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Abstract  338 

The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated 339 

with various adult diseases. Using 1000-Genome imputed genotype data in up to ~370,000 340 

women, we identify 389 independent signals (P<5×10-8) for age at menarche, a notable 341 

milestone in female pubertal development. In Icelandic data from deCODE, these signals 342 

explain ~7.4% of the population variance in age at menarche, corresponding to ~25% of the 343 

estimated heritability. We implicate ~250 genes via coding variation or associated 344 

expression, demonstrating significant enrichment in neural tissues. Rare variants near 345 

imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects only when 346 

paternally inherited. Mendelian randomization analyses indicate causal inverse associations, 347 

independent of BMI, between puberty timing and risks for breast and endometrial cancers in 348 

women, and prostate cancer in men. In aggregate, our findings reveal new complexity in the 349 

genetic regulation of puberty timing and support causal links with cancer susceptibility.  350 

Introduction 351 

Puberty is the developmental stage of transition from childhood to physical and sexual 352 

maturity and its timing varies markedly between individuals1. This variation reflects the 353 

influence of genetic, nutritional and other environmental factors and is associated with the 354 

subsequent risks for several diseases in adult life2. Our previous large-scale genomic 355 

studies identified 113 independent regions associated with age at menarche (AAM), a well-356 

recalled milestone of puberty in females3,4. The vast majority of those signals have 357 

concordant effects on the age at voice breaking (genome-wide genetic correlation between 358 

traits rg=0.74), a corresponding milestone in males5. Those genetic findings implicated a 359 

diverse range of mechanisms involved in the regulation of puberty timing, identified 360 

significant enrichment of AAM-associated variants in/near genes disrupted in rare disorders 361 

of puberty, and highlighted shared aetiological factors between puberty timing and metabolic 362 

disease outcomes2,3.  363 

However, those previous studies were based on genome-wide association data that were 364 

imputed to the relatively sparse HapMap2 reference panel or they used gene-centric arrays. 365 

Consequently, the reported genetic signals explained only a small fraction of the population 366 

variance, suggesting that several hundreds or thousands of signals are involved3,4. Here, we 367 

report an enlarged genomic analysis for AAM in a nearly 2-fold higher sample of women 368 

than previously3, and using more densely imputed genomic data. Our findings increase by 369 

more than 3-fold the number of independently associated signals and indicate likely causal 370 

effects of puberty timing on risks of various sex steroid sensitive cancers in men and women. 371 

Results 372 

Genome-wide array data, imputed to the 1000-Genome reference panel, were available in 373 

up to 329,345 women of European ancestry. These comprised 40 studies from the 374 

ReproGen consortium (N=179,117), in addition to the 23andMe, Inc. (N=76,831) and UK 375 

Biobank studies (N=73,397) (Table S1). The distribution of genome-wide test statistics 376 

demonstrated significant inflation (lambda GC = 1.75), however LD score regression 377 

analyses confirmed that this inflation was solely due to polygenicity rather than population 378 

structure (LD score intercept = 1.00, s.e 0.02). In total, 37,925 variants were associated with 379 

AAM at P<5×10-8, which were resolved to 389 statistically-independent signals (Figure S1, 380 



Table S2). Per-allele effect sizes ranged from ~1 week to 5 months, 16 index variants were 381 

classed as low-frequency (minor allele frequency <5%; minimum observed 0.5%), and 26 382 

were insertion/deletion polymorphisms. Signals were distributed evenly across all 23 383 

chromosomes with respect to chromosome size (Figure S2). Of the previously reported 106 384 

autosomal, 5 exome-array and 2 X-chromosome signals for AAM, all remained associated at 385 

genome-wide significance, except for two common loci (reported as SCRIB/PARP10 386 

[P=5x10-4] and FUT8 [P=5.4x10-7]) and one rare variant not captured by the 1000G 387 

reference panel (p.W275X, TACR3).   388 

Independent replication in the deCODE study (N=39,543 women) showed that 367 (94.3%) 389 

of the 389 signals had directionally-concordant effects (187 at P<0.05) and 368 retained 390 

genome-wide significance in a combined meta-analysis (Table S3). In aggregate, the top 391 

389 index SNPs explained 7.4% of the trait variance in deCODE and 7.2% in UK Biobank 392 

(the latter estimate used weights derived from a meta-analysis excluding UK Biobank). 393 

These estimates are double that explained by the previously reported 106 signals3 (3.7% in 394 

deCODE) and are equivalent to one quarter of the total chip-captured heritability 395 

(h2
SNP=32%, se=1%) for AAM, estimated in UK Biobank. 396 

Consistent with our previous reports, we found a strongly shared genetic architecture 397 

between AAM in women and age at voice breaking in men (considered as a continuous trait 398 

in 55,871 men in 23andMe, Inc.) (genetic correlation (rg)=0.75 P=1.2×10-79). Of the 389 AAM 399 

signals, 327 demonstrated directionally-consistent trends or associations with age at voice 400 

breaking in men (binomial P=1.4×10-44), and 18 signals reached a conservative multiple test-401 

corrected significance threshold (P<1x10-4; i.e. 0.05 / 389) (Table S4). Similarly, in UK 402 

Biobank where age at voice breaking was recorded using only 3 categories, 277 and 297 of 403 

the 377 autosomal loci demonstrated directionally-consistent trends or associations with 404 

“relatively early voice breaking” (N=2,678 cases, N=55,763 controls, binomial P=2.4×10-20) 405 

and “relatively late voice breaking” (N=3,566 cases, P=1.9×10-30), respectively (Table S5). 406 

Implicated genes and tissues 407 

We used a number of analytical techniques to implicate genes in the regulation of AAM. 408 

