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ABSTRACT The condition of masonry arch bridges is predominantly monitored with manual visual inspection. This process has been found 
to be subjective, relying on an inspection engineer’s interpretation of the condition of the structure. This paper initially presents a workflow 
that has been developed that can be used by a future automated bridge monitoring system to determine underlying faults in a bridge and suggest 
appropriate remedial action based on a set of detectable symptoms. This workflow has been used to identify the main classes of defects that an 
automated visual detection system for masonry should be capable of detecting.  

Subsequently, a convolutional neural network is used to classify these identified defect classes from images of masonry. As the mortar joints 
in the masonry are more distinctive than the defects being sought, their effect on the performance of an automated defect classifier is 
investigated. Compared to classifying all the regions of the masonry with a single classifier, it is found that where the mortar and brick regions 
have been classified separately, defect and defect free areas of the masonry have been predicted both with more confidence and with better 
accuracy. 
 

1. Introduction 

Currently the condition of masonry arch bridges is 
predominantly determined through manual visual inspections. 
This involves a detailed inspection conducted from touching 
distance of the structure, which is conducted at intervals of 
between two and twelve years, depending on the country. 
Detailed inspections are supplemented by superficial 
inspections which are conducted from ground level at intervals 
of between a half and one year (Helmerich et al., 2007). The 
manual visual inspection process is known to be subjective, as 
it is heavily dependent on the expertise and competence of the 
inspector. Laefer et al. (2010) assessed the reliability of the 
visual inspection process for detecting cracks in buildings by 
comparing the defects identified by two different inspectors. 
They found that there was a 14% difference in which cracks 
were detected by the inspectors, and that on average only 31% 
of cracks were identified. Furthermore, Phares et al. (2004) 
have performed a study which has demonstrated the variability 
of manual bridge inspections. Here 49 different bridge 
inspectors assigned a condition rating on a ten-point scale 
ranging from a failed condition to an excellent condition for 
seven different highway bridges. They have found that the 
different inspectors had on average assigned each element of 
the bridges between four and five different condition ratings 
out of the possible ten, showing that there is a large variation 
in the determined condition of the bridges between the 
different inspectors. From this study, they have also predicted 
that 78% of the average condition ratings assigned to bridges 
are incorrect at a 95% confidence interval. Automating defect 
detection and consequently the visual inspection process 

therefore has the potential to both increase the frequency and 
reduce the subjectivity of inspections. 

The increasing capability and ease of geometric and 
photographic data acquisition presents an opportunity to create 
a digital visual model of bridges. However, this dataset alone 
has limited use unless it is augmented with information about 
defects on the structure and therefore the structural condition. 
Digital Imaging for Condition Asset Monitoring (DIFCAM) 
was a project in the UK looking to develop a capability for 
tunnel inspection to both capture and augment data with defect 
information. They created a road rail vehicle carrying an array 
of photographic sensors and a laser scanning sensor for data 
acquisition, as well as inertial and GPS sensors for position 
referencing. Digital Image Correlation was used to detect 
changes in the image and geometry data of the tunnel linings 
from one recording to the next. These changes represent 
defects that have developed in the structure between recordings 
(McCormick et al., 2014). This process is therefore unable to 
detect pre-existing defects, just changes in the structure from 
one recording to the next. Additionally, for the complex 
geometries of bridges, where lighting can’t easily be 
controlled, it would be much harder to align the data taken 
between the two recordings to identify the changes. 

Traditional approaches for directly detecting defects have 
relied on the assumption that defects will generally have a 
different intensity from the surrounding pixels. They have 
therefore looked to detect hand crafted features, such as sharp 
changes in pixel intensity or thresholding pixel intensity in 
order to detect defects.  
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More recent approaches have used machine learning to classify 
defects. These approaches can learn from diverse examples of 
defects, making them more robust. Samy et al. (2016) used a 
machine learning approach to detect defects in three 
dimensional images of masonry. They used a Support Vector 
Machine (SVM) to classify masonry images into different 
defect classes based on features extracted from them. The 
masonry images used were taken of a laboratory condition 
uniform brick wall with manually created defects. The image 
noise is therefore significantly less than in the case of a 
timeworn masonry arch bridge. 

