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By Mark Warner, FRS 

 

Sam Edwards was one of the leading physicists of the second half of the 20th 

Century.  He was Cavendish Professor in the University of Cambridge, a Vice 

President of the Royal Society, a member of the Academy des Sciences and of the US 

National Academy, and a senior figure in the University and his College. He played a 

major role in public life, most notably as chairman of the Science Research Council, 

responsible for research funding in the UK.   He was chairman of the British 

Association, chief government scientist to the Department of Energy, and Chairman 

of the Defence Scientific Advisory Council.  He was equally in demand to lead or to 

help set up bodies abroad, particularly for the Max Planck Institute for Polymers in 

Mainz, Germany. Remarkably, Sam made some of his most celebrated scientific 

discoveries, for instance the theory of spin glasses and the rheology of high polymer 

melts, while serving as the full-time head of the SRC.  Conversely, his scientific 

insights informed his leadership in advising the Government.  His later science was in 

highly applicable areas; he was an active advisor to Unilever, Dow, Lucas, and many 

other companies that rely on research.  

 

Wales, Cambridge and the USA 

‘I was born in Swansea on 1st February 1928.  I was an only child but there was a large extended 

working class family.  Soon after my birth, my father who had found a permanent job reading 

electric meters, bought a house in the suburb of Manselton where I was brought up.  He lived 

there for the rest of his life.  There was no scientific history in the family but there was artistic 

talent on my mother’s side . . .  This talent has re-emerged periodically in the family but not in 

me.’ 

 

So begin Sam’s private reflections on his own life.1 It is the precise and laconic style that all 

who knew him vividly remember.  Sam was a Welshman – something that was immediately 

obvious.   He goes on: 

                                                             
1 I am fortunate to have had access to these recollections to guide parts of this Memoir (Edwards, 2005).  At 
many points we hear Sam’s own candid assessments and judgements.  Private discussions and recollections 
over the years 1972-2015 that I knew Sam are referred to as ‘private communications’ (Edwards, 1972-2015). 
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‘I did well at the local schools and proceeded to Swansea Grammar School in 1939.  There were 

several grammar schools in Swansea but ‘the’ Grammar School was highly selective and its entry 

was again divided, so I found myself in a class of the top 30 boys from a town of 180,000 people, 

and we were taught very intensively.  It was a school dominated by science and mathematics; 

moreover, the maths we were taught always was close to useful applications with none of the 

intrusions such as set theory, which no doubt are useful to pure mathematicians, but have no 

value to scientists.  I remember the great pleasure I found when we were introduced to Cartesian 

Geometry which gave me an unambiguous route to solve problems, and resolved the distaste I 

had for Euclidean methods which always seemed based on tricks.  I was quite competent at the 

tricks, but Descartes offered a bulldozer and I became a lifelong adherent of the Cartesian style.’ 

(Edwards, 2005) 

Already we recognise Sam’s interest in the applicability of theoretical physics as stemming 

from the values he encountered at secondary school.  The fields he founded, or made 

seminal contributions to, became of ever increasing applicability. In particular, his 

discoveries in polymer rheology underpin the huge plastics industry. Equally, his use of 

powerful and systematic methods to solve problems evidently went back to the childhood 

revelation that Euclidean tricks could be replaced by the ‘bulldozer’ of Descartes. He 

remained a Cartesian for the rest of his life and brought this style to the fields he founded, 

and to the coworkers who were privileged to be guided by him. 

The 17-year old Sam Edwards entered Gonville and Caius College in 1945, as the War ended, 

in possession of a College scholarship, plus those from the State and the local authority. He 

records there being ample money left over for books and visits to France in the long 

vacation. Aspiring to read theoretical physics, he found he first had to take a degree in 

mathematics that he found heavy going since he was, and would continue to be,  

‘… impatient with the insistence on real proof in Maths, that is I think intuitively, get an answer,  

… , then worry about the correctness of the answer.  Heredity deals one a hand of cards, and you 

must try to win with that hand, and not try to win in a different way.  This philosophy is the way 

forward in research but in University exams you have to play according to the examiners’ rules.  

In the end I reached the promised land and offered six courses for examination (2 quantum 

mechanics, 2 nuclear theory, 2 theoretical chemistry) but also attended general relativity, atomic 

theory, statistical mechanics, probability and classical dynamics, but did not offer these for 

examination. (Edwards, 2005) 

Again, one recognises the man whose later flashes of brilliance and discovery of bulldozers 

would for instance set up the spin glass problem as an n-component field theory and then 

derive results from the form of the 0n  limit – the so-called ‘Edwards replica method’. 

Sam did well enough to be offered a research studentship by the Department of Science and 

Industrial Research that he held at Caius and he started research in 1949.  He completed his 

degree in 3 years, something that concerned him in later life:  

‘People learn too much; one only really needs to be taught method; facts just take time and are 

usually the wrong things anyway.’  
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This view set him apart from his contemporaries in the Arts. He would say to research 

students,  

‘A PhD is a certificate that you are capable in the methods of research, an apprenticeship if you 

like. It is not supposed to be a polished piece of work.’ (Edwards, 1972-2015)   

As a potential supervisor in the Mathematics Department, he found Dirac a lone figure. 

Hartree had migrated to computation and, although Leonard-Jones was an attractive figure, 

Sam’s interests settled on nuclear and quantum field theory.  Other students included and 

Paul Matthews, with whom Sam would later work, Richard Eden, with whom his friendship 

resumed when the Edwards family returned to Cambridge, and Abdus Salam.  In the 

Cavendish, Bragg decided to hire four theorists, one of whom was James (Jim) Hamilton who 

had worked with Heitler and whom Sam chose as supervisor.  Sam complained about not 

being set problems that would be of consequence, and so turned to an interest in the then 

new renormalisation theories of Schwinger, Feynman and Dyson.  In the meantime, his first 

published work was on nuclear binding energies which theory had seriously 

underestimated.  He addressed the binding problem, through interacting α-particles, the 

Coulomb-unstable 8

4 Be , a work that seemed to have some impact and which he discussed 

later with Wigner when the two were at Princeton. An interest in nuclear reaction theory 

led him to Wigner’s work, which he found ‘impenetrable’, but also to that of Peierls, who 

would later play a major role in his life. 

After 2 years of research, Sam went to Harvard with a JH Choate fellowship in September, 

1951.  A highly stimulating year unfolded in both personal and professional spheres.   He 

had lunches with JK Galbraith and McGeorge Bundy, heard the Boston Symphony Orchestra 

and the touring Met Opera, and visited the libraries of Harvard.  More importantly, he was 

taken on by Julian Schwinger who challenged him to solve his formulation of QED that took 

the form of functional differential equations relating the electron and photon Green2 

functions G and D, and the vertex function Γ. Sam solved these equations and eventually, 

after a struggle, convinced a sceptical Schwinger of the validity of his solutions. It was a 

decisive introduction to functional methods and (Feynman) diagrammatics (‘not popular in 

Harvard at the time’!) that would be a continuing intellectual thread in his physics for 

decades to come. 

Sam’s Cambridge (UK) PhD complete and its results published, Schwinger arranged for Sam 

to spend a year at the Institute for Advanced Studies at Princeton.  It was again a culturally 

enrichening experience with Wagner at the Met, the complete Beethoven Quartets and the 

galleries in New York and Washington, but somewhat directionless academically.  He 

discussed his Harvard thesis work with Oppenheimer, Wigner, Yang, Lee, van Hove and 

others, but in 1953 accepted ‘a definite and generous offer’ from Peierls to join his school of 

theoretical physics in Birmingham, UK.  In that year he married Merriell E. M. Bland.  They 

                                                             
2 Sam was very particular that such functions be called “Green” rather than “Green’s” functions. Whatever the 
correctness of this nomenclature, in his honour in this memoir we shall use “Green”. 



4 
 

originally met as undergraduates at Cambridge through the Rambling Society.  Merriell 

received a first in Maths while at Girton and Sam would always cheerfully acknowledge that 

she “has a better degree than me!”. Their happy marriage was to last over 60 years.  

