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Abstract—We present a framework for enhancing Gaussian
process regression machine learning models with a priori knowl-
edge derived from models of the transmission physics in optical
networks. This is done by framing the regression problem
as multi-task learning, in which both the measured data and
targets derived from a physical model of the system are used
to optimise the kernel hyperparameters. We discuss the the-
oretical assumptions made and the validity of the approach.
It is demonstrated that physics informed Gaussian processes
facilitate Bayesian inference with fewer data points than standard
Gaussian processes, opening up application areas in which
measurements are expensive. The transparency, interpretability
and explainability of the proposed technique and the subsequent
increased likelihood of adoption by industry are discussed.

Index Terms—Optical fiber communication, Gaussian pro-
cesses, explainable machine learning, data-centric engineering.

I. INTRODUCTION

MACHINE learning approaches have been applied to a
wide range of problems in optical fiber communication

networks [1], [2]. Many of these problems, such as quality
of transmission (QoT) estimation, have also been approached
by designing models based on the physics of optical fiber
networks. These physical models, such as the widely-used
Gaussian noise (GN) model [3] and split-step Fourier method
(SSFM) [4], range in computational complexity and accuracy.
In many cases, these physical models are not utilised but rather
replaced by machine learning methods that learn to solve the
problem directly from data. In this work, we present physics-
informed Gaussian process (GP) regression, a methodology
for the embedding of physical models within probabilistic
machine learning.
Specifically, we address the following problems in this paper.
Firstly, we wish to address the lack of machine learning
approaches with a well-quantified predictive uncertainty which
utilise the information from physical models that is known
before we have taken any system measurements. To that end,
we present a method for embedding physical models in GP
regression, producing a physics-informed machine learning ap-
proach with a well-quantified predictive uncertainty. Knowing
the uncertainty of model predictions is crucial within optical
fiber communication networks, as these networks are typically
established with a high availability [5] and thus model errors
can result in catastrophic events, such as outages. Moreover,
the proposed method addresses the problem that, due to
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uncertainties in the inputs to physical models, the predictions
of such models may be inaccurate [6], even for highly complex
models. To rectify this, the physics-informed GP method
proposed allows us to update our physical model-derived
estimate of the target signal with measurements of the signal
to obtain an accurate GP predictive model. Another problem
addressed in this work is that, as networks become increasingly
dynamic, meaning that lightpaths are established and torn
down with greater frequency, the volume of data available
through network monitors becomes increasingly constrained.
The proposed methodology addresses this problem by allowing
us to train GP models with fewer measurements of the system,
through the inclusion of information from physical models.
Also, many of the machine learning approaches deployed
within optical networks are black box methods, for which the
decision processes within the algorithms are not transparent
and the model predictions are not interpretable. Both of
these factors mean that industrial trust in machine learning
systems is often low, forming a barrier to deployment [7].
We address this by highlighting how the proposed physics-
informed GP methodology is explainable, where in this work
we follow the definition of explainability given by Rosher
et al. [8]. In short, explainable machine learning algorithms
are interpretable, meaning that the decisions made are human-
understandable, transparent, meaning that the algorithm design
is clearly motivated and include domain knowledge, meaning
all the information we have about the target signal before we
take any measurements of the system.
Therefore, the key contribution of this paper is the proposed
physics-informed GP methodology that has a well-defined
uncertainty and can be trained with fewer system measure-
ments than standard GPs, due to the inclusion of information
from physical models. We demonstrate this approach for a
simple experimental system below, in order to explain the
methodology, demonstrate its benefits and motivate further
related study.
The rest of the paper is organised as follows. In Section
II we highlight and briefly discuss related works from the
literature, providing the context for our contribution. Following
this, in Section III we outline the theoretical approach to
integrating knowledge obtained from physical models with
GPs and discuss the key assumptions made. We then describe
the experimental system and corresponding physical model in
Section IV, before presenting a demonstration of the benefits
of the proposed methodology over conventional GP models
in Section V-A and an exploration of key practical considera-
tions for using this method in Section V-B. Furthermore, the
explainability of the proposed method is discussed in detail in
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Section V-C and concluding remarks are given in Section VI.

II. RELATED WORK

GP regression is a non-parametric, probabilistic machine
learning technique for solving regression-style problems [9].
A detailed explanation of the theory of GPs is given in the
book by Rasmussen and Williams [10], which has been used
extensively in this work. Previous uses of GP regression in
optical fiber communication networks include the work of
Meng et al. [11], in which GP regression was used to predict
the values of the signal to noise ratio (SNR) as a function of
the transmission wavelength. Similarly, Wass et al. [12] used
GPs to predict bit error rate as a function of launch power for
an experimental WDM system. GPs can also be formulated to
deal with classification problems in a probabilistic way. For
example, Panayiotou et al. [13] trained GP classifier models
on historical network data in order to determine the probability
of failure for each network link.
A key theme of this paper is the integration of physical
models with machine learning. An example of an approach
that utilises both physical models and machine learning is that
of Seve et al. [14], who presented a simple learning process
that incorporated models of the physics of transmission in
order to combat optical network design margins by improving
the accuracy of the QoT estimation tool used in planning.
Moreover, Seve et al. point out that physical models are
imperfect and thus measurements should be used to refine
these physical models to improve the quality of predictions,
providing motivation for the work presented in this paper.
Furthermore, Zhuge et al. [15] present a methodology in which
neural networks (NNs) are combined with physical models for
nonlinearity estimation. Here, the NN has two uses: to refine
the errors of the physical model and to unify modelling and
monitoring for nonlinearity estimation. Additionally, Raissi
et al. [16] presented a methodology for the embedding of
physical laws, represented by partial differential equations,
within NNs. These physics-informed NNs have recently been
applied within the optical networking domain for the first
time [17], for the simplistic case of solving the nonlinear
Schrödinger equation in an optical fiber. In this work we
present an alternate approach to physics-informed machine
learning, in which a GP machine learning method can be
informed by physical models, allowing one to benefit from a
well-quantified uncertainty level and enhanced explainability.

