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Abstract: Very high surface area, self-assembled, highly 

crystalline mesoporous SrTiO3 (STO) thin films were 

developed for photoelectrochemical water splitting. 

Much improved performance of these mesoporous films 

compared to planar STO thin films and any other form 

of STO such as single crystal samples and 

nanostructures was demonstrated. The high performance 

resulted from very large surface area films and 

optimisation of carrier concentration. 
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Since the  discovery of photoelectrochemical water splitting using TiO2 by Honda and 

Fujishima
1
, this type of renewable energy generation has captured the attention of the 

researchers worldwide. There have been hundreds of different materials used by researchers 

for this purpose. They can be broadly classified as transition metal chalcogenides, III-V 

semiconductors, Group IV elemental and compound semiconductors, and transition metal 

oxides. Except for a few, most of the photocatalyst materials suffer from one or more 

drawbacks such as chemical instability
2–7

, environmental toxicity
8
 , unfavourable band 

positions
3–5

, overpotential loss
9
 or scarce availability leading to high costs

10
. Transition metal 

oxides are the most widely researched group of photocatalysts and oxides, for example, STO 

and BaSnO3 have been shown to not be limited by the aforementioned drawbacks
11

. 

Wrighton et al.
12

, in 1976, first demonstrated the usefulness of STO for light assisted water 

splitting, thus making it the first material discovered to be suitable for photocatalytic water 

splitting, without even applying any external bias
13

. Since then, STO has been shown to be an 

effective photoelectrochemical (PEC) water splitting material. While STO absorbs only a 

small portion of the visible light, impurity levels can be added in the bandgap to tune the 

bandgap so it is more suitable for visible absorption. The visible light absorption of STO can 

be improved by doping STO with metallic
14–16

 and non-metallic impurities
17,18

. Moreover, the 

performance can be further enhanced by growing tandem PEC cells, where STO is coated 

with a suitable material with a bandgap in tandem to that of STO. The conduction band of 

STO is 200 meV more negative than the conduction band of TiO2 (anatase), making it 

energetically more favourable for photo-assisted water splitting
19,20

. In addition, STO has 

excellent chemical and photochemical stability
13,21–23

 and high quality STO is reported to 

have much higher electron mobility (5-8 cm
2
V/s) compared to TiO2 (0.1-4 cm

2
V/s)

24
. While 

ZnO is a popular PEC water splitting material which has similar band positions to TiO2 and is 

easy to grow in nanostructured form, it too is inferior to STO since it undergoes 
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photocorrosion when put in an aqueous solution under UV light; it even gets corroded in the 

dark when in an alkaline medium
25

.  

Many reports of using STO for photoelectrochemical water splitting are for materials 

made in either bulk
8,21

 or nanopowder
26–30

  form. While nanopowders have the obvious 

advantage over bulk form of higher surface area/volume ratio, thus increasing the number of 

reaction sites for water splitting, they cannot be easily recovered from the electrolyte
31–34

 

Moreover, usually the nanopowders are coated with co-catalysts like Pt
30,35,36

, IrO2
27

 or Au
37

, 

which act as cathodes for evolution of H2. Not only are these co-catalysts expensive, but both 

H2 and O2 gases evolve in close proximity
23,34

, which is undesirable. Also, the co-catalysts 

rob the photocatalysts of useful light-exposed surface
23

. Finally, nanopowder STO 

photocatalysts rely solely on photo-assisted water splitting without electric field assistance 

for the hydrogen evolution process
26

.  

Many of the above disadvantages of using either bulk or nanopowder photocatalysts 

can be eliminated if nanostructured photocatalysts are fixed to a conducting substrate, thus 

making them easier to be recovered and reused. Also, gas separation is easier, as the anode 

and cathode can be spatially separated. Some groups have coated nanopowders on conducting 

substrates to immobilise them
26

. However, the high surface area advantage offered by 

nanopowders is lost if the nanopowders are simply coated on a conducting substrate, as the 

specific surface area is substantially reduced. Moreover, because of the higher number of 

grain boundaries and poor particle-to-particle contact in coated nanopowders, recombination 

losses are higher.  

A way to overcome the aforementioned problems of nanopowders is to use oriented, 

substrate anchored nanotubes/nanorods. Such structures allow for directional charge carrier 

transport offered without reduction of the surface area, as well as less recombination 
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losses
20,31,38–43

. There are some investigations of oriented chemically grown mesoporous 

films of SrTiO3
20,44–46

, but only one of those reports is for photoelectrochemical water 

splitting and the performance is well below that of TiO2
20

. Improved performance is realised 

in hydrothermally grown heterojunctions of TiO2 nanotubes coated with STO
20,47–49

 (Table 

1). Such heterojunctions give rise to cascading bandgaps, which leads to efficient charge 

separation and reduced recombination losses leading to significantly better performance than 

chemically grown plain STO films
22,50–53

 (Table 1).  

As far as known, there are no reports of physical vapour deposited (PVD) 

nanostructured or mesostrutured STO films for PEC water splitting. On the other hand, such 

films have strong potential for improved performance over chemically grown materials, 

owing to their high crystalline perfection. Moreover, since there are no chemical reactions 

taking place, there is lesser chance of by-product impurities from these reactions getting 

incorporated in the films
54

. Hence, lower defect concentrations are expected compared to 

chemically grown nanostructures
55

. Indeed, in chemically grown films, annealing at moderate 

temperatures does not appreciably reduce the defect density
56,57

. Another advantage of PVD 

grown films is that they are very well-anchored to the substrate allowing for reuse many 

times. Finally, as described in this work, use of new composite structures, allows for creation 

of very high surface area films. 

The aim of this work is to explore the photoelectrochemical water splitting performance 

of PVD grown mesoporous thin films. Highly crystalline, well-oriented, epitaxial films of 

STO with appropriate treatment to strongly increase surface area are used for this study. We 

show much improved water splitting performance over previous reports on STO.  

In brief, to create the mesoporous films, first columnar composite thin films of MgO 

and STO were grown on Nb-STO (001) substrates (10 x 5 x 0.5 mm
3
 in size) using pulsed 
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laser deposition (PLD) (figure 1(a)). These films consist of epitaxial nanopillars (diameter 

~20 nm) of MgO embedded in a matrix of STO (figure 1(b)). After fabrication of the 

composite films, the MgO phase was selectively etched out (figure 1(c)), leaving behind a 

high surface area honeycomb structure.  

