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Dielectric particles suspended in a weakly conducting fluid are known to spontaneously start
rotating under the action of a sufficiently strong uniform DC electric field due to the Quincke
rotation instability. This rotation can be converted into translation when the particles are placed
near a surface providing useful model systems for active matter. Using a combination of numerical
simulations and theoretical models, we demonstrate that it is possible to convert this spontaneous
Quincke rotation into spontaneous translation in a plane perpendicular to the electric field in the
absence of surfaces by relying on geometrical asymmetry instead.

How are groups of living organisms such as flocks of
birds, schools of fish and bacterial colonies able to self-
organize and display collective motion [1]? This question
has fascinated scientists for decades and has given rise
to the new field of ‘active matter’ [2, 3]. One of the
key features of active matter is that it is composed of
self-propelled units that move by consuming energy from
their surrounding with a direction of self-propulsion typi-
cally set by their own anisotropy, either in shape or func-
tionalisation, rather than by an external field.

The origin of macroscopic ordered motion in active
systems is due to microscopic interactions occurring at
an individual level. Ideally, one would like to develop
a coarse-grained description of active systems from these
microscopic interactions but these are difficult to measure
or quantify, forcing scientists to develop phenomenologi-
cal models [4, 5]. ‘Non-living’ active systems offer a sim-
plified and more controlled setting compared to ‘living’
active systems and there have been multiple attempts
to design self-propelled synthetic particles in the labo-
ratory [6]. Examples include bimetallic Janus particles
powered by catalytic reactions [7, 8], electric [9, 10] and
magnetic field driven colloids [11], light activated col-
loidal surfers [12], water droplets driven by Marangoni
stress [13], and self-propelled squirming droplets [14].

In recent active matter experiments, it has been pos-
sible to measure and quantify these microscopic interac-
tions [9, 10]. These experiments consisted of spherical
colloids able to roll along surfaces by exploiting the so-
called Quincke rotation, discovered more than a century
ago [15]. The Quincke phenomenon involves the appli-
cation of a uniform electric field that gives rise to the
spontaneous rotation of dielectric solid particles or de-
formable drops suspended in a slightly conducting fluid
medium [16–18]. Quincke rotation is best explained us-
ing the much celebrated Melcher–Taylor leaky dielectric
model [19] that proposes the formation of a surface charge
on the particle-liquid interface. Rotation occurs due to
the symmetry breaking of the charge distribution that
gives rise to a net torque leading to steady rotation of
the particle.

There are two conditions for Quincke rotation to oc-

cur. First, the charge relaxation time of the particle, τ−,
must exceed that of the surrounding fluid, τ+, where
τ± = ε±/σ± with ε± and σ± being the permittivity
and conductivity, respectively (superscript − represent-
ing particle and + representing fluid). This implies that
the particle must be less conducting than the surround-
ing fluid, giving rise to a dipole moment, P , which is
anti-parallel to the applied electric field, E0. This config-
uration is unstable and the electric torque, TE ∝ P ×E0,
tends to rotate the particle away from its original orienta-
tion. The second condition requires that the magnitude
of the electric field exceeds a certain critical value, EC ,
for sustained rotation of the particle, E0 > EC , such that
the electric torque balances the viscous torque.

In an infinite fluid medium, a symmetric particle such
as a sphere under Quincke rotation will steadily rotate
without translating as no net external force acts on it.
This spontaneous rotation can be converted into spon-
taneous translation when the particle is placed near a
wall. Such ‘Quincke rollers’ were demonstrated experi-
mentally to perform collective motion due to electrohy-
drodynamic interactions with each other and with the
nearby surface [9, 10].