III. THEORETICAL APPROACH

A. Standard Gaussian process regression

A GP is defined as a collection of random variables, any of
which have a joint Gaussian distribution [10]. This Gaussian
assumption facilitates analytical Bayesian inference, making
GPs a powerful machine learning tool in which the level
of uncertainty associated with predictions is quantified in a
rigorous way. This uncertainty is easily interpretable, as the
Gaussian assumption allows us to define confidence regions in
terms of the number of standard deviations of variation away
from the predictive mean, a metric that is easily understood.
Furthermore, GPs are kernel-based methods, where a chosen

kernel function is used to model the relationship between the
data, facilitating more efficient learning via the kernel trick -
working in feature space is possible because the algorithm is
defined in terms of inner products in the input space [10][18].
Choosing a particular kernel means making assumptions about
how we expect the data to vary and this choice should be
made on a problem-by-problem basis. In this work, we choose
the squared exponential plus a white noise kernel function,
described by [10]

k(xi, xj) = h21 exp

(
−||xi − xj ||2

2h22

)
+W (xi, xj) (1)

where xi and xj are the input values of the points being com-
pared, h1 and h2 are the hyperparameters of the squared ex-
ponential kernel, W (xi, xj) = h23 if xi = xj and 0 otherwise
and ||·|| represents the Euclidean distance. Throughout the rest
of this paper, we denote the set of kernel hyperparameters by
θ = {h1, h2, h3}. By selecting this kernel, we assume that the
data has one underlying length scale, controlled by h2, with
an absolute scale factor h1 and independent and identically
distributed Gaussian noise with variance h32. We justify this
choice of kernel in detail in Section V-C and remark that the
method presented in this paper is general and is valid for
any valid kernel function. Examples of situations requiring a
more complex kernel include for signals which are expected to
contain periodicity or those for which we expect the presence
of multiple length scales. In order to design a kernel to use
for a specific problem, one can utilise the fact that the sum of
any two valid kernel functions is itself a valid kernel function
to tailor the kernel to the individual problem being considered
[10].
Furthermore, GPs are an example of a Bayesian approach
to machine learning, meaning that Bayes theorem is used to
generate a predictive probability distribution, the posterior, that
combines the prior assumptions made about the problem with
the measured data. In non-parametric methods such as GPs, the
space of functions f is searched to find a functional model for
the signal, rather than searching over a set of variable weights
for a fixed functional form such as in a parametric model. We
can write Bayes rule in the context of GPs as [10]:

posterior =
likelihood× prior

marginal likelihood
=
p(y|f,X, θ)p(f |X, θ)

p(y|X, θ)
.

(2)
Here, the prior distribution contains assumptions about how
we expect the data to vary, the likelihood is the probability of
the data targets given the data inputs X and kernel hyperpa-
rameters θ, and the marginal likelihood can be thought of as
a normalisation factor.
In order to fit a GP model to a dataset, we need to first optimise
the values of the kernel hyperparameters. This is done by
maximising the log marginal likelihood - the probability of the
data targets given the inputs, marginalised over the space of
functions - using a gradient-based method, as outlined in [10],
Chapter 5. Thus, we aim to search the space of functions to
find the most likely interpretation of the data. The log marginal
likelihood and its gradient can be calculated as [10]

log p(y|X, θ) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π (3)
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∂

∂θj
log p(y|X, θ) = −1

2
Tr
(

(ααT −K−1)
∂K

∂θj

)
, (4)

where K is the kernel matrix consisting of k(xi, xj) for
all i, j, n is the number of data points, y are the data
targets, X is the matrix of input data and α = K−1y. Once
optimal hyperparameters have been found, Algorithm 2.1 from
Rasmussen and Williams [10] is used to fit the GP to a given
dataset, by calculating the predictive mean and variance of the
model [10]:
L = cholesky(K + τI) - Cholesky decomposition
α = LT \ (L \ y)
f̄∗ = kT∗ α - GP predictive mean
v = L \ k∗
V [f∗] = k(x∗, x∗)− vT v - GP predictive variance

where here f̄∗ and k∗ refer to the predictive mean and the
covariance function evaluated at the test point x∗ respectively,
τ is a small constant added to the diagonal of K to ensure
that the calculated matrix is positive-definite [19] and I is
an n × n identity matrix. The value of τ used here is the
default for the Scikit Learn GP library of 10−10 [19], which
was used to fit the GP models in this work. More specifically,
the Scikit Learn GP models optimise the hyperparameters by
gradient-based maximisation of the log marginal likelihood
using the SciPy implementation of the L-BGFS-B algorithm
[20], [21]. This algorithm is called with a default maximum
number of iterations and function evaluations of 15,000, which
was not met by any models presented in this work, as well
as two stopping criteria. The first criterion is defined by
the normalised difference between function evaluations at
successive steps, for which the default value of the order of
10−9 is used. If we have reached a local optimum, the gradient
around the optimum will be small, and thus these differences
should be small. The second criterion is defined by a lower
bound on the maximum element of the projected gradient, for
which again the Scikit Learn default threshold of the order of
10−5 was used. Both of these criteria are designed to induce
stopping of the gradient-based method at a local optimum,
where the gradient is sufficiently small. In order to increase
the probability of finding the global optimum, the optimiser
is restarted 20 times and run from different randomly selected
initial conditions each time, within the broad hyperparameter
bounds given. It should be noted that none of the GP models
presented returned optimal hyperparameters equal to these
bounds. The resulting model with a maximum log marginal
likelihood is then selected. It is also important to note that
we make the distinction between hyperparameter optimisation
and the process of computing the predictive mean and variance
given a set of optimal hyperparameters, referring to the latter
as fitting the GP.

