
... presentation to the DSpace Federation 2nd User Group Meeting, Cambridge, 7 July 2005, page i ...

NSpace Design Principles
(M. Simpson, 6/30/2005)

The only way to write complex software that won’t fall on its face is
to build it out of simple modules connected by well-defined
interfaces, so that most problems are local and you can have some
hope of fixing or optimizing a part without breaking the whole.

Abstraction controls overall complexity, by
encapsulating implementation details of
individual components behind well-defined
interfaces. It allows layering within the overall
design, which facilitates development by
promoting code reuse and minimizing what an
individual developer must learn in order to
contribute. By cleanly separating specification
from implementation, it protects related
components from individual implementation
changes.

Flexibility accommodates change and growth by
allowing individual implementors to customize
and enhance their instance through well-defined
mechanisms, and contribute those enhancements
back to the core design as they reach maturity, for
reuse and further development by other
implementors. It also promotes adoption by
allowing the definition of a simple set of core
functionalities with a minimum set of deployment
prerequisites.

Modularity allows a complex project to be
understood as a hierarchical assemblage of
simpler components. It promotes independence
between individual components, insulating them
from code changes in their neighbors, and
minimizing the component’s required knowledge
of its place in the system as a whole. It facilitates
granularity and simplicity of each component,
enhancing maintainablity.

Elegance enables simplicity of use and ease of
maintenance, which in turn enhance overall
reliability. An elegant design allows for simple,
clean enhancement and extension.

Eric S. Raymond, The Art of Unix Programming

Generalities Specifics

Use a small set of model types (Container,
Bitstream, Persistent Identifier) to represent data
within the system.

Use a small set of transaction objects (Container
Management, Bitstream Archiving, Persistent
Identifier) to represent operations to be performed
against the model.

Split the architecture into cleanly-divided layers
(frontend, backend; service, chain, support), to
handle logically separate parts of the transaction
cycle, and to allow development within a given
layer to become immediately useful to other layers
without reimplementation.

Define components in terms of required
functionality (Java interfaces) rather than specific
implementations (Java classes), so that
development on a specific component
implementation can occur without affecting other
components, and to allow implementors to
assemble components as needed to support local
requirements.

Use a transparent framework to allow simple
runtime configuration and management of
individual components, and determine which
components become part of a given instance.
Minimize how much a given component must
know about the framework to do its job.

An implementor wants something that is simple
to understand and powerful to use.

A developer wants something that is simple to
understand and easy to extend.

... presentation to the DSpace Federation 2nd User Group Meeting, Cambridge, 7 July 2005, page ii ...

NSpace Framework Technology Primer
(M. Simpson, 6/30/2005)

Representational State Transfer (REST):

Costello, Roger L. “Building Web Services the REST Way.” XFront website, 3 January 2003.
<http://www.xfront.com/REST-Web-Services.html>.

Fielding, Roy T. “Architectural Styles and the Design of Network-based Software Architectures.” Doctoral
dissertation, University of California, Irvine, 2000.
<http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm>.

Fielding, Roy T. and Richard N. Taylor. “Principled Design of the Modern Web Architecture”. ACM
Transactions on Internet Technology, Vol. 2, No. 2, May 2002.
<http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf>.

Baker, Mark, Jeff Bone, et al. RestWiki website.
<http://rest.blueoxen.net/cgi-bin/wiki.pl>.

Staged Event-Driven Architecture (SEDA):

Welsh, Matt. “SEDA: An Architecture for Highly Concurrent Server Applications”. Harvard Electrical
Engineering and Computer Science website, 22 July 2003.
<http://www.eecs.harvard.edu/~mdw/proj/seda/>.

Welsh, Matt. “An Architecture for Highly Concurrent, Well-Conditioned Internet Services”. Ph.D. Thesis,
University of California, Berkeley, August 2002.
<http://www.eecs.harvard.edu/~mdw/papers/mdw-phdthesis.pdf>.

