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Introduction
Broomcorn millet (Panicum miliaceum L.) is significant in the 
history of plant domestication as a pioneering cereal, both chron-
ologically and ecologically. It was among the world’s earliest 
domesticated cereals, of comparable antiquity to wheat and rice 
(Lu et al., 2009), and has the shortest life cycle and highest water 
use efficiency of any cereal (Baltensperger, 2002), enabling both 
its early cultivation in a wide range of ecological zones and its 
integration into the economy of semi-mobile agro-pastoral societ-
ies (Spengler et al., 2014). As a consequence, broomcorn millet 
domestication is an important proxy in addressing a range of 
archaeological questions regarding early agricultural societies, 
including the nature of the transition to agriculture in northern 
China – one of the world’s independent centres of agricultural 
innovation – and the nature and chronology of contact between 
early agricultural societies in Eastern and Western Eurasia (Jones 
et al., 2011). Specifically, the identification of broomcorn millet 
in the archaeobotanical record has provoked two debates. First, its 
reported presence prior to 7000 cal. BP at a number of sites in both 
northern China and eastern Europe invited explanation; whether 
these finds represent separate domestications, or the earliest 
reported contact and innovation exchange between east and west 
Eurasia, or neither, is yet to be resolved (Hunt et al., 2008, 2011; 
Jones, 2004; Motuzaite-Matuzeviciute et al., 2013). Second, the 

widely held view of a Yellow River origin for northern Chinese agri-
culture, derived from early Chinese archaeobotanical work in Cis-
han-Peiligang culture sites in the 1970s and 1980s, has been more 
recently challenged by evidence of broomcorn millet predating 
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6000 cal. BP from several regions and Neolithic cultures in north-
ern China, including the western Loess Plateau (Dadiwan in 
Gansu), northeastern China (Xinglonggou in Inner Mongolia and 
Xinle in Liaoning) and the lower Yellow River valley (Yuezhuang 
in Shandong) (Barton et al., 2009; Ren et al., 2016; Zhao, 2011). 
New archaeobotanical data, combined with radiocarbon dating 
and broader archaeological considerations, have led to the sug-
gestion that any or all of these regions and their associated Neo-
lithic cultures may have been nuclei of the development of 
agriculture in its north Chinese centre (Cohen, 2011; Liu et al., 
2009; Zhao, 2011). Their relative contribution and the complexi-
ties of their interaction remain an open question (Cohen, 2011). 
Such a ‘federal origin’ for farming has recently been proposed for 
southwest Asia (Broushaki et al., 2016), an assessment which has 
been supported by both the genetic and particularly the macrobo-
tanical studies (Civáň et al., 2013; Willcox, 2013).

Here, we present new genetic data on broomcorn millet, incor-
porating an additional 195 landraces sampled from China. These 
together with previously genotyped samples provide a geographi-
cally comprehensive picture of genetic diversity across the Eur-
asian range of this domesticate. Using a novel statistical approach, 
we are able to directly address questions of both a dual eastern 
and western origin, and the relative contributions of north China’s 
subregions to the development of millet agriculture. Our genetic 
results are timely in the light of recent work on millet through 
archaeobotanical and isotopic studies in China, eastern Europe, 
central Asia and the Caucasus, driving the emergence of a multi-
disciplinary narrative of the role of this crop in Eurasian 
prehistory.

Methods
Samples
In total, 195 landrace accessions of broomcorn millet were 
obtained from the Chinese National Genebank (Institute of Crop 
Germplasm Resources, Chinese Academy of Agricultural Sci-
ences). Accessions were chosen to provide representative geo-
graphical coverage across the provinces of China from the total 
accessions in the National Genebank. Details of the 195 accessions 
used are given as Supplementary Information Table S1, available 
online. Genomic DNA was extracted from 100 mg leaf tissue of a 
single young seedling of each accession using a Plant Genomic 
DNA Extraction Kit (Tiandz, Inc., Beijing, China) and quantified 
using 1 µl of DNA sample with an e-spect (ES-2) Micro UV-Vis 
Fluorescence Spectrophotometer (Malcom, Tokyo, Japan).

Genotyping and datasets
Samples were genotyped for 16 microsatellite loci as described 
previously (Hunt et al., 2011, 2013). Samples from our previous 
dataset (Hunt et al., 2013) were included on each genotyping plate 
to ensure allele scoring was consistent with our previous results. 
The new samples were analysed as a stand-alone dataset (‘Chi-
nese samples’, n = 195) and as an amalgamated dataset (‘panEur-
asian samples’, n = 341), including 146 of the samples published 
previously (Hunt et al., 2013). This represents all samples from 
our previous study except those 32 from China with minimally 
specific geographic location data, which were excluded.