B. Proposed method for including physical models

We propose to include physical models in the optimisation
of the kernel hyperparameters of the GP regression model,
such that our a priori knowledge of the system can be
incorporated. In this work, we define our a priori knowledge as
all the information that we have about the target signal before
we have made any measurements of the system. This definition

is synonymous with the definition of domain knowledge given
in Rosher et al. [8]. As discussed in detail in Section V-C
below, a priori knowledge can take a number of forms and is
difficult to define in general. The specific target signal in this
work is the SNR as a function of the launch power and our a
priori knowledge is made up of the following components:

1) The physics-based model of the target signal, which
provides an approximation to this signal for a set of
parameters with a given uncertainty, as well as describ-
ing the general behaviour of the system as a function of
the target input.

2) A set of estimated system parameters, each of which
with an estimated degree of uncertainty. These un-
certainties may be bounded by specifications given in
equipment data sheets.

3) All context provided by the relevant literature.

Our goal is to embed this a priori knowledge into a GP
regression model, such that our approximate knowledge of
the signal can be updated with measurements of the system.
Mathematically, we can express the a priori knowledge given
by the physical model as a simple formula, as is given below
in Section IV. This physical model can also be used to make
decisions about the range of measurements that we should
make. For example, if we can estimate the launch power
that gives an optimal SNR from the physical model, we can
make an informed decision about the range of launch powers
over which we take measurements. Similarly, the parameters
of this model can be represented as random variables, each
drawn from some unknown distribution. These parameters
relate to a given physical component of the system, such as
the attenuation coefficient of the optical fiber used. Bounds
for these parameters are often given by vendor specification
sheets. Ultimately, some estimate of the parameters is used
for the physical model, producing a set of approximate pre-
dictions of the target signal. It is more difficult to express the
contribution to the a priori knowledge from the literature, as
this will be highly problem-specific. An example may include
measurements reported for a similar system, that can be used
to obtain an estimate for the system parameters or the target
signal of interest.
The key approach taken for the inclusion of a priori knowledge
within GPs in this work is to frame the problem as an example
of multi-task learning. In multi-task learning, the goal is to
find one common optimal set of hyperparameters for multiple
tasks simultaneously, such that these hyperparameters produce
a model that benefits from similarities and differences across
the tasks [10], [22]. Once the optimal hyperparameters have
been found for the two tasks, we use them to fit a model that
performs one of the tasks more effectively than if only this
single task was considered.
We propose to use an a priori physical model of the system
to generate a set of targets and to perform multi-task learning,
using these physical model-generated targets and the measured
data in the optimisation of the hyperparameters. Here the
multi-task learning framework consists of two regression tasks
- one for the physical model predictions and one for the
measured data. The task of interest to us is to perform re-
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gression on the measured data, and performing this regression
with hyperparameters optimised for both tasks allows us to
embed information from the physical model our GP regression
model. When we use multi-task learning in this way, we
assume that the physical model targets and the measured data
are described by the same underlying statistical distribution.
Specifically, this means assuming that the targets in both
datasets are independent and identically distributed (i.i.d.)
random variables drawn from the same distribution. The i.i.d.
assumption is widespread across statistical learning theory and
underpins the majority of modern machine learning algorithms
[23]. Thus, we must take care to ensure that this assumption is
reasonable. Physical models are commonly deterministic, with
no element of uncertainty included. To facilitate multi-task
learning, we include uncertainty in these models in a physical
way, as outlined in Section IV.
More formally, in order to perform multi-task learning, we
generate physical model targets yp for input parameters Xp,
analogous to the measured data targets and input parameters y
and X , and find kernel hyperparameters θ that maximise the
sum of the log marginal likelihoods for both sets of targets:

arg max
θ

[log p(y|X, θ) + log p(yp|Xp, θ)] (5)

where the log marginal likelihoods and their gradients are
calculated using (3) and (4) respectively. It should be noted
that the physical model targets can be generated at different
X values to the data, hence the specification of Xp. This also
means that we can use a different number of physical model
targets to the number of data targets. We investigate the effect
of changing the number of physical model targets in Section
V-B. Then, the GP is fitted to the data in the standard way
using Algorithm 2.1 from Rasmussen and Williams [10],
reproduced above, using only the data targets. Taking this
multi-task learning approach allows for the information in
the physical model to be taken into account when optimising
the kernel hyperparameters, meaning that we can include our
a priori knowledge of the system in the model.
In standard GP models, the computational complexity is
dominated by the inversion of the K matrix, which scales
with the number of data points n as O(n3). When performing
multi-task learning, if the number of physical model targets
np is different to that of the data targets, a different K must
be calculated and thus the same inversion must be computed
for the physical model-generated targets, which also scales
with the number of physical model targets as O(n3p). If
X = Xp however, then the same K is used in both cases and
the computational complexity is O(n3). Thus, for X 6= Xp,
for which n and np can differ, the dominant term depends on
the relative size of n and np. Choosing a suitable value of np
is discussed further in Section V-B.
Moreover, we note that this method is not equivalent to using
physical models to generate synthetic data points and using
these both for hyperparameter optimisation and calculation
of the model predictive mean and variance. By only using
the physical model-generated targets in the optimisation of
the hyperparameters, we are improving our estimates of
the hyperparameters by imparting our a priori knowledge

of the system via multi-task learning. This is an important
distinction to make, as using the physical model targets as
synthetic data that is treated in the same way as measured
data would yield models that are very sensitive to errors in the
physical model. This methodology has been implemented as
a modification to the Scikit-learn Gaussian Process Regressor
class [19], in which new methods have been added to perform
multi-task learning.