 

Figure 1: Schematic diagram showing (a) the PLD setup, (b) the PLD-grown columnar 

composite thin film containing STO matrix and MgO nanopillars and (c) the mesoporous 

STO thin film, after etching out the MgO nanopillars 

Figure 2(a) is a plan-view SEM image of the composite thin film prior to etching, showing 

MgO nanopillars dispersed in the matrix of STO. The acidic etchant solution dissolves the 

alkaline MgO phase selectively, leaving the STO phase intact, as can be seen in Figure 2(b). 

Figure 2(c) shows an X-ray diffraction pattern of a composite film before and after etching 

the MgO nanopillars. From the 2θ-ω scans, it can be clearly seen that MgO grows with the 

same orientation as STO (001) single crystal. The STO film peaks overlap with the substrate 

peaks because of their very similar lattice parameter. We note, however, that the lattice 

parameters of the STO film and STO substrate are not necessarily identical owing to the 

vertical strain effects in the composite. The epitaxial quality of STO/MgO films grown on 

STO substrate is excellent, as we have shown in an earlier study
58

. The MgO peak which was 
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present before etching is found to have disappeared after etching (Figure 2(c)). A cross-

sectional TEM view of a typical mesoporous STO film is shown in Figure 2(d).  

 

Figure 2:  Plan-view SEM image of STO-MgO columnar composite thin film (a) before 

etching out the MgO nanopillars, and (b) after etching out the MgO nanopillars; (c) X-ray 

diffraction, out-of-plane 2θ-ω scans showing disappearing MgO peaks after etching, thus 

confirming the completion of the etching process, and (d) Cross-sectional TEM image of a 

typical porous STO thin film showing oriented mesopores (diameter ~20 nm). (As shown in 

the figure, the top layer is the glue layer used to glue the two pieces together before sample 

preparation).  

From Figure 2(d), we can see that the mesopores are highly oriented in a direction 

perpendicular to the substrate surface. The SEM image (Figure 2(a)) shows that the 

mesopores are of diameter ~20 nm, and the wall-thickness of the surrounding STO is 5-7 nm. 
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This roughly translates to a 2500% increase in surface area over the surface of the substrate. 

Comparing with mesoporous STO films of same thickness made by the hydrothermal 

method
59

, the mesoporous STO films of this study have ~ 5 times surface area.  

The PLD grown films can be doped in a controlled manner
60

 to achieve an optimum 

carrier concentration, which is important for photoelectrochemical water splitting. 

Stoichiometric STO has poor electrical conductivity and thus it is not suitable to act as a 

photoelectrode, since the excited charge carriers need to be extracted easily for good water 

splitting efficiency. The conductivity of STO can be increased by doping with donor 

impurities such as Nb
5+  

or self-doping with oxygen
22,61,62

. Oxygen vacancies are created by 

annealing the material in a reducing environment
33,61

, in accordance with equation (1) -  

������ →	��	
��
� +	��
�


���� + �3 − ���	�
�
� +	����
� + 2�� +	 

	
�	�!� ↑	  (1) 

The oxygen vacancies act as shallow donors
63

 and each vacancy donates two electrons. 

This increases the charge carrier density in the semiconductor, and thus improves its 

conductivity. 

Results 

Three mesoporous samples of different carrier concentration were studied – (a) a Nb-

STO substrate (as received), (b) a porous STO film post-annealed in high oxygen partial 

pressure (400 mbar O2), termed Porous STO 10
17

, and (c) a porous STO film post-annealed in 

low oxygen partial pressure (0.2 mbar O2 ), termed Porous STO 10
20

. The above labelling of 

the samples is based on their charge carrier concentrations (in number per cm
3
), which we 

determine later.   

 The key photoelectrochemical water splitting results and the comparison of the 

samples of this work with literature data are shown in Table 1. The first thing to note in Table 
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1 is that the different annealing conditions have brought about a three orders of magnitude of 

difference in charge carrier density from 10
17 

- 10
20

 cm
-3

. A carrier concentration of the order 

of ~10
19

-10
20

 cm
-3

 is normally desired for effective water splitting performance
64–66

. Hence, 

we have produced samples in this optimised carrier concentration range. 

Table 1: Results of the measurements for the different samples of this work compared to 

other STO samples in the literature. Vfb is the flat band potential measured vs. the Ag/AgCl 

(3M KCl) reference electrode, ND is the charge carrier density obtained 1/C
2
 vs. V plots (as 

discussed later). The incident photon to current efficiency (IPCE) was obtained at 0.5 V vs. 

Ag/AgCl (3M KCl). 

 Sample Vfb (V) vs. 

V(Ag/AgCl) 

(3M KCl) (V) 

ND (cm
-3

) Highest values of IPCE 

1. Porous STO 10
17

 

(this work) 

-0.75 1.38 x 10
17

 12% at 330 nm and 0.3 V 

vs. Ag/AgCl (3M KCl) 

(~1.30 V vs RHE) 

2. Porous STO 1020  

(this work) 

-0.60 2.80 x 1020 38% at 330 nm and 0.3 V 

vs. Ag/AgCl (3M KCl) 

(~1.30 V vs. RHE) 

3. Nb-STO substrate 

(this work) 

-1.00 1.90 x 1019 16% at 330 nm and 0.3 V 

vs. Ag/AgCl (3M KCl) 

(~1.30 V vs. RHE) 

4. Colloidal suspension dip-

coated Nb-doped STO 
thin film 

-0.79 1.50 x 10
20

 26% at 290 nm and at 1.23 

V vs. RHE
22 

 

5. Hydrothermally grown 
STO films decorated 

with carbon quantum 

dots 

-- -- 14% at 340 nm and at 1.23 
V vs. RHE50 

6. Ir doped STO single 

crystals 

-0.1 V vs. 

Ag/AgCl (0.4 V 
vs. RHE) (onset 

potential) 

 4% at 400 nm at 1 V vs. 

Ag/AgCl
67

 (~1.5 V vs. 
RHE) 

7. Hydrothermally grown 

STO-TiO2 

heterostructures 

-0.980 vs. (SCE) 

(~0.03 V vs. 

RHE) 

 6.55% at 360 nm and no 

external bias20 

 

-- 

 

-- 27% at 330 nm and no 

external bias47 

-0.84 V (vs. 

SCE) or (~ -0.19 

vs. RHE) 

-- 50% at 355 nm at 0.6 V vs. 

SCE48 (~1.25 V vs. RHE) 
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From Table 1, we can see that porous STO 10
20

 shows much improved IPCE values 

over the Nb-STO substrate and at 38% is one of the best efficiencies reported for plain STO 

in the literature. Also, it is comparable to some of the highest results reported for STO-TiO2 

heterostructures47,48.  