The new samples were additionally genotyped for the three 
variable sites across two duplicated loci of the granule-bound 
starch synthase I (GBSSI) gene that control the synthesis of amy-
lose in broomcorn millet endosperm starch. Wild-type plants 
have around 30% amylose in endosperm starch; waxy plants 
have mutations at specific combinations of the three functionally 
variable sites, lack endosperm amylose and have a characteristi-
cally glutinous or sticky texture on cooking (Hunt et al., 2010, 
2013). DNA samples genotyped for microsatellite loci were also 

genotyped for the GBSSI-S and GBSSI-L loci as described previ-
ously (Hunt et al., 2013). The full genotyping dataset is available 
as Supplementary Information (Table S1, available online).

Population genetic analyses
Principal components analysis was performed separately for the 
Chinese and panEurasian datasets using the R (R Development 
Team, 2016) packages ade4 (Dray and Dufour, 2007) and ade-
genet (Jombart, 2008). Genetic clusters were modelled using a 
Bayesian clustering algorithm implemented in Instruct (Gao 
et al., 2007). Bayesian clustering uses an iterative process to 
identify genetic populations from the variation data for a sample 
set, where different numbers of populations (K) are modelled in 
independent runs of the algorithm. Simultaneously, the relative 
contribution of each of the K ancestral populations to the genetic 
makeup of each sampled individual is estimated. The most real-
istic value of K for the dataset is then inferred statistically (Por-
ras-Hurtado et al., 2013). Instruct is an alternative to the widely 
used STRUCTURE software for Bayesian genetic clustering 
(Pritchard et al., 2000), but, unlike the latter, does not seek to 
maximise Hardy–Weinberg equilibrium, which assumes random 
mating. It is therefore more appropriate for a species such as P. 
miliaceum, which is strongly selfing. Ten replicate runs were 
performed each number of clusters (K) from K = 1 to K = 12, 
with 200,000 burn-in and 1,000,000 Markov chain Monte Carlo 
reps. We used CorrSieve ver. 1-6.5 (Campana et al., 2011) to 
determine the optimum K, according to the ΔK statistic (Evanno 
et al., 2005) and correlation of Q-matrices among multiple runs. 
We also checked the Deviance Information Criterion (DIC) 
reported by Instruct.

Geographic origins of population expansions
We implement a spatially explicit discriminative modelling 
approach to infer the geographic source location for the expan-
sion of broomcorn millet. This model assumes a monotonic 
decline in genetic diversity with distance from origin location 
(Manica et al., 2007; Ramachandran et al., 2005). Such a decline 
is expected under any radial expansion process that does not 
involve admixture with populations already present in the regions 
expanded into, as genetic variation is sequentially sampled on the 
wavefront of the expanding population (Austerlitz et al., 1997; 
Klopfstein et al., 2005; Nei et al., 1975). A spatial grid of latitude 
and longitude ranges covering the geographic space between 
Europe and Japan (7°W to 153°E, 9°N to 67°N) for the panEur-
asian microsatellite dataset, and ranges covering China (95°E to 
135°E, 30°N to 50°N) for the Chinese dataset, were searched at 
resolutions of 0.1 by 0.1 and 0.01 by 0.01 degrees, respectively. 
At each point in these searches where five or more genetic sam-
ples were present within a radius of 500 km (accepted kernels), 
the mean (across loci) unbiased heterozygosity was calculated 
(Nei, 1978). For the panEurasian dataset, 333 samples were 
included, and for the China-specific dataset, 188 samples were 
included. The grids were then re-explored with each latitude/lon-
gitude location treated as a potential origin location of broomcorn 
millet expansion. At each location, we recorded the Pearson’s cor-
relation coefficient between geographic distance to the accepted 
kernels and local diversity at those kernels. This provided a grid 
of correlation values, which was then interpolated and visualised 
on a map. Since genetic diversity is expected to decrease with 
geographic distance from the origin of an expansion, regions 
yielding more negative correlation values represent more plausi-
ble locations for the source of spread of broomcorn millet (in red 
in Figure 1a and b).

For each of the two datasets (panEurasian and China-spe-
cific), we compared two hypothesised locations of origin based 
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on archaeobotanical evidence for early broomcorn millet; for the 
panEurasian dataset, we compared a Ukrainian site (Sokol’tsy) 
against Xinglonggou in China, and for the Chinese dataset, we 
tested Dadiwan in Gansu province against Xinglonggou (white 
stars in Figure 1a and b). To quantify support for one location to 
be the origin of population expansion over the other, we first 
calculated the difference in correlation values for the two hypoth-
esised origin sites considered. To test if these differences were 
greater than expected by chance, we permuted (randomly 

distributed) the site data among sample sites 1000 times, and for 
each of these 1000 permuted datasets, we repeated the above 
analysis and recorded the difference in correlation values for the 
two hypothesised origin locations. This gives an expected distri-
bution of difference in correlation values between each pair of 
sites under the null hypothesis of no geographic structure in the 
genetic data. Finally, we compared the differences in correlation 
values for the observed data with those generated from permuted 
data to calculate two-tailed p values (Figure 2a and b).