Deep learning approaches have the advantage over classical 
machine learning approaches in that they do not rely on 
handcrafted features for devising decision boundaries. 
Convolutional Neural Networks (CNNs) in particular have 
demonstrated state of the art performance for image 
classification tasks (Krizhevsky et al., 2012), and as a result 
they are the most popular network architecture for this purpose. 
Zhang et al. (2016) have compared the performance of a CNN 
to a SVM and a boosting method for detecting the presence of 
cracks in images of asphalt and have found the CNN to be 
superior with an F1 score of 89.65%, 15% better than the other 
methods tested. Similarly Cha et al. (2017) have used a CNN 
to detect the presence of cracking in images of concrete with 
an accuracy of 98%. Chaiyasarn et al. (2018) have applied a 
CNN to images of masonry to detect cracking in image 
patches. They have achieved an accuracy of 74.9% but suggest 
that in some cases the system confuses the mortar joints with 
cracks. 

Much of the focus of existing literature for defect detection has 
been on concrete and road surfaces. These experience many of 
the same defect classes as masonry, so there is potential for 
similar techniques to be applied to masonry as developed for 
concrete and road surfaces. However, Koch et al. (2015) 
reviewed different defect detection methodologies and 
concluded that the performance of defect detection algorithms 
with noisy data is questionable. Masonry images are inherently 
significantly noisier than concrete or road surface images due 
to the mortar joints between the individual masonry units. 
These mortar joints are often the most distinctive feature of 
masonry images, more so than the defects being sought. This 
is demonstrated by McRobbie (2009), who has attempted to 
apply a technique developed for concrete image surfaces to 
masonry image surfaces. He uses the Haar transform and image 
entropy to classify regions of images into those containing 
defects and those not. Whereas reasonable success was shown 
for concrete surfaces, with masonry surfaces the bricks and 
mortar have completely swamped any detected features. 

This paper therefore investigates the effect of mortar joints on 
the performance of automated defect detection in masonry by 
comparing the detection accuracy where the mortar joints have 
been separated from the masonry images and tested for defects 
separately to that with no mortar joint separation. This 
comparison therefore determines the benefit of applying a two-
stage methodology for detecting defects in masonry; first 
detecting and segmenting mortar joints, and then detecting 

defects. The classification is made using a state-of-the-art CNN 
classifier to detect defects in the presented images, therefore 
determining the applicability for similar techniques to those 
developed for concrete and asphalt road surfaces to be used on 
masonry. This is investigated for the detection of the different 
defect classes that are the most important to detect to determine 
the serviceability of masonry arch bridges. 

2. Method  

2.1 Defect classes and problem identification 
Information from the CIRIA documentation for assessing the 
condition of masonry arch bridges (McKibbins et al., 2006) 
and Network Rail standards for the examination of structures 
(Network Rail, 2017) has been linked to determine the severity 
and cause of the different defects that are visible on masonry 
arch bridges. The summary of this is shown in Figure 1, in 
which the different defects that are visible on the structure are 
described under symptoms, and these are linked to their root 
causes – the underlying problem that is causing the visible 
defect. The different repair strategies that are available both for 
correcting the identified underlying problems with the bridge 
and for repairing the visible defects on the bridge are then 
identified. In this way the visible defect on the bridge is linked 
to both its underlying problem and its solution. A future 
automated asset management tool for masonry arch bridges 
could therefore use the information in Figure 1 to determine 
the underlying problem in a bridge, and its required remedial 
treatment based on the detected defects. 

The main classes of visible defects are; distortions in the shape 
of the bridge, irregularities in the mortar joints, cracking, 
spalling and other delamination of brickwork, missing or 
displaced masonry, mortar loss, vegetation, wetness, and 
surface deposits. Distortions in the shape of the bridge would 
be more accurately detected through examining the geometry 
by laser scanning than by visually examining the surface, and 
therefore this defect class has not been considered. The same 
is also true for missing masonry, though this visually resembles 
mortar loss or brickwork delamination, depending on the 
extent of missing masonry. As a result, this paper focuses on 
the visual detection of; cracking, spalling, mortar loss, and 
vegetation in images of masonry surfaces. 

