
Exploiting multimodality and structure
in world representations

Cătălina Cangea

King’s College

This dissertation is submitted for the degree of Doctor of Philosophy
March 2021

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared in the Preface and specified in the text.
It is not substantially the same as any that I have submitted, or, is being concurrently
submitted for a degree or diploma or other qualification at the University of Cambridge
or any other University or similar institution except as declared in the Preface and
specified in the text. I further state that no substantial part of my thesis has already
been submitted, or, is being concurrently submitted for any such degree, diploma or
other qualification at the University of Cambridge or any other University or similar
institution except as declared in the Preface and specified in the text. It does not exceed
the prescribed word limit for the relevant Degree Committee.

Cătălina Cangea
March, 2021

Abstract

Exploiting multimodality and structure in world representations

Cătălina Cangea

An essential aim of artificial intelligence research is to design agents that will eventu-
ally cooperate with humans within the real world. To this end, embodied learning is
emerging as one of the most important efforts contributed by the machine learning com-
munity towards this goal. Recently developing sub-fields concern various aspects of such
systems—visual reasoning, language representations, causal mechanisms, robustness to
out-of-distribution inputs, to name only a few.

In particular, multimodal learning and language grounding are vital to achieving a strong
understanding of the real world. Humans build internal representations via interacting
with their environment, learning complex associations between visual, auditory and
linguistic concepts. Since the world abounds with structure, graph-based encodings are
also likely to be incorporated in reasoning and decision-making modules. Furthermore,
these relational representations are rather symbolic in nature—providing advantages
over other formats, such as raw pixels—and can encode various types of links (temporal,
causal, spatial) which can be essential for understanding and acting in the real world.

This thesis presents three research works that study and develop likely aspects of fu-
ture intelligent agents. The first contribution centers on vision-and-language learning,
introducing a challenging embodied task that shifts the focus of an existing one to the
visual reasoning problem. By extending popular visual question answering (VQA)
paradigms, I also designed several models that were evaluated on the novel dataset.
This produced initial performance estimates for environment understanding, through
the lens of a more challenging VQA downstream task. The second work presents two
ways of obtaining hierarchical representations of graph-structured data. These methods
either scaled to much larger graphs than the ones processed by the best-performing
method at the time, or incorporated theoretical properties via the use of topological

data analysis algorithms. Both approaches competed with contemporary state-of-the-art
graph classification methods, even outside social domains in the second case, where
the inductive bias was PageRank-driven. Finally, the third contribution delves further
into relational learning, presenting a probabilistic treatment of graph representations in
complex settings such as few-shot, multi-task learning and scarce-labelled data regimes.
By adding relational inductive biases to neural processes, the resulting framework can
model an entire distribution of functions which generate datasets with structure. This
yielded significant performance gains, especially in the aforementioned complex scenar-
ios, with semantically-accurate uncertainty estimates that drastically improved over the
neural process baseline. This type of framework may eventually contribute to developing
lifelong-learning systems, due to its ability to adapt to novel tasks and distributions.

The benchmark, methods and frameworks that I have devised during my doctoral studies
suggest important future directions for embodied and graph representation learning
research. These areas have increasingly proved their relevance to designing intelligent
and collaborative agents, which we may interact with in the near future. By addressing
several challenges in this problem space, my contributions therefore take a few steps
towards building machine learning systems to be deployed in real-life settings.

Acknowledgements

Many claim their PhDs would not have been possible without the people mentioned
in this section. I think mine would’ve still gone ahead no matter what, but in a very
different and—dare I say—boring way! All the experiences I’ve had during these nearly
four years (add to that the previous four, which set me on a research track) often diverge
in nature from the somewhat controlled manner in which ideas appeared, work was
done and pizzas were eaten while reviewing papers in my office, at the CL Cafe, in the
Fishbowl, at conferences all over the world (well, US and Canada) or, more recently, on
Zoom/gMeet/your favourite pandemic teleconferencing software... Still, the groups
of people present in these two threads overlapped many times, and this half-journal-
entry/half-list-of-top-N -awesome-people tells how they made my time in this degree
more beautiful with every interaction we had.

I’ll start at the end, by thanking my viva examiners—Nic Lane and Xavier Bresson—for
reminding me through their insightful questions and future work suggestions that my
research has been worthwhile and that it fits into the broader and richer picture, which
I barely had space to outline in the thesis! Even though circumstances made me attend
the viva from my room in my Romanian hometown(!), both of you made the virtual
encounter seem like a vivid and easy-going in-person meeting—probably the dream of
everyone who reaches thesis submission time.

I said my degree would’ve gone ahead no matter what, but there is one person who
made it possible in the first place—my supervisor, Pietro Liò. His support went far
beyond reviewing paper drafts and brainstorming sessions, turning into the one of an
omnipresent friend-in-need and giving me better advice than most people I’ve ever met.
I’ve told you this before, but will leave it in writing as well—I’ve been incredibly lucky
to have you as a supervisor and will always appreciate you putting my happiness and
sanity first, which is something not many PhD students seem to benefit from; thank you
for believing in me, ‘everything [seems to be going] OK’!

The wonderful research group I was part of made these years much more enjoyable and
social, be it during work or outside office hours—CL lunches and coffees, meetings on the

Backs, covid walks and hopefully many Italian-wine-infused formals to come! Felix and
Indigo would always distract me from work in FE14, but lift my spirits in the meantime,
with chats that became progressively rowing-focused, as Felix was persuaded to try
it; Ben, Cris and Arian were humblingly smart collaborators, but also fun pub friends;
Petar never stopped believing in me and my research output, even when I gave up; Paul
was omnipresent in covid times for the 3pm coffee, when I’d be procrastinating, and
kindly trusted me with his motorcycle gear; Helena inspired me with her enthusiasm for
science and her fearless sports endeavours; Emma is a living proof that you can always
take up something new, if you put your mind to it; Nikola never failed to join in on
rants about various professional happenings, while sharing his extensive knowledge
in paper feedback and asking difficult but important questions after AI talks; finally,
Charlotte has been a great women@CL little sister and I’m happy for her upcoming PhD
studentship—looking forward to BB coffees and Fitzbillies breakfasts with you!

As I was blessed with professional freedom during my PhD, I had the chance to be part
of several communities, meeting amazing researchers who helped shape my knowledge
of the field and explore worthwhile questions. At Mila, Aaron Courville offered me a
fantastic perspective to embodied navigation, which is still my main thread of interest,
almost three years after the internship! Eugene Belilovsky was of great help in the
VideoNavQA project—I was excited to collaborate with him and Aaron in subsequent
works led by Boris Knyazev, who is a model researcher to me, as I really admire his
tenacity and rigor in paper-writing. At X, the moonshot factory, Qianyu Zhang was a
great host and I was happy to be part of the team Olivia Hatalsky was leading towards
future success! Working on real-world challenges is something that immensely motivates
me, so I thank Jack Hidary for introducing us to X, and the early-stage project team I was
part of in summer 2019 for the most motivating internship and close-knit collaboration
I’ve ever done. Before and during my brief stint at Relation Therapeutics, Charlie Roberts
and Jake Taylor-King made sure I shook hands with everyone in the office (it’s OK, this
was in February 2020) and shared their contagious excitement with me; Cristian Regep
and Jyothish Soman were very helpful collaborators, making sure I’m getting the most
out of the little time I was onboard. Finally, the last thing I did before writing my thesis
was a four-and-a-half-month internship at DeepMind—here, Piotr Mirowski achieved
the impossible, being the most helpful and present host an intern could ever hope for, in
(yes, I will say it again) unprecedented times. The project I worked on in Raia Hadsell’s
team, getting immensely valuable feedback and brainstorming time with Piotr, her and
Razvan Pascanu, unified many of my threads of interest and heavily contributed to my
overarching research vision reflected by this thesis.

Supervising in my department is a two-way knowledge exchange. My undergraduate
and research project students—Andy Wells, Felix Opolka, Aaron Solomon, Carlos
Purves, Aaron Tjandra, Péter Mernyei, Mukul Rathi, Pavol Drotár—have taught me
a great deal during our meetings and were a constant reminder of how this place is
bursting with intelligence and enthusiasm. I wish you all the best in your careers and
know for sure that you are capable of taking up any project, should you wish to.

The community in my College (King’s, the PhD one, since I’ve been a member of three!)
is incredibly friendly and down-to-earth. This includes the CS group, where Tim Griffin
and Marwa Mahmoud were always lovely to me. It was a pleasure doing admissions
interviews with them back in 2017, even though I had a terrible cold (apologies to any
applicants who discovered they were ill back home...) I thank Tim for being wonderfully
supportive ever since Part IB, even though I never managed to take up a Theory project,
as evil Machine Learning got my attention instead. Marwa made the (gruesome, cold &
wintery) third lockdown much sunnier on walks around town with hot chocolate—I
very much hope to see you around King’s in the future!

Once a rower, always annoying the non-rowers... this sport took entire months off my
research time, but I will never regret all the flawless strokes King’s W1 took on the water,
the memories from boat club dinners and the friendships made in all crew lineups I’ve
been part of! Rebekka was the greatest captain in non-covid times, because she never
acted like her erg scores were better than the rest... although they were. Izzy was my
extra-training buddy in Michaelmas 2019 and a constant inspiration—the only thing
keeping you away from yet another erg/workout/circuit is yourself! Mary was the most
terrifying yet excellent cox I’ve had so far and I will never forget how well she made us
row, especially in Mays 2018. Amanda gets the best-captain-in-covid-times title, along
with that of a kind and supportive friend—don’t think many college clubs had this level
of guidance from their captain in lockdowns and I thank her for keeping us sane with
weekly workouts and leaderboards! Finally, Feli and Agnes have shown the world (or
river Cam) that grads do it better, and I’ve been proud to do so alongside them.

There is no way I can cover all the ways in which my friends have made this degree
worthwhile—my gratitude reaches far beyond a few lines of text. Towards Jess, my
siamese rowing person across three different timezones, and Joy, my best friend on a
‘Permanent Vacation’ in pandemic times. For Edgar, my ancient Tripos friend and the
best housemate in the world, and Pavel, my Bayesian friend with whom I had the last
breakfasts before covid and sang questionable Bon Jovi at karaoke. To Andreea, one of
the kindest people and listeners I’ve ever met—let’s have an unforgettable holiday this
summer—and to Nathan and Jon, my amazing and loyal bandmates—let’s keep playing
music (yes, most of it is going to be about time) until this place goes underwater!

I generally don’t have role models or view any people in my field as superstars, but if I
were asked to choose a couple, I would start with my Computer Science teacher Daniela
Lica, who inspired me to study algorithms in high school and so much more during
university! This thesis is partly dedicated to you—thanks for being such a fundamental
inspiration in my professional life; it must be wonderful being the name on so many
people’s minds, when they think of memorable figures who shaped their thoughts
and early-career aspirations. I would also like to thank Marina Meilă for her support
during my early research days and for the kind advice given during coffee breaks at
ML conferences—I feel humbled and grateful to know you, such an accomplished and
acknowledged researcher that I can only dream of becoming one day.

To my parents, Otilia and Emanuel Cangea—I will be eternally grateful for your uncon-
ditional love, appreciation and support, no matter how deviant some of my choices have
been! Thank you for being such a wonderful unit, for believing in me, for raising me
and for putting up with my nonsense and randomness, even in more recent times. This
apple fell not far from the engineering tree.

Finally, with the risk of sounding like a broken record, I cannot ignore the changes that
the (current...?!?) pandemic brought to me personally. Despite all the wreckage and
disruption it caused globally, covid helped me turn around so many negative aspects
of my life and figure out what makes me a better and happier person—certain habits,
hobbies and wonderful people whose presence deeply affects me, regardless of how
much time passes. My last year of the PhD was a highly inspirational one and I can only
hope the change keeps blossoming.

”You can check out anytime you like
But you can never leave”

(The Eagles, Hotel California)

Contents

1 Introduction 17
1.1 Motivation and research questions . 19
1.2 Thesis outline . 21
1.3 Publications . 23

2 Background 27
2.1 Foundations, methods and building blocks 27

2.1.1 Feedforward neural networks . 27
2.1.2 Model optimisation . 29
2.1.3 Regularisation . 30

2.1.3.1 Dropout . 30
2.1.3.2 Batch normalisation . 30

2.1.4 Convolutional neural networks . 31
2.1.4.1 Convolutional layers . 32
2.1.4.2 Pooling layers . 33

2.1.5 Long short-term memory . 33
2.1.6 Attention . 35
2.1.7 Message passing and graph neural networks 35
2.1.8 Neural processes . 38

2.2 Machine learning tasks . 39
2.2.1 Node property prediction . 39
2.2.2 Graph property prediction . 41

2.2.2.1 Top-k pooling . 42
2.2.2.2 Hierarchical pooling . 43
2.2.2.3 Summary . 44

2.2.3 Visual reasoning and question answering 44

3 Multimodal learning for environment understanding 47
3.1 Introduction and contribution overview 47

3.2 The need for a different approach to embodied question answering . . . 48
3.3 Previous related work . 50
3.4 A new benchmark for embodied reasoning 52

3.4.1 Visual information . 53
3.4.2 Questions . 54

3.5 Methods . 55
3.5.1 Single-modality . 55

3.5.1.1 Language . 55
3.5.1.2 Vision . 55

3.5.2 Multiple-modality . 56
3.5.2.1 Concatenation models . 56
3.5.2.2 FiLM-based per-frame reasoning 56
3.5.2.3 Temporal multi-hop FiLM 59
3.5.2.4 Temporal Compositional Attention Networks 59

3.6 Experiments . 62
3.6.1 Models evaluated . 62
3.6.2 Model performance . 63
3.6.3 Analysis by question category . 64

3.7 Discussion . 66
3.8 Additional related research . 66
3.9 Summary . 67

4 Hierarchical representations of structured information 69
4.1 Introduction and contribution overview 69
4.2 Sparse differentiable pooling . 71

4.2.1 Previous related work . 71
4.2.2 A CNN-style graph classifier . 73
4.2.3 Experiments . 76
4.2.4 Summary . 77

4.3 Topologically-grounded pooling . 79
4.3.1 Background and relevant work . 80
4.3.2 A Mapper-based coarsening layer 81
4.3.3 Graph classification model . 82
4.3.4 Experiments . 83
4.3.5 Summary . 85

4.4 Discussion and summary . 85

5 Structural biases for probabilistic modelling in challenging scenarios 87
5.1 Introduction and contribution overview 87

5.2 Incorporating relational inductive biases in the neural process model . . 88
5.3 Previous related work . 90

5.3.1 Neural process models . 90
5.3.2 Graph learning under uncertainty 91

5.4 Message Passing Neural Processes . 91
5.4.1 Problem statement . 91
5.4.2 Dataset sampling . 91
5.4.3 Encoder . 93
5.4.4 Aggregation . 95
5.4.5 Decoder . 95
5.4.6 Generation and inference . 95
5.4.7 Aggregation in challenging settings 97

5.5 Experiments . 98
5.5.1 Baselines and model details . 98

5.5.1.1 Message passing neural process 98
5.5.1.2 Neural process baseline 99
5.5.1.3 Graph neural network baseline 100

5.5.2 Fixed labelling . 100
5.5.2.1 Biochemical data . 100
5.5.2.2 Geometric data . 101

5.5.3 Uncertainty modelling . 101
5.5.4 Arbitrary labelling . 105

5.6 Discussion . 106
5.7 Summary . 107

6 Conclusion and future directions 109

Bibliography 115

A Additional details and results 137
A.1 VideoNavQA question templates and respective counts 137
A.2 VideoNavQA model hyperparameters . 138
A.3 Pooling hyperparameters . 139
A.4 More results from the MPNP evaluation 140
A.5 Numerical results for ShapeNet . 142

Glossary

BatchNorm Batch normalisation [89]. A method used for faster and more stable train-
ing of neural networks, which involves learning scaling and shift coefficients to
multiply intermediate network representations by.

CNN Convolutional neural network [109]. A type of neural network that leverages
spatial inductive biases and local connectivity, as opposed to full connectivity.

EQA Embodied Question Answering [38]. A VQA task from the perspective of an
embodied agent, which needs to navigate in a house environment to find the
answer.

FiLM Feature-wise linear modulation [145]. A method used for computing scale and
shift coefficients for intermediate network representations (such as visual features),
starting from a conditioning signal.

GNN Graph neural network [160]. A type of neural network that employs structural
biases when processing the input data, thus incorporating the connectivity infor-
mation present in the dataset.

LSTM Long short-term memory [81]. A type of neural network that leverages temporal
biases in learning to represent the input signal, using several gating modules to
enable selective ‘forgetting’. Addresses the ‘catastrophic forgetting’ issue in vanilla
recurrent neural networks.

MAC Memory, attention, and composition [88]. A MAC cell performs a single reasoning
step over the current control state, conditioned by a separate signal (which can
be language), by querying and updating the current memory state, typically
consisting of visual features.

MP Message passing [61]. A paradigm for processing graph-structured data, which
views the processing within a GNN as a series of operations that transmit infor-
mation between nodes along the links connecting them to their neighbours.

NN Neural network [98]. A learnable function typically comprising a fixed number of
fully-connected layers. Also known as an artificial neural network or a feedforward
neural network.

NP Neural process [59]. A hybrid architecture that combines neural networks and
Gaussian processes to obtain linear-time predictions with uncertainty estimates.
This type of model is useful in challenging setups including multi-task, few-shot
learning and low-data regimes.

SGD Stochastic gradient descent [157]. The most general approach to training neural
networks, which takes small steps in parameter space, in the direction of the loss
function gradient, over a mini-batch of examples.

TDA Topological Data Analysis [32]. A recent class of approaches designed for under-
standing the shape and other properties of datasets, using methods from algebraic
and differential topology.

VQA Visual question answering [121]. A class of tasks where the machine learning
system is given an image and a question as input and needs to produce an answer,
either by classification (over a fixed number of answers) or via natural language
generation.

Chapter 1

Introduction

The last decade of machine learning research has yielded extraordinary progress in
sub-fields such as computer vision [30, 64, 105, 155, 158, 196], natural language process-
ing [9, 21, 172, 180] and reinforcement learning [78, 79, 129, 130, 131, 132, 179, 204]. All
of these developments have allowed machine learning systems to build increasingly
powerful representations of specific knowledge about the real world or about artifi-
cial environments that simulate it. These methods have often been tailored to a single
task, but other approaches—including ones used in meta-learning (or learning how
to learn) [52, 150, 153, 193, 202], out-of-distribution generalisation [10, 80, 106, 171]
and robustness-critical tasks [11, 67, 76, 189, 212]—enable adaptation to new settings
or noisy and unpredictable ones. The latter kind of development has brought machine
learning models one step closer to the challenging requirements that these systems will
be faced with, as soon as they are deployed into the real-world.

What kind of competences would machine learning (ML) setups profit from the most?
The forefront motivation of artificial intelligence research is to eventually integrate
intelligent agents in humans’ lives and enable them to co-operate [28, 50, 90] towards
solving daily or more complex tasks. In order for this to work, we naturally aim to equip
these intelligent systems with human-like capabilities: visual reasoning [7, 121, 205],
language grounding [53, 182], understanding the functioning of an environment [40,
55, 116], collaborating with other agents and humans via language and actions—and
lastly but not least importantly, navigating [125] within this space, all while handling
the inherent uncertainty [60] about the environment.

Both humans and artificially-intelligent agents benefit from an egocentric perspective
and experience of an environment [4, 68, 102, 146]. Therefore, research efforts in the
embodied navigation, reasoning and learning sub-fields are an essential indicator of our
progress towards the aforementioned goals—they help discover increasingly powerful

17

methods of building representations of the worlds that agents operate in. Numerous
works [36, 40, 74, 84, 104, 119, 176, 197], along with proposed tasks [5, 33, 38, 65, 147,
149, 163, 175], often carried out in realistic environments [19, 44, 101, 159, 186, 191, 192],
have been recently introduced at conferences and relevant workshop venues.

World representations have also been studied from a more general (and not necessarily
embodied) perspective—for example, obtaining structured representations of scenes in
reinforcement learning settings [63, 204], or directly from raw visual data [82, 96, 114,
148], and more complex approaches used to build causal representations [14, 23, 92, 171].

Reasonably, most of the tasks designed for embodied learning have not been ‘solved’ yet—
several challenges remain to be addressed with regards to the points discussed above.
Related sub-goals in this problem space also present various difficulties for current
models in the research literature. To begin with, grounding linguistic concepts [53] in
the visual and interactive cues received by an agent in an environment is such a complex
task in itself, that an entire sub-community is working to improve on it. Research
venues [2, 27, 56, 185] such as the ViGIL workshop [27], which I am co-organising in
2021, provide yearly opportunities for interdisciplinary communication on the topic
between scientists from ML and other fields including psychology and linguistics—a
suitable way to advance research in the field, given its highly heterogeneous nature.

Although a crucial step towards informed and effective world representations, integrat-
ing various capabilities and modules in an end-to-end embodied ML system is often
highly challenging. Chapter 3 of the thesis tackles this issue, while also touching upon
the language grounding one. As by-product of the study, another question arises: is
designing an end-to-end trainable system always the best choice? Difficulty will also
emerge from scaling to real-world environment size and complexity. For instance, nav-
igating in cities [77, 113, 126] is not a trivial task—here, one cannot keep the entire
navigation graph (wherein each node is a step taken by the agent) in working mem-
ory, as neighbourhoods in cities can quickly reach tens of thousands of nodes [127].
Instead, hierarchical techniques for graph summarisation may be useful in maintaining
essential information at more manageable scales, by meaningfully compressing the raw
navigation graph. Chapter 4 delves into this problem space and proposes two different
techniques for graph coarsening that are applicable to any graphs with features living
on their nodes. Finally, perhaps the most important challenge lies in handling out-
of-distribution inputs [8], noisy data [49] and evolving distributions [69, 152]—all of
which are likely to be present in the real-world settings agents will operate in. Chapter 5
presents a classification framework that is designed for challenging problem setups such
as few-shot, multi-task and low availability of labelled data.

18

The rest of this chapter motivates and outlines a series of methods that I have designed
and presented to the vision-and-language and graph representation learning communi-
ties. They each tackle a specific issue related to modules that intelligent agents might
eventually require to operate in the real world—by either improving upon previous
approaches or achieving comparable performance, whilst providing additional benefits.

1.1 Motivation and research questions

This thesis proposes a set of theoretical contributions in the form of machine learning
algorithms, which produce representations of realistic environments and real-world
information at an intermediate level within their processing. These representations are
evaluated via several types of downstream tasks, ranging from question answering to
individual sample and graph (or structured collection of samples) property prediction.
In some cases, the manner in which evaluation tasks were constructed allowed me
to draw conclusions about the explored machine learning paradigms. In others, by-
products of the developed methods—such as increased interpretability or the presence
of uncertainty estimates—were useful in highlighting the improved or complementary
capabilities of these methods.

The eventual motivation of my research is for these types of modules to be incorporated
in the internal system of an intelligent agent. All of them would be suitable in this setting,
as they perform visual reasoning, processing of information in a hierarchical manner
and property prediction with uncertainty estimates in challenging data scenarios (few-
shot, multi-task, limited label availability), respectively. These components may aid
the decision process of such an agent, while the latter explores the environment that it
operates in, aggregating information over time and reasoning over the rich, multimodal
and structure-informed memory (or knowledge base) it has thereby constructed.

Within all the tasks explored in this research, there still exists a considerable gap to
human or perfect performance. It is thus essential to keep investigating the following
research questions—perhaps in relation to other tasks or via more newly-proposed
methods that have shown to improve performance on intermediate tasks (for example,
extracting scene graphs from visual inputs). The central questions guiding the thesis are
summarised below, along with the challenges encountered by previous research works.

1. What is the level of performance that we can achieve in embodied reasoning tasks, if we
obtain multimodal representations from visual-stream inputs, conditioned on the language
signal from a question answering task?
Learning navigation, visual reasoning and language grounding for question an-
swering has proved difficult when done within the same ML system, with language-

19

only baselines often surpassing these methods on the initial Embodied QA task.
Chapter 3 presents VideoNavQA, a novel benchmark that views this task from a
different standpoint—no navigation requirement and questions with higher vari-
ety and difficulty—along with methods that I developed for tackling the new task.
VideoNavQA contains videos of embodied navigation in indoor environments
and corresponding questions. The methods I designed are inspired by popular
VQA paradigms and address the additional challenge of incorporating temporal
processing in the visual pipeline. We provided initial results for this benchmark,
which illustrate the relative effectiveness of VQA-based models against simple
baselines and the considerable gap to human performance yet to be bridged.

2. Can we obtain hierarchical representations of structured data that achieve state-of-the-art
performance on downstream tasks, while sparsifying the mechanism that produces them?
Or while making these representations more theoretically grounded?
Chapter 4 presents two different approaches to producing hierarchical representa-
tions of structured data, which were evaluated via graph classification performance
on several benchmarks. The first method reduced the quadratic memory require-
ments which were necessary to achieve state-of-the-art performance at the time
of the study—our pipeline achieved comparable results with linear requirements,
thus scaling to bigger graphs. The second work addressed the lack of topologi-
cal grounding in existing pooling layers, which would learn cluster assignment
matrices end-to-end, strictly from the supervision signal. This would restrict
the resulting assignments from being interpretable and preserving semantic and
structural information at various scales. Results obtained by the pooling layer
that I developed showed that adding a simple inductive bias in the node ranking
mechanism—which is part of the cluster assignment process—achieves promising
results, even on domains outside the ones initially expected.

3. Can we model structured representations in a probabilistic framework that can better adapt
and generalise to few-shot and multi-task contexts with changing data distributions?
Chapter 5 tackles the task of building representations of stochastic processes that
generate structured data, leveraging the neural process framework. We have devel-
oped the Message Passing Neural Process by incorporating a relational inductive
bias in its operation—the resulting framework performs classification by leverag-
ing the structure present in datasets extracted from functions that are sampled
from an underlying distribution. This resulted in significant improvements over
neural processes across existing and novel tasks from several domains. We also
showed, via qualitative and quantitative studies, that MPNPs produce uncertainty
estimates for structured data that are more semantically-accurate and helpful in

20

active learning settings. The framework is highly suited to producing few-shot
predictions and operating in multi-task settings, with only a few labelled samples,
and adds a useful inductive bias to the neural process family.

'Are the computer and the bed the same colour?'

...... ...

World
representations

multimodal

functional &
probabilistic

hierarchical

Figure 1.1: An illustration of the aspects explored in this thesis that can benefit world
representations. (Multimodal:) The latter can be informed by visual streams of navigation
inside an environment, where the ML system grounds the concepts from the linguistic
signal (here, a question) in the visual information. (Hierarchical:) Representations can
also be of this nature, since information exists at various scales and we might often
need to choose one that is appropriate for the task that we are solving. (Functional &
probabilistic:) A further step is to interpret the training data as samples across multiple
functions, which were generated by the same stochastic process. Uncertainty estimates
associated with predictions can be useful in a variety of real-world scenarios.

1.2 Thesis outline

The rest of this thesis is structured as detailed below. Contribution-wise, I first tackle
the multimodal aspect of world representations, and follow with delving into the one
that concerns hierarchical representations obtained via pooling methods. I conclude by
introducing a framework for producing probabilistic representations of graph-structured
data, which models the underlying stochastic generative process. Figure 1.1 illustrates
the nature of these contributions.

Chapter 2—Background I start this chapter by reviewing the necessary theoretical
background that was required to carry out the research presented in the contribution
chapters—machine learning and neural network fundamentals, architectures with vari-

21

ous inductive biases (convolutional neural networks, long short-term memory, graph
neural networks) and more complex frameworks (neural processes). I then move on
to discussing each class of machine learning tasks tackled by the main research efforts,
increasing in complexity whilst building up on previously discussed approaches.

Chapter 3—Multimodal learning for environment understanding Here, I describe
how I created a novel benchmark for embodied question answering (EQA) tasks, then
extended popular VQA paradigms to address the additional challenges introduced by
this dataset. The aim was to obtain an idea of how well these models can perform on a
more difficult variant of the initially-proposed EQA task, while removing the naviga-
tion requirement from the ML system. I developed VQA-style models for answering
questions about visual navigation streams inside house environments. This essentially
corresponds to tackling the EQA task from a different angle: QA performance is still
being measured, but on restricted inputs and a much higher question difficulty. Our
study reported results on the novel benchmark from single-modality baselines and
video-and-language models. These results showed that multimodal methods indeed
make use of the visual information, while enabling interesting conclusions about the
effectiveness of VQA-style methods on temporal visual streams.

Chapter 4—Hierarchical representations of structured information In this chapter, I
describe two different and perhaps complementary methods to performing graph coars-
ening within a graph classification pipeline. The first approach consists of a CNN-like
architecture with sparse pooling layers—namely, modules which have a linear memory
requirement in terms of the graph size. We showed that our model competed with the
state-of-the-art method, DiffPool, on benchmark datasets; further, while the quadratic
complexity of the DiffPool layer limited the maximum input size, our pipeline could
accommodate significantly larger inputs. The second approach combines the expres-
siveness of graph neural networks with Mapper, a topological data analysis algorithm,
to produce theoretically-grounded graph summaries. Specifically, I developed a pooling
layer that operates by ranking node features using the PageRank function and then
clusters them using Mapper. The graph classification performance was competitive with
other contemporary state-of-the-art pooling approaches on standard benchmarks.

Chapter 5—Structural biases for probabilistic modelling in challenging scenarios
This contribution involves adding structural inductive biases to the neural process frame-
work, in order to exploit the structure available in the functions generated by stochastic
processes. We leverage message passing within the encoder and decoder modules of
the neural process, allowing the functional representation to be richer by incorporating
structural information. Our Message Passing Neural Process (MPNP) framework was

22

evaluated on various data domains, with results validating the hypothesis that equip-
ping NPs with the relational inductive bias yields better representations for classification.
Furthermore, MPNPs were able to tackle few-shot and multi-task settings, where GNNs
and other baselines failed to achieve better-than-chance results. Finally, the novel tasks
designed by my collaborator showcase the applicability of MPNPs in a wide range of
scenarios and propose important directions that the graph learning community can
tackle in the near future.

Chapter 6—Conclusion and future directions In this final chapter, I summarise the
contributions presented in the thesis and discuss future directions for each of them.
Lastly, I present an overall vision for the purpose of learning world representations which
comprise multimodal and structural information, both aspects having been explored
within the research in my PhD. These representations will ideally be used by embodied
agents during navigation, reasoning and task-solving in real-life(-like) environments.

1.3 Publications

The research efforts presented in this thesis have led to several publications, which I
enumerate below. Most of them correspond to the main contributions in Chapters 3, 4
and 5, whilst the remaining ones are highly related in nature and aims or directly make
use of these contributions:

1. Cangea, C.*, Veličković, P.*, Jovanović, N., Kipf, T., & Liò, P. (2018). Towards
Sparse Hierarchical Graph Classifiers. arXiv preprint arXiv:1811.01287. Rela-
tional Representation Learning Workshop (NeurIPS 2018).

2. Cangea, C., Belilovsky, E., Liò, P., & Courville, A. (2019). VideoNavQA: Bridging
the Gap between Visual and Embodied Question Answering. The 30th British
Machine Vision Conference (BMVC 2019).