IV. EXAMPLE PHYSICAL SYSTEM

A. Experimental setup

In this work we use measurements of a simple point-to-
point link, originally presented in [24], consisting of 10 spans
of Corning SMF-28 fibre, each of length 100 km. This system
is depicted in Figure 1. A Polatis 32×32 Fiber Switch is
used to connect the individual 100 km spans together, which
themselves consist of fiber spools contained within a rack. This
switch is also used to control the launch power into the spans,
which in this experiment was uniform across the spans. A 25
dB fixed gain Erbium-doped fiber amplifier (EDFA) is used,
along with a variable optical attenuator (VOA) to compensate
for the extra gain. A Ciena WaveLogic 2 coherent transceiver
is used to transmit a single channel at 11.5 GBaud using a
dual-polarisation quadrature phase-shift keying (QPSK) mod-
ulation format. The signal is measured by an optical spectrum
analyser after each amplification, which is used to determine
the attenuation required to set the desired launch power into
each span. The output of the final span is then passed through
an optical channel filter in order to remove any amplified
spontaneous emission noise beyond the channel bandwidth.
The signal was then received and recovered by the WaveLogic
2 transceiver, following which the SNR was estimated from the
received constellation via the technique proposed in [25], in
which the radial moments of the QPSK signal constellation are
used to perform the estimation. This simple system is used to
demonstrate the proposed physics-informed GP methodology
and explore the key practical considerations necessary to
deploy this technique. As discussed above, it is the technique
for inclusion of physical model information in GP models that
is the focus in this work. The technique proposed is applicable
to higher-dimensional input spaces and for signals with more
complex features, such as periodicity and the presence of
multiple length scales. Specifically, we used this experimental
system to generate a dataset of SNR as a function of the
launch power into each span for a single channel. The input
power was uniform across the 10 spans, creating a simple,
well-understood dataset of SNR as a function of the uniform
launch power.

B. Physical models

We use a physical model in order to generate an approxi-
mation to the signal based on our a priori knowledge of the
experimental system, as defined in Section IV, given by [26]

SNRphys =

(
a+ bP 3

in

Pin
+

1

SNRTRx

)−1

, (6)
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Fig. 1. Simple point-to-point system used to generate the demonstrative
dataset of SNR as a function of launch power, consisting of 10 spans of
length 100 km, amplified using a 25 dB fixed gain EDFA. A single QPSK
channel is transmitted and the SNR is estimated from the recovered signal at
the receiver using the radial moments of the QPSK signal.

where the constants a and b represent the strength of the
linear and nonlinear noise respectively, SNRTRx is the back-
to-back SNR of the transceiver and Pin is the launch power.
Furthermore, as discussed in Section III, in order to perform
multi-task learning, the datasets used are assumed to be drawn
from the same statistical distribution. In order to satisfy this
assumption, the physical model must not be deterministic, and
should capture the uncertainty in the system. There are two
types of input into the physical model - the input variables X ,
namely the launch power in this case, and the parameters that
represent the physical characteristics of the system, such as the
fiber loss and fiber nonlinearity coefficient. Both types of input
have an associated uncertainty, however the launch power
is a variable which is changed throughout the experiment.
Therefore, we include the launch power uncertainty in the
physical model because the launch power is a stochastic
random variable. Contrastingly, the physical layer parameters,
such as the fiber loss and nonlinearity coefficient, are assumed
to be constant over the duration of the experiment. As a result,
the uncertainty in these model parameters is not modelled
within the physical model itself. In a deployed system, some
of these parameters will change with time, however the scale
with which they change will be long relative to the time
taken to make measurements as they are due to processes
such as fiber ageing which have a slow rate of change [27].
Moreover, for lightpaths that are established over long periods
of time, changes in these parameters can be accounted for by
re-measuring the system and re-training the GP, providing an
updated GP model.
Specifically, the Polatis 32×32 switch specification sheet
quotes a maximum error of ±0.5 dBm. Thus, we model
the launch power values as being Gaussian-distributed, with
a mean equal to the measured value Pmeas and standard
deviation σ = 0.5/3 = 0.167 dBm, such that 99.7% of the
perturbation values lie within ±0.5 dBm. Thus, we model Pin
as

Pin ∼ N (Pmeas, σ
2). (7)

