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The massive increase of IoT devices and their collected data raises the question how to analyze all that
data. Edge computing may provide a suitable compromise, but the question remains: how much processing
should be done locally vs. offloaded to other edge devices? The diverse application requirements and limited
resources at the edge (i.e. gateways and IoT devices) extend the challenges.

We propose Oops, an optimization framework to decide and adapt the resource management at runtime in
a distributed manner. It orchestrates the IoT devices and adapts their operation mode with respect to their
constraints and limited shared resources on the gateway. Experimental results show a significantly reduced
runtime overhead while even increasing the user utility compared to state-of-the-art.
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1 INTRODUCTION
With the emergence of Internet of Things (IoT), a massive number of embedded devices are
connecting to the Internet to provide advanced monitoring and control services [26]. This will
lead to a rapid increase in the scale of collected data. Hence, one of the challenges in IoT is to
process and analyze a huge amount of data from heterogeneous devices [40]. This challenge has
two aspects: 1) large quantities of data, and 2) diverse application requirements of IoT applications
[40]. Handling all these collected IoT data with central cloud servers is inefficient and sometimes
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Fig. 1. The hierarchical architecture of IoT system including things and smart sensors, gateways,
fog nodes, and cloud servers [25].

even unfeasible, because of (i) the overall energy consumption, cost and load on the network to
transmit the data, and (ii) unreliable latency due to networking as well as computation workload
[7, 30].

To address these issues, the tasks of processing the data and decision making are pushed to the
network edges, close to data source [19]. This introduces the new paradigms of fog computing
[13] and edge computing [30]. Fog computing extends the traditional cloud by distributing the
computation, storage and communication resources geographically closer to the end user. Edge
computing further extends the computing architecture of IoT and incorporates gateways and IoT
devices into the data processing and decision making. According to a report by International Data
Corporation (IDC) Futurescape, around 40% of IoT-generated data will be processed, stored, and
acted upon close to the edge of network [24].
Figure 1 shows the hierarchical architecture of computation layers in IoT. IoT devices (smart

sensors and things) interact with the physical world and collect the data. Due to their limited energy
sources, IoT devices are equipped with low-power wireless technologies including Bluetooth Low
Energy (BLE), ZigBee, HaLow and Low Power Wide Area Network (LPWAN) like LoRa [28] to
communicate with each other or with gateways. Gateways (ubiquitous smart devices) enable
seamless integration of low-power wireless networks of IoT devices with other networks (e.g. WiFi,
cellular network, LAN, etc.). Gateways may transmit the data to the fogs and cloudlets that are
a few network hops away from the edge and have more storage and computation resources for
low-latency service of intensive tasks. However, some applications and services may still remain
cloud-based due to the substantial or long-term storage and computation requirements.
Even though at the core of the network (i.e. cloud) more computation and storage resources

are available, the latency of the services will increase and become non-deterministic [7] as a
consequence of the high workload to transmit a large amount of data. To perform the computation
and make decisions as close as possible to the data source, edge computing envisions a model in
which the IoT gateways provide the local processing services besides their conventional functions to
bridge low-power wireless network of IoT devices and the Internet [5, 39]. Thus, the data processing
can be partitioned between different IoT devices, gateways and –if needed– fogs and cloudlets. The
hierarchical architecture of IoT system offers the opportunity for efficient computation offloading
to overcome the resource constraints at the edge.
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Besides the computation, the management tasks shall be pushed closer to the edge too. For
instance, the management of IoT devices, orchestration and resource allocation of edge devices can
be handled at the gateway level, the management of gateways can be handled at the fog level, etc.
Motivation:

IoT gateways are usually located in the vicinity of IoT devices, and therefore, require a small form-
factor (e.g. they cannot afford to deploy high-performance processors due to cooling requirements).
Therefore in many IoT systems, the gateways are resource-constrained, too [8]. For instance, Intel
IoT gateways (DK50 and DK100 series) are based on Intel Quark SoC X1000 and X1020D with
an operating frequency of only 400 MHz [2]. Interestingly, the computational competency of the
gateways is only one of the critical constraints of gateway-based IoT system. The available commu-
nication bandwidth can turn into a significant bottleneck for supporting complex applications and
numerous IoT nodes since data transmission is limited to only a few kilobits per second [28]. This
stems from the fact that the communication between the gateway and IoT edge devices is via a low-
power wireless connection such as BLE, LoRa, HaLow, etc. that have a low throughput [19, 39].
In addition, the portion of computation and communication capabilities of gateways that is

allocated to edge processing tasks is constrained, in order to avoid resource starvation for the rest
of the tasks of the gateway. These limited resources are shared by all IoT devices that are connected
to each gateway and at runtime depending on its workload for performing other management
tasks (e.g. operating system), the gateway shall restrict its available resources (communication
bandwidth and processing power) offered to the IoT devices (see Figure 2).

From the application point of view, future IoT edge applications are anticipated to offer various
different operation modes, corresponding to different configuration knobs of the application such
as input data quality, the onboard processing policy, etc. Switching between different modes is
envisioned to be a dynamic feature of the application, tightly coupled to its runtime functional
constraints such as remaining battery capacity. For instance, in the case of an IoT-based fitness &
health monitoring device that captures, processes and uploads the Electrocardiogram (ECG) signal
to a back-end server infrastructure, when the battery level is low the device can switch to a mode
with lower sampling rate for data acquisition (e.g. from 360Hz to 250Hz) [29] and thus dynamically
reduce its workload. It can alternatively or conjointly avoid the pre-processing (e.g. performing
digital filters for baseline wandering removal [17]), and offload it to the gateway (see Figure 2).
In order to quantify the effectiveness of a gateway-based IoT system, each operating mode of

an IoT node is associated with a quality level that affects the user’s satisfaction. In the context
of resource allocation, the amount of benefit or gain that each user receives under that specific
circumstance is called utility [20, 32] and has been introduced as a ‘soft requirement’ of the system.
The same term has been described as ‘service quality’ or ‘quality of service’ in the literature [18, 29].
In general, the operation modes of devices differ in their energy consumption, resource usage (both
on the device and shared gateway), as well as the utility provided to the user.
While the individual building blocks of the system are well defined (i.e. gateways, IoT nodes,

application operating modes), a runtime management and configuration infrastructure is crucial
in order to take advantage of the full system capabilities in terms of offered user satisfaction.
Taking this into account, this article presents a framework for the runtime management of the
IoT devices in a gateway based system, which achieves enhanced user satisfaction by determining
their operation modes and edge configuration. The framework optimizes the allocation of the
constrained shared resources with a dynamic mechanism that is transparent to the end user. We
aim at selecting operation modes for each IoT edge device at runtime and efficiently allocating the
shared resources of the gateway to them with respect to different runtime constraints of the edge
devices and the gateway.
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Fig. 2. Problem model: Gateways with their connected IoT devices. Each device has different op-
eration modes (quality & offloading level) and each mode requires different amount of resources.