Figure 1. (a) Interpolated surface of correlation coefficient values between genetic diversity (unbiased heterozygosity of Chinese broomcorn 
millet microsatellite data recorded in kernels) and geographic distance. Red colour shows negative correlation values, gradually turning blue 
the more positive the correlation values become. Since genetic diversity is expected to decrease with geographic distance from the origin of 
an expansion, regions yielding more negative correlation values represent more plausible locations for the source of spread of broomcorn 
millet. Green dots show the sample locations. White stars indicate the locations of Dadiwan (1) and Xinglonggou (2). (b) Interpolated surface of 
correlation coefficient values between genetic diversity (unbiased heterozygosity of panEurasian broomcorn millet microsatellite data recorded 
in kernels) and geographic distance. Red colour shows negative correlation values, gradually turning blue the more positive the correlation 
values become. Since genetic diversity is expected to decrease with geographic distance from the origin of an expansion, regions yielding more 
negative correlation values represent more plausible locations for the source of spread of broomcorn millet. Green dots show the sample 
locations. White stars indicate the locations of Sokol’tsy (1) and Xinglonggou (2).
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Results
PCA results
The first two principal components accounted for 16.3% and 
12.3%, and 12.6% and 12.0%, for the Chinese and panEurasian 
datasets, respectively. Scatterplots of the first two principal com-
ponents are shown in Figure 3a (Chinese dataset) and Figure 3b 
and c (panEurasian dataset). Samples are coloured according to 
their assignments to K populations under the Instruct clustering 
analysis. Clusters identified in Instruct (see below) show clear 
separation on the scatterplots in all cases.

Bayesian clustering of microsatellite data
To explore signals of population substructure, we analysed the 
microsatellite data in two batches, first using only Chinese sam-
ples and second as a panEurasian dataset.

Analysis of the Chinese samples using Instruct showed a pla-
teau for the value of lnP(D)Chn from K = 7. The parameter ΔKChn 
reached a maximum at K = 3 and showed a smaller peak at K = 
7. Correlations between replicate runs showed that estimates of Q 
were highly stable at K = 3, and we therefore present results from 
this model as capturing most of the structure in the data. For 
panEurasian samples, lnP(D)Eur showed no clear plateau. ΔKEur 
showed a major peak at K = 3 and a second minor peak at K = 6. 
Both these values of K gave highly stable results among replicate 
runs, and we therefore present output for both models. The DIC 
reported the maximum value of K used in the analysis (K = 12) as 
optimal; this statistic has been little tested in Bayesian clustering 
analysis of genetic data, and in the light of the recommendation of 
Pritchard et al. (2010) to be conservative when selecting the opti-
mal value of K, we discounted this parameter in favour of better 
tested methods.

Of the three clusters resolved in the Chinese dataset, one 
(cyan) shows a clear east, northeast and south Chinese distribu-
tion. Clusters 2 and 3 (red and blue, respectively) overlap in the 
Yellow River and Loess Plateau regions, with cluster 2 (red) 

showing a more western (upper Yellow River) focus (Figure 4a). 
This pattern within China is largely congruent with the three-
cluster model from the larger pan Eurasian dataset. Beyond 
China, samples to the west and north, in Mongolia, Siberia, Cen-
tral and South Asia, and Europe, have a strong predominant 
affinity with the red cluster, while samples in Korea and Japan 
belong to the cyan cluster (Figure 4b). We note that around one-
third of the Chinese samples show altered cluster assignment 
between the Chinese and pan Eurasian dataset analyses; this is 
typical for Bayesian clustering algorithms, in which the identi-
fied groups depend on the information available from the partic-
ular sample set. When the Eurasian model is expanded to six 
clusters, we observe a north–south differentiation of central 
Asian/European populations, and there is some evidence of geo-
graphic differentiation within the middle and lower Yellow River 
region (Figure 4c).