These included: mapping of non-synonymous SNPs, gene expression QTLs and integration 409 

of Hi-C chromatin interaction data. Eight of the 389 lead variants were non-synonymous, and 410 

a further 24 genes were implicated by highly correlated non-synonymous variants (r2>0.8) 411 

(Table S6). These include genes disrupted in rare disorders of puberty: aromatase 412 

(CYP19A1, #307), gonadotropin-releasing hormone (GNRH1, #178), kisspeptin (KISS1, 413 

signal #31); and the stop-gained variant in fucosyltransferase 2 (FUT2, #357) that confers 414 

blood group secretor status. 415 

Two approaches were used to interrogate publicly available gene expression datasets, both 416 

of which use one or more SNPs (not restricted to lead SNPs) to infer patterns of gene 417 

expression based on imputation reference panels (see methods). Firstly, to maximise power 418 

we analysed data from the largest available eQTL dataset for any tissue (whole blood, 419 

N=5,311)6, under the assumption that some causal genes and regulatory mechanisms might 420 

be ubiquitously expressed or functionally involved in blood tissues. Systematic  eQTL 421 

integration using the Summary Mendelian Randomization approach7 prioritised 113 422 

transcripts, for 60 of which there was evidence for causal or pleiotropic effects, rather than 423 

coincidental overlap of signal (as indicated by HEIDI heterogeneity test P>0.009) (Table S7). 424 



Secondly, we used LD score regression applied to specifically expressed genes (LDSC-425 

SEG)8 to identify AAM-relevant tissues and cell types that are enriched for AAM heritability. 426 

Five of the 46 GTEx tissues were positively enriched for AAM-associated variants (Figure 427 

1). Notably, all of these were central nervous system tissues, including the pituitary and, 428 

additionally, the hypothalamus was just below the significance threshold for enrichment 429 

(P=9.8×10-3), consistent with the key role of this central axis2. Targeted assessment of these 430 

six enriched brain tissues using MetaXcan identified 205 genes whose expression was 431 

regulated by AAM-associated variants (Table S8). Of note, later AAM was associated with 432 

higher transcript levels of LIN28B (#147) in the pituitary, NCOA6 (Nuclear receptor 433 

coactivator 6; #365) in the cerebellum, and HSD17B12 (encoding Hydroxysteroid (17-Beta) 434 

Dehydrogenase 12; #250) in various tissues.  435 

To identify possible distal causal genes, we interrogated reported Hi-C data to assess if any 436 

of the AAM loci are located in regions of chromatin looping9. 335 of the 389 loci were located 437 

within a topologically associating domain (TAD) – a defined boundary region containing 438 

chromatin contact points, each of which contained on average ~5 genes (Table S9). These 439 

included 22 of the 31 gene desert regions (nearest protein-coding gene >300kb), where 440 

TADs contained notable distal candidate genes such as INHBA (#158), BDNF (#248), 441 

JARID2 (#128) and several gamma-aminobutyric acid receptors (#91). We also observed 442 

several regions where multiple independent AAM signals all reside within one TAD 443 

containing the same single gene – RORB (signal #200 intronic, signal #199 ~200kb 444 

downstream, #198 ~1.2Mb downstream), THRB (#67 intronic, #68 ~180kb upstream) and 445 

TACR3 (#96 5’UTR, #97 ~25kb upstream, #98 ~133kb upstream and #95 ~263Kb 446 

downstream).  447 

66 AAM signals were located in a specific contact point (between 5-25kb in size) within the 448 

335 TADs, indicating a direct physical connection between these signals and a distal 449 

genomic region, on average ~320kb away. This included the previously reported example of 450 

the BMI-associated (and AAM-associated) FTO SNP and a distal IRX3 promoter ~1Mb away 451 

(signal #326)10. The longest chromatin interaction observed was ~38.6Mb, where two distinct 452 

AAM signals located ~300kb apart (#206 and #207) were both in contact with the same 453 

distal genomic region ~38.6Mb away that contains only one gene: prostaglandin E synthase 454 

2 (PTGES2).  455 

Transcription factor binding enrichment 456 

To identify functional gene networks implicated in the regulation of AAM, we tested for 457 

enriched co-occurrence of AAM associations and predicted regulators within 226 enhancer 458 

modules combining DNaseI hypersensitive sites and chromatin states in 111 cell types and 459 

tissues. In total, we tested 2,382 transcription factor-enhancer module combinations. Sixteen 460 

transcription factor motifs were enriched for co-occurrence with AAM-associated variants 461 

within enhancer regions at study level significance (FDR<0.05) (Table S10). Furthermore, 5 462 

of the 16 motif-associated transcription factors also mapped within 1Mb of an index AAM-463 

associated SNP. These transcription factors included notable candidates; firstly, pituitary 464 

homeobox 1 (PITX1), is located within 50kb of genome-wide significant SNPs (~500kb from 465 

lead index #114). Secondly, SMAD3, a gene recently implicated in susceptibility to dizygous 466 

twinning11, is located within 600kb of an index SNP and its expression in several GTEx brain 467 

tissues is genetically correlated with AAM. Thirdly, RXRB is located within ~500kb of a novel 468 

index SNP (signal #133), and it represents the fifth (out of nine) retinoid-related receptor 469 



gene implicated by genome-wide significant AAM variants. This set now includes all three 470 

retinoid X receptor genes (RXRA, RXRB and RXRG), and retinoid-related receptor genes 471 

are the nearest gene to the index SNP at three AAM loci (RXRA, RORA and RORB). 472 