In this Letter, we show that it is possible to con-
vert spontaneous Quincke rotation into spontaneous
translation in the absence of surfaces. Specifically,
asymmetrically-shaped dielectric particles placed in the
bulk of a slightly conducting fluid will spontaneously ac-
quire both rotation and translation under the action of
a sufficiently strong uniform DC electric field in a plane
perpendicular to the field. We demonstrate this phe-
nomenon by focusing on the electrohydrodynamics of a
helix – an archetypal chiral particle – first computation-
ally, using the boundary element method, and then by de-
veloping an analytical theory in quantitative agreement
with the simulations.

Consider an uncharged neutrally buoyant solid parti-
cle of volume, V −, surface, S, and outward unit normal
vector, n, suspended in an infinite fluid medium of vol-
ume, V + (see Fig. 1). The dynamic viscosity of the fluid
is denoted by µ. The particle gets polarised due to the
application of a uniform DC electric field, E0 = E0ẑ.
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FIG. 1. Schematic representation of the problem considered
in this Letter. A solid particle of volume V −, surface S and
outward unit normal vector n is suspended in an infinite fluid
of volume V + and subject to a uniform DC electric field,
E0 = E0ẑ. The electric permittivities and conductivities of
the suspending fluid and particle are denoted as ε+, σ+ and
ε−, σ−, respectively, and the dynamic viscosity of the fluid is
µ. The translational and angular velocity of the particle are
U and Ω, respectively.

We define two dimensionless numbers R = σ+/σ− and
Q = ε−/ε+ such that RQ = τ−/τ+ > 1 is the nec-
essary condition for Quincke rotation to take place. In
the Melcher–Taylor leaky dielectric model, all charges are
concentrated on the particle surface, so that the elec-
tric potential in each domain satisfies Laplace’s equation
∇2ϕ± = 0 [19]. All the physical quantities are implicitly
assumed to be a function of time. On the particle sur-
face, the electric potential and the tangential component
of the local electric field are continuous Jϕ(x)K = 0 and
JEt(x)K = 0 for x ∈ S, where E±t = (I − nn) · E±,
E± = −∇ϕ± and Jf(x)K ≡ f+(x) − f−(x) denotes the
jump for any field variable f(x) defined on both sides
of the particle surface. The normal component of the
electric field E±n = n ·E± undergoes a jump due to the
mismatch in electrical properties between the two me-
dia [20], resulting in a surface charge distribution given
by Gauss’s law, q(x) = JεEn(x)K for x ∈ S. The surface
charge distribution evolves due to two distinct mecha-
nisms, namely Ohmic currents from the bulk, JσEnK, and
advection by the particle surface velocity, v(x). Accord-
ingly, the conservation equation for the surface charge
is,

∂tq + JσEnK +∇s · (qv) = 0 for x ∈ S, (1)

where ∇s ≡ (I − nn) · ∇ is the surface gradient opera-
tor. The fluid velocity field, v(x), and dynamic pressure,
p(x), satisfy the Stokes equations in the suspending fluid,
−µ∇2v +∇p = 0 and ∇ · v = 0. No-slip at the solid-
fluid interface leads to kinematic boundary conditions for
the fluid velocity, v(x) = U + Ω× (x − xc) for x ∈ S,
where U , Ω and xc are the translational velocity, rota-
tional velocity and centroid of the particle. In the absence
of inertia, the dynamic balance of electric and hydrody-
namic forces and torques on the solid particle requires
FE + FH = 0 and TE + TH = 0, respectively. The
forces and torques are found by integrating the surface

tractions, f ,

FE,H =
∮
S

fE,H dS(x), (2)

TE,H =
∮
S

(x− xc)× fE,H dS(x). (3)

The electric and hydrodynamic tractions are expressed
in terms of the Maxwell stress tensor, TE , and hydrody-
namic stress tensor, TH , respectively as,

fE = n · TE = n · [ε(EE − 1
2E

2I)], (4)
fH = n · TH = n · [−pI + µ

(
∇v +∇vT

)
]. (5)