The years to follow – Birmingham 1953-8, Manchester 1958-72, and Cambridge 1972 to his 

death - were to see the development of the ideas and techniques from his early days, 

supplemented by some radical new ideas, and their application with enormous impact on 

other areas, some of which were entirely new to physics. 

Birmingham 1953-58 

Peierls and his group were a great magnet for visitors; Sam met many of the world’s leading 

theorists.  He was to encounter another figure who would also be decisive in his life, Brian 

Flowers, later Lord Flowers and Rector of Imperial College. In Birmingham, Sam would 

employ field-theoretic methods in new ways and to address new problems that would 

revolutionise several fields over the next decades and give other theorists important tools 

for further problems.  In particular, the functional methods Sam brought from Harvard 

interested Peierls greatly and led to Sam’s work on pions and heavy nuclei.  The Green 

function methods developed there offered hope for the solution of more difficult problems. 

Sam went on, later with PT Matthews, to study nucleon-meson interactions. 

The problem that would first and firmly establish field theoretic methods outside their initial 

realm of particle physics was posed to Sam by Peierls; it was concerned with the 

conductivity of an electron gas in the presence of random scattering potentials. In his paper, 

‘On a new method for the evaluation of electrical conductivity in metals’ (Edwards, 1958), 

Sam took the Greenwood-Peierls result for the conductivity tensor and transformed it in 

terms of Green functions and the distribution of electrons in the presence of the scattering 

potential ( )V x  over which averages need to be taken, that is, over the positions of the 

scattering sites.3  These sites, at positions X  give 
1

( ) ( )V x u X x



  , where u is the 

form of the individual sites’ potentials.  In Fourier space: 

   *( ) ( )exp dkV x u k ik x k    where exp{ }k ik X       (1.1) 

For randomly placed scatterers, there is an elementary, Gaussian-like at lowest order, 

probability distribution ( )kP  for the k , so an averaging of the conductivity amounts to an 

integration over the   ‘fields’, that is *d ( )dk k kP   .  As Edwards noted  

‘This form has the great advantage that it is essentially the same form as that of electrons 

interacting with the quantised electromagnetic field, and so techniques for evaluating it 

are already in existence.  Moreover, there are none of the divergence problems of 

                                                             
3 I am grateful to Professor David Khmelnitskii for insights into these advances (endnote 1, p. 45). 



5 
 

electrodynamics here and the various approximate techniques of electrodynamics can be 

applied with confidence.’ (Edwards, 1958) 

He developed a form of diagrammatics slightly different from QED and offered a partial 

translation from the diagrams in one problem to those in the other. He discussed the 

application of these methods to phonon-scattering and to liquid metals and alloys, and in 

cases that are not perturbative.  Disorder is represented by field theoretic methods for the 

first time. In fact, Gaussian integrals over auxiliary fields are ubiquitous, often known as the 

‘Hubbard-Stratonovitch’ technique, but invented in the modern context before these 

authors by Sam, though he stated, ‘Gauss gets priority’.  Sam published widely in electronic 

and related systems, liquid metals, transport in plasmas, liquid helium, classical and 

quantum semi-conductors, quantum many body theory, localisation and disorder, and alloys 

until the 1970s. It was a fruitful and absorbing time in Birmingham.  Sam always spoke of 

Peierls with great warmth and admiration.  He recalls  

‘Peierls was invited to a grand meeting in Italy, the lead speakers were Heisenberg, Schrödinger, 

Pauli and Peierls.  For some reason Peierls found it impossible to attend and sent me, so the lead 

speakers became Heisenberg, Schrodinger, Pauli and Edwards!  Still it was good to meet these 

great men.  I got on well with Pauli, which was apparently unusual.’ (Edwards, 2005) 

Flowers was offered the Chair of Theoretical Physics at Manchester and invited Sam to join 

him as a Senior Lecturer – then the standard route to a Chair.   

‘Much as I loved Peierls the premium was huge, so we (now plus 3 kids) went off to Manchester 

bought a house in Prestbury (2.5 x salary) and stayed for fourteen very productive years.’ 

(Edwards, 2005)  

Manchester, 1958 – 1972 

Sam was keen to branch out into other fields of physics.  When Flowers was head of the 

theoretical division at Harwell following the arrest of Klaus Fuchs, he had suggested that 

Sam look for problems in the still-secret fusion project at Culham, leading to his life-long 

interest in interacting many-body systems – initially plasmas and electrolyte solutions, and 

including turbulence.  Again, he was to apply the same field-theoretic methods to polymers 

and networks to extraordinary effect. 

Turbulence was then, and remains today, a formidable, partially-solved problem that had 

defeated many brilliant physicists and mathematicians during the 20th Century. In his first 

paper (Edwards, 1964), Sam considered fully-developed, homogeneous turbulence with 

energy input at long length scales by a random (stirring) force and flow through the coupled 

velocity modes of the fluid until the energy was released as heat by viscosity at the shortest 

wavelengths.  It is an ambitious paper, 35 pages long, filled with statistical, functional and 

field theoretic methods imported into the subject, and employing difficult and detailed 

analysis. In his own, concluding words, the difficulties are that:  
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‘turbulence is an exceptional problem in that there is, in the limit of large Reynolds numbers, no 

external parameter which can be used as a basis of an expansion technique.  In the language of 

QFT, it is a problem of infinitely strong coupling constant.  It follows that an expansion must be 

based on the internal properties of the system . . . [and] since the probability of finding a 

particular velocity at a particular point in the fluid is quite close to a Gaussian (Batchelor), the 

system is substantially random and the generalised random phase approximation should be 

applicable.’ (Edwards, 1964)  

It is worth exploring Sam’s approach to turbulence, since it foreshadows later polymer work 

that had great impact.   The Navier-Stokes equation for the velocity field ( )u r , with its 

stochastic driving forceF , is treated in fourier space and is shown to lead to a Liouville 

equation for the distribution of velocities, ( )kF u . The ‘noise’F is considered to fluctuate 

sufficiently rapidly in time that its correlation is ( ) (0) δ( )k k kt h t F F . Moreover, Sam used 

the fact that its distribution is Gaussian to average the distribution overF  to give ( )kF u 
F

. He then considered this in a generalised phase space with a functional probability, P , 

following the system in time according to Lagrangian procedures.  The velocity-velocity 

coupling in the Navier-Stokes equation, symbolically Muu , is the source of the turbulence 

which he then attempted to describe self-consistently with an effective diffusion coefficient

k k kd h S  and a total viscosity 2

k kk R   .  The turbulent diffusion, or ‘eddy noise 

covariance’, 
kS  and viscosity, or ‘eddy damping coefficient’,

kR depend, through the Muu , 

on
kS and

kR themselves. This dependence leads to non-linear integral equations with the
k

in their kernels and also involving the velocity correlation
kq , the energy spectrum.  

Diagrammatic and other methods of solution, self-consistently if possible, had to be 

invoked. The use of 
kS and

kR is related to considerations of Kraichnan and of Wyld. 

The work was controversial at the time, leading to disagreements for instance with George 

Batchelor about the appropriateness of using Green function methods.  Many insights were 

gained from Sam’s results, but the analysis was sufficiently complex that clean power laws 

were not always obtained.  But he could put bounds of -5/3 to -3/2 on the likely exponents 

for
kq , the Kolmogorov problem and he, in common with Kraichnan, was one of the first to 

address the problem of the time correlation of the velocity modes, ( ) (0)k kt uu   . 