3. Mernyei, P., & Cangea, C. (2020). Wiki-CS: A Wikipedia-based Benchmark for
Graph Neural Networks. arXiv preprint arXiv:2007.02901. Graph Representation
Learning and Beyond Workshop (ICML 2020).

4. Knyazev, B., de Vries, H., Cangea, C., Taylor, G. W., Courville, A., & Belilovsky,
E. (2020). Graph Density-Aware Losses for Novel Compositions in Scene Graph
Generation. The 31st British Machine Vision Conference (BMVC 2020).

5. Knyazev, B., de Vries, H., Cangea, C., Taylor, G. W., Courville, A., & Belilovsky,
E. (2020). Generative Graph Perturbations for Scene Graph Prediction. arXiv
preprint arXiv:2007.05756. Object-Oriented Learning Workshop (ICML 2020).

23

6. Bodnar, C.*, Cangea, C.*, & Liò, P. (2020). Deep Graph Mapper: Seeing Graphs
through the Neural Lens. arXiv preprint arXiv:2002.03864. Topological Data Anal-
ysis and Beyond Workshop (NeurIPS 2020). Submitted to Frontiers in Big Data:
Topology in Real-World Machine Learning and Data Analysis.

7. Day, B.*, Cangea, C.*, Jamasb, A. R., & Liò, P. (2020). Message Passing Neural
Processes. arXiv preprint arXiv:2009.13895. Submitted to ICML 2021.

The 1st and 6th papers are joint-first authorship works which were presented at widely-
attended NeurIPS workshops. They both introduce methods for producing hierarchical
representations of graph-structured inputs. ‘Towards Sparse Hierarchical Graph Classifiers’
has been widely acknowledged by the graph representation learning community, having
received 70 citations at the time of submitting this thesis.

The 2nd publication represents the output of the collaboration started during my intern-
ship at Mila, with researchers Eugene Belilovsky and Aaron Courville, who was my
supervisor. The work proposed a novel benchmark for measuring progress in embodied
QA tasks and models that extended widely-used VQA paradigms. I presented this
paper at the British Machine Vision Conference1, one of the biggest computer vision
research events, but also during a spotlight talk at the interdisciplinary ViGIL (Visually
Grounded Interaction and Language) workshop at NeurIPS 20192—which validated
the relevance of this study to the research community.

The 7th study looked further into graph-structured data representations, by extending the
neural process framework with a relational inductive bias. This contribution addresses
more complex tasks which go beyond supervised learning, delving into multi-task and
few-shot learning. We have submitted the manuscript to the Thirty-eighth International
Conference on Machine Learning.

The 4th and 5th studies—conference and workshop papers, respectively—are related in
nature to the vision-and-language study for embodied tasks that I carried out for the first
publication. These two works, led by Boris Knyazev, focus on improving scene graph
generation pipelines—namely, the prediction of node (object) and edge (relationship)
classes from an input image. Their central aim was to ameliorate the generalisation
issues that arise from training these systems on visual datasets with long-tailed data
distributions. Scene graph generation systems have been increasingly studied lately and
are thus an important part of the visual reasoning systems that embodied agents may
end up using in practice.

1https://bmvc2019.org/programme/detailed-programme/
2https://vigilworkshop.github.io/2019

24

https://bmvc2019.org/programme/detailed-programme/
https://vigilworkshop.github.io/2019

Finally, the 3rd work was led by Péter Mernyei, one of the students whom I supervised
for their Part II (final-year undergraduate) dissertation project. He used the DGM
graph summarisation technique proposed in the 3rd work to visualise Wiki-CS, the novel
benchmark he devised for evaluating the performance of node classification architectures.
Furthermore, DGM clearly illustrated differences in the structural and class distributions
between Wiki-CS and the other, widely-used standard benchmarks (Cora, CiteSeer and
PubMed). This manuscript was accepted to the Graph Representation Learning and
Beyond Workshop at ICML 2020 and received a contributed talk slot, which confirms
the importance of introducing a novel benchmark and illustrating differences in its data
distribution from the current ones—a process in which DGM played an essential role.

25

26

Chapter 2

Background

This chapter starts by reviewing in Section 2.1 the machine learning theory applied in the
contributions. Namely, Chapter 3 introduces multimodal approaches that use convolutional
neural networks, long short-term memory and attention, Chapter 4 presents novel architectures
comprising graph convolutional layers, and Chapter 5 describes a neural process framework with
relational inductive biases in the general form of message passing. Section 2.2 then reviews the
class of machine learning tasks tackled by each contribution, outlining potential challenges in
every case. The purpose of this chapter is to make the thesis self-contained, but the material
presented here is by no means exhaustive with respect to the corresponding research sub-fields.

2.1 Foundations, methods and building blocks

2.1.1 Feedforward neural networks

Feedforward neural networks (NNs), also known as multi-layer perceptrons (MLPs), are
a class of parameterised machine learning models used to represent existing functions
f : X → Y . During learning, the parameters θ of a neural network experience a sequence
of updates, which produce the best possible approximation f̂θ of a function f . Generally
speaking, we wish to map an input x ∈ X to an output value y ∈ Y—the neural network
computes ŷ = f̂θ(x). In classification settings, which are studied throughout this thesis,
the quantity y represents the real label (or category) of the input x and ŷ is the label
predicted by the network.

Neural networks can be regarded as compositions of functions, such that:

fθ = fKθK ◦ · · · ◦ f1θ1 ,

ŷ = fKθK (. . . f2θ2(f1θ1(x)))),
(2.1)

27

Input
Hidden
layers Output

layer

f1 f2 f3 f4

Figure 2.1: An example of a feedforward neural network with three hidden layers and a
2-D output layer. Each layer represents a separate function fi—when composed, they
yield the function f that the network is trained to represent.

whereK is a given integer withK ≥ 1 and θ =
⋃K
i=1 θi. Every fiθi corresponds to a layer

in the network with associated parameters θi1. A layer receives as inputs the outputs of
the previous layer, as per Equation 2.1. The simplest type of neural network layer is the
fully-connected one, which computes a linear transformation of its input hi:

hi+1 = Wihi + bi, (2.2)

with θi = Wi ∪ bi. The outputs of a fully-connected layer are usually passed through a
point-wise activation function, which intuitively signals the relative strength of certain
patterns in the input features detected by the layer. The most popular activation function
is the rectified linear unit (ReLU [62]):

ReLU(x) = max(0,x). (2.3)

The output layer of a neural network can categorise inputs via the softmax function:

oi = softmax(h)i =
exp(hi)∑C
c=1 exp(hc)

, (2.4)

where C is the number of categories present in the dataset. The resulting output is a
valid probability distribution, with the predicted class being output as ŷ = argmaxi oi.

1Note that θi can be an empty set, in the case of activation and output layers.

28

2.1.2 Model optimisation

Neural networks are typically trained using maximum likelihood—in a classification
setup, the learning procedure aims to minimise a negative log-likelihood cost function
J that encodes the cross-entropy between the true, underlying data distribution, pdata,
and the distribution modelled by the network, pmodel:

J(θ) = −Ex,y∼pdata log pmodel(y | x)

= −
C∑
c=1

yc log ŷc.
(2.5)

The cost function can be further expressed as Ex,y∼p̂dataL(fθ(x), y), where p̂data is the
empirical data distribution and L is the cross-entropy loss function in Equation 2.5.
We aim to reduce the expected generalisation error, which is given by the objective
function over the real data distribution: J∗(θ) = Ex,y∼pdataL(fθ(x), y). To achieve this,
we minimise the empirical risk over the training dataset containing m samples:

Ex,y∼p̂dataL(fθ(x), y) =
1

m

m∑
i=1

L(fθ(xi), yi). (2.6)

The learning process updates the parameters of the network by taking small steps in the
direction of the loss gradient ĝ over a mini-batch of b examples from the training set:

ĝ =
1

b
∇θ

b∑
i=1

L(fθ(xi), yi),

θ = θ − αĝ.
(2.7)

This approach is called stochastic gradient descent (SGD) [157] and optimises the
network parameters using unbiased estimates ĝ of the exact gradient of the generalisation
error. An entire pass through the training set is called an epoch, with training typically
spanning multiple epochs. The number of epochs can vary, depending on the size of
the dataset, the number of model parameters, the type of optimisation algorithm used
and the learning rate α employed.

Building upon SGD, the Adam optimisation algorithm [95] is widely used in practice
and for the experiments described in this thesis. Adam adapts the learning rate to
individual parameters at each step t, using estimates of the first (mt) and second (vt)

29

order moments of the gradients:

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g2
t ,

m̂t = mt(1− βt1),

v̂t = vt(1− βt2),

θt = θt−1 − αm̂t(
√
v̂t + ε).

(2.8)

2.1.3 Regularisation

2.1.3.1 Dropout

The purpose of dropout [169] is to regularise a neural network model by approximating
training and evaluating over an ensemble of networks, via the (exponentially-many)
sub-networks of the original model. The approach relies on randomly masking outputs
of intermediate layers—these are no longer forwarded to subsequent layers and thus do
not contribute to the final network prediction.

If µ is a mask vector over all intermediate outputs in the network, then the result-
ing sub-network produces a probability distribution p(y | x,µ)—the final distribution
pensemble(y | x) is computed by taking the geometric mean over a number of sampled
masks and normalising over all possible outputs (in the classification scenario, these
correspond to categories), where d is the number of units that may be dropped:

p̃ensemble(y | x) = 2d

√∏
µi

p(y | x,µi),

pensemble(y | x) =
p̃ensemble(y | x)∑
y′ p̃ensemble(y′ | x)

.

(2.9)

2.1.3.2 Batch normalisation

One way to train networks faster is to ensure that the inputs to all layers have similar
magnitudes, which is the key idea behind batch normalisation (BatchNorm) [89]. This
way, a learning rate applied across all network layers will yield consistent updates,
eliminating the burden of carefully selecting an initialisation distribution for each layer.

For a given activation map across a mini-batch,H ∈ Rb×f , where b is the mini-batch size
and f is the feature vector dimensionality, BatchNorm rescalesH using the mean µ and

30

Conv Conv2x2
Max-pool

2x2
Max-pool

Figure 2.2: An illustration of a CNN with 2 convolutional layers and corresponding
max-pooling steps, followed by a flattening operation and two fully-connected layers.
Blue: convolutional kernels with parameters; green: visual features; purple: summarised
features and prediction pipeline.

standard deviation σ of each unit in the layer (where hi = (H)i):

H ′ =
H − µ
σ

,

µ =
1

m

b∑
i=1

hi,

µ =

√√√√δ +
1

m

b∑
i=1

(hi − µ)2.

(2.10)

The original study even showed that BatchNorm removed the need for dropout in
contemporary state-of-the-art networks, thus producing a strong regularising effect.

2.1.4 Convolutional neural networks

This class of models, often referred to as CNNs [110], has been designed to incorpo-
rate additional biases in neural network processing. The convolutional architectures
described in this thesis contain 2-D and 3-D convolutional layers—these leverage spatial
biases, allowing the regular, grid-like structure in visual data (where each pixel has a
fixed number of neighbours with fixed relative displacements) to be exploited.

A typical CNN model takes visual tensors as input and contains a sequence of alternating
convolutional and pooling steps. The convolutional layers output feature maps, which
are then downsampled by the pooling operations—an increasingly compact represen-
tation of the input is thus constructed in this part of the network. A summarisation
layer is then applied, with the resulting feature vector being fed to an MLP that outputs
predictions required by the downstream task. Figure 2.2 shows an example of a CNN.

31

I

K1

K2

K3

I
I

I * K1

I * K2

I * K3

Figure 2.3: An illustration of a convolutional layer with 3 kernels that produces 3
corresponding feature maps, by sliding each kernel across the input.

2.1.4.1 Convolutional layers

A convolutional layer takes as input a multidimensional tensor that contains visual
features (or, in the case of the first network layer, the raw input image). The tensor is
passed through a set of kernels, each of these computing its own feature map of the
input. For a 2-D tensor I and a kernelK, the convolution operation is:

(I ∗K)ij =
∑
h

∑
w

IhwKi−h,j−w

=
∑
h

∑
w

Ii−h,j−wKh,w,
(2.11)

but most machine learning frameworks will implement the following form, which does
not flip the kernel and is called cross-correlation, depicted in Figure 2.3:

(I ∗K)ij =
∑
h

∑
w

Ii+h,j+wKh,w. (2.12)

Each kernel outputs a feature map that indicates at which input location the correspond-
ing feature has been detected. This approach has a crucial advantage over fully-connected
layers: kernels contain far fewer parameters than the input and reuse these parameters
across the input (in contrast to connecting each unit to every input location). This, in
turn, makes a convolutional layer translation-equivariant—a feature will be detected
regardless of its location in the input. In the case of 3-D input tensors, both spatial and
temporal biases are leveraged. Intuitively, the kernel detects features and their relative
displacement across a few timesteps:

(I ∗K)ijk =
∑
t

∑
h

∑
w

Ii+t,j+h,k+wKt,h,w. (2.13)

32

Figure 2.4: Two images of birds from the Caltech-UCSD Birds 200 dataset2.

2.1.4.2 Pooling layers

The pooling operation follows the feature detection stage and has the purpose of com-
pressing the visual representation for further processing. This is achieved by computing
summary statistics for each input location, within a (typically) square-grid neighbour-
hood. CNNs often use 2 × 2 2-D max-pooling with a stride of (2, 2). Namely, each
non-overlapping 2× 2 patch in the input corresponds to a single location in the output
feature map, which contains the maximum value across the patch.

In addition to allowing the network to be more memory-efficient with respect to the
input size, this process also enforces a translation-invariant representation, where small
shifts in the inputs do not affect the resulting feature map. To illustrate the idea, if a bird
is present in two images as in Figure 2.4, the corresponding output representations will
still encode the fact that a bird is found at the centre of each image.

2.1.5 Long short-term memory

Another type of inductive bias is incorporated in deep learning architectures via recur-
rent neural networks (RNNs). These models process sequential data by exploiting the
temporal dependencies present in this domain. For an input (x1, . . . ,xT) and network
state ht at time t, the general mathematical form for expressing RNN computations is:

ht = fθ(ht−1,xt). (2.14)

Intuitively, the state of the network ht selectively encodes the most relevant aspects of
the input sequence detected so far, which are useful for the downstream task. However,

2http://www.vision.caltech.edu/visipedia/CUB-200.html

33

http://www.vision.caltech.edu/visipedia/CUB-200.html

input

input Gate

Forget Gate

Output Gate

gi
t

fi
t

oi
t

tanh(si
t)

si
t-1

hi
t

hi
t-1

xi
t

σ

σ

σ

σ

Figure 2.5: A graphical description of the LSTM cell.

backpropagating through the entire input sequence gives rise to vanishing gradients,
due to multiplying increasingly-many gradient values which are usually smaller than 1
(in the rare opposite case, exploding gradients are produced).

The long short-term memory (LSTM) [81] model is a type of RNN that addresses this
problem, by introducing gating mechanisms with non-vanishing/exploding derivatives.
The key aspect here is that the hidden state contains a self-loop which is weighted by
a forget gate unit—the latter produces outputs between 0 and 1 and allows the input
sequence to condition the flow of information across time. The computation of the i-th
LSTM cell is illustrated in Figure 2.5 and summarised by the following equations:

f ti = σ

(
bfi +

∑
j

U f
ijx

t
j +
∑
j

W f
ijh

t−1
j

)

gti = σ

(
bgi +

∑
j

U g
ijx

t
j +
∑
j

W g
ijh

t−1
j

)

sti = f ti s
t−1
i + gtiσ

(
bs +

∑
j

U s
ijx

t
j +
∑
j

W s
ijh

t−1
j

)

oti = σ

(
boi +

∑
j

U o
ijx

t
j +
∑
j

W o
ijh

t−1
j

)
hti = tanh

(
sti
)
oti,

(2.15)

where hti is the output of the cell at time t, b∗, U ∗ and W ∗ are biases, input weights
and recurrent weights, respectively, for all corresponding cell modules (f—forget gate,
s—cell state, g—input gate, o—output gate). All gates use sigmoid (σ) activations.

34

2.1.6 Attention

Initially proposed for neural machine translation [9], the attention mechanism is an
encoder-decoder model that takes as input a sequence {x1, . . . ,xT} and outputs another
sequence {y1, . . . ,yT ′}. The i-th token of the latter encompasses information about the
previous output tokens {y1, . . . ,yi−1} and weighted information about all the input
tokens. Namely, the model attends over the input elements, deciding for each new
sequence which parts of it contain more relevant information to produce the i-th output.

One might note that this approach is applicable beyond machine translation, in any task
where certain regions of the input sequence are more informative than others.

The input sequence is first passed through an encoder, which can either be a bidirectional
RNN or another type of model that outputs a corresponding ht for each t ∈ {1, . . . , T}.
The decoding stage then models the conditional probability of the i-th output, depending
on the previous outputs and all inputs:

p(yi | y1, . . . ,yi−1,x1, . . . ,xT) = g(yi−1, si, ci). (2.16)

In Equation 2.16, si is the hidden state of an RNN f at time i and ci is a context vector
that contains weighted information about the encoded inputs hi:

si = f(si−1,yi−1, ci)

ci =
T∑
j=1

αijhj.
(2.17)

The attention weights αij are computed by an alignment module a, which indicates how
strongly the j-th input and i-th output match. The module is typically parameterised by
an MLP that is incorporated and trained end-to-end with the rest of the architecture.

αij =
exp(eij)∑T
k=1 exp(eik)

eij = a(si−1,hj).

(2.18)

Intuitively, the weights αij signal to the RNN the importance of eachhj from the encoded
sequence for generating the next hidden state si and, in turn, the next output yi.

2.1.7 Message passing and graph neural networks

So far, this chapter has reviewed various changes that feedforward neural networks
have undergone to incorporate inductive biases. CNNs thereby perform spatially-

35

Figure 2.6: An example of the arbitrary connectivity that can be encountered in graph-
structured data (right), as opposed to the visual inputs (left) typically processed by
convolutional neural networks. In the former case, links can have different types and
directions, whereas grid-like data has a fixed, non-directional connectivity pattern.

aware processing, whereas LSTMs and attention3 are readily applicable to sequential
data. However, much of the data used to solve contemporary real-world tasks—traffic
prediction, drug discovery or social network recommendation, to name only a very
few—has irregular intra-dependencies of various types. This heavily contrasts with the
grid-like connections found in visual data or the ones dictated by temporal structure in
time series and language data.

Figure 2.6 illustrates the relative complexity of graph-structured inputs, in relation to
the one of visual data commonly processed by CNNs. Perhaps most importantly, a
CNN-style kernel cannot be readily applied to a graph-structured input, since each
node might have a different number of neighbours and it is almost impossible to make
assumptions about this quantity in a real-world scenario—a more flexible operator is
thus required for training neural networks on graphs.

A notable development towards addressing this problem is the graph convolutional
network (GCN) layer [97], which generalises the previously-introduced convolutional
layer to handle graph-structured inputs. Assume a given graph G = (H i,A), where
H i ∈ Rn×di are intermediate node features of dimensionality di andA is the adjacency

3Note that other forms of attention have also been proposed, including the widely-used Transformer
attention that leverages the set bias without assuming any ordering of the input elements. However, I
have only used recurrent attention in the work, which was described previously.

36

matrix of the graph. The GCN layer models the following propagation rule:

H i+1 = GCN(H i,A)

= σ
(
D̂−

1
2 ÂD̂−

1
2H iW i

)
,

(2.19)

whereW ∈ Rdi×di+1 is a learnable weight matrix for the current layer andH i+1 ∈ Rn×di+1 .
Equation 2.19 is essentially an approximation of a spectral convolution that is far less
expensive when scaling to larger graphs. Note that the layer processing involves adding
self-loops to the adjacency matrix—Â = A+ In—and the use of an additional matrix
D̂—the diagonal node degree matrix of Â, with D̂ii =

∑
j Âij . These changes allow the

factor D̂− 1
2 ÂD̂−

1
2 to replace In−D− 1

2AD−
1
2 in the initial approximation of the spectral

convolution:
gθ ∗ x ≈ θ

(
In −D−

1
2AD−

1
2

)
x, (2.20)

where x is a single-channel input signal and gθ = diag(θ) is a filter with θ ∈ Rn. This
approximation can be naturally generalised to a multi-channel input signalX ∈ Rn×c as
X ′ = D̂−

1
2 ÂD̂−

1
2XΘ, where Θ ∈ Rc×f contains filter parameters for each of the c chan-

nels andX ′ ∈ Rn×f is the convolved signal. This is the form that yields Equation 2.19.

Analysing the GCN propagation rule, we note that each node is updated based on its
current features and the ones of its neighbours, since the adjacency matrix is part of the
multiplication. Additionally, the self-loops added toA enforce the current node features
to be preserved across updates; certain variants of GCN layers go one step further and
use Â = A+ 2In, for node representations with a stronger egocentric focus.

This perspective on GCNs paves the way for a discussion of an even more general
paradigm—the message passing (MP) neural network model [61], which subsumes
many graph neural network (GNN) models. An MP layer takes as input the features
of all nodes after p message passing stepsHp ∈ Rn×d′ , where d′ is the number of node
features, the adjacency matrix A and the corresponding collection of k-dimensional
edge features4 {eij ∈ Rk|Aij = 1}. The MP step then updates the nodes as follows:

hp+1
i = MP(Hp,A)

= F (hpi ,
⊕
j∈N(i)

, G(hpi ,h
p
j , eij)),

(2.21)

where F and G are learnable functions, N(i) = {j | Aij = 1} and⊕ is a permutation-
invariant aggregation function. The function G can be viewed as the message encoder,
since it embeds, for each edge, the tuple containing its features and the endpoint node

4Although not present in the experimental setups in this thesis, edge features are also incorporated in
the MP formulation.

37

features. Following the computation of all message embeddings, the aggregator⊕ is
applied to produce an overall neighbourhood embedding, which gets passed to the final
function F , along with the current node features. In practice, F and G are often MLPs,
with optional activation functions following their application.

2.1.8 Neural processes

Neural Processes (NPs) [59] are a class of models that combine the strengths of neural
networks and Gaussian processes. They learn to represent a stochastic process using
labelled samples from its instantiations fi, with a global latent variable z modelling the
stochasticity of the learned functions. At test time, only a few labelled points from the
current dataset (namely, the function fi) are required to produce predictions for the rest
of the points, along with associated uncertainties, in linear time.

To summarise the task, the NP is given a set of points with featuresX , partially labelled
by a function f : X → Y that has been sampled from a distribution over functions D.
The NP then predicts labels for a subset of the unlabelled points.

To achieve this, the NP is trained on a set of functions sampled from D and tested on
a disjoint set of functions from the same distribution. For each function fi, a dataset
contains tuples (xj, yj), where yj = fi(xj). Their joint probability distribution can
be written as p(y1:n|x1:n) =

∫
p(fi)p(y1:n|fi, x1:n)dfi. Assuming observation noise Yj ∼

N (fi(xj), σ
2) and a neural network γ modelling the stochastic process instance fi (that

is, γ(x, z) = fi(x), where z is a random vector that mimics the randomness of fi), we
obtain the generative model:

p(z, y1:n|x1:n) = p(z)
n∏
j=1

N (yj|γ(xj, z), σ
2), (2.22)

where p(z) is a multivariate normal distribution. Learning the non-linear function γ

requires amortised variational inference on the evidence lower bound (ELBO), using a
neural-network-parameterised posterior q(z|x1:n, y1:n). Model generation starts with the
NP receiving a set ofm context points C = {(xj, yj)}mj=1 sampled from fi. The model then
predicts the values yj = fi(xj) for n target points T = {xj}nj=1; namely, the m original
context points and m − n previously unseen target points. To match this setup, we
further isolate the context set x1:m, y1:m from the target set xm+1:n, ym+1:n in Equation 2.22.
The final variational approximation to the lower bound objective can be expressed as:

log p(ym+1:n|x1:n, y1:m) ≥ Eq(z|x1:n,y1:n)

[n∑
j=m+1

log p(yj|z, xj) + log
q(z|x1:m, y1:m)

q(z|x1:n, y1:n)

]
. (2.23)

38

xm+i, ŷm+i

xm, ym

x2, y2...

x1, y1

...

xn, ŷn

h

h

h

h

h

xm+i

xn

xm

x2

x1

...

xm, ym

x2, y2

x1, y1

r1

r2

rm

a

z

...

...
...

ŷ1

ŷ2

ŷm

ŷm+i

ŷnr

h

h

h

g
g

g

g
g

...

a

z

r

Generation
(train, test)

Inference
(train)

Figure 2.7: The computational graph of the Neural Process model. (Generation:) The
encoder h produces a representation ri for each (labelled) context point (xi, yi). These
are passed through the aggregator function a which yields a summary r. This, in turn,
parameterises the global latent variable z. The latter is sampled to condition the decoding
process. Here, the decoder g processes the sample along with every (unlabelled) target
point to predict a corresponding label ŷi, along with an associated uncertainty. (Inference:)
The global latent posterior update is achieved by encoding the entire target set.

An essential aspect of the training process lies in the characteristics of the data that is
being used. NPs are trained on multiple datasets—that is, sets of data points that have
been sampled from functions fi—to allow modelling the variability of the stochastic
process. The generation (label prediction) and inference (global latent posterior update)
steps are illustrated in Figure 2.7.

Finally, I highlight the differences in NP processing with respect to typical machine
learning setups. An NP is trained over multiple datasets, or sets of samples Si from
functions fi ∼ D, with a given training episode consisting of samples from a single
such function. Sampling over the distribution of functions provides information about
the variability of the stochastic process being modelled to the NP. The context set Ci
described above is a (labelled) subset of Si, while the target set Ti is an (unlabelled)
superset of Ci, with Ci ⊆ Ti ⊆ Si. Section 5.4 further expands on each of the main
components of the framework—encoder, aggregator, decoder—that are common across
NP models, while presenting the one which I developed together with my collaborators.

2.2 Machine learning tasks

2.2.1 Node property prediction

In a typical supervised classification setup, a machine learning model is trained on a
dataset of (sample, ground-truth label) tuples, Dtrain = {(x1,y1), . . . , (xm,ym)}, and evalu-

39

ated on a dataset Dtest = {(xm+1,ym+1), . . . , (xm+n,ym+n)}5 from the same distribution.
During training, the labels yi provide supervision signal; at test time, they are only used
for evaluating classification performance via accuracy, F1-score or other metrics.

Besides individual features, nothing else is assumed about any of the samples—this
might limit model performance in scenarios where certain relationships exist between
data points. Section 2.1.7 has already introduced neural network approaches that incor-
porate structure during sample processing. Here, I continue the discussion by illustrating
how GNN models can be used for individual-sample classification, while taking into
account the intra-dataset structure.

Assume we are given a single graph G = (V,E), with corresponding node features
X ∈ R|V |×d and adjacency matrix A, which is derived from the collection of edges E
as Aij = 1 ⇐⇒ (i, j) ∈ E and Aij = 0 ⇐⇒ (i, j) /∈ E. The labels available at train,
validation and test time always belong to the same (disjoint) sets of nodes, regardless of
the experimental setup. However, the nodes (and corresponding edges) available to the
model can differ:

• in the transductive setup, the structure is preserved across phases, so all node
features and edges are available;

• in the inductive setup, the model learns only from the features and edges belonging
to nodes which are labelled; at test time, the structure of the graph is changed,
with new nodes and corresponding edges being added.

In both cases, applying T steps of message passing to the input features yields node
embeddingsHT , as per Equation 2.21. These features can now be viewed as belonging
to individual samples, since the relational structure in the dataset has already been
exploited within the MP steps. An MLP f can be applied for downstream classification,
with the predicted label of the i-th node being ŷi = f(HT

i).

This is the most general approach to node classification and naturally assumes no
specific knowledge about the mechanism inside the MP layer. It can be noticed, however,
that simply aggregating neighbourhood information might not be enough in some
node classification scenarios. This observation is especially relevant in cases where the
neighbourhoods are highly heterogeneous with respect to the node labels. Additionally,
a single MP step corresponds to extending the aggregated neighbourhood depth by 1,
so performing too many steps can yield ‘washed-out’ node embeddings that contain too
little information about the central node.

5A third, validation set Dval is also often used for hyperparameter selection.

40

Various architectures have been developed to tackle these problems and establish state-
of-the-art results on existing node property prediction benchmarks—the ones typically
present in the literature are Cora, CiteSeer and PubMed [198]. More recently, the Open
Graph Benchmark [85] and Wiki-CS [124] have been proposed, in order to address
some of their limitations. However, the node classification scenarios present in this
thesis go beyond simply learning from the same graph. Instead, those tasks involve
modelling the underlying distribution of graph-generating functions—in this case, the
model is trained on multiple datasets, where each one corresponds to a different graph
from the distribution. This class of tasks is more challenging, as it requires representing
the variability of the generative process. Together with my collaborators, I designed an
NP-based architecture to tackle such tasks, which I describe and discuss in Chapter 5.

2.2.2 Graph property prediction

The previous section discussed node prediction scenarios, where the relational structure
between samples is exploited by a GNN-based model. This process helps enrich the
individual node representations, which are then classified independently. However,
some setups require predicting a quantity for the entire graph, instead of individual
nodes. For example, molecules corresponding to various chemical compounds might
fall into different toxicity levels and scene graphs can originate from images of indoor or
outdoor settings.

Discriminating between such categories often involves reasoning about the interactions
between nodes, potentially via incorporating different types of relations dictated by the
edges in the message passing scheme. This leads us to the idea of summarisation—after
the nodes have been processed by MP steps and other neural transformations, we would
like to aggregate all node embeddings to obtain a description of the entire input graph
that is meaningful for the downstream prediction task.

One simple approach to this is taking the average across all embeddings, which results
in a fixed-size representation; this can be then processed by a typical classifier such as
an MLP. That is, for a given input sample Gi = (V,E) with corresponding featuresXi

and adjacency matrixAi, T MP steps and a downstream MLP classifier f :

HT = MPT (Xi,Ai)

ri =
1

|V |

|V |∑
j=1

HT
j

ŷi = f(ri),

(2.24)

41

where MPT is shorthand for MP◦· · ·◦MP (T times). The summarisation step takes place
in Equation 2.24, on the second line. One can quickly notice that useful information may
be lost when aggregating all nodes into a single d-dimensional vector ri—two sets of
embeddings might yield a similar summary in the embedding space, but the underlying
graphs can have nodes with entirely different features!

An alternative would be to use a sum-aggregator instead of the average one. However,
a fundamental issue arises in this case, when considering tasks where the number of
nodes across all graphs follows a multimodal distribution or one that has a large kurtosis.
Essentially, the magnitudes of the resulting embeddings will be correlated with the
number of nodes in each input graph, making the prediction task more challenging (it is
unlikely that the node count is informative towards solving most of the interesting tasks,
but the downstream classifier would work with features that encode this quantity).
Additionally, the training process would become harder, as gradients of potentially-
widely varying magnitudes would be propagated through the network.

Due to these reasons, ‘flat’ summarisation has been improved upon lately by various
approaches which tackle graph classification as the downstream task. Many such
methods rely on graph pooling as a step within the GNN processing, motivated by the
need to progressively compress the graph representation in a meaningful way. The
remainder of this section focuses on describing the key ideas behind graph pooling, also
present in the literature as graph coarsening.