Pathway analyses 473 

To identify other mechanisms that regulate pubertal timing, we tested all SNPs genome-wide 474 

for enrichment of AAM associations with pre-defined biological pathway genes. Ten 475 

pathways reached study-wise significance (FDR<0.05). Five pathways were related to 476 

transcription factor binding, and the other pathways were: peptide hormone binding, PI3-477 

kinase binding, angiotensin stimulated signalling, neuron development and gamma-478 

aminobutyric acid (GABA) type B receptor signalling (Table S11). 479 

All of our previously reported custom pathways (Table S12)3 remained significant in this 480 

expanded dataset: nuclear hormone receptors (P=2.4×10-3); Mendelian pubertal disorder 481 

genes (P=1.9×10-3); and JmjC-domain-containing lysine-specific demethylases (P=1×10-4). 482 

Notably, new genome-wide significant signals mapped to lysine-specific demethylase genes: 483 

JMJD1C (signal #223), PHF2 (#208), KDM4B (#347), KDM6B (#332), JARID2 (#128), or to 484 

Mendelian pubertal disorder genes: CYP19A1 (#307), FGF8 (#230), GNRH1 (#178) KAL1 485 

(#378), KISS1 (#31), NR5A1 (#215), and NR0B1 (#379). The strongest AAM signal remains 486 

at LIN28B3,12,13, which encodes a key repressor of let-7 miRNA biogenesis and cell 487 

pluripotency14. Transgenic Lin28a/b mice demonstrate both altered pubertal growth and 488 

glycaemic control15, suggesting that the Lin28/let-7 axis could link puberty timing to type 2 489 

diabetes susceptibility in humans. let-7 miRNA targets are reportedly enriched for variants 490 

associated with type 2 diabetes16. We tested the same set of computationally-predicted and 491 

experimentally-derived mRNA/protein let-7 miRNA targets16, and observed significant 492 

enrichment of AAM-associated variants at miRNA targets that are down-regulated by let-7b 493 

overexpression in primary human fibroblasts (Table S12, Pmin=1×10-3). 494 

Imprinted genes and parent-of-origin effects 495 

We previously reported an excess of parent-of-origin specific associations for those AAM 496 

variants that map near imprinted genes, as defined primarily from animal studies3. Recent 497 

data from the GTEx consortium now allow a more systematic assessment of imprinted gene 498 

enrichment using genes defined from human transcriptome-wide analyses17. Consistent with 499 

our previous observations, imprinted genes were enriched for AAM-associated variants 500 

(MAGENTA P=4×10-3), with a concordant excess of parent-of-origin specific associations for 501 

the 389 index AAM variants (Figure S3, Table S3).  502 

Systematic assessment of the 389 AAM gene regions in the Icelandic deCODE study 503 

revealed novel rare variants in two imprinted gene regions with robust parent-of-origin 504 

specific associations with AAM. Firstly, we identified a rare 5‘ UTR variant rs530324840 505 

(MAF=0.80% in Iceland) in MKRN3 that is associated with AAM under the paternal 506 

(P=6.4×10-11, β= -0.52 years) but not the maternal model (P=0.20, β=0.098, Phet=1.3x10-7) 507 

(Table 1 & S13). rs530324840 is by far the most significant variant at the MKRN3 locus and 508 

is uncorrelated with our previously reported common variant rs12148769 at the same locus 509 

(r2 <0.001 in deCODE)3 (Figure S4). We note that the rare 5‘ UTR variant rs184950120 510 

detected in the current GWAS meta-analysis also shows paternal-specific association in 511 



deCODE and, despite their near location (235bp from rs530324840), is uncorrelated to 512 

rs530324840 (r2<0.0001 in deCODE). 513 

The second novel robust parent-of-origin specific signal is indicated by a rare intergenic 514 

variant at the DLK1 locus (rs138827001; MAF=0.36% in Iceland) that associates with AAM 515 

under the paternal model (P=4.7×10-10, β= -0.70 years) but not the maternal model (P=0.88, 516 

β= -0.018 years, Phet=1.4x10-4) (Table 1, Figure S5). rs138827001 is uncorrelated with the 517 

two previously reported common variants rs10144321 and rs7141210 at the DLK1 locus (r2 518 

<0.01 in Iceland) that both also showed paternal allele-specific associations3. At this locus, 519 

we observed a further common variant rs61992671 (MAF=48.5% in Iceland) 4.4kb upstream 520 

of the Maternally Expressed 9 (MEG9) gene (~300kb from DLK1) that was associated with 521 

AAM under the maternal model (P=6.0×10-8, β= -0.077 years) but not the paternal model 522 

(P=0.27, β=0.015 years, Phet=1.9x10-5). rs61992671 was uncorrelated (r2<0.05) with the two 523 

common signals identified in the meta-analysis (rs10144321 and rs7141210) and replicated 524 

with a consistent magnitude of effect in the our GWAS meta-analysis (additive model, 525 

P=5.1×10-6).  526 

Disproportionate genetic effects on early or late puberty timing  527 

Family-based studies in twins have suggested age-related differences in the impacts of 528 

genetic and environmental factors on AAM18. To test for asymmetry in the genetic effects on 529 

puberty timing, we defined two groups of women in the UK Biobank study based on 530 

approximated quintiles for AAM – “early”  (8-11 years inclusive, N=14,922) and “late” (15-19, 531 

N=12,290). Each group was compared to the same median quintile AAM reference group 532 

(age 13, N=17,717). Estimated genome-wide heritability was higher for early AAM 533 

(h2
SNP=28.8%; s.e 2.3%) than late AAM (h2

SNP=21.5%; s.e. 2.5%, Pdif=0.03). Accordingly, 534 

217/377 (57.7%) autosomal index SNPs had larger effect estimates on early than late AAM 535 

(binomial P=0.004 vs. 50% expected), and the aggregated effect of the 377 SNPs also 536 

differed between strata (P=2.3×10-4) (Figure 2, Table S14). These differences remained 537 

when matching the early and late AAM strata for sample size and phenotype ranges (Table 538 