Modelling the origins of population expansions
Using our spatially explicit discriminative modelling approach, the 
most negative correlation values between distance from hypothe-
sised origin location and genetic diversity for the China-only data-
set are in northwestern China, approximately in the southeastern 
part of Gansu province (Figure 1a, negative correlation coefficients 
are shown in red and positive coefficients in blue). The sites of 
Dadiwan and Xinglonggou – two hypothesised source locations for 
the expansion of broomcorn millet, based on archaeobotanical evi-
dence – are marked ‘1’ and ‘2’, respectively, on Figure 1a; correla-
tions are more negative for Dadiwan. To test if the difference in 
correlation values between Dadiwan and Xinglonggou is more 
extreme than that expected by chance, we performed the permuta-
tion procedure described above (see ‘Methods’ section). This 
returned a two-tailed p value of 0.192 (see Figure 2a), suggesting 
that the data are insufficient to discriminate between these hypoth-
esised source locations using this approach.

For the panEurasian dataset, the most negative correlation 
values between distance from hypothesised origin location and 

Figure 2. (a) Comparison of the observed difference in Pearson’s correlation coefficients (red line) between Dadiwan (‘1’ in Figure 1a) and 
Xinglonggou (‘2’ in Figure 1a) generated with Chinese dataset, to the distribution of those generated by permuting (randomly distributing) 
the site data among sample sites 1000 times (blue line). The p values represent the probability of obtaining the observed difference in 
correlation values under the null hypothesis of no geographic structure in the genetic data. This can be interpreted as a measure of 
how well the data favour one site over the other as a location for the source of spread of broomcorn millet, given the assumption that 
genetic diversity decreases with geographic distance from the origin of expansion. (b) Comparison of the observed difference in Pearson’s 
correlation coefficients (red line) between Sokol’tsy (‘1’ in Figure 1b) and Xinglonggou (‘2’ in Figure 1b) generated with panEurasian dataset, 
to the distribution of those generated by permuting (randomly distributing) the site data among sample sites 1000 times (blue line). The 
p values represent the probability of obtaining the observed difference in correlation values under the null hypothesis of no geographic 
structure in the genetic data. This can be interpreted as a measure of how well the data favour one site over the other as a location for the 
source of spread of broomcorn millet, given the assumption that genetic diversity decreases with geographic distance from the origin of 
expansion.
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genetic diversity were for northeast Eurasia, and the most posi-
tive were for western Eurasia (see Figure 1b). Thus, under a 
model of a monotonic decline in genetic diversity with distance 
from origin location, our analyses do not support a western Eur-
asian origin for the expansion of broomcorn millet, but do admit 
the possibility of an eastern Eurasian origin. Two hypothesised 
source locations – the sites of Sokol’tsy and Xinglonggou – are 
indicated with marked ‘1’ and ‘2’, respectively. Again, we 

tested if the difference in correlations between these two sites is 
more extreme than that expected by chance (Figure 2b). We 
obtained a two-tailed p value of 0.108, indicating the data 
favour an eastern Eurasian origin for the expansion of broom-
corn millet under the assumption of a monotonic decline in 
genetic diversity with distance from origin location, but that the 
difference in these values for these two sites only approaches 
significance.

Figure 3. Principal components analysis output with samples coloured according to the K genepools from Instruct output (sample majority 
allocation). The axes represent the first two principal components in each case: (a) 195 Chinese samples, coloured according to K = 3 (see 
below), (b) 341 panEurasian samples, coloured according to K = 3 and (c) 341 panEurasian samples, coloured according to K = 6.
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GBSSI genotyping
At the GBSSI-S locus, which is the major determinant of endo-
sperm starch amylose and amylopectin composition, the wild-
type S0 allele predominates to the south and west of the Yellow 
River, that is, Shaanxi, Ningxia, Gansu, Qinghai and Xinjiang 
provinces. The waxy mutant S-15 allele is at high frequency in the 
lower part of the Yellow River valley and northeast China  
(Figure 5a). At the GBSSI-L locus, for which waxy mutant alleles 
combine with S-15 to produce a fully waxy phenotype, the wild-
type LC allele has an upper Yellow River valley/western Loess 
Plateau distribution in western Shanxi, western Inner Mongolia, 
Ningxia, Gansu and Qinghai provinces. Lc does not occur east of 
Shanxi province. The waxy mutant alleles LY and Lf co-occur 
with Lc in this region but are both distributed throughout the 
sampled distribution in China, with Lf at higher overall frequency 
(Figure 5b).