Sam also attacked the problem of pipe flow turbulence with McComb (McComb & Edwards, 

1972) which he felt was most successful but never gained the attention it deserved.  Nearly 

50 years later he returned to the study of turbulence with Schwartz (Schwartz & Edwards, 

2002), with a self-consistent expansion of the non-linear stochastic field equations about an 

undetermined model and fixing the functions in the model by requiring that, to a desired 

order in the expansion, there are no corrections to certain physical observables beyond zero 

order. They derived the Kolmogorov result both for extreme infrared and for white driving 

noise. 
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In the mid-1960s, Edwards met with Geoffrey Gee, head of Chemistry in Manchester, to 

discuss the outstanding problems in his area in the hope of finding fertile new ground.  The 

meeting would have consequences for polymer physics, to which Sam would bring 

remarkable new insights, and also for physics generally.  Theoretical physics had not really 

penetrated polymer science, except perhaps for the pioneering work of Cyril Domb on the 

statistics of self-avoiding random walks which he had investigated numerically on lattices 

and by graph theory. Sam discovered that the N-step random walk mean-square end-to-end 

span result 2 NR   is amended by self-avoidance to 2 6/5R N  . The chain self-swells and, 

moreover, the result was independent of the type of lattice the chain occupies. The latter 

insight presaged the soon-to-emerge insights of critical phenomena and the renormalisation 

group. Polymer physics shares this character with critical phenomena and Sam’s realisations 

put him ahead of those in the latter field. 

Gee explained that polymers, at their simplest, are long sequences of linearly connected 

repeating molecular units, monomers, with structure and characteristics of connection, 

flexible or otherwise, that depend on detailed chemistry.  The problems included the 

distribution of monomers in a self-avoiding chain, dynamics, visco-elasticity, phase changes 

and solution theory, and networks.  Great figures had worked from the chemical side on 

these problems and Sam initially felt discouraged. But there were also electrifying 

realisations.   As he wrote, the problems  

‘had all been tackled in the Fifties by Flory, Huggins, Zimm, Stockmayer, Rouse, Wall and Gee 

himself.  The outline of the subject was all there and I was coming into it ten years late.  But all 

these authors, impressive as their work was, did not know the advances made in field theories 

and I realized the long random chains of polymers were a physical manifestation of field theories.  

A polymer was a Feynman path, the density of a polymer suspension was a field variable.  The 

literature had a mass of redundant complexity.  A polymer is comprised of monomers but, except 

in glasses and crystals, can be considered as a continuous path where s is the arc length.  The 

polymer is so long that the fourier integral can always be used so that, just as in elasticity, one 

need not put atomic detail into Navier’s equation, or likewise in the Navier Stokes equations of 

hydrodynamics. There is no need, other than a convenience on simulations, ever to consider the 

polymer as fictitious beads and springs.’ (Edwards, 2005)  

Although late, he could revolutionise the subject. 

A random flight of N links of length l , say, will have a total arc length, chemical length for 

polymers, of L Nl . It has a mean square end-to-end size
2 2R Nl lL    , that is, a mean 

square size in each of its 3 dimensions of 2 1
3iR lL   . The distribution of R , by the central 

limit theorem for N large, is the classical Gaussian form:  

 
2 2 23 1

2 2
( ) exp( ) exp( / )N lL

P R R R R      . (2.1) 

Note that l and L always appear as the combination
2

lL R    -  the local structure of the 

walk does not matter.  If it is not freely-jointed, the l will not correspond to the chemical 
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length a , say, but will be larger.  Thus
2

/l R L a     where
2

R  can be measured by light 

scattering in an ideal solution, and L is simply the (scaled) molecular weight times the 

monomer length.  The Flory effective step length l  accounts for all the chemical structure, 

and indeed the ratio /l a was studied by Flory.  But it was Edwards who saw there was a 

universality in polymer statistics. For long distance problems, one could simply use 

Gaussians, continuous chains and functional analysis on any length scale including the very 

fine, since local structure is irrelevant.  He thus came to the now-celebrated Edwards chain 

distribution:
2

0

3 1
[ ( )] exp d d d δ( ( ) ( ) [ ( )]

2
exp

L
R v

P R s s s s R s R s H R s
l s kT kT

    
             



 
  (2.2) 

The probability functional for the entire shape ( )R s of the chain, with a continuous arc 

(chemical) position down the chain [0, ]s L , has a continuous form of a Gaussian as its first 

term – think of the probability of the chain as the convolution of Gaussians

 
23

1 22 1 2exp( ( ) ( ) / )
l

R s s s sR   from arc points
1 2 3s s s   and, in the spirit of the 

above, that structure is eventually washed out to yield Gaussians, let the intervals become 

small and numerous, with the distributions at small scales still taken to be Gaussian.  Sam 

retained l and L separately, but were he to scale s by L , then an L would meet the l as 

required by universality. One can imagine retaining the separation was a concession to 

colleagues for whom his reducing the ‘redundant complexity’ was already radical enough! 

The second term is no less deep: monomers at chemically widely-separated points s and s

can nevertheless randomly walk close to each other and are then repelled by a potential

( ( ) ( ))v R s R s . There a second virial to this interaction, the excluded volume, v , and the 

potential can be represented as δ( ( ) ( ))v R s R s , the delta function’s weight being finite, 

and encapsulating again the idea that detailed structure is not significant. Under conditions 

wherev vanishes, we need to go beyond this two-body representation of interaction.  

The functional  ( )H R s   in the exponential of equation (2.2) is the famous Edwards 

Hamiltonian: 

 
2

0

3
[ ( )] d d d δ( ( ) ( ))

2

L
kT R

H R s s v s s R s R s
l s

 
     

 
    (2.3) 

where, as usual, it is  ( ) /H R s kT  that appears in the exponential. The kT that appears in 

front emphasises that the first term accounts for the chain entropy, from the number of 

conformations, and encapsulates much of polymer science.   The flexibility of chains drives 

their largely entropic response and they are often described as ‘entropic springs’. Fifty years 

later, this development seems to physicists to encapsulate the essence of a huge and 

important subject, but in the 1960s Sam’s was an entirely new view of the subject.  
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With a hindsight borne of experience of the fields we have already sketched above, we can 

immediately anticipate Sam’s approach to the self-avoiding walk problem where there is 

interaction over all scales in the chain – he treated it as a self-consistent field problem 

where the chain interacts with a mean field generated by its own density of monomers. 

Although the mathematics is somewhat complex, the ideas we have already met.  He uses 

an auxiliary field to represent the potential, and indeed it is in the distribution of that field in 

k-space that one must first seek Sam’s replacement ( ) δ( )vv R R R R  . He deals with an 

infinitely long chain that starts at  0, 0R s  and finds the probability density of 

monomers at radial positions r to follow 4/3( )p r r and that the probability ( , )p r L that the 

arc position L of a chain passes through a radius r is peaked at an 3/5r L , that is
2 6/5( ( ) (0))R L R L   . These core results are derived from mean-field theory but are very 

accurate.  The true exponent is 1.188   , taking into account correlations.  Sam gave, and 

critically discussed, the dependence 6 ( 2)d   on the dimensionality d of space.  It is 

exact in 1-D, turns out to be exact in 2-D, is closely accurate in 3-D, is exact in 4d  and 

remains 1  in all higher dimensions.  As there are more spatial dimensions to explore, 

chains meet themselves less frequently and return to ideality.  As in critical phenomena, 

dimensionality alone is important, not the lattice type nor the local chemical structure, and 

there is a critical spatial dimension. 

Raising the polymer concentration c leads eventually to chain interpenetration, beginning at 

a concentration which Sam identified and which was christened *c by the French school, 

with interactions leading to two consequences – the osmotic pressure’s dependence on 

concentration changes, and the chain shape and the correlation change.  In the melt state at 

very high concentrations, chains are ideal since, with complete interpenetration, they do 

not know whether they are avoiding themselves, or monomers from other chains from the 

multitude of other chains with which they share their space.4 

At Sam’s overlapping, ‘intermediate’ concentrations that can be delineated into semi-dilute 

and semi-concentrated, he determined quantitatively a correlation length  beyond which 

chains behaved as somewhat swollen Gaussians. At the semi-dilute end, self-avoidance 

plays a larger role. Sam’s description of the osmotic pressure is valid at the upper end and 

he discussed the difficulties in approaching the lower end. Given his background in field 

theory and his delight that Feynman weights and diagrams for polymers are real in the 

mathematical and physical senses respectively, it is particularly interesting that he discussed 

with diagrams the interactions with interposing chains as masking, or screening, the self-

                                                             
4 This return to ideality had been anticipated by Flory and in some sense is akin to electrons in a metal such as 
sodium being essentially free, despite the huge number of others in their vicinity.  Interactions are screened – 
this was Sam’s view, unsurprisingly. Sam was the first to calculate chain shape and give the variation of (ideal) 
size with density (Edwards, 1975), something that was confirmed by neutron scattering. Sam’s interest in 
neutrons for soft matter research was inspired by another Manchester chemist, Geoffrey Allen (see later) with 
whom Julia Higgins worked closely at that time. Sam was a close collaborator with them both. 
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interaction. The study of solution interactions and correlations was central to the approach 

of de Gennes and of those of his school in discussing polymer behaviour. 