2.2 Dataset generation 
A dataset of bridge images has been generated by closely 
photographing nine multi span masonry arch bridges near 
Cambridge. These bridges show widely differing masonry 
condition and appearance. This has generated approximately 
24,500 images of masonry. From this dataset, 94 images have 
been chosen based on their depiction of defects. These images 
have had perspective distortion corrected, so that the masonry 
in the image is parallel to the image plane, generating image 
textures of the masonry surface. Since it is envisioned that 
defect detection will be performed on image textured three 
dimensional models of masonry arch bridges as part of an 
automated bridge inspection process, image textures of 
masonry surfaces are the expected input of a defect detection 

 

 
 
 

algorithm. The image textures have also been resized to ensure 
a constant resolution in all the images. This resolution has been 
determined by standardising the average number of pixels for 
a brick course in each image. The standardised resolution used 
is 155 pixels per brick course, determined by the lowest 
resolution image in the dataset. 

The image textures have been annotated with the different 
defect classes. This has been done by manually annotating the 
pixels in the images where a defect is present. An example of 
this for one of the annotated images is shown in Figure 2. The 
pixels containing mortar joints have also been annotated in 
order to use this dataset to determine the effect of mortar joints 
on defect detection performance.  

Figure 1 Masonry arch bridge defect classes, with the underlying problems and potential solutions 
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Figure 2 Image annotations for recording defect 
locations showing; a) original image, b) mortar joints, c) 
crack locations, d) spalling locations, e) mortar loss 
locations, f) vegetation locations 

 

2.3 Image Window Classification 
The generated images have been segmented into smaller image 
patches, each 100 pixels in size, using a sliding window 
technique. The 100-pixel image size ensures that some image 
windows contain purely brick regions, while others contain a 
mixture of brick and mortar regions, as the height of each brick 
course in the images is 155 pixels. Each image window is 
assigned a class based on the annotations of the pixels it 
contains. Example image window patches for the different 
defect classes are shown in Figure 3. 

The generated image windows are used to train a classifier to 
learn the different defect classes. The classifier used is a CNN 
which has been shown to perform well for classification tasks. 
The structure of CNNs have been inspired by the visual cortex, 
with the convolution layers of the model acting as feature 
extractors, simplifying the pixels of the input image into 
features which are then used to classify the image (Wang and 
Raj, 2017). The GoogleNet Inception v3 architecture (Szegedy 
et al., 2016) is used as it is one of the best performing models 
against the ImageNet classification benchmark. Only much 
more computationally expensive models have achieved 
slightly better performance (Canziani et al., 2017). This 
publicly available model has been pre-trained using the 1000 
classes and 1.4 million images of the ImageNet dataset. 
Transfer learning is used on this pre-trained dataset as it means 
that a much smaller dataset can be used for training than would 
be necessary for training from scratch. Transfer learning fine 
tunes the pre-trained parameters based on the new classes and 
dataset. In this way much of the learning from the pre-training 
of the model can be applied to the new task of identifying 

defects in masonry images. For training, 7000 image window 
patches for each defect class have been used.  

Figure 3 Example image window patches for different 
defect classes 

 

Figure 4 Different defect detection strategies used: a) no 
mortar/brick separation, b) mortar and brick defects labelled as 
separate categories, c) mortar regions and brick regions 
processed separately and merged after classification 

 

2.4 Defect detection strategies 
In order to determine the effect of mortar joints on defect 
detection accuracy, three different classification 
methodologies have been tested. These methodologies are 
summarised in Figure 4. The first strategy, shown in Figure 
4(a), doesn’t use any mortar joint information at all. Here only 

 

 
 
 

the five different classes of defect are trained, with image 
window patches showing both mortar regions and brick regions 
being trained as the same relevant defect class. The second 
strategy is shown in Figure 4(b). Here separate defect classes 
are defined for mortar and brick regions, so that there are two 
defect classes for each defect type, one for the defect occurring 
in mortar and one for the defect occurring in brick. The final 
strategy, shown in Figure 4(c), completely separates the mortar 
and brick regions and uses a separate classifier for each. The 
two sets of classified images are then merged so that the image 
windows being classified are the same for all three detection 
methodologies. 