The shared gateway is used as the orchestrator on the system and thus it is the execution point of
the framework. The focus of this article is the edge, where the IoT devices and gateway are located,
as shown in Figure 2. Nevertheless, the presented general principles can be employed to orchestrate
the connected gateways to the fog infrastructure and its shared resources. The necessity of the
dynamic online solutions for such IoT systems in comparison to static offline solutions is due to
several reasons, e.g. i) the remaining energy of IoT devices varies over time due to consumption
or recharge, ii) the available bandwidth or processing capability of the gateway may change over
time due to its available power and workload of other tasks, and iii) at runtime, some devices may
become more important and critical to their users. Last but not least, the IoT gateway must be able
to dynamically allocate its resources to tasks related to edge, fog and cloud in order to allow for the
seamless integration of all these three levels.

We consider IoT systems that opt for reaching fairness among IoT edge devices, e.g. by balancing
a design parameter such as energy consumption, utility, resource usage, battery lifetime, etc. [10].
In these systems, a max-min optimization problem (i.e. maximizing the minimum variable) needs
to be solved subject to the constraints of devices and gateway. For instance, to balance the battery
lifetime of edge devices and prolong the lifetime of the network, the minimum battery lifetime
should be maximized. The max-min goal is particularly advantageous for two reasons: (i) it balances
the resource usage among the local network and avoids unfair or starvation situation, (ii) it allows
supporting devices with different priorities [22]; the designer can prioritize critical devices by
assigning a lower utility to their operating modes, which increases the chance that they obtain
more resources (because the minimum utility shall be maximized).

The novel contributions of this work are as follows:

• We present a management framework for optimizing operation-mode selection (Oops) for IoT
edge devices when the objective of system is to reach a max-min fairness among devices. It takes
the constraints of the edge devices and the gateway into account and determines an efficient
schedule of the operating modes for each device according to the objective of the system. This
framework supports a wide range of system optimization goals in the form of max-min (or
min-max) objective.
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• We formulate the problem of operation-mode selection as a tractable convex optimization
problem. Then, we propose a novel approach to identify configurations that are dominated by
others to reduce the problem size and consequently decrease the runtime overhead.

• We identify the properties of the problem and leverage them to reduce the complexity of the
solution, thus making it more suitable for online usage on resource-constrained devices.
By efficient resource allocation and operation mode selection at the edge, Oops provides a

transparent management layer on the gateway that integrates the edge devices to the rest of
IoT system. We provide experimental validation of our proposed framework using the traces
derived from measurements/profiling on actual IoT devices. Results show that the optimization
and reduction techniques of Oops reduce the runtime overhead for operation-mode selection from
more than 100 s to only 1.3 s on average compared to a system with the same optimization solver
that does not benefit from the proposed reduction techniques.

The rest of this article is organized as follows. In Section 2, we review related work on resource
allocation and edge computing in IoT. Then, we present our system model and the problem
formulation in Section 3. We then provide a detailed presentation of our proposed framework
and solution in Section 4. Experimental results and evaluations are presented in Section 5, while
Section 6 concludes the article.

2 RELATEDWORK
Tan et al. [32] studied the utility maximization with resource allocation in wireless networks. They
consider the limited bandwidth as the constrained resource, while the user requires a mixture of
different traffic types (e.g. soft QoS, hard QoS, etc.). They also providemodels for the utility functions.
Another utility-based approach presented in [20], studies bandwidth allocation in wireless networks
under the constraints of wireless interference. However, these approaches support only one shared
resource, which must be a continuous variable. Therefore, they are not applicable to systems with
discrete operation modes and multiple shared resources.

Wong et al. [37] propose a two-level solution to allocate the shared bandwidth of home gateway
at the network edge. In the first level, the gateways decide how much credit to spend in each
time interval to receive bandwidth. Then in the second level, each gateway allocates its given
bandwidth among its connected devices and applications. It prioritizes its own connected devices
based on their pre-determined utility functions such that the overall utility is maximized. Their
proposed solution to the first level problem is complementary to ours to determine the bandwidth
between gateways and fog. However, the second-level solution only considers one shared resource
on the gateway (bandwidth). It cannot be extended to support multiple shared resources such as
processing capability of gateway, bandwidth, etc. Another limitation is that the assumption that
devices can receive any continuous value as their bandwidth, but IoT devices are anticipated to
have a few discrete operation modes.
In [29], we studied the joint problem of bandwidth and quality of service (QoS) management

under resource constraints for a network of IoT devices. The allocated bandwidth and computation
offloading level of devices are determined to maximize the overall QoS. A fundamental distinction
between the optimization strategy used in [29] and our proposed max-min fairness optimization
framework is that in [29] optimization delivers a single configuration as the solution. However,
usually no single configuration can reach the max-min fairness. The reason is that due to the limited
resources, not all the IoT devices can operate in the mode with the utmost utility at the same time.
Therefore, our proposed strategy adopts a more adaptive view of the IoT edge delivering system
solutions that alternate between several particular configurations, i.e. introducing also a sort of
operation-mode scheduling. Another distinction is that [29] aims at maximizing the overall QoS at
each step without foresight while one way to increase accumulated QoS over time is to prolong the
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battery lifetime of device. Even though in [29] the goal is to maximize the overall QoS, its approach
is the closest to ours and we adopted it to the max-min problem and compare with it in Section 5.