S15).  539 

In contrast, we observed the opposite pattern of disproportion in the genetic effects on male 540 

voice breaking in UK Biobank (“relatively early” N=2678, “relatively late” N=3566). Genome-541 

wide heritability estimates tended to be higher for relatively late voice breaking (7.8%, s.e 542 

1.2%) than for relatively early (6.9%, s.e 1.3%), and 227/377 (60.2%) index SNPs had larger 543 

effect estimates on relatively late than relatively early voice breaking (binomial P=4.3×10-5).  544 

BMI-independent effects of puberty timing on cancer risks 545 

Traditional (non-genetic) epidemiological studies have reported complex associations 546 

between puberty timing, body mass index (BMI) and adult cancer risks. For example, large 547 

studies using historical growth records identified lower adolescent BMI and earlier puberty 548 

timing (estimated by the age at peak adolescent growth) as predictors of higher breast 549 

cancer risk in women19,20. Conversely, BMI is positively associated with breast cancer risk in 550 

postmenopausal women21. Furthermore, the strong inter-relationship between puberty timing 551 

and BMI limits the ability to consider their distinct influences on disease risks in traditional 552 

observational studies. Consistent with our previous report5, we observed a strong inverse 553 

genetic correlation between AAM and BMI (rg= -0.35, P=1.6×10-72). 39 AAM loci overlapped 554 



with reported loci for adult BMI22, yet even those AAM signals with weak individual 555 

associations with adult BMI still contributed to BMI when considered in aggregate: the 237 556 

AAM variants without a nominal individual association with adult BMI (all P>0.05) were 557 

collectively associated with adult BMI (P=4.2×10-9) (Figure S6). This finding precludes an 558 

absolute distinction between BMI-related and BMI-unrelated AAM variants. 559 

In Mendelian randomisation analyses, we therefore included adjustment for genetically-560 

predicted BMI (as predicted by the 375 autosomal AAM variants) in order to assess the likely 561 

direct (i.e. BMI-independent) effects of AAM on the risks for various sex steroid-sensitive 562 

cancers (see methods). In these BMI-adjusted models, increasing AAM was associated with 563 

lower risk for breast cancer (OR=0.935 per year, 95% confidence interval: 0.894-0.977; 564 

P=2.6×10-3), and in particular with oestrogen receptor (ER)-positive but not ER-negative 565 

breast cancer (P-heterogeneity =0.02) (Figure 3, Table S16). Similarly, increasing AAM 566 

adjusted for genetically-predicted BMI was associated with lower risks for: ovarian cancer 567 

(OR=0.930, 0.880-0.982; P=9.3×10-3), in particular serous ovarian cancer (OR=0.917, 568 

0.859-0.978; P=8.9×10-3); and endometrial cancer (OR=0.781, 0.699-0.872; P=9.97×10-6). 569 

Assuming an equivalent per-year effect of the current AAM variants on age at voice 570 

breaking, as we reported for the 106 previously identified AAM variants 5, we could also infer 571 

a protective effect of later puberty timing, independent of BMI, on lower risk for prostate 572 

cancer in men (OR=0.925, 0.876-0.976; P=4.4×10-3). 573 

These findings were supported by sensitivity tests using sub-groups of AAM signals stratified 574 

by their individual associations with adult BMI. The ‘BMI-unrelated’ variant score (comprising 575 

314 variants) supported a direct effect of AAM timing on breast cancer risk in women 576 

(OR=0.946, 0.904-0.988; P=1.3×10-2). In contrast, a score using only the 61 BMI-related 577 

AAM variants gave a significant result in the opposite direction (OR=1.15, 1.06-1.25; 578 

P=4.3×10-4) (Table S16), consistent with the recently reported inverse association between 579 

genetically-predicted BMI and breast cancer risk23,24. Further sensitivity tests (heterogeneity 580 

and MR-Egger tests) using the ‘BMI-unrelated’ variant score suggested that additional sub-581 

pathways might link AAM to risk of ovarian cancer (MR-Egger Intercept P=0.036), but 582 

reassuringly these tests indicated no further pleiotropy (i.e. beyond the effects of BMI) in our 583 

analyses of breast, endometrial and prostate cancers (for all: I-square <23% and MR-Egger 584 

Intercept P>0.1) (Table S16, Figure S7).    585 



Discussion 586 

In a substantially enlarged genomic analysis using densely imputed genomic data, we have 587 

identified 389 independent, genome-wide significant signals for AAM. In aggregate, these 588 

signals explain ~7.4% of the population variance in AAM, corresponding to ~25% of the 589 

estimated heritability. While assigning possible causal genes to associated loci is an ongoing 590 

challenge for GWAS findings, we adopted a number of recently described methods to 591 

implicate the underlying genes and tissues. 33 genes were implicated by non-synonymous 592 

variants and >200 genes were implicated by transcriptome-wide association in the five 593 

neural tissues enriched for AAM-associated gene activation. Transcriptome-wide association 594 

analyses also enabled the estimation of direction of gene expression in relation to AAM, 595 

notably indicating the likely delaying effect of LIN28B gene expression on AAM, which is 596 

consistent with inhibitory effects of this gene on developmental timing in animal and cell 597 

models14,15.  598 

Our findings add to the growing evidence for a significant role of imprinted genes in the 599 

regulation of puberty timing3. In a recent family study, rare coding mutations (two frameshift, 600 

one stop-gained and one missense) in MKRN3 were shown to cause central precocious 601 

puberty when paternally inherited25. Taken together, three distinct types of variants at 602 