For all three defect classification methodologies, only the 
image window patches that show fully brick regions or are 
centred on mortar regions are examined. Therefore, those 
image window patches that partly contain both brick and 
mortar regions are removed. As there is an overlap between 
image window patches, the whole of the masonry surface is 
still included in at least one examined patch. This step has been 

taken in order to ensure consistency of the data being examined 
by the three classification methodologies. 

3. Results 

The 94 annotated images have all been processed by the 
described methodology and their image window patches have 
been classified using the three classification strategies. For 
every image patch. the classifier assigns the probability that it 
belongs to each class of defect. This is then compared against 
ground truth data in order to determine the accuracy of 
classification for the three different classification strategies. 

Figure 5 shows an example of the predicted output for the three 
different classification strategies, taken from one of the test 
images. To produce these plots, each image window has been 
assigned a shade based on the confidence that there are no 
defects, i.e. that it is a classified as a clean image window. The 
shaded image windows are plotted onto the test image at the 
centre point of the image window patch. It is therefore possible 

Figure 5 Example output showing confidence of clean classification for different strategies: a) no mortar/brick 
separation, b) mortar and brick defects labelled as separate categories, c) mortar and brick regions processed 
separately and merged after classification, d) ground truth 
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to visualise the regions of the test image that the image window 
patches refer to. The performance of the different classification 
strategies can be visualised by comparing Figure 5 (a - c) to 
Figure 5(d), the ground truth data. The ground truth data shows 
that there is a defect that runs down the length of the masonry 
image about in the centre. This is shown in all three of the 
outputs from the classifiers as a lighter area, meaning they have 
predicted a lower probability that the image windows are clean 
in this area. Contrasting Figure 5 (a - c), it is apparent that there 
is a larger contrast between the clean areas and the defect areas 
for the classification strategy where the mortar and brick 
regions are processed separately and then merged, than for the 
other two strategies. This is caused by a greater degree of 
confidence in the clean image windows being clean for this 
detection strategy. Additionally, for all three defect 
classification outputs, the brick areas are generally shaded 
darker than the mortar areas, meaning that they are predicted 
as more likely to be clean. This suggests that all three 
classification strategies are confusing the mortar areas with a 
class of defect.  

This degree of confidence in predicting the correct category is 
measured by the Brier score. The Brier score measures the 
mean squared error between the predicted probability and the 
ground truth, for each defect class assigned in each image 
window. Its formulation for multi-category scoring is shown in 
Equation (1), where 𝑝𝑝𝑖𝑖𝑖𝑖  is the predicted probability and 𝑜𝑜𝑖𝑖𝑖𝑖 is 
the ground truth probability, for image window 𝑖𝑖 and class 𝑐𝑐. 
Here the total number of image windows and total number of 
classes are 𝑁𝑁 and 𝑅𝑅 respectively. For each image window, the 
ground truth probability for a defect class is assigned as one 
where the image window contains that class and zero where it 
does not.  

𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 𝑠𝑠𝑐𝑐𝑜𝑜𝐵𝐵𝐵𝐵 = 1
𝑁𝑁 ∑ ∑(𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑜𝑜𝑖𝑖𝑖𝑖)2

𝑅𝑅

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
 (1) 

The Brier score, in this formulation takes values of between 
two as the worst score achievable and zero as the best score 
achievable. Figure 6 shows the Brier score that has been 
calculated for the three different defect classification strategies. 
Here, a slightly better Brier score is achieved by strategy c, 
(where the mortar regions and brick regions have been 
classified separately and merged after classification), then has 
been achieved by the other two strategies. Additionally, the 
distribution peak is higher, particularly for strategy b (where 
defects in mortar and brick regions have been labelled as 
separate classes), but also for strategy c, when compared to 
strategy a (where there is no mortar/brick separation). The 
higher peak is caused by a lower variance in the Brier score 
between the different images of bridges examined. This 
suggests that those classification strategies that incorporate 
mortar joint information (strategies b and c) are more 
consistent in performance, suggesting they cope better where 
the masonry images are noisier. 