We then use the SSFM to obtain a priori estimates for the
parameters a and b. There exist alternative, more approximate
physical models to the SSFM that are less computationally
intensive, such as the GN model. The SSFM has been chosen
over such models in this case primarily because of the exper-
imental system considered, which has parameters for which
the signal Gaussianity assumption used in the GN model is a
poor approximation to the signal. Namely, the system has a
low symbol rate, a single channel is transmitted and a QPSK
modulation format is used, all of which mean that the signal

is far from being Gaussian-distributed, as assumed by the GN
model. It should be noted that there are corrections to the
GN model which relax this Gaussianity assumption, including
the enhanced GN (EGN) model [28]. However, despite the
existence of proposed analytical approximations to the EGN
[29] there is a lack of clear consensus on which closed-
form formula to use, and thus using the EGN would involve
numerical computation of integrals. Therefore, we decide to
use the SSFM due to its superior accuracy and assume that
the physical model targets can be computed offline. Thus, it
is important to note that in this work, the majority of the
uncertainty in the physical model is due to uncertainty in the
inputs to the SSFM model, which are significant for deployed
systems, as discussed in [6]. Therefore, here we aim to use an
accurate physical model with uncertain inputs to generate our a
priori estimate of the signal, before updating this estimate with
measured data to produce an accurate predictive GP model.
Specifically, to obtain the parameter estimates from the SSFM,
we use initial estimates for the parameters of the system,
obtained from the specification sheets of the equipment and
the literature, to generate a set of simulated SNR values. We
generate SSFM simulations at launch power values of -4 dBm,
0 dBm, and 4 dBm, to ensure coverage of the SNR optimum,
which we know will lie in this broad range a priori. From these
simulations, we then fit (6) with a and b as free parameters
via the method of least squares. Note that the SSFM does
not include the effect of the back-to-back transceiver SNR,
SNRTRx, which is estimated from [30] to be 14.8 dB for the
Wavelogic 2 linecard used. Based on our a priori physical
model of the system, we calculate the range over which we
measure the SNR by using the physical model to estimate
the launch power corresponding to the optimum SNR, and
then calculating the launch power values that correspond to a
maximum of 2 dB SNR penalty in the linear and nonlinear
regimes. This yields the range -8 dBm to 4 dBm to the
precision of 1 dBm used in [24].
Using this a priori physical model, we can facilitate training
GP models with sparse datasets, minimising the SNR penalty
incurred when taking measurements and aiding with the de-
velopment of online, data-driven networks. These applications
are demonstrated in Section V-A below.
To achieve a transparent model, it is important to justify the
chosen model inputs, which are outlined below.

• NLI coefficient, γ = 1.2 /W/km
• Dispersion coefficient, D = 17 ps nm−1km−1

• Loss, α = 0.2 dB km−1

• EDFA noise figure, NF = 4.6 dB
• Operating wavelength, λ = 1550 nm
• Symbol rate, Rs = 11.5 GBd
• TRx back-to-back SNR, SNRTRx = 14.8 dB
• Pin noise standard deviation, σ = 0.167 dBm

The values of D, α and NF are estimated from from the fibre
and EDFA manufacturer specification sheets and γ is taken as
an initial estimate for the Corning SMF-28 optical fiber used.
λ, Rs and ∆f are set when the experiments are performed
and SNRTRx is estimated from [30]. σ is defined from the
specification sheet of the 32×32 switch, as described above.
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Fig. 2. An ensemble of 5 physical model predictions generated using (6),
with σ = 0.167 dB and the a priori expected performance, computed
as the ensemble mean, are compared with demonstrative dataset consisting
of measured SNR as a function of launch power, generated using the
experimental setup outlined in Figure 1. SSFM simulations used to optimise
the parameters of the physical model are shown for comparison.

Due to the uncertainty present in the physical model, we
draw an ensemble of 5 physical model predictions at each
launch power value and compare to the measured SNR as
a function of launch power from the experimental setup in
Figure 1 and the SSFM simulations used to optimise a and b.
This comparison is shown in Figure 2. Our a priori expected
performance, computed as an average of the ensemble, is also
shown. We wish to refine this a priori estimate of the signal
variation by using measurements to obtain a more accurate
posterior distribution with a quantified uncertainty level.

V. DEMONSTRATION OF PHYSICAL-MODEL ENHANCED
GAUSSIAN PROCESSES

A. Compensating for sparse data

Here we demonstrate how including information from phys-
ical models in the optimisation of GP hyperparameters allows
us to perform Bayesian inference with fewer measurements
of the system. This would be of practical significance in
any situations where the amount of available data is strongly
constrained, such as when there is a performance penalty
associated with making measurements or in a future dynamic
optical network, where lightpaths are put up and torn down
rapidly.
As an example, we use a sparse data subset of 5 measurements
and 15 physical model targets, generated using (6), to fit a
physics-informed GP. Figure 3 shows the physics-informed
GP model, along with the measured data targets and physical
model targets used in fitting. A standard GP fitted to the same
dataset is also shown for comparison, as well as a two standard
deviation confidence region, where the xσ confidence upper
and lower bounds are calculated using [10]

xσ confidence bounds = f̄∗ ± x
√
V [f∗]. (8)

From Figure 3a, it can be seen that the physical model targets
used in the hyperparameter fitting allow for the underlying
signal to be estimated with only 5 measured data points