MKRN3 appear to influence puberty timing when paternally inherited: (i) multiple rare loss-of-603 

function mutations with large effects25 (ii) a common intergenic variant (rs530324840) with 604 

small effect, and (iii) two 5‘ UTR variants (rs184950120 and rs12148769) with intermediate 605 

allele frequencies (1 in 95 Icelandic women) and effects (~0.5 years per allele). Similarly, we 606 

found allelic heterogeneity at the imprinted DLK1 locus where, as at MKRN3, a low 607 

frequency paternally-inherited allele conferred a substantial decrease in the age of puberty 608 

timing. At the same locus, maternal allele-specific association with an unrelated variant near 609 

to the maternally-expressed gene MEG9 is consistent with multiple imprinting control centres 610 

at this imprinted gene cluster26. 611 

The strong collective influence of the identified loci on AAM allowed informative stratification 612 

of AAM-associated variants in causal analyses to distinguish between BMI-related and BMI-613 

unrelated pathways linking puberty timing to risk of sex steroid sensitive cancers. These 614 

findings were supported in BMI-adjusted models and, except for ovarian cancer, by 615 

additional tests for pleiotropy, and indicate causal influences of both lower adolescent BMI 616 

and earlier AAM on later cancer risks. The association between BMI and breast cancer risk 617 

is complex; directionally-opposing associations have been reported with adolescent and 618 

adult BMI, and with differing associations with pre- and post-menopausal breast 619 

cancer19,20,21. Recent Mendelian randomisation studies report a consistent protective effect 620 

of higher BMI on pre- and post-menopausal breast cancer23,24. Some studies have reported 621 

on the association between later puberty timing and lower risk of prostate cancer in men, but 622 

such data on puberty timing in men is scarcely recorded27. The influences of earlier puberty 623 

timing, independent of BMI, on higher risks of breast, ovarian and endometrial cancers in 624 

women, and prostate cancer in men, could be mediated by a longer duration of exposure to 625 

sex steroids. Alternatively, mechanisms that confer earlier puberty timing might also promote 626 

higher levels of hypothalamic-pituitary-gonadal axis activity, as exemplified by a variant in 627 

FSHB that confers earlier AAM, higher circulating follicle stimulating hormone concentrations 628 

in women, and higher susceptibility to dizygous twinning11. 629 



We identified disproportionate effects of AAM variants on early or late puberty timing in a 630 

sex-discordant pattern. In females, variant effect estimates and heritability were higher for 631 

early versus late puberty timing, but the opposite was seen in males. These findings are 632 

concordant with clinical observations of sex-dependent penetrance of abnormal early and 633 

late puberty timing, even when accounting for presentation bias. Girls are more susceptible 634 

than boys to start puberty at abnormally young ages28, whereas boys are more susceptible 635 

than girls to have delayed onset of puberty29. These findings suggest some, yet to be 636 

unidentified, sex-specific gene-environment interactions. Future studies should 637 

systematically explore the potential influence of AAM-associated variants on rare disorders 638 

of puberty. In summary, our findings suggest unprecedented genetic complexity in the 639 

regulation of puberty timing and support new causal links with susceptibility to sex steroid-640 

sensitive cancers in women and men.  641 



Online Methods 642 

GWAS meta-analysis for age at menarche in women 643 

Each individual study tested SNPs using a two tailed additive linear regression model for 644 

association with age at menarche (AAM), including age at study visit and other study specific 645 

covariates. Insertion/deletion polymorphisms were coded as “I” and “D” for data storage 646 

efficiency and to allow harmonisation across all studies.  Genetic variants and individuals 647 

were filtered on the basis of study specific quality control metrics. Association statistics for 648 

each SNP were then uploaded by study analysts for central processing.  Study level results 649 

files were assessed following standardised quality control pipeline30, and results for each 650 

SNP were meta-analysed across studies using an inverse variance weighted model using 651 

METAL31 in a two stage process. Firstly, results from ReproGen consortium studies (Table 652 

S1) were combined and then filtered so that only those SNPs which appeared in over half of 653 

these studies were taken forward. Secondly, aggregated ReproGen consortium results were 654 

combined with data from the UK Biobank32,33 and 23andMe, Inc. studies5. Variants were only 655 

included in the final results file if they had results from at least two of these three sources, 656 

and a combined minor allele frequency (MAF) > 0.1%. We assessed potential inflation of test 657 

statistics due to sample relatedness and population stratification using LD score 658 

regression34. Here, an intercept value not significantly different from 1 indicates no such 659 

inflation, with a value over 1 indicating inflation. 660 

A final list of index variants was first defined using a distance based metric, by which any 661 

SNPs passing the two tailed threshold of significance (P<5×10-8) within 1Mb of another 662 

significant SNP were considered to be located in the same locus. This list of signals was 663 

then further augmented using approximate conditional analysis in GCTA, using an LD 664 

reference panel from the UK Biobank study. Only secondary signals that were uncorrelated 665 

(r2<0.05) were included in the final list. 666 

Replication and parent-of-origin testing 667 

Replication of identified hits was performed in an independent sample of 39,486 women of 668 

European ancestry from the deCODE study, Iceland. Main effects and parent-of-origin 669 

association testing was performed using the same methodology as previously reported3,4. 670 

The fraction of variance explained by a variant associating under the additive model was 671 

calculated using the formula 2 f (1−f) βa
2, where f denotes the minor allele frequency of the 672 

variant and βa is the additive effect. For variants associating under the recessive model, the 673 

formula fh (1−fh) βr
2 was used, where fh denotes the homozygous frequency of the variant 674 

and βr denotes the recessive effect. For variants associating under parent-of-origin models, 675 

fraction of variance explained was computed using the formulas f (1−f) βm
2 for the maternal 676 

model and f (1−f) βp
2 for the paternal model, where f denotes the minor allele frequency of 677 

the variant, βm denotes the effect under the maternal model and βp denotes the effect under 678 

the paternal model. Variance explained across multiple SNPs was calculated by summing 679 

the individual variances for all uncorrelated variants. We also estimate variance explained for 680 

top hits in UK Biobank using a combined allele score of all 377 autosomal genetic variants. 681 