Figure 6 Brier score for different classification 
strategies 

 

Additionally, the performance of the three different 
classification strategies for correctly classifying the clean 
image window patches has been measured. Here, the predicted 
class for each image window is set as the class for which the 
predicted probability is the highest. Precision and Recall are 
measures of the performance of a binary classification. 
Precision (Equation 2) measures the proportion of the predicted 
instances of a class that are correctly predicted and recall 
(Equation 3) measures the proportion of the instances of a class 
that have been predicted. The F1 score combines precision and 
recall as a measure of a classification’s accuracy. It is 
computed as the harmonic mean of precision and recall 
(Equation 4). It takes values between zero at its worst and one 
at its best. 

𝑃𝑃𝐵𝐵𝐵𝐵𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑃𝑃 = 𝑡𝑡𝑝𝑝
𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝 (2) 

𝑅𝑅𝐵𝐵𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑡𝑡𝑝𝑝
𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑃𝑃 (3) 
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𝐹𝐹1 𝑠𝑠𝑐𝑐𝑜𝑜𝐵𝐵𝐵𝐵 = 2 × 𝑝𝑝𝐵𝐵𝐵𝐵𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑃𝑃 × 𝐵𝐵𝐵𝐵𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝𝐵𝐵𝐵𝐵𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑃𝑃 + 𝐵𝐵𝐵𝐵𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

Figure 7 shows the F1 score that has been computed for each of 
the three classification strategies for classifying clean image 
regions across all 94 test images. This suggests that strategy c 
(where mortar and brick regions have been classified 
separately) has a better performance than the other two defect 
classification strategies. As was the case for the Brier score, the 
results here also suggest that strategy a (where there is no 

 

 
 
 

mortar/brick separation) is less consistent in its performance, 
due to the shorter and wider normal distribution profile. 

Figure 7 F1 score for different classification strategies 
for classifying clean image windows 

 

4. Conclusions 

This paper has initially reviewed the effect of the different 
types of observable defects on the structural condition of 
masonry arch bridges. This has been used to propose a 
workflow that can be used by a future automated bridge 
monitoring system to determine faults in a bridge and suggest 
appropriate remedial action based on a set of detectable 
symptoms. By using the proposed workflow, the main classes 
of defects in masonry that an automated visual detection 
system for masonry should be capable of detecting have been 
identified and have been used for the training of a CNN. 

Three different defect detection strategies for separating the 
mortar and brick regions of masonry during classification have 
been used to determine the effect of the mortar joints on the 
performance of defect classification in masonry. Results 
suggest that separating the mortar and brick regions prior to 
classification causes an improvement in the confidence with 
which a classifier predicts masonry areas are clean. This leads 
to improvements in the Brier score and F1 score for the 
classification. Additionally, less variation in the classification 
performance between different masonry images is found where 
the mortar and brick regions have been separated prior to 
classification, suggesting that this prior segmentation leads to 
the classifier performing better with noisier masonry images. 
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to visualise the regions of the test image that the image window 
patches refer to. The performance of the different classification 
strategies can be visualised by comparing Figure 5 (a - c) to 
Figure 5(d), the ground truth data. The ground truth data shows 
that there is a defect that runs down the length of the masonry 
image about in the centre. This is shown in all three of the 
outputs from the classifiers as a lighter area, meaning they have 
predicted a lower probability that the image windows are clean 
in this area. Contrasting Figure 5 (a - c), it is apparent that there 
is a larger contrast between the clean areas and the defect areas 
for the classification strategy where the mortar and brick 
regions are processed separately and then merged, than for the 
other two strategies. This is caused by a greater degree of 
confidence in the clean image windows being clean for this 
detection strategy. Additionally, for all three defect 
classification outputs, the brick areas are generally shaded 
darker than the mortar areas, meaning that they are predicted 
as more likely to be clean. This suggests that all three 
classification strategies are confusing the mortar areas with a 
class of defect.  

This degree of confidence in predicting the correct category is 
measured by the Brier score. The Brier score measures the 
mean squared error between the predicted probability and the 
ground truth, for each defect class assigned in each image 
window. Its formulation for multi-category scoring is shown in 
Equation (1), where 𝑝𝑝𝑖𝑖𝑖𝑖  is the predicted probability and 𝑜𝑜𝑖𝑖𝑖𝑖 is 
the ground truth probability, for image window 𝑖𝑖 and class 𝑐𝑐. 
Here the total number of image windows and total number of 
classes are 𝑁𝑁 and 𝑅𝑅 respectively. For each image window, the 
ground truth probability for a defect class is assigned as one 
where the image window contains that class and zero where it 
does not.  

𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 𝑠𝑠𝑐𝑐𝑜𝑜𝐵𝐵𝐵𝐵 = 1
𝑁𝑁 ∑ ∑(𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑜𝑜𝑖𝑖𝑖𝑖)2

𝑅𝑅

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
 (1) 

The Brier score, in this formulation takes values of between 
two as the worst score achievable and zero as the best score 
achievable. Figure 6 shows the Brier score that has been 
calculated for the three different defect classification strategies. 
Here, a slightly better Brier score is achieved by strategy c, 
(where the mortar regions and brick regions have been 
classified separately and merged after classification), then has 
been achieved by the other two strategies. Additionally, the 
distribution peak is higher, particularly for strategy b (where 
defects in mortar and brick regions have been labelled as 
separate classes), but also for strategy c, when compared to 
strategy a (where there is no mortar/brick separation). The 
higher peak is caused by a lower variance in the Brier score 
between the different images of bridges examined. This 
suggests that those classification strategies that incorporate 
mortar joint information (strategies b and c) are more 
consistent in performance, suggesting they cope better where 
the masonry images are noisier. 

Figure 6 Brier score for different classification 
strategies 

 

Additionally, the performance of the three different 
classification strategies for correctly classifying the clean 
image window patches has been measured. Here, the predicted 
class for each image window is set as the class for which the 
predicted probability is the highest. Precision and Recall are 
measures of the performance of a binary classification. 
Precision (Equation 2) measures the proportion of the predicted 
instances of a class that are correctly predicted and recall 
(Equation 3) measures the proportion of the instances of a class 
that have been predicted. The F1 score combines precision and 
recall as a measure of a classification’s accuracy. It is 
computed as the harmonic mean of precision and recall 
(Equation 4). It takes values between zero at its worst and one 
at its best. 

𝑃𝑃𝐵𝐵𝐵𝐵𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑃𝑃 = 𝑡𝑡𝑝𝑝
𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝 (2) 

𝑅𝑅𝐵𝐵𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑡𝑡𝑝𝑝
𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑃𝑃 (3) 
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𝐹𝐹1 𝑠𝑠𝑐𝑐𝑜𝑜𝐵𝐵𝐵𝐵 = 2 × 𝑝𝑝𝐵𝐵𝐵𝐵𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑃𝑃 × 𝐵𝐵𝐵𝐵𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝𝐵𝐵𝐵𝐵𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑃𝑃 + 𝐵𝐵𝐵𝐵𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

Figure 7 shows the F1 score that has been computed for each of 
the three classification strategies for classifying clean image 
regions across all 94 test images. This suggests that strategy c 
(where mortar and brick regions have been classified 
separately) has a better performance than the other two defect 
classification strategies. As was the case for the Brier score, the 
results here also suggest that strategy a (where there is no 

 

 
 
 

mortar/brick separation) is less consistent in its performance, 
due to the shorter and wider normal distribution profile. 

Figure 7 F1 score for different classification strategies 
for classifying clean image windows 

 

4. Conclusions 

This paper has initially reviewed the effect of the different 
types of observable defects on the structural condition of 
masonry arch bridges. This has been used to propose a 
workflow that can be used by a future automated bridge 
monitoring system to determine faults in a bridge and suggest 
appropriate remedial action based on a set of detectable 
symptoms. By using the proposed workflow, the main classes 
of defects in masonry that an automated visual detection 
system for masonry should be capable of detecting have been 
identified and have been used for the training of a CNN. 

Three different defect detection strategies for separating the 
mortar and brick regions of masonry during classification have 
been used to determine the effect of the mortar joints on the 
performance of defect classification in masonry. Results 
suggest that separating the mortar and brick regions prior to 
classification causes an improvement in the confidence with 
which a classifier predicts masonry areas are clean. This leads 
to improvements in the Brier score and F1 score for the 
classification. Additionally, less variation in the classification 
performance between different masonry images is found where 
the mortar and brick regions have been separated prior to 
classification, suggesting that this prior segmentation leads to 
the classifier performing better with noisier masonry images. 
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