In Table 1, the flat band potential (Vfb) values are also compared for the different 

samples. Vfb is an important parameter for photoelectrochemical water splitting as it gives us 

a direct measure of band bending in the sample, and hence it can tell us about the onset 

potential. The Vfb for porous STO 10
20

 is higher (more positive) than that for porous STO 

10
17

. This can be explained by presence of surface states in porous STO 10
20

 which are 

absent or scarcely present in porous STO 10
17

. The high oxygen vacancy concentration leads 

to high ND. However, at the same time, generation of a high concentration of oxygen 

vacancies means that the number of surface states is also high. A more detailed discussion 

about Vfb and presence of surface states can be found in the supplementary information. 
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Figure 3: J-V characteristics of (a) Nb-STO substrate, (b) porous STO 10
17

 and (c) porous 

STO 10
20

. (d) Chronoamperometry results of the samples. The potential used was 0.5 V vs. 

the Ag/AgCl (3M KCl) electrode for Chronoamperometry results. (e) Incident Photon to 

Current Efficiency (IPCE) results measured at 0.3 V vs. Ag/AgCl and (f) UV-Vis absorption 

spectra. 

Now we look at the current density vs. applied potential (J-V) characteristics, 

comparing the photocurrent of all the three samples reported in this study. Figure 3 (a), (b) 
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and (c) show J-V characteristics of Nb-STO, porous STO 10
17

 and porous STO 10
20

, 

respectively, in light and dark conditions. It can be clearly seen from Figure 3(a), (b) and (c) 

that porous STO 10
20

 shows much improved photocurrent over the flat Nb-STO substrate. 

This is consistent with the higher surface area and higher carrier concentration in porous STO 

10
20

. Also, as expected, the photocurrent is higher in porous STO 10
20

 than in porous STO 

10
17

 on account of the better conductivity of porous STO 10
20

. The current values are higher 

than those achieved for STO thin films previously reported 
22,50

.  

It can be seen that porous STO 10
20

 shows an onset of photocurrent at a slightly higher 

voltage than that for the Nb-STO substrate. This can be explained by presence of surface 

states in porous STO 10
20

 
68,69

. This phenomenon is discussed in detail in the supplementary 

information. Porous STO 10
17

 shows negligible photocurrent compared to both porous STO 

10
20

 and the Nb-STO substrate, consistent with the lower charge carrier concentration in 

porous STO 10
17

.  

Figure 3 (d) shows the chronoamperometry results, measured at 0.5 V vs. Ag/AgCl 

(3M KCl) and under a tungsten halogen lamp at 100 mW/cm
2
. As shown in the 

supplementary information, the spectrum of the lamp has emission mainly in the visible and 

infra-red region (500 nm – 1000 nm). Interestingly, the porous STO 10
20

 chronoamperometry 

curves show spikes when the light is turned on before settling to a lower steady state current 

value. This behaviour further supports the presence of surface states 
69–72

. 

Figure 3(e) shows the Incident Photon to Current Efficiency (IPCE) values for the three 

samples, measured at an applied bias of 0.3 V vs. Ag/AgCl. As expected for a large bandgap 

semiconductor like STO (bandgap 3.2 eV), there is very little photocurrent from the visible 

region of the light spectrum, and all three samples show low IPCE values at higher 

wavelengths. However, for lower wavelengths corresponding to the UV region, we see that 
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porous STO 10
20

 shows a much higher IPCE compared to both the Nb-STO substrate and 

porous STO 10
17

. As reported in the literature
73,74

, the IPCE curves peak at wavelengths 

between 320 nm and 340 nm. The decrease of the efficiency values for wavelengths smaller 

than 320 nm in non-passivated samples can be attributed to surface recombination losses
13,73

.  

Figure 3(f) shows the UV-vis absorption spectra of all the samples. Porous STO 10
20

 

shows slightly higher absorption closer to the band-edge of STO. This can be attributed to the 

presence of oxygen vacancy states below the conduction band, thus permitting more light to 

be absorbed in the visible range
75–77

. On the other hand, this higher absorption does not 

translate into higher photocurrent in this range, as can be seen in the IPCE plots (Figure 3(e)). 

The improvement in the efficiency is in the same wavelength range where it was showing 

higher efficiency in the Nb-STO substrate. Hence, the oxygen vacancies only contribute 

towards increasing the charge carrier density and not towards increasing the photocurrent 

because of more absorption in the visible range. This is corroborated by several other 

reports
12,33,62

.  

We now turn to analysis of the flat band potential (Vfb) and charge carrier density (ND) 

measurements.  A high value (more negative) value of Vfb is beneficial to aid charge 

separation and an optimum value of ND is required for excellent electrical conductivity to 

transport the separated charge carriers. The charge carrier density ND and the flat band 

potential Vfb are determined from 1/C
2
 vs. V plots. For the two samples porous STO 10

17
 and 

Nb-STO substrate, the results were fairly linear (Figure 4(a) and 4(b)) and hence were fitted 

as per the traditional Mott-Schottky equation
78

: 

#

$

= 	

&'
()(*+,
�-� − �./0 −

1�

&
�   (2) 

Where C is the capacitance of the semiconductor-electrolyte interface, e is the electronic 

charge, A is the interfacial area, ε0 is the permittivity of vacuum, εr is relative permittivity of 
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the semiconductor with respect to vacuum, ND is the majority charge carrier density in the 

semiconductor per cubic cm, V is the applied potential, Vfb is the flat band potential of the 

semiconductor electrode in given electrolyte solution, κ is the Boltzmann’s constant and T is 

the temperature. For these plots, Vfb is determined from the x-intercept of the linear fits as per 

the Mott-Schottky relation (eq. 2) and ND is determined from the slope of these linear fits. In 

this expression, we excluded the component κT/e, because of its low value. 

For the porous STO 10
20

 sample, the 1/C
2
 vs. V plots were non-linear and hence were fitted 

to a quadratic expression (see Figure 4(c)). This expression is given in equation 3 below, and 

it has been used previously for highly doped samples
79,80

. 

     
#

	$

= 	 	

&(*(2+,'
-� −	�./0 +	

#

/
(2

 -� −	�./0

	
                     (3) 

Where all the symbols have the same meanings as for equation 2, except for b which is a 

constant. From the parabolic fit of the data as per the equation above, values for Vfb and ND 

were approximately determined. 
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Figure 4: 1/C
2
 vs. V plots of various samples measured at 1 kHz with an amplitude of  

10 mV. (a) The results for the three samples studied - porous STO 10
20

, Nb-STO substrate 

and porous STO 10
17

 shown together in logarithmic scale, (b) and (c) Mott-Schottky linear 

fits of the results for porous STO 10
17

 and Nb-doped substrate, respectively and (d) 

polynomial fit of the results for porous STO 10
20

. 