Similarly to the convolution operation, pooling was initially present in CNNs. Its purpose
was to iteratively reduce the dimensionality of visual features—a generalised operation
has thus been described for graph-structured inputs, where the idea is to preserve the
most salient features for the downstream task, while reducing the size of the graph before
it gets passed on to the next layer. So far, two main approaches can be distinguished in
the literature—they are illustrated in Figure 2.8.

2.2.2.1 Top-k pooling

This type of pooling layer produces an output graph that contains only a fraction r of
the nodes in the input graph, discarding the rest of them. Top-k pooling is described
in detail in Chapter 4, but it is important to note that the typical mechanism relies on
producing a score si for each node via a learnable function f—the highest-scoring r%
nodes are thereby preserved:

si = f(Hi),∀i = 1..n. (2.25)

42

Hierarchical
pooling

Top-k
pooling

Figure 2.8: Two pooling paradigms: hierarchical clustering (top) and Top-k (bottom).
In the former case, nodes in the output graph correspond to the clusters, with links
between them representing cluster overlaps. In the latter, the highest-scoring r% nodes
(grey) are simply passed on to the next layer, along with the links that already exist
between them, while the rest of the nodes (dashed) are dropped. In the figure, r = 0.5.

The reasoning behind Top-k pooling is that some nodes may be more salient than
others for the downstream graph prediction task. A straightforward example would be
distinguishing between point-cloud graphs of chairs and cars—the pooling operation can
discard numerous nodes along the object surfaces and keep the ones closer to joints and
other places where different object parts combine. The resulting graph would resemble
a skeleton of the initial object, which still encompasses all the information required to
discriminate between classes.

Analysing Equation 2.25, we note a potential weakness to this approach. Namely, gradi-
ents will only flow through the highest-scoring node features, so there is comparatively
little information being learned about the less important nodes.

2.2.2.2 Hierarchical pooling

Instead of dropping a fraction of nodes, each pooling layer now aggregates sets of nodes
into clusters. The cluster assignments can be either soft (probabilistic assignment of a
node across clusters) or hard (a node can only be part of a single cluster).

43

If the input graph has n nodes with featuresH ∈ Rn×d and adjacency matrixA, then a
cluster assignment matrix S ∈ Rn×npool will yield the following updates:

H ′ = S>H

A′ = S>AS.
(2.26)

As in a typical CNN, graph pooling operations can be interleaved with graph convolu-
tional (or any other variant of MP) layers. The input graph to the following layer will
thus have npool nodes and be given as (X ′,A′). It is important to note that if S is a soft
cluster assignment, then∑npool

j=1 Sij = 1,∀i ∈ 1..n. The same statement holds for a hard
cluster assignment matrix, but in a trivial manner, since Sij = 1 for a single value of
j—the index of the cluster (or node in the pooled graph) that it has been assigned to.

2.2.2.3 Summary

Both pooling paradigms reviewed in the previous sections are leveraged by contributions
in this thesis. Described in Chapter 4, these works focus on graph prediction tasks and
introduce novel GNN architectures which rely on progressive coarsening of the input
graphs. The first one matched state-of-the-art results on graph classification benchmarks,
while reducing memory requirements from quadratic to linear (in terms of the number
of nodes). The second work introduces a pooling layer that produces a topologically-
grounded graph summary of the input graph, while being competitive with other
state-of-the-art GNN models.

2.2.3 Visual reasoning and question answering

Image classification has been extensively studied by the machine learning and computer
vision communities, with LeNet [108, 109] and AlexNet [105] being milestone develop-
ments in the field. The former introduced the convolutional neural network paradigm
and the second one applied it at scale, 24 years later, via modern-day GPU compute.
However, in order for an AI system to gain a proper understanding of its environment
(and eventually act in it), its internal model should have capabilities that go far beyond
discriminating between object classes. Rather, it is necessary for subsequent processing
steps that combine and reason about the outputs of the object detection phase and the
relationships between them. Crucially, in a real-world environment, the ‘view’ of such a
system will almost always contain more than one object in sight—this already yields a
more complex task, when compared to the initial image classification one.

These arguments have motivated the emergence of visual reasoning—a challenging and
inter-disciplinary problem space. This subfield encompasses tasks that aim to improve

44

Figure 2.9: Two possible images for the ‘Is the woman mad?’ question, extracted from
the official VQA v2 challenge7, with correct answers yes and no, respectively. In each
case, answering the question requires commonsense reasoning over the visual input—
interpreting the facial expression and posture in the first case, while associating other
concepts present in the image and the facial expression of the person in the second
image with an overall positive ambience.

the understanding of ML systems about the world. The ultimate goal is for trained agents
to be able to apply this knowledge during their interactions with a certain environment,
in real-life situations. Visual reasoning systems typically receive images or videos as
main input. Auxiliary modalities may also be used when solving a particular task, or
they can simply contribute more information about the problem—a prime example
of such a modality is natural language. Often used as a conditioning signal for the
visual processing, the language input can point the system to the parts of the main
input that are helpful for the downstream task. Nevertheless, some tasks require the
system to have other kinds of previously-derived knowledge, such as commonsense
principles—Figure 2.9 shows one example of a yes/no question that the system will be
able to answer only if it carries out more involved reasoning over the image.

A widely-studied task in the visual reasoning space is Visual Question Answering
(VQA). Here, the system receives an image and a question—the conditioning signal in
this case—and is tasked with producing an answer, using information that is present in
the visual input. Solving VQA tasks corresponds almost perfectly with some kinds of
reasoning that an agent might need to perform, when encountering real-world settings
which require decisions and reactions. For example, consider a self-driving car waiting
for a traffic light to turn green at a big junction. A question such as ‘Can you turn left?’ can
only be answered in several reasoning steps: first identifying the traffic lights present in
the view, then selecting the one which indicates left-turn permission (an entire challenge
by itself, since arrows are often adjacent to the light on a light background, or outlined

7https://visualqa.org/vqa_v2_teaser.html

45

https://visualqa.org/vqa_v2_teaser.html

inside the traffic light on a dark background), and finally deciding whether it shows a
red or a green light. If the light is yellow instead, a subsequent series of questions and
reasoning steps would follow, most likely including ‘Was the light previously green?’ or
‘Do you have time to cross the junction before the light turns red?’.

The main bottleneck in ML systems which tackle VQA tasks is relating concepts in
language to the ones encountered in the visual input. Additional challenges are further
posed by the datasets used to evaluate VQA model performance, such as inherent
class imbalances present in real-world distributions. These can bias the model towards
simply memorising the most frequent answer to a question which contains specific
combinations, instead of aligning and meaningfully reasoning over the visual and
linguistic concepts. For example, a human is much more likely to stand on a surfboard
than a dog; however, the latter is still physically possible and such instances exist in
datasets as rarely-occurring combinations. Therefore, the system should do more than
simply exploit the bias in the data distribution, which results in bypassing the visual
input and risks providing a ‘blind’ answer to the question.

A complementary challenge faced by the community is that of language grounding. The
overarching perspective is that learning from language should not be a closed-system
effort—namely, using a single modality to train systems and deriving meaning purely
from the relationships between words. Rather, the aim should be to ground natural
language concepts in external stimuli, such as vision and interaction with objects and
the environment. Similarly, when training a visual reasoning system, it is important for
the concepts to be grounded in realistic representations of the environment, but at the
same time overfitting on the most likely situations should be avoided.

Several architectures have been developed to approach these challenges through the
lens of VQA tasks; they typically contain sub-modules which enable the interaction
of the visual and linguistic inputs within the system. Among these, two influential
paradigms have been proposed: feature-wise linear modulation (FiLM) [145] and com-
positional attention networks leveraging memory-attention-composition (MAC) [88]
cells. Chapter 3 describes VideoNavQA, a novel environment understanding task that
I proposed, along with generalised FiLM and MAC models that operate across the
temporal dimension to solve VQA-style tasks. Here, the visual input is no longer an
image, but a video of an agent navigating within a house. The ML system encounters
an additional challenge, besides the usual ones posed by VQA—it is now required to
isolate the relevant concepts from across all timesteps and aggregate this information,
before combining it in a meaningful way to answer the given question.

46

Chapter 3

Multimodal learning for environment
understanding

3.1 Introduction and contribution overview

The main purpose of learning world representations is to obtain models of the environ-
ments that we live in. These models can subsequently be leveraged by agents in various
downstream tasks. In real-world settings, such as houses, office spaces and cities, the
information is abundant. At each point in time, certain events can take place, yielding
significant changes in the environment relative to the previous timestep. Moreover, the
stimuli perceived by humans—hence information streams that agents have access to—
are often multimodal: we can view our surroundings (visual), but also hear (auditory)
and feel (tactile) during our exploration and interaction within an environment.

Section 2.2.3 introduced visual question answering as an essential, yet challenging
task for ML systems operating in the visual reasoning domain. The latter constitutes
a significant part of environment understanding—humans constantly reason about
their surroundings in order to make decisions and perform actions. While growing up,
we learn to ground linguistic terms in the visual concepts that we encounter and get
accustomed to. We can thus view the language component as a useful conditioning
signal within ML systems that process rich visual streams from life-like settings.

An end-goal within this problem space is building agents that are capable of inter-
acting with the environment and making decisions, based on their reasoning about
surroundings. However, we first need to measure how complex their understanding of
the world is—given the above argument on language conditioning, one way of doing
this is evaluating the performance of a system on question answering (QA) tasks.

47

Numerous benchmarks have been proposed so far, ranging from simple question an-
swering on a single image [7, 87, 121], where all the necessary information can be found
in the visual input1, to completing tasks which require navigation and interaction with
the given environment [44, 163]. There is also a growing research sub-community
focusing on this area, which has been investigating future directions and organising
inter-disciplinary discussions at various workshop venues [2, 27, 185].

This chapter presents my work on environment understanding, which was started dur-
ing my research internship at Mila in 2018, in collaboration with Eugene Belilovsky and
Aaron Courville, who supervised me during the internship. Model design, implementa-
tion, benchmark engineering and curation were carried out by me; I also conducted all
the experiments, with the exception of the Temporal Compositional Attention Networks
model evaluation, which Eugene ran. Aaron proposed the initial research direction—
namely, the need to isolate the navigation requirement from the visual reasoning aspect
in EmbodiedQA-like tasks—and provided constant feedback and discussions through-
out the project.

Our work was published as a conference paper at the 2019 British Machine Vision
Conference, under the title ‘VideoNavQA: Bridging the Gap between Visual and Embodied
Question Answering’ [26]. A shorter, 4-page version also received commending reviews
and was presented as a spotlight talk during the Thirty-third Conference on Neural
Information Processing Systems in 2019, at the Visually-Grounded Interaction and
Language Workshop—one of the most influential events in the language grounding and
human cognition fields.

3.2 The need for a different approach to embodied ques-
tion answering

The Embodied Question Answering (EQA) task proposed by Das et al. [38] concerns
environment understanding through the prism of question answering. In order to
answer a given question, an agent starts from a random location in a rich 3D setting and
must act based solely on its egocentric input. The ultimate aim is that the agent learns
to combine several capabilities—such as scene understanding, navigation and language
understanding—and perform complex reasoning in the visual world. However, the first
models proposed to tackle EQA combined standard vision and language methods with
imitation and reinforcement learning algorithms. Initial results suggested that these
techniques may struggle to achieve good performance on EQA, given its complexity

1There are certain VQA tasks that require external knowledge to produce the correct answer, like the
recently-proposed Visual Commonsense Reasoning [205] benchmark.

48

Q: 'How many white chairs are in the dining room/kitchen?'

... ...

Visual processing

Co
nv

Co
nv

Co
nv

An
sw

er
:

6

Cl
as
si
fi
er

Question
embedding

Ag
gr

eg
at

io
n

Video

Figure 3.1: High-level description of the VideoNavQA task and our approach. Each
example received by the ML system contains a video of a trajectory inside a house and
a question about the visual stream. The system processes this multimodal input to
produce an answer. We tackle the task via already-established VQA paradigms—where
the language signal is used to condition the visual processing—and build extensions of
these methods that account for the temporal dimension of the visual input.

and the challenges that it poses. In order to investigate the feasibility of EQA-type tasks,
I have built the VideoNavQA benchmark, which contains pairs of questions and videos
procedurally generated in the House3D virtual environment. This dataset allows one to
assess question-answering performance from nearly-ideal embodied navigation paths,
while considering a much larger variety of questions than existing instantiations of the
EQA task. I investigated the performance of several models—extensions of popular
VQA methods—on the new benchmark. The results outline an initial understanding of
how much VQA-style methods can help within the alternative EQA paradigm.

The most relevant tasks in this space at the time of the study were Embodied Question
Answering [38] (EQA) and Interactive Question Answering [65] (IQA). Their introduc-
tion invited the research community to study the capabilities of agents in rich, realistic
environments, as both tasks require navigation and reasoning to achieve success. Each
of these skills typically requires a particular type of ML approach [83, 88, 128], which
should nevertheless be smoothly integrated with the rest of the system that is leveraged
by the embodied agent. These abilities are assessed via placing the agent at a random
location in a house environment and asking it a question. Successful completion of
the task thus requires the agent to knowledgeably explore the environment and reason
about the visual stimuli it receives.

Accordingly, initial attempts to solve the EQA challenge [38, 39] have combined common
strategies in vision (convolutional neural networks for object detection) and language
(question encoding or program generation) tasks with imitation learning and reinforce-
ment learning. However, the resulting frameworks either suffer from potentially weaker
performance than when leveraging language-only models [3]—which essentially means
that the visual signal is not used at all, or that it negatively interferes with the other
modules—or are preceded by hand-crafted steps (such as manually defined sub-goals

49

and imitation learning on pre-computed expert trajectories). Indeed, even for straight-
forward questions referring to a single object, trained agents are often unable to advance
meaningfully towards the target [39], thus producing visual streams that cannot be
used to answer the query. This finding suggests that EQA is a highly challenging task
which might not be best approached from this angle—further investigation is required
to appropriately assess the gap between state-of-the-art and human-level performance
on the EQA benchmark.

Single-image Visual Question Answering has only recently started to tackle complex
reasoning questions, even in limited and controlled settings [88, 91]—it is therefore
unclear whether existing methods can handle the rich video streams produced in the
VideoNavQA task. On the other hand, EQA requires the system to perform navigation,
which can often lead to video inputs that are uninformative with respect to the given
question. A natural concern arises: can these tasks be solved with current methods, if
we assume that the agent receives correct visual streams (namely, ones that contain all
the information necessary to provide an answer)?

Along with my collaborators, I attempted to answer this question by designing the
VideoNavQA benchmark. Illustrated in Figure 3.1, this task decouples visual reasoning
from the navigation aspect in EQA. While removing the navigation and action selection
requirements from EQA, I also increased the difficulty of the visual reasoning component
by creating a much larger question space, which allows tackling the sort of complex
reasoning questions that make QA tasks challenging [91]. I designed and evaluated
several VQA-style models on the dataset, thus establishing a new way of evaluating
EQA feasibility given existing methods in the visual reasoning space. At the same time,
the evaluation highlighted the difficulty of the problem even in an ideal setting.

3.3 Previous related work

To the best of our knowledge, there were no previous works that positioned themselves
at the intersection of the VQA and EQA paradigms. Instead, these types of tasks had
been tackled from separate angles, with multiple interesting advancements in each case.

Das et al. [38] proposed the EQA-v1 dataset that contained only 4 types of questions
(location, colour, colour room, preposition)—these questions would always refer to
a single object, which represents the navigation goal of the agent. They trained a model
via imitation and reinforcement learning, revealing as a by-product that RL fine-tuning
often resulted in overshooting the goal. A subsequent improvement was achieved by
hierarchical policy learning with neural modular control [39]—however, this approach
made use of hand-crafted sub-policies. Anand et al. [3] study the performance of

50

language-only baselines on EQA-v1, which result in better performance when the agent
is spawned more than 10 steps away. The authors concluded that initial EQA methods
struggled to exploit—and were often even impeded by—the environment.

Multi-target EQA [203] is an extension of the initial EQA task that requires reaching
multiple sub-goals to answer the question (for example, the agent may be asked to
compare the sizes of two objects in different rooms). The authors designed 6 types of
questions and tackled the task by first decomposing each question into smaller sub-goals.
The latter were deemed more easily achievable by models similar to the ones used in pre-
vious EQA works. Another EQA variant is based on photorealistic environments [186]
and uses point clouds instead of RGB input. The authors built the dataset by ‘porting’
three of the EQA-v1 questions to the Matterport3D virtual environment.

Although the focus of this work was EQA and the House3D environment, I also note
that the IQA task [65] in the AI2Thor [101] environment was introduced with similar
goals. However, IQA is defined for single-room settings, which diminishes the negative
effect of poor navigation.

Originally proposed by Malinowski and Fritz [121], visual question answering has
been extensively studied during recent years, with many benchmarks being released,
numerous algorithms proposed and more general studies carried out [10, 122]. The VQA
dataset [7] is a prime such example—it requires natural language answers to free-form
and open-ended questions about real-life images and abstract scenes. The creators of the
CLEVR task [91] used a functional, program-based question representation to generate
a vast range of questions from synthetic scene graphs—the latter contain between 3 and
10 objects of restricted variability (3 types, 2 sizes, 2 materials, 8 colours). Subsequently,
the GQA dataset [87] was proposed to address some of the issues encountered and
studied in existing datasets, including biases in the answer distribution.

Widely-adopted VQA methods include stacked attention networks [199], which let the
question embedding to act as a query vector when attending over the visual input,
multimodal compact bilinear pooling [54], which fuses the text and visual embeddings by
multiplying them in Fourier space, feature-wise linear modulation [145], which emphasises
the visual feature maps which are more informative for the task using question-based
conditioning, its multi-hop extension [170], which similarly conditions feature maps by
iteratively attending over the language input, and compositional attention networks [88],
which are designed to reason about the visual input in a multi-step fashion, using a
sequence of memory-attention-composition (MAC) cells.

Researchers have also started using graph neural network-based approaches for VQA
tasks [136, 141, 174]. These methods operate on the relational representation of objects

51

in the image, instead of directly processing the raw visual data. Finally, the model that
most closely resembles the ones I designed was explored in a multi-turn QA setting [138].
Here, the system is provided with a dialogue (a set of question-answer pairs) and a video.
The question encoding is then used for both per-frame conditioning and computing
attention over the hidden states of an LSTM, which encodes all the video frames.

Other datasets have been designed that also consider video question answering in
settings such as films [173, 135, 112]. They are often accompanied by rich per-frame
annotations, such as subtitles. However, these types of tasks are distant from the aims
of VideoNavQA, instead focusing on identifying actions or other dynamic behaviors.
Our task considers indoor navigation trajectories that exhibit rich visual data at each
time step—this poses an additional challenge for video-question-answering systems.
The latter are now required to isolate the relevant information from a large set of visual
concepts present in all frames and perform more complex reasoning to answer the
extensive variety of questions designed.

3.4 A new benchmark for embodied reasoning

I have constructed a new benchmark to study the capabilities of VQA-based methods
within a novel variant of the EQA task. Here, the agent is required to answer a question
while having access to a near-optimal trajectory—that is, the given trajectory corresponds
to a natural one with sufficient information in the video signal to answer the question.
The VideoNavQA task can be deemed complementary to the Habitat Challenge [159],
where the focus is on the navigation aspect, instead of question answering.

I used the House3D virtual environment [190] to generate approximately 101,000 pairs
of videos and questions. The dataset contains 28 types of questions that belong to 8
categories (see Figure 3.2), with 70 possible answers in total. Each question type is
associated with a template that facilitates programmatic generation using ground-truth
information extracted from the video.

The complexity of VideoNavQA questions is far beyond that of other similar tasks which
use this generation method (such as CLEVR). Our questions involve single or multiple
object/room existence, object/room counting, object colour recognition and localisation,
spatial reasoning, object/room size comparison and equality of object attributes (colour,
room location). The full list of question types and counts can be found in Appendix A.1.

52

VideoNavQA	question	category	distribution

query_color:	5.7%

query_obj:	5.9%

compare_size:	6.8%

compare_count:	8.0%

query_room:	9.4%

count:	15.4%
exist:	22.8%

equals_attr:	26.0%

meta-chart.com

Figure 3.2: Insights into the VideoNavQA dataset distribution. (Left:) Proportions
for each of the eight question categories. Equality and existence questions account
for nearly half of the dataset. (Middle:) Question length distribution. The maximum
length is 56 and approximately a fifth of the questions contain five words; however, the
distribution is bimodal and considerably long-tailed, beyond 20 words. (Right:) Video
length distribution. The maximum length is 140, with a normal distribution centered
around 70 frames, which is most likely an effect of the random sampling of start and
end locations for each trajectory.

Houses Samples
Train 622 84990

Validation 65 8755
Test 56 7587

Table 3.1: Dataset split statistics. The VideoNavQA benchmark contains approximately
100000 samples. The three sets of house environments are disjoint and correspond to
the splits used in the EQA-v1 dataset. This ensures that generalisation performance is
assessed in entirely novel visual settings (that is, trajectories inside previously unseen
houses) and that the visual variety is considerable across the dataset.

3.4.1 Visual information

Environments and scene representation The House3D environment is based on in-
door scenes from the SUNCG dataset [168]. Table 3.1 shows the number of houses
present in each of the three dataset splits and the corresponding number of examples
(question-video pairs). A house does not appear in more than a single split and 150
videos, to ensure large and consistent variability in the visual information.

Video generation and ground-truth extraction VideoNavQA examples are constructed
by first generating the video component. I used the grid-based representation available
in the House3D environment to compute the shortest path between arbitrary locations
in two different rooms of the house. To obtain the video, I rendered the shortest-path
trajectory inside House3D. The output corresponds to what an agent would see in an
EQA setting when exploring the house—with the added benefit that this trajectory is
already sensible from a navigation perspective.

53

EQA-v1 What room is the <OBJ> located in?
(Q types: 4) What colour is the <OBJ> in the <ROOM>?

VideoNavQA Are both <attr1> <OBJ1> and <attr2> <OBJ2> <colour>?
(Q types: 28) How many <attr> <OBJ> are in the <ROOM>?

Is there <art> <attr> <OBJ>?

Table 3.2: A sample comparison between the question templates found in EQA-v1 and
the more complex existence, counting and comparison templates found in VideoNavQA.
EQA-v1 questions only enquire about a single object, whereas VideoNavQA questions
may require reasoning about a pair of objects or identifying more objects of a certain
kind across a trajectory.

The ground-truth information is then obtained by parsing each video frame and stored
for subsequent question generation purposes. I used the SUNCG semantic rendering
mode in House3D to identify the objects visible in each frame. By linking them via
depth rendering to the current room the agent is in, or to an adjacent one, I collated all
objects and rooms that are seen on the trajectory and, consequently, in the video.

3.4.2 Questions

Functional form representation In a manner which is similar to other synthetic bench-
mark datasets (EQA-v1 [38], CLEVR [91]), I generated questions starting from func-
tional, template-style representations (for example, ‘How many <attr> <obj type-pl>

are in the <room type>?’). Once the video for the corresponding trajectory has been
generated and analysed, the tags can be instantiated with ground-truth information
from the video. Moreover, the correct answer can be easily determined, by executing the
corresponding functional program on the ground-truth collection of objects and rooms
that have been seen or visited on the trajectory. This involves performing a sequence
of basic operations (such as filter(), count(), get attr()) on the ground-truth col-
lection. Table 3.2 shows examples of question templates from VideoNavQA, while
contrasting them with the more restricted ones encountered in EQA-v1.

Generation This process starts with randomly choosing one of 28 question templates
to be instantiated. A valid question requires tags to be instantiated with ground-truth
values. To illustrate this idea, if the template contains a <room type> tag and the ground-
truth set obtained from the video trajectory only contains a kitchen and a living room,
then the only valid instantiations are {kitchen, living room}. With this in mind, I built sets
of possible values for each tag in the question template. To generate a valid (question,
answer) pair, I randomly assign each tag a value from its set, then ran the template
functional program to compute whether the question is valid and can be answered using

54

the ground-truth. I illustrate the process using the template ‘What colour is the <attr>
<obj type>?’, with the associated program:

input(objs)→filter(obj type)→filter(attr)→unique()→get attr(colour)

I first select the objects seen on the trajectory from the ground-truth collection. Next, I
filter by the instantiated object type, then by the instantiated attribute (enforced not to
be a colour during the tag value assignment). Finally, I ensure that the result is unique
(that is, the question is unambiguous) and retrieve the colour of the object.

3.5 Methods

The VideoNavQA dataset was designed to tackle the EQA task from a different perspec-
tive, which requires a smaller degree of fusion among different classes of methods. I now
describe the architectures I designed and used to establish more realistic expectations
on EQA performance, thereby obtaining initial results on VideoNavQA. These models
include several essential baselines and new ones inspired by previous successes in visual
question answering and computer vision.

3.5.1 Single-modality

3.5.1.1 Language

Question-only models have proved remarkably effective in EQA, often performing better
than the complex initial approaches [3]. I therefore included two simple yet powerful
language-modelling methods in the evaluation: a 1-layer LSTM [81] and an bag-of-words
(BoW) [154] model. Both models use an initial embedding layer, which learns a separate
representation for each of the 134 vocabulary words. The BoW averages all question
word encodings and forwards the result to a linear layer, while the LSTM encodes the
resulting sequence into a vector. Both baselines reveal the inherent biases that exist in
the environment concept distribution, thereby placing a lower bound on the desired
performance of models that can usefully exploit visual information.

3.5.1.2 Vision

Learning to answer a question solely from visual inputs is not expected to perform better
than providing the most frequently-occurring answer (in VideoNavQA, approximately
66% of the questions require a Yes/No answer). To confirm this behaviour, I evaluated
the performance of two popular video-processing models:

1. V-CNN2D: a per-frame processing VGG-style [165] convolutional neural network

55

Co
nv

3D

LS
TMQuestion

Co
nv

3D

Co
nv

3D

An
sw
er

ML
P

per-frame processing

Video frames

Em
be
dd
in
g

ML
P

Co
nv

2D

LS
TMQuestion

Co
nv

2D

Co
nv

2D

An
sw
er

ML
P

Video frames

Em
be
dd
in
g

LS
TM

Figure 3.3: (Left:) Concat-CNN3D processes the entire video at once, extracts a visual
representation and concatenates it with the question embedding. The result gets passed
through the MLP classifier to produce an answer. (Right:) Concat-CNN2D extracts
frame-wise features, then aggregates them via an LSTM—the rest of the processing is
the same as for Concat-CNN3D.

with LSTM integration across time. Here, the CNN extracts frame features xt and
the LSTM is applied to the resulting sequence x1, . . . ,xT . Finally, a linear layer
takes the output of the LSTM after T steps and outputs a probability distribution
over all possible answers via softmax.

2. V-CNN3D: a C3D-like [177] CNN, consisting of {3D-Convolutional, Max-Pooling,
BatchNorm} blocks, followed by a 3-layer MLP classifier with batch normalisation
applied after the first two layers. The convolutional and linear layer outputs are
passed through ReLU activation functions.

3.5.2 Multiple-modality

3.5.2.1 Concatenation models

Based on single-modality results, I integrated the best language baseline (LSTM) with
each vision model, in order to obtain joint representations of the obtained features. This
was achieved by concatenating the final question representation with the respective
video representations (from Concat-CNN2D/3D, shown in Figure 3.3). The result was
then passed through an MLP classifier that predicts the answer via softmax.

3.5.2.2 FiLM-based per-frame reasoning

Feature-wise linear modulation (FiLM) [145] was a previous state-of-the-art method
for visual question answering tasks. This paradigm uses the question embedding as a
conditioning signal that scales and shifts the feature maps within a CNN pipeline.

Illustrated in Figure 3.4, this method can be viewed as a general conditioning layer, but
with immediate applicability to a language conditioning input—in our case, we are
conditioning the visual processing using the question that the system needs to answer.

56

γi βi

 f gqi

xi

Figure 3.4: An illustration of the affine transformation computed inside the FiLM layer.
The question embedding gets passed through two functions f and g, which yield scale
and shift parameters γi and βi, respectively. The former is multiplied element-wise with
the visual features xi, followed by an element-wise addition with the shift values βi.
Intuitively, this operation ensures that the intermediate network representations get
(de-)emphasised according to the conditioning signal. End-to-end training ensures that
these parameters are learned as required by the downstream task.

Specifically, a FiLM layer takes as input a conditioning signal qi and learns functions
f and g which compute scale and shift values γic and βic, respectively. These values
are computed independently for each channel c of the current intermediate network
features xi that we wish to modulate:

γic = f(qi)c, βic = g(qi)c. (3.1)

In turn, γi and βi enable the FiLM layer to output an affine transformation of the network
features xi:

FiLM(xi) = γi · xi + βi. (3.2)

Intuitively, this modulates the neural network intermediate representations towards ones
that are useful for the downstream task—in particular, in a VQA setting, the network is
encouraged to focus on the parts of the image that help answer the question. In practice,
f and g are implemented as neural networks.

Here, I extended FiLM to address the temporal dimension introduced by VideoNavQA.
Figure 3.5 (left) shows each of the T video frames being processed independently by a
fixed number of ResBlocks [145]. The conditioning mechanism ensures that the visual
features relevant for question answering are propagated to the final frame representation.
Both functions f and g are implemented by neural networks consisting of an LSTM
followed by a linear layer. This can be viewed as an encoder-decoder architecture, where
the LSTM produces a representation of the entire question and the linear layer decodes
this embedding into a suitable affine transformation of the current ResBlock output.

57

FiLM decoder (linear)

Re
sB

lo
ck

Frame t

FiLM encoder (LSTM)

Question

Frame t
representation

Re
sB

lo
ck

Re
sB

lo
ck

per-frame
processing

An
sw
er

Ta
il

Context(t)

Re
sB

lo
ck

Frame t

Question

Frame t
representation

Re
sB

lo
ck

Re
sB

lo
ck

per-frame
processing

An
sw
er

Ta
il

Context(t-1)

Attention
(encoder states)

Encoder

Figure 3.5: (Left:) Per-frame FiLM model. Each video frame is processed separately by
the ResBlocks; then, all of the frame representations are aggregated and passed through
the classifier, which produces an answer. The aggregator is based either on attention or
global max-pooling mechanisms. (Right:) Temporal Multi-hop model. Each video frame
is processed by the ResBlocks: the FiLM parameters are computed from the current
attention context, which is initialised with the one from the previous frame and attends
over the hidden states of the question encoder. Temporal summarisation is achieved via
global max-pooling.

A series of visual features xt across all frames were thereby obtained. They were then
aggregated via two mechanisms corresponding to the model variants that I evaluated:

• attention (FiLM AT variant): I applied a linear transformation h to the features from
each frame which results in x′t, then used recurrent attention [9, 34] (please refer
to Section 2.1.6 for a detailed description of this method) to obtain intermediate
attention contexts ct; these were concatenated (denoted by ‖) to produce a final
encoding of the video conditioned on the question (xaggr):

x′t = h(xt),∀t = 1..T

xaggr = ‖
T

t=1
ct;

(3.3)

• global max-pooling (FiLM GP variant): I first applied a 1 × 1 convolution with
ReLU activations to obtain representations x′t, which were then passed through a
feature-wise (h,w) max-pooling operation over all frames (t′) to obtain the final
encoding xaggr:

x′t = ReLU(Conv1×1(xt)),∀t = 1..T

(xaggr)hw = max
t′∈1..T

(x′t′)hw.
(3.4)

Finally, the aggregator output was fed to a linear classifier that predicts the correct
answer. The decision to use these two types of classifiers is motivated by the rich
representation of the video across time, from which visual reasoning methods need to

58

select the information required to answer the question—this is often spread across only
a few frames. Both attention and global max-pooling are typically effective at selecting
the important features from a sequence, thus being reasonable choices in this scenario.