As an aside, and looking ahead 10 years, Sam applied to dislocation lines in solids the ideas 

of long, extended objects having considerable configurational entropy and, when dense, 

screening their mutual and self-interactions. (Edwards & Warner, 1979)  In this case, the 

‘polymers’ are the dislocation cores, and the interactions being screened and thus reducing 

the energy are the elastic strain fields.  This was a theory of the melting of 3-D solids, with a 

first order transition from a crystal without defects to one full of defects - a liquid.  The 

avalanche is caused by the increasing effect of entropy TS  in the free energy with rising 

temperature, along with the reduction in elastic energy per defect if there are many of 

them. This successful theory had the misfortune to arrive at the same time as the Kosterlitz-

Thouless theory of topological defect-induced melting in 2-D and was, to Sam’s regret, 

entirely neglected. 

Immediately following his insights into polymer chains and their interactions, Sam turned to 

two problems that would intersect with major consequences for fundamental and applied 

physics and for industry: (i) first single and then multi-chain dynamics, and (ii) chain 

constraints by crosslinking or by topology (entanglement). 

Chain motion had been modelled by Rouse as beads connected by springs and was entropic 

because their resistance to extension comes from their free energy rising as their entropy 

drops. Extended chains have fewer configurations.  Sam’s springs and beads tend to a 

continuum, as seen above. Monomer connectivity slows down diffusion from 

 
2

( ) (0)R R tt     to   1/22
( , ) ( ,0)R s t R s t   . Connectivity also conveys force, as one 

sees in the viscosity of polymer solutions and in network, or rubber, elasticity. Both 

problems had already been studied, but Sam attacked them with powerful methods and 

they were to yield much deeper results.  In understanding polymer dynamics for the 

problems of melt viscosity, he solved sophisticated single chain problems such as the 

velocity distribution and correlation of monomers, and even demonstrated that 

equipartition gives an energy of 1
2

2 kT per monomer, the connectivity eliminating 1 degree 

of freedom (Goodyear & Edwards, 1972) – this was one of several papers with Goodyear. 

Also fundamental was his recognition of the role of ‘quenched’ (immutable) degrees of 

freedom in polymers, soon to be applied in spin glasses and random matrices. The notion 

and terminology he employed has since become ubiquitous in physics. Normally one 

integrates over all varying quantities that the partition function (or statistical weight) 

depends upon, and then takes the logarithm to find the free energy: 

  m mlnL ZkTF    (2.4) 

where m is the quantity chosen to be fixed, and might, for instance, be 0m LR R  , the 

end-to-end separation of the chain;
mZ  is the statistical weight (or partition function) of 

the chain obtained by summing over all configurations that the chain is able to explore, 
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subject to this constraint.  But the free energy
LF is that of an unconstrained chain since in 

that case the average is taken over all the mvalues in finding 
m  of the

mZ .  In contrast, 

the actual free energy of a chain with the constraint m , is simply  m mlnkTF Z  . One 

could now instead average this free energy over the distribution of all realisations m , giving 

the quenched free energy: 

  m mlnQ kTF Z     . (2.5) 

The former
LF represents a liquid of chains while the latter quenched average yields the free 

energy
QF of a solid, where the choices of mare fixed (quenched) at the moment of 

solidification and don’t thereafter change. 

Consider a deformation gradient applied to the solid,
0

r r    , where the material 

points
0

r move to r under deformation. The end-to-end vector for a particular chain takes a 

new (fixed) value  0 0

0 0L LR R R R    , that is, the constraint is now m , say, with 

superscripts 0 representing the constraint at formation, which for simplicity we take to be 

the reference state5. Knowing the chain span distribution set in the reference state, m , the 

averaging is now 

    m mlnQ kTF Z


        .  (2.6) 

Thus the partition function is constrained at m but the averaging is over the mat 

formation. 

The free energy ( )QF  is linearly dependent onT , the signature of a purely entropic 

response, and so  ( )QF kTf  , the chains reducing the entropy of their distribution of 

shapes purely because of geometry, encapsulated in the  f  , here a simple function, the 

invariant  1

T
I    (see below).  We have already seen this entropic behaviour in the first 

term of the Edwards Hamiltonian, equation (2.3).6 

These deeper ways of looking at an already classical subject, rubber elasticity, allowed Sam 

to dispose of a spurious logarithmic term in the free energy that had been much argued 

                                                             
5 If there is a difference between the formation and reference states (by, for instance, heating etc.) then there 
is a simple additive factor to the free energy, but the principles are the same.  This procedure, of taking the 
end to end vector to transform affinely with the macroscopic distortion, ignores certain fluctuations of the 
chain end anchoring points, but does not materially change the result. 

6 This law for the rubber free energy has the same status as the perfect gas law, but where the  f  depends 

on shape rather than volume, and one should think of rubber more as being more like a gas rather than a solid 
or nearly-flowing liquid. This insight, and that of averaging outside the log rather inside being the essence of 
what it is to be a solid (equation 3.6), were two delights I received from Sam as I embarked on my PhD with 
him in 1973 in his early Cambridge days. 
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over in the literature. But Sam’s purposes were much deeper: constraining the ends of 

chains by crosslinking them to other chains, that is, the formation of a solid by vulcanisation, 

is not the only additional constraint that is quenched in.  A chain with no free ends, if it is 

entangled with its neighbours, is permanently so knotted, [see Figure 1 for a sketch in Sam's 

hand of crosslinks making an entanglement a permanent constraint (his (2.21))].  He also 

introduced Gaussian invariant ways of expressing topological permanency, his (2.22). Note 

that he had to hand-write equations into some papers, much increasing the scope for 

errors. 

Figure 1 here. 

The quenched entities are not simple vectors such as  0 0

0LR R , but are now topological 

invariants and present a much more formidable challenge to specify and then to average 

over their logarithms. 

Let us digress onto a subject about which that Sam felt very strongly: the tensor ‘lives’ 

partly, from the left, in r -space (the target space) and partly, from the right, in 0r -space (the 

reference space). The Cauchy-Green combination
T

C    is thus of
0 0

r r character (the 

outer parts of 
T

  ) and is therefore automatically invariant under rotations of r -space.  

But the free energy must also be invariant under rotations of 0r -space and therefore  f 

can only be a function of the combination of the elements of C that are invariants too. These 

invariants are: 

      1 2 3Tr , Tr , and Det .
T

I CIC C CI     (2.7) 

The rubbers deform at constant volume,
3 1I  , and the elasticity of ideal chains is simply

  1f I  , the term ‘ideal’ meaning non-entangled, flexible, or at least long. 

Experimentally, there are deviations from this law, attributed to entanglements and other 

smaller effects, and empirically )(F   is fitted to elaborate expansions in terms of invariants.  