All the samples showed a positive slope in the 1/C
2
 vs. V plots, thus confirming their n-

type behaviour. From Figure 4(a), we can see that the 1/C
2
 values for porous STO 10

17
 are 

the highest at all biases, whereas those of porous STO 10
20

 are the lowest. This indicates that 
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the effective capacitance of porous STO 10
17

 is much higher than that of porous STO 10
20

, 

consistent with porous STO 10
17

 being much more resistive than porous STO 10
20

. The 

charge carrier density ND is calculated from equation 2 using the slopes of the linear fits of 

these plots. The x-intercepts of the linear fits give the values of Vfb, i.e., the applied bias at 

which there is no band-bending
78

. The values of Vfb and ND are presented in Table 1. 

ND in porous STO 10
17

 was found to be lower than that of porous STO 10
20

. Porous 

STO 10
20

 showed an unexpectedly high flat band potential compared to the other samples. 

This can be explained by presence of surface states from oxygen vacancy defects pinning the 

Fermi level
68,81–83

. As discussed in more detail in the supplementary section, electrochemical 

impedance spectroscopy confirmed the presence of surface states in unpassivated porous 

STO 10
20

. It is well known that the photocurrent of oxygen-deficient samples can be 

improved further by passivating the surface states with suitable chemicals like Al2O3
68,70,84

. 

Thus, perhaps the next step towards improving the PEC performance of these mesoporous 

samples would be surface passivation by a very thin layer of Al2O3. 

To conclude, a very simple yet elegant method of growing highly oriented, epitaxial 

crystalline, very high surface area mesoporous films with tunable electronic properties has 

been demonstrated. The film shows very high photocatalytic performance. The approach 

combines the benefits of using physical vapour growth to give very high quality, reusable 

material with the benefits of having a very high surface area, which is normally only achieved 

using chemical growth. Substrate-supported mesoporous structures are achieved by first 

growing epitaxial columnar nanocomposite films, followed by selective etching out of one 

phase. By carrier concentration tuning via doping, the oriented, mesoporous STO thin films 

give very high efficiencies.  
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Experimental Section: 

Fabrication: The columnar composite thin films of STO-MgO were deposited by laser 

ablation of a composite target containing STO and MgO. The targets were made by mixing 

and grinding STO and MgO nanopowders in equal weight proportion, followed by uniaxial 

pressing under 100kN for 10 minutes to form the pellets. The pellets were then sintered in 

oxygen flow rate of 40 sccm to 1100 °C for 6 hours. The laser energy used for the pulsed 

laser deposition of the thin films was ~ 2 J/cm
2
 and the laser pulse frequency was 1Hz. The 

Nb-STO substrates were heated to 770-800 °C, in an oxygen flow rate of 9.8 sccm with 0.2 

mbar pressure inside the deposition chamber. The deposition rate was 10 nm/min. After the 

deposition, the films were annealed at 650 °C in situ at 400 mbar and 0.2 mbar of O2 pressure 

for one hour, respectively, for porous STO 10
17

 and porous STO 10
20

. To achieve a 

mesoporous STO film, the MgO phase was selectively etched out from the films by dipping 

them in 20% acetic acid solution at 60 °C for 30 minutes.  

Characterisation: A four circle diffractometer was used for X-ray diffraction. A scanning 

electron microscope (SEM) was used to capture the surface images. The surface area of the 

mesoporous films was calculated using image analysis software to determine the average 

pore circumference from the plan-view SEM images. To compute the surface area of the 

pores, the values were multiplied by the number of pores, and the pore-length, which is 

equivalent to the film thickness. (Note: The area used for calculating photocurrent and IPCE 

data was the projected (plan-view) surface area under illumination for the sample, whereas 

for the 1/C
2
 vs. V plots, the area used was the estimated curved surface area of the nanowalls 

or cavities formed after etching out the nanocolumns. For simplicity, the area of the sample 

forming the ‘cross-sections’ of the nanowalls was ignored on account of being very small.). A 

photoelectrochemical work station coupled with a tungsten halogen lamp (Zahner WOW01) 

was used for photoelectrochemical characterisation. The lamp had very little UV component. 
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A comparison of the lamp’s spectrum with the AM1.5 G is presented in the supplementary 

information. The electrolyte used for the photoelectrochemical measurements was 0.5 M 

NaOH solution. An in-house made photoelectrochemical cell with quartz windows and 

polytetrafluoroethylene (PTFE) walls was used. A Pt wire as a counter electrode and an 

Ag/AgCl (3M KCl) reference electrode were used for these measurements. The DC bias was 

varied from -0.8 V to 1.8 V Ag/AgCl (3M KCl) for the J-V curves in both dark and light 

conditions. The 1/C
2
 vs. V measurements were carried out from -0.4 V to 0.8 V vs. Ag/AgCl 

(3M KCl) with an AC disturbance of 10 mV at 1 kHz. Electrochemical impedance 

spectroscopy (EIS) measurements were performed for the frequency range 0.1 Hz to 1 kHz 

and at 0V vs. Ag/AgCl (3M KCl) reference electdrode. The EIS data was fitted using ZView 

software suit. The IPCE data was recorded using a quantum efficiency measurement system 

at 0.3 V vs. Ag/AgCl (3M KCl) electrode and in 0.5 M NaOH solution. A UV-VIS-NIR 

spectrophotometer was for acquiring UV-Vis spectra from 200 nm to 800 nm. The films for 

optical characterisation were grown on LaAlO3 (001) single crystal substrates under the same 

deposition conditions as used for the films grown on Nb-STO. The films used for UV-vis 

spectroscopy were grown on LaAlO3 because of its similar structure as that of Nb-STO, 

which is essential for the heteroepitaxial growth of the two phases and because of the large 

bandgap (5.2 eV) of LaAlO3, thus allowing to detect any blue or red shifts in the band-edges 

of these thin films. 

Acknowledgements: We gratefully acknowledge the support from the Cambridge 

Commonwealth Trust, ERC adg grant (247276) NOVOX and UKIERI grant 

(IND/CONT/E/12-13/813). The TEM work at Texas A&M University is funded by the US 

National Science Foundation (DMR-1401266). We also acknowledge the help from Y. J. Liu 

and V. Kumar for the preliminary measurements for this project. We thank Dr. Oon Jew Lee 

for her help during initial etching set up. We thank Mary Vickers for her help with the X-ray 

Page 17 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18 

 

diffraction. We thank Dr. Reza Saberi Moghaddam for his help with passivation related 

matters. We thank Professor A. K. Cheetham for use of the UV-vis spectrophotometer in his 

lab. 