3.5.2.3 Temporal multi-hop FiLM

The multi-hop extension of FiLM [170] modulates feature maps at a certain level in the
CNN hierarchy (namely, the output of a particular ResBlock), by attending over the
hidden states of the question encoder. The attention computation is initialised with
the context vector which was obtained at the previous level—this allows scaling the
approach to settings with a longer input sequence, such as a dialogue.

VideoNavQA requires that the visual reasoning process includes an additional tem-
poral dimension. I thereby designed a temporal multi-hop model, visually depicted
in Figure 3.5 (right), to condition the video features using the question input. FiLM
parameters at frame t are computed for all ResBlocks, by first encoding the question
using an LSTM. The decoding step then initialises the attention context with the one
from frame t− 1 (ct−1) and performs attention over the question encoder hidden states.
Finally, the output weights αtt′ yield the new context vector ct—all of this taking place
according to the approach described in Section 2.1.6. As per the previous design, the
final decoding operation passes the context vector through a linear layer. Therefore,
the FiLM parameters at each time step depend on what has already been computed for
previous frames, which models the temporal structure of the input.

3.5.2.4 Temporal Compositional Attention Networks

Compositional Attention Networks [88] have achieved excellent performance in several
VQA tasks [10, 87, 88]. They use a sequence of MAC cells for processing each question-
and-image pair. The computation performed by a single cell is depicted in Figure 3.6
and comprises three interacting units: control, read and write. I first describe the input
processing done by our model, then the computations taking place at each step within
the corresponding MAC cell (according to the original paper). Finally, I explain how
our Temporal MAC model processes the input video and question to predict the answer.

Input processing—question Each word in the question from the current example is
passed through a learnable embedding layer, which produces a corresponding fixed-size
feature vector. The resulting sequence is then passed through a bidirectional LSTM
which yields (a) context words cws, with s ∈ 1..S, where S is the length of the question,
and (b) an overall question representation q = [hbck

1 ,hfwd
S], where h∗∗ are the final hidden

states from the forward and backward passes.

59

Control

Read Write

ct-1
ctctqi

mt-1 mt

KBi
rt

Figure 3.6: Illustration of the processing that takes place inside a MAC cell. The current
question embedding qi serves as input to the control unit within each cell, along with the
control output from the previous cell; this allows current decisions to take into account
and depend on previous ones. The visual features KBi represent the knowledge base
and are input to the read unit, which is governed by the current control signal ct. The
previous memory representationmt−1 is used in conjunction with the knowledge base
to derive useful features rt for the current reasoning step. These are finally used by the
write unit to update the memory and producemt.

Input processing—video Each frame in the input video is passed through a pre-
trained feature extractor. Its outputs are then fed into a convolutional neural network
with 3 layers and ELU activation functions, which are defined as:

ELU(x) =

x, x ≥ 0

exp(x)− 1, x < 0.
(3.5)

The final output is the knowledge base k used within MAC cells, as described below.

MAC cell—control unit This block processes the question at each step t via an atten-
tion mechanism and updates the control state ct−1—the result ct encodes the reasoning
operation that should be performed at the current step. The following equations sum-
marise the control block:

ctlt = Wctl(ct−1 ‖ qt) + bctl

ats = Wat(ctlt � cws) + bat

vts = softmax(ats)

ct =
S∑
s=1

vts · cws,

(3.6)

60

whereWctl ∈ Rd×2d, bctl ∈ Rd,Wat ∈ R1×d, � represents the dot-product operation and
‖ denotes concatenation. The control block essentially attends over the question word
contexts cws (where s = 1..S), using as conditioning signal the previous control state
ct−1 and the current encoding for the question qt, then weights the contexts to produce
a new control state ct.

MAC cell—read unit This block is conditioned on the output of the control block at
the current step ct, which it uses to query the knowledge base k (image features) and
retrieve the information relevant to the t-th processing step, rt. The equations below
encompass the transformations required to produce rt:

Ithw = (Wmmt−1 + bm)� (Wkkhw + bk)

I ′thw = WI(Ithw ‖ khw) + bI

athw = Wat(ct � I ′thw) + bat

vthw = softmax(athw)

rt =

H,W∑
h=1,w=1

vthw · khw,

(3.7)

where Wm,Wk,Wat ∈ Rd×d,WI ∈ Rd×2d and bm, bk, bat, bI ∈ Rd. The first two steps
allow information from the previous step (mt−1) and new, possibly unrelated, informa-
tion (khw), respectively, to be incorporated in the current reasoning step. Attention is
then computed over all knowledge base elements, in order to extract the ones necessary
for the reasoning operation. This results in a final, weighted representation rt.

MAC cell—write unit This block computes the result of the t-th reasoning step and
uses it to update the memory statemt.

m
prev
t = Wprev(rt ‖mt−1) + bprev

att′ = softmax(Wat(ct � ct′) + bat)

ma
t =

t−1∑
t′=1

att′ ·mj

mw
t = Wpm

prev
t +Wam

a
t + bm

cwt = Wwct + bw

mt = σ(cwt)mt−1 + (1− σ(cwt))mw
t ,

(3.8)

whereWprev ∈ Rd×2d,Wat,Ww ∈ R1×d,Wp,Wa ∈ Rd×d and bprev, bm ∈ Rd. The purpose
of the first operation is to integrate the current relevant information rt with the previous
memorymt−1. The following steps ensure that the final operation, which producesmt,

61

uses the result of this integration (mprev
t) and an attention-weighted summary of all

previous memory states (ma
t). The latter is useful in cases where the reasoning required

is not sequential—such as for the question ‘Are there more blue cubes than red spheres?’,
as opposed to ‘What colour is the sofa next to the TV?’. The final update uses a gating
operation conditioned on the current control state ct. Gating ensures that the number of
steps can be dynamically adjusted, based on the complexity of the current question.

Temporal processing I have extended compositional attention networks to handle
processing across the temporal domain. I started by applying a sequence of MAC cells
to the per-frame visual features that were previously extracted during input processing.
The final MAC cell outputs (mT)i, where T is the number of cells and i is the index of
the current frame in the video. I then used an LSTM to integrate these representations
across the entire duration of the video. Finally, the LSTM output at the final step predicts
the correct answer via a 2-layer MLP with ELU activations after the first layer.

3.6 Experiments

We evaluated all previously-described models on the VideoNavQA task, producing an
initial expectation of the feasibility of EQA-type tasks. Accuracy was used to compare
the overall performance between different architectures. Furthermore, in-depth analysis
was also carried out for each of the models, which determined their respective strengths
across different question categories and types. We trained all models with the Adam
optimiser [95] and monitored the validation accuracy. Hyperparameters were chosen
by evaluating several combinations of layer hidden sizes, number of residual blocks and
classifier dimensions (detailed in Appendix A.2).

3.6.1 Models evaluated

Language-only models The recurrent model consists of an embedding layer of 512
units and an LSTM with 128 hidden units. The BoW model uses an embedding size of
128. We employed a batch size of 1024 and learning rates of 5e−5 and 1e−5, respectively.

Video-only models The V-CNN3D model has 3 {convolutional, max-pool, Batch-
Norm} blocks with 64, 128, and 128 output channels, respectively, kernel size (1, 2, 2) for
the first convolutional layer and (4, 4, 4) subsequently. The classifier has 2 linear layers
with 2048 and 128 hidden units, respectively. BatchNorm [89] and ReLU [62] activations
were used at each layer. The V-CNN2D model is built on a VGG configuration with 5
{conv, max-pool} blocks having 16, 32, 64, 128 and 128 channels, respectively, and a
kernel size of 2.

62

FiLM-extended models The models that process each frame in a FiLM fashion have
4 (GP) or 5 (AT) ResBlocks with 1024 channels, preceded by a 1 × 1 convolution on
the input. The attention mechanism for FiLM AT has 128 hidden units, whereas the
global max-pooling classifier obtains 32 channels via the 1×1 convolution. The temporal
multi-hop model has 3 ResBlocks and 64 tail channels. It was trained with a learning
rate of 5e−5 and a batch size of 16, whereas the other two used 1e−4 and 32.

Temporal MAC Each question token is embedded into a 128-D vector and the output
dimension of the question encoder is 512. The model contains 6 MAC cells corresponding
to at most 6 reasoning steps. The LSTM that integrates the reasoning outputs for all
frames has input and hidden sizes of 1536, and the classifier that produces the answer is
a 2-layer MLP with 1536 and 1024 input features, respectively, where the first layer has
ELU activations. Eugene adapted the ramp-up/down Adam learning schedule often
used in VQA studies [24], increasing the learning rate to 1e−4 in the first two epochs
and then decaying it to 1e−5 after the 10th epoch (training is done for 15 epochs).

Video dimensionality The raw videos have a 140×3×160×208 dimensionality, which
makes learning infeasible time-wise and restricts model capacity. Instead, I extracted
visual features from an object detector that was pre-trained on a set of 2000 frames not
part of the dataset and initialised with the 10th layer output of a Faster R-CNN [155].
The model has 3 {conv×2, BatchNorm, max-pool} blocks with 512 output maps for each
layer and a softmax classifier with a 1024-unit linear layer. I did not notice any significant
difference in validation accuracy when training the Concat-CNN3D model with and
without pre-trained features. I also adopted a randomised sub-sampling strategy when
reducing the maximum video length from 140 to 35. On each iteration, I replaced every
block of 4 frames with a single, randomly-picked one—which also encourages more
robustness and invariance to changes between nearby frames.

3.6.2 Model performance

As expected, video-only baselines are only able to predict the most-commonly occurring
answer (Yes/True). The LSTM emerges as the most powerful language model, scoring
7.5% higher than the bag-of-words. Rather surprisingly, the Concat-CNN2D vision-
and-language model outperforms all other models, obtaining an accuracy of 64.47%.
The overall performance of the Concat-CNN3D and FiLM AT models is roughly similar,
while FiLM GP falls behind Concat-CNN2D by approximately 0.7%. In turn, temporal
multi-hop scores about 0.3% lower, but still surpasses the best language baseline by 7%.

63

Model All types Yes/No Other Count
BoW 49.02 57.67 30.57 40.21
LSTM 56.49 68.36 35.27 38.90

V-CNN3D 33.29 - - -
V-CNN2D 33.62 - - -

Concat-CNN3D 64.00 72.99 49.12 49.10
Concat-CNN2D 64.47 73.50 49.20 49.59

FiLM-GP 63.79 72.91 47.71 50.00
FiLM-AT 64.08 72.93 49.54 49.26

Temporal multi-hop 63.53 71.81 49.54 50.16
MAC 62.32 69.02 51.37 50.99

Table 3.3: Evaluation results on the VideoNavQA test set, reported in terms of percent
accuracy for language-only, video-only and multiple-modality models. We also used
standard VQA reporting of Yes/No, other, and number categories [7]. This allowed a
more thorough investigation of model performance and assessing the relative complexity
of each type of task, considering per-category biases in the answer distributions.

Overall, these results show a significant margin over the language-only capabilities of
the LSTM and BoW. We can thus deduce that the vision-and-language models initially
designed and evaluated on VideoNavQA are capable of exploiting the visual information
available in the environment. This finding represents an initial validation of the feasibility
of the VideoNavQA task, as it ensures that the way in which the dataset was curated
allows the visual reasoning process to be generalisable to unseen environments. In the
future, a more focused investigation of novel VQA techniques is required, in order to
properly model and account for the rich dimensionality and contextual information
encountered in the videos.

3.6.3 Analysis by question category

In Figure 3.7, I provide a more detailed analysis of how each model performs on the
test set for each of the eight question categories. This investigation reveals the specific
capabilities developed on VideoNavQA sub-tasks. All models score highest on existence
questions, with FiLM GP having an edge over others, whereas identifying object types
seems to be the hardest task: Concat-CNN3D performs worst, whereas FiLM AT achieves
the highest accuracy, closely followed by Multi-hop. MAC is by far the best at identifying
the room locations of objects and obtains the strongest performance on counting as well.
Here, all other models score roughly 50%. This is relatively expected, since MAC has
been previously shown to significantly surpass FiLM on VQA tasks. When comparing
object attributes (such as room location, colour), most models achieve around 73%, with
Concat-CNN2D obtaining a 1% edge and MAC, a 5% drop. MAC scores highest once

64

Figure 3.7: Comparative performance of all vision-and-language models on each ques-
tion category (top to bottom, left to right): exist, equals attr, compare size, compare count,
count, query room, query color, query obj. Questions from the first 4 categories have binary
answers (Yes/No), whereas the latter ones are answered by integer counts, room types,
colours and object types, respectively.

65

again when identifying colours, with Concat-CNNs achieving the next best score of
58% and FiLM AT performing worst, just under 56%. FiLM GP does relatively well at
comparing object/room sizes, followed by FiLM AT, while Multi-Hop obtains a weaker
result of around 71% and MAC achieves only 68%. Alternatively, FiLM GP and MAC
do much worse than all the other models when comparing counts and Concat-CNN2D
considerably outperforms them, with an overall performance gap of 5%. The motivation
behind this result might stem from the fact that the question category had been relatively
unexplored in VQA tasks that were visually-realistic—that is, with more variety and
complexity than CLEVR-style visual inputs.

3.7 Discussion

I have introduced the VideoNavQA task as a means to achieve a clearer understanding
of what is achievable in embodied QA. Here, the environment context is visually-rich
and suitable methods need to be integrated to build agents that can reason, navigate and
act accordingly. Our task re-imagines the EQA paradigm—we have trivialised the navi-
gation aspect by providing the agent with nearly-optimal trajectories. Meanwhile, the
difficulty of the visual reasoning requirement was significantly increased via designing
28 question types spanning 8 categories, which goes far beyond the EQA task set.

By reporting initial results from a variety of single-modality and integrative models,
I have placed a lower bound on the performance achievable in the VideoNavQA task.
Nevertheless, results are not widely different across architectures—this indicates an
emerging need for further investigation of QA models that are better able to select the
required visual information, bridging the gap to human performance. By first tackling
the VideoNavQA task effectively, researchers in the vision-and-language navigation do-
main will encounter clearer and better-measured progress when attempting to integrate
navigation into the EQA task, gradually reaching a better solution.

3.8 Additional related research

After the completion of this project, I have also been involved in other collaborations
on visual reasoning tasks—namely, scene graph extraction from an image, which can
be thought of as an essential step in identifying the concepts present in the view of an
agent:

• ‘Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation’ [100]:
published at the 31st British Machine Vision Conference in 2020.

66

• ‘Generative Graph Perturbations for Scene Graph Prediction’ [99]: presented as a
workshop paper at the Object-Oriented Learning Workshop, during the Thirty-
eighth International Conference on Machine Learning in 2020.

Both studies aimed to make image-to-scene-graph generation systems more robust in
the presence of dataset distribution biases, ameliorating their effects when predicting
relationships between the objects identified in the input image.

As a third author on both works—preceded by Boris Knyazev and Harm de Vries, and
followed by Graham Taylor, Aaron Courville and Eugene Belilovsky—my contributions
consisted of suggesting model changes and approaches (supported by my knowledge
of graph neural network architectures), implementing a data pipeline for running
experiments on the GQA dataset and contributing to the paper writing process.

3.9 Summary

This chapter has presented an approach to modelling world representations via visual
reasoning paradigms. I have proposed a novel benchmark, VideoNavQA, which views
the existing Embodied QA task from a different perspective. VideoNavQA removes the
navigation aspect that poses a significant challenge in agents and focuses on investigating
the QA performance of agents on visual streams—namely, videos.

The ‘agent’ is instead represented by a VQA-inspired model, which extends popular
vision-and-language paradigms to handle the added temporal dimension. We thus arrive
at a multimodal world representation, produced by a model wherein the linguistic input
(the question) is used as a conditioning signal for the visual processing pipeline. This
method allows the system to extract and focus its computation on the visual concepts
required to produce an answer.

Beyond being published as a conference paper at one of the most important computer
vision conferences, VideoNavQA was offered a spotlight talk at the Visually Grounded
Interaction and Language workshop held at the NeurIPS 2019 conference. This shows
significant interest in the research community towards our alternative perspective to
environment understanding and validates the importance of the study.

More recently, benchmarks have been proposed that tackle more complex tasks, such as
interacting with objects and compositional tasks. Therefore, once we are certain about
the capabilities of visually-grounded systems in controlled contexts like VideoNavQA
(and finding models which achieve a closer gap to human performance), we can use
the internal representations achieved by these models to construct agents which interact
and make decisions in life-like environments.

67

68

Chapter 4

Hierarchical representations of
structured information

4.1 Introduction and contribution overview

A crucial aspect to achieving useful world representations is structure—numerous
data settings are abundant with it and many contemporary tasks tackled by machine
learning can benefit from leveraging this property. For example, connectivity between
entities, objects or parts is an essential characteristic of social networks (Twitter, Pinterest,
citation networks), biochemical data (molecules, drug-gene interaction networks), traffic
networks and even data typically processed by other models, such as images and videos.
The structure in data can have various meanings—to only name a few, spatial (proximity
between objects or their relative placement), causal (an event shown in a video frame
influences the occurrence of another one several frames later), semantic (two groups in
a social network sharing some of the aims) or temporal (the same event takes place at
certain points in time in a sequence and the links exist between consecutive occurrences).

It is therefore important for a machine learning model to consider the structure present
in inputs, when predicting their properties. This idea is analogous to the one leveraged
in image classification, where CNNs exploit the spatial bias in visual data—this is done
repeatedly, at various scales, after the image has been downsampled. We thus want
GNNs to progressively coarsen the input graph; the resulting nodes would represent
clusters that encompass the features of all contained nodes, which were produced by
graph convolutional layers. Moreover, we need to design these models such that they
eventually scale to large graphs, with millions of nodes, like the ones encountered in
real-world scenarios. In the limit, social networks can reach O(world population) nodes!

69

This chapter presents two joint first-author contributions in the space of graph pooling,
each of which addresses one of the challenges highlighted above. The first one introduces
a sparse hierarchical graph classifier, whose performance on standard benchmarks
matched the (November 2018) state-of-the-art results given by DiffPool [201]. At the
same time, we reduced the memory complexity from quadratic in the number of nodes
(namely, the DiffPool complexity) to linear in the number of nodes. This was achieved by
combining existing approaches into a CNN-like graph classifier that alternates between
convolutions and pooling steps. The main issue which we addressed here is scalability—
the memory consumption plot in the experimental section shows how our method
handles graphs which are too large for DiffPool to be trained on a single GPU with. I
worked on the model development, ran incremental experiments (to gradually improve
the performance of the pooling layer) on all datasets, ran final experiments (to match
state-of-the-art results) on the Collab dataset, produced the t-SNE visualisation and
wrote the the evaluation section, except for the memory usage plot and explanation.

The second contribution proposes a topologically-infused pooling operator, MPR (Mapper-
based PageRank), which competed with contemporary state-of-the-art approaches on
graph classification. This pooling method relies on Mapper, a topological data analysis
algorithm, to incorporate useful structural information via a so-called ‘lens’ function. In
our case, this function is based on PageRank and thus exploits the power-law distribu-
tions often encountered in real-world graphs, especially in social networks. In this case,
the focus was on producing theoretically-grounded and interpretable representations—
the paper appendix describes a visualisation technique also based on the Mapper algo-
rithm, which illustrates the applicability and utility of graph summarisation methods. I
developed the MPR pooling layer (while Cristian Bodnar worked on the DMP layer and
visualisation), ran experiments with MPR-based models and all other baselines on all
datasets and wrote the MPR pooling layer, model and evaluation sections of the paper.

We named the first study ‘Towards Sparse Hierarchical Graph Classifiers’ [25] and intro-
duced it at the Relational Representation Learning Workshop, during the Thirty-second
Conference on Neural Information Processing Systems in 2018. At the time of writing
this dissertation, the study had been cited 70 times.

The second contribution, ‘Deep Graph Mapper: Seeing Graphs through the Neural Lens’ [16],
was presented at several venues—first, at the ELLIS Workshop on Geometric and Rela-
tional Deep Learning in April 2020, then at the Topological Data Analysis Workshop,
during the Thirty-fourth Conference on Neural Information Processing Systems in 2020.
We have also recently submitted a manuscript to the Frontiers in Big Data journal, under
the topic Topology in Real-World Machine Learning and Data Analysis.

70

4.2 Sparse differentiable pooling

Recent research in graph representation learning, mostly relying on graph convolutional
networks, has brought substantial improvements on many graph-based benchmark tasks.
While novel approaches to learning node embeddings at the time of the study were well
suited to node classification and link prediction, their application to graph classification
(predicting a single label for the entire graph) remained mostly rudimentary—often
using a single global pooling step to aggregate node features or a hand-designed, fixed
heuristic for hierarchical coarsening of the input graph. An essential step towards
ameliorating this is differentiable graph coarsening—reducing the size of the graph
in an adaptive, data-dependent manner within a graph neural network pipeline, as a
generalisation of the image downsampling process within CNNs. However, the previous
state-of-the-art approach to pooling had quadratic memory requirements during training
and would therefore not scale to large graphs. In this work, we combined several
contemporary advances in graph neural network design to demonstrate that competitive
hierarchical graph classification results were possible, without sacrificing sparsity in
the pipeline. Our evaluation was carried out on several established graph classification
benchmarks, with results highlighting an important direction for subsequent research
in learning with graph neural networks.

4.2.1 Previous related work

We studied the task of graph classification—the process of learning to place graphs into
one of several classes. This can be seen as a direct generalisation of image classifica-
tion [105], since images may be easily cast as a special case of a ‘grid graph’ (where each
pixel of an image has links to its eight immediate neighbours). Therefore, we consid-
ered it a logical next step to investigate and generalise CNN-style input processing to
graphs [12, 20, 73]. CNN classifiers typically comprise alternating convolutional and pool-
ing layers, which progressively extract higher-level features from the input image, and
appropriately downsample the image, respectively. The visual feature tensor eventually
becomes small enough to be processed by fully-connected neural networks—the second
part of the network that is responsible for prediction. Converting these architectures to
handle graph-structured data is a central challenge for the field of graph representation
learning, receiving substantial attention at the time of the study [12, 20, 73].

Generalising the (image) convolutional layer to graphs has been a very active research
area. Lately, several graph convolutional layers [22, 42, 61, 97, 181] have been proposed,
which significantly advanced the state-of-the-art on many challenging node classification
benchmarks (a graph-domain task that corresponds to image segmentation), as well

71

as link prediction. Conversely, before this work was carried out, generalising pooling
layers had received substantially smaller levels of attention by the community. One
alternative approach would be to neglect the pooling operation entirely and instead
apply simple aggregation or set-based neural networks to node embeddings previously
generated by graph convolutional layers [37, 46, 61, 115]. Alternately, the graph may be
classified through a neural network operating on the concatenation of all of its nodes;
this typically requires specifying a canonical ordering over the nodes [140, 208], a
substantially challenging task.

The proposed pooling methods would fall into two broad categories: (1) aggregating
node representations via global pooling after each [46] or only after the last message
passing step [37, 61, 115], and (2) aggregating node representations into clusters which
coarsen the graph hierarchically [6, 22, 42, 51, 133, 134, 140, 164, 201]. Apart from
two studies [6, 201], all earlier works in this area assumed a fixed, pre-defined cluster
assignment, which was obtained by running a clustering algorithm on the graph nodes
(for example, using the GraClus algorithm [45] to obtain structure-dependent cluster
assignments or finding clusters via k-means on node features [134]). More recent
works [6, 201] highlighted that intermediate node representations (that is, ones obtained
after applying a graph convolutional layer) can be useful in obtaining both feature- and
structure-based cluster assignments—these would therefore adapt to the underlying
data and be learned in a differentiable fashion.

The first CNN-style graph neural network with a learnable pooling operator had been
recently pioneered, leveraging the DiffPool layer [201] within an end-to-end training
process. DiffPool computes soft clustering assignments of nodes from the original graph
to nodes in the pooled graph. By restricting the clustering scores to the graph adjacency
information and leveraging a sparsity-inducing entropy loss function, the clustering
learned by DiffPool eventually converges to an almost-hard clustering with interpretable
structure, and led to state-of-the-art results on several graph classification benchmarks.

The l-th DiffPool layer produces a coarsened graph (Xl+1,Al+1) from the input one
(Xl,Al), according to the following equations:

Xl+1 = S>l Xl

Al+1 = S>l AlSl,
(4.1)

whereS>l ∈ Rnl×nl+1 and nk is the number of nodes in the input graph at the k-th pooling
layer. The matrix Sl is a learned soft cluster assignment—Sij intuitively indicates the
degree of membership of the i-th node in the input graph to the j-th cluster in the
coarsened graph. The cluster assignment matrix Sl is computed via a GNN-based

72

embedding module that takes as input the current input graph (Xl,Al):

Sl = softmax(GNNl(Xl,Al)
)
. (4.2)

The output of the GNN is then passed through a softmax operator to produce probabilis-
tic cluster assignments for each node, which satisfies the condition∑nl+1

j=1 Sij = 1, ∀i ∈
{1, . . . , nl}. The first step in Equation 4.1 thus computes the features of the resulting
clusters as a weighted combination of the member node features. Then, the second step
in Equation 4.1 produces the adjacency matrix of the pooled graph, with edge weights
indicating how strongly any two clusters are connected.

The main limitation of DiffPool is the computation of soft clustering assignments. Even
though clusters eventually converge, an entire assignment matrix is stored during early
training phases, to establish cluster memberships of nodes from the original graph to
new nodes in the pooled graph, in an all-pairs manner. This induces a quadraticO(r|V |2)

memory requirement, for any pooling algorithm with a (fixed) pooling ratio r, therefore
making scaling up to larger graphs more difficult for a DiffPool-based pipeline.

In this work, we leveraged contemporary advances in graph neural network research [6,
72, 195] to show that sparsity can be maintained, whilst obtaining good performance on
end-to-end graph convolutional architectures with coarsening operations. We demon-
strated results comparable to variants of DiffPool on four standard graph classification
benchmarks, using a CNN-like graph classifier that only requires O(|V |+ |E|) storage
(equivalent to the storage complexity of the input graph).

4.2.2 A CNN-style graph classifier

Assume a standard graph machine learning setup, where the input graph is represented
as a matrix of node features X ∈ RN×F and an adjacency matrix A ∈ RN×N . I use N to
denote the number of nodes in the graph, and F for the feature dimensionality. In
cases where the graph has no initial node features, we can leverage the node degree
information (such as the one-hot encodings of node degrees, for all degrees less or equal
to a given upper bound) as artificial node features. While in general, the adjacency
matrix may consist of real numbers (and may even contain edge features), here we
focused on undirected and unweighted graphs—that is,A is assumed to be binary and
symmetric. The complete model pipeline is depicted in Figure 4.1.

In order to build a CNN-inspired neural network for graph classification, we first define
convolutional and pooling layers. In addition, we leverage a readout operation (which
corresponds to the flattening layer in an image CNN)—the purpose of this step is to

73

× ×

×
×pool

GCN GCN

pool
Σ

mean ‖ max

mean ‖ max

predict
MLP

Figure 4.1: The full pipeline of our model (with r = 0.5), leveraging several blocks
of convolutional/pooling layers. Unlike DiffPool, the pooling steps drop, rather than
aggregate, nodes. The jumping-knowledge-style summary (Σ) combines information
from all scales in the iterative clustering process.

convert the learned representations into a fixed-size feature vector, which in turn is
used by a classifier (such as an MLP) for the final prediction. All these operations are
described in the remainder of this section.

Convolutional layer Since our model is tasked with classifying unseen graph struc-
tures at test time, the main requirement of the convolutional layer is that it is inductive,
which means that it should not depend on a fixed and known graph structure. A straight-
forward example of such a layer is the mean-pooling propagation rule, as previously
used in GCN [97] or Const-GAT [181]:

mean-pool(X,A) = σ
(
D̂−1ÂXΘ +XΘ′

)
, (4.3)

where Â = A + IN is the adjacency matrix with added self-loops and D̂ is the corre-
sponding degree matrix—namely, D̂ii =

∑
j Âij . We have used the rectified linear unit

(ReLU) for the activation function σ. The linear transformations Θ,Θ′ ∈ RF×F ′ are
learnable and applied to each node. Finally, the transformation Θ′ corresponds to a sim-
ple skip-connection [75], which further enforces a learned preservation of information
about the central node.

Pooling layer It is essential to ensure that a graph downsampling layer behaves id-
iomatically across a large range of graph sizes and structures. To this end, we choose to
coarsen the graph with a pooling ratio r ∈ (0, 1]. This implies that pooling over a graph
with N nodes will result in a new graph with drNe nodes.

DiffPool achieves this by computing a clustering of the N input nodes into drNe clusters
(which incurs a quadratic penalty in storing cluster assignment scores for the backprop-
agation phase). Instead, we leveraged the pooling mechanism within Graph U-Nets [6],
which simply drops N − drNe nodes from the original graph.

74

Within this pooling layer, the choice of nodes to drop is based on a projection score of
node features X against a learnable vector p. Gradients flow into p by allowing the
projection scores to also be used as gating values. In this way, the retained nodes with
lower scores will experience less significant feature retention in the output graph. The
operation of this layer—namely, computing a pooled graph (X ′,A′) from an input graph
(X,A)—can be fully expressed as follows:

y =
Xp

‖p‖
i = top-k(y, r)

X ′ = (X � tanh(y))i

A′ = Ai,i.

(4.4)

In the equations above, ‖ · ‖ is the L2 norm, top-k(·, r) selects the indices corresponding
to the first r% largest values in a given input vector, � is element-wise multiplication
and (·)i is an indexing operation that takes slices at indices specified by i. The entire
layer operation thus requires only point-wise projection and slicing into the original
(feature and adjacency) matrices. This trivially maintains a linear memory complexity.

Readout layer Our model also requires a ‘flattening’ step, to preserve information
about the input graph while yielding a fixed-size representation. In CNNs, the typical
and natural way of achieving this is via global average pooling—here, this translates
to taking the average of all learned node embeddings produced by the final graph
convolutional layer. We augment this information with another summary obtained
by global max pooling, as we found this strengthened our representations. Finally,
inspired by the jumping-knowledge network architecture [194, 195], we perform this
summarisation step after every convolutional-pooling block within the network—all of
the resulting summaries are aggregated via the sum operation.

The output graph of the l-th conv-pool block, (X(l),A(l)) yields a summary s(l) according
to the equation below:

s(l) =
1

N (l)

N(l)∑
i=1

x
(l)
i ‖

N(l)

max
i=1

x
(l)
i . (4.5)

whereN (l) is the number of nodes of the graph, x(l)
i are the i-th node’s feature vector, and

‖ denotes concatenation. Then, the final global summary vector produced by a graph
CNN with L layers is represented by the sum of all summaries (namely, s =

∑L
l=1 s

(l))
and fed to an MLP classifier for obtaining class predictions.

75

We find that aggregating information across all layers is essential—not only to preserve
information at different scales, but also to handle different input graph sizes: this mech-
anism is able to retain information on smaller graphs that are often quickly coarsened
to only a few nodes.

