., 2019, ApJ, 871, 120
Fux R., 1999, A&A, 345, 787
Gaia Collaboration et al., 2016, A&A, 595, A1
Gaia Collaboration et al., 2018, A&A, 616, A1
Gerhard O., 2011, Mem. Soc. Astron. Ital. Suppl., 18, 185
Gerssen J., Kuijken K., Merrifield M. R., 1999, MNRAS, 306, 926
Girardi L., 1999, MNRAS, 308, 818

Gonzalez O. A., Rejkuba M., Zoccali M., Valenti E., Minniti D., 2011,
A&A, 534, A3

Gravity Collaboration et al., 2018, A&A, 615, L15
Guo R., Mao S., Athanassoula E., Li H., Ge J., Long R. J., Merrifield M.,

Masters K., 2019, MNRAS, 482, 1733
Hall O. J. et al., 2019, MNRAS, 486, 3569
Harris W. E., 1996, AJ, 112, 1487
Hernquist L., 1990, ApJ, 356, 359
Hill V. et al., 2011, A&A, 534, A80
Hoffman M. D., Gelman A., 2011, preprint (arXiv:1111.4246)
Hunter J. D., 2007, Comput. Sci. Eng., 9, 90
Hunt J. A. S. et al., 2018, MNRAS, 474, 95
Hunt J. A. S., Bovy J., 2018, MNRAS, 477, 3945
Jones E., Oliphant T., Peterson P. et al., 2001, SciPy: Open Source Scientific

Tools for Python. Available at: http://www.scipy.org/[Accessed date 16
July 2019]

Kalnajs A. J., 1991, in Sundelius B., ed., Dynamics of Disc Galaxies.
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APPEN D IX A : ESTIMATORS ACCOUNTING
F O R TH E T RU E G A L AC T I C P L A N E

In Section 2, we presented estimators for the pattern speed using
Galactic coordinates assuming b = 0 lies in the Galactic plane. The
Sun’s measured height above the disc plane of z0 = (25 ± 5) pc
(Bland-Hawthorn & Gerhard 2016) means this approximation is
probably sufficient. However, if one were to apply the expressions
to the long thin bar (Wegg, Gerhard & Portail 2015) it may be
necessary to incorporate this effect. Therefore, for completeness
we present estimators accounting for the additional offset. Sgr A∗
lies at latitude bA∗ = 0.046 deg so taking R0 = 8.12 kpc, the angle
between mid-plane and b = 0 is γ ∼ 0.13 deg (see fig. 5 of Bland-
Hawthorn & Gerhard 2016).

We return to equation (1) in which the second term (∇ · (ρv) is
invariant under rotations so unaffected by z0). Keeping (x, y, z) as
the Cartesian coordinates aligned with b = 0, we express the first
bracket as

cos γ
(
y

∂ρ

∂x
− x

∂ρ

∂y

)
− sin γ

(
y

∂ρ

∂z
− z

∂ρ

∂y

)
=

cos γ
(
y

∂ρ

∂x
− x

∂ρ

∂y

)
− sin γ

(
− cos � sin b

cos b

∂ρ

∂�
+ sin �

∂ρ

∂b

)
.

(A1)

The first term gives cos γ multipled by the terms in the regular
estimator. As in Section 2 we multiply by s2cos b and we can re-
arrange the terms in the second bracket of equation (A1) as

− s2 sin b
∂(ρ cos �)

∂�
+ s2 sin �

∂(ρ cos b)

∂b
. (A2)

These additional terms are whole derivatives so we can proceed in
the normal way deriving

�p(�) = 〈v�〉b,s

〈(R0 cos � − s cos b) cos γ − s cos � sin b sin γ 〉b,s

,

�p(b) = − 〈vb〉�,s
〈R0 sin b sin � cos γ − s sin � cos b sin γ 〉�,s ,

�p(s) = 〈v|| cos b〉�,b
R0 cos γ 〈sin � cos2 b〉�,b , (A3)

where R0 is the distance to Sgr A∗ (formally it is the distance to
the intercept between the axis normal to the disc plane and b = 0
which is R0cos bA∗ ≈ R0). 1 − cos γ ≈ 5 × 10−6 so it is sufficient
to take cos γ = 1. Furthermore, the final term in the denominator
of �p(�) will be approximately zero for a density distribution near
symmetric in b. Therefore, as expected, the effect of non-zero z0

on the estimators is small and will only produce a noticeable effect
using the b-estimator if b ∼ γ . A small further consideration is that
Sgr A∗ is located at �A∗ = −0.056 deg which can be approximately
accounted for by � → � − �A∗ in the above expressions, slightly
shifting the centre of rotation. An alternative approach is using
equation (A3) with ‘Galactic coordinates’ centred on (�, b)A∗ and a
rotation of γ ≈ z0/R0 = 0.176 deg.

APPEN D IX B: R ED GIANT LUMINOSITY
F U N C T I O N

The modelling in Paper I rested on an appropriate model for the
red giant luminosity function for the bulge stars. The luminosity
function is necessary for measuring both the density structure and
for converting proper motions into transverse velocity distributions.
Due to our uncertainty in the luminosity function, there is a

systematic uncertainty in the results presented in the main body
of this paper. In Paper I, we employed the luminosity function
from Simion et al. (2017) computed using PAdova and TRieste
Stellar Evolution Code (PARSEC) isochrones (Bressan et al. 2012)
and assuming a single age of 10 Gyr and a Gaussian in metallicity
centred on 0 dex with a width of 0.4 dex. Here, we will briefly
explore whether this luminosity function is appropriate and discuss
how our results change when varying the luminosity function.

