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Abstract
In 2006, Ma et al. presented an elegant theory for how populations of neurons might represent uncertainty to 
perform Bayesian inference. Critically, according to this theory, neural variability is no longer a nuisance, but rather 
a vital part of how the brain encodes probability distributions and performs computations with them.



Main text

The brain faces a daunting task and solves it with such ease that we are rarely even aware of it: making sense of
the outside world based on a set of noisy and incomplete sensory inputs. Our visual system, for example, needs to
deal with partially occluded objects, or infer 3-dimensional shapes from 2-dimensional images in our retinas, all the
while relying on intrinsically noisy photoreceptor activations. The Bayesian theory of probabilistic inference provides
an optimal solution for dealing with the uncertainty inherent in sensory processing, and which classical theories of
sensory processing typically eschew. The key is to represent uncertainty in the form of probability distributions,
such that instead of just computing a single best estimate of a stimulus feature, a posterior distribution over that
feature is computed, quantifying the strength of the observer’s ‘belief’ that the stimulus may take on any particular
value given the evidence provided by our senses.

A probabilistically appropriate representation of uncertainty is indispensable for the brain in at least three contexts:
first, when fusing information from multiple information sources (e.g. sensory modalities, or memory), each of which
may  be  unreliable  on  its  own;  second,  when  making  decisions  that  require  combining  incomplete  sensory
information with subjective utilities; and finally, for updating its internal models of the world over time, so that it
remains  well  calibrated  [2].  Indeed,  behavioral  studies  of  perception  (and  other  cognitive  functions)  had  long
indicated  that  the  brain  must  somehow represent  uncertainty, as  underscored  by  the  observation  that  it  can
sometimes perform near the Bayesian optimum [3]. A critical question is then: how are probability distributions
encoded in the responses of neural populations?

The seminal paper of Wei Ji Ma, Jeffrey Beck, Peter Latham and Alexandre Pouget [1], proposed a solution to this
question in the form of probabilistic population codes (PPCs). Similar schemes – according to which populations of
neurons could encode probability distributions about a stimulus – had already been studied by Pouget and others
earlier [4]. Among the key novelty points here was a biologically plausible implementation that would allow neural
circuits to encode and operate with probability distributions. Critically, this approach relied on neural activities being
variable, or noisy, therefore marking a departure from the traditional view of variability in the brain being a nuisance,
to that of variability being an essential part of performing probabilistic inference.

The starting point for Ma et al. [1] was the well-known experimental observation that the same stimulus repeatedly
presented to an observer will produce each time a different pattern of activation in cortical neurons that are tuned to
specific features of that stimulus (Figure 1, encoding). Conversely, a given pattern of activity in the brain could arise
in  response  to  several  possible  stimuli.  This  probabilistic  relationship  between stimuli  and  responses  can  be
formalized by P(response|stimulus), expressing the probability of obtaining a particular population response given a
stimulus. The same quantity, P(response|stimulus), also expresses how likely, given a particular neural response, a
stimulus value is (Figure 1, decoding). This likelihood function is central  for computing the Bayesian posterior
distribution over the stimulus (via Bayes’ rule), and it represents uncertainty in a fairly straightforward manner. If the
population  response  is  such  that  the  likelihood  is  narrowly  peaked  around  a  single  stimulus,  there  is  little
uncertainty;  conversely, if  the likelihood is  a  broad function of  the stimulus,  then it  expresses a  high level  of
uncertainty. While classical approaches to neural coding tend to treat the fact that the stimulus cannot be identified
unequivocally from the response as a nuisance, PPCs thrive on this ambiguity: according to the theory of PPCs,
each  population  response  inherently  encodes uncertainty  over  stimuli,  just  as  required  for  performing  proper
Bayesian inference. The critical  step then was to show that  the way circuit  dynamics transform one particular
population response into another, corresponds to a probabilistically meaningful transformation of one likelihood
(represented by the first response) to another one (represented by the second response).

A paradigmatic transformation of likelihoods arises in situations when different sensory cues convey information
about the value of a stimulus that needs to be inferred. Examples include visual and auditory cues reporting about
the  location  of  an  object  [1]  (Figure  2A),  or  sequentially  received  packets  of  sensory  information  about  the
underlying direction of motion in an evidence accumulation task using a random dot kinematogram [5]. In these
situations, each cue gives rise to a different population response (Figure 2B, blue and green) and thus a different
likelihood function (Figure 2C, blue and green), but the brain ultimately needs to compute the likelihood of the
stimulus combining all  the information conveyed by the cues.  The probabilistically correct way to combine the
individual  likelihoods  (as  long  as  they  represent  independent  pieces  of  information)  is  to  multiply  them:  the
likelihood of a stimulus value considering all population responses should simply be the product of the individual
likelihoods of this stimulus value associated with each response (Figure 2C, red).

A key contribution of Ma et al. [1] was to show that, under biologically plausible conditions, this combined likelihood
can be represented by a strikingly simple transformation of the population responses associated with the individual
cues: their sum (Figure 2B, red). In other words, a two-layer feed-forward neural network in which neurons in the
output layer take an appropriately weighted sum of the neural responses in the input populations performs optimal
cue combination, computing the product of input likelihood functions. Analogously, for evidence accumulation, the
output layer needs to compute a cumulative sum over time of the responses in the input layer [5] – just as in the
much  celebrated  drift-diffusion  model  of  decision  making.  Moreover,  although  the  mathematical  form  of  the



decoding function that maps from neural responses to the likelihood (Figure 1, purple arrow) can in general be
arbitrarily complex, in PPCs it admits a particularly simple form: both the individual input likelihoods represented in
the input layer and the combined likelihood represented in the output layer can be decoded by computing a linear
function (an appropriately  weighted sum) of  the corresponding neural  responses.  Linear decoding has a  long
history in systems neuroscience, viewed by many as the kind of representation the brain strives to achieve [6], and
something that  cortical  neurons may easily implement [7].  Intriguingly, it  is  precisely this  linear decodability  of
likelihoods from the  responses of  the  input  layer  that  by  itself  guarantees  both  that  the  summation  of  these
responses  by  the  network  implements  optimal  cue  combination  and  that  the  resulting  sum  is  also  linearly
decodable.