Model Enzymes D&D Collab Proteins

Graphlet 41.03 74.85 64.66 72.91
Shortest-path 42.32 78.86 59.10 76.43
1-WL 53.43 74.02 78.61 73.76
WL-QA 60.13 79.04 80.74 75.26
PatchySAN – 76.27 72.60 75.00
GraphSAGE 54.25 75.42 68.25 70.48
ECC 53.50 74.10 67.79 72.65
Set2Set 60.15 78.12 71.75 74.29
SortPool 57.12 79.37 73.76 75.54
DiffPool-Det 58.33 75.47 82.13 75.62
DiffPool-NoLP 62.67 79.98 75.63 77.42
DiffPool 64.23 81.15 75.50 78.10

Ours 64.17 78.59 74.54 75.46

Table 4.1: Classification accuracy percentages. Our model successfully outperforms
the sparse aggregation-based GraphSAGE baseline, while being a close competitor
to DiffPool variants, across all datasets. This confirms the effectiveness of leveraging
learnable pooling while preserving sparsity.

4.2.3 Experiments

Datasets and evaluation procedure We aimed to determine how well our sparse CNN-
like pipeline can hierarchically compress graph representations, while still producing
features relevant for classification. To achieve this, we evaluated the architecture on
several well-known benchmark tasks: biological (Enzymes, Proteins, D&D) and scientific
collaboration (Collab) datasets [93]. We presented the classification accuracy obtained
from performing 10-fold cross-validation on each of these benchmarks, in relation to
the DiffPool performance reported by Ying et al. [201].

Model parameters Our graph neural network architecture consists of three blocks,
each of them containing a graph convolutional layer with 128 (Enzymes and Collab)
or 64 features (D&D and Proteins), followed by a pooling layer. We ensure enough
information is retained after each coarsening step by preserving 80% of the existing
nodes (hence using a pooling ratio of r = 0.8). A learning rate of 0.005 was used

76

for Proteins and 0.0005 for all other datasets. The model was trained using the Adam
optimizer [95] for 100 epochs on Enzymes, 40 on Proteins, 20 on D&D and 30 on Collab.

Results Table 4.1 illustrates our results in relation to the ones reported by [201]. In
all cases, our model significantly outperforms the GraphSAGE sparse aggregation
method [72], while successfully competing at most within 1% accuracy with variants of
DiffPool [201], the singular development in hierarchical graph representation learning
at the time our study was carried out. Unlike DiffPool, our method does not require
quadratic memory, suggesting an important potential future development: deploying
scalable hierarchical graph classifiers on larger, real-world inputs.

Petar Veličković also verified this claim empirically, through experiments on random
inputs. As a result, Figure 4.2 demonstrates that our method compares favourably
to DiffPool on larger-scale graphs, even if the pooling layer does not drop any nodes
(compared to a 0.25 retain rate for the DiffPool).

Qualitative analysis Finally, I investigated the distribution of graph summaries, using
a pre-trained model on a fold of the Collab dataset to produce 499 outputs across all 3
classes. Figure 4.3 shows that an evident clustering can be achieved, once the graph has
been processed by the sequence of convolutional and pooling steps in our model.

4.2.4 Summary

We have introduced a CNN-style graph classification architecture that, at the time
of publication, was the only sparse pooling-based model (memory requirement of
O(|V |+ |E|) for the pooling layer) to reach performance comparable with the state-of-
the-art one reported by [201] for DiffPool. Using a combination of Top-k pooling and
jumping-knowledge aggregation, which ensures that information at all levels in the
hierarchy is retained, we compete with DiffPool variants within 1% accuracy across 4
standard benchmarks. This result is an essential step towards scaling up such methods to
large graphs, which are often encountered in real-world data settings—here, quadratic
memory requirements, like the one of DiffPool (O(|V |2)), become challenging and
eventually infeasible.

77

OOM OOM
1K 5K 10K 20K 30K 40K 50K

0.2

0.4

0.6

0.8

1

1.2

·104

599 735
1,047

2,251

4,253

6,969

10,477

603 807
1,487

4,097

8,419

Nodes

G
PU

M
em

or
y

(M
B

)

GPU Memory Usage

Ours (k = 1.0) DiffPool (k = 0.25)

Figure 4.2: GPU memory usage of our method (with no pooling; r = 1.0) and DiffPool
(r = 0.25) during training on Erdős-Rényi graphs [48] of varying node sizes (and
|E| = 2|V |). Both methods ran with 128 input and hidden features, and three Conv-Pool
layers. “OOM” denotes out-of-memory.

Figure 4.3: t-SNE plot illustrating the classification capabilities of our model. The points
represent summaries of 499 Collab test graphs; each of the three classes corresponds to a
different color.

78

4.3 Topologically-grounded pooling

As noted previously, the task of summarising graphs has been considerably explored in
recent years. Numerous studies have been published, tackling the challenge of building
pooling layers that operate on data regions with arbitrary structures. These inputs
contrast the grid-like ones encountered in image processing, where fixed, non-adaptive
summarisation techniques, such as max-pooling, have been empirically shown to achieve
success on standard benchmarks. In our study [16], Cristian Bodnar and I have designed
a general technique named Deep Graph Mapper (DGM) as a general synthesis of Map-
per [71, 167], an algorithm from the field of Topological Data Analysis (TDA) [32], and
graph neural networks (GNNs) [12, 20, 160]. My collaborator further showed an impor-
tant connection between Mapper visualisations and graph pooling methods. Namely, he
proved that Mapper is a generalisation of pooling methods based on soft cluster assign-
ments, which include state-of-the-art algorithms like minCUT [15] and DiffPool [201].
With this idea in mind, I have proposed MPR—a novel pooling operator which merges
the Mapper algorithm with GNN expressiveness to yield topologically-grounded graph
summaries. Experimental studies revealed that MPR obtains competitive results with
state-of-the-art methods on numerous standard benchmarks.

Figure 4.4: An illustration of the Deep Graph Mapper (DGM) algorithm. For simplicity,
a graph neural network (GNN) is tasked with approximating a ‘height’ function over
the nodes, as viewed above (for example, the nodes in the lower triangle yield smaller
function values, while the ones in the upper triangle result in higher ones). The input
graph seen in subfigure (a) is passed through the GNN. The latter is applied to each of
the nodes in the graph (b) and outputs a real number (the approximation of the node
‘height’) (c). Given a cover U of the image of the GNN (c), the refined pullback cover Ū
is computed (d). This allows each node to be assigned to one or more clusters (e). The
1-skeleton of the nerve of the pullback cover provides the visual summary of the graph
(f). The diagram is inspired by Hajij et al. [71].

Building upon the topological perspective of graph pooling, we have each proposed a
graph coarsening algorithm based on Mapper. The remainder of this chapter focuses on
the one I designed, MPR, mentioned in the previous paragraph. MPR leverages a fixed
PageRank-based lens function and achieves results competitive with other state-of-the-

79

art pooling methods on graph classification benchmarks. Most notably, the pooling layer
competes with the differentiable one designed by Cristian Bodnar—this result showcases
the power of well-chosen inductive biases reflected in the node scoring functions, given
a certain data distribution in the experimental setup.

4.3.1 Background and relevant work

Graph coarsening methods have been extensively explored as part of GNN graph classi-
fication frameworks. Luzhnica et al. [118] proposed a topological approach to pooling,
progressively summarising the graph by aggregating its maximal cliques into new clus-
ters. However, cliques represent local topological features—in contrast, our methods
employ a global perspective of the graph during the pooling step. Two main paradigms
have emerged in the design of adaptive coarsening layers: Top-k pooling, based on
a learnable ranking [57], and learning the cluster assignment [201] with additional
entropy and link prediction losses for more stable training (DiffPool). Following either
of these directions, several variants and incremental improvements have been proposed.
The Top-k approach has been combined with jumping-knowledge networks [25], at-
tention [86, 111] and self-attention for cluster assignment [151]. In a manner similar to
DiffPool, the method suggested by Bianchi et al. [15] uses several loss terms to encourage
the formation of clusters with strongly connected nodes, similar sizes and orthogonal
assignments. An alternative approach is suggested by Ma et al. [120], which leverages
spectral clustering.

I will now review the Mapper [167] algorithm, with a focus on graph domains [71].

Definition 4.3.1. Assume X is a topological space, f : X → Rd, d ≥ 1 is a continuous
function and U = (Ui)i∈I is a cover of Rd. The pullback cover f ∗(U) of X induced by
(f,U) is therefore the collection of open sets f−1(Ui), i ∈ I , for some indexing set I .
The cover of X , which is formed by the connected components of all pre-images in
the pullback cover f ∗(U), is called the refined pullback cover, denoted by Ū = (Ūj)j∈J ,
where J is an indexing set.

Definition 4.3.2. Assume X is a topological space with an open cover U = (Ui)i∈I . The
1-skeleton of the nerve N (U) of U , denoted by sk1(N (U)), is the graph with nodes
represented by (vi)i∈I , where an edge exists between two nodes vi, vj if and only if
Ui ∩ Uj 6= ∅.

Given a graph G = (V,E), a carefully designed lens function f : V → Rd and cover U
of Rd, the Mapper algorithm first computes the associated pullback cover f ∗(U). Then,
using a clustering algorithm of choice, it processes each of the sets of vertices f−1(Ui)

in f ∗(U) and obtains the refined pullback cover. During the last step, Mapper outputs

80

a summarised graph by computing the 1-skeleton of the nerve of the refined pullback
cover, sk1(N (Ū)). At a high level, the soft clusters formed by the refined pullback become
the nodes of the output graph, with edges connecting any two nodes that correspond to
overlapping clusters.

4.3.2 A Mapper-based coarsening layer

I considered a fixed and scalable non-differentiable lens function f : V → R that is given
by the normalised PageRank (PR) [144] value for a given node. The PageRank function
computes an importance score for each node based on its connectivity, according to the
popular recurrence relation:

f(Xi)
∆
= PRi =

∑
j∈N(i)

PRj

|N(i)| , (4.6)

where N(i) represents the set of neighbours of the i-th node in the graph. The resulting
scores are in the [0, 1] range, thereby reflecting the probability of a random walk through
the graph to end in the corresponding node. Using the previously described cover U
(which is essentially the set of overlapping intervals), the elements of the pullback cover
form a soft cluster assignment matrix S:

Sij =
Ii∈f−1(Uj)

|{Uk|i ∈ f−1(Uk)}|
(4.7)

where Un is the n-th overlapping interval in the cover U of [0, 1]. A useful observation at
this stage is that every resulting cluster contains nodes that have been assigned similar
PageRank values. Intuitively, this pooling layer exploits the power-law distributions
abundant in social data settings: it merges the (generally few) highly connected nodes
in the graph, while at the same time clustering the (usually numerous) dangling nodes,
which have a very small normalised PageRank score (close to zero). This method thereby
favours the information that is present in the most ‘important’ nodes of the graph.

Since PR is the principal eigenvector of the transition matrixM of the graph, I computed
the PR vector via power iteration, using NetworkX [70]:

PR =
(
αM+ (1− α)

1

N
E
)
PR, (4.8)

where E is a matrix with all elements equal to 1 and α ∈ [0, 1] is the probability of
continuing the random walk at each step. A value of α closer to 0 suggests that nodes
would be ranked more uniformly and tend to form a single cluster. I employed the
widely-adopted α = 0.85; Boldi et al. [18] provide more details on PageRank.

81

Finally, I used the mapping S to computeXMG—features for the new nodes (namely,
the soft clusters formed by the pullback)—and the corresponding adjacency matrix,
AMG, as follows:

AMG = S>AS

XMG = S>X.
(4.9)

It is crucial that graph classification models are permutation-invariant with respect to
node ordering, since a graph (X,A) can be represented by any tuple (XΠ,AΠ), where
Π is a node permutation. Below, I show that the MPR pooling method has this property.

Proposition 4.3.1. The PageRank pooling operator defined above is permutation-invariant.

Proof. First, I note that the PageRank function is permutation-invariant and refer the
reader to Altman [1, Axiom 3.1] for the proof. It then trivially follows that the PageRank
pooling operator is permutation-invariant.

4.3.3 Graph classification model

In a graph classification task, each sample G is represented by a tuple (X,A), whereX
is the node feature matrix andA is the adjacency matrix. Both graph embedding and
classification networks comprise a sequence of graph convolutional (GCN) layers [97],
with the l-th layer processing the input feature matrix as follows:

Xl+1 = σ(D̂−
1
2 ÂD̂−

1
2XlWl), (4.10)

where Â = A + I is the adjacency matrix with self-loops, D̂ is the normalised node
degree matrix and σ is the activation function. After E layers, the embedding network
outputs the node embeddings XLE

, which are then processed by a pooling layer to
coarsen the graph. The classification network first takes as input node features of the
Mapper-pooled graph1 XMG, as shown in Figure 4.4. These features are then passed
through LC graph convolutional layers. Finally, the classification network computes a
graph summary given by the feature-wise node average and applies a final linear layer
which predicts the class:

ŷ = softmax(1

|MG|
|MG|∑
i=1

XLC
Wf + bf

)
. (4.11)

1In the general case, one or more {embedding → pooling} operations are performed sequentially
within the pipeline.

82

4.3.4 Experiments

Tasks and setup We have motivated the suitability of the Mapper-GNN synthesis
within a pooling framework by evaluating DMP (the differentiable pooling layer that
Cristian Bodnar developed) and MPR in a variety of data settings: social (IMDB-Binary,
IMDB-Multi, Reddit-Binary, Reddit-Multi-5k), citation networks (Collab) and chemical
data (D&D, Mutag, NCI1, Proteins) [93]. We employ 10-fold cross-validation across
all tasks to evaluate the graph classification performance of DMP, MPR and other com-
petitive state-of-the-art methods. The random seed was set to zero for all experiments
(with respect to dataset splitting, shuffling and parameter initialisation), such that we
obtained a fair comparison across all architectures. The models were trained on a single
Titan Xp GPU, using the Adam optimiser [95] with early stopping on the validation set,
for a maximum of 30 epochs. We report the classification accuracy using 95% confidence
intervals calculated for a population size of 10 (the number of folds).

Baseline and model details I compared the performance of MPR to two other pooling
methods that Cristian Bodnar identified mathematical connections with: minCUT [15]
and DiffPool [201]. Additionally, I included Graph U-Net [57] in our evaluation, as it has
been shown to yield competitive results while performing pooling from the perspective
of a learnable node ranking. I denote this approach by Top-k in the remainder of the
section. The non-pooling baselines also present in the evaluation are the WL kernel [162],
a ‘flat’ model (2 message-passing steps, followed by global average pooling) and an
average-readout linear classifier.

I performed hyperparameter search on MPR (see Appendix A.3) with respect to the
cover cardinality n, the cover overlap (percentage g), learning rate and hidden size.
The Top-k architecture was evaluated using the code provided in the official repository,
where separate configurations are defined for each of the benchmarks. The minCUT
architecture is represented by the sequence of operations described by Bianchi et al. [15]:
MP(32)-pooling-MP(32)-pooling-MP(32)-GlobalAvgPool, followed by a linear softmax
classifier. The MP(32) block represents a message-passing operation performed by a
graph convolutional layer with 32 hidden unitsX(t+1) = ReLU(ÃX(t)Wm +X(t)Ws),
where Ã = D−

1
2AD−

1
2 is the symmetrically-normalised adjacency matrix andWm,Ws

are learnable weight matrices representing the message passing and skip-connection
operations within the layer. The DiffPool model follows the same sequence of steps.

The optimised architectures have the following configurations:

• MPR—learning rate 5e−4, hidden sizes {128, 128} and:

– D&D and Collab: cover sizes {20, 5}, interval overlap 10%, batch size 32;

83

– Proteins: cover sizes {8, 2}, interval overlap 25%, batch size 128;

– Reddit-Binary: cover sizes {20, 5}, interval overlap 25%, batch size 32;

• Top-k—specific dataset configurations, as provided in the official GitHub reposi-
tory;

• minCUT—learning rate 1e−3, same architecture as reported by the authors in the
original work [15];

• DiffPool—learning rate 1e−3, hidden size 32, two pooling steps, pooling ratio
r = 0.1, global average mean readout layer, with the exception of Collab and
Reddit-Binary, where the hidden size was 128.

Model D&D Mutag NCI1 Proteins Collab IMDB-B IMDB-M Reddit-B Reddit-5k
Top-k 75.1± 2.2 82.5± 6.8 67.9± 2.3 74.8± 3.0 75.0± 1.1 69.6± 3.8 45.0± 2.8 79.4± 7.4 48.5± 1.1
minCUT 77.6± 3.1 82.9± 6.0 68.8± 2.1 73.5± 2.9 79.9± 0.8 70.7± 3.5 50.6± 2.1 87.2± 5.0 52.9± 1.3
DiffPool 77.9± 2.4 94.7± 7.1 68.1± 2.1 74.2± 0.3 81.3± 0.1 72.4± 3.1 50.3± 1.8 79.0± 1.1 50.4± 1.7
WL 77.4± 2.6 74.5± 6.5 76.4± 2.7 74.7± 3.2 78.5± 1.1 72.1± 3.1 50.7± 2.9 66.7± 10.4 49.2± 1.4
Flat 69.9± 2.2 71.8± 4.3 65.5± 1.7 70.2± 2.6 80.9± 1.4 73.6± 4.2 48.5± 2.4 70.0± 10.8 49.5± 1.7
avg-MLP 63.7± 1.4 69.1± 5.8 55.7± 2.8 61.8± 1.7 74.8± 1.3 71.5± 2.9 49.5± 2.2 53.6± 6.2 45.9± 1.6

DMP (Ours) 77.3± 3.6 84.0± 8.6 70.4± 4.2 75.3± 3.3 81.4± 1.2 73.8± 4.5 50.9± 2.5 86.2± 6.8 51.9± 2.1
MPR (Ours) 78.2± 3.4 80.3± 6.0 69.8± 1.8 75.2± 2.2 81.5± 1.0 73.4± 2.7 50.6± 2.0 86.3± 4.8 52.3± 1.6

Table 4.2: Results obtained on classification benchmarks. Accuracy measures with
95% confidence intervals are reported. The highest result is bolded and the second
highest is underlined. The first four columns correspond to molecular graphs, while the
others, to social graphs. Our models (DMP, MPR) perform competitively with other
state-of-the-art methods.

Results I present the graph classification performance obtained by all models in Ta-
ble 4.2. The reported results show that on the social domain, MPR ranked either first
or second, or achieved accuracy scores within 0.5% of the best-performing model. This
finding confirms the hypothesis that the PageRank-based pooling layer exploits the
power-law distributions present in social data. Meanwhile, the performance of DMP
was found to be similar on social data and generally higher on molecular graphs. We
attributed this to the fact that all nodes in molecular graphs tend to have a similar
PageRank score—MPR is therefore likely to assign all nodes to one cluster, effectively
performing a readout. In this domain, DMP performs particularly well on Mutag, where
it is second-best and improves by 3.7% over MPR, showing the benefits of having a
differentiable lens in challenging data settings.

Overall, MPR achieves the best accuracy on 2 datasets (D&D, Collab) and the next best
result on 3 more (Proteins, Reddit-Binary and Reddit-Multi-5k). DMP improves on
MPR by less than 1% on NCI1, Proteins, IDMB-Binary and IMDB-Multi, showing the
perhaps surprising strength of the simple, fixed-lens pooling operator.

84

4.3.5 Summary

In this section, I have introduced the MPR pooling layer, a topologically-grounded
method for coarsening graphs with the help of GNNs, that is readily applicable in a
graph classification setting. The appendix of the original manuscript contains a proof
that Mapper is a generalisation of soft cluster assignment methods, thereby providing a
bridge between graph pooling and the TDA literature. Based on this connection, we have
proposed two Mapper-based pooling operators: a non-differentiable one that scores
nodes using PageRank and exploits power-law distributions in the data, designed by
me, and a differentiable one that uses RBF kernels to simulate the cover, which Cristian
Bodnar worked on. Our experiments have shown that both layers yield architectures
competitive with several state-of-the-art methods on graph classification benchmarks.

Notably, the MPR pooling layer achieves higher performance than the differentiable
DMP layer on 4 benchmarks, including one from the biochemical domain! I view
this result as a promising start to designing pooling operators which contain domain
knowledge. The latter can be minimally present in the form of an inductive bias over
the data distribution contained in the scoring function—similarly to PageRank being
suitable for social settings.

4.4 Discussion and summary

This chapter has introduced two approaches to graph pooling, while discussing coars-
ening methods through the prism of producing hierarchical graph representations for
property prediction. The main motivation for studying these approaches is the impor-
tance of progressively downsampling graphs, instead of simply aggregating all nodes at
once. This view is supported by several arguments—firstly, the structure or semantics
of the node features may comprise important discriminative signals themselves, so it is
almost always useful to consider connectivity in addition to the independent node sam-
ples. Moreover, graph convolutions alone cannot encompass the entire graph structure,
but only local node neighbourhoods, so simply applying a sequence of such layers is
likely to discard useful intermediate-scale information present in the input graph. In
the limit, we would apply enough operations to cover the entire graph depth—however,
it is currently challenging to achieve meaningful representations in this way. Issues like
feature ‘washout’ are challenging to address—Zhang [207] has only recently proposed
a method that showed competitive results when scaling up to tens of layers.

At the time of publication, the first study was the first one to reach the ballpark of state-
of-the-art performance on standard benchmarks via a sparse pooling mechanism—the
authors of Top-k pooling (and implicitly Graph U-Nets [57]) only later reported graph

85

classification results on their OpenReview ICLR submission [6]. This was an essential
step in achieving hierarchical representations for large graphs, within a CNN-style
classification pipeline. The research community agrees with the importance of our
study, as the paper has received 70 citations so far.

Complementary to the first contribution, the second study investigated principled and
theoretically-grounded graph pooling methods, which explicitly make use of the input
topology. Several GNN models only make limited use of the topological informa-
tion available [43, 103]; more recently, Zhao et al. [209] have developed a persistent
homology-based GNN approach to node classification, but the structural information
is still limited to local node neighbourhoods. In our work, graph summaries are com-
puted by incorporating the Mapper TDA algorithm into the pooling layer. The latter
receives as input intermediate node features from the GNN and applies a so-called
‘lens’ function—herein, nodes with similar topological properties (for example, if one
uses PageRank as the ‘lens’, their level of connectivity is taken into account) are even-
tually clustered together and a condensed representation of the graph is output by
the pooling layer. Essentially a skeleton of the original graph, this new, smaller graph
encompasses all the relevant information via aggregating semantically-similar nodes,
while keeping the initial structural connectivity. In the future, countless ‘lens’ functions
can be designed, depending on the domain properties—this is the aspect which makes
our method powerful and general. We hope that both theoreticians and practitioners
will investigate new pooling functions, pushing state-of-the-art performance further on
existing benchmarks and hopefully newly proposed ones on challenging domains. A
further relevant direction would be devising adaptive topological pooling for graphs
that evolve over time, as these are encountered in a range of real-world scenarios, with
prime examples including traffic, drug-gene interaction and social networks.

86

Chapter 5

Structural biases for probabilistic
modelling in challenging scenarios

5.1 Introduction and contribution overview

Sometimes, learning world representations might need to be carried out under chal-
lenging conditions. Labelled data is often scarce in real-world setups, unlike in typical
machine learning research experimental ones, where thousands and even millions of
samples are available during training. An even bigger challenge is the underlying data
distribution—it is reasonable to expect that once an ML system is deployed in practice, it
will need to make predictions for out-of-distribution (OOD) samples (that is, data points
that do not come from the initial distribution which the model has been trained on).
However, the research literature has extensively presented cases where state-of-the-art
approaches fail on OOD data points. Crucially, real-world tasks similar to the ones
humans excel at often require few-shot learning (few labelled samples) or even zero-shot
learning (no labelled samples)—namely, achieving the same level of performance on a
variety of (possibly related) tasks, all while using the same system. This argument ties
in with the previous aspect about having access to only a few labels, but also emphasises
the challenge brought by the machine learning meta-task itself: adapting on-the-fly to a
new setting where the data has its own, novel complexities which the system needs to
grasp, model and output predictions about.

Gaussian processes are a class of probabilistic models that have been designed to tackle
some of these challenges. They are able to represent stochastic processes that generate
functions, but come with their own set of limitations, which include being more time-
consuming to train, especially when more expressive and powerful variants, such as deep
Gaussian processes, are being used. More recently, Neural Processes (NPs) were pro-

87

posed as a favourable trade-off between neural networks and Gaussian processes. This
encoder-decoder class of models is capable of linear-time predictions (O(num samples))
like neural networks, at the same time modelling functional distributions similarly to
Gaussian processes, with demonstrated competitive performance. Impressively, NPs
achieve this by only using a limited set of labelled points (context set) in a dataset (namely,
a set of points sampled from a function f from the underlying distribution). The NP
predicts the (high-dimensional) mean and variance of f , which is then used to make
predictions for the rest of the dataset (target set).

As extensively discussed already in previous chapters, it is essential to model structure
in world representations, whenever this information is available. However, no existing
NP model leverages the relational structure between data samples for classification, with
a single model tackling edge imputation (a somewhat related task, but with entirely
different semantics—predict the presence or something about the interaction between two
entities vs. predict a quantity of interest about a single entity). My collaborators—Ben Day,
joint-first author, and Arian Jamasb, second author—and I therefore contributed to
the Neural Process family by adding structural inductive biases to NPs. This type of
development had been previously acknowledged as an important one within this class
of models [66]. The bias is incorporated in the encoder and decoder components of the
Neural Process via Message Passing, a general paradigm within the graph representation
learning research community.

We have submitted the resulting paper, ‘Message Passing Neural Processes’, to the Thirty-
eighth International Conference on Machine Learning. Ben Day and I have also presented
this work during the Artificial Intelligence Research Talk series, with considerable
exposure outside the department, and I also introduced it during the Graph Neural
Networks module that is part of our departmental Master’s course ‘Advanced Topics in
Machine Learning or Natural Language Processing’, in Lent term 2021. As a joint first-author
on this paper, I worked on model design, ran experiments on the ShapeNet and TUD
datasets, produced the uncertainty plots, ran the active learning experiment and wrote
the introduction, model, related work sections of the paper, along with the derivations
and model details found in the appendix.

5.2 Incorporating relational inductive biases in the neu-
ral process model

Reviewed in Section 2.1.8, Neural Processes (NPs) are a class of models which incorpo-
rate uncertainty in building representations of stochastic processes, while maintaining
a linear time complexity. Even though their characteristics render them powerful and

88

flexible, NPs produce a latent description by aggregating representations of context
points that have been computed independently, thus lacking the ability to exploit the
relational information abundant in many datasets. This hinders NPs in scenarios where
the stochastic process is primarily governed by rules over the neighbourhood of a data
point—such as cellular automata (CA)—and is likely to limit model performance on
tasks where relational information is available. To address this shortcoming, we intro-
duced Message Passing Neural Processes (MPNPs), the first class of NPs to explicitly
leverage relational structure within the framework. Our extensive evaluation on exist-
ing benchmarks and novel CA and Cora-Branched tasks showed that MPNPs excel in
relation to NPs, thriving at lower sampling rates. We further reported strong generalisa-
tion over density-based CA sets of rules and significant improvements in challenging
arbitrary-labelling and few-shot learning settings.

I explain the motivation behind our work, starting with a discussion on neural networks
(NNs). These models are widely adopted in single-task scenarios, especially where large
quantities of labelled data are typically available. NNs have favourable properties such
as O(|D|) prediction time complexity, where D is the set of samples. On the other hand,
it is often difficult to adapt them to challenging scenarios—such as multi-task or few-
shot learning—and uncertainty estimates for predictions are not commonly provided.
Relational inductive biases have been more recently added to NNs [12], which resulted
in a class of models called Graph Neural Networks able to exploit relational information
via message-passing operations. Alternately, Gaussian Processes (GPs) [187] are better
suited to non-standard tasks and compute uncertainty estimates, albeit at prediction
costs (O(|D|3)) that often do not scale to real-world datasets.

Garnelo et al. [59] introduced Neural Processes (NPs) as a means of combining the
best of both worlds. NPs learn to represent a stochastic process using labelled samples
from its instantiations, with a global latent variable modelling the stochasticity of the
learned functions. At test time, only a few labelled points are required to produce
predictions for the rest of the dataset, along with their associated uncertainties, in linear
time. These models have achieved favourable results in few-shot learning and multi-
task setups [58, 59, 156], but do not leverage the structural information in the data, an
approach which has been rendered highly effective on relational tasks [210].

The main contribution of our study [41] is a novel Neural Process framework for classi-
fication, which explicitly incorporates structural information when modelling stochastic
processes. In this way, our modifications parallel those present in the Convolutional
Conditional Neural Process (ConvCNP) framework [66], which also equips NP models
with a stronger, relevant inductive bias that helps build richer functional representations.
The Message Passing Neural Process (MPNP) is, to the best of our knowledge, the first

89

node classification framework that learns to represent stochastic processes which yield
datasets with explicit relational information.

We have validated the relative strengths of MPNPs via experiments on a variety of
existing geometric and biological tasks. Furthermore, Ben Day designed a challenging
new collection of Cellular Automata datasets, which test the ability of the model to
handle large variations in the function distribution. Here, it is expected that most
existing baselines fail to achieve better-than-chance results. He also constructed Cora-
Branched—a set of novel arbitrary-labelling and few-shot learning tasks derived from the
Cora dataset—and again showed significant MPNP gains. In addition, Arian Jamasb
worked on setting up the PPISP biochemical task and comparing the MPNP against
other baselines. Throughout the chapter, I will focus on describing my contributions to
this work—however, I will also mention the new tasks and results on them, if this helps
the reader achieve a clear understanding of MPNP capabilities.

5.3 Previous related work

5.3.1 Neural process models

Neural Processes were proposed by Garnelo et al. [59] as a beneficial fusion between
neural networks and Gaussian Processes. Conditional Neural Processes (CNPs) [58] are
NP variants that do not model a global latent variable—this results in a deterministic de-
pendence on the context set when making predictions. Attentive NPs [94], CNAPs [156],
Convolutional CNPs [66] and Sequential NPs [166] modify the initial NP framework to
reduce underfitting, better adapt to multi-task settings, and introduce stronger trans-
lational and temporal inductive biases, respectively. Louizos et al. [117] propose the
Functional NP, which learns a graph of dependencies between the latent representations
of points, without placing a prior over the latent global variable. However, the tasks
they study do not contain explicit relational information. Most closely related to the
MPNP is the Graph NP [29], which performs edge imputation using a CNP-based model
and Laplacian-derived features for the context set. However, despite the semantically-
similar names, Graph NPs and MPNPs tackle different classes of tasks—the former
was evaluated on link prediction, which is not in the scope of our work. Our NP-based
model is additionally more flexible, yields uncertainty estimates and learns from local
node neighbourhoods, rather than whole-graph features, aiming to classify individual
dataset samples (nodes), while leveraging the structure between them (edges).