with the physics-informed GP. Using the approach outlined
in Section III, we have used the measured data and the a
priori knowledge provided by the physical model and system
parameter estimates during hyperparameter optimisation, in
order to obtain a more accurate model of the system. From
Figure 3b, it is clear that the standard GP has insufficient
information to learn the signal variation without the inclusion
of physical model targets. Furthermore, we also fit a standard
GP to a larger dataset consisting of 13 measurements of the
SNR made over the same range of launch power values,
inclusive of the sparse dataset. This represents the case where
we have more than the required number of measurements
in the given domain to estimate the signal from measured
data alone, providing a reference to compare to the physics-
informed GP. In Figure 4, the predictive mean of this standard
GP is compared to the predictive mean function of the
physics-informed GP from Figure 3a, which is trained on
the sparse dataset. To assess the accuracy of these models,
we compare the mean absolute error (MAE) of the predictive
mean with respect to the full dataset of 13 measurements. We
find that this MAE is 0.02 dB higher for the physics-informed
GP trained on the sparse dataset as compared to the standard
GP trained on the full dataset, a relative increase of 3%,
demonstrating that the physical model enables us to achieve
comparable model accuracy in this case with 5 data points,
rather than 13.
Additionally, we are able to train a physics-informed GP on
a sparse subset of 3 measurements, taken at the two extremes
and at the predicted SNR peak. This is the smallest number of
measurements over the domain that can be used for inference.
This model is shown in Figure 5 along with a standard GP
fitted to the same sparse dataset for comparison. Note that as
the GP is homoscedastic, the predictive variance V [f∗] does
not vary significantly with the launch power and hence we
take the mean of the predictive standard deviation,

√
V [f∗], to

compare different models. For the subset of 3 measurements,
the predictive standard deviation of the physics-informed GP
is much larger as compared to when 5 measurements are
used, increasing by a factor of 4.7 from 0.13 dB to 0.61 dB,
reflecting the fact that we have given the GP less information.
Moreover, the predictive mean MAE with respect to the full
dataset of 13 measurements is 0.06 dB higher as compared to
the standard GP trained on 13 measurements, approximately
3 times greater than that achieved with 5 measurements.
Thus, we are able to perform Bayesian inference with only
3 measurements, at the expense of some degree of model
confidence and accuracy. For the standard GP, we find that
a data subset of 6 or more measurements of the SNR is
required for inference of the signal and show the physical
model enhanced-GP and standard GP models trained on this
subset in Figure 6. However, the mean of the predictive
standard deviation is 0.12 dB for the physics-informed GP as
compared to 0.19 dB for the standard GP, a relative decrease
of 37%. This indicates that the inclusion of prior knowledge
from the physical model results in a more confident GP model
prediction, as the GP has more information regarding how
the signal is expected to vary. For these models, the MAE
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with respect the full dataset of 13 measurements differs from
that of a standard GP trained on the full dataset by only 0.01
dB and 0.02 dB for the physics-informed GP and standard
GP respectively - these models are compared in Figure 7.
Thus, for this system, inclusion of a priori knowledge in
GPs via physical models allows us to make up to 50% fewer
measurements of the system when performing Bayesian
inference, depending on the required accuracy and model
confidence. Moreover, even with sufficient measurements for
the standard GP to infer the signal, the physics-informed
GPs are able to make more confident predictions, due
to the a priori knowledge that has been provided during
hyperparameter optimisation. This illustrates that, in general,
the a priori knowledge of the system is less important in
situations where we have a large amount of data. However,
when the amount of data is constrained, our prior knowledge
of the system becomes crucial, with the measured data points
updating this prior to obtain a more accurate model. It should
also be noted that the intention of the analysis in this section
is to demonstrate the effect of including a priori knowledge in
the GP using a simplistic, example dataset. This technique is
general and applicable to more complex, higher-dimensional
regression problems.

B. Practical considerations
It is important to investigate the effect of changing the

value of σ in (7) on the physics-informed GP, as this has
been estimated from the bounds provided from the data
sheet of the optical switch and thus itself has an associated
uncertainty. Varying σ corresponds to modifying the variance
of experimental noise that is added to the physical model,
thus changing the uncertainty of the resulting GP, as the data
targets and physical model targets are assumed to share the
same optimal hyperparameters. Thus, physics-enhanced GP
models are fitted to the sparse dataset of 5 SNR measurements,
with 15 physical model targets used in the hyperparameter
optimisation. The effect of changing σ on the kernel hy-
perparameters is demonstrated in Figure 8. We can see that
the noise level hyperparameter, h3, increases as we increase
σ - as we tell the GP a priori that there is more noise in
the system, the model reflects this through an increase the
in hyperparameter controlling the noise. In response to the
increased noise level, the absolute scale h1 of the process
decreases with increasing σ, whilst the length scale h2 is
relatively constant. Additionally, we consider the effect of σ
on the mean of the predictive standard deviation of the GP
model. Figure 9 demonstrates that as we increase the standard
deviation of the added noise, we see a corresponding increase
in the predictive standard deviation of the physics-informed
GP. As we increase the a priori noise in the physical model,
the resulting model makes predictions with a lower confidence.
Moreover, we also remark that the MAE of the predictive
mean function of the GP with respect to the full dataset of
13 measurements is constant with respect to σ to within 0.01
dB, highlighting that it is the predictive variance of the model
that is primarily effected by the choice of σ, rather than the
predictive mean.

It is also important to consider the effect of the number
of physical model-generated targets on the physics-informed
GP. For the example dataset used, there are 5 measured data
points and we must choose how many physical model targets
to use for hyperparameter optimisation. Thus, we vary the
number of physical model targets used with a fixed added
noise σ = 0.167 dBm and record the variation of the kernel
the hyperparameters for the physics-informed GP in Figure 10.
Firstly, we observe that for low numbers of physical model
targets, approximately below 10, the kernel hyperparameters
vary significantly, indicating that we have an insufficient
number of physical model targets to learn the signal variation
with only 5 measured data points. For 10 or more physical
model targets however, the absolute scale h1, length scale h2
and noise h3 are relatively constant with respect to the number
of physical model targets. We conclude that the number of
physical model targets used in the hyperparameter optimisation
has no significant effect on the optimal hyperparameters found,
provided a sufficient number of targets are used relative to
the number of data points. It should be noted that if we
have a higher density of measured data in the same range,
then fewer physical model targets are required to learn the
signal variation, as we can rely more on the contribution
from the measured data to the log marginal likelihood in
(5). Furthermore, the variation of the mean of the predictive
standard deviation

√
V [f∗] is reported in Figure 11 for the

physics-informed GP, showing a sharp drop as we increase
the number of physical model targets, followed by a plateau.
Again, this indicates that with insufficient physical model
targets for a given number of measurements, the model has a
lower confidence in its predictions. Once a sufficient number
of physical model targets are included, the model confidence
plateaus and adding more targets has a minimal effect on
the model confidence. Thus, we conclude that in general the
choice of the number of physical model targets has a small
effect on the resulting model compared to the value of σ from
(6), provided a sufficient number of targets is used, in this
case approximately 10 or more.