Associated Content: Supporting Information file. Plots of Electrochemical Impedance 

Spectroscopy data, discussion of charge transfer mediated through surface states and band 

bending, and emission spectrum of the lamp compared with the AM 1.5G spectrum.  

References: 

(1)  Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37–38. 

(2)  Woodhouse, M.; Parkinson, B. A. Chem. Soc. Rev. 2009, 38 (1), 197–210. 

(3)  Chandrasekaran, S.; McInnes, S. J. P.; Macdonald, T. J.; Nann, T.; Voelcker, N. H. 

RSC Adv. 2015, 5 (104), 85978–85982. 

(4)  Ashcheulov, P.; Kusko, M.; Fendrych, F.; Poruba, A.; Taylor, A.; Jager, A.; Fekete, L.; 

Kraus, I.; Kratochvilova, I. Phys. Status Solidi A 2014, No. 10, 2347–2352. 

(5)  Warren, E. L.; Boettcher, S. W.; McKone, J. R.; Lewis, N. S. 2010, 7770, 77701F–

77701F–7. 

(6)  Price, M. J.; Maldonado, S. J. Phys. Chem. C 2009, 113 (Figure 1), 11988–11994. 

(7)  Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. 

S. Science 2014, 344 (6187), 1005–1009. 

(8)  Rajeshwar, K. J. Appl. Electrochem. 2007, 37 (7), 765–787. 

(9)  Hu, J.; Zhu, F.; Matulionis, I.; Gaillard, N.; Deutsch, T.; Wang, H. In White Papers on 

Materials for Photoelectrochemical Water Splitting; 2013. 

(10)  Prevot, M.; Sivula, K. J. Phys. Chem. C 2013, 117 (17879–17893). 

Page 18 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showLinks?pmid=24876492&crossref=10.1126%2Fscience.1251428&coi=1%3ACAS%3A528%3ADC%252BC2cXosFSmuro%253D
http://pubs.acs.org/action/showLinks?pmid=12635268&crossref=10.1038%2F238037a0&coi=1%3ACAS%3A528%3ADyaE38XltVykurw%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp9044308&coi=1%3ACAS%3A528%3ADC%252BD1MXnsFKnt70%253D
http://pubs.acs.org/action/showLinks?crossref=10.1039%2FC5RA12559F&coi=1%3ACAS%3A528%3ADC%252BC2MXhs1SktL%252FK
http://pubs.acs.org/action/showLinks?crossref=10.1007%2Fs10800-007-9333-1&coi=1%3ACAS%3A528%3ADC%252BD2sXmtVymuro%253D
http://pubs.acs.org/action/showLinks?pmid=19088974&crossref=10.1039%2FB719545C&coi=1%3ACAS%3A528%3ADC%252BD1cXhsFWjtL3N


19 

 

(11)  Rajeshwar, K. In Encyclopedia of Electrochemistry; 2007. 

(12)  Wrighton, M. S.; Ellis, A. B.; Wolczanski, P. T.; Morse, D. L.; Abrahamson, H. B.; 

Ginley, D. S. J. Am. Chem. Soc. 1976, 98 (10), 2774–2779. 

(13)  Tomkiewicz, M.; Fay, H. Appl. Phys. 1979, 18 (1), 1–28. 

(14)  Maruska, H. P.; Ghosh, A. K. Sol. Energy Mater. 1979, 1 (3–4), 237–247. 

(15)  Tonda, S.; Kumar, S.; Anjaneyulu, O.; Shanker, V. Phys. Chem. Chem. Phys. 2014, 16 

(43), 23819–23828. 

(16)  Wang, D.; Ye, J.; Kako, T.; Kimura, T. J. Phys. Chem. B 2006, 110 (32), 15824–

15830. 

(17)  Wei, W.; Dai, Y.; Guo, M.; Yu, L.; Huang, B. J. Phys. Chem. C 2009, 113, 15046–

15050. 

(18)  Wang, J.; Li, H.; Li, H.; Yin, S.; Sato, T. Solid State Sci. 2009, 11 (1), 182–188. 

(19)  Guo, K.; Liu, Z.; Wang, Y.; Zhao, Y.; Xiao, Y.; Han, J.; Li, Y.; Wang, B.; Cui, T. Int. 

J. Hydrogen Energy 2014, 39 (25), 13408–13414. 

(20)  Zhang, J.; Bang, J. H.; Tang, C.; Kamat, P. V. ACS Nano 2010, 4 (1), 387–395. 

(21)  Mavroides, J. G.; Kafalas, J. A.; Kolesar, D. F. Appl. Phys. Lett. 1976, 28 (5), 241–

243. 

(22)  Pinheiro, A. N.; Firmiano, E. G. S.; Rabelo, A. C.; Dalmaschio, C. J.; Leite, E. R. RSC 

Adv. 2014, 4 (4), 2029–2036. 

(23)  Wrighton, M. S. Acc. Chem. Res. 1979, 12 (9), 303–310. 

(24)  Bera, A.; Wu, K.; Sheikh, A.; Alarousu, E.; Mohammed, O. F.; Wu, T. J. Phys. Chem. 

C 2014, 118 (49), 28494–28501. 

Page 19 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp902567j&coi=1%3ACAS%3A528%3ADC%252BD1MXovFSjtrk%253D
http://pubs.acs.org/action/showLinks?crossref=10.1039%2FC4CP02963A&coi=1%3ACAS%3A528%3ADC%252BC2cXhsFKrtbbJ
http://pubs.acs.org/action/showLinks?crossref=10.1039%2FC3RA45066J&coi=1%3ACAS%3A528%3ADC%252BC3sXhvVyqsb%252FM
http://pubs.acs.org/action/showLinks?crossref=10.1039%2FC3RA45066J&coi=1%3ACAS%3A528%3ADC%252BC3sXhvVyqsb%252FM
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja00426a017&coi=1%3ACAS%3A528%3ADyaE28XktFWlsrw%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.ijhydene.2014.04.018&coi=1%3ACAS%3A528%3ADC%252BC2cXntVSrs7k%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.ijhydene.2014.04.018&coi=1%3ACAS%3A528%3ADC%252BC2cXntVSrs7k%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp062487p&coi=1%3ACAS%3A528%3ADC%252BD28Xnt1GgtLY%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp509753p&coi=1%3ACAS%3A528%3ADC%252BC2cXhvFGgu7jP
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp509753p&coi=1%3ACAS%3A528%3ADC%252BC2cXhvFGgu7jP
http://pubs.acs.org/action/showLinks?crossref=10.1016%2F0165-1633%2879%2990042-X&coi=1%3ACAS%3A528%3ADyaE1MXltFSjtL8%253D
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.88723&coi=1%3ACAS%3A528%3ADyaE28Xks1GlsrY%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.solidstatesciences.2008.04.010&coi=1%3ACAS%3A528%3ADC%252BD1cXhsFCjt73K
http://pubs.acs.org/action/showLinks?system=10.1021%2Far50141a001&coi=1%3ACAS%3A528%3ADyaE1MXlt1KjsL8%253D
http://pubs.acs.org/action/showLinks?crossref=10.1007%2FBF00935899&coi=1%3ACAS%3A528%3ADyaE1MXhslWnsr8%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fnn901087c&coi=1%3ACAS%3A528%3ADC%252BD1MXhsFGkurbI