90

5.3.2 Graph learning under uncertainty

Graph Gaussian Processes [137] were built starting from GPs—both the covariance function
and prior exploit the features that are present in node neighbourhoods. Graph GPs
are the only Gaussian method for node classification, but achieve slightly worse results
than GCNs—a subclass of GNNs that we have used as a baseline in our experiments.
Moreover, the complexity of Graph GPs is higher: O(max node degree2 ∗N) vs. O(N)

for (MP)NP, where N = set of observations/context nodes. The Relational GP [35] was
designed to model pairwise undirected links between data points and thus tackles a
different task. The Graph Convolutional GP [184] is a translation-invariant model that
operates in a manner similar to convolutional layers, but generalises to non-Euclidean
domains. Opolka and Liò [143] have also recently proposed a Graph Convolutional GP
model for link prediction, wherein a GP produces node-level predictions, another GP
builds on the first one to obtain edge-level predictions, and a deep GP incorporates these
building blocks to yield representations that are more expressive.

5.4 Message Passing Neural Processes

I present Message Passing Neural Processes (MPNPs) as the synthesis of the MP and
NP models. Figure 5.1 illustrates the operation of an MPNP. I describe each step below,
with Algorithm 1 summarising the MPNP label generation process.

5.4.1 Problem statement

Given a set of nodes that are partially labelled, with corresponding featuresX and neigh-
bours given by the adjacency matrixA, sampled from an underlying function f : X,A → Y ,
with f ∼ D, the goal is to predict labels for a subset of the unlabelled nodes.

5.4.2 Dataset sampling

In a classification setup, let the context set of a dataset (here, the dataset corresponds
to a graph) be defined as a set C =

{
(xi,yi)

} containing tuples of nodes and their
respective (one-hot) labels. The encoder h is thus provided with information about
the dataset in the form of a set C ∪ {xj | j ∈ ⋃i∈context set N(i)

}, with |C| = m. This set
contains the context set and the k-hop neighbourhoods of all context nodes. In this way,
the MPNP leverages the relational structure between the nodes in the context set and
other nodes to yield richer representations of the context nodes. In turn, this enables the
global latent variable z to encode the relational structure generated by the underlying
stochastic process. The target set, T = {xi | i ∈ context set}∪{xi | i /∈ context set}, with

91

Algorithm 1: MPNP label prediction (generation). The context set is passed through
the encoder, producing individual representations that are aggregated to parame-
terise the global latent variable. Decoding starts by sampling the latent variable and
processing it jointly with each of the target points, to predict corresponding labels
and associated uncertainties.
Input :Context set C = {xi,yi}, with |C| = m, features of context set node

neighbours {xi ‖ j ∈
⋃
i∈context set N(i)}, target set

T = {xi | i ∈ context set} ∪ {xi | i /∈ context set}, with |T | = n > m,
features of target set node neighbours {xi ‖ j ∈

⋃
i∈target set N(i)}.

Output :Target label predictions {ŷi ‖ i ∈ target set}.
// Initialise node features

1 foreach i ∈ context set do
2 h0

i ← xi ‖ yi
3 foreach j ∈ ⋃i∈context set N(i) do
4 h0

j ← xj ‖ 0

// Encoding

5 foreach i ∈ context set do
6 h0

i ← ReLU(L1(h0
i))

7 foreach j ∈ ⋃i∈context set N(i) do
8 h0

j ← ReLU(L1(h0
j))

9 foreach t ∈ 1, ..., T do
10 foreach i ∈ context set do
11 hti ←MP(ht−1)

12 foreach i ∈ context set do
13 ri ← L2(hTi)

// Aggregation

14 r ← a({ri ‖ i ∈ context set})
// Decoding

15 Sample z′ ∼ N (µ(r), diag[σ(r)])
16 foreach i ∈ target set do
17 h′0i = xi ‖ z′
18 foreach j ∈ ⋃i∈target set N(i) do
19 h′0j ← xj ‖ z′

20 foreach i ∈ target set do
21 h′0i ← ReLU(L1(h′0i))
22 foreach j ∈ ⋃i∈target set N(i) do
23 h′0j ← ReLU(L1(h′0j))

24 foreach t ∈ 1, ..., T do
25 foreach i ∈ target set do
26 h′ti ←MP(h′t−1)

27 foreach i ∈ target set do
28 r′i ← ReLU(L2(h′Ti))

29 ŷ′i ∼ N
(

softmax(µ(r′i)), diag[
(
0.1 + 0.9× softplus(σ(r′i))]

))
92

Generation — Encode, Aggregate, Sample, Decode Inference (training only)Input

Key: context node with features and labels; target node with features only; target node with features and predicted labels.

Figure 5.1: Computational graph of the Message Passing Neural Process. Input: the
dataset consists of examples (nodes) and a relational structure (edges). Features x
are observed at every node, but labels are only available for the context set (the blue
nodes labelled C). Generation: the encoder h uses message passing operations over
the dataset to produce neighbourhood-aware representations of the context set, ri. The
aggregator a combines these into a single representation, r, which parameterises the
global latent variable, z. The decoder, g, which also uses message-passing operations,
is conditioned on a sample from the global latent variable and predicts labels over
the target set, ŷT . Inference: the predicted labels are added to the target examples,
differentiated from the unlabelled targets by the label τ and purple nodes. The dataset is
again passed through the encoder and aggregator to produce the global latent variable
as conditioned on the joint target and context set, as required in the ELBO objective
(Equation 5.9) for training. Note: most message-passing arrows are omitted for clarity.

|T | = n, is then a superset of the context set (which may not necessarily correspond to
the entire graph), but contains no labels. When predicting target labels, the decoder g
uses information from the k-hop neighbourhoods in a similar manner to the encoder.

5.4.3 Encoder

The encoder h receives as input elements from the context set with initial encodings
hi = xi ‖ yi (‖ denotes concatenation), along with features of nodes from the k-hop
neighbourhoods of labelled nodes. Zero-vectors are used to signal the absence of labels,
for nodes outside the context set. A representation ri is produced for each element
in the context set by applying T message-passing operations, which are defined in
Equation 2.21. Additionally, linear transformations are performed before and after these
steps. I now show that, for initial node representations hi, the transformation produced
by the encoder:

ri = (L2 ◦MPT ◦ ReLU ◦ L1)(hi) (5.1)

is permutation-invariant:

∀ permutation Π.(L2 ◦MPT ◦ ReLU ◦ L1)(XΠ,Π>AΠ) =(
(L2 ◦MP ◦ ReLU ◦ L1)(X,A)

)
Π.

(5.2)

93

Proof: Assume an arbitrary set of features X ∈ Rn×d and an adjacency matrix A ∈
{0, 1}n×n, where n is the number of nodes in the context set and d is the feature dimen-
sionality. I first prove that each operation within the encoder is permutation-invariant:

1. The linear projections L1, L2 are separately applied to each of the node vectorsXi.
Changing the order of input nodes will thus result in the same order in the output:

Li(XΠ,Π>AΠ) = Li(XΠ),∀i ∈ {1, 2}
= (Li(XΠ1) Li(XΠ2) . . . Li(XΠn))>

= (Li(X1) Li(X2) . . . Li(Xn))>Π

= Li(X)Π

= Li(X,A)Π.

(5.3)

2. The same result holds for the activation functions, which are applied element-wise:

ReLU(XΠ,Π>AΠ) = ReLU(XΠ)

= ReLU(XΠij),∀i, j
= ReLU(Xij)Π

= ReLU(X)Π

= ReLU(X,A)Π.

(5.4)

3. The message-passing operation is also permutation-invariant, because the trans-
formationA→ P>AP preserves the graph structure, with node neighbourhoods
undergoing the transformation N(i) , {j | Aij = 1} → N(i)Π , {Πj | AΠiΠj

= 1}:

MP(XΠ,Π>AΠ) = ReLU(Wskip(XΠ)i +
∑

j′∈N(i)Π

WMP(XΠ)j
)
,where j′ = Πj,

= ReLU(Wskip(XΠi
) +

∑
Πj∈N(Πi)

WMP(XΠj
)
)

= ReLU((WskipXi)Π +
∑
j∈N(i)

(WMPXj)Π
)

= ReLU(WskipXi +
∑
j∈N(i)

WMPXj

)
Π

= MP(X,A)Π.

(5.5)

Each type of operation performed within the encoder is thus permutation-invariant.
Composing permutation-invariant functions yields a function which has this property
itself, so it easily follows that the overall transformation is also permutation-invariant.

94

5.4.4 Aggregation

All context node representations ri are aggregated via a permutation-invariant function
a, which produces a single vector r = a({ri}), as shown in Figure 5.1. The normal
distribution z ∼ N (µz(r), diag[σz(r)]) is associated with the global latent variable z,
where µz and σz are linear transformations of r.

5.4.5 Decoder

The decoder g receives inputs h′i which are represented by the concatenations of a
sample z′ from the distribution described above with each of the target feature vectors:
h′i = xi ‖ z′. This step computes label predictions ŷi for the nodes in T , in a manner
that is similar to the encoding step, producing the output r′i:

r′i = (ReLU ◦ L2 ◦MP> ◦ ReLU ◦ L1)(h′i). (5.6)

Following the evaluation convention proposed by Le et al. [107], the target label predic-
tions are computed as follows, where µy, σy represent linear transformations:

ŷi ∼ N
(softmax(µy(r

′
i)), diag[0.1 + 0.9× softplus(σy(r

′
i))]
)
. (5.7)

5.4.6 Generation and inference

Starting from Equation 2.22, with the function γ corresponding to the neural network g
shown in Figure 5.1, and allowing xN(i) to denote node features from an entire neigh-
bourhood N(i), the MPNP generative model can be derived as follows:

p(z,y1:n | x1:n,
n⋃
i=1

xN(i)) = p(z)
n∏
i=1

p(yi | xi,xN(i), z)

= p(z)
n∏
i=1

N
(
yi | γ(xi,xN(i), z), σ2

)
= p(z)

n∏
i=1

N
(
yi | F (xi‖z,

⊙
j∈N(i)

, G(xi‖z,xj‖z)), σ2
)
.

(5.8)

In this derivation, line 2 assumes that p(yi | xi,xN(i), z) corresponds to a normal distri-
bution, where both mean and variance are functions of xi,xN(i), z. Line 3 uses the fact
that, in our model, γ = ReLU ◦ L2 ◦MPT ◦ ReLU ◦ L1.

Let us first consider the case for T = 1. The function G corresponds to a linear trans-
formation L1 = WMP applied to each of the (target node) neighbours’ feature vectors

95

(the concatenated representations xj‖z). This is followed by leveraging the aggregation
operation⊙j∈N(i) over the neighbourhood of each target node. Finally, F corresponds
to applying a skip-connection (linear transformation)Wskip to each of the target node
feature vectors, followed by the ReLU activation of the MP step and ReLU ◦ L2.

In the case where T = 2, the only difference is that the aggregator and linear transforma-
tions within the MP step are performed twice. It is important to note that both mean µ
and variance σ2 are output by the same network γ, as each label prediction has its own
associated uncertainty.

The decoder function g is obtained by composing several learnable functions (linear
projections, MP layers) and non-linearities, thus being trainable with amortised vari-
ational inference. The variational posterior q(z|x1:n,y1:n) is also parameterised by a
permutation-invariant neural network (h in Figure 5.1), as each of the functions in h
has this property. Optimisation is achieved using standard methods, via a variational
approximation to the ELBO objective, where D = x1:n ∪

⋃n
i=1 xN(i) ∪ y1:n:

log p
(
ym+1:n | x1:n,

n⋃
i=1

xN(i),y1:m

)
≥

n∑
i=m+1

Eq(z|D)

[
log p(yi | xi,xN(i), z)

]
− KL

(
q(z | x1:n,

n⋃
j=1

xN(j),y1:n) (5.9)

∥∥∥q(z | x1:m,
m⋃
j=1

xN(j),y1:m)
)
.

I now provide a full derivation of the bound stated above, assumingm context nodes and
n target nodes (that is, n−m additional targets). We wish to maximise the log-likelihood
of the target labels ym+1:n, given the target node features x1:n, context node features x1:m

and labels y1:m, and neighbourhoods of context nodes. Features corresponding to an
entire neighbourhood are referred to as xN(i) and D = x1:n ∪

⋃n
i=1 xN(i) ∪ y1:n.

log p
(
ym+1:n | x1:n,

n⋃
i=1

xN(i),y1:m

)
=

= log p
(
ym+1:n, z | x1:n,

n⋃
i=1

xN(i),y1:m

)
− log p

(
z | x1:n,

n⋃
i=1

xN(i),y1:n

)
=
[

log p
(
z | x1:m,

m⋃
i=1

xN(i),y1:m

)
+

n∑
i=m+1

log p(yi | xi,xN(i), z)
]
−

log p
(
z | x1:n,

n⋃
i=1

xN(i),y1:n

)

96

= log
p
(
z | x1:m,

⋃m
i=1 xN(i),y1:m

)
q
(
z | x1:n,

⋃n
i=1 xN(i),y1:n

) +
n∑

i=m+1

log p(yi | xi,xN(i), z) −

log
p
(
z | x1:n,

⋃n
i=1 xN(i),y1:n

)
q
(
z | x1:n,

⋃n
i=1 xN(i),y1:n

)
= Eq(z|D)

[
n∑
i=1

log p(yi | xi,xN(i), z) + log
p(z | x1:m,

⋃m
j=1 xN(j),y1:m)

q(z | x1:n,
⋃n
j=1 xN(j),y1:n)

]
+

KL
(
q(z | x1:n,

n⋃
j=1

xN(j),y1:n)
∥∥∥p(z | x1:n,

n⋃
j=1

xN(j),y1:n)
)

≥ Eq(z|D)

[
n∑
i=1

log p(yi | xi,xN(i), z) + log
p(z | x1:m,

⋃m
j=1 xN(j),y1:m)

q(z | x1:n,
⋃n
j=1 xN(j),y1:n)

]

=
n∑

i=m+1

Eq(z|D)

[
log p(yi | xi,xN(i), z)

]
− Eq(z|D) log

q(z | x1:n,
⋃n
j=1 xN(j),y1:n)

p(z | x1:m,
⋃m
j=1 xN(j),y1:m)

=
n∑

i=m+1

Eq(z|D)

[
log p(yi | xi,xN(i), z)

]
−

KL
(
q(z | x1:n,

n⋃
j=1

xN(j),y1:n)
∥∥∥q(z | x1:m,

m⋃
j=1

xN(j),y1:m)
)
.

In order, the (in)equalities make use of the following results: rewriting the log-likelihood
via the posterior distribution, substituting the first term via the generative model, intro-
ducing the variational distribution q(z | x1:n,

⋃n
i=1 xN(i),y1:n) (here, q corresponds to the

composition of the encoder h and aggregator a functions) to approximate the posterior
p(z |x1:n,y1:n), multiplying by q(z |x1:n,

⋃n
i=1 xN(i),y1:n

) and integrating over z, the prop-
erty that ∀p, q.KL(p‖q) ≥ 0, separating terms, approximating p(z | x1:m,

⋃m
j=1 xN(j),y1:m)

with q(z | x1:m,
⋃m
j=1 xN(j),y1:m) and applying the KL definition.

5.4.7 Aggregation in challenging settings

The way in which information is represented in the global latent variable z is crucial. At
test time, the (context-conditioned) sample from the latent is processed together with
the new target points, so it must reflect the behaviour of the new stochastic process, in
a way that is relevant to the task. While simply taking the mean over ri is sufficient
for many tasks, we often need to produce a class-aware representation. With this in
mind, we adopted the alternative aggregation function used by Garnelo et al. [58] in
their few-shot learning experiments:

a′({ri}) ,
∥∥∥
c∈C

a(I{c}(yi) ∗ ri). (5.10)

97

Here, C represents the set of classes in the current context, with their number |C| fixed,
as required. This method concatenates (‖) all per-class summaries which have been
previously aggregated via a. Intuitively, the different classes present in the context set
are clearly delimited by this scheme—this is especially helpful in few-shot learning
settings, where new classes are seen at test time. We append the ‘-c’ suffix to models
that use this scheme, when reporting results.

5.5 Experiments

5.5.1 Baselines and model details

We evaluated MPNPs against a variety of baselines—altogether, these leverage all sources
of information which are present in the studied tasks (features, structure & context).
This strategy helped us highlight the advantages of the MPNP in each of the settings.

The label propagation algorithm (LP) [211] directly uses the context points provided
at test time, with nodes being labelled by their neighbours, who in turn label their own
neighbours, hence is best suited to tasks that resemble segmentation. Where relevant, we
included the mode baseline (guessing the most common context label), as this simple
approach may significantly outperform the uniform prior (1

|C|) on some tasks.

Graph neural networks (GNNs) make use of the training data within an inductive
setup, but not the additional context labels provided at test time. We expected them to
achieve good performance on tasks where the set of classes is fixed and there is little
variation in the generative process across the set of datasets. Crucially, these models are
not designed to handle arbitrary labelling tasks and their expected performance is bound
by chance (E[accuracy] = 1

|C|). Since predictions do not depend on class labellings, for
any given dataset we can construct a set of equivalent datasets by permuting the labels,
and over the set of permutations the average performance will be chance. As such, we
did not include this baseline on such tasks. In our setup, the GNN consists of GCN
layers with skip-connections.

Standard (non-message-passing) Neural Processes (NPs) are limited by their inability
to leverage relational information between points—this is a straightforward limitation
in the setups we consider. We use the same Message Passing Neural Process and NP
architectures for most tasks.

5.5.1.1 Message passing neural process

The architecture of our model can be summarised as follows:

98

1. encoder: Linear(h), ReLU, {MP(h), ReLU}×T , Linear(r);

2. global latent variable encoder: Linear(r), [Linear(z), Linear(z)] (mean & variance
of z);

3. decoder: Linear(h), ReLU, {MP(h), ReLU}×T , Linear(h), ReLU, [Linear(C),
Linear(C)] (mean & variance of ŷ).

Across all experiments, the Adam optimiser is used to maximise the ELBO (that is, to
minimise the sum of the negative log-likelihood and KL-divergence in Equation 5.9).

TUD On Enzymes, the MPNP hyperparameters are h = 64, r = 128, z = 256; for the
MPNP-c, h = 64, r = 96, z = 288; both have T = 2. On DHFR, both MPNP and MPNP-c
have h = 64, r = 128, z = 256, T = 1. We trained both models for 400 epochs with
learning rate 7e × 10−5 on DHFR and for 700 epochs with learning rate 1 × 10−4 on
Enzymes. For both datasets, we sample context and (additional) target points in the
10%–25% range.

ShapeNet Across all experiments, h = 64, r = 128, z = 256, T = 2. The MPNP was
trained for 400 epochs on fixed-class and 500 epochs on mixed-class tasks, with 5%–25%

context and (additional) target points and a learning rate of 7× 10−5.

5.5.1.2 Neural process baseline

The architecture of the NP consists of:

1. encoder: Linear(h), ReLU, Linear(h), ReLU, Linear(r);

2. global latent variable encoder: same as for the MPNP;

3. decoder: Linear(h), ReLU, Linear(h), ReLU, Linear(h), ReLU, [Linear(C), Linear(C)]
(mean & variance of ŷ).

The Adam optimiser is also used here to maximise the ELBO.

TUD On Enzymes, the NP and NP-c hyperparameters are h = 64, r = 128, z = 512.
On DHFR, both NP and NP-c have h = 64, r = 64, z = 512. We trained both models for
400 epochs on DHFR and for 700 epochs on Enzymes, with a learning rate of 4e−5. For
both datasets, we sample 10%–25% context and (additional) target points.

ShapeNet The same hyperparameters were used for all tasks: h = 64, r = 64, z = 512.
The NP was trained for 400 epochs on fixed-class and 500 epochs on mixed-class tasks,
with 5%–25% context and (additional) target points and a learning rate of 4e−5.

99

5.5.1.3 Graph neural network baseline

This model consists of 3 GCN [97] layers with skip-connections; each layer computes:

ht+1 = ReLU(Wskipht + GCN(ht)
)
. (5.11)

We use h = 64 across all tasks and train the model for 500 epochs, with the Adam
optimiser minimising the cross-entropy loss and a learning rate of 1e−4. The context
and target ranges are the same as previously described for each dataset. Once again, I
note that this model does not make use of the context labels.

5.5.2 Fixed labelling

When evaluating MPNPs, we first considered tasks where the same set of classes appears
in every example and the class labelling is ‘fixed’. Inductive GNNs are designed for this
setting and provide a useful baseline performance.

5.5.2.1 Biochemical data

I adapted two tasks from the TUD collection [93]: Enzymes and DHFR. Although
initially designed for graph classification setups, these datasets also have node-wise
labels that allow an alternative node classification scenario.

The Enzymes dataset consists of proteins represented as graphs, where nodes are
secondary-structural elements (SSEs—α-helices, β-sheets, β-turns) with associated
biochemical features, and edges between elements which are connected. DHFR is a
library of small molecule inhibitors against each respective protein target (Dihydrofolate
Reductase, Cycloxygenase-2 and the Benzodiazapene Receptor). In the typical graph
classification task, molecules are deemed either active or inactive, based on a thresholded
half-maximal inhibitory concentration measure that has been determined through in
vitro biochemical assays. The node classification task I studied here requires the model to
predict node labels which correspond to atom types. Node features are xyz coordinates
of the conformation provided in the datasets and edges represent inter-atomic bonds.

Results Table 5.1 shows the MPNP narrowly outperforming the NP on the Enzymes
task. While a much greater margin is noticed for DHFR, in each case the inductive
GNN baseline is more successful. This finding suggests that the relational information
provided in the Enzymes task is of secondary importance, relative to the features of
the SSEs. Furthermore, both datasets most likely have limited variation, given that
an inductive GNN model can perform well without any context points. Nevertheless,

100

Enzymes DHFR
Model 5 10 30 5 10 30
NP 79.23 93.43 95.75 54.66 55.71 57.38
MPNP 79.09 94.10 95.78 88.65 89.62 90.53

GNN 94.23 94.23 94.23 93.35 93.35 93.35
LP 58.93 63.91 76.42 38.48 41.51 53.63

Table 5.1: Node classification on biochemical datasets. Accuracy reported at {5, 10, 30}%
context points. first / second.

MPNP shows promising ability in using the relational information in DHFR, improving
on the NP by a very large margin.

5.5.2.2 Geometric data

The ShapeNet repository [31, 200] is a collection of large-scale 3D shapes, represented
as point clouds for our applications. Numerous other encoding methods make fuller
use of the geometric information available, but for the purposes of our proof-of-concept
study, I only considered only the simplest method. I embedded the points as a nearest-
neighbours graph (A) and used the (x, y, z) position as node features (X). There are 16
object categories, each one with a fixed number of parts (2–6). The labels have consistent
meaning across datasets within a category (that is, type of shape). For example, we use
the MPNP to model the stochastic process that produces chairs with arms, legs, seats and
backs, which can be consistently labelled with {1, 2, 3, 4} across all graphs.

Results Figure 5.2 presents the part-labelling results on ShapeNet. I used the mean-
Intersection-over-Union (mIoU) metric, which is commonly used for segmentation
tasks. The mIoU is computed as follows: first, find the ratio of overlap (TP) to the union
(TP+FP+FN) for each part, then take the average. Here, higher is better, and T/F P/N
refers to true/false positives/negatives. I found that the MPNP outperforms the NP at
more than 95% confidence on 11 object categories, across the entire context sampling
range. Furthermore, MPNPs are the top-performing models over some of the sampling
range in 13 out of 15 categories. At 30% sampling rate, label propagation naturally leads,
since this is essentially a segmentation task.

5.5.3 Uncertainty modelling

Figure 5.3 shows that the MPNP has superior uncertainty-modelling capabilities. The
first 3 plots visualise the uncertainty estimates for a table sample. The models achieve
similar mIoU, but the MPNP is significantly uncertain only at the borders between parts

101

Dataset Task Graphs Mean-Nodes Features Classes

ShapeNet

Bag 76 2749.46 3 2
Cap 55 2631.53 3 2

Knife 392 2156.57 3 2
Laptop 451 2758.13 3 2
Mug 184 2816.97 3 2

2-parts 1158 2,557.26 3 2
Earphone 69 2496.70 3 3

Guitar 787 2353.91 3 3
Pistol 283 2654.22 3 3
Rocket 66 2358.59 3 3

Skateboard 152 2529.55 3 3
Table 5271 2722.40 3 3
3-parts 6628 2,665.34 3 3

Airplane 2690 2577.92 3 4
Car 898 2763.81 3 4

Chair 3758 2705.34 3 4
Lamp 1547 2198.46 3 4
4-parts 8893 2,584.53 3 4

Motorbike 202 2735.65 3 6

TUD Enzymes 600 32.63 18 3
DHFR 467 42.23 3 9

Table 5.2: Dataset statistics by tasks.

102

0.4

0.6

0.8

1

Airplane Bag Cap Car Chair

0.4

0.6

0.8

1

m
Io

U

Earphone Guitar Knife Lamp Laptop

0.1 1 5 10 30

0.4

0.6

0.8

1

Mug

0.1 1 5 10 30

Pistol

0.1 1 5 10 30

Context sample %

Rocket

0.1 1 5 10 30

Skateboard

0.1 1 5 10 30

Table

MPNP NP labelprop GNN

Figure 5.2: Linear-log plots of mIoU over context sample rates with 95% confidence
interval shading for the fixed-class ShapeNet task, by category. The GNN is inductive
and does not depend on context sampling. Numerical results are given in Appendix A.5.

Ground-truth segmentation NP uncertainty MPNP uncertainty
Low

High

0 1 2 3 4 5
Context sample %

0.5

0.6

0.7

0.8

m
Io
U

MPNP mIoU NP mIoU

Figure 5.3: Segmentation uncertainty over a test-set example from the ShapeNet fixed-
class table category and active sampling. (Left:) Ground-truth labels are shown for the
table-top (purple) and table-leg (pink) parts. (Centre:) Uncertainty values are given
by the size and colour of the points: higher means larger, yellower points; lower means
smaller, bluer points. (Right:) Active sampling experiment.

(which corresponds to a physically-relevant uncertainty). In contrast, the NP is more
uncertain along the edges of the table top, while in the internal geometry of the table,
most of these points are distant from any leg points. On the right, Figure 5.3 shows
the results of an active learning experiment, carried out in a similar manner to the one
described by Garnelo et al. [58]. At each step, all target points are predicted labels and
uncertainties. The target point which produced the highest uncertainty estimate is then
labelled—that is, added to the context set. The process is then repeated. The rapid
increase in mIoU achieved by the MPNP reveals the power of semantically-meaningful
uncertainty predictions. Figure 5.4 illustrates additional uncertainty visualisations for
other classes in ShapeNet, reinforcing the finding that the estimates produced by MPNPs
are semantically relevant.

103

Ground-truth segmentation NP uncertainty MPNP uncertainty
Low

High

Ground-truth segmentation NP uncertainty MPNP uncertainty
Low

High

Ground-truth segmentation NP uncertainty MPNP uncertainty

Low

High

Ground-truth segmentation NP uncertainty MPNP uncertainty

Low

High

Ground-truth segmentation NP uncertainty MPNP uncertainty
Low

High

Figure 5.4: Visualisations of the uncertainty estimates on samples from the airplane, chair,
lamp, mug and car ShapeNet categories. In each case, the MPNP can better localise the
uncertainty to semantically-relevant regions (namely, borders between parts). Instead,
the NP tends to be uncertain on larger and simpler areas—for example, being very
uncertain across the entire handle side of the mug. Similar behaviour can be seen for
the top of the lamp, the car axles and the edges of the chair-seat. The airplane is a more
complex shape, as the borders between wings, fuselage and engines occur in a more
focused region; nevertheless, the MPNP is still less uncertain in the airplane-tail.

104

Model 0.1% 1% 5% 10%

2
NP-c 48.06 83.60 88.62 89.17
MPNP-c 57.18 86.08 90.81 91.37
LP 55.55 84.37 91.90 93.93
GNN 36.14 36.14 36.14 36.14

3
NP-c 46.87 76.66 81.12 81.47
MPNP-c 45.52 78.95 83.80 84.31
LP 41.12 69.84 84.40 87.76
GNN 21.68 21.68 21.68 21.68

4
NP-c 28.48 67.19 72.30 72.88
MPNP-c 31.52 74.30 81.38 82.20
LP 30.29 66.61 83.61 87.91
GNN 15.82 15.82 15.82 15.82

Table 5.3: ShapeNet mixed-category, arbitrary-labelling results for 2, 3, and 4-part shapes
(#). We report the mIoU for {0.1, 1, 5, 10}% context points.

5.5.4 Arbitrary labelling

Garnelo et al. [58] applied the Conditional Neural Process in arbitrary-labelling settings.
Here, each dataset consists of samples that are drawn from a fixed number k of class
types, but the total number of types across all datasets is K, with K � k. As K could be
very large and test examples will often include unseen classes, using fixed class indices
is infeasible. Instead, arbitrary labellings (1, ..., k) are assigned on a per-dataset basis.
Models are then required to discriminate between a novel set of classes each time, as
seen from their internal processing perspective.

In the ShapeNet mixed-category setup, the MPNP aims to model the stochastic process
that produces n-part objects (for example, n = 4 for both chairs, which have arms, legs,
seats and backs, and airplanes, which are split into engines, bodies, tails and wings.) In this
setting, labels have consistent meaning only within a given dataset (shape sample), so
using a fixed ordering of labels would induce a meaningless learned relationship be-
tween, say, chair-backs and airplane-wings within the model. The class labels are therefore
permuted arbitrarily for each example.

Table 5.3 shows the results obtained on the mixed-class part-grouped ShapeNet task.
As expected, the GNN baseline struggles to achieve even the simple performance of a
random baseline. Label propagation is the most powerful when the context sampling
rates are high. In contrast, the MPNP-c and NP-c present relative gains when fewer
context points are provided to the respective frameworks. The NP-c performs best at
0.1% on 3-class, disrupting the MPNP-c—however, this may be due to the imbalances
across shape categories, as tables represent 80% of all 3-part objects. The MPNP-c and

105

label propagation generally perform the best, dividing the context sampling range.

5.6 Discussion

I have presented the Message Passing Neural Process, an NP model that leverages the
explicit structure between samples from a stochastic process for classification. Our work
supplies NPs with the inductive bias necessary to model the relational structure in each
dataset, similarly to the ConvCNP model that adds the translation equivariance inductive
bias. Therefore, the data points are represented in a context-aware manner, rather than
an isolated one. The stronger representations obtained achieve notable performance
improvements in few-shot learning and rule-based settings, while uncertainty estimates
become more meaningful with respect to the dataset structure.

An important aspect needs to be highlighted, regarding the tasks we chose to evaluate our
model on. Recently introduced benchmark suites such as OGB [85] and those proposed
by Dwivedi et al. [47] aim to improve the quality of evaluation of graph-based models.
However, we found that these collections do not contain tasks that are appropriate for
evaluating meta-learning frameworks such as MPNPs—none of the tasks match the
problem statement in Section 5.4. To this end, Ben Day designed novel task formulations
of the existing ShapeNet [31, 200] and full Cora [17, 123] datasets and entirely novel
synthetic tasks based on cellular automata [178, 183, 188]. The results for these tasks can
be found in the Appendix (Figure A.1 for cellular automata tasks and Tables A.2 and A.3
for the Cora-Branched transductive and few-shot learning tasks), further supporting the
claim that MPNPs build stronger representations from functionally-varied data settings.

Arian Jamasb ran fixed-labelling experiments on a PPI dataset [206]—the task involves
predicting which nodes (amino acids) in an amino acid residue graph are involved in an
experimentally-determined PPI setting. In this case, the MPNP was able to consistently
surpass the R-GCN [161] baseline (which takes into account edge information) across all
evaluation metrics (Table A.1 in the Appendix). Solving this task is thought to depend
strongly on being able to use relational information, and there is great variation between
examples. As expected following the TUD results, the MPNP excels in this setting, with
state-of-the-art-competitive results at plausible context rates.