One complication, which Ma et al. [1] noted as well, is that responses in a given neural population typically depend
on many other sensory features (e.g. image contrast), or even stimulus-independent factors (e.g. attention), other
than the particular property of the stimulus that a brain area may be inferring (e.g. the orientation of a line segment
in primary visual  cortex).  The problem is  that,  in  general,  in  the presence of  these nuisance parameters,  the
likelihood of the stimulus would only be linearly decodable if the values of all the nuisance parameters were already
known with certainty to the decoder – a clearly untenable assumption. Thus, Ma et al. [1] went on to show that as
long as neural responses satisfy two additional conditions, linear decodability of the stimulus likelihood will  be
preserved even in the presence of nuisance parameters. First, the distribution of responses should be Poisson-like:
nuisance parameters should scale together the mean and the (co)variance of responses, such that the ratio of the
mean and variance (the Fano factor) remains constant. This seems consistent with the often-observed (or at least
assumed) property of cortical spike trains: that they resemble a Poisson process (i.e. they have a Fano factor that
remains approximately constant [8], though see [9]). Second, the tuning curves (and noise covariance) of neurons
should be translation-invariant,  which effectively means that  the population should always express roughly the
same kind of response pattern, which is simply shifted as the stimulus is changed (as in Figure 1). Translation
invariance has also been a standard assumption in theoretical studies of population codes [8] even if it is probably
a rather crude approximation of reality [10].

The lasting impact  of  Ma et  al.  [1]  is  evident  in  how it  motivated specific  experimental  tests  and led to  new
theoretical  developments  in  the  study  of  probabilistic  computations.  Some  of  the  detailed  assumptions  (or,
conversely, predictions) that the PPC theory makes about neural responses may be difficult to test directly, or may
even be inaccurate.  For  example,  Fano factors  and even the detailed patterns of  response covariances may
change with  stimulus  onset,  image contrast  and  other  parameters  or  task  events  [11,  12],  thus  violating  the
Poisson-like  assumption of  PPCs.  The strictly  deterministic  processing (summation of  input  responses)  in  the
output layer of the PPC architecture, in contrast to the intrinsically stochastic activity assumed in its input layer, may
also be hard to reconcile with what we know about the operation of cortical circuits. Nevertheless, as we saw, for
PPCs the critical question is whether the stimulus is linearly decodable from neural responses, and whether it
remains so even in the presence of nuisance parameters. This prediction has been confirmed experimentally [13].
One potential  caveat  is  that  the  experimental  tests  so  far  have  been conducted  with  at  most  one  nuisance
parameter (e.g., image contrast), while theoretical studies suggest that a more diverse (and probably more realistic)
set of nuisance parameters (such as phase, aperture, or even object identity) can easily abolish linear decodability
and make the resulting population code different from a PPC [12]. Indeed, there have been advances in exploring
how PPCs might  deal  with  nuisance  parameters  in  more  sophisticated  ways  [14].  In  addition,  fundamentally
different proposals have been put forth for how variability in neural responses may support probabilistic inference
without requiring linear decodability [15,12]. Continuing the journey started by Ma et al.  [1],  these theories are
leading to specific,  distinct,  and experimentally  testable predictions that  will  advance our understanding of the
neural bases of probabilistic inference, and more broadly, of how our brains make sense of the surrounding world.
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Figure 1: Probabilistic encoding and decoding of stimuli in population responses. Encoding (orange arrows):
the mapping from stimuli to responses.  On each trial, the same stimulus (left) evokes a different pattern of neural 
responses in a population of tuned neurons (middle), such that some responses occur with a higher probability than
others (arrows emanating from the same stimulus, arrow width represents response probability). For different 
stimuli, these response probabilities will typically be different (compare arrows pointing to the same response, 
emanating from different stimuli). Decoding (purple arrows): the mapping from responses to stimuli. Given the 
inherently probabilistic nature of encoding, the same neural response pattern could have originated from several 
possible stimuli. The likelihood of the stimulus quantifies the probability with which any given value of the stimulus 
might have evoked the actual population responses, P(response|stimulus) (right).

Figure 2: Cue combination by PPCs.  The product of likelihoods is computed by summing neural responses. (A) 
Two cues, each encoded (orange arrows) by the stochastic responses of a neural population (blue and green), 
convey information about the same underlying stimulus. These two populations provide feed-forward input to the 
output layer (red).  Responses in each input population may also depend on nuisance parameters (ξ1 and ξ2, gray 
arrows). (B) Example neural responses in the three populations (cf. Figure 1, middle).  Responses in the output 
population are the (weighted) sum of the responses in the input populations (top, weighting factors are omitted for 
clarity). (C) The likelihood functions that can be decoded (purple arrow) from the responses of each of the three 
populations (cf. Figure 1, right).  While the input layers only encode the likelihood of the stimulus given the 
information available in their respective cues (blue and green), the output layer represents the combined likelihood 
of the stimulus given all available information (red), i.e. the product of individual input likelihoods (top).  Note that 
the likelihood encoded by the output layer can be interpreted without knowledge of the nuisance parameters.
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