Morissette, Jean, et al. JCyclone Project website.
<http://jcyclone.org/>.

Inversion of Control Design Pattern (IoC):

Fowler, Martin. “Inversion of Control Containers and the Dependency Injection Pattern”. Personal website, 23
January 2004.
<http://www.martinfowler.com/articles/injection.html>.

Spille, Mike. “Inversion of Control Containers”. Pyrasun 2.0 - The Spille Blog, 6 November 2004.
<http://www.pyrasun.com/mike/mt/archives/2004/11/06/15.46.14/>.

Hammant, Paul, et al. PicoContainer Project website.
<http://www.picocontainer.org/>.

Current Project Dependencies:

XML Support for REST: jdom 1.0 <http://www.jdom.org/>
HTTP Support for REST: commons-httpclient 3.0-rc2 <http://jakarta.apache.org/commons/httpclient/>
Required by HttpClient: commons-codec 1.3 <http://jakarta.apache.org/commons/codec/>
Required by HttpClient: commons-logging 1.0.4 <http://jakarta.apache.org/commons/logging/>

Lexer/Parser Generator: antlr 2.7.5 <http://www.antlr.org/>
IoC Framework: picocontainer 1.1 <http://www.picocontainer.org/>
SEDA Framework: seda 3.0 <http://www.eecs.harvard.edu/~mdw/proj/seda/>
RDBMS Services: derby 10.0.2.1 <http://incubator.apache.org/derby/>
Logging Infrastructure: log4j 1.2.8 <http://logging.apache.org/log4j/>

Global Unique Identifier Generation: jug 1.1.2 <http://jug.safehaus.org/>

NSpace Architectural Overview
(M. Simpson, 6/30/2005)

...
 p

re
se

nt
at

io
n

to
 th

e D
Sp

ac
e F

ed
er

at
io

n
2n

d
U

se
r G

ro
up

 M
ee

tin
g,

 C
am

br
id

ge
, 7

 Ju
ly

 2
00

5,
 p

ag
e i

ii
...

backend

invocation

frontend service

chain

support

subchain

support

support

support
chain

support

support

support

A frontend acts as a client to one
or more backends, creating
transaction objects and invoking
them against backend services.

Frontends can be written in any
language for which transaction
objects and invocations exist,
and may be local or remote in
relation to a given backend.

A backend acts as a server to any number
of frontends, maintaining mappings
between services and chains of supports
and controlling the flow of transaction
objects through the system.

An invocation represents a
particular style of
communication (consisting of a
transport protocol and a content
protocol) used to transmit a
transaction object between
frontend and backend.

A given backend may support
one or more invocation styles for
its services, allowing frontends
to communicate with it via
several different protocols.

A service receives transaction objects from
one or more frontends and delivers them
to the associated support chain for
processing.

Following processing, the service returns
the completed transaction object to the
frontend that originated the transaction.

A chain consists of one or more supports
configured to perform the processing for a
particular service. Transaction objects
pass through the chain, with each support
given an opportunity to perform work on
the transaction in turn.

Chains may be nested, allowing the
creation of subchains representing
processing steps common to several
different services.

A support module, or more simply, a
support, receives a transaction object,
performs work on that object, and returns
it for further processing by other supports
in the chain.

A transaction represents a single
discrete request addressed to a
particular service on a particular
backend, and the response to
that request. Each transaction
type is associated with a set of
commands that represents a
specific functionality within a
domain of related functions.

trx trx

trx

Points of Isolation in the NSpace Architecture
(M. Simpson, 6/30/2005)

backend

invocation

frontend service

invocation

trxtrx

The invocation isolation between frontend and backend
guarantees that client and server implementations are
independent. Given support in the invocation layer, frontends
may be written in arbitrary languages, and communicate
successfully via various protocols with multiple backends
without either client or server knowing implementation details
about their partner. Frontend and backend implementations
may evolve independently, because transaction objects and the
invocation layer decouple client and server, insulating each from
side effects of changes made to the opposing code.