There was no basis for doing so and no understanding derived from the fit. For the huge 

elongations, by factors of up to 10   that can be inflicted on a rubber, such strategies were 

of limited use. Sam had objections to proceeding blindly, as he saw it, though rigorously 

since the
iI s are invariants.  Something as complex as entanglements and large amplitudes 

demanded a molecular-based approach, even if the complexity of the result was such that 

one could not necessarily see how to reduce difficult results to invariants.   A paper he wrote 

with Stockmayer (Edwards & Stockmayer, 1973) obtained an interesting  f  for a material 

intermediate between rubber and glass: the  f    

‘had no relation whatever to the invariants used by Mooney and Rivlin and I realized that the only 

way forward for elasticity and visco-elasticity was to create a plausible model and then solve it.  
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Guessing gets one nowhere, but even now the literature is clogged with quite useless sums of the 

invariants which have no physical significance whatever.’ (Edwards, 2005) 

This wish to have a molecularly-founded description of exceedingly complex and non-linear 

processes, for instance large deformation in the face of topological constraints, set Sam, and 

the large community that followed him, apart from, for instance, the applied mathematics 

mechanics community. In a six-year period of astonishing inventiveness and productivity, 

Sam and his group addressed the quenched statics and the dynamics of interacting 

polymers – melts and networks – which required specifying and then dealing with the 

constraints and finally averaging logs over them. 

Firstly, we turn to the averages of logs,  m mln Z  , where m is the set of quenched 

constraints, for instance knots confining chains to each other or, in simple networks, the 

fixed chain spans.   Recognising that 

     m m mexp ln 1 ln( )
n

Z n Z n Z    , (2.8) 

then 
mln( )Z is the term at ( )n in the expansion of   m

n
Z  (Edwards, 1970). Each of the n

factors of
mZ is the statistical weight of an m -constrained system.  For instance, the th term 

in  
1

m m

n
n

Z Z



  for chains with constraint m is  
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   . (2.9) 

Sam called the instances ‘replicas’.  The functional integral over the chain complexions is 

subject to the constraint m . The averaging of  m

n
Z  over formation conditions and 

constraints
0m is then simple:  
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where 

 0

0

0

0δ (
1

( ))exp H sZ
kT

RR s  






 
 

   (2.11) 

The Edwards Hamiltonian functional 0

0
( )H R s 

   is used for brevity in the exponent. In the 

numerator, one integrates over chain freedom limited by
0m , but the normalising 

denominator Z  has no such constraint. Taking the limit 0n and extracting the terms in n

then yields the averaged log. Considerable liberties have been taken with the ordering of 

the average and the limit of this unusual n -component field theory. Sam also employed his 

replica method in his spin glass papers with P.W. Anderson, to be discussed below. Its use 
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provoked controversy but also stimulated many others to establish and scrutinise the 

method’s validity, including the questions of symmetry-breaking in replica space (Deam & 

Edwards, 1976) and of obtaining minima (or maxima) in the free energy.  

The grand result that illustrates the approach to the problem as an n -component field 

theory, albeit with 0n , is: 

 
0

0

0

m m 0
m m

01 1

1
δ ( ) δ ( )exp ( )

nn n

Z H R sR s R s
kT

 

 
   

    
 

 
 
 

      (2.12) 

There are 1n replicas, the th0 differing only in the constraints over which it is integrated.  

This result underpins all Sam’s celebrated attacks on polymer network elasticity – linkage, 

entanglement, slip links etc.  

Sam was initially attracted to Gaussian invariants to express fixed topology, m , when 

summing over the configurations of chains in the presence of others with which they may 

be topologically related. Several interesting papers on statistical mechanics with such 

invariants appeared, but it was clear to Sam that, in dense systems of chains, a given chain 

has an enormous number of neighbours7 and hence an enormous number of complicated 

invariants – a cruder and more powerful method was required (see the extract from the 

decisive paper (Edwards, 1967))  (Figure 2 about here). We have the pleasure of seeing the 

figures hand-drawn by Sam himself, just as his coworkers and colleagues would see them at 

the blackboard.  His figure 1 shows other chains as dots passing through a plane, with the 

chain in question threading them and being constrained. His figure 2 shows a workable 

model of the topologically-localised chain – it is localised about a central path, and hence for 

a dense system of chains a collection of non-local constraints have taken on a local 

character. The penalty for deviations from this reference path ( )sR is entropic (wider 

excursions of the chain from ( )sR have fewer complexions), and can be considered as a 

harmonic, entropic potential. When the material is strained, it is ( )sR that is deformed by  

and ( )R s is now penalised for deviations from ( )s R . The resulting free energy of small 

distortions is classical, but the crosslink density, which normally scales the shear modulus in 

the expression for the free energy density we have seen before,      1 1

32 2
F f I      

(with the latter form for small strains), now depends on the chain density that arises from 

Sam’s estimate of the entanglement density. For small strains, the “entanglement rubber” 

(crèche rubber, ultimately creeping, as Sam noted) has the classical form in , but at high 

strains  f  is complex, as one expects. 

                                                             
7 Chains are ideal in the melt and so, with N monomers, have an extent

1/2~R aN . They thus span a volume
3 3/2~V a N , whereupon there must be a number

1/2~ N  other chains, each of chemical volume
3~cV a N , 

sharing this spanned extent with the test chain.  
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This masterly and prescient paper (Edwards, 1967) set the scene for ‘tubes’, ‘pipe 

constraints’, ‘primitive paths’, ‘reptation’, a term coined by de Gennes in 1971 for chain 

dynamics, the work of Doi in 1974, and ultimately the grand synthesis of dynamics with 

constraints for a theory of polymer rheology by Doi and Edwards. 

In 1973 at the end of Sam’s time in Manchester, there appeared two important papers with 

Grant on the diffusion and viscosity of chains in a field of topological constraints 

represented as a tube, following on from his paper of 1967 and that of de Gennes in 1971 – 

see figure 1 of their first paper (Grant & Edwards, 1973a). In that paper, they first obtained 

the vividly named ‘reptation’ 1/4t law for the diffusion of a chain along a tube,

  1/42
( , ) ( ,0)R s t R s t   . It corresponds to Rouse motion  

2 1/2( ) (0) tS t S    along the 

curvilinear coordinate S along the tube that is itself a random walk in space; in other words, 

the position ( )r S in space along the tube has a mean-square spatial separation depending 

as  
2 1/2

( ) ( ' 'r S r S S S     . Folding the square-rooted former result into the left hand 

side of the latter give the 1/4t law. The second paper with Grant (Grant & Edwards, 1973b) 

addresses the ultimate goal, the effect of entanglements on the polymer melt viscosity that 

underpins most of the plastics industry.  Using the above dynamics they had already 

established, they calculated, from correlation functions, the molecular weight ( M ) 

dependence of the shear viscosity , obtaining 3~ M - already a triumph, but not quite the 

experimental exponent 3.4. 

Tubes, and more complex aspects of melt rheology would recur later in the 1970s with Doi, 

and replicas would be revisited in spin glasses with Phil (P.W.) Anderson. 

As the Manchester years drew to a close, Sam was drawn into public affairs, with some 

negative impact on his output from 1973, at least as compared to Manchester, despite 

which the two main areas for which he is best known were carried out while working for the 

Government. His wider public service started with the Physical Society (now the Institute of 

Physics), of which he became Vice President (1970-73):  

‘I found the Institute was virtually giving its journals away, in particular I split the 

Proceedings of the Physical Society into several parts renamed The Journal of Physics, A, B 

etc., and after a year charged the same for each section as for the single Proc. Phys. Soc. All 

the commercial firms were doing this, so why not the Institute, whose finances were thus 

transformed.’ (Edwards, 2005)  

Representing the Physical Society, Sam was able to play a founding role in the Condensed 

Matter Division of the European Physical Society, delivering more members from the UK 

than from the rest of Europe put together.   Sam also joined the Physics Committee of the 

Science Research Council8, becoming its chairman and therefore also sitting on the Science 

Board of the SRC; he eventually becoming the Board’s chairman too. The latter position also 

                                                             
8 Now the EPSRC, the then SRC funded science research in UK universities and central facilities, including 
research collaborations and facilities abroad. 
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made him a member of the Council and brought him into frequent contact with his old 

friend and colleague, Brian Flowers, who had called him to Manchester, but who was now 

the Chairman of the SRC. 