Each individual variant was weighted using effect estimates derived from a meta-analysis 682 

excluding UK Biobank. 683 

 684 



Age at voice breaking in men 685 

Data on male voice breaking were available from two sources. Firstly, the 23andMe, Inc. 686 

study recorded recalled age at voice breaking in a sample of 55,871 men, as previously 687 

described5. This was recorded as a quantitative trait into pre-defined 2-year age bins by 688 

online questionnaire in response to the question “How old were you when your voice began 689 

to crack/deepen?”5. Individual SNP effect estimates from the two year age bins were 690 

rescaled to 1 year estimates for both voice breaking and AAM as reported previously. 691 

Age at voice breaking was also recalled in the UK Biobank study, as previously described33. 692 

This was recorded as a categorical trait: “younger than average”, “about average age”, “older 693 

than average”, “do not know” or “prefer not to answer” in response to the question “When did 694 

your voice break”. In separate models, the earlier or later voice breaking groups were 695 

compared to the average group (used as the reference group). 696 

Disproportionate effects on early or late puberty timing 697 

Disproportionate effects on early or late puberty timing of AAM-associated SNPs were tested 698 

for AAM in UK Biobank. The distribution of AAM was divided into approximate quintiles, as 699 

previously reported33. Odds ratios for being in the youngest quintile (range 8-11) or the 700 

oldest (range 15-19) were compared to the middle quintile (age 13) as the reference, for 701 

each AAM-associated SNP and also for a combined weighted AAM-increasing allele score, 702 

with weights derived from a meta-analysis of all other studies except for UK Biobank. 703 

Sensitivity tests were performed by dividing UK Biobank individuals into broad strata based 704 

on birth year (before or after 1950) and geographic location (attendance at a study 705 

assessment centre in the North or South of the UK, as indicated by a line joining Mersey-706 

Humber). 707 

Genetic correlation and genome-wide variance analysis 708 

Genome-wide genetic correlations with adult BMI22 and voice breaking5 were estimated 709 

using LD score regression implemented in LDSC34. The total trait variance of all genotyped 710 

SNPs was calculated using Restricted Estimate Maximum Likelihood (REML) implemented 711 

in BOLT35. This was estimated using the same UK Biobank study sample in the discovery 712 

analysis, excluding any related individuals. The proportion of heritability explained by index 713 

SNPs was estimated by dividing the variance explained by the index SNPs, by the total 714 

variance explained by all genotyped SNPs genome-wide.  715 

Mendelian randomisation analyses  716 

Individual genotype data on cancer outcomes were available from the Breast Cancer 717 

Association Consortium (BCAC) and Endometrial Cancer Association Consortium (ECAC). 718 

In addition, summary level results for ovary and prostate cancer were made available from 719 

the Ovarian Cancer Association Consortium (OCAC) and the Prostate Cancer Association 720 

Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) 721 

consortium, respectively. Total analysed numbers were: 47,800 breast cancer cases and 722 

40,302 controls, 4401 endometrial cancer cases and 28,758 controls, 18,175 ovarian cancer 723 

cases and 26,134 controls, and 20,219 prostate cancer cases and 20,440 controls (from the 724 

PRACTICAL iCOGS dataset). 725 



We performed Mendelian randomisation analyses to assess the likely causal effects of 726 

puberty timing on the risks for various sex steroid-sensitive cancers. Hence, AAM was 727 

predicted by a weighted genetic risk score of all 375 autosomal AAM-associated SNPs, and 728 

genetically-predicted AAM was tested for association with each cancer in a logistic 729 

regression model. The individual SNP genotype dosages comprising this score were 730 

imputed using the 1000 Genomes reference panel (minimum imputation r2=0.43, median 731 

0.95). To avoid potential confounding by effects of the AAM genetic risk score on BMI, we 732 

performed BMI-adjusted analyses by including in models as a covariate the same AAM 733 

genetic risk score, but weighting each SNP for its effect on BMI (rather than on AAM) in the 734 

same study sample. Hence, we estimated the effect of genetically-predicted AAM controlling 735 

for genetically-predicted BMI by the same SNPs. BMI weighting was based on the 736 

association between each SNP and adult BMI in this sample (childhood BMI measurements 737 

were not available but there is reportedly high genetic correlation between adult and 738 

childhood obesity (rg=0.73)36. We did not adjust for measured BMI because such 739 

measurements in prevalent cancer cases are likely to introduce bias. As sensitivity tests, 740 

three further genetic score associations were performed for each cancer outcome: firstly, 741 

AAM predicted by the 314 AAM-associated SNPs that were not also individually associated 742 

with BMI in the BCAC iCOGs sample (at a nominal level of p<0.05); secondly, AAM 743 

predicted by the 61 AAM-associated SNPs that were also associated with BMI in this sample 744 

(i.e P<0.05); finally, AAM predicted by all 375 autosomal AAM-associated SNPs (unadjusted 745 

for BMI). To further consider pleiotropy, we tested for presence of heterogeneity between 746 

AAM-associated SNPs and analysed MR-Egger regression models 37. 747 

Pathway analyses 748 

Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) was used to 749 

explore pathway-based associations in the full GWAS dataset. MAGENTA implements a 750 

gene set enrichment analysis (GSEA) based approach, as previously described38. Briefly, 751 

each gene in the genome is mapped to a single index SNP with the lowest P-value within a 752 