To demonstrate that it is possible to convert Quincke ro-
tation into spontaneous translation without the need for
any surfaces, we consider a dielectric filament of helical
shape in an infinite fluid. Helices are prototypical chiral
particles used to create synthetic swimmers [26, 27] and
their propulsive abilities at low Reynolds number flows
have been well characterised in the context of bacterial
locomotion [28]. The centerline of the helix is specified as
r(ξ) = ξx̂ + Rh cos (2πχξ/λ)ŷ + Rh sin (2πχξ/λ)ẑ using
parameter ξ ∈ [−Lλ, Lλ], where Lλ = Nλ is the axial
length, λ is the helical pitch, N is the number of turns
and Rh is the helical radius. The arc and contour length
of the helix are s = ξ/ cosα and L = Lλ/ cosα, respec-
tively, where α = arctan(2πRh/λ) is the pitch angle. The
cross-section of the helical filament is denoted as a. Here,
χ = ±1 determines the chirality of the helix and we fo-
cus on right-handed helices, χ = 1, without any loss of
generality.

We use the boundary element method to solve the
electrohydrodynamics of a cylindrical and helical par-
ticle [29–31] (see Supplemental Material [21] for de-
tails). We show in Fig. 2a-c snapshots of a cylin-
der and a helix having identical aspect ratio (i.e. the
cylinder can be obtained by simply uncoiling the he-
lix) moving under the action of an external uniform
DC electric field. We specify the dimensionless elec-
tric field strength, E∗ = E0/EC,cl, where the criti-
cal electric field for Quincke rotation of a cylinder is
EC,cl = (2µ/ε+τMW,cl(εcl − σcl))

1/2 with εcl = (ε− −
ε+)/((ε−+ε+) and σcl = (σ−−σ+)/(σ−+σ+) [32]. Time
is non-dimensionalized with the characteristic Maxwell–
Wagner timescale for polarization of a cylindrical par-
ticle upon the application of an electric field, τMW,cl =
(ε− + ε+)/(σ− + σ+). The axes of both rigid particles
are initially tilted at an angle of 0.1π with respect to the
x axis in the x− z plane. Since the applied electric field,
E∗0 = E∗0 ẑ, is higher than the critical field for both par-
ticles, they spontaneously start rotating. The directions
of rotation for both particles are always perpendicular
to the electric field, i.e. Ω · E0 = 0 [21], and thus both
align their axes in a direction perpendicular to the elec-
tric field in the steady state. As predicted by theory, the
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FIG. 2. (Color online) (a–c) Snapshots of a cylinder and a helix having an aspect ratio of a/L = 0.0167 under Quincke
rotation due to an applied electric field E∗0 = 2.5ẑ with R = Q = 2. The helix has N = 3 turns, pitch angle α = 0.2π and
pitch λ/L = 0.236. The particles are slightly tilted with respect to the x axis at an angle 0.1π at time t∗ = 0. The cylinder
performs pure rotation while the helix undergoes rotation as well as translation perpendicular to the z axis. (d) Rotated view
of snapshot (c) showing the positively charged side of the particles. The helix swims out of the x− z plane due to its initially
titled configuration. The colorbar indicates surface charge distribution. Associated movies are available in the Supplemental
Material [21].

FIG. 3. (Color online) Three-dimensional trajectories of the
centroid of the cylinder (cl) and the helix (hl).

cylinder undergoes pure rotation with no translation. In
contrast, the asymmetric shape of the helix allows it to
undergo both rotation and translation. Furthermore, we
plot the net displacement of the cylinder (cl) and helix
(hl) in three dimensions in time, see Fig. 3. Note that
the helix swims out of the x− z plane due to its initially
tilted configuration.

In contrast to Quincke rollers, the helical particle in
Fig. 2 undergoes spontaneous translation in the absence
of surfaces, and thus represents a new type of active self-
propelling particle in bulk fluids. In order to further
probe its ability to swim, we investigate in Fig. 4 how
its steady swimming speed, U , depends on various geo-
metrical parameters (numerical data are shown in sym-
bols while the lines represent the theory developed be-
low). First we show in Fig. 4a how the magnitude of the
critical electric field depends on the pitch angle, α, for
various cross-sectional radii, a/λ, with fixed number of

turns. The critical field required to generate rotation of
the helix is seen to systematically increase above its value
for a cylinder as the amplitude of the helix grows and as
the filament becomes more slender.