Fittingly, considering the science that would follow, it was Anderson who  

‘came to give a seminar at Manchester and asked me why I showed no interest in The Plummer 

Chair currently advertised in Cambridge.  My view was that Manchester had treated me really 

well and to apply for a post elsewhere was quite inappropriate.  However, if Cambridge really 

wanted me, it could offer me the Chair.  I thought that would be the end of that, but in fact 

Cambridge did offer me the Chair and after some heart searching I accepted and we (now with 4 

children) moved to Cambridge in 1972 where we brought a house at 2 x my (standard) salary – (it 

is now worth 10 x a professor’s salary; times were really better then) and Gonville and Caius 

offered me a fellowship which I still have9, since after a while a Caius fellowship lasts for life.” 

(Edwards, 2005) 

Cambridge, 1972 – 2015 

The first year in Cambridge, 1972-3 was a busy one with continuing research problems, his  

students still working on their PhDs moving to Cambridge, and with teaching new courses. 

An important course was Statistical Mechanics for the third, and thus final, year students 

(Part II of the Natural Sciences Tripos). Sam records in his notes that  

‘Mott had instituted the teaching of theoretical physics and I lectured on statistical mechanics 

and found two students, Jacob Klein and Mark Warner, who followed my lectures in great detail 

and visited me often to sort out things that worried them (and usually worried me too).’ 

(Edwards, 2005)  

It is fascinating to hear of the encounter from the other side. I certainly recall being worried 

about the lectures since they presented statistical mechanics in a formidable and 

uncompromising way, with difficult notions expressed in very difficult mathematics.  

A second problem was that the hastily handwritten notes were riddled with errors. I 

focussed my reading and analysis by correcting these errors, as best I could, using red ink 

which could cover the entire page. Finally presenting Sam with my efforts, I suddenly 

thought ‘this is not the way to start a relationship with a senior and famous physicist’.  

Things did not come to an end, but progressed according to most people’s memories of 

scientific interactions with Sam – he respected those who engaged intellectually and valued 

their engagement, however junior they were. The upshot for me was a PhD place with him 

in London (see below), and for Jacob Klein an experimental position with David Tabor. Both 

of us were to become professors in polymer-related research, at the Cavendish and in 

Oxford respectively. Sam actually worried with us, we now see.    

                                                             
9 Sam was a fellow of Gonville and Caius College, Cambridge, until his death.  He was President (Senior Fellow) 
of Caius for a time before retirement. 
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A third difficulty with Sam’s approach to students was to fly through the development of 

some topic, saying along the way for economy of writing and of time ‘Using constants that 

absorb the units …’.  Now, by this he did not just mean dimensional constants, but also the

2 s etc, which for learners was a minefield.  So everything could be set equal to 1, though 

he drew the line at i 1 . However awful his teaching style could be, Professor Michael Gunn 

writes (see endnote 2) 

“Of course that [attitude to detail] summed up an attractive aspect of Sam - complete impatience 

with irrelevant detail in a drive to get to the kernel of the problem formulated in the most 

economical manner.”10 

Brian Flowers resigned in 1973 as Chairman of the SRC to become Rector of Imperial 

College.  By then Sam had much experience of the Council and of other administrative 

responsibilities such as in the IoP and the University Grants Committee. He had been 

elected FRS several years before (1966) and was a natural successor to Flowers.  He was 

approached for a four year (1973-1977) tenure and accepted, Cambridge giving him unpaid 

leave of absence. He started the new position in September of 1973, assured that the duties 

would not require 5 days a week, an assurance so empty that he had to rely on the 

Cavendish functioning on Saturdays to maintain his research interests. He had negotiated a 

first class season ticket on the comfortable, if rather slow, Cambridge-London train, giving 

him two hours of uninterrupted time each day that he exploited to the full. He had a 

notebook in which he would write during long business meetings, most people admiring his 

dedication to detail but, to those with a sharp eye, it was clearly theoretical physics being 

developed during the duller moments. 

An immediate and difficult problem was that the two national high energy accelerators 

were past their prime. Major part of such machines are their foundations and shielding and 

so new machines on existing sites were much cheaper than green field developments.  Two 

major facilities were nationally desirable, a synchrotron radiation source and a spallation 

neutron source.  Both were studied and he secured funding for them.  In astronomy, Sir 

Bernard Lovell planned a major new radio telescope, the initial cost of which seemed 

reasonable in spite of its vast size:  

‘However, I had heard stories from the Atomic Energy Authority of wild escalations of costs in 

major engineering projects so I set in motion a full costing from its designers who came up with a 

firm quotation enormously greater than anything HMG would contemplate. The Astronomy 

Board abandoned the project and I was then arraigned11 by a Parliamentary Select Committee for 

                                                             
10 Michael Gunn also recalls two more aspects of Sam that are in great resonance with what has been 
described so far: ‘I think the other things I learnt from him were: ‘not to be frightened of inventing 
mathematics if you need to ...’, and ‘don't be overpowered by a desire for precision, if you can’t do the integral 
with the functions that arise, stick something in of the same shape where you can get a feel for what is 
happening ...’   
11 This author recalls the day, after being supervised by Sam during the morning, Sam saying he was off to be 
roasted at the House of Commons.  He did not seem unduly worried and undoubtedly knew he could be fierce 
in battle with the committee. 



18 
 

‘nugatory expenditure’ i.e. I had spent £0.5m on a project which was not carried to fruition.  

Since I had saved the country £15m I thought this was unreasonable, and so in the end did they.’ 

(Edwards, 2005)   

He moved the UK’s Isaac Newton telescope from ‘its absurd position at Herstmonceaux’ to 

the Canary Islands which involved much negotiation with Spain.  The UK Infrared Telescope 

went to Hawaii, which involved somewhat easier negotiations.  Sam’s SRC Chairmanship 

was recognised by a knighthood in 1976. What is astonishing about the periods of such 

onerous and responsible duties outside academia is that Sam remained active at the 

forefront of science.  His originality was undiminished - he established two new fields and 

applied radical models and techniques to them. 

The SRC years taught Sam much about how the UK government works and how to find 

pathways through rules to achieve an objective, leading him later to serving government as 

Chairman of the Defence Scientific Advisory Council and Chief Scientific Advisor to the 

Department of Energy. 

During the SRC years, fruitful Saturday mornings were spent with Phil Anderson at the 

Cavendish Laboratory.  Anderson shared with Sam his puzzlement about a dilute, random 

alloy of iron in copper that appeared to have a phase transition, but without macroscopic 

ferro- or anti-ferromagnetic order in its low temperature state that is reached by some 

mysterious transition from the high temperature state, which was also random. The metallic 

electron gas mediates an interaction between spins, here on the iron, that oscillates with 

distance between the magnetic ions (the so-called RKKY interaction). This means that the 

coupling ijJ  between the thi  and the thj ions is also random. These materials were quickly 

named “Spin Glasses” (SGs) since they were evidently quenched at low temperatures to a 

random but fixed, that is glassy, phase of spins.  Sam introduced an imaginative, new order 

parameter to describe a random, but frozen phase (Edwards & Anderson, 1975) 

 
(1) (2)

i is sq     . (3.1) 

The order parameter represents the correlation of a spin at time 
1t  with itself at time 

2t . At 

high temperatures, 0q   for long enough time differences, but in the SG phase for 
cT T , 

the spins are locked and correlate with themselves: 0q  . He then gave a Curie-Weiss 

treatment to obtain q as the solution of coth( ) 1/ ( )q qq    with 2 2

02 / 3( )J kT  and
0J

representing the root mean square value of the ijJ . The order is 1/2~ ( )cq T T  near
cT . 

Having located the transition, the detailed thermodynamics was required, specifically, the 

specific heat, with a cusp at cT , and the susceptibility. One has to average  { }
ln

J
ij

Z  over 

realisations of the random fixed{ }ijJ  distributed with a probability that was taken to be 

Gaussian with variance
0J . Of course replicas were needed for the ln( )

ijJZ  , as was a 

variational fit to quadratic forms in exponents of the less tractable quartics that arose from 
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averaging. The self-correlation q was now between replicas ,  of the same realisation of 

the{ }ijJ , rather than the spins at different times, but takes the same sense 0i is sq
 

   

for    when
cT T .  