MiLAN [12] is a middleware to manage and allocate the limited network resources to low-power
devices. It trades the performance of an application (i.e. its utility) for energy cost. However, MiLAN
targets systems in which the overall utility must be maximized. While MiLAN only considers the
bandwidth limitation of the network, our framework supports multiple scarce resources including
the bandwidth, processing capability, memory, etc. Most importantly, MiLAN does not support
systems with max-min objective.
Some existing works assume a cloud server as the destination of offloading while in the edge

computing paradigm and our system the computation is offloaded from IoT devices to other resource-
constrained devices (i.e. gateway) with limited bandwidth, processing power, etc. [6, 14, 38]. Some
other research works consider the devices individually and assume that selecting the operating
mode (e.g. level of offloading) for a device does not affect the other devices in the setup [16, 21].
However at the edge of IoT, several devices share the limited resources of gateways. Thus, the
operating mode of one device would affect the other devices as it determines its usage of the shared
resources.
In the aforementioned related work, the proposed solutions do not support the max-min (or

min-max) optimization goals [6, 20]. The solution to the max-min objectives often is switching
among a combination of different modes (and not one particular mode). To our knowledge, there is
no framework for selection of operating modes for edge devices in resource-constrained systems at
runtime, in order to achieve max-min (or min-max) optimization goals.

3 SYSTEMMODEL & PROBLEM FORMULATION
3.1 Applications’ Operation Modes
Most of IoT applications process a stream of data or signal and they have the following properties:
(i) they operate on subsequent buffers or segments of collected data, (ii) they have a pipelined
structure of data processing, e.g. filtering, feature extraction, classification, post-processing [11, 25].

Some IoT applications offer their service at different qualities, ranging from ‘low quality’ to ‘high
quality’. Higher service quality increases the utility (i.e. user’s satisfaction and soft requirements)
[20, 32] but at the cost of higher resource usage both on the device and the gateway (e.g. energy
consumption, bandwidth, etc.). Different service qualities are usually the result of different quality
of input data (e.g. sampling rate). For instance, consider an IoT-based fitness & heart monitoring
device that can capture ECG signals at multiple discrete sampling rates (e.g. 125Hz, 250Hz, and
360Hz). The quality of the captured signal allows for processing of higher resolution and thus
determines the service quality and affects the utility [29]. When the battery is low, the device can
switch to a low quality mode to preserve energy.

Moreover, the pipelined structure of the IoT application enables it (i) to fully process the captured
data on the IoT edge device and send only the results to the Internet or (ii) to process the data
partially on the IoT edge device and offload the rest of computation to the gateway after one
of the application’s pipeline stages, or (iii) to offload the whole computation to the gateway by
transmitting the raw data [30]. This would lead to different possible computation offloading levels.

Therefore, an IoT application may have multiple operating modes due to:
• a change in input data quality (i.e. sampling rate),
• computation offloading (or on-board processing) schemes,
• or conjunction of the aforementioned control parameters.

At run-time a switch between operating modes is achieved by concluding the processing of
the current (undergoing) window of date (a.k.a. segment) and simultaneously buffering the next
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segment according to the quality of the selected operating mode (if changed). More precisely, the
usually low input data rate of IoT applications in combination to the meticulous, not frequent
scheduling of different operating modes results in an not-fully-occupied application’s pipeline. The
reason is that processing of one segment is finished before the next segment is buffered.

3.2 Gateway Model
The IoT gateways need to be distributed and located in the vicinity of IoT devices, and hence,
require small form-factor (e.g. cannot afford deploying high performance processors due to cooling
requirements). Due to these limitations, the processing power, memory and bandwidth of the IoT
gateway to communicate with IoT edge devices, are constrained. After reserving the required
resources for the core functionality of the gateway (operating system, networking, management
tasks), the surplus of its resources is available for sharing among the connected IoT devices.

R is the vector showing the resources on the gateway that are available for sharing between
devices (after deducting the resources required for management tasks). R[j] shows the total share-
able amount of a certain resource type j ∈ {1, · · · ,д} on the gateway, e.g. the communication
bandwidth (j=1), the processing capability (j=2), and internal memory (j=3).

3.3 IoT device Model
We consider a total of N IoT edge devices, D = {D1, · · · ,DN }, connected to the gateway as a local
IoT network (see Figure 2). Each edge device is described by the following parameters:

• Device Dd , 1 ≤ d ≤ N , hasMd operating modes (e.g. the sampling rates and offloading levels in
Section 3.1). At any point in time, the device is operating at one modem ∈ {1, · · · ,Md }.

• Pd (m) is the average power consumption of the device d in mode m. It includes the power
consumption for sensing, on-board computation and communication1. We assume that the
average power consumption of a mode does not change frequently. In practice, the changes in
the device parameters (e.g. getting recharged, physical property of battery, ambient temperature,
etc.) are neither severe nor sudden. Consequently, even a period of change in the parameters
equal to tens of minutes would be a valid assumption.

• Rd (m) denotes the resource vector and amount of each resource that the edge device d requires
from the gateway under the operating modem. Rd (m)[j] is the amount of j-th resource on the
gateway that is consumed or required while the device d is working under modem. In our
example, the gateway shares 3 different resource types (i.e. д=3), i.e. communication bandwidth
(j=1), processing power (j=2), and internal memory (j=3). The required resources depend on
the operational parameters of each mode (e.g. input data rate, service quality and computation
offloading strategy of the IoT device).

• ud (m) is the utility of the device d when operating under modem. The utility functions are
provided by the system designer or application owner [32].

• Bd denotes the required battery lifetime for the device, e.g. 24 hours (i.e. until the next recharge
or battery replacement).

• ed (t) shows the remaining energy in the battery of device d at time t (t = 0 when device is
recharged or turned on).

• bd (t ,m) is the estimated battery lifetime of device d at time t if it operates at modem. At any
given point t in time, the expected battery lifetime of the IoT device depends on (i) the remaining
energy at time t and (ii) the average power consumption in modem:

1The effect of surrounding devices (e.g. wireless interference) can be modeled in this parameter. Upon a change in packet
loss, the device updates its communication cost. However, modeling the interference effect is beyond the scope of this work.
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bd (t ,m) =
ed (t)

Pd (m)
(1)

It is worth noting that these parameters might change at runtime, however we assume that they
do not change before one instance of the mode selection problem is solved.