Discussion
Evidence for an eastern Eurasian centre of origin of 
broomcorn millet

The question of whether cultivated broomcorn millet populations 
originated in China and/or central-eastern Europe (Jones, 2004) 
has stimulated much novel work in archaeobotany, genetics and 
stable isotope analysis across Eurasia. In our previous survey of 
microsatellite diversity in Eurasian P. miliaceum (Hunt et al., 
2011), we suggested that the observed patterns of variation are 
somewhat more consistent with a Chinese origin and centre of 
dispersal, but we were unable to formally test this. As highlighted 
by Gerbault et al. (2014), many different evolutionary histories 
may give rise to a given genetic dataset with equal plausibility 
(equifinality); to discriminate between these histories, data should 
be tested for fit to a statistical model. Here, we use a simple model 

Figure 4. Proportional assignments of each landrace sample to ancestral genepools inferred using Instruct (Gao et al., 2007). Each sample is 
represented as a pie chart, mapped according to its origin as provided by the accession data supplied by the germplasm banks. Different colours 
of the pie slices represent the K genepools modelled by Instruct. Colours of the genepools are chosen to correspond with previously published 
analyses of related datasets (Hunt et al., 2011, 2013). The pie charts show the relative membership of the K genepools for each sample. The 
most realistic inferred values of K are shown: (a) 195 Chinese samples, for K = 3, (b) 341 panEurasian samples, under K = 3 and (c) 341 
panEurasian samples, under K = 6.
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based on the assumption of a monotonic decline in genetic diver-
sity with increasing distance from origin location (Manica et al., 
2007; Ramachandran et al., 2005).

These analyses are supportive at a broad cross-continental 
scale of a Chinese centre of origin and dispersal of broomcorn 
millet. This result resonates with other proxies, which have also 
shifted the focus of early P. miliaceum exploitation firmly to the 
East, through both the accrual of positive evidence at early dates 
in China (Ren et al., 2016, and references therein) and compara-
tive negative evidence further west (Lightfoot et al., 2013; Motu-
zaite-Matuzeviciute et al., 2013). Speculation about European, 
Caucasus or Central Asia origins for broomcorn millet arose from 
multiple sites in central and eastern Europe, and the Caucasus, 
apparently of comparable antiquity (pre-5000 BC) to those in 
China (reviewed in Hunt et al., 2008), and the lack of archaeobo-
tanical research in Central Asia. In recent years, systematic flota-
tion and direct dating of Panicum grains at sites from Neolithic 
cultures across northern China have vastly increased the evidence 
base for pre-5000 BC broomcorn millet with domesticated-type 
morphology here (Crawford et al., 2016; Gansu Provincial Insti-
tute of Cultural Relics and Archaeology (GPICRA), 2006; Lu 
et al., 2009; Tao et al., 2011; Wu et al., 2014; Yang et al., 2012; 
Zhang et al., 2012; Zhao, 2011, 2014; summarised in Ren et al., 
2016). In contrast, direct dating of macrofossils from central and 
eastern Europe showed that their previous early Neolithic attribu-
tions were incorrect, and they date rather to ~1500 BC (the Euro-
pean Bronze Age) at the earliest (Motuzaite-Matuzeviciute et al., 
2013). In the Caucasus, de novo excavations and re-evaluation of 
earlier reports have resulted in a similarly revised chronology for 
broomcorn millet, with the earliest firm evidence of the crop at 
1200–1000 BC (Trifonov et al., 2017). Systematic archaeobotani-
cal analysis in Central Asia has recovered P. miliaceum from sites 
dating from ~2200 BC (the Central Asian Bronze Age; Spengler 
et al., 2014).

This novel archaeobotanical work across Eurasia, imple-
mented by several international research teams, has raised signifi-
cantly the burden of proof for scientifically credible records of 
broomcorn millet, leading to an altered and much clearer picture 
of the crop’s chronology. Of the archaeobotanical record as it 
appeared in 2008, the main set of records still demanding re-eval-
uation (in terms of both identification and dating) is that of 
impressions in pottery from the territories to the north and west of 
the Black Sea, which are also ascribed to the early Neolithic 
(6400–5800 BC; Kotova, 2003).

New palaeodietary studies have complemented archaeobo-
tanical advances by providing direct evidence for the role of mil-
let in human and animal diets. A review of the palaeodietary 
literature from across Eurasia (Lightfoot et al., 2013) found evi-
dence for isotopically detectable consumption of millet by some 
individuals in southern Europe in the 2nd millennium BC, with a 
stronger, population-level signal in central Europe during the 1st 
millennium BC.

In summary, the genetic evidence presented here, along with 
the evidence from archaeobotany and palaeodietary analysis, is 
now most consistent with a single origin of cultivated P. miliaceum 
somewhere in northern China, by at least the 6th millennium BC. 
This China-centric model resolves and supersedes the previous 
debate (Hunt et al., 2008; Jones, 2004) on the origins of broom-
corn millet, in the absence of new evidence to the contrary.