I recall at the time there being almost shock at the direct, some would say brutal, analysis 

that led to such concrete results in a little-known, deeply mysterious field with a new 

phenomenon. For most researchers this was their first exposure to the replica method, and 

certainly to Sam’s style of scything through intractability. The SG papers were then, and 

subsequently, widely studied, provoking much theory, development of the replica trick, and 

experiment. Sam recollected:  

‘I recalled my paper on network dynamics which avoided the replica method and worked through 

the spin glass problem dynamically and EA-II (Edwards & Anderson, 1976a) agreed completely 

with EA-I.  As a bonus one could see that the total number of states of the spin glass is properly 

extensive.  A final paper (Edwards & Anderson, 1976b) suggested to me by Phil, was to do the 

calculation in quantum theory, modelling the iron ions as rotators.  This came up with the 

interesting though quite believable result that quantum fluctuations can wash out the spin glass 

transition according to the value of the moment of inertia of the model ion.  (EA-I had thousands 

of citations, EA-II a few and EA-III had essentially none: An unappreciative world!).’  

Sam continued his SG work in the late 1970s with F. Tanaka with whom for instance he 

calculated the ground state degeneracy in the Sherrington-Kirkpatrick (SK) model of spin 

glasses.  This model, proposed by his former student David Sherrington, has been widely 

applied to economics, machine learning, simulated annealing, and so on.  He used the same 

replica methods to solve the random matrix problem to obtain the classical semi-circular 

law for the density of eigenvalues in the presence of noise (Edwards & Jones, 1976), a 

method that could be generalised to find the effect of such disorder on any initial density of 

states (Edwards & Warner, 1980). 

A major achievement of network theory was the full treatment in a general replica space of 

entanglements, excluded volume, assumptions of classical theory, boundary conditions etc. 

In a monumental paper with Deam (Deam & Edwards, 1976), Sam set out all the major 

problems in networks and then rotated to new bases in replica space, breaking symmetry 

and laying the ground work for others to follow in SG theory. Work continued in networks, 

for instance the representation of sliding knots by ‘slip rings’ constraining a chain and sliding 

to the next crosslink as deformation is imposed (Ball, et al., 1981). Sam felt that this paper 

gave the least trivial results in the literature, and was most closely related to experiment. 

Figure 3 here. 

Sam concluded this major intellectual phase as other important problems inspired him:  

‘I decided that so many clever people had gone into spin glasses that the time had come to leave 

this and localization and stick to my latest adventure with a collaborator of tremendous ability.  
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This was Masao Doi.  Again Geoff Allen12 hosted him at Imperial at first until we both went on to 

Cambridge.  Although de Gennes had made a breakthrough in the idea of reptation, he did not 

follow it on to a full theory of visco-elasticity.  This, I suggested to Doi, could now be done and he 

started on it with great enthusiasm and skill, and during my last year in London, wrote a series of 

four papers leaving me breathless keeping up with him and casting me very much in the role of 

the experienced man who advised and revised.’ (Edwards, 2005)  

Doi was already experienced in the field, having published in 1974 a paper on the 

implications of de Gennes’ tubes, representing entanglements, for visco-elasticity (see 

endnote 3).    

Figure 4 here 

We are fortunate to have the notes of the encounter where the problem was fleshed out for 

the first time. A full theory of the melt rheology of flexible polymers was developed in four 

papers directed respectively at Brownian motion in the equilibrium state (Doi & Edwards, 

1978a), molecular motion under flow (Doi & Edwards, 1978b), the constitutive equation 

(Doi & Edwards, 1978c), and rheological properties (Doi & Edwards, 1979).  Two more 

papers with Doi were directed at the dynamics and rheology of rods.   One needs ideas of 

tubes for the constraints, and the related concept of the primitive path meaning the path 

taken by a chain were it to be pulled tight from its ends.  Also central are the motion of 

chains and their thereby disengaging with the tube and releasing stress, the loss of the 

tube’s macroscopic deformation as the chains that make it up are themselves disengaging, 

and finally the calculation of the resultant stresses as functions of time, of imposed strain 

history, and of strain geometry. The achievement of these goals in this grand scheme was a 

major triumph. The work of Doi and Edwards underpins modern polymer dynamics 

generally and rheology in particular, the latter being at the heart of one of our principal 

technologies – the production, processing and moulding of plastics. The papers had the 

intellectual impact of the SG papers and their wider impact was even more considerable. 

There followed a body of work, over the succeeding 40 years to the present, of extensions 

and refinements of the basic ideas – tube renewal, the motion of stars and pom-poms, how 

polymers that can reform behave, and so on.   Experiment has been very sophisticated and 

seriously testing, offering differing flows, complex dynamically-imposed strains, the use of 

tools beyond rheology such as NMR, field gradient NMR flow realisations and single chain 

dynamics and birefringence, as well as the testing of predictions in practical applications. 

With its extensions, Doi-Edwards theory is undoubtedly one of the most successful and 

influential physics theories of the second half of 20th century. It was the synthesis and 

crowning achievement of Sam’s many polymer works, going back to 1965, that set out and 

solved a hierarchy of problems that were ultimately also be very important to technology. In 

                                                             
12 Geoff Allen was Sam’s successor as Chairman of the SRC.  
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1985, following another extended visit by Doi to Cambridge, they published their 

monograph on the subject (Doi & Edwards, 1985):  

‘It is a really superb monograph. Physics relies so heavily on such books that explain what is 

important in a precise and readable fashion. Even if Sam had never published anything else, his 

contribution to the community through that book would be worth a 100 careers of lesser 

mortals.’ (see endnote 4) 

Brian Pippard resigned from the Cavendish Chair in 1982 and Sam was appointed to that 

position in 1984.  On his appointment, Edwards took on the role of Head of Department for 

the next five years.  Unlike Pippard, Edwards had been deeply involved in national and 

international science politics for many years, as discussed above.  He had a very wide range 

of contacts in government and industry and used these and his experience of government to 

begin a major expansion of the scope of the Laboratory's activities to remarkable effect.   

During the Pippard era, the numbers of staff members remained roughly constant.  New 

initiatives were needed and this was brought about largely through Sam’s vision during his 

five-year term as Head of Department.  The funding pressures on the University with the 

gradual erosion of support for research and the Universities meant it was a major challenge 

to find the means of significantly increasing the numbers of academic posts, despite the 

‘new blood’ scheme initiated by the Government to regenerate the research and teaching 

activity in the Universities. 

Sam fully appreciated the gravity of the situation.  He realised that Government and the 

Research Councils could not be relied upon to provide the resources for new activities.  

Rather, the way to do new things was to become much more closely associated with the 

needs of industry and to enhance the support they could provide to the research 

programme.  This was also attractive to Government who were keen to promote research 

which would be of benefit to industry.  Often matching funding from the research councils 

and government could be obtained, as well as studentships through a variety of incentive 

schemes.   During Sam’s five-year period as Head of Department new groups were created 

in Microelectronics led by Haroon Ahmed (1983), Semiconductor Physics by Michael Pepper  

(1984), Optoelectronics by Richard Friend (1987), Polymers and Colloids by Athene Donald 

(1987) and the Interdisciplinary Centre for High Temperature Superconductivity, a 

collaborative effort between a number of departments (1987).  These initiatives grew 

largely out of the activities of the Physics and Chemistry of Solids Group, much of the 

stimulus being provided by Abe Yoffe in encouraging many of the best graduate students to 

exploit the opportunities for innovation in these new disciplines. All of these new activities 

had strong industrial connections and resulted in a major increase in the staff of the 

Laboratory, mostly through research posts funded by Industry and the Research Councils.      