3.4 Problem Statement
In general, our framework supports a wide class of optimization problems for the local networks of
IoT edge devices in the form of max-min (or min-max) objective goals. The problem that is targeted
in this article (as a proof-of-concept) is as follows. LetUd denote the accumulated utility of the edge
device d over time,Ud =

∑
(ud (m) ×tm), where tm shows the total time that device d has operated

in modem so far. Now we need to select the operating mode for each IoT device d at runtime, such
that the constraints of shared resources on the gateway (Eq. (3)) and on the devices (Eq. (4)) are
fulfilled and the minimum of accumulated utility among devices is maximized (Eq. (2)).
Our optimization goal is to maximize the minimum accumulated utility among edge devices.

Formally, the optimization problem at time t is as follows:

Optimization goal: maximize
(
min
∀d

Ud
)

(2)

Resources constraint:
∑

∀d Rd (md ) ≤ R (3)
Battery constraint: bd ≥ (Bd − t) (4)

4 PROPOSED FRAMEWORK: OPTIMIZED OPERATION-MODE SELECTION (OOPS)
4.1 Problem Reformulation
The accumulated utility is calculated over time and therefore depends on the uptime. Imagine an
operation mode with high utility but also high power consumption. Prioritizing this mode would
result in early depletion of battery and less accumulated utility. Therefore to achieve the goal of
optimization problem in Eq. (2), we define ūd (m) =

ud (m)

pd (m)
, called normalized utility, and aim to

maximize the minimum accumulated ū among devices.
From hereon, we present our proposed solution and the properties of our problem along with

an example. Let us assume our systems consists of three devices, N = 3, each of which has three
operating modes representing low quality (and therefore low-power), normal quality and high
quality which means M1 = M2 = M3 = 3. For the sake of simplicity, in this example we assume
that ūd (m) =m for d,m = 1, 2, 3.

4.2 Addressing the Constraints
4.2.1 Constraints of Devices. Each device is in charge of ensuring its constraints (i.e. battery

lifetime). The rationale is that each device has all the required information to check its own
constraints (e.g. power consumption of each operation mode, its residual energy, its battery model,
etc.). Hence, the device can temporarily exclude those operation modes that violate its battery
lifetime constraint. This also reduces and distributes the overhead of the gateway for checking
the devices’ constraints. Let T denote the time period after which the system solves the operation
modes selection problem again and potentially changes the modes for IoT devices. Device Dd
excludes its operation modem if the following condition holds:

ed (t) −T ×Pd (m)

min
1≤l ≤Md

{Pd (l)}
< (Bd−t) −T (5)
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The condition indicates that when operating at mode m for duration T , then afterwards, even
if working at the mode with the lowest power consumption, the device cannot meet its battery
lifetime constraint anymore. After checking this constraint and excluding infeasible modes, devices
send the information of the remaining operation modes including utility and resource usage of
each mode to the gateway.

4.2.2 Constraints of Shared Resources on the Gateway. Once the gateway receives the parameters
of the operation modes from the devices, it must select the mode for each device such that the
constraints of the shared resources (e.g. bandwidth, memory, processing power of gateway) are
met and the minimum accumulated utility among the devices is maximized.

Definition 1: System Configuration (SC) shows the operating mode of all devices as a vector
of size N . For instance SC = [1, 1, 1] is a system configuration where there are 3 IoT devices (i.e.
N =3) and all are operating at their first mode, i.e. low quality (m1=m2=m3 = 1). SC = [3, 3, 3] is
another system configuration in which all three devices are operating at their third mode (i.e. high
quality). The set of all possible SCs is the Cartesian product of the operation modes of devices.

SC set = {1, · · · ,M1} × · · · × {1, · · · ,MN } (6)

In our example, the set of SCs is:

SC set = {[3, 3, 3], [3, 3, 2], [3, 2, 3], [2, 3, 3], · · · , [1, 1, 1]}

Definition 2: For resource vectors R1 and R2, we define R1 ≤v R2 if and only if for all types of
resources j = 1, · · · ,д, it holds that R1[j] ≤ R2[j].

Definition 3: Feasible system configuration (FSC) is an SC which fulfills the resource
constraints of the gateway. For instance the system configuration [2, 3, 1] is an FSC if R1(2) +
R2(3) + R3(1) ≤v R.

The set of FSCs is not known a priori and may change at runtime due to several reasons:
• The remaining energy in the battery may change by recharging or harvesting energy.
• The power consumption of devices at a certain mode may change over time. Particularly, the
cost of data transmission does not only depend on the device, but also on the data transmission
rate of other devices and external interference from surrounding wireless devices.

• The available resources on the gateway may change, e.g. due to the execution of other
management tasks.

Hence, the set of FSCs needs to be determined and updated at runtime.
However, in general (as explained in Section 2), no single FSC would fulfill the optimization

goal (maximizing the minimum variable). But the combination of particular FSCs and alternating
between them would do. The rationale is that FSCs practically have unbalanced elements (as
shown in Example 1 below). Hence having the set of FSCs, our problem is reduced to “selecting
and scheduling a subset of FSCs such that the minimum accumulated utility among the IoT devices is
maximized”.

4.3 Reduced Problem
We assume that T is the time interval during which the system state does not change. We refer to
it as a round. For one round, we need to schedule the FSCs, i.e. determine the share of time T in
which the system should operate at each FSC.

Let Q denote the number of FSCs (Q ≤ ΠN
d=1Md ). Then, the array CQ×N is the normalized utility

of devices for the given FSCs and is formed as follow:

C =
(
c1 c2 · · · cQ

)T
ci [d] = ūd

(
FSCi [d]

)
1≤ i ≤Q 1≤d ≤N (7)
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Example 1: Let us assume that for our considered example, the FSC set has 6 SCs and equals
{[3, 2, 1], [2, 3, 1], [2, 1, 1], [1, 3, 1], [1, 2, 3], [1, 1, 1]}, thus:

C =

©­­­­­­­«

ū1(3) ū2(2) ū3(1)
ū1(2) ū2(3) ū3(1)
ū1(2) ū2(1) ū3(1)
ū1(1) ū2(3) ū3(1)
ū1(1) ū2(2) ū3(3)
ū1(1) ū2(1) ū3(1)

ª®®®®®®®¬
(8)

time

Device 1:

Device 2:

Device 3:

0 T

FSCs: 
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at
ew

ay

Fig. 3. An example scenario with 3 devices. Our framework,Oops, determines the efficient system
configuration (efficient mode for edge devices) and the time interval for each of them.