C. Explainability of proposed model

Recently there has been an increasing focus on the ex-
plainability of machine learning models, however the term
explainability is very broad and often ill-defined. In the
context of optical fiber communications, the use of explainable
machine learning models is largely motivated by trust - within
any industry, algorithms for which the decision processes can
be understood by operators are more likely to be adopted [7].
Here we define the term explainability and highlight which
areas of the proposed model are explainable. An explainable
machine learning model can be defined as one that is transpar-
ent, interpretable and includes domain knowledge of the target
problem [8]. Here a priori knowledge and domain knowledge
represent the same concept, and we refer to a priori knowledge
only in this section.
A transparent model is one for which the model designer
can explain the reasoning behind the design choices made,
beyond empirical success on the test data. To some degree,
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(a) Physics-informed GP
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Fig. 3. Physics-informed GP and standard GP models trained on a sparse dataset of 5 measurements, with two standard deviation confidence region shown.
For the physics-informed GP, h1 = 5.34, h2 = 3.49 and h3 = 0.0120, whereas for the standard GP h1 = 0.996, h2 = 1.83×10−5 and h3 = 3.63×10−3.
The physical model targets used in hyperparameter fitting are shown as well as the data targets in (a). The standard GP has insufficient information to perform
Bayesian inference of the signal.
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Fig. 4. Comparison of the predictive mean of the standard GP trained on
the full dataset of 13 measurements and the predictive mean of the physics-
informed GP, trained on the sparse dataset of 5 measurements.

transparency can be thought of as the opposite of a black-
box [31]. An interpretable model is one for which the model
output can be understood by a human, where an interpretation
is defined as a translation of the model prediction to a
human-understandable domain [32]. Interpretable models can
be further sub-divided into two broad classes; those that are
interpretable by design and those for which we accept that the
model is a black box and seek to understand the input-output
relationship only. The latter techniques are known as post-hoc,
with widely used examples presented in [33], [34]. A priori
knowledge is difficult to define in general and can loosely be
thought of as all knowledge of the problem before we have
seen the data [35]. In this work, we have outlined what we
mean by a priori knowledge in Section III. An example of a
method that does not include any a priori knowledge would be
a black box model, such as a standard feedforward NN, which
is trained blindly on a dataset to infer a relationship between

some data X and some target data y. A priori knowledge
can be structured to different degrees, for example it can be
written as a mathematical formula, as in (6), or it can take
the form of the bounds provided by the specification sheets
of the equipment used in this work. Moreover, this a priori
knowledge can be integrated with machine learning models in
a number of different ways [8]. In this work we have chosen
multi-task learning for instance, whereas a different method
for inclusion was chosen in [14].
In general, kernel methods such as GPs can be called trans-
parent, as the chosen kernel function contains the features that
we expect to see in the target signal a priori. Moreover, the
kernel function is composed of a sum of kernel functions,
each representing a given set of features, which makes the
model transparent [8]. In this work, our choice of kernel is
transparent, as we know a priori that the signal, SNR as a
function of launch power, can be described by a single length
scale and contains no other features, such as periodicity or
decay. Moreover, we justify the choice of white kernel by con-
sidering that the signal uncertainty is the result of a number of
different experimental sources of uncertainty, each described
by some statistical distribution, and thus can be approximated
by a Gaussian via the central limit theorem. Furthermore,
the multi-task learning methodology for including physical
model-generated targets is itself transparent. This is because
it can be justified and its success explained. We wish to
embed knowledge from the physical model in a probabilistic
machine learning method with well-quantified uncertainty,
which is done by learning a set of optimal hyperparameters
that describe both the physical model and the measured data.
Specifically, we maximise the sum of the contributions to
the log marginal likelihood from the measured data and
physical model targets, hence imparting a priori knowledge
in the kernel hyperparameters. We then fit a GP model to
the measured data using these optimal hyperparameters. This
allows us to do Bayesian inference with fewer measurements,
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Fig. 5. Physics-informed GP and standard GP models trained on a sparse dataset of 3 measurements, with two standard deviation confidence region shown.
For the physics-informed GP, h1 = 4.42, h2 = 3.11 and h3 = 0.0115, whereas for the standard GP h1 = 0.938, h2 = 0.0185 and h3 = 0.0623. The
physical model targets used in hyperparameter fitting are shown as well as the data targets in (a). The standard GP has insufficient information to perform
Bayesian inference of the signal.
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Fig. 6. Physics-informed GP and standard GP models trained on a sparse dataset of 6 measurements, with two standard deviation confidence region shown.
For the physics-informed GP, h1 = 7.20, h2 = 3.75 and h3 = 0.0114, whereas for the standard GP h1 = 1.54, h2 = 2.61 and h3 = 0.0284. The physical
model targets used in hyperparameter fitting are shown as well as the data targets in (a). The inclusion of prior knowledge in the physics-informed GP leads
to a 37% increase in prediction confidence over the standard GP.