We test the validity of our luminosity function using stars in
the solar neighbourhood and stars in bulge globular clusters. First,
we take all stars in Gaia DR2 (Gaia Collaboration et al. 2016,
2018) cross-matched with 2MASS (Two Micron All Sky Survey,
Skrutskie et al. 2006) with (Schlegel, Finkbeiner & Davis 1998)
E(B − V) < 0.1, parallax over error>50, parallax>1,
(J − Ks)0 > 0.4, G > 4, and high-quality 2MASS photometry
(ph qual = ‘AAA’ and cc flg = ‘000’). We de-redden the
magnitudes using (Schlegel et al. 1998) E(B − V) with coefficients
from Yuan, Liu & Xiang (2013). We match this catalogue to the
‘pristine’ red clump stars from the catalogue of Ting, Hawkins &
Rix (2018). We inspected the colour–magnitude diagrams of stars
within 1.5rh of the centres of bulge globular clusters from Harris
(1996, 2010 version) using a PSF version of the VIRAC catalogue
(Smith et al., in preparation). We measured the proper motion as the
peak of the 2D proper motion distribution and selected only stars
within 2 mas yr−1 in μα and μδ of the peak. We found NGC 6553
had the clearest giant branch and also has a metallicity of −0.18 dex
making it an appropriate reference case.

We plot the distributions of absolute Ks magnitude for these three
data sets in Fig. B1 using inverse parallax as a distance estimate. We
apply a zero-point parallax offset of 0.05 mas and assume a distance
modulus to NGC 6553 of 13.905, consistent with the distance of
6 kpc reported in Harris (1996). We plot the luminosity function
from Paper I and a Gaussian of width 0.1 mag, which have both been
convolved by the median uncertainty arising from photometric error,
10 percent E(B − V) error and parallax uncertainty (assuming a
systematic floor of 0.021 mas and a 8 percent larger uncertainty than
reported, as suggested on the Gaia webpages). There is additional
spread from the variation in the parallax offset within the sample.
We assume that the data distributions directly give the luminosity
function although there are some small incompleteness effects not
accounted for. We see that the red clump width for the local stars is
broader than our default luminosity function but is well fit by the
0.1 mag Gaussian. There are broader wings with the fainter wing
connecting onto the red giant branch bump. This faint wing is due
to secondary red clump stars which are associated with young (�
1 Gyr) populations (Girardi 1999). The bulge is observed to consist
primarily of old stars (Barbuy, Chiappini & Gerhard 2018) so this
population will not contribute. However, the metallicity distribution
of the bulge is broader than the local disc population.

We also compare our luminosity function to that of NGC 6553.
Again we convolve by the uncertainty in Ks and 10 percent in
E(B − V). We see NGC 6553 has a red clump width similar to
our default luminosity function and the red giant branch bump
in the correct place. Assuming NGC 6553 is a single age and
metallicity population, it seems the width of the red clump in Ks

is ∼ 0.05 mag. Age and metallicity effects broaden this further.
We can assess this somewhat using the ‘Pristine RC’ stars from
Ting et al. (2018) which appear to neatly follow the Gaussian with
width 0.1 mag. Splitting by metallicity we find the median absolute
magnitude increases with decreasing metallicity with a gradient
of − ∼ 0.5 mag dex−1. In Paper I, we used a vertical gradient
in the absolute magnitude of the red clump of ∼ 0.1 mag kpc−1
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Figure B1. Absolute Ks distributions: the top panel shows stars within
∼ 1 kpc from Gaia DR2, middle panel stars in NGC 6553, and bottom
panel just those Gaia DR2 stars identified as ‘Pristine RC’ from Ting et al.
(2018). The black curve is our luminosity function from Paper I and dashed,
a Gaussian of width 0.1 mag both convolved by the uncertainty of each data
set. The dots in the bottom panel show the mean magnitude in different
metallicity bins.

which translates into a metallicity gradient of ∼ −0.03 dex kpc−1

consistent with spectroscopic metallicity gradients observed in the
bulge (Barbuy et al. 2018). The fat tail to brighter magnitudes is not
seen in the ‘Pristine RC’ sample suggesting these are not red clump
stars but background red giant branch.

In conclusion, we have found that the luminosity function from
Paper I is similar to that observed in the bulge globular cluster
NGC6553 but has too narrow a red clump peak to match the
local data from Gaia which points towards a width of 0.1 mag.
By modelling the Gaia parallax systematics for an asteroseismic
sample, Hall et al. (2019) have argued that the intrinsic width
of the red clump in Ks is significantly narrower at ∼ 0.03 mag
suggesting either there are additional uncertainties for our local
sample bloating the spread or the asteroseismic sample is age
and metallicity biased. The local population is not necessarily a
reflection of what is expected in the bulge as there are different
metallicity distribution widths (the local ‘Pristine RC’ sample has
metallicity width ∼ 0.24 dex whilst the bulge has width ∼ 0.4 dex,
Hill et al. 2011) and different age distributions (the local distribution
has stars of a broader range of ages than observed in the bulge).
These two effects will compensate for each other so it is difficult to
truly estimate the bulge luminosity function. However, a red clump
width between 0.06 and 0.1 mag seems appropriate.

Repeating the pattern speed modelling for � > 2.5 deg using
a broader red clump width of 0.12 mag and the tight priors
give a near identical estimate of the pattern speed of (41.72 ±
2.93) km s−1kpc−1 (compared to (42.09 ± 2.50) km s−1kpc−1 of
Table 1). Therefore, reasonable changes in the luminosity function
do not produce significant changes to our analysis.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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