20 

 

(25)  Liu, M.; Nam, C.-Y.; Black, C. T.; Kamcev, J.; Zhang, L. J. Phys. Chem. C 2013, 117 

(26), 13396–13402. 

(26)  Iwashina, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133 (34), 13272–13275. 

(27)  Asai, R.; Nemoto, H.; Jia, Q.; Saito, K.; Iwase, A.; Kudo, A. Chem. Commun. 2014, 50 

(19), 2543–2546. 

(28)  Shen, P.; Lofaro, J. C. J.; Woerner, W. R.; White, M. G.; Su, D.; Orlov, A. Chem. Eng. 

J. 2013, 223, 200–208. 

(29)  Niishiro, R.; Tanaka, S.; Kudo, A. Appl. Catal. B Environ. 2014, 150–151, 187–196. 

(30)  Liu, Y.; Xie, L.; Li, Y.; Yang, R.; Qu, J.; Li, Y.; Li, X. J. Power Sources 2008, 183 

(2), 701–707. 

(31)  Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. Small 2012, 8 (20), 3073–3103. 

(32)  Zhang, X.; Huo, K.; Hu, L.; Wu, Z.; Chu, P. K. J. Am. Ceram. Soc. 2010, 93 (9), 

2771–2778. 

(33)  Wang, G.; Ling, Y.; Li, Y. Nanoscale 2012, 4 (21), 6682. 

(34)  van de Krol, R.; Liang, Y.; Schoonman, J. J. Mater. Chem. 2008, 18 (20), 2311. 

(35)  Puangpetch, T.; Sommakettarin, P.; Chavadej, S.; Sreethawong, T. Int. J. Hydrogen 

Energy 2010, 35 (22), 12428–12442. 

(36)  Puangpetch, T.; Sreethawong, T.; Yoshikawa, S.; Chavadej, S. J. Mol. Catal. A Chem. 

2009, 312 (1–2), 97–106. 

(37)  Puangpetch, T.; Chavadej, S.; Sreethawong, T. Energy Convers. Manag. 2011, 52 (5), 

2256–2261. 

(38)  Baker, D. R.; Kamat, P. V. Adv. Funct. Mater. 2009, 19 (5), 805–811. 

Page 20 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showLinks?pmid=22961930&crossref=10.1002%2Fsmll.201200564&coi=1%3ACAS%3A528%3ADC%252BC38Xhtlamu7rJ
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.apcatb.2013.12.015&coi=1%3ACAS%3A528%3ADC%252BC2cXis1Cmurg%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.molcata.2009.07.012&coi=1%3ACAS%3A528%3ADC%252BD1MXhtFaktL%252FN
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja2050315&coi=1%3ACAS%3A528%3ADC%252BC3MXpvVWltb8%253D
http://pubs.acs.org/action/showLinks?crossref=10.1039%2Fc2nr32222f&coi=1%3ACAS%3A528%3ADC%252BC38XhsV2qsrfE
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.jpowsour.2008.05.057&coi=1%3ACAS%3A528%3ADC%252BD1cXovFOmu70%253D
http://pubs.acs.org/action/showLinks?crossref=10.1002%2Fadfm.200801173&coi=1%3ACAS%3A528%3ADC%252BD1MXjs1yitL8%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.cej.2013.03.030&coi=1%3ACAS%3A528%3ADC%252BC3sXnsFGhu7k%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.cej.2013.03.030&coi=1%3ACAS%3A528%3ADC%252BC3sXnsFGhu7k%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.ijhydene.2010.08.138&coi=1%3ACAS%3A528%3ADC%252BC3cXhtlansLfF
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.ijhydene.2010.08.138&coi=1%3ACAS%3A528%3ADC%252BC3cXhtlansLfF
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp404032p&coi=1%3ACAS%3A528%3ADC%252BC3sXptFehtLo%253D
http://pubs.acs.org/action/showLinks?crossref=10.1111%2Fj.1551-2916.2010.03805.x&coi=1%3ACAS%3A528%3ADC%252BC3cXht1eju7vJ
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.enconman.2010.12.026&coi=1%3ACAS%3A528%3ADC%252BC3MXjsFygt74%253D
http://pubs.acs.org/action/showLinks?pmid=24463636&crossref=10.1039%2Fc3cc49279f&coi=1%3ACAS%3A528%3ADC%252BC2cXitVyhu7c%253D
http://pubs.acs.org/action/showLinks?crossref=10.1039%2Fb718969a&coi=1%3ACAS%3A528%3ADC%252BD1cXlsVOnsbw%253D


21 

 

(39)  Innocenzi, P.; Malfatti, L. Chem. Soc. Rev. 2013, 42 (9), 4198–4216. 

(40)  Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem. Int. Ed. Engl. 2008, 47 (16), 

2930–2946. 

(41)  Lee, U.; Min-Hye, K.; Young-Uk, K. Bull. Korean Chem. Soc. 2006, 27 (6), 808–816. 

(42)  Schüth, F. Chem. Mater. 2001, 13, 3184–3195. 

(43)  Crepaldi, E. L.; Soler-Illia, G. J. D. A. A.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, 

C. J. Am. Chem. Soc. 2003, 125, 9770–9786. 

(44)  Amani Hamedani, H.; Khaleel, J. A.; Dahmen, K.-H.; Garmestani, H. Cryst. Growth 

Des. 2014, 14 (10), 4911–4919. 

(45)  Xin, Y.; Jiang, J.; Huo, K.; Hu, T.; Chu, P. K. ACS Nano 2009, 3 (10), 3228–3234. 

(46)  Liu, J.; Sun, Y.; Li, Z.; Li, S.; Zhao, J. Int. J. Hydrogen Energy 2011, 36 (10), 5811–

5816. 