The service isolation within the backend guarantees that a
service remains independent of implementation details within its
supports. A service delivers an uncompleted transaction object
to its associated chain, and expects a completed transaction
object in return, but is ignorant of the processing details that
were required to complete the transaction. Services also remain
isolated from each other, in that a given service implements a
discrete domain of functionality, independent of all other
services.

service

chain

support

support

support

trx

trx

support

support

support

The support isolation within a service chain guarantees that a
particular support module remains independent from the
implementation details of all other supports, and unaware of its
specific usage within the context of a particular backend’s
runtime environment. Supports can thus implement discrete
processing tasks at a highly granular level, if desired, and an
individual support implementation can evolve independently
from all other support implementations.

backend

(framework)

service

chain

support

support

support

service

chain

support

support

t

t

t

t

t

The framework isolation within the backend guarantees that
runtime configuration, transaction queuing, and adaptive load
balancing amongst the various backend components are all
handled transparently to both the implementor and the
developer. Framework development and tuning can occur
independently of service configuration and support
development, which are isolated from code changes made to the
framework layer.

...
 p

re
se

nt
at

io
n

to
 th

e D
Sp

ac
e F

ed
er

at
io

n
2n

d
U

se
r G

ro
up

 M
ee

tin
g,

 C
am

br
id

ge
, 7

 Ju
ly

 2
00

5,
 p

ag
e i

v
...

sma

frontend

Chain

invocation

A Simple But Complete NSpace Transaction
(M. Simpson, 6/30/2005)

...
 p

re
se

nt
at

io
n

to
 th

e D
Sp

ac
e F

ed
er

at
io

n
2n

d
U

se
r G

ro
up

 M
ee

tin
g,

 C
am

br
id

ge
, 7

 Ju
ly

 2
00

5,
 p

ag
e v

 ..
.

HTTP/REST
client

sr

trx
public final GUIDTransaction
 implements NSpaceTransaction { ... }

public final RestfulRequest
 implements NSpaceServiceRequest { ... }

RestfulReceiver
(EventHandlerIF)

TIDGenerator

RestfulSender
(EventHandlerIF)

RestfulTransactions

trx

trx

RestfulRequesttrx

HTTP/REST

HTTP/REST

rr.execute();

rt.registerTransaction(tid, req);

rt.unregisterTransaction(tid);

ServiceMapper
(EventHandlerIF)

tg.getTID();

SimpleSession

SimpleGuidSupplier

trx

SIDGenerator

trx

trx

sg.getSID();

sm.enqueue(trx);

rs.enqueue(trx);

c.enqueue(trx);

sm.enqueue(trx);

processTransaction(trx);

processTransaction(trx);

trxa

trx
public final GUIDTransaction
 implements NSpaceTransaction { ... }

public final NSpaceTransactionAdapter
 implements QueueElementIF { ... }

sm
public final SimpleGuidSupplier
 implements NSpaceSupportModule { ... }

public final NSpaceSupportModuleAdapter
 implements EventHandlerIF { ... }

support

Python
GUI

Distributed Interacting Repository Network
(M. Simpson, 6/30/2005)

...
 p

re
se

nt
at

io
n

to
 th

e D
Sp

ac
e F

ed
er

at
io

n
2n

d
U

se
r G

ro
up

 M
ee

tin
g,

 C
am

br
id

ge
, 7

 Ju
ly

 2
00

5,
 p

ag
e v

i .
..

Java
CLI t

backend

service support
support
support

service support
support

service support

backend

service support
support

service support

backend

service support
support
support

Oracle

LDAP

Postgres

XML

Local
AuthN

file
system

Z39.50

(internal)

J2EE
t

t

HTTP/REST

Web Services

Web Services

Web
Client HTTP/HTML

OAI
Hrv

t

t

OAI

HTTP/REST

t

OAIWeb Services

HTTP/REST

t

t
HTTP/REST

... presentation to the DSpace Federation 2nd User Group Meeting, Cambridge, 7 July 2005, page vii ...