Next we plot in Fig. 4b, the value of the steady swim-
ming speed, U , as a function of the helix pitch angle, α,
for two different electric field strengths while keeping the
cross-sectional radius fixed. The swimming speed is zero
for a straight rod (α = 0) and a torus (α = π/2) and
thus is maximal when the pitch angle takes an interme-
diate value, α ≈ 0.2π (simulations) and 0.215π (theory)
for E∗ = 2.5 and, α ≈ 0.25π (simulations and theory)
for E∗ = 5.5. Finally the effect of the aspect ratio of
the helix, a/L, on the swimming speed, U , is shown in
Fig. 4c keeping other geometrical quantities fixed. The
swimming speed undergoes a supercritical pitchfork bi-
furcation so that swimming does not occur for a/L below
a critical value (i.e. for particles that are too slender).

The computational results obtained above can be ratio-
nalised using theoretical arguments. The hydrodynamic
forces and torques acting on a helix are linearly related
to its translation and angular velocities through the 6×6
resistance matrix R as,(

FH
TH

)
= −R ·

(
U
Ω

)
. (6)

The hydrodynamics of a helix can be described using
the framework of resistive-force theory, which is valid for
slender filaments moving in viscous fluids in the absence
of inertia [33]. Assuming that the helix axis remains
aligned with the x direction, the components of the re-
sistance matrix relevant for the analysis below are R44 =
LR2

h(ζ⊥ cos2 α+ζ‖ sin2 α), R11 = L(ζ‖ cos2 α+ζ⊥ sin2 α),
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FIG. 4. (Color online) (a) Critical electric field of a helix with three different cross-sectional radii but fixed number of turns,
N = 1, plotted against the pitch angle. Red, blue and green indicate a/λ = 0.10, 0.05, 0.02 respectively. Open and filled
symbols indicate no-swimming and swimming, respectively, computed using numerical simulations based on boundary element
method while solid and dashed lines represent E∗/

√
1 +G . (b) Swimming speed versus pitch angle for a helix with aspect

ratio a/L = 0.0167 for 2 different electric field strengths, E∗ = 2.5 (red circle and solid line indicate theory and simulations
respectively) and E∗ = 5.5 (blue square and dashed line indicate theory and simulations respectively). (c) Swimming speed
versus cross-sectional radius of a helix keeping the electric field E∗ = 2.5, number of turns N = 3, pitch angle α = 0.2π and
pitch λ/L = 0.27 fixed (red circle and solid line indicate theory and simulations respectively). Movies associated with (c) are
available in the Supplemental Material [21].

R14 = χLR2
h sinα cosα(ζ‖−ζ⊥) and R13 = R34 = 0. All

other elements of the resistance matrix are provided in
the Supplemental Material [21]. Here, ζ‖ and ζ⊥ are the
drag coefficients for local motion of the helix along the di-
rections parallel and perpendicular to its tangent [21, 34].
For the electric problem, we assume that the helix is iden-
tical to a cylinder of the same contour length, a reason-
able approximation if the helix has a small pitch angle
(i.e. small amplitude). The resulting electric and viscous
torque acting on the helix are then given by,

TE = 2πε+a2LE2
0(P ×E0), (7)

TH = −(4πa2LΩ1 +R44Ω1 +R14U1)x̂, (8)

where P is the effective dipole moment of the helix. Since
there is no electric force acting on the particle, we have
FE = −FH = 0, leading to a relation between transla-
tional and angular velocity,

U1 = −Ω1(R14/R11). (9)

Balancing electric and viscous torques on the helix, TE +
TH = 0, leads to a relation between P2 and Ω1,