The results presented show that the richer context representations and structural bias
of the MPNP are generally beneficial, outperforming the NP on Cora-Branched, PPI,
one TUD task and ShapeNet mixed (excluding 3-class with 0.1% context points), while
producing semantically-realistic uncertainties, as shown in Figure 5.3 and Figure 5.4.
Label propagation is more successful when more labels are available, but MPNP vastly
improves on it at low sampling rates, showing powerful capabilities in scarce data

106

settings. GNNs learn better when the generative process has little functional variation,
but perform poorly in the opposite case (mixed-class and few-shot), and are entirely
unsuitable in the arbitrary labelling setting. The TUD biochemical datasets are the only
fixed-class setting where GNNs do consistently better than MPNPs, though we can
attribute this to the lack of functional variation of the generative process in these narrow
tasks. As discussed above, results on the PPI task—still within the biochemical domain,
but with much greater functional variation—reveal once again that MPNPs are superior
to the GNN baseline in these types of settings. On ShapeNet fixed-class tasks, MPNP
surpasses the GNN in most cases.

5.7 Summary

In this chapter, I have presented my contribution towards designing and extensively
evaluating a new member of the Neural Process family—the Message Passing Neural
Process. The main novelty lies in the incorporation of structural inductive biases in the
encoder and decoder modules and in the training setup. This constitutes an important
addition to the operation of neural processes, since leveraging the connectivity between
samples in the context and target sets can be crucial to achieving a stronger functional
representation. This is relevant especially for challenging setups, such as ones with
restricted availability of the labelled samples. Here, it is important to use all the infor-
mation that is given to us—including the structural one—towards better distinguishing
between sampled functions from the underlying functional distribution.

Our extensive evaluation on various data domains (geometric—ShapeNet, social/citation—
Cora-Branched, biochemical—TUD, PPISP, connectionist/rule-based/synthetic—Cellular
Automata) showed promising representational power, especially at low sampling rates,
where typically powerful algorithms, such as label propagation, underperform. Most
importantly for the initial contribution we have proposed in the relational NP space, this
study has validated the following hypothesis: adding structural bias to neural process
models improves classification performance in settings where stochastic processes also
generate structural information between data points.

I consider this type of model to have great potential in domains outside the ones we
have studied so far (or had datasets available for). Most interestingly, ML recommender
systems could be additionally powered by the graph structure of the associated social
network. For example, in a music recommendation context, users of the service and
artists (perhaps even individual songs/videos) can be considered different types of
nodes in the network graph, with edges of several types denoting kinds of interactions
that users have with a certain artist/song: listen, like, add to collection. Another similar

107

setting can be online shopping, where one can model the network in a similar fashion—
nodes are users, products and suppliers; links are purchases, favourites, add to wishlist.

Finally, an important aspect of our study is that the models we have designed and
tested leverage general and simple graph processing modules (linear–MP–linear in both
encoder and decoder networks). Replacing these with more specialised ones, where
the message passing scheme is specifically designed for, say, biochemical data, or is
represented by more recent and powerful graph convolutional layers or classification
models, might boost results even further. In addition, stronger interpretations of the
model capabilities may be derived via uncertainty estimate studies, similarly to the ones
we conducted to demonstrate the predictive power of Message Passing Neural Processes.

108

Chapter 6

Conclusion and future directions

This thesis has presented my research efforts carried out during my PhD candidacy.
These have been focused on designing methods for informing world representations,
which comprise the multimodality and structure present in various types of data scenar-
ios. These two characteristics can be used to better inform ML systems with respect to the
downstream task, but also contribute to stronger representations that can be generally
leveraged by agents in complex, real-world-like environments. The first contribution [26]
looked at environment understanding from a language-and-vision standpoint, with the added
difficulty of a temporal dimension for the visual stream. The second major effort [16, 25]
then focused on building hierarchical representations of graph-structured data, while the
final piece of work [41] explored graph representations further and addressed learning
functional representations of datasets with relational structure, which can be used for making
predictions in challenging data scenarios. These studies have answered some research
questions, which were introduced in Chapter 1—notwithstanding, at least equally many
future directions were naturally uncovered.

In Chapter 3, I have presented the VideoNavQA benchmark and approaches to learning
multimodal representations of indoor environments. The benchmark itself re-imagined
the EmbodiedQA task—by removing the navigation requirement from the agent, we
allowed the ML system to tackle a much more varied and complex set of question
types than in existing instantiations of EQA and other related tasks. The ML systems I
designed were based on existing and widely-acknowledged VQA paradigms—FiLM
and MAC—which allowed benchmarking the strength of these approaches when the
temporal dimension gets added to the visual stream.

The learned representations were tested on question answering downstream tasks,
which generally force a certain fusion between the linguistic and visual inputs. Results
showed that these models are indeed able to exploit the visual information in order

109

to produce answers, as a significant gap was present between the performances of
multimodal methods and those of question-only baselines. However, the gap to human
or perfect1 performance was still to be bridged at the time of the study, which illustrated
the challenge posed by EQA-style tasks for environment understanding, even when
components that demand considerable complexity from the system are removed.

Future work in this problem space should focus on interpreting the learned models
and designing techniques for tackling the QA tasks present in VideoNavQA, perhaps
building upon existing ones, like the framework for video processing proposed by Nico-
licioiu et al. [139]. Here, the recurrent space-time graph neural network models the
changing world view via a graph of entities and objects with high-level interactions, at
both spatial and temporal levels. These types of methods would produce a more precise
internal representation of the visual input, in the form of an evolving scene graph across
time. Objects would correspond to nodes which get added to the current agent-view
graph and removed when they go in and out of the field-of-view, while edges might
be learned as denoting proximity-based or spatial relations between objects, such as on,
below, above, behind, or even correspondence relations, such as ‘A chair was seen both in the
living room and in the office’.

Leading researchers have argued [13] in favour of symbolic, concept-focused representa-
tions. These should allow an ML system to dedicate its entire capacity to the downstream
task itself, rather than being additionally burdened with the task of deciphering the
visual input. In the VideoNavQA case—and in visual reasoning tasks, generally—the
main bottleneck in solving the task would be matching the visual concepts encountered
in the scene to parts of the linguistic conditioning signal. The related research on scene
graphs with Boris Knyazev, Eugene Belilovsky and Aaron Courville that I have been in-
volved in illustrated the complexity of this step, within scene graph generation pipelines
for visual reasoning. The two resulting studies [99, 100] revealed ways to make these
systems more robust to the challenges encountered in the data distributions.

Chapter 4 described two approaches to obtaining hierarchical representations of graph-
structured data, based on relational learning with graph neural networks. As real-
world environments and contexts can be complex, it is often useful to view and study
them at various levels of granularity, a task for which hierarchical representations are
highly appropriate. From a supervised learning perspective, these representations
are modelled by the downstream task of graph property prediction. Testing such
representations may therefore reveal particularities of the given data domain, casting
light on the discriminative characteristics of the data across its pre-defined categories.

1A human should be able to answer the question, if they viewed the input videos (one frame at a time,
in the worst case).

110

For example, the ‘Deep Graph Mapper’ study contains visualisations produced by my
collaborator Cristian Bodnar, which illustrate the connection between model prediction
errors on input graphs and hierarchical representations.

The first contribution consisted of a CNN-like pipeline for graph classification, where con-
volutional layers correspond to graph convolutional layers, which perform generalised
operations on arbitrarily-structured inputs, instead of grid-like ones, and max-pooling
layers are replaced by Top-k graph pooling ones. At the time of publication, no other
study had managed to compete with DiffPool, the state-of-the-art pooling method, on
the TUD graph classification benchmarks. Essentially for the purpose of the study,
we reduced the memory requirement of the classification architecture from O(|V |2) to
O(|V |+ |E|), where V is the set of nodes and E, the set of edges in the input graph. The
authors of Top-k pooling subsequently reported their own graph classification results,
which showed the importance of exploring sparse hierarchical approaches to graph
classification—required for the eventual scaling to larger, real-world-like inputs.

The second research work combined the expressive capabilities of graph neural net-
works with the theoretically-proved functionality of a topological data analysis method,
Mapper—the resulting pooling layer, MPR, produces topologically-grounded hierar-
chical representations for graph classification. As mentioned in a previous paragraph,
the overarching method of the study, DGM, can be also used for visualising graphs and
their node labels (ground-truth or model predictions). Visualisations can be produced
at various granularity scales, by appropriately tuning only two parameters. Graph
coarsening is achieved via applying a ‘lens’ ranking function to the nodes—the MPR
layer uses the PageRank function, which simply looks at node connectivity and leverages
the inductive bias of power-law distributions abundant in social networks. The new
nodes are then formed by aggregating all node features within each overlapping interval
in the cover U . Despite the ‘lens’ function being simple and non-differentiable, MPR
achieved highly competitive results across nine benchmarks, which deems promising
this novel class of pooling methods.

Starting from the approaches that we proposed, an essential future direction in the graph
pooling space would combine these two methods. Namely, Top-k pooling and Mapper-
based pooling layers could build scalable models that, in turn, produce theoretically-
grounded hierarchical representations of graphs using global topological information—
something that has not been achieved previously in graph machine learning research,
to my knowledge. Moreover, MPR coarsening layers may be designed where the ‘lens’
function incorporates domain knowledge, which would yield a stronger inductive bias
to be leveraged in the node ranking process. Alternatively, one might try to improve the
expressive power of the ‘lens’ function by ranking nodes in more dimensions. In this

111

setting, it could be useful to leverage node embeddings that were previously extracted
and tested on another task.

Chapter 5 introduced a new member of the neural process family, where relational in-
ductive biases were added to accommodate the structure present in functions generated
by stochastic processes. Our novel framework, the Message Passing Neural Process,
can thus be used for settings akin to node classification and, more generally, for repre-
senting a wide and varied functional space for few-shot and multi-task settings. We
reported strong performance against different types of baselines, on a wide variety of
domains—biochemical, social, geometric, connectionist. MPNPs also yield uncertainty
estimates for the class predictions, which can be useful in various settings. One can
imagine scoring, for example, how well two molecules interact and bind. A way to
achieve this would be by aggregating the uncertainty estimates at node levels from one
of the molecules, whilst conditioning the decoding process on a representation of the
other molecule—which should be a straightforward extension of the current model.

The study also introduced novel tasks that were devised by Ben, and included sev-
eral visualisations that highlight the significant improvement in uncertainty modelling
achieved by our framework over neural processes. Namely, on ShapeNet, MPNPs prop-
erly capture the data semantics, whereas NPs visibly struggle to meaningfully represent
the internal geometry of objects. Finally, our experiments revealed the power of adding
structure to the encoding and decoding steps present in NP models, at low context sam-
pling rates. Here, the MPNP improves the most over NPs and other powerful baselines
such as label propagation, which confirms the gain in representational power obtained
from leveraging relational biases.

One can imagine the future members of the neural process family building upon existing
ones and creating synergies. For example, world representations benefit from incorpo-
rating changes in the inputs across time and space. A spatio-temporal NP framework
could thus be designed to account for structural changes—additions and deletions of
nodes and links—at various time points. The primary setting where I believe this type of
model would be useful is a medical one. In this space, drug design and repurposing is
one example of a process that should take into account the evolution of a patient, given
the corresponding measurements of drug-gene interactions. Other vital applications
where the underlying graphs vary considerably across the distribution and change over
time are traffic and weather predictions. In the latter case, one can simply split the
forecast map into small regions, or take a more complex approach of constructing a
graph out of the various layers of meteorological features present in weather maps.

112

In a more complex scenario, we can also consider the task of graph completion, starting
from a small subgraph (the context) of the final graph (the target). The NP operation
mode would undergo some changes, since the process relative to the target set should be
similar to the one applied to the context. Generating a graph requires creating additional
nodes and links—namely, predicting node features and the existence of edges between
(all) pairs of nodes. This would be more challenging, since the encoder needs to behave
in the same way as the decoder. A purely generative block might thus be added to the
encoder: a suitable choice could be one that is based on normalizing flows, which can
learn to transform a sample z ∼ N (0, I) to a feature vector from a complex distribution.

The overarching aim of this thesis was to provide building blocks for learning in-
sightful and structured world representations. The former aspect can be achieved by
meaningfully integrating the visual, interactive and linguistic stimuli within an envi-
ronment, wherein agents reason about the world, make decisions and operate towards
completing various real-world tasks. The VideoNavQA work I described in Chapter 3
paves the way to better measuring progress achieved by the research community on
QA tasks in indoor environments. The work further proposes vision-and-language
reasoning models to tackle the novel task and reports an initial significant edge over
language-only baselines, which shows the importance of integrating the two modalities.

The latter aspect of structure is essential to the internal representation of the agent, as
its experience in the environment—visual and event-based memory across time—can
be modelled into an ever-evolving spatio-temporal graph. Moreover, an agent is likely
to gradually build an internal map from exploring its environment. In order to make
decisions, this map may need inspection at various levels of granularity (for example,
‘Which region should I go to next?’), which can be achieved using the methods presented
in Chapter 4. Finally, agents should be able to act in a variety of settings and be able to
generalise to new ones, which is where the Message Passing Neural Process framework
from Chapter 5 may prove useful: the agent may, for example, be required to understand
outdoor city settings or home environments, which requires making predictions about
different sets of object classes. As both structure and multimodality are essential aspects
of the world in which we live in, it is crucial for an intelligent agent to combine and learn
about these, before reasoning and acting within real-life environments.

113

114

Bibliography

[1] Alon Altman. The PageRank Axioms. In Dagstuhl Seminar Proceedings. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2005.

[2] Jose M. Alvarez, Anelia Angelova, Dhruv Batra, Angel X. Chang, Samyak Datta,
Matt Deitke, Ali Farhadi, Aaron Gokaslan, Aleksandra Faust, Jose A. Iglesias-
Guitian, Abhishek Kadian, Aniruddha Kembhavi, Vangelis Kokkevis, Vladlen
Koltun, Eric Kolve, Stefan Lee, Yongjoon Lee, Eric Li, Antonio Lopez, Oleksandr
Maksymets, Jitendra Malik, Roberto Martı́n-Martı́n, Roozbeh Mottaghi, Devi
Parikh, German Ros, Manolis Savva, Dustin Schwenk, Philipp Slusallek, Julian
Straub, Jie Tan, Alexander Toshev, Fei Xia, Erik Wijmans, and Amir Zamir. Em-
bodied AI Workshop, 2020. URL https://embodied-ai.org/.

[3] Ankesh Anand, Eugene Belilovsky, Kyle Kastner, Hugo Larochelle, and Aaron
Courville. Blindfold Baselines for Embodied QA. arXiv preprint arXiv:1811.05013,
2018.

[4] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy,
Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi,
Manolis Savva, et al. On Evaluation of Embodied Navigation Agents. arXiv
preprint arXiv:1807.06757, 2018.

[5] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko
Sünderhauf, Ian Reid, Stephen Gould, and Anton van den Hengel. Vision-and-
Language Navigation: Interpreting Visually-Grounded Navigation Instructions
in Real Environments. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[6] Anonymous. Graph U-Net. In Submitted to the Seventh International Conference on
Learning Representations (ICLR), 2018. Under review.

[7] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. VQA: Visual question answering. In

115

https://embodied-ai.org/

Proceedings of the IEEE International Conference on Computer Vision, pages 2425–
2433, 2015.

[8] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant
Risk Minimization. arXiv preprint arXiv:1907.02893, 2019.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. In 3rd International Conference
on Learning Representations, ICLR 2015, 2015.

[10] Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen,
Harm de Vries, and Aaron Courville. Systematic Generalization: What Is Required
and Can It Be Learned? arXiv preprint arXiv:1811.12889, 2018.

[11] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. Measuring Neural Net Robustness with
Constraints. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29, pages 2613–2621.
Curran Associates, Inc., 2016.

[12] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and
graph networks. arXiv preprint arXiv:1806.01261, 2018.

[13] Yoshua Bengio. From System 1 Deep Learning to System 2 Deep Learning (Pos-
ner lecture at NeurIPS), 2019. URL http://www.iro.umontreal.ca/~bengioy/

NeurIPS-11dec2019.pdf.

[14] Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Nan Rosemary Ke, Sebastien
Lachapelle, Olexa Bilaniuk, Anirudh Goyal, and Christopher Pal. A Meta-Transfer
Objective for Learning to Disentangle Causal Mechanisms. In International Confer-
ence on Learning Representations, 2020.

[15] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Mincut Pooling in
Graph Neural Networks. arXiv preprint arXiv:1907.00481, 2019.

[16] Cristian Bodnar, Cătălina Cangea, and Pietro Liò. Deep Graph Mapper: Seeing
Graphs through the Neural Lens. NeurIPS Topological Data Analysis and Beyond
Workshop, 2020.

[17] Aleksandar Bojchevski and Stephan Günnemann. Deep Gaussian Embedding of
Graphs: Unsupervised Inductive Learning via Ranking. In International Conference
on Learning Representations, pages 1–13, 2018.

116

http://www.iro.umontreal.ca/~bengioy/NeurIPS-11dec2019.pdf
http://www.iro.umontreal.ca/~bengioy/NeurIPS-11dec2019.pdf

[18] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. PageRank as a Function of
the Damping Factor. In Proceedings of the 14th International Conference on World
Wide Web, pages 557–566, 2005.

[19] Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian
Strub, Jean Rouat, Hugo Larochelle, and Aaron Courville. HoME: A Household
Multimodal Environment. arXiv preprint arXiv:1711.11017, 2017.

[20] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond Euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, 2017.

[21] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[22] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks
and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[23] Daphna Buchsbaum, Thomas L. Griffiths, Dillon Plunkett, Alison Gopnik, and
Dare Baldwin. Inferring action structure and causal relationships in continuous
sequences of human action. Cognitive Psychology, 76:30–77, 2015. ISSN 0010-0285.
doi: https://doi.org/10.1016/j.cogpsych.2014.10.001.

[24] Remi Cadene, Hedi Ben-Younes, Nicolas Thome, and Matthieu Cord. MUREL:
Multimodal Relational Reasoning for Visual Question Answering. In IEEE Confer-
ence on Computer Vision and Pattern Recognition CVPR, 2019.

[25] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò.
Towards Sparse Hierarchical Graph Classifiers. NeurIPS Relational Representation
Learning Workshop, 2018.

[26] Cătălina Cangea, Eugene Belilovsky, Pietro Liò, and Aaron Courville. VideoN-
avQA: Bridging the Gap between Visual and Embodied Question Answering. In
British Machine Vision Conference (BMVC), 2019.

[27] Cătălina Cangea, Abhishek Das, Drew Hudson, Jacob Krantz, Stefan Lee, Jiayuan
Mao, Florian Strub, Alane Suhr, and Erik Wijmans. Visually Grounded Interaction
and Language Workshop, 2021. URL https://vigilworkshop.github.io/.

[28] Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z Leibo, Karl Tuyls, and Stephen
Clark. Emergent Communication through Negotiation. In International Conference
on Learning Representations, 2018.

117

https://vigilworkshop.github.io/

[29] Andrew Carr and David Wingate. Graph Neural Processes: Towards Bayesian
Graph Neural Networks. arXiv e-prints, art. arXiv:1902.10042, February 2019.

[30] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody
dance now. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 5933–5942, 2019.

[31] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository.
arXiv e-prints, art. arXiv:1512.03012, December 2015.

[32] Frédéric Chazal and Bertrand Michel. An introduction to Topological Data
Analysis: Fundamental and practical aspects for data scientists. arXiv preprint
arXiv:1710.04019, 2017.

[33] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touch-
down: Natural language navigation and spatial reasoning in visual street environ-
ments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12538–12547, 2019.

[34] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[35] Wei Chu, Vikas Sindhwani, Zoubin Ghahramani, and S Sathiya Keerthi. Relational
Learning with Gaussian Processes. In Advances in Neural Information Processing
Systems, pages 289–296, 2007.

[36] Rodolfo Corona, Daniel Fried, Coline Devin, Dan Klein, and Trevor Darrell.
Modularity Improves Out-of-Domain Instruction Following. arXiv preprint
arXiv:2010.12764, 2020.

[37] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable
models for structured data. In International Conference on Machine Learning, pages
2702–2711, 2016.

[38] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and
Dhruv Batra. Embodied Question Answering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

118

[39] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra.
Neural Modular Control for Embodied Question Answering. arXiv preprint
arXiv:1810.11181, 2018.

[40] Abhishek Das, Federico Carnevale, Hamza Merzic, Laura Rimell, Rosalia Schnei-
der, Josh Abramson, Alden Hung, Arun Ahuja, Stephen Clark, Greg Wayne, and
Felix Hill. Probing Emergent Semantics in Predictive Agents via Question An-
swering. In Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 2376–2391. PMLR,
13–18 Jul 2020.

[41] Ben Day, Cătălina Cangea, Arian R Jamasb, and Pietro Liò. Message Passing
Neural Processes. arXiv preprint arXiv:2009.13895, 2020.

[42] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering. In Advances in
Neural Information Processing Systems, pages 3844–3852, 2016.

[43] Nima Dehmamy, Albert-Laszlo Barabasi, and Rose Yu. Understanding the Rep-
resentation Power of Graph Neural Networks in Learning Graph Topology. In
Advances in Neural Information Processing Systems, volume 32, 2019.

[44] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve,
Roozbeh Mottaghi, Jordi Salvador, Dustin Schwenk, Eli VanderBilt, Matthew
Wallingford, Luca Weihs, Mark Yatskar, and Ali Farhadi. RoboTHOR: An Open
Simulation-to-Real Embodied AI Platform. In CVPR, 2020.

[45] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted Graph Cuts without
Eigenvectors A Multilevel Approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(11), 2007.

[46] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional Networks
on Graphs for Learning Molecular Fingerprints. In Advances in Neural Information
Processing Systems, pages 2224–2232, 2015.

[47] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking Graph Neural Networks. arXiv preprint
arXiv:2003.00982, 2020.

[48] Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publication of
the Mathematical Institute of the Hungarian Academy of Sciences, 5(1):17–60, 1960.

119

[49] Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy
data. Journal of Artificial Intelligence Research, 61:1–64, 2018.

[50] Katrina Evtimova, Andrew Drozdov, Douwe Kiela, and Kyunghyun Cho. Emer-
gent Communication in a Multi-Modal, Multi-Step Referential Game. In Interna-
tional Conference on Learning Representations, 2018.

[51] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. SplineCNN:
Fast geometric deep learning with continuous B-spline kernels. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 869–877,
2018.

[52] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1126–1135, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

[53] Katerina Fragkiadaki. Language Grounding to Vision and Control, Fall 2017 CMU
10-808, 2017. URL https://katefvision.github.io/LanguageGrounding/.

[54] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and
Marcus Rohrbach. Multimodal Compact Bilinear Pooling for Visual Question
Answering and Visual Grounding. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 457–468, Austin, Texas, November
2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1044.

[55] Chuang Gan, Yiwei Zhang, Jiajun Wu, Boqing Gong, and Joshua B Tenenbaum.
Look, listen, and act: Towards audio-visual embodied navigation. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 9701–9707. IEEE,
2020.

[56] Andrew Gao, Ruohan Owens, Dinesh Jayaraman, Yuke Zhu, Jiajun Wu, , and
Kristen Grauman. Embodied Multimodal Workshop, 2021. URL https://

eml-workshop.github.io/.

[57] Hongyang Gao and Shuiwang Ji. Graph U-Nets. In International Conference on
Machine Learning, pages 2083–2092, 2019.

[58] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David
Saxton, Murray Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami.
Conditional Neural Processes. In International Conference on Machine Learning,
pages 1704–1713, 2018.

120

https://katefvision.github.io/LanguageGrounding/
https://eml-workshop.github.io/
https://eml-workshop.github.io/

[59] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende,
SM Eslami, and Yee Whye Teh. Neural Processes. arXiv preprint arXiv:1807.01622,
2018.

[60] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian
Reinforcement Learning: A Survey. Foundations and Trends in Machine Learning, 8
(5–6):359–483, November 2015. ISSN 1935-8237. doi: 10.1561/2200000049.

[61] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural Message Passing for Quantum Chemistry. 2017.

[62] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 315–323, 2011.

[63] Vik Goel, Jameson Weng, and Pascal Poupart. Unsupervised Video Object Seg-
mentation for Deep Reinforcement Learning. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18, page 5688–5699, Red
Hook, NY, USA, 2018. Curran Associates Inc.

[64] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets.
In Advances in Neural Information Processing Systems, volume 27, pages 2672–2680.
Curran Associates, Inc., 2014.

[65] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon,
Dieter Fox, and Ali Farhadi. IQA: Visual question answering in interactive en-
vironments. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4089–4098, 2018.

[66] Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima,
Yann Dubois, and Richard E. Turner. Convolutional Conditional Neural Processes.
arXiv e-prints, art. arXiv:1910.13556, October 2019.

[67] Gaurav Goswami, Nalini Ratha, Akshay Agarwal, Richa Singh, and Mayank Vatsa.
Unravelling robustness of deep learning based face recognition against adversarial
attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[68] Jonathan Gratch, Jeff Rickel, Elisabeth André, Justine Cassell, Eric Petajan, and
Norman Badler. Creating interactive virtual humans: Some assembly required.
IEEE Intelligent systems, 17(4):54–63, 2002.

121

[69] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing
Change: Continual Learning in Deep Neural Networks. Trends in Cognitive Sciences,
2020.

[70] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring Network Structure,
Dynamics, and Function using NetworkX. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

[71] Mustafa Hajij, Paul Rosen, and Bei Wang. Mapper on Graphs for Network Visual-
ization, 2018.

[72] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning
on Large Graphs. In Advances in Neural Information Processing Systems, pages 1024–
1034, 2017.

[73] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

[74] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and Jianfeng Gao. Towards
Learning a Generic Agent for Vision-and-Language Navigation via Pre-Training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[76] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Robust-
ness to Common Corruptions and Perturbations. In International Conference on
Learning Representations, 2019.

[77] Karl Moritz Hermann, Mateusz Malinowski, Piotr Mirowski, Andras Banki-
Horvath, Keith Anderson, and Raia Hadsell. Learning to follow directions in
Street View. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 11773–11781, 2020.

[78] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining Improvements in Deep Reinforcement Learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[79] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt,
and Hado van Hasselt. Multi-task Deep Reinforcement Learning with PopArt.

122

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
3796–3803, 2019.

[80] Felix Hill, Andrew Lampinen, Rosalia Schneider, Stephen Clark, Matthew
Botvinick, James L. McClelland, and Adam Santoro. Environmental drivers
of systematicity and generalization in a situated agent. In International Conference
on Learning Representations, 2020.

[81] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.
1735.

[82] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks
for object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3588–3597, 2018.

[83] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko.
Learning to reason: End-to-end module networks for visual question answering.
In Proceedings of the IEEE International Conference on Computer Vision, pages 804–813,
2017.

[84] Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan Klein, Trevor Darrell, and Kate
Saenko. Are You Looking? Grounding to Multiple Modalities in Vision-and-
Language Navigation. In Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, pages 6551–6557. Association for Computa-
tional Linguistics, 2019. doi: 10.18653/v1/p19-1655.

[85] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for
Machine Learning on Graphs. arXiv preprint arXiv:2005.00687, 2020.

[86] Jingjia Huang, Zhangheng Li, Nannan Li, Shan Liu, and Ge Li. AttPool: Towards
Hierarchical Feature Representation in Graph Convolutional Networks via Atten-
tion Mechanism. In Proceedings of the IEEE International Conference on Computer
Vision, pages 6480–6489, 2019.

[87] Drew A Hudson and Christopher D Manning. GQA: a new dataset for composi-
tional question answering over real-world images. arXiv preprint arXiv:1902.09506,
2019.

[88] Drew Arad Hudson and Christopher D. Manning. Compositional Attention
Networks for Machine Reasoning. In International Conference on Learning Represen-
tations, 2018.

123

[89] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proceedings of the
32nd International Conference on Machine Learning, volume 37, pages 448–456, Lille,
France, 07–09 Jul 2015.

[90] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos,
Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo,
David Silver, Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel. Human-
level performance in 3D multiplayer games with population-based reinforcement
learning. Science, 364(6443):859–865, 2019. ISSN 0036-8075. doi: 10.1126/science.
aau6249.

[91] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. CLEVR: A Diagnostic Dataset for Com-
positional Language and Elementary Visual Reasoning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2901–2910, 2017.

[92] Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo
Larochelle, Bernhard Schölkopf, Michael C Mozer, Chris Pal, and Yoshua Ben-
gio. Learning neural causal models from unknown interventions. arXiv preprint
arXiv:1910.01075, 2019.

[93] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Mar-
ion Neumann. Benchmark data sets for graph kernels, 2016. URL http:

//graphkernels.cs.tu-dortmund.de.

[94] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan
Rosenbaum, Oriol Vinyals, and Yee Whye Teh. Attentive Neural Processes. arXiv
e-prints, art. arXiv:1901.05761, January 2019.

[95] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[96] Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive Learning of Struc-
tured World Models. In International Conference on Learning Representations, 2020.

[97] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. 2016.

[98] Stephen C. Kleene. Representations of events in nerve nets and finite automata.
Automata Studies [Annals of Math. Studies 34], 1956.

124

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

[99] Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W. Taylor, Aaron
Courville, and Eugene Belilovsky. Generative Graph Perturbations for Scene
Graph Prediction. ICML Workshop on Object-Oriented Learning (OOL): Perception,
Representation, and Reasoning, 2020.

[100] Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W Taylor, Aaron
Courville, and Eugene Belilovsky. Graph Density-Aware Losses for Novel Compo-
sitions in Scene Graph Generation. In British Machine Vision Conference (BMVC),
2020.

[101] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro
Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR:
An Interactive 3D Environment for Visual AI. arXiv preprint arXiv:1712.05474,
2017.

[102] Carly Kontra, Susan Goldin-Meadow, and Sian L Beilock. Embodied learning
across the life span. Topics in Cognitive Science, 4(4):731–739, 2012.

[103] Vivek Kothari, Catherine Tong, and Nicholas Lane. The Surprising Behavior
Of Graph Neural Networks, 2020. URL https://openreview.net/forum?id=

BkgOM1rKvr.

[104] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee.
Beyond the Nav-Graph: Vision-and-Language Navigation in Continuous Envi-
ronments. In Computer Vision – ECCV 2020, pages 104–120, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-58604-1.

[105] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[106] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan
Binas, Rémi Le Priol, Dinghuai Zhang, and Aaron Courville. Out-of-Distribution
Generalization via Risk Extrapolation ({RE}x), 2021.

[107] Tuan Anh Le, Hyunjik Kim, Marta Garnelo, Dan Rosenbaum, Jonathan Schwarz,
and Yee Whye Teh. Empirical Evaluation of Neural Process Objectives. In NeurIPS
workshop on Bayesian Deep Learning, 2018.

[108] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. ISSN
00189219. doi: 10.1109/5.726791.

125

https://openreview.net/forum?id=BkgOM1rKvr
https://openreview.net/forum?id=BkgOM1rKvr

[109] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.