Evidence supporting a centre of origin of broomcorn 
millet in the western Loess Plateau of China
Within northern China, early (pre-5000 BC) archaeobotanical 
records of P. miliaceum come from several regional Neolithic cul-
tures located in the ‘Chinese Fertile Arc’ (CFA; Ren et al., 2016. 
Primary data from Crawford et al., 2016; GPICRA, 2006; Lu et al., 
2009; Office for Preservation, Municipality of Shenyang (OPMS) 
and Shenyang Palace Museum (SPM), 1985; Tao et al., 2011; Wu 
et al., 2014; Yang et al., 2012; Zhang et al., 2012; Zhao, 2011, 
2014). We explored whether we could resolve a centre of origin of 
broomcorn populations from among these. The observed trend 
(Figure 2a) of higher negative correlation values between distance 
from hypothesised origin location and genetic diversity to the west 
of the range, although not statistically significant, is nonetheless 
suggestive and intriguing when taken in conjunction with the 
GBSSI genotype data (Figure 5b). The ancestral GBSSI-Lc allele is 
restricted to this region, while the mutant LY and Lf variants occur 
both here and in eastern and northeastern China. In principle, this 
distribution could result from either demographic history or strong 
selection against GBSSI-Lc in the east. However, the GBSSI-L gen-
otype has only a modest effect on phenotype, which makes strong 
selection on this locus less likely (Hunt et al., 2013). An indepen-
dent study on SSR variation in Chinese P. miliaceum accessions 
also found the Loess Plateau to be the region within China with the 
highest diversity (Hu et al., 2009). Although none of these data are 
conclusive, it all coheres with a centre of expansion of P. miliaceum 
somewhere in the western Loess Plateau.

Figure 5. Geographical distribution of GBSSI genotypes for 195 Chinese landrace samples. (a) GBSSI-S locus. Samples shown as green points 
are homozygous wild type, that is, both alleles in the individual are the non-waxy S0. Samples shown as dark blue points are homozygous waxy, 
that is, both alleles are the mutant S-15. Samples shown as cyan points are heterozygous, that is, both alleles have one wild type (S0) and one 
waxy (S-15). The S0 allele is dominant, so heterozygous individuals are phenotypically wild type. (b) GBSSI-L locus. Samples shown as red points 
are homozygous for the wild-type (LC) allele. Samples shown as dark blue and yellow points are homozygous for different waxy mutations (LY 
and Lf, respectively). The three heterozygous combinations (LC/LY, LC/Lf and LY/Lf) are shown as cyan, orange and green points, respectively.
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Possible relationships between population expansions 
and domestication
Our model assumes that P. miliaceum, including the immediate 
wild ancestor of broomcorn millet, underwent (at least one) range 
expansion at some point in the last 10,000–20,000 years. Although 
the past range of wild P. miliaceum is not known, we consider this 
is an uncontroversial assumption given the general global picture 
of shifting ranges both of vegetation types, for example, grasses, 
and of individual species, in the Holocene and terminal Pleisto-
cene. It is the chronological relationship of this expansion (a plant 
population process) to cultivation (a human behavioural activity) 
or domestication (a human-driven evolutionary process) that is 
unknown. We can contrast two possible scenarios: first, a range 
expansion of wild P. miliaceum populations, followed by increas-
ing human exploitation, cultivation and selection pressure result-
ing in the fixation of domestication traits in parallel in multiple 
populations around the CFA. In the southwest Asian Fertile Cres-
cent, range expansions of wild cereals have been associated with 
the first part of the Younger Dryas period (Moore and Hillman, 
1992). While we cannot pinpoint any single climatic event linked 
to expansion of wild millets in northern China, work on climate 
and vegetation dynamics shows considerable fluctuations of cli-
mate and vegetation types in this region in the last 20,000 years 
(Ni et al., 2014).

A second scenario is that the selection of domestication traits 
in a geographically localised region of the western Loess Plateau 
was followed by human-mediated dispersal across Neolithic 
north China. From the current dates, which place domesticated 
millet at Dadiwan as late or later than the easternmost sites in the 
CFA (Crawford et al., 2016; GPICRA, 2006; Lu et al., 2009; Ren 
et al., 2016; Tao et al., 2011; Wu et al., 2014; Yang et al., 2012; 
Zhang et al., 2012; Zhao, 2011, 2014), the first scenario appears 
the more plausible. This would imply that wild P. miliaceum had 
expanded across northern China before domestication by the 
mid-Holocene.