as the physical model targets provide extra information about
the signal during hyperparameter optimisation.
Furthermore, we consider the interpretability of the proposed
method. Figures 8, 9, 10 and 11 demonstrate the interpretable
nature of the physics-informed GP method, as we can make
sense of the hyperparameter variation and the predictive vari-
ance of the model as we alter the physical model parameters.
This partly relies on the principled nature of GPs, but is also
due to the easily interpretable way in which the physical model
targets have been included in the hyperparameter optimisation
process. Furthermore, for regression problems more complex
than the simple example considered here, analysis of the
kernel hyperparameters can be used to understand the key
features of the model and how they respond to variations
in the input. For instance, if a periodic kernel function is

used, the hyperparameter controlling the frequency of the
periodicity can be used to easily interpret the periodicity in
the signal. Thus, studying the hyperparameter variation is
an effective method for providing interpretation of the GP
output. Additionally, the confidence regions provided by GP
models aid in the interpretation of predictions, as the degree of
confidence provides extra information as compared to a model
that simply makes predictions with no associated confidence.
The human that is looking at the GP output can judge how
confident the model is of its prediction, which can help
motivate decisions such as whether or not to acquire more
data and whether or not the model prediction can be trusted.
Also, in this work a priori knowledge has been integrated
within the machine learning methodology explicitly through
multi-task learning. Furthermore, a priori knowledge has been
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Fig. 7. Comparison of the predictive mean of the standard GP trained on
the full dataset of 13 measurements and the predictive mean functions of the
physics-informed GP and standard GP, both trained on a sparse dataset of 6
measurements.
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the physics-enhanced GP model with standard deviation of the launch power
noise in (6).
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Fig. 10. Variation of optimised kernel hyperparameters with the number of
physical model targets used in hyperparameter optimisation. 5 measurements
of the SNR have been used in the GP fitting.
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Fig. 11. Variation of the mean of the predictive standard deviation
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V [f∗]

of the physics-enhanced GP model with the number of physical model targets
used in hyperparameter optimisation. 5 measurements of the SNR have been
used in the GP fitting.

our choice of kernel is motivated by how we expect the signal
to behave, based on the functional form of the physical model
given in (6). Moreover, the output of the physical model
with estimated parameters was used to estimate the launch
power corresponding to the optimal SNR, which allowed us to
determine a range of launch power over which to measure the
SNR. Additionally, we estimate the transceiver back-to-back
SNR from [30], thus we have utilised a priori knowledge from
the literature.
As outlined in [8], explainability requires some degree of
interpretability and transparency, as well as the incorporation
of a priori knowledge. An explanation consists of identifying
the relevant features that have contributed to a given model
prediction [32], which in turn requires model transparency and
an interpretation of the model output. We have outlined above
why the proposed model is transparent and interpretable, as
well as how it incorporates a priori knowledge with machine
learning. Thus, we conclude that the proposed method is
explainable.
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Finally, we emphasise that this method could be applied to
regression problems across many domains within optical fiber
communications and beyond. All that is required is a prior
understanding of the signal under investigation and measured
data from the system. In this work, the domain-specific choices
are the kernel function used and the physical model of the
system, whereas the multi-task learning methodology for in-
corporating this physical model with the GP is highly general.
Thus, to apply physics-informed GPs for a given regression
problem, only a suitable kernel and physical model must be
specified.

VI. CONCLUSIONS

In this work we have outlined a methodology for physics-
informed GP regression, creating an explainable approach
in which a priori physical models are included in machine
learning. Specifically, this is achieved using multi-task learn-
ing, in which a physical model is used to generate targets
to be used alongside the measured data targets to optimise
the hyperparameters. Crucially, this assumes that the physical
model targets and data targets can be described by the same
underlying statistical distribution, and thus we include uncer-
tainty present in the experimental system under study such
that this assumption is valid. As GPs have a well-quantified
prediction uncertainty, they are attractive in the context of
the high availability requirements of the optical fiber com-
munications domain, where model errors can be catastrophic.
We demonstrate that the proposed method facilitates Bayesian
inference of the signal variation with fewer measurements of
the SNR, allowing us to train GPs in situations in which the
number of available measurements is likely to be strongly
constrained. Specifically, we show that the physical-model
enhanced GP trained using 5 measurements achieves a MAE
with respect to the full 13 measured data points only 0.02 dB
higher than a standard GP trained on 13 measurements. This
increases to a MAE of 0.06 dB with 3 measurements used in
fitting, along with a 4.7-fold drop in the model confidence. It is
important to note the distinction between the proposed method
and using the physical model to generate new data points to
use in both hyperparameter optimisation and fitting, as such a
method would be very sensitive to errors in the physical model.
Furthermore, in this work we consider the explainability of
the proposed approach. More specifically, we outline how
the physics-informed GPs are transparent and interpretable,
and comment on how a priori knowledge is included in the
machine learning model itself. Therefore, we conclude that
the proposed model is explainable and thus is more likely to
be adopted by the telecommunications industry, where optical
light paths are established with high availabilities and thus the
outputs of machine learning models must be well-understood.
Finally, we remark that the proposed method is general and
can be applied to regression problems from any domain in
which approximate physical models of the target signal are
known a priori. This applicability extends beyond the simple
one-dimensional input space used in this work, which has been
selected in order to demonstrate the physics-informed GP as
clearly as possible.
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