The reduced problem is defined formally as follows:

maximize min
d=1, ··· ,N

(Ud ) (9)

subject to:

[w1 · · · wQ ] ×
(
c1 . . . cQ

)T
= [U1 · · · UN ] (10)

Q∑
1
wi = 1 (11)

0 ≤ wi ≤ 1 i = 1, · · · ,Q (12)

where wi –that we call the weight factor for each FSC– is needed to be determined by this opti-
mization problem. The constraints of the optimization problem (Eq. (9) to (12)) are linear and the
objective is convex [3]. Hence, it can be solved using the interior point methods such as Newton’s
method [33] which starts from an initial guess and converges to the solution after several iterations.

Once the weight factor (i.e.wi ) for each FSC is determined, the system schedules the configura-
tions such that it operates at FSCi for the timeT ×wi . At the end of each round, the problem needs
to be solved again with the updated inputs. If there is no change in the inputs of the system (i.e.
the same FSC set), it keeps operating with this schedule until a change in the system occurs (i.e.
the FSC set changes). See Figure 3 for an example.

Example 2: The optimal solution to the problem in Example 1 isw = [ 1
2 , 0, 0, 0,

1
2 , 0]. Therefore,

the system should spend T
2 with configuration [3, 2, 1], and T

2 with [1, 2, 3]. The accumulated utility
will beU1=

3
2+

1
2 =2,U2=

2
2+

2
2 =2 andU3=

1
2+

3
2 =2. Figure 3 illustrates the timeline of the system

and scheduled FSCs over time for the corresponding example.
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4.3.1 Analysis and Properties of the Problem. The overhead of computation to select the efficient
mode for edge devices, especially for large FSC set, is large. We present some properties of our
problem and leverage them to reduce the computation overhead by shrinking the search space.

Definition 4: Domination Given two feasible system configurations, FSCi dominates FSCj ,
if and only if ūd

(
FSCi [d]

)
≥ ūd

(
FSCj [d]

)
for d = 1, · · · ,N . For instance in our example, [3, 2, 1]

dominates [2, 1, 1] and [1, 1, 1]. None of [3, 2, 1] and [2, 3, 3] dominate the other. Moreover, all the
FSCs can dominate [1, 1, 1].

The dominated FSCs can be excluded from the problem without affecting the solution. In other
words, the weight factor (wi in equation Eq. (10)) for dominated FSCs is zero in the optimal
solution. Note that some of SCs are excluded due to resource constraints of the gateway and battery
constraints of devices (resulting in only FSCs). In other words, FSC , SC in practice. Otherwise the
solution is trivial as there is one SC which dominates all other elements ([3, 3, 3] in our example)
and would be the solution.

We illustrate the domination relation of SCs in our example as a tree in Figure 4. Each sub-tree is
dominated by its root (shown by an arrow). Each child is different from its parent in the operating
mode of only one device and only by one level lower. For instance, SC = [3, 2, 3] is the child of
SC= [3, 3, 3] and only the operating mode of the second device is one level lower.

Starting from the third level of the tree, some SCs might appear in different sub-trees, i.e. duplicate
nodes in the same level of the tree (shown with the same color). For instance, the SC= [3, 2, 2] is a
child of SC = [3, 3, 2] as well as SC = [3, 2, 3]. Moreover, in level 4, there are 24 nodes from which
only 7 are unique. For the sake of better visualization, at each level we first show all the child nodes,
and then summarize them by only showing the unique (non-redundant) SC nodes to continue to
the next level. At the bottom of the tree, there is the SC= [1, 1, 1] which is dominated by all nodes
from the upper levels.
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Level 1:

Level 2:

Level 3:

Level 4:

Unique SCs of Level 4:

Level 5:

Unique SCs of Level 5:

Level 6:

Level 7:

Unique SCs of Level 6:

Fig. 4. An example of domination tree for three devices each of which has three operation modes.

4.4 Further Overhead Reduction
We introduce binary vectors to indicate if an SC is FSC or not. We name this vector V-FSC. The
size of this vector equals the number of all possible SCs (i.e. Q =ΠN

d=1Md ). If an SC is FSC (i.e. it
fulfills the constraints of the gateway and the battery lifetime of the device), then the value of its
corresponding element in V-FSC is ‘1’, otherwise ‘0’. We introduce V-DSC, another binary vector of
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size Q , to indicate if an FSC is dominated and excluded (=‘0’) or is not dominated and therefore
remained (=‘1’). Formally, the V-DSC[q]=1 if the V-FSC[q]=1 and none of its dominators is ‘1’:

V-DSC[q] =V-FSC[q] ∧ ¬

(
V-FSC[k1] ∨· · ·∨ V-FSC[kl ]

)
∀ FSCk1 , · · · , FSCkl dominate FSCq

(13)

As an example of domination with 6 FSCs,
{
[3, 2, 1], [2, 3, 1], [2, 1, 1], [1, 3, 1], [1, 2, 3], [1, 1, 1]

}
,

according to Def. 4, [2, 1, 1], [1, 3, 1] and [1, 1, 1] are dominated by other FSCs. Therefore, the
corresponding element of these FSCs are changed to ‘0’ in the V-DSC vector. Consequently, the
size of the C matrix in Eq. (8) is reduced from 6 rows to 3 rows.

Some of the SCs are dominated by several other SCs. Hence, the number of dominators in Eq. (13),
i.e. kl , might be large. For instance, in our example SC = [1, 1, 1] is dominated by all other SCs.
Therefore, the domination function contains a large NOR operand with kl = 26 inputs. This value
increases exponentially with the number of devices and modes. For instance, if the number of
devices increases to 4 in the previous example, the size of the NOR function in the domination
relation for SC = [1, 1, 1, 1] increases to kl = 80. The domination functions can be implemented in
hardware or software. In either case, having too many inputs for the NOR operation is inefficient.
Using the following property we can reduce the complexity of the domination function for each
V-DSC element.