110 kb upstream, 40 kb downstream window. This P-value, representing a gene score, is 753 

then corrected for confounding factors such as gene size, SNP density and LD-related 754 

properties in a regression model. Genes within the HLA-region were excluded from analysis 755 

due to difficulties in accounting for gene density and LD patterns. Each mapped gene in the 756 

genome is then ranked by its adjusted gene score. At a given significance threshold (95th 757 

and 75th percentiles of all gene scores), the observed number of gene scores in a given 758 

pathway, with a ranked score above the specified threshold percentile, is calculated. This 759 

observed statistic is then compared to 1,000,000 randomly permuted pathways of identical 760 

size. This generates an empirical GSEA P-value for each pathway. Significance was 761 

determined when an individual pathway reached a false discovery rate (FDR) <0.05 in either 762 

analysis. In total, 3216 pathways from Gene Ontology, PANTHER, KEGG and Ingenuity 763 

were tested for enrichment of multiple modest associations with AAM. MAGENTA software 764 

was also used for enrichment testing of custom gene sets. 765 

Gene expression data integration 766 

In order to identify which tissues and cell types were most relevant to genes involved in 767 

pubertal development, we used a applied LD score regression39 to specifically expressed 768 

genes (“LDSC-SEG”)8. For each tissue, we ranked genes by a t-statistic for differential 769 

expression, using sex and age as covariates, and excluding all samples in related tissues. 770 



For example, we compared expression in hippocampus samples to expression in all non-771 

brain samples. We then took the top 10% of genes by this ranking, formed a genome 772 

annotation including these genes (exons and introns) plus 100kb on either side, and used 773 

stratified LD score regression to estimate the contribution of this annotation to per-SNP AAM 774 

heritability, adjusting for all categories in the baseline model39. We computed significance 775 

using a block jackknife over SNPs, and corrected for 46 hypotheses tested at P=0.05. 776 

To identify specific eQTL linked genes, we utilised two complementary approaches to 777 

systematically integrate publicly available gene expression data with our genome-wide 778 

dataset: 779 

Summary Mendelian Randomization (SMR) uses summary-level gene expression data to 780 

map potentially functional genes to trait-associated SNPs7. We ran this approach against the 781 

publicly available whole-blood eQTL dataset published by Westra et al.6, giving association 782 

statistics for 5,950 transcripts. A conservative significance threshold was set at P<8.4x10-6, 783 

in addition to a heterogeneity in dependent instruments (HEIDI) test statistic P>0.009 for any 784 

variants which surpass the main threshold. 785 

MetaXcan, a meta-analysis extension of the PrediXcan method40, was used to infer the 786 

association between genetically predicted gene expression (GPGE) and AAM. PrediXcan is 787 

a novel gene-based data aggregation and integration method which incorporates information 788 

from gene-expression data and GWAS data to translate evidence of association with a 789 

phenotype from the SNP-level to the gene. Briefly, PrediXcan first imputes gene-expression 790 

at an individual level using prediction models trained on measured transcriptome datasets 791 

with genome-wide SNP data and then regresses the imputed transcriptome levels with 792 

phenotype of interest. MetaXcan extends its application to allow inference of the direction 793 

and magnitude of GPGE-phenotype associations with only summary GWAS statistics, which 794 

is advantageous when SNP-phenotype associations result from a meta-analysis setting and 795 

also when individual level data are not available. As input we utilized GWAS meta-analysis 796 

summary statistics for AAM, LD matrix from the 1000 Genomes project, and as weights, 797 

gene-expression regression coefficients for SNPs from models trained with transcriptome 798 

data (V6p) from the GTEx Project41. GTEx is a large-scale collaborative effort where DNA 799 

and RNA from multiple tissues were sequenced from almost 1,000 deceased individuals of 800 

European, African, and Asian ancestries. MetaXcan analyses were targeted to those tissue 801 

types with prior evidence of association with AAM (based on the GTEx enrichment analyses 802 

described above). The threshold for statistical significance was estimated using the 803 

Bonferroni method for multiple testing correction across all tested tissues (P<2.57x10-6). 804 

Motif enrichment testing 805 

We identified transcription factors whose binding could be disrupted by AAM associated 806 

variants in enhancer regions by combining predicted enhancer regions across 111 human 807 

cell types and tissues with predicted motif instances of 651 transcription factor families as 808 

previously described42. 809 

Briefly, we defined enhancer regions by first applying ChromHMM43, training a 15-state 810 

model for each reference epigenome on 5 histone modifications: H3K4me1, H3K4me3, 811 

H3K36me3, H3K9me3, and H3K27me3. We then produced a higher confidence set of 812 

predicted enhancer regions in each reference epigenome by intersecting DNaseI 813 



hypersensitive sites (taking the union over 53 reference epigenomes for which DNase-Seq 814 

was performed) with enhancer-like chromatin states predicted in that reference 815 

epigenomes42. We defined 226 disjoint enhancer modules with distinct patterns of activity by 816 

hierarchically clustering the high confidence regions according to their patterns of activity 817 

(presence/absence) across the 111 reference epigenomes. 818 

We predicted motif instances by first building a database of position weight matrices (PWMs) 819 

combining known motifs from Transfac and Jaspar with de novo discovered motifs in 427 820 

ChIP-Seq experiments for 123 transcription factors from ENCODE44. We predicted active 821 

regulators in each enhancer module by computing the enrichment of true PWM matches in 822 

the set of regions assigned to that module against the background of shuffled PWM 823 

matches. We only considered PWMs with conservation score at least 0.3, and used log2-fold 824 

enrichment > 1.5 as the significance cutoff. 825 

We used the full set of AAM association summary statistics, excluding the 23andMe 826 

component, to identify a heuristic p-value threshold42. Briefly, we pruned a set of 8,094,080 827 

variants to 432,550 independent loci (pairwise r^2 < 0.1). We scored each locus as the 828 

proportion of variants in the locus overlapping a predicted enhancer region, ranked loci by 829 

the best p-value in the locus, and then plotted enrichment curves comparing the cumulative 830 

score every 100 loci against the expected score for that total number of loci under the null 831 

where the score increases uniformly to the genome-wide value. We defined the right-most 832 

elbow point (inflection point) among all the enrichment curves as the heuristic p-value cutoff. 833 