(47)  Yang, Y.; Lee, K.; Kado, Y.; Schmuki, P. Electrochem. commun. 2012, 17, 56–59. 

(48)  Jiao, Z.; Chen, T.; Yu, H.; Wang, T.; Lu, G.; Bi, Y. J. Colloid Interface Sci. 2014, 419, 

95–101. 

(49)  Wu, Z.; Su, Y.; Yu, J.; Xiao, W.; Sun, L.; Lin, C. Int. J. Hydrogen Energy 2015, 40 

(31), 9704–9712. 

(50)  Wang, F.; Liu, Y.; Ma, Z.; Li, H.; Kang, Z.; Shen, M. New J. Chem. 2013, 37 (2), 290. 

(51)  Hertkorn, D.; Elsenheimer, H. C.; Bruch, R.; Paul, F.; Müller, C.; Hanemann, T.; 

Reinecke, H. J. Appl. Phys. 2013, 114 (2), 27020. 

(52)  Zhao, L.; Fang, L.; Dong, W.; Zheng, F.; Shen, M.; Wu, T. Appl. Phys. Lett. 2013, 102 

(12), 121905. 

Page 21 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.ijhydene.2011.01.117&coi=1%3ACAS%3A528%3ADC%252BC3MXltFers7w%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja030070g&coi=1%3ACAS%3A528%3ADC%252BD3sXlsVGhtLo%253D
http://pubs.acs.org/action/showLinks?crossref=10.1039%2FC2NJ40988G&coi=1%3ACAS%3A528%3ADC%252BC3sXhtV2ht7Y%253D
http://pubs.acs.org/action/showLinks?pmid=18338357&crossref=10.1002%2Fanie.200702505&coi=1%3ACAS%3A528%3ADC%252BD1cXltFegurg%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.elecom.2012.01.019&coi=1%3ACAS%3A528%3ADC%252BC38XksVertbo%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fnn9007675&coi=1%3ACAS%3A528%3ADC%252BD1MXhtV2mtbbO
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.4798829&coi=1%3ACAS%3A528%3ADC%252BC3sXks1OksLY%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fcm011030j&coi=1%3ACAS%3A528%3ADC%252BD3MXkvFGju7s%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.ijhydene.2015.06.036&coi=1%3ACAS%3A528%3ADC%252BC2MXhtVOku7bI
http://pubs.acs.org/action/showLinks?pmid=23396534&crossref=10.1039%2Fc3cs35377j&coi=1%3ACAS%3A528%3ADC%252BC3sXlvV2gur8%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fcg500374m&coi=1%3ACAS%3A528%3ADC%252BC2cXhtlynurjK
http://pubs.acs.org/action/showLinks?system=10.1021%2Fcg500374m&coi=1%3ACAS%3A528%3ADC%252BC2cXhtlynurjK
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.4811817&coi=1%3ACAS%3A528%3ADC%252BC3sXhtVyis77P
http://pubs.acs.org/action/showLinks?crossref=10.5012%2Fbkcs.2006.27.6.808&coi=1%3ACAS%3A528%3ADC%252BD28XntFWnt7g%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.jcis.2013.12.056&coi=1%3ACAS%3A528%3ADC%252BC2cXhs1KgtLg%253D


22 

 

(53)  Katayama, M.; Ishihara, T.; Matsumoto, Y.; Kubota, J.; Domen, K. In 218th 

Electrochemical Society Meeting; 2010. 

(54)  Willmott, P. R.; Huber, J. R. Rev. Mod. Phys. 2000, 72 (1), 315–328. 

(55)  Djurišić, A. B.; Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Ling, C. C.; Beling, C. D.; 

Fung, S.; Chan, W. K. In Nanoscale Phenomena: Basic Science to Device 

Applications; Springer Science & Business Media, 2007; pp 117–130. 

(56)  Jiao, Z.; Chen, T.; Xiong, J.; Wang, T.; Lu, G.; Ye, J.; Bi, Y. Sci. Rep. 2013, 3, 2720. 

(57)  Das, R.; Kumar, A.; Kumar, Y.; Sen, S.; Shirage, P. M. RSC Adv. 2015, 5 (74), 60365–

60372. 

(58)  Zhang, W.; Chen, A.; Bi, Z.; Jia, Q.; Macmanus-Driscoll, J. L.; Wang, H. Curr. Opin. 

Solid State Mater. Sci. 2014, 18 (1), 6–18. 

(59)  Sun, Y.; Liu, J.; Li, Z. J. Solid State Chem. 2011, 184 (8), 1924–1930. 

(60)  Krebs, H.; Weisheit, M.; Erik, S.; Scharf, T.; Fuhse, C.; St, M.; Sturm, K.; Seibt, M.; 

Kijewski, H.; Nelke, D.; Panchenko, E.; Buback, M. Adv. Solid State Phys. 2003, 43, 

505–518. 

(61)  Jin, K. X.; Li, Y. F.; Wang, Z. L.; Peng, H. Y.; Lin, W. N.; Kyaw,  a. K. K.; Jin, Y. L.; 

Jin, K. J.; Sun, X. W.; Soci, C.; Wu, T. AIP Adv. 2012, 2 (4), 0–9. 

(62)  Tan, H.; Zhao, Z.; Zhu, W.; Coker, E. N.; Li, B.; Zheng, M.; Yu, W.; Fan, H.; Sun, Z. 

ACS Appl. Mater. Interfaces 2014, 6 (21), 19184–19190. 

(63)  Liu, M.; Lyons, J. L.; Yan, D.; Hybertsen, M. S. Adv. Funct. Mater. 2015, n/a-n/a. 

(64)  Fu, Z.; Jiang, T.; Liu, Z.; Wang, D.; Wang, L.; Xie, T. Electrochim. Acta 2014, 129, 

358–363. 