E∗2P2/(εcl − σcl)− (1 +G)Ω1 = 0, (10)

where G = (R44−R2
14/R11)/(4πµa2L) is a helical shape

factor that only depends on geometry. The relaxation
equation of the effective dipole moment of the helix de-
rived from the charge conservation equation, Eq. (1), pro-
vides another relation between P2 and Ω1 [21],

P2 = (εcl − σcl)Ω1/(1 + Ω2
1). (11)

Eliminating P2 from Eqs. (10) and (11), we obtain two
solutions for the angular velocity of a helix under Quincke

rotation: (i) the trivial solution, Ω1 = 0, and (ii) the
steady-state rotation solution,

Ω1 =
√
E∗2/(1 +G)− 1. (12)

The critical electric field for Quincke rotation of a helix
is then given as EC,hl = EC,cl

√
1 +G while the predicted

swimming speed is given by Eq. (9).
The predictions from this theoretical approach are

compared with the computational results in Fig. 4. The
theory is able to reproduce all features of the computa-
tional study, including the supercritical pitchfork bifur-
cation (at a fixed field strength) showing non-existence of
swimming states for filaments that are too slender. This
is because while the electric torque on the particle scales
as a2, the viscous torque scales as a2 + R2

h, see Eqs. (7)
and (8). The breakdown of the theory for large values
of a/L is expected since the hydrodynamics based on
resistive-force theory is accurate only in the asymptotic
limit of slender filaments, a/L→ 0.

In summary, we have shown in this Letter that the
classical Quincke rotational instability of dielectric par-
ticles under DC electric fields can lead to spontaneous
self-propulsion in a bulk fluid when combined with geo-
metrical asymmetry. The phenomenon occurs in the ab-
sence of any nearby surfaces, in stark contrast to Quincke
rollers which require the presence of walls to break sym-
metries and swim. While a single particle rotates and
translates in a plane perpendicular to the electric field,
suspensions of such particles are expected to display
out-of-plane swimming resulting from three-dimensional
electrohydrodynamic interactions. As a practical exam-
ple, we consider a helical particle made of Polymethyl
methacrylate (PMMA) suspended in various classical di-
electric fluids and predict swimming speeds of tens of mi-
crons per second (see Supplemental Material [21]). The
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physical mechanism of this new form of self-propulsion
was demonstrated using numerical computations for the
full system in the case of a helical filament and confirmed
analytically by a theoretical approach in the slender-helix
limit. Though we have focused on the special case of
helical particles, self-propulsion is expected to occur for
any kind of asymmetric particles whose resistance ma-
trix, R, contains a nonzero off-diagonal term enabling
coupling of an imposed rotation to translation. Sus-
pensions of randomly-shaped particles under Quincke ro-
tation interacting electrohydrodynamically are thus ex-
pected to perform collective motion by exploring the full
three-dimensional space, thereby, opening doors to a po-
tentially new type of active matter.
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I. NUMERICAL METHOD

The electrohydrodynamics of a dielectric particle, governed by Laplace and Stokes equa-
tions, is best solved using the boundary element method [1, 2]. The electric potential is
represented in terms of the single-layer density JEn(x)K as,

ϕ(x0) = −x0 ·E0 +
∮

S
JEn(x)KG(x0;x) dS(x), (1)

where x0 ∈ V ±, S, x ∈ S and the Green’s function or fundamental solution of Laplace’s
equation in an unbounded domain is given by G(x0;x) = 1/4πr, r = x0−x and r = |r|. For
a given surface charge distribution q(x) at any time, we first compute the jump in normal
electric field across the interface JEnK using an integral equation derived from manipulating
Eq. (1), ∮

S
{JEn(x)K− JEn(x0)K}{n(x0) · ∇0G(x0;x)} dS(x)

+ JEn(x0)K
[

Q

Q− 1 − L(x0)
]