For each combination of enhancer module and predicted regulator, we constructed a 2×2 834 

contingency table counting enhancer regions in that module partitioned by presence of that 835 

motif and orthogonally by presence of an AAM association (based on the heuristic p-value 836 

cutoff described above). We restricted the set of regions to the domain on which motifs were 837 

discovered (excluding coding regions, 3' UTRs, transposons, and repetitive regions) and 838 

additionally to the subset of regions which harbor an imputed SNP for the disease. We 839 

computed one-sided p-values using Fisher’s exact test. 840 

Hi-C integration 841 

Significant Hi-C interactions and contact domains were obtained from Rao et al. (GSE63525) 842 

for 6 ENCODE cell lines: K562, GM12878, HeLa-S3, IMR90, NHEK, and HUVEC. Their 843 

Juicer pipeline assigns statistical significance to each Hi-C interaction at resolutions ranging 844 

from 5kb-25kb, depending on coverage, at a 10% False Discovery Rate (FDR). Contact 845 

domains are genomic regions enriched for regulatory interactions and are more conserved 846 

across cell types than are specific interactions. They are conceptually similar to 847 

Topologically Associating Domains (TADs, Dixon et al. 2012) but with improved resolution 848 

(185kb median length vs. 880kb). We used the intersect command of bedtools to produce a 849 

list of significantly interacting Hi-C fragments containing one or more of our identified SNPs 850 

in either fragment from any of the six cell lines. For each SNP-containing fragment, genes 851 

present in the corresponding interacting fragment were identified as potential regulatory 852 

targets. As a second approach, we also scored genes based on the number of ENCODE cell 853 

types in which they were in the same contact domain as a SNP.  854 



 

 

Figure 1. GTEx tissue enrichment using LD score regression. Numbers on the X-axis show sample number for each tissue. Dotted line 

represents significance at FDR<5%, solid horizontal line represents Bonferonni-corrected significance for number of tissues tested. 

 



 

 

 

Figure 2. Stronger effects of age at menarche-associated signals on early menarche 

(blue) than late menarche (red) in women. The 377 index menarche-associated SNPs are 

ordered from smallest to largest p-value for their continuous associations with age at 

menarche. The Y-axis indicates the log-odds ratio for each SNP on early menarche (blue; 

ages 8–11 years inclusive) or late menarche (red; 15–19 years inclusive). The reference 

group are women with menarche at 13 years. Insert shows the –log10 p-values for the 

heterogeneity (based on Cochran’s Q) between the early and late menarche associations  

plotted against the  –log10 p-value for the continuous age at menarche association.   

 

  

  



 

 

Figure 3. Effects and 95% confidence intervals of genetically-predicted age at 

menarche (AAM) on risks for various sex steroid-sensitive cancers, adjusted for the 

effects of the same AAM variants on BMI. AAM was predicted by all 375 autosomal AAM-

associated SNPs, and models were adjusted for the genetic effects of the same AAM 

variants on BMI. Three further genetic score associations are shown as sensitivity analyses 

for each outcome: firstly, AAM predicted by the 314 AAM-associated SNPs that were not 

also associated with BMI in the BCAC iCOGs sample (at a nominal level of p<0.05); 

secondly, AAM predicted by the 61 AAM-associated SNPs that were also associated with 

BMI in this sample; finally, AAM predicted by all 375 autosomal AAM-associated SNPs 

(unadjusted for BMI). 

  



Table 1: Parent-of-origin specific associations between sequence variants at MKRN3, DLK1 and MEG9 with age at menarche in Iceland (N=39,543). 

 
Position 

(hg38) 

Allele 
Freq. 

A1 (%) 

 Additive  Maternal  Paternal  

Marker A1 A2 Region P β
1
  P β

1
  P β

1
 Pmat vs. pat

2
 

rs530324840
3
 15:23,565,461 A C 0.80 MKRN3 4.4×10

-4
 -0.206  2.0×10

-1
 0.098  6.4×10

-11
 -0.523 1.3×10

-7
 

rs184950120
3
 15:23,565,696 T C 0.26 MKRN3 1.0×10

-2
 -0.265  9.8×10

-1
 0.003  1.5×10

-4
 -0.502 4.9×10

-2
 

rs12148769
3
 15:23,906,947 A G 10.1 MKRN3 5.8×10

-6
 -0.078  3.4×10

-1
 -0.022  9.2×10

-8
 -0.120 2.3×10

-3
 

rs138827001
4
 14:100,771,634 T C 0.36 DLK1 6.8×10

-6
 -0.387  8.8×10

-1
 -0.018  4.7×10

-10
 -0.704 1.4×10

-4
 

rs10144321
4
 14:100,416,068 G A 23.0 DLK1 5.6×10

-6
 -0.056  4.0×10

-1
 -0.014  1.9×10

-7
 -0.084 9.7×10

-3
 

rs7141210
4
 14:100,716,133 T C 38.2 DLK1 4.5×10

-2
 0.021  1.5×10

-1
 -0.021  2.3×10

-5
 0.059 4.0×10

-4
 

rs61992671
5
 14:101,065,517 A G 48.5 MEG9 4.7×10

-3
 -0.029  6.0×10

-8
 -0.077  2.7×10

-1
 0.015 1.9×10

-5
 

 

1. β indicates the effect of allele A1 in years per allele. 

2. P-value for heterogeneity between paternal and maternal allele associations. 

3. rs530324840 is a novel variant identified by the parent-of-origin specific analysis. rs184950120 is the rare variant identified by the meta-analysis. 

rs12148769 is the previously reported intergenic common signal (Ref. 3). 

4. rs138827001 is a novel variant identified by the parent-of-origin specific analysis. rs10144321 and rs7141210 are previously reported common variants 

(Ref. 3). 

5. rs61992671 is a suggestive novel parent-of-origin specific association signal. 
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