Page 22 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showLinks?crossref=10.1007%2F978-3-540-44838-9_36&coi=1%3ACAS%3A528%3ADC%252BD3sXpvFOltbY%253D
http://pubs.acs.org/action/showLinks?crossref=10.1039%2FC5RA07135F&coi=1%3ACAS%3A528%3ADC%252BC2MXhtFajs7rL
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.electacta.2014.02.132&coi=1%3ACAS%3A528%3ADC%252BC2cXmslejt7s%253D
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FRevModPhys.72.315&coi=1%3ACAS%3A528%3ADC%252BD3cXhvVOnsL8%253D
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.4766279
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.jssc.2011.05.037&coi=1%3ACAS%3A528%3ADC%252BC3MXpt1CntLs%253D
http://pubs.acs.org/action/showLinks?pmid=24056587&crossref=10.1038%2Fsrep02720&coi=1%3ACAS%3A280%3ADC%252BC2c%252FgsVSmtw%253D%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.cossms.2013.07.007&coi=1%3ACAS%3A528%3ADC%252BC3sXhtlWktb%252FE
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.cossms.2013.07.007&coi=1%3ACAS%3A528%3ADC%252BC3sXhtlWktb%252FE
http://pubs.acs.org/action/showLinks?system=10.1021%2Fam5051907&coi=1%3ACAS%3A528%3ADC%252BC2cXhslCjtbfN


23 

 

(65)  Wang, C.; Chen, Z.; Jin, H.-B.; Cao, C.; Li, J.; Mi, Z. J. Mater. Chem. A 2014. 

(66)  Tamura, H.; Yoneyama, H.; Iwakura, C.; Sakamoto, H.; Murakami, S. J. Electroanal. 

Chem. Interfacial Electrochem. 1977, 80, 357–363. 

(67)  Kawasaki, S.; Takahashi, R.; Akagi, K.; Yoshinobu, J.; Komori, F.; Horiba, K.; 

Kumigashira, H.; Iwashina, K.; Kudo, A.; Lippmaa, M. J. Phys. Chem. C 2014, 118, 

20222–20228. 

(68)  Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X. Energy Environ. Sci. 2014, 2504–2517. 

(69)  Le Formal, F.; Tétreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.; Sivula, K. Chem. Sci. 

2011, 2 (4), 737. 

(70)  Le Formal, F.; Sivula, K.; Grätzel, M. J. Phys. Chem. C 2012, 116 (51), 26707–26720. 

(71)  Peter, L. M.; Li, J.; Peat, R. J. Electroanal. Chem. 1984, 165 (1–2), 29–40. 

(72)  Wolcott, A.; Smith, W. a; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small 2009, 5 (1), 

104–111. 

(73)  Mavroides, J. G.; Kafalas, J. a.; Kolesar, D. F. Appl. Phys. Lett. 1976, 28 (5), 241–243. 

(74)  Rajeshwar, K.; Singh, P.; DuBow, J. Electrochim. Acta 1978, 23 (11), 1117–1144. 

(75)  Yin, J.; Ye, J.; Zou, Z. Appl. Phys. Lett. 2004, 85 (4), 689–691. 

(76)  Kumar, A.; Dho, J. Curr. Appl. Phys. 2013, 13 (4), 768–774. 

(77)  Mochizuki, S.; Fujishiro, F.; Ishiwata, K.; Shibata, K. Phys. B Condens. Matter 2006, 

376–377 (1), 816–819. 

(78)  Gelderman, K.; Lee, L.; Donne, S. W. J. Chem. Educ. 2007, 84 (4), 685. 

(79)  Suzuki, S.; Yamamoto, T.; Suzuki, H.; Kawaguchi, K.; Takahashi, K.; Yoshisato, Y. J. 

Appl. Phys. 1997, 81 (10), 6830. 

Page 23 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.88723&coi=1%3ACAS%3A528%3ADyaE28Xks1GlsrY%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp308591k&coi=1%3ACAS%3A528%3ADC%252BC38XhsleqtLnO
http://pubs.acs.org/action/showLinks?crossref=10.1016%2F0013-4686%2878%2985064-6&coi=1%3ACAS%3A528%3ADyaE1MXhslWnsrc%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp5062573&coi=1%3ACAS%3A528%3ADC%252BC2cXhtleqtL3L
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.365242&coi=1%3ACAS%3A528%3ADyaK2sXjt1Wrs7s%253D
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.365242&coi=1%3ACAS%3A528%3ADyaK2sXjt1Wrs7s%253D
http://pubs.acs.org/action/showLinks?pmid=19040214&crossref=10.1002%2Fsmll.200800902&coi=1%3ACAS%3A528%3ADC%252BD1MXhslelsLs%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2Fj.cap.2012.12.001
http://pubs.acs.org/action/showLinks?crossref=10.1039%2Fc0sc00578a&coi=1%3ACAS%3A528%3ADC%252BC3MXjtFGlur8%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2FS0022-0728%2877%2980057-0&coi=1%3ACAS%3A528%3ADyaE2sXkvFals7o%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2FS0022-0728%2877%2980057-0&coi=1%3ACAS%3A528%3ADyaE2sXkvFals7o%253D
http://pubs.acs.org/action/showLinks?system=10.1021%2Fed084p685&coi=1%3ACAS%3A528%3ADC%252BD2sXjs1aqtLk%253D
http://pubs.acs.org/action/showLinks?crossref=10.1016%2FS0022-0728%2884%2980084-4&coi=1%3ACAS%3A528%3ADyaL2cXktlWku7c%253D
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.1775039&coi=1%3ACAS%3A528%3ADC%252BD2cXlvFersLo%253D
http://pubs.acs.org/action/showLinks?crossref=10.1039%2FC4EE00450G&coi=1%3ACAS%3A528%3ADC%252BC2cXht1CltL3M


24 

 

(80)  Matsumoto, Y.; Takata, S.; Tanaka, R.; Hachiya, A. J. Appl. Phys. 2011, 109 (1), 

14112. 

(81)  Nagasubramanian, G.; Wheeler, B. L.; Fan, F.-R. F.; Bard, A. J. J. Electrochem. Soc. 

1982, 129 (10), 2224. 

(82)  Abruña, H. D. J. Electrochem. Soc. 1982, 129 (10), 2224. 

(83)  Pyper, K. J.; Yourey, J. E.; Bartlett, B. M. J. Phys. Chem. C 2013, 117, 24726–24732. 

(84)  Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. ACS Nano 2012, 6 (6), 5060–5069. 

 

Page 24 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showLinks?crossref=10.1149%2F1.2123479&coi=1%3ACAS%3A528%3ADyaL3sXmtlyl
http://pubs.acs.org/action/showLinks?system=10.1021%2Fnn300679d&coi=1%3ACAS%3A528%3ADC%252BC38XnsVKksrc%253D
http://pubs.acs.org/action/showLinks?crossref=10.1149%2F1.2123479
http://pubs.acs.org/action/showLinks?system=10.1021%2Fjp408434v&coi=1%3ACAS%3A528%3ADC%252BC3sXhs1ygtrjO
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.3530612&coi=1%3ACAS%3A528%3ADC%252BC3MXjsFWktg%253D%253D


  

 

 

Very high surface area mesoporous thin films grown by pulsed laser deposition (PLD) for 
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