= En0 + q(x0)
Q− 1 ,

(2)

where x0 ∈ S and L is a purely geometric quantity [3]. Having computed JEnK, we can use
integral Eq. (1) to compute the electric potential. The tangential component of the electric
field, Et, is computed numerically by taking tangential derivatives of the electric potential.
The normal components of the electric field are easily obtained using Gauss’s law,

E+
n = q −QJEnK

1−Q , E−n = q − JEnK
1−Q . (3a, b)

Finally, we determine the jump in the normal component of Ohmic currents JσEnK and
the external electric traction fE using Eq. (4) in the main text. The net electric force and
torque acting on the particle is found by integrating electric traction using Eqs. (2) and (3)
in the main text. The next step involves computing the hydrodynamic force and torque by
using the dimensionless form of force and torque balance equations, i.e. FH = −FE/Ma

and TH = −TE/Ma. Here, we have introduced the third dimensionless Mason number,
Ma, (R = σ+/σ− and Q = ε−/ε+ being the other two) that denotes the ratio of viscous to
electric stresses,

Ma = µ

ε+τMWE2
0
. (4)

In this work, we have chosen to specify the dimensionless electric field strength E∗ = E0/EC

instead of the Mason number, Ma, where the critical electric field for Quincke rotation of a
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particle is,

EC =
√

2µ
ε+τMW(ε− σ) . (5)

These two dimensionless numbers are related as Ma = (ε − σ)/(2E∗2). The only term
remaining to be computed in the charge conservation equation is the surface velocity v(x ∈
S). This is obtained by solving the hydrodynamic problem for the particle subject to a force
and a torque. Assuming creeping flow, we use the Stokes boundary integral equation to
represent the particle surface velocity as,

U + Ω× (x0 − xc) = − 1
8πµ

∮
S
fh(x) · G(x0;x) dS(x), (6)

where x0 ∈ S and G(x0;x) denotes the free-space Green’s functions for the Stokeslet
G(x0;x) = I/r + rr/r3. The Stokes boundary integral equation (6) and the equations
relating the net force and torque to the surface tractions, Eqs. (2) and (3) in the main text,
are solved together to find the unknown particle velocities U and Ω. Having computed the
surface velocity, the final step involves numerically integrating the charge conservation equa-
tion (without the charge convection part since the nodes are advected with the interfacial
velocity) in time using a second order Runge-Kutta scheme until a steady state is reached.

II. VALIDATIONS: QUINCKE ROTATION OF A SPHERE AND A CYLINDER

Using spherical harmonics for a sphere (sp) under Quincke rotation, we can obtain the
dipole moment, P , relaxation equation from the charge conservation equation (Eq. (1) in
the main article),

dP

dt
= Ω× [P − a3εspE0]− 1

τMW,sp

[P − a3σspE0], (7)

where a is the radius of the sphere, τMW,sp = (ε− + 2ε+)/(σ− + 2σ+) is the characteristic
timescale for polarization of the spherical particle upon application of the field. The other
two dimensionless numbers, εsp = (ε−−ε+)/(ε−+2ε+) and σsp = (σ−−σ+)/(σ−+2σ+) are
called the Clausius–Mossotti factors. It can be easily shown that quadrupoles and higher
multipoles are absent if the electric field is uniform and these multipoles do not interact
with each other [4]. As there is no net force on the particle, FE = −FH = 0, we only need
the torque balance equation to determine the angular velocity of the spherical particle,

4πε+P ×E0 − 8µa3Ω = 0. (8)
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FIG. 1. (Color online) (a) Relative error in the angular velocity of a sphere under Quincke rotation

computed using boundary element method for various grid sizes, where N4 is the total number of

elements. (b) Relative error in the angular velocity of a cylinder under Quincke rotation computed

using boundary element method for various aspect ratios a/L but fixed number of elements, N4 =

444.