Property 1: The dominance relation for SCs is transitive: If SC1 dominates SC2, and SC2 domi-
nates SC3, then SC1 dominates SC3 as well. The proof follows immediately from Def. 4. Using this
property, we can reduce the complexity of finding the dominant SCs as follows: we only check SCs
that are only one level above the SC in the domination tree (i.e. immediate parents). For example in
Figure 4, the immediate parents of SC = [1, 1, 2] are SC = [1, 1, 3], SC = [1, 2, 2] and SC = [2, 1, 2].
Therefore, we only consider these SCs to calculate the V-DSC. After applying Property 1, the
maximum size of the NOR function is reduced to the number of devices (i.e. N ). For instance, the
size of the NOR function for the domination relation of SC = [1, 1, 1, 1] is reduced from kl = 80 to 4.

Given the number of devices and their number of operation modes, the domination relation can
be determined at design time (i.e. offline). However at runtime, the V-FSC vector changes according
to the status of the devices (e.g. residual energy, available resources on the gateway, etc.). Once
the V-FSC vector changes, we update the V-DSC vector to obtain the dominated SCs. After the
feasible SCs are reduced to the DSCs, we can solve the optimization problem in Eq. (9) to (12) using
a smaller C matrix with less rows (see Section 5 and Figure 7a for the detailed results).

After reducing the problem size, we incorporate a Sequential Least SQuares Programming (SLSQP)
method based on [15] which is a gradient-based numerical optimization solver for constrained
problems to solve Eq. (9) to (12).

4.5 Complexity Analysis of Oops
The proposed reductions in Oops come at the cost of memory overhead to keep the domination
relations. The number of unique SCs in the domination tree is ΠN

d=1Md . As described in Section 4.4,
we only need to keep at most N dominators for each node of tree. Assuming that the index of each
node requires 2 Bytes, and all the IoT devices haveM operation modes, the required memory to
keep the domination relations is less thanMN × N × 2Byte . If a gateway serves 10 devices with 3
operation modes it would require 1.1MB of memory to store the domination relations. This is less
than 0.5% of the available memory of typical IoT gateways, e.g. Intel Quark [2] and Raspberry Pi.
It is important to note that in the envisioned hierarchical architecture of IoT (see Figure 1), the

number of IoT edge devices connected to a single gateway is bounded. The reasons lie on practical
limitations or application properties: 1) In typical applications, spatial density of the IoT devices is
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limited. For instance, the number of wearable IoT devices carried by a user cannot grow arbitrarily.
2) The limited capabilities of a gateway do not allow it to serve large numbers of connected devices.
For instance, the communication bandwidth or computation competency of the gateway is only
enough to support a couple of devices [11, 40]. 3) Some existing IoT technologies limit the gateway
from serving many IoT devices, e.g. Bluetooth protocol supports up to 7 devices connected to a
single transceiver. Therefore, the problem size for our operation mode selection does not grow, and
hence, the absolute overhead of the solution is more important than its complexity (i.e. order of
the function). In other words, the overhead of the solution in the range of typical problem sizes
matters more than the growth rate.

4.6 Memoization and Caching
According to our observations (see Section 5), some input vectors occur repeatedly. We exploit
a memoization scheme to store the results of our optimization solver to avoid the expensive
computation when the same inputs occur again. The results associated with each input are stored
in a look-up table. The subsequent optimization solver calls retrieve and reuse the stored results,
thus avoiding repeating computation. The memoization scheme reduces the execution time for
finding the efficient solution, at the cost of memory usage.
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Fig. 5. The overview of our proposed framework

Figure 5 illustrates the overview of the proposed framework, Oops. After applying the devices
and gateway constraints, the vector V-DSC is derived based on the domination relation and V-FSC.
If the look-up table contains the solution to the vector (i.e. memory hit), the associated solution is
used for the schedule. If there is no solution entry for this vector in the look-up table (i.e. memory
miss), the optimization solver (using SLSQP) is executed to calculate the schedule. This solution is
then stored in the look-up table for subsequent calls.

5 EVALUATION AND RESULTS
5.1 Experimental Setup
Our experimental analysis includes measurements on the actual IoT devices and trace-driven
network simulation to study the behavior of the whole system under our proposed mechanism.
The profiling of the IoT applications for edge devices is performed on an Intel Quark SoC, which
has already been proposed and used for wearable IoT devices. For the gateway, we use a Raspberry
Pi Zero (RPi0) module.While we implement the task of gateway and Oops on our RPi0 module,
the network-level behavior of the system and the interaction between IoT edge devices and the
gateway is modeled in a network simulator. While a physical deployment of IoT network is feasible
from application’s perspective, the evaluation of battery lifetime is a challenge due to the following
reasons: 1) Using batteries in the practical setup restrains the capability to replicate the experiments
and compare different techniques. 2) The vast majority of IoT platforms come as development
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boards, e.g. the Intel Quark SoC is available on the Intel Galileo board. These boards include many
peripherals and components that not all of them will be available on the final products. Even
though the power consumption of a processor can be measured on the board individually, other
components still will drain a considerable share of the total power from battery. 3) Using batteries
in the practical setup will severely complicate the development and debugging of the system. These
reasons led us to the use of a simulated network environment, augmented with the information of
profiled applications.
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Fig. 6. The overview of our setup for network-level simulation

Figure 6 shows the overview of our setup. We use the profiled (measured) data from the IoT
devices, their application and their operation modes, and then form a local network in our simulator
to capture the dynamic behavior of the system including the energy consumption of devices over
time, discharging of the batteries, etc. The tasks of the gateway are implemented partially on the
simulator, but the optimization framework (i.e. Oops) runs on the RPi0 hardware module. Bluetooth
protocol is considered along with TCP/IP for the communication model. The communication
latency is modeled according to relevant models in literature [31], as well as in-house experimental
evaluations [23]. The frequency-hoping technique of Bluetooth minimizes the interference between
the IoT nodes and other wireless devices. We examine a varying number of connected IoT devices,
ranging from 3 to 7.Oops needs to be executed onlywhen run-time conditions (e.g. battery reduction)
result in changes in V-FSC vector (see Section 4.3). The system simulation continues until the
battery of all IoT devices is depleted.