[110] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R. Howard,
Wayne Hubbard, and Lawrence Jackel. Handwritten Digit Recognition with
a Back-Propagation Network. In Advances in Neural Information Processing Systems,
volume 2. Morgan-Kaufmann, 1990.

[111] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-Attention Graph Pooling. In
International Conference on Machine Learning, pages 3734–3743, 2019.

[112] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. TVQA: Localized, Compo-
sitional Video Question Answering. In EMNLP, 2018.

[113] Ang Li, Huiyi Hu, Piotr Mirowski, and Mehrdad Farajtabar. Cross-view pol-
icy learning for street navigation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8100–8109, 2019.

[114] Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, and Sanja
Fidler. Situation Recognition with Graph Neural Networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages 4173–4182, 2017.

[115] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

[116] Y. C. Liu, J. Tian, C. Y. Ma, N. Glaser, C. W. Kuo, and Z. Kira. Who2com: Col-
laborative Perception via Learnable Handshake Communication. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 6876–6883, 2020.
doi: 10.1109/ICRA40945.2020.9197364.

[117] Christos Louizos, Xiahan Shi, Klamer Schutte, and Max Welling. The Functional
Neural Process. In Advances in Neural Information Processing Systems 32, pages
8746–8757. Curran Associates, Inc., 2019.

[118] Enxhell Luzhnica, Ben Day, and Pietro Lio. Clique pooling for graph classification.
arXiv preprint arXiv:1904.00374, 2019.

[119] Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming Xiong, and Zsolt Kira.
The regretful agent: Heuristic-aided navigation through progress estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6732–6740, 2019.

126

[120] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph Convolutional
Networks with EigenPooling. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 723–731, 2019.

[121] Mateusz Malinowski and Mario Fritz. A Multi-World Approach to Question
Answering about Real-World Scenes based on Uncertain Input. In Advances in
Neural Information Processing Systems, volume 27, 2014.

[122] Mateusz Malinowski, Carl Doersch, Adam Santoro, and Peter Battaglia. Learning
Visual Question Answering by Bootstrapping Hard Attention. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 3–20, 2018.

[123] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
Automating the Construction of Internet Portals with Machine Learning. Informa-
tion Retrieval, 3(2):127–163, 2000. ISSN 13864564. doi: 10.1023/A:1009953814988.

[124] Péter Mernyei and Cătălina Cangea. Wiki-CS: A Wikipedia-based Benchmark for
Graph Neural Networks. ICML Graph Representation Learning and Beyond Workshop,
2020.

[125] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, An-
drea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al.
Learning to navigate in complex environments. arXiv preprint arXiv:1611.03673,
2016.

[126] Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith
Anderson, Denis Teplyashin, Karen Simonyan, koray kavukcuoglu, Andrew Zis-
serman, and Raia Hadsell. Learning to Navigate in Cities Without a Map. In
Advances in Neural Information Processing Systems, volume 31, pages 2419–2430.
Curran Associates, Inc., 2018.

[127] Piotr Mirowski, Andras Banki-Horvath, Keith Anderson, Denis Teplyashin,
Karl Moritz Hermann, Mateusz Malinowski, Matthew Koichi Grimes, Karen
Simonyan, Koray Kavukcuoglu, Andrew Zisserman, et al. The StreetLearn envi-
ronment and dataset. arXiv preprint arXiv:1903.01292, 2019.

[128] Dmytro Mishkin, Alexey Dosovitskiy, and Vladlen Koltun. Benchmarking
Classic and Learned Navigation in Complex 3D Environments. arXiv preprint
arXiv:1901.10915, 2019.

[129] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently
with noise-contrastive estimation. In Advances in Neural Information Processing
Systems, pages 2265–2273, 2013.

127

[130] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[131] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[132] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International Conference on Machine
Learning, pages 1928–1937. PMLR, 2016.

[133] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
and Michael M Bronstein. Geometric deep learning on graphs and manifolds
using mixture model CNNs. In Proceedings of 30th IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, page 3, 2017.

[134] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B
Tenenbaum, and Daniel LK Yamins. Flexible Neural Representation for Physics
Prediction. arXiv preprint arXiv:1806.08047, 2018.

[135] Jonghwan Mun, Paul Hongsuck Seo, Ilchae Jung, and Bohyung Han. MarioQA:
Answering Questions by Watching Gameplay Videos. In ICCV, 2017.

[136] Medhini Narasimhan, Svetlana Lazebnik, and Alexander Schwing. Out of the box:
Reasoning with graph convolution nets for factual visual question answering. In
Advances in Neural Information Processing Systems, pages 2654–2665, 2018.

[137] Yin Cheng Ng, Nicolò Colombo, and Ricardo Silva. Bayesian Semi-Supervised
Learning with Graph Gaussian Processes. In Advances in Neural Information
Processing Systems, pages 1683–1694, 2018.

[138] Dat Tien Nguyen, Shikhar Sharma, Hannes Schulz, and Layla El Asri. From
FiLM to Video: Multi-turn Question Answering with Multi-modal Context. arXiv
preprint arXiv:1812.07023, 2018.

[139] Andrei Nicolicioiu, Iulia Duta, and Marius Leordeanu. Recurrent Space-time
Graph Neural Networks. In Advances in Neural Information Processing Systems,
volume 32, pages 12838–12850. Curran Associates, Inc., 2019.

128

[140] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolu-
tional neural networks for graphs. In International Conference on Machine Learning,
pages 2014–2023, 2016.

[141] Will Norcliffe-Brown, Stathis Vafeias, and Sarah Parisot. Learning conditioned
graph structures for interpretable visual question answering. In Advances in Neural
Information Processing Systems, pages 8334–8343, 2018.

[142] Y. Ofran and B. Rost. ISIS: Interaction Sites Identified from Sequence. Bioinformatics,
23(2):e13–e16, January 2007. doi: 10.1093/bioinformatics/btl303.

[143] Felix L. Opolka and Pietro Liò. Graph Convolutional Gaussian Processes For Link
Prediction. arXiv e-prints, art. arXiv:2002.04337, February 2020.

[144] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Technical report, Stanford InfoLab,
1999.

[145] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. FiLM: Visual reasoning with a general conditioning layer. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[146] Rolf Pfeifer and Fumiya Iida. Embodied artificial intelligence: Trends and chal-
lenges. In Embodied Artificial Intelligence, pages 1–26. Springer, 2004.

[147] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and
Antonio Torralba. VirtualHome: Simulating Household Activities via Programs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 8494–8502, 2018.

[148] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, and Song-Chun Zhu.
Learning Human-Object Interactions by Graph Parsing Neural Networks. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 401–417,
2018.

[149] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua
Shen, and Anton van den Hengel. REVERIE: Remote Embodied Visual Referring
Expression in Real Indoor Environments. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9982–9991, 2020.

[150] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-
Learning with Implicit Gradients. In Advances in Neural Information Processing
Systems, volume 32, pages 113–124. Curran Associates, Inc., 2019.

129

[151] Ekagra Ranjan, Soumya Sanyal, and Partha Pratim Talukdar. ASAP: Adaptive
Structure Aware Pooling for Learning Hierarchical Graph Representations. arXiv
preprint arXiv:1911.07979, 2019.

[152] Dushyant Rao, Francesco Visin, Andrei A Rusu, Yee Whye Teh, Razvan Pascanu,
and Raia Hadsell. Continual unsupervised representation learning. arXiv preprint
arXiv:1910.14481, 2019.

[153] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning.
In International Conference on Learning Representations, 2017.

[154] Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for
image question answering. In Advances in Neural Information Processing Systems,
pages 2953–2961, 2015.

[155] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems, pages 91–99, 2015.

[156] James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and
Richard E Turner. Fast and Flexible Multi-Task Classification using Conditional
Neural Adaptive Processes. In Advances in Neural Information Processing Systems,
pages 7957–7968, 2019.

[157] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, pages 400–407, 1951.

[158] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015.

[159] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat:
A Platform for Embodied AI Research. arXiv preprint arXiv:1904.01201, 2019.

[160] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The Graph Neural Network Model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2008.

[161] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. Modeling Relational Data with Graph Convolutional
Networks. In European Semantic Web Conference, pages 593–607. Springer, 2018.

130

[162] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine
Learning Research, 12(77):2539–2561, 2011.

[163] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,
Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. ALFRED: A Benchmark for
Interpreting Grounded Instructions for Everyday Tasks. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[164] Martin Simonovsky and Nikos Komodakis. Dynamic Edge-Conditioned Filters in
Convolutional Neural Networks on Graphs. In Proceedings of 30th IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[165] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[166] Gautam Singh, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. Sequential Neural
Processes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
10254–10264. Curran Associates, Inc., 2019.

[167] Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. Topological Methods for
the Analysis of High Dimensional Data Sets and 3D Object Recognition, 2007.

[168] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. Semantic Scene Completion from a Single Depth Image. Proceedings
of 30th IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[169] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[170] Florian Strub, Mathieu Seurin, Ethan Perez, Harm De Vries, Jérémie Mary,
Philippe Preux, Aaron Courville, and Olivier Pietquin. Visual Reasoning with
Multi-hop Feature Modulation. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 784–800, 2018.

[171] Raphael Suter, Djordje Miladinovic, Bernhard Schölkopf, and Stefan Bauer. Ro-
bustly disentangled causal mechanisms: Validating deep representations for
interventional robustness. In International Conference on Machine Learning, pages
6056–6065. PMLR, 2019.

131

[172] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning with
Neural Networks. In Advances in Neural Information Processing Systems, volume 27,
pages 3104–3112. Curran Associates, Inc., 2014.

[173] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel
Urtasun, and Sanja Fidler. MovieQA: Understanding Stories in Movies through
Question-Answering. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[174] Damien Teney, Lingqiao Liu, and Anton van den Hengel. Graph-structured
representations for visual question answering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–9, 2017.

[175] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-
and-dialog navigation. In Conference on Robot Learning, pages 394–406. PMLR,
2020.

[176] Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov, Nick Walker, Yuqian
Jiang, Harel Yedidsion, Justin Hart, Peter Stone, and Raymond Mooney. Jointly im-
proving parsing and perception for natural language commands through human-
robot dialog. Journal of Artificial Intelligence Research, 67:327–374, 2020.

[177] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3D convolutional networks. In Proceedings
of the IEEE International Conference on Computer Vision, pages 4489–4497, 2015.

[178] Alan Mathison Turing. The Chemical Basis of Morphogenesis. Bulletin of Mathe-
matical Biology, 52(1-2):153–197, 1990.

[179] Hado Van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learn-
ing with Double Q-learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

[180] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, volume 30, pages 5998–6008.
Curran Associates, Inc., 2017.

[181] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph Attention Networks. International Conference on
Learning Representations, 2018.

132

[182] Paul Vogt. Language evolution and robotics: issues on symbol grounding and
language acquisition. In Artificial Cognition Systems, pages 176–209. IGI Global,
2007.

[183] John Von Neumann et al. The General and Logical Theory of Automata. 1951,
pages 1–41, 1951.

[184] Ian Walker and Ben Glocker. Graph Convolutional Gaussian Processes. In Inter-
national Conference on Machine Learning, pages 6495–6504, 2019.

[185] Xin Wang, Ronghang Hu, Drew Hudson, Tsu-Jui Fu, Marcus Rohrbach, and
Daniel Fried. Advances in Language and Vision Research Workshop, 2021. URL
https://alvr-workshop.github.io/.

[186] Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Abhishek Das, Georgia
Gkioxari, Stefan Lee, Irfan Essa, Devi Parikh, and Dhruv Batra. Embodied Ques-
tion Answering in Photorealistic Environments with Point Cloud Perception.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[187] Christopher KI Williams and Carl Edward Rasmussen. Gaussian Processes for
Regression. In Advances in Neural Information Processing Systems, pages 514–520,
1996.

[188] Stephen Wolfram. Universality and Complexity in Cellular Automata. Physica D:
Nonlinear Phenomena, 10(1-2):1–35, 1984.

[189] Min Wu and Marta Kwiatkowska. Robustness Guarantees for Deep Neural
Networks on Videos. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[190] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable
agents with a realistic and rich 3D environment. arXiv preprint arXiv:1801.02209,
2018.

[191] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. Gibson Env: Real-World Perception for Embodied Agents. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9068–9079,
2018.

[192] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu,
Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, et al. SAPIEN: A SimulAted
Part-based Interactive ENvironment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11097–11107, 2020.

133

https://alvr-workshop.github.io/

[193] Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam Kosiorek, and Yee Whye Teh.
MetaFun: Meta-Learning with Iterative Functional Updates. In Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 10617–10627. PMLR, 13–18 Jul 2020.

[194] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[195] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation Learning on Graphs with
Jumping Knowledge Networks. arXiv preprint arXiv:1806.03536, 2018.

[196] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial Temporal Graph Convolutional
Networks for Skeleton-Based Action Recognition. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[197] Jianwei Yang, Zhile Ren, Mingze Xu, Xinlei Chen, David J. Crandall, Devi Parikh,
and Dhruv Batra. Embodied Amodal Recognition: Learning to Move to Perceive
Objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

[198] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting Semi-
Supervised Learning with Graph Embeddings. 33rd International Conference on
Machine Learning, ICML 2016, 1:86–94, 3 2016.

[199] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked
Attention Networks for Image Question Answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 21–29, 2016.

[200] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su,
Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A Scalable Active
Framework for Region Annotation in 3D Shape Collections. ACM Transactions on
Graphics (TOG), 35(6):1–12, 2016.

[201] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and
Jure Leskovec. Hierarchical Graph Representation Learning with Differentiable
Pooling. In Advances in Neural Information Processing Systems, pages 4800–4810,
2018.

[202] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and
Sungjin Ahn. Bayesian Model-Agnostic Meta-Learning. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pages 7343–7353,
2018.

134

[203] Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit Bansal, Tamara L. Berg, and
Dhruv Batra. Multi-Target Embodied Question Answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[204] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol
Vinyals, and Peter Battaglia. Deep reinforcement learning with relational inductive
biases. In International Conference on Learning Representations, 2019.

[205] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From Recognition to
Cognition: Visual Commonsense Reasoning. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[206] Min Zeng, Fuhao Zhang, Fang-Xiang Wu, Yaohang Li, Jianxin Wang, and Min Li.
Protein–Protein Interaction Site Prediction through Combining Local and Global
Features with Deep Neural Networks. Bioinformatics, September 2019.

[207] Jiawei Zhang. Get rid of suspended animation problem: Deep diffusive neural
network on graph semi-supervised classification. arXiv preprint arXiv:2001.07922,
2020.

[208] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-
end deep learning architecture for graph classification. In Proceedings of AAAI
Conference on Artificial Inteligence, 2018.

[209] Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence Enhanced Graph Neural
Network. In Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, pages 2896–2906, 2020.

[210] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph Neural Networks: A Review of Meth-
ods and Applications. arXiv e-prints, art. arXiv:1812.08434, December 2018.

[211] Xiaojin Zhu and Zoubin Ghahramani. Learning from Labeled and Unlabeled
Data with Label Propagation. 2002.

[212] Daniel Zügner and Stephan Günnemann. Certifiable Robustness and Robust Training
for Graph Convolutional Networks. Association for Computing Machinery, New
York, NY, USA, 2019. ISBN 9781450362016.

135

136

Appendix A

Additional details and results

A.1 VideoNavQA question templates and respective counts

• Equals<attr>
’Are all <attr> obj type-pl> color>?’: 4014
’Are all <attr> <obj type-pl> in the <room type>?’: 3811
’Are all <attr> things <obj type-pl>?’: 3539
’Are both the <attr1> <obj type1> and the <attr2> <obj type2> <color>?’: 3968
’Are both the<attr1><obj type1> and the<attr2><obj type2> in the<room type>?’:
3804
’Are the<attr1><obj type1> and the<attr2><obj type2> the same color?’: 4018
’Is the <attr1> thing <rel> the <attr2> <obj type2> <art> <obj type1>?’: 3315

• Count
’How many <attr1> <obj type1-pl> are in the room containing the <attr2>
<obj type2>?’: 3999
’How many <attr> <obj type-pl> are in the <room type>?’: 3763
’How many <obj type-pl> are <attr>?’: 4120
’How many rooms have <attr> <obj type-pl>?’: 3834

• Compare<count>
’Are there <comp> <attr1> <obj type1-pl> than <attr2> <obj type2-pl>?’: 4058
’Are there as many <attr1> <obj type1-pl> as there are <attr2> <obj type2-pl>?’:
4100

• Compare<size>
’Is the <attr1> <obj type> <comp rel> than the <attr2> one?’: 3272
’Is the <room type1> <comp rel> than the <room type2>?’: 3148

137

• Exist
’Is there <art> <attr> <obj type>?’: 4122
’Is there <art> <room type>?’: 3335
’Is there a room that has set(<art> <attr{}> <obj type{}>)?’: 3877
’Is there set(<art> <attr{}> <obj type{}>) in the <room type>?’: 4025
’Is there set(<art> <attr{}> <obj type{}>)?’: 4107
’Is there set(<art> <room type{}>)?’: 3750

• Query<color>
’What color is the <attr1> <obj type1> <rel> the <attr2> <obj type2>?’: 2178
’What color is the <attr> <obj type>?’: 3592

• Query<obj type>
’What is the <attr1> thing <rel> the <attr2> <obj type2>?’: 3119
’What is the <attr> thing?’: 2883

• Query<room location>
’Where are the set(<attr{}> <obj type{}>)?’: 3816
’Where is the <attr1> <obj type1> <rel> the <attr2> <obj type2>?’: 2284
’Where is the <attr> <obj type>?’: 3481

A.2 VideoNavQA model hyperparameters

In order to find the best performance on VideoNavQA, we ran several combinations of
hyperparameters for each of the described models. I detail the model configurations
that were evaluated on the validation set below. The average running time per epoch for
the visual reasoning models was approximately 5 hours on a 16GB Tesla P100 GPU.

LSTM Embedding size: {128, 256, 512, 1024}. Learning rate: {5e−5, 1e−4}.

BoW Embedding size: {128, 256, 512}. Learning rate: {1e−5, 5e−5}.

FiLM GP Number of ResBlocks: {3, 4, 5}. Learning rate: {1e−4, 1e−3}. Number of
classifier channels: {32, 64}.

FiLM AT Number of ResBlocks: {3, 4, 5}. Attention hidden size: {128, 256}. Learning
rate: {1e−5, 1e−4}.

Multi-hop Number of ResBlocks: {3, 4, 5}. Learning rate: {1e−5, 1e−4}. Number of
classifier channels: {32, 64}.

MAC Number of CNN Layers: {2,3}. Width: {512, 1024}. MAC time steps: {5,6}.
We adapt the ramp-up/down Adam learning schedule popularly used in VQA [24],

138

ramping up the learning rate to 1e−4 in the first 2 epochs and then decaying it to 1e−5

after epoch 10 (training is done for a total of 15 epochs).

A.3 Pooling hyperparameters

As part of the experiments for the Mapper PageRank pooling operator described in
Chapter 4, I additionally performed a hyperparameter search for DiffPool on hidden
sizes 32, 64, 128 and for MPR, over the following sets of possible values:

• all datasets: cover sizes {[40, 10], [20, 5]}, interval overlap {10%, 25%};

• D&D: learning rate {5e−4, 1e−3};

• Proteins: learning rate {2e−4, 5e−4, 1e−3}, cover sizes {[24, 6], [16, 4], [12, 3], [8, 2]},
hidden sizes {64, 128}.

139

A.4 More results from the MPNP evaluation

Method Accuracy % F-measure MCC
ISIS 69.4 0.267 0.097
DeepPPISP 65.5 0.397 0.206
R-GCN 76.7 0.165 0.169

5 30 5 30 5 30
NP 77.5 79.3 0.212 0.180 0.145 0.150
R-MPNP 79.1 80.7 0.292 0.348 0.236 0.284

Table A.1: Node classification on Protein-Protein Interaction Site Prediction. R-MPNP
scores for {5, 30}% sampling rates. Results for ISIS, DeepPPISP and R-GCN are taken
from Ofran and Rost [142], Zeng et al. [206], and Schlichtkrull et al. [161], respectively.

10 30 100
50

75

100
Small-world

10 30 100

Scale-free

10 30 100
50

75

100
Spherical Voronoi

10 30 100

Life-like

Context sample %

A
cc

u
ra

cy
%

MPNP NP Population Mode State Mode

Figure A.1: State evolution accuracy ±σ for density- and count-based cellular automata.
Models are trained at 30-50% context sampling. Testing at 100% effectively judges the
quality of the rule embedding under perfect information.

140

Model 1% 5% 10% 30%

3
NP-c 67.00 ± 1.83 76.99 ± 1.50 78.56 ± 1.19 79.61 ± 1.20
MPNP-c 79.71 ± 1.04 88.28 ± 0.59 89.41 ± 0.58 90.02 ± 0.60
LP 65.31 ± 0.73 75.57 ± 0.31 77.90 ± 0.16 82.04 ± 0.18
Mode 54.35 ± 0.10 54.28 ± 0.07 54.40 ± 0.27 54.41 ± 0.18

7
NP-c 52.83 ± 0.49 63.02 ± 0.50 64.29 ± 0.43 65.23 ± 0.51
MPNP-c 58.40 ± 0.77 68.96 ± 1.08 70.53 ± 0.88 71.54 ± 0.91
LP 52.62 ± 0.31 64.85 ± 0.22 68.55 ± 0.14 74.96 ± 0.20
Mode 30.48 ± 0.16 30.57 ± 0.07 30.50 ± 0.10 30.50 ± 0.10

11
NP-c 34.57 ± 2.18 37.94 ± 0.84 38.88 ± 0.80 39.42 ± 0.78
MPNP-c 43.62 ± 1.01 50.64 ± 1.14 51.87 ± 1.23 52.67 ± 1.24
LP 46.84 ± 0.55 60.11 ± 0.12 64.22 ± 0.08 71.73 ± 0.05
Mode 21.60 ± 0.08 21.60 ± 0.11 21.63 ± 0.09 21.66 ± 0.10

Table A.2: Results on the Cora-Branched transductive learning tasks for 3, 7 and 11 classes
(#). Mean accuracy and standard deviations are reported at {1, 5, 10, 30}% context points.

Model 1% 5% 10%

2 NP-c 59.25 63.53 64.29
MPNP-c 62.91 67.53 68.57

3 NP-c 49.82 56.93 59.03
MPNP-c 53.83 63.75 64.52

5 NP-c 36.84 42.68 44.10
MPNP-c 41.67 49.99 51.15

11 NP-c 19.71 21.13 21.82
MPNP-c 23.56 26.00 27.44

Table A.3: Performance on the Cora-Branched few-shot learning generalisation tasks for
2, 3, 5 and 11 class (#) tasks. Accuracy at {1, 5, 10}% context points.

141

A.5 Numerical results for ShapeNet

0.1% 1% 5% 10% 30%
Bag 71.08± 3.78 75.12± 1.44 75.57± 0.89 76.05± 0.13 73.21± 0.72
Cap 64.00± 4.28 68.76± 4.32 73.05± 0.92 69.42± 1.34 67.41± 0.47

Knife 79.82± 0.25 87.34± 1.47 89.93± 0.46 90.39± 0.34 90.34± 0.24
Laptop 90.39± 0.31 95.94± 0.17 96.71± 0.19 96.75± 0.00 97.07± 0.12
Mug 75.90± 1.37 85.63± 2.27 87.80± 1.02 88.70± 1.20 88.14± 0.02

Earphone 49.80± 4.45 57.14± 1.99 59.41± 1.44 55.59± 1.22 55.35± 0.70
Guitar 77.95± 0.61 89.12± 0.31 92.33± 0.25 92.75± 0.31 93.17± 0.11
Pistol 67.68± 0.95 82.51± 0.60 85.82± 0.29 85.57± 0.46 86.48± 0.16
Rocket 54.61± 0.21 56.03± 0.48 60.78± 0.74 64.26± 2.48 62.90± 0.04

Skateboard 41.67± 2.01 51.75± 0.76 55.10± 0.13 53.44± 1.05 52.33± 0.15
Table 75.19± 0.81 83.64± 0.30 85.80± 0.04 85.94± 0.01 86.61± 0.03

Airplane 58.32± 0.82 81.55± 0.16 86.68± 0.06 87.32± 0.05 87.90± 0.00
Car 43.08± 0.91 69.02± 1.45 76.56± 0.37 78.02± 0.12 78.53± 0.10

Chair 72.29± 0.00 86.73± 0.32 89.88± 0.26 90.22± 0.00 90.70± 0.03
Lamp 61.80± 1.31 79.44± 0.00 84.03± 0.15 84.45± 0.25 84.89± 0.01

Motorbike 27.54± 1.36 48.10± 1.09 53.94± 0.16 53.17± 0.38 53.76± 0.02

Table A.4: Numerical mIoU results for the MPNP on ShapeNet single-category tasks
(µ± σ).

142

0.1% 1% 5% 10% 30%
Bag 52.62± 0.00 54.20± 2.23 52.87± 0.35 53.06± 0.12 53.46± 0.13
Cap 45.08± 6.01 56.88± 0.60 55.21± 0.40 59.67± 1.18 57.94± 0.71

Knife 72.84± 0.33 87.02± 0.65 89.49± 0.12 89.68± 0.31 89.12± 0.20
Laptop 82.42± 2.05 93.49± 0.24 96.07± 0.38 96.46± 0.12 96.72± 0.02
Mug 68.52± 1.71 80.95± 0.41 84.92± 0.61 84.58± 0.97 85.57± 0.01

Earphone 36.42± 7.28 47.98± 1.06 47.94± 0.68 47.79± 0.04 49.04± 0.24
Guitar 69.00± 0.36 83.41± 0.64 87.83± 0.50 88.12± 0.16 89.11± 0.01
Pistol 63.84± 2.02 70.42± 0.79 70.64± 0.15 71.94± 0.22 71.79± 0.17
Rocket 56.71± 2.41 59.76± 0.69 63.69± 0.54 62.50± 0.58 63.85± 0.31

Skateboard 32.13± 1.71 41.84± 0.07 40.78± 0.03 40.36± 0.19 40.25± 0.09
Table 76.53± 0.21 83.11± 0.08 84.18± 0.08 84.20± 0.12 84.26± 0.01

Airplane 44.92± 0.06 78.05± 0.22 83.05± 0.02 83.65± 0.02 84.04± 0.05
Car 38.86± 0.43 57.90± 1.33 63.89± 0.08 64.73± 0.14 65.55± 0.46

Chair 69.68± 1.14 84.78± 0.51 87.35± 0.10 87.69± 0.11 87.81± 0.01
Lamp 57.04± 1.73 71.88± 0.54 75.40± 0.45 75.49± 0.19 76.19± 0.01

Motorbike 21.28± 1.41 25.44± 0.05 25.66± 0.04 25.69± 0.16 25.73± 0.05

Table A.5: Numerical mIoU results for the NP on ShapeNet single-category tasks (µ±σ).

GCN labelprop

0.1% 1% 5% 10% 30%
Bag 69.76 54.62± 1.88 70.10± 4.35 86.16± 1.05 90.45± 1.10 95.67± 0.54
Cap 65.85 47.76± 5.07 74.19± 3.53 84.97± 0.49 88.83± 0.62 93.43± 0.41

Knife 79.61 57.48± 3.40 88.82± 0.56 93.70± 0.36 95.01± 0.24 97.03± 0.10
Laptop 94.23 58.61± 2.64 88.16± 0.64 93.76± 0.17 95.46± 0.12 97.34± 0.05
Mug 85.40 47.44± 1.48 74.93± 2.42 88.15± 0.45 91.09± 0.71 94.19± 0.15

Earphone 49.76 36.35± 2.29 66.68± 1.96 78.45± 1.21 82.50± 0.73 88.24± 0.27
Guitar 89.01 37.85± 1.69 78.79± 1.97 92.06± 0.20 94.10± 0.20 96.44± 0.09
Pistol 76.72 39.80± 1.22 69.09± 1.56 83.25± 0.94 87.02± 0.23 92.39± 0.21
Rocket 56.31 38.43± 3.14 59.84± 7.51 80.95± 0.52 85.67± 1.15 91.53± 0.37

Skateboard 57.19 32.83± 1.57 56.59± 1.35 80.33± 0.71 84.91± 0.78 90.76± 0.35
Table 76.54 42.22± 0.53 68.88± 0.27 83.32± 0.08 86.83± 0.06 91.16± 0.07

Airplane 79.50 20.81± 0.21 60.48± 0.33 79.77± 0.13 84.50± 0.07 90.47± 0.04
Car 71.95 19.20± 0.38 45.91± 0.99 67.85± 0.38 75.33± 0.31 85.36± 0.05

Chair 77.84 33.06± 0.62 70.97± 0.27 87.04± 0.12 90.65± 0.07 94.65± 0.02
Lamp 53.78 58.61± 2.64 88.16± 0.64 93.76± 0.17 95.46± 0.12 97.34± 0.05

Motorbike 46.18 15.66± 1.14 38.46± 1.28 63.11± 1.46 74.05± 0.51 85.51± 0.36

Table A.6: Numerical mIoU results for GCN and labelprop on ShapeNet single-category
tasks (µ ± σ). Note that the GCN does not use the context labels and thus produces
deterministic outputs.

143

144

	Introduction
	Motivation and research questions
	Thesis outline
	Publications

	Background
	Foundations, methods and building blocks
	Feedforward neural networks
	Model optimisation
	Regularisation
	Dropout
	Batch normalisation

	Convolutional neural networks
	Convolutional layers
	Pooling layers

	Long short-term memory
	Attention
	Message passing and graph neural networks
	Neural processes

	Machine learning tasks
	Node property prediction
	Graph property prediction
	Top-k pooling
	Hierarchical pooling
	Summary

	Visual reasoning and question answering

	Multimodal learning for environment understanding
	Introduction and contribution overview
	The need for a different approach to embodied question answering
	Previous related work
	A new benchmark for embodied reasoning
	Visual information
	Questions

	Methods
	Single-modality
	Language
	Vision

	Multiple-modality
	Concatenation models
	FiLM-based per-frame reasoning
	Temporal multi-hop FiLM
	Temporal Compositional Attention Networks

	Experiments
	Models evaluated
	Model performance
	Analysis by question category

	Discussion
	Additional related research
	Summary

	Hierarchical representations of structured information
	Introduction and contribution overview
	Sparse differentiable pooling
	Previous related work
	A CNN-style graph classifier
	Experiments
	Summary

	Topologically-grounded pooling
	Background and relevant work
	A Mapper-based coarsening layer
	Graph classification model
	Experiments
	Summary

	Discussion and summary

	Structural biases for probabilistic modelling in challenging scenarios
	Introduction and contribution overview
	Incorporating relational inductive biases in the neural process model
	Previous related work
	Neural process models
	Graph learning under uncertainty

	Message Passing Neural Processes
	Problem statement
	Dataset sampling
	Encoder
	Aggregation
	Decoder
	Generation and inference
	Aggregation in challenging settings

	Experiments
	Baselines and model details
	Message passing neural process
	Neural process baseline
	Graph neural network baseline

	Fixed labelling
	Biochemical data
	Geometric data

	Uncertainty modelling
	Arbitrary labelling

	Discussion
	Summary

	Conclusion and future directions
	Bibliography
	Additional details and results
	VideoNavQA question templates and respective counts
	VideoNavQA model hyperparameters
	Pooling hyperparameters
	More results from the MPNP evaluation
	Numerical results for ShapeNet