The dipole moment scales as a3E0 and the angular velocity scales as τ−1
MW,sp. If the applied

field strength E0 exceeds the critical electric value EC,sp, the steady-state angular velocity
of a sphere under Quincke rotation is,

Ω = 1
τMW,sp

√√√√ E2
0

EC,sp

− 1, where (9)

EC,sp =
√

2µ
ε+τMW,sp(εsp − σsp) . (10)

We can perform the same analysis for an infinitely long cylinder (cl) of cross-sectional radius
a using polar harmonics. The dipole moment relaxation equation (7) retains the same form,
except for two changes, namely, (i) a3 is replaced with a2, and (ii) the Clausius–Mossotti
factors and the Maxwell–Wagner relaxation times change to εcl = (ε− − ε+)/((ε− + ε+),
σcl = (σ−−σ+)/(σ−+σ+) and τMW,cl = (ε−+ε+)/(σ−+σ+), respectively. These changes are
a direct consequence of the form of the electric potential in polar harmonics, φ+ = P ·x/x2,
as compared to that in spherical harmonics, φ+ = P · x/x3. The torque balance equation
per unit length for a cylinder is given as,

2πε+P ×E0 − 4µa2Ω = 0. (11)
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The steady-state angular velocity of an infinitely long cylinder under Quincke rotation is,

Ω = 1
τMW,cl

√√√√ E2
0

EC,cl

− 1, where (12)

EC,cl =
√

2µ
ε+τMW,cl(εcl − σcl)

. (13)

The 2 coupled ODEs Eqs. (7) and (8), relevant for a sphere or Eqs. (7) (with appropriate
changes) and (11), relevant for a cylinder can be marched in time with a specified initial
condition and serve as a comparison for the numerical results. For a given dipole moment
P (t = 0) = P0, we can find the surface charge distribution using Gauss’s Law q(x, t =
0) = q0 and solve the relevant integral equations described in § I. Simultaneously, we can
also solve the ODEs to find the angular velocity at any given time. In Fig. 1(a), we plot
the relative error in the angular velocity of a sphere under Quincke rotation obtained by
numerical simulations for various grid sizes. We find that the numerical results converge
to the theoretical one as the grid size is decreased. In Fig. 1(b), we plot the relative error
in the angular velocity of a cylinder having various aspect ratios while the total number of
elements is kept fixed, N4 = 444. We find that the agreement between theory and numerics
is the best for the cylinder with the lowest aspect ratio. This is expected as the theory is
valid for an infinite long cylinder, a/L→ 0.

III. RESISTANCE MATRIX

For the sake of completeness, we provide all the elements of the resistance matrix R

relevant for resistive-force theory of a slender helix in viscous flow [5],



Fh,1

Fh,2

Fh,3

Th,1

Th,2

Th,3


= −



R11 0 R13 R14 0 R16

0 R22 0 0 R25 0
R13 0 R33 R34 0 R36

R14 0 R34 R44 0 R46

0 R25 0 0 R55 0
R16 0 R36 R46 0 R66





U1

U2

U3

Ω1

Ω2

Ω3


. (14)
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where,

R11= L(ζ‖ cos2 α + ζ⊥ sin2 α), (15a)

R13= 0, (15b)

R14= χLRh sinα cosα(ζ‖ − ζ⊥), (15c)

R16= LRh sinα cosα(ζ‖ − ζ⊥), (15d)

R22= 1
2L[ζ⊥(1 + cos2 α) + ζ‖ sin2 α], (15e)

R25= −3
4R14, (15f)

R33= R22, (15g)

R34= 0, (15h)

R36= −1
4R14, (15i)

R44= LR2
h(ζ⊥ cos2 α + ζ‖ sin2 α), (15j)

R55= 1
12 [ζ⊥L{L2 cos4 α + 6R2

h sin2 α}+ LR2
h cos2 α{(2N2π2 + 15)ζ‖

+ (2N2π2 − 9)ζ⊥}] (15k)

R66= 1
12 [ζ⊥L{L2 cos4 α + 6R2 sin2 α}+ LR2

h cos2 α{(2N2π2 − 3)ζ‖

+ (2N2π2 + 9)ζ⊥}]. (15l)