NSpace Development Infrastructure
(M. Simpson, 6/30/2005)

This suggests that peer production will thrive where projects have three characteristics ... [T]hey
must be divisible into components, or modules, each of which can be produced independently of
the production of the others ... [T]he modules should be predominately fine-grained, or small in
size ... Heterogeneous granularity will allow people with different levels of motivation to
collaborate by making smaller- or larger-grained contributions, consistent with their levels of
motivation ... [F]inally, a successful peer production enterprise must have low-cost integration,
which includes both quality control over the modules and a mechanism for integrating the
contributions into the finished product.

Yochai Benkler, Coase’s Penguin, or, Linux and the Nature of the Firm

Generalities Specifics

Use Subversion as a source code repository and
version control system.
<http://subversion.tigris.org/>

Use Maven for project management and as an
automated build environment.
<http://maven.apache.org/>

Use Eclipse as a primary development
environment; use the Subversion and Maven
plugins for Eclipse to cleanly integrate version
control and project management tasks into the
development environment. Provide installation
and configuration documentation to help new
developers get started on the project.
<http://www.eclipse.org/>

Use JUnit for the unit and regression testing
framework; use the JUnit plugin for Maven to
automate nightly testing.
<http://www.junit.org/>

Create a “house style” code formatting guide, and
use Jalopy to format repository code into the
recommended styles; use the Jalopy plugin for
Maven to automate code reformatting.
<http://jalopy.sourceforge.net/>

Use Trac for integrated collaborative
documentation development, issue tracking, code
browsing, and project timeline and reporting; use
b2evolution for developer and project status
logging and commentary.
<http://www.edgewall.com/trac/>
<http://b2.evolution.net/>

Use RSS feeds for all of the above components to
tie together information flow and change
notification across the project as a whole.
<http://blogs.law.harvard.edu/tech/rss>

The project should use a central repository and
version control system for all source code. The
repository should support a proper client/server
model, have decent access control, and allow for
easy branching, merging, and tagging.

The project should use a consistent, centralized,
project-level build manager to provide a uniform
build and testing environment.

The use of at least one popular, widely available
integrated development environment should be
extensively documented.

Unit and regression testing should be used to
formalize project requirements, ensure code
quality, and provide automated real-time
reporting on current code status.

A consistent coding style should be used for all
core code. An automated code formatter should
be used to enforce this style without placing
undue extra workload on individual developers.

There should be several centralized project
communication channels (mailing list, wiki, blog,
issue tracking, code browsing, project
documentation, etc.) to allow efficient and
appropriate information flow. These
communication channels should be able to be
integrated at a high level for individualized
monitoring.

Infrastructure components should already have or
support the development of plugins to facilitate
cross-component integration.

... presentation to the DSpace Federation 2nd User Group Meeting, Cambridge, 7 July 2005, page viii ...

... presentation to the DSpace Federation 2nd User Group Meeting, Cambridge, 7 July 2005, page ix ...

Developer Jumpstart Guide
(M. Simpson, 6/30/2005)

The general outline of the steps necessary to begin developing the NSpace prototype is as follows:

(1) Install prerequisite applications.

NSpace development requires that a number of supporting applications be installed and functioning properly
on your development workstation. The current recommended development platform is:

 JDK 1.4.2, Subversion 1.1.4, Maven 1.0.2, Eclipse 3.0.2

You will also need the following Eclipse plugins:

 JavaSVN Library 0.8.8.1 (MacOS X only), JavaSVN Subclipse Extension 0.8.8.1 (MacOS X only)
 Maven 1.0.2 (optional), Mevenide 0.3.1
 Subclipse 0.9.30, Version Control with Subversion 1.1.1 (optional)

To obtain the above, once Eclipse is installed, use the “Software Updates” functionality to add these update
sites:

 http://tmate.org/svn/
 http://subclipse.tigris.org/update
 http://mevenide.codehaus.org/release/eclipse/update/3.0/

You should then be able to easily obtain the latest versions of all of the above Eclipse plugins.