During the 1980s and 1990s, Sam continued, alone and with co-workers, to write on further 

aspects of networks and dynamics, but Sam’s influence would extend to two more major 

areas.  Foods are frequently networks, or even weak glasses, and Sam saw the potentiality 
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for physics to understand the big challenges of a major technology. He had input for both 

academics by starting a major research commitment at the Cavendish Laboratory and for 

industry.  For instance, he was a consultant and advisor at Unilever internationally. Foods 

are also often foams, either empty or filled with liquid, with either closed or open cells as in 

meat, apples, cornflakes, bread, … The modulus, failure and dynamics of such foams 

determine, among other things, feel, freshness, edibility, and release of flavour. Filling with 

fluid can turn cell wall bending in response to imposed strain into stretching, and hence a 

modulus change of the material. This crossover from classical bend foams to newly-

considered stretch foams changes the scaling of properties with the density of cell wall 

material. There can be fluid-induced fracture and/or flow in response to deformation - the 

induced pressure rise is also complex.  Such properties were developed in a paper (Warner 

& Edwards, 1988) that would later find application to foods. 

Powders and granular assemblies are the last major areas to which Sam gave a modern, 

theoretical physics impetus. Firstly, with his student Wilkinson, came powders in the sense 

of random deposition of particles on a surface with their rolling to stable locations. Their 

aim was for the entire statistical and dynamical specification of the surface. Their 1982 

paper (Edwards & Wilkinson, 1982) is now widely cited as a start of a new topic with an 

extension to non-linearity proposed by Kardar, Parisi and Zhang. Sam did not think that the 

KPZ extension described powders any better than his and Wilkinson’s did, but theirs was  

‘an attractive mathematical problem, rather similar to Navier-Stokes turbulence, but without the 

difficult convergence problems of hydrodynamics.’ (Edwards, 2005)  

He later returned to KPZ with Moshe Schwartz (Schwartz & Edwards, 1992) (Schwartz & 

Edwards, 2002). The dynamics of surfaces was revisited, for instance with Bouchaud and 

other colleagues (Bouchaud, et al., 1994). There were other papers with Wilkinson that set 

new directions and of which Sam was very fond, for instance, on the understanding of 3-D 

packing of an assembly of grains working backwards from slices though it (stereography) 

(Edwards & Wilkinson, 1980) (Edwards & Wilkinson, 1982), and on the dynamics of smaller 

grains diffusing as they bounce through a fixed assembly of larger grains. 

Packing indeed plays a central role in the mechanics of granular assemblies: (i) it determines 

contacts and the transmission of forces between grains through arches – in general paths 

with a lower dimensionality than the assembly of grains, (ii) it leads to jammed or arrested 

states that are determined by marginal stability, and (iii) it gives large numbers of 

microscopically different states with the same macroscopic character, inviting the use of 

statistical mechanics to describe collective properties, albeit in these unpromising non-

ergodic systems. Bouchaud and Cates, in an incisive review (see endnote 5), regard these 

three features as Sam’s seminal and founding insights for the physics of granular materials. 

But, first in Sam’s words:  

‘I share an office with the other physics professors in Caius College one of whom is David Tabor.  

One day he came in and said he had a question: if you measure the pressure executed by a sand 
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pile on a planar surface, where will the maximum pressure come?  Now I always think of related 

physical systems to the one in question to see if any are simpler.  I know that a heap of twigs 

could have its middle removed and not collapse, and indeed one could do this also with gravel.  

All systems can form arches, sometimes enough to cover caverns, but always such that the stress 

is sent outwards.  So I answered, the pressure is zero at the edges, rises to a maximum and 

reaches a minimum under the apex.  David replied that that was what Brian Briscoe at Imperial 

had indeed found and was looking for a simple explanation.  I soon realized that instead of sand a 

pile of coins could be solved analytically under some very reasonable assumptions, and given 

exactly the same result as above.  I was joined at this time by Robert Oakeshott who was 

interested in packing problems and after a brief conference paper we set about a general theory 

in which some mechanism of shaking or tapping allowed the grain to explore all the different 

configurations they could take, subject to a total volume V , and the number of ways this could 

be done led to an entropy, S , and therefore to an intensive variable /X V S    which I named 

the compactivity X . The reversible accessibility of granular states whose existence is essential 

for the compactivity concept to be valid was found by the Chicago group of Syd Nagel and since 

then many investigators have been able to confirm the ideas in simulations.’  

In the period 1989-2008, Sam produced 51 papers on the ‘statistical mechanics’ of granular 

material mechanics, 13 of them as sole author and one of those being at the age of 80.  

Sand and soil are classic subjects of engineering mechanics where they tend to be treated 

within classical continuum elasticity and plasticity, which in this area are subject to some 

doubt.  The connection between local forces and macroscopic stress is not unique, there is 

no constitutive relation, and the equilibrium state is undetermined. Sam assumed grains 

would settle until there was a marginal coordination, meaning a minimum number of 

contacts, and then move no more.  But the state is fragile – a sufficient tap could lead to a 

large reorganisation, at least in frictionless systems – the jury is perhaps still out for grains 

with friction. A small tap leads instead to small rearrangements of the intergrain forces, a 

‘random walk in force space’ - Sam’s compactivity is an analogue of temperature, 

/T E S   , in a micro-canonical ensemble, and likewise depends on a uniform measure of 

states in the Edwards ensemble. Is the measure indeed uniform? One is in new territory 

with such arrested systems that lack the microscopic reversibility of thermal systems. 

Granular mechanics from this physics view point has become a huge field started by a man 

in his 60s, and continuing a long career of founding new fields. His bold step of applying the 

notions of statistical mechanics to granular materials has led to an avalanche of papers on 

the subject (Blumenfeld, et al., 2015) 

Figure 5 here 

In 1995 Sam retired from the Cavendish Professorship. About 100 of his closest colleagues, 

many of them former students, met in Corpus Christi College, Cambridge to enjoy splendid 

lectures, dinners and discussions within and beyond science. One life-long colleague was 

Pierre-Gilles de Gennes whose own work in polymers was so close to Sam’s. For many years, 

and even well into his own retirement, de Gennes would visit Cambridge a few times a year. 

There would be sumptuous dinners in Caius, or more intimate dinners in the Edwards home. 
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If there was rivalry, it was purely intellectual, with the greatest of warmth in the private 

sphere. Sam firmly declined de Gennes’ suggestion to those organising his retirement 

meeting that we collectively present him a hot air balloon journey.  He opted rather for the 

complete works of JS Bach on CD, and a large collection of video discs of opera – two 

lifelong loves of his that were perhaps kindled, as we have seen, in his Harvard time.  

In 2016, three long-standing colleagues of Sam organised the first of an annual series of 

Edwards Symposia in his memory at the Isaac Newton Institute in Cambridge.    About 100 

friends and colleagues attended and about 100 others, unable to attend, were there in 

spirit.  Many sent this author insistent messages not only about Sam’s pivotal role in their 

science, but also about the encouragement and generous recognition he had always given 

them – from their starting point as students, and following on during their careers.  His 

personal affection, both from him and given in return, was a consistent theme expressed to 

me.    

The aims of this series of meetings reflect those of Sam over many decades – the 

exploration through theoretical physics of complex phenomena in, broadly-speaking, soft 

matter.  An essential element is the translation of the insights gained to the problems of 

industry. But equally important, as in Sam’s own science, is the identification of and posing 

of problems by industry for theoretical physicists.  The attendees at the first “Edwards 

Symposium” were from both camps and the meetings are as much to build links to industry 

as to advance fundamental science. Sam would have been pleased by this conjunction. 
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Figure 1: A sketch in Sam's hand of crosslinks, entanglements and Gaussian invariants of 

topological. With permission from Springer (Edwards, 1970). 
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Figure 2: An extract from Sam's 1967 paper on statistical mechanics of polymerised 

materials (Edwards, 1967), with figures in his own, unmistakable hand. 
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Figure 3: Edwards and Doi at Sam’s retirement meeting, nearly 20 years after their initial 

collaboration started. 
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Figure 4: Notes, kept by Doi, sketched by Sam during their first encounter. Peter Casey was 

one of Sam's private secretaries – In the top right, Sam is noting for Masao how meetings 

will be arranged. With thanks to Professor Doi. 
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Figure 5: Edwards and de Gennes at Sam's retirement meeting, September, 1995. 
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