The drag coefficients along the directions parallel and perpendicular to the tangent of the
centerline representing the slender particle are,

ζ‖ = 2πµ
ln (0.18λ/a cosα) , ζ⊥ = 4πµ

ln (0.18λ/a cosα) + 0.5 . (16a, b)

IV. DIMENSIONAL VALUES OF THE SWIMMING SPEED

In this section, we discuss the order of magnitude of the dimensional values of (a) the
critical electric field for various solid-liquid systems, and (b) the swimming speed achievable
by a helical particle under Quincke rotation. Using data from past literature, a dielectric
helical particle can be made using Poly-methyl-methacrylate (PMMA) and a dielectric liquid
[6–9], see Table I. The permittivity, conductivity, and density of PMMA are ε− = 2.3ε0 and
σ− = 10−14 S m−1, and ρ− = 1.18 × 103 kg mm−3, respectively, where ε0 = 8.8542 × 10−12

F m−1 is the permittivity of vacuum. When performing experiments, the density of the
particle and suspending liquid must be matched by adding suitable agents to the liquid.
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Liquid Permittivity Conductivity Viscosity Density MW time Critical

Field

ε+ σ+

(nS m−1)

µ (mPa s) ρ+ (kg m−3) τMW,sp|cl

(ms)

EC,sp|cl

(V µm−1)

Dodecane 2.17 ε0 50 1.64 770 0.6|0.9 0.703|0.430

Dielec S 2.4 ε0 4.3 12.9 840 7.6|10.3 0.550|0.337

Dielec S + Ugilec 3.69 ε0 33 13.6 1180 1.3|1.7 1.261|0.773

Hexadecane 2.2 ε0 140 3 770 0.22|0.30 1.580|0.968

TABLE I. Physico-chemical properties of various dielectric liquids, the Maxwell-Wagner relaxation

time and critical electric field of a solid spherical or cylinder particle made of PMMA under Quincke

rotation in these liquids.

Let us consider a helical particle made of PMMA material suspended in a hexadecane
solution and subject to an electric field of strength E = 2.5EC,cl = 2.42 V µm−1. These
magnitudes of electric field strength have been employed in recent experiments involving
Quincke rotation [10]. The helical parameters are chosen as, contour length L = 3 µm,
N = 3 turns, pitch angle α = 0.2π, and radius of cross-section a = 0.08 µm and 0.16 µm.
Using all the relevant data, the numerical simulations predict a swimming speed of U =
75 µm s−1 and 61 µm s−1. The dynamics of these helices are visualized in Movie 2, see section
§V (a = 0.08 µm and 0.16 µm corresponding to green and purple helices, respectively).
It is noteworthy that for a given helical shape and fixed critical electric field strength,
the dimensional swimming speed value is inversely proportional to the Maxwell-Wagner
relaxation time. The diffusivity of these micron-sized particle has not been taken into
account in this work. It is typically of the order of D−1 = 0.31 s corresponding to a
persistence length, lp ∼ 25 µm [8].

V. MOVIES

• Movie 1: Shows the dynamics of a cylinder and a helix of identical aspect ratio a/L =
0.0167 under Quincke rotation subject to a uniform DC electric field E∗ = 2.5 with
R = Q = 2 from t∗ = 0 − 200. The helix has N = 3 turns, pitch angle α = 0.25π,
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pitch λ/L = 0.236.

• Movie 2: Shows the dynamics of 3 helices with different aspect ratios, a/L = 0.003
(red) that does not swim, a/L = 0.027 (green) that swims the fastest and a helix that
has twice the thickness as the green helix, a/L = 0.053 (purple) but swims slower. The
electric field is kept fixed at E∗ = 2.5 with R = Q = 2. The other fixed geometrical
parameters are N = 3 turns, pitch angle α = 0.2π, pitch λ/L = 0.27.
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