(2) Check out or export the Subversion archive.

Use the command line interface to Subversion to either check out or export a copy of the NSpace codebase. If
you are not planning on contributing code back to the project, export the latest tagged version:

 $ svn export --username <name> svn://murmur.doit.wisc.edu/ats/lira/npace/tags/v.0.2.0 nspace

If you are planning on contributing to the development efforts, checkout the latest HEAD from the trunk of the
project:

 $ svn checkout --username <name> svn://murmur.doit.wisc.edu/ats/lira/nspace/trunk nspace

(3) Use Maven to generate Eclipse configuration files.

Change into the top-level directory of the source code, and use Maven’s Eclipse plugin to generate Eclipse
project configuration files for each of the NSpace subprojects:

 $ cd nspace
 $ maven -Dgoal=eclipse multiproject:goal

This will also download and cache all of the JAR dependencies for NSpace in your local Maven repository
cache.

(4) Import NSpace subprojects into Eclipse.

Start Eclipse and go to the workbench. In the “Navigator” pane, right-click and choose “Import...”, then
“Existing Project into Workspace”, then browse to the “core” directory underneath the top-level “nspace”
directory of your Subversion export or checkout. Click the “Finish” button to import the Maven subproject
into an Eclipse project. Do the same for the two remaining subprojects (“contrib”, “local”).

IMPORTANT NOTE: Make sure you DON’T import the top-level directory: you want to IMPORT EACH
MAVEN SUBPROJECT SEPARATELY as Eclipse projects. This is the recommended way to keep Eclipse,
Maven, Subversion, and all of the Eclipse plugins playing together happily.

... presentation to the DSpace Federation 2nd User Group Meeting, Cambridge, 7 July 2005, page x ...

Developer Jumpstart Guide, cont.
(M. Simpson, 6/30/2005)

After you have imported the projects, if you are going to be doing development (i.e. if you used “svn checkout”
to get your working copy) you need to have Eclipse recognize the files as versioned checkouts: in the
“Navigator” pane, right-click on the “core” project, pick “Team”, “Share Project...”, “SVN” as the repository
type, and click “Next” to let Eclipse automatically discover and interpret the “.svn” control files. Then click
“Finish”, and enter your Subversion username and password if prompted. Repeat these steps for the “contrib”
and “local” Eclipse projects.

(5) Tour the code.

I recommend you start with the documents in these subdirectories:

 core/src/site/sdocbook
 core/src/site/xdoc

As you read through them, take the time to look through the referenced classes in the appropriate packages.

It is probably also useful to print out the diagrams here:

 core/src/site/diagrams

and use them for reference while reading the other documentation.

(6) Begin developing.

I recommend you follow this daily routine while developing:

(a) Before you begin working, update your working copy with the latest changes, by changing to the top-level
checkout directory (“nspace”, if you followed the steps above), and doing “svn update” in the command-line
client.

(b) (optional) Occasionally, if new dependencies have been added to the project by yourself or other
developers, you may need to regenerate the Eclipse project files to add them to the compilation classpath, by
changing to the top-level checkout directory and doing “maven -Dgoal=eclipse multiproject:goal”.

(c) As you work, do frequent commits to the archive from inside Eclipse (from the “Navigator” pane, right-click
on a file or tree, and pick “Team”, “Commit”.

(d) When you’re finished for the day, after you’ve shut down Eclipse, do a final commit from the top-level
“nspace” directory, using the command-line client (“svn commit”).

Note: this guide was created from the content of the “DEVELOPERS”
document at the top level of the NSpace project heirarchy in the main
source code repository on 30 June 2005. If you are reading this in hardcopy,
it is absolutely certain that it is out of date, and many of the specifics (site
names, path names, etc.) may have drifted in the intervening time. Contact
Mike Simpson <mike.simpson@doit.wisc.edu> for the most current
information on getting started with NSpace development. Thank you for
your interest.