The wild origins of broomcorn millet remain a subject for 
speculation. Cytogenetic and phylogenetic analyses indicate that 
P. capillare, or a closely related species, was one of the diploid 
ancestors of the (wild) allotetraploid P. miliaceum (Hunt et al., 
2014), presumably restricted to the Old World; however, given 
the understood New World native distribution (Tutin, 1980) of P. 
capillare, this finding only adds to the biogeographical mystery. 
The timing and location of the polyploidisation event that gave 
rise to P. miliaceum are unknown, as is the evolution of traits 
adapting the species to temperate semi-arid environments, from a 
predominantly tropical genus (Aliscioni et al., 2003). The unusu-
ally low genetic diversity of P. miliaceum could reflect a rela-
tively recent, that is, Pleistocene, origin for the polyploid genome. 
At the broad scale, palynological reconstructions indicate that the 
vegetation of the Chinese Loess Plateau has alternated between 
glacial, C3-dominated steppe vegetation, and interglacial, 
C4-dominated humid grasslands in the last 150 ka (Vidic and 
Montañez, 2004), with the expansion of C4 plants driven by 
increasing summer temperatures and precipitation following the 
last glacial maximum (22–19 ka BP), from around 17 ka BP (Liu 
et al., 2005; Zhang et al., 2003). We can speculate that an expan-
sion of wild-type P. miliaceum, laying down some of the modern-
day genetic patterns, took place in this time frame.

Madsen and Elston (2007) postulated that early cultivation 
and selection pressure on wild millet occurred at the margins of its 
range, for example, at the northwest margin of the Loess Plateau, 
in the 8th millennium BC to provide a secure resource base in 
seasonally variable climates. This hypothesis is supported by the 
presence of lithic assemblages from the 10th millennium BC that 
include plant processing equipment. They implicitly assume that 
the distribution of wild millet was centred on and most productive 
in the Yellow River valley, echoing the Yellow River narrative for 

the origins of millet agriculture (Liu et al., 2009). The genetic data 
and analyses presented here indicate that the centre of range 
expansion, at some period, may in fact have been somewhat fur-
ther to the west. The patterns of climate and vegetation change 
across north China in the Late Pleistocene and Holocene are 
highly complex, with substantial regional and local variation 
(Zhao et al., 2009); these results highlight the need for a more 
precise understanding of the ecophysiology of wild broomcorn 
millet that would enable modelling of its past distribution. Grass-
land ecosystems of China fall into four major types (Kang et al., 
2007). According to Wang (2003), Panicum ruderale (= P. milia-
ceum subsp. ruderale) is only found in the most mesic (southeast-
erly) of these, the meadow-steppe. During the early Holocene, at 
least some parts of the northwest Loess Plateau and eastern 
Tibetan Plateau had a more humid climate and more mesic vege-
tation than today (Zhao et al., 2009), suggesting that elements 
such as wild millet could have flourished there. However, this was 
not the case at Dadiwan, where the early Holocene was drier and 
supported a desert-steppe vegetation (Zhao et al., 2009).

Although the details of climatic and vegetational change in 
northwestern China require further scrutiny, Madsen and 
Elston’s (2007) hypothesis for millet domestication resonates 
with the better-understood domestication of large-grained cere-
als in southwest Asia. There, the severe and abrupt climatic 
reversal of the Younger Dryas provoked rapid vegetational 
change on the timescale of a few centuries, with particular impact 
on the availability of diverse wild resources in semi-arid regions 
(Moore and Hillman, 1992). One strategy for mitigating the 
altered resource profile was management of wild grasses, 
imposing selection pressures that eventually resulted in the 
fixation of domestication traits.

Morphological traits that distinguish wild from domesticated 
P. miliaceum are poorly understood. The reported widespread 
panEurasian distribution of wild (or weedy) type P. miliaceum 
(defined by a shattering spikelet habit; Zohary et al., 2012) is not 
well substantiated in the floristic literature or herbarium collec-
tions (e.g. He et al., 2015). The archaeobotanical record of rachis 
fragments of millet is much inferior to those of larger grained 
cereals. Carbonised grains from, for example, phase 1 at Dadiwan 
(5800–5300 BC) and Xinglonggou (6000–5500 BC) have been 
inferred as domesticated on the basis of grain size and shape (Bar-
ton et al., 2009; Zhao, 2004) relative to wild Panicum spp. (Deng 
et al., 2015), but further study of P. miliaceum subsp. ruderale-
type forms from China is needed. Morphological evidence from 
other cereals indicates that the transition to fully domesticated 
forms (fixation of non-shattering rachis alleles) took at least 2 to 
3 millennia (Fuller et al., 2009); the archaeobotanical data for 
broomcorn millet are currently inadequate to infer where on the 
trajectory to domestication, the finds from widely dispersed sites 
in early 6th millennium BC might lie.

