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Magnetisation of bulk superconductors for future
light-weight electric motors

Jan Srpčič

Bulk superconductors, in their capacity as trapped field magnets, offer a practical
means of generating high magnetic fields in small volumes. This is desirable for
applications in which portability is of primary concern. In particular, superconducting
materials are seen as enablers leading towards light-weight, high power density electric
motors to be used in future hybrid-electric passenger aircraft. One of the issues that
needs to be addressed before this can become a reality, however, is the instability
of trapped magnetic field in these materials, when exposed to external time-varying
magnetic fields.

In this work a comprehensive study of the effect of AC magnetic fields on the
trapped magnetic field in bulk superconductors is presented. Two distinct geometries
are studied; the crossed-field and the parallel configuration, in which the AC magnetic
field is applied perpendicular or parallel to the direction of trapped magnetic field,
respectively.

An analytical empirical model is derived, with which the decay of trapped magnetic
field in the crossed-field configuration can be predicted accurately, provided the value
of the critical current density in the material is known. The model is found to be in
excellent agreement with the observed experimental data, as well as with finite-element
numerical simulations. In the parallel configuration the time dependence of trapped
magnetic field is studied as a function of the AC magnetic field amplitude, its frequency
and the operating temperature of the superconductor. Subsequently, the data are
compared with their equivalent in the crossed-field configuration. It is found that,
while the crossed-field configuration leads to a greater rate of decay of trapped field, in
both configurations reducing the operating temperature proves an effective mitigation
measure against it.

Lastly, the limits of the well established Bean critical state model are studied within
the scope of the Campbell penetration depth of magnetic field, which is, itself, a direct
consequence of the reversible and elastic movement of flux vortices within the pinning
potential. I derive a convenient way of measuring the Campbell penetration depth using
a pick-up method, and present measurements of its value in a bulk superconductor at
different applied magnetic fields.
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Chapter 1

Introduction

1.1 Scope and aims of the thesis

The air transportation sector is responsible for the emission of 860 million tonnes of
carbon dioxide every year [1]. This is about 3 % of the total greenhouse gas emissions
produced worldwide. The number of passenger miles flown is projected to double in
the next two decades, making sustainability a primary concern. Progress needs to be
made towards lower environmental impact air transport by either reducing the number
of trips taken or by redesigning the aircraft themselves to be more fuel-efficient.

The energy source for aircraft is jet fuel, owing to its high energy density and to the
high power density of the jet engine. Conversely, there are, as yet, no electric nor hybrid-
electric transoceanic passenger aircraft. In order to progress into a carbon-neutral
society we must gradually transition away from fossil-fuel-powered transportation
towards greener and more sustainable alternatives. The electric motor appears to be a
likely candidate to replace fossil-fuel based engines.

The European Union has seen a steady increase in the share of electric road vehicles,
rising to about 1.8 % in 2017 [2]. This progress has not been shared by the air transport
industry primarily due to the prohibitively high weight of the electric motor at the
desired power specification. In particular, the power density required by concept hybrid-
electric aircraft is estimated on the order of 25 kW kg−1, which appears unachievable
using conventional technology [3]. Thus, electric motors must be made more efficient
before they can become an alternative to the jet engine. One possible way of doing
this is by using superconducting materials.

One of the types of electric motors which can be improved by the addition of
superconducting materials is the permanent magnet motor. In this type of motor
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permanent magnets, rather than coil windings, are used to generate the static DC
magnetic field. This can be beneficial as the field generation requires no additional
energy and the magnetic field remains constant over time. However, the magnetic field
density of conventional magnets is at most about 1.8 T (the saturation magnetisation
of iron [4]), which imposes an upper limit to the achievable magnetic loading of the
motor. In comparison, bulk superconducting trapped-field magnets have been shown
to generate magnetic field densities upwards of 17 T [5] – an order of magnitude higher
than conventional magnets – which may lead to a marked increase in the specific power
of electric motors. In order to successfully design and construct an electric motor using
bulk superconductors three major challenges must be dealt with:

1. Mechanical strength.

The most promising materials for trapped-field applications are GdBa2Cu3O7–δ

bulk superconductors – inherently brittle ceramics. During the magnetisation
process (described in detail in Section 2.3.3) the Lorentz forces induced in the
material are sufficient to cause cracking and catastrophic failure of the super-
conductor (the most common mode of failure is cracking during magnetisation).
Thus, a means of mechanical reinforcement must be found.

2. Cryogenic and magnetisation systems.

Since materials only superconduct at temperatures below their critical tempera-
ture (92 