5.2 Results
5.2.1 Overhead Analysis. The first set of experiments focuses on the properties of Oops on the

gateway, in order to investigate the effectiveness of its components as well as their associated
overhead. Figure 7a shows the total number of feasible system configurations (FSCs) compared
to the non-dominated FSCs (logarithmic scale) for different number of devices. The former is the
problem size before applying our reduction techniques, while the latter is the problem size in Oops
(after excluding the dominated SCs). Oops reduces the number of FSCs (i.e. problem size) by up to 2
orders of magnitude. In the average case, the reduction shows 1 order of magnitude improvement.
Figure 7b shows the execution time overhead of the baseline, which does not benefit from our

reduction techniques compared to Oops. For Oops we show the overhead in the following cases: (i)
the solution is previously found and stored, i.e. memory hit, (ii) the solution needs to be computed
and then stored, i.e. memory miss, and (iii) overall which shows the average including both memory
hit and miss cases. The Figure illustrates the minimum, maximum and average execution time
for each case in the experiments. On average, the execution time of Oops is not longer than 1.3 s
while the baseline (without applying dominance and transitive reduction) takes more than 100 s
(we terminate the execution after this time limit and consider it as timeout). These results are for
the devices with 3 operation modes. If the number of operation modes increases, the difference
between overhead of Oops and baseline is expected to further increase.
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Figure 8 illustrates the breakdown of Oops’ overall execution time. Oops consists of three main
steps: 1) reduction using dominancy, 2) checking look-up table which includes calculating the index
of the problem and then searching the look-up table for the solution, and 3) the optimization solver
in case the solution has not been found in the look-up table. Note that the Y-scale is logarithmic.
The optimization solver accounts for most of the execution time, which confirms again that having
the memoization is beneficial.
In this use-case the number of connected devices to the gateway may change at runtime, e.g.

when a user enters or leaves a room. When a device is removed from the network, the domination
tree for the remaining devices is a sub-tree of the previous tree. When a new IoT device is added
to the network, the existing domination tree will be a sub-tree of the new one. However, reusing
the existing domination trees would make Oops complicated, and therefore we determine the new
domination tree based on the new setup. According to our experiment, the overhead of Oops to
determine the domination relations is less than 1.2 s on average.

5.2.2 Overhead of Operation Mode Switching. Once the device is notified to change its operation
mode, at least one of these two parameters changes: 1) service quality due to quality of input,
2) offloading level. Both changes are performed in software and can be implemented in such a
way that do not require lengthy reconfiguration of the device. Service quality is tightly coupled
to the sampling frequency of the input signal, which only requires alternating the expiration
interval of a timer. The small number of different service quality levels allows the hard-coding of
system parameters for the rest of execution flow, e.g. the coefficients of the digital filter for the
pre-processing stage. Consequently, the change of service quality corresponds to the dynamic
choice of a different execution flow, which is implemented in a “switch case” manner. Taking these
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facts into account, the dynamic adaptation of service quality imposes negligible overheads both to
the performance and power of the IoT device.

The second case, i.e. a dynamic adaptation of the offloading level is even more straightforward.
Again in software, this corresponds to changing a condition variable, which designates the exact
processing stages that needs be executed on the IoT device. After a certain stage (which is determined
by the offloading level), the intermediate results are transmitted to the gateway and the rest of
processing is performed there [28]. Therefore, the overhead for the change of an offloading level
is negligible (i.e. checking an “if-else” condition at the end of each stage) both in performance
and power. Note that the power cost of processing and transmitting the data is already taken into
account when the operating mode is designated (i.e. Pd (m) in Section 3.3).

Lastly, the new operation mode of the device is effective for the next segment of input data. This
means that the processing of the current segmentmust be completed first before themode adaptation
takes place [25]. In practice, this delay is constrained by its worst case, i.e. the execution latency for
processing of an entire segment. Even for computation intensive applications (e.g. Epileptic seizure
prediction [27]) this latency is very small, and typically is in the order of hundreds of milliseconds.
Due to the aforementioned design aspects, the overhead for changing the operation mode of
application is negligible. Moreover in our experiments, the number of times that the operation
mode of devices change is small compared to their expected lifetime (18 times in 950min.).

5.2.3 Battery Lifetime, QoS & Utility improvement. Moving to a complete system perspective,
we exploit a use-case to present runtime effectiveness of Oops. We consider a scenario revolving
around a future smart home (presented in Figure 9), where a number of IoT devices operate within
the premises of this smart home. We exclude smart household appliances that are plugged into the
power network and thus do not have battery constraints. On the contrary, we examine portable
devices that are used in an assisted living setup for elderly (e.g. wearable healthcare monitoring
devices, fall detection devices, smart watches, etc.). Each device senses its surroundings, performs
a series of processing tasks on the input (e.g. filtering, features extraction, classification), and
eventually assesses the status of its monitoring environment. This structure has been seen in other
IoT applications such as the IoT-based ECG monitoring application proposed and utilized in [29].
The last key component of the smart home system is the gateway, which is responsible for

instructing the operation of devices in such a way that the provided utility to the user is maximized,
while the expected lifetime constraints of each individual device are respected. As detailed in
Section 3.1, each individual IoT device is characterized by its operation modes each of which uses
a different computation offloading level to the gateway, different service quality, and different
utility for the user. Furthermore, the user dictates the expected battery lifetime for each device.
The objective of our proposed Oops is to dynamically designate the operation mode of the devices
with respect to the runtime changes in available battery, number of devices, user requirements, etc.