A model for the panEurasian expansion of 
broomcorn millet
Returning to the pan-continental picture, if we accept that culti-
vated broomcorn millet in central Asia, central-western Russia 
and Europe originated in China, the microsatellite and GBSSI data 
strongly imply that the ultimate source of these populations was 
in western China, around the southwest Loess Plateau. The north-
westward expansion of broomcorn cultivation, evidenced by the 
archaeobotanical record, is thus inferred to have a relatively local 
origin, contrary to the assumption of, for example, Zhou et al. 
(2016) that it came from ‘the middle and lower reaches of the Yel-
low River’. Broomcorn millet is found at numerous sites up to 
2500 m altitude in the northeastern Tibetan Plateau (NETP), adja-
cent to the Loess Plateau, from ~3200 BC, belonging to the late 
Yangshao, Majiayao, Qijia, Xindian and Kayue cultures (Chen 
et al., 2015). From 2500 BC, it is one of the principal crops in the 
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Hexi corridor to the north of the NETP (Zhou et al., 2016). These 
authors speculate that cooling climate drove millet down to lower 
altitudes and then eventually restricted cultivation in the Hexi 
corridor. Broomcorn appears in the Bronze Age in Xinjiang at 
Xiaohe (~1500 BC; Yang et al., 2014), and from Begash in east-
ern Kazakhstan at 2200 BC (Frachetti et al., 2010; Spengler et al., 
2014), with accumulating evidence from central Asia then indi-
cating it followed an ‘Inner Asian Mountain Corridor’ route 
towards the Caspian basin (Miller et al., 2016) and across mod-
ern-day Turkey.

Patterns of genetic variation across central Asia and Siberia 
indicate some north–south differentiation (Figure 4c), and we 
can speculate that the northernmost populations represent a 
secondary phase of westward expansion, which could date from 
the late second to first millennia BC. There is a lack of macro-
fossil data for northern Kazakhstan and southern Siberia, but 
carbon isotope evidence of enriched d13C values at sites in the 
Altai–Tuva–Khakassia regions suggests millet cultivation by c. 
1400 BC and particularly in the early first millennium BC 
(Murphy et al., 2013; Svyatko et al., 2013). Isotopic data from 
Chalcolithic/Bronze Age northern Kazakhstan (2900–1400 
BC) are negative for a millet signal (Matuzeviciute et al., 2015; 
Ventresca Miller et al., 2014); no Iron Age data are yet 
available.

Despite these new data for central Asia and eastern Siberia, 
the task still remains of joining up the millet routeways to 
Europe. Valamoti (2016) reports large concentrations of broom-
corn millet from late 3rd millennium BC Skala Sotiros in north-
ern Greece, but the grain has not been directly dated. This is 
imperative, as its apparent presence here predating the 2nd mil-
lennium route charted by Miller et al. (2016) is puzzling, though 
material from some of the Near Eastern sites also requires chron-
ological confirmation.

Although our focus in this article has been the dispersal of 
cultivated broomcorn millet to central Asia and Europe, its 
expansion to other regions of Asia also deserves attention. On 
the Far Eastern rim, archaeobotanical evidence indicates that P. 
miliaceum reached both the Russian Far East (Primor’ye) by c. 
3500 BC in the Zaisanovka culture (Kuzmin, 2013) and the 
Korean peninsula at a similar time in the Middle Chulmun 
period (Crawford and Lee, 2003; Lee, 2011). Broomcorn millet 
in Japan dates to the Final Jomon period (mid-1st millennium 
BC) in southern Honshu (Nasu and Momohara, 2016). Its 
appearance in Japan is approximately contemporaneous with 
rice, suggesting both cereals were introduced as a package from 
Korea (Nasu and Momohara, 2016). The genetic clusters that 
dominate Korea and Japan (shown in pink and light blue in Fig-
ure 4c) are closely related (Hunt et al., 2011, 2013), supporting 
this route of dispersal. However, a number of landraces from 
Hokkaido and northern Honshu are genetically similar (dark 
blue in Figure 4c) to those from the far northeast of China (Hei-
longjiang). Broomcorn millet, along with several other crops, 
appears in the Okhotsk culture on Hokkaido in the mid-1st mil-
lennium AD. The genetic patterns support the idea that broom-
corn millet, like barley, had a second independent introduction 
to Japan from the Russian Far East (Crawford, 2011; Leipe 
et al., 2017).

On a continental scale, our analyses have clarified the Holo-
cene biogeography of P. miliaceum. The species’ greatest genetic 
diversity is in the western Loess Plateau of China, the region of 
origin from where all the world’s P. miliaceum ultimately derived. 
Homing in on North China and the fixation of domestication 
traits, the pattern could be clarified by a clearer understanding of 
those traits and how to recognise them, in the context of different 
models of how that fixation may have proceeded. However, our 
analyses offer no support for a separate west Eurasian location as 
a centre of population expansion.
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