The gateway is characterized by a limited amount of computational and communication resources,
expressed by its CPU and bandwidth capacity. The number of connected IoT devices to the gateway
ranges from 3 to 7. This range is typical for a local IoT network with a single gateway (e.g. Bluetooth
supports up to seven different slave devices). The utility values are chosen from the range of [0− 1]
using an iso-elastic model (with diminishing marginal returns), which is widely used to model the
utility functions in resource allocation problems [9].
Since the expected battery lifetime of IoT devices is the crucial runtime constraint, we exam-

ine three scenarios for lifetime expectations in order to evaluate the efficiency of our proposed
framework. These scenarios assume lifetime constraints in the range of all day battery life with
respectively 950, 1050, and 1150 minutes. When the expected lifetime of IoT nodes is high, the in-
tensity of the constraints in the optimization problem increases. Thus the operation mode selection
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Fig. 9. Envisioned future Gateway-governed Smart Home setting

becomes more critical as it must determine the efficient operating modes for devices in order to
preserve the energy more.
Furthermore, we consider a CR2430 coin-cell battery as the power source of devices as it is

already used in other IoT products [41]. Each IoT device has a different initial battery capacity,
randomly sampled in the range of [280, 320]mAh according to [1, 4]. For fairness of comparison,
the initial battery capacity conditions are maintained constant throughout the examined scenarios.
In Figure 10a, we present the minimum achieved lifetime of the IoT devices for 3 different

lifetime expectations. The expected lifetime of IoT devices is depicted using dashed red lines. The
effectiveness of Oops is compared against a similar setup, but the algorithm for runtime operation
mode selection of IoT devices is based on the algorithm presented in [29], where the operation
modes with the highest utility are prioritized. Results show that both algorithms are capable of
satisfying the expected lifetime constraints for all cases (different examined numbers of IoT devices
and lifetime requirements). However, Oops increases the lifetime of devices further (longer than
the constraint) by prioritizing the operation modes that offer higher utility at the cost of a given
energy consumption value. Execution of Oops accounts for less than 1% of the achieved lifetime
rounds for 3-5 devices and less than 2% of the rounds for scenarios of 6 and 7 devices.
The advantage of Oops is that it extends battery lifetime providently by prioritizing operation

modes with higher utility per energy. Hence by extending the lifetime, it increases the accumulated
utility of the system. Figure 10b illustrates the improvement of accumulated utility inOops compared
to the state-of-the-art [29]. When the expected lifetime constraints are low (short expected lifetime),
the optimization algorithm has the flexibility to choose between more operation modes and as a
consequence, utility improvements surpass 20% compared to the [29]. Hence, the advantage of
Oops is more prominent in this scenario.

Tighter expected lifetime requirements result in less flexibility for the mode selection algorithms
to instruct the IoT devices, i.e. there are few options for selection that can still meet battery
lifetime expectation. This affects the utility improvement over the state-of-the-art (see Figure 10b).
The lowest accumulated utility improvement belongs to the last scenario where battery lifetime
expectation is high (i.e. 1150 minutes in our experiment). This is because there are very few feasible
configurations for each device, since these operation modes are more energy consuming and their
adoption would result in violation of battery lifetime constraint.

The achieved aggregated utility usually decreases as the number of connected devices increases.
The reason is that due to higher resource contention on the gateway, the operation modes with
less utility will be selected. In our experiment, the aggregated utility in Oops and state-of-the-art
[29] decreases when the number of connected devices increases. However, the proportion remains
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Fig. 10. The battery lifetime and utility improvement of Oops compared to [29]

almost the same. Therefore, the utility improvement that is reported in Figure 10b changes slightly
when increasing the number of connected devices.

Figure 10b also provides another observation and insight about the relation of application’s
requirements and defining operation modes at the design time; Application requirements such as
battery lifetime constraint, service quality constraint, etc. restrain the range of acceptable input
quality, offloading levels, etc. These requirements are often contradictory. They form a design space
from which the operation modes must be selected wisely. Defining efficient operation modes for
the application at design time is still an open problem and requires more attention.
It must be noted that the operation modes do not necessarily need to meet all system’s re-

quirements individually. The reason is that the operation mode selection algorithm, e.g. Oops, are
able to combine and schedule the operation modes at runtime such that all the requirements are
met eventually. However, the operation modes must be defined –at design time– in a way that
could provide a rich portfolio and offer enough options to Oops. In other words, the operation
mode selection algorithms need to have the flexibility in choosing the feasible modes at runtime.
Otherwise (if the feasible options are few) the advantage of Oops descends when the constraints
and requirement are tight (e.g. the gray bar in Figure 10b).

5.3 Comparison with Cloud-based Solutions
To compareOopswith a cloud-based solution we consider a setupwhere IoT devices are connected to
the cloud server without the assistance of a gateway. The IoT devices are equipped with broadband
cellular network transceivers such as 2G [35], 3G [36] and 4G-LTE1 [34] (u-blox modules) that
provide high-bandwidth and direct connection to the Internet. The bandwidth of the transceivers
is adequate for the executed applications.
Figure 11 shows the achieved utility with Oops compared to the cloud-based solution. The IoT

devices offload all tasks to the cloud instead of a local gateway. The power consumption of data
transmission using cellular transceivers is higher compared to the Bluetooth in gateway-based setup
of Oops. The energy consumption overhead is calculated according to profiling of IoT applications
[29] and the power consumption profile of the transceivers as provided by their manufacturer
[34–36]. Hence to meet the battery lifetime requirements, the cloud-based approach must set the
IoT devices to operate at a mode with lower utility (e.g. lower input quality). This effect is more
crucial in newer generation of cellular networks, where power consumption is higher to provide
more bandwidth and reliability. Consequently, the advantage of Oops over cloud-based approach
is more prominent in 3G and 4G. Oops shows 17.5%, 20% and 26% improvement in accumulated
utility on average for the cases of low, medium and high lifetime expectancies, respectively.
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Fig. 11. The utility improvement of Oops compared to cloud-based solution

6 CONCLUSIONS
While the task of data processing is being pushed to the edge of the IoT network, efficient techniques
are required to manage the limited and shared resources of low-power devices and gateways. In
this article, we propose an optimization framework to orchestrate the IoT devices and manage the
constrained shared resources at the edge. It determines the efficient operation mode of IoT devices
at runtime with respect to the devices’ constraints and gateway’s shared resources. This framework
supports a wide range of optimization goals in the form of max-min (or min-max). Experimental
results show a significant reduction in runtime overhead of operation-mode selection from more
than 100 s to only 1.3 s on average. Oops also increases the user utility by more than 15% compared
to the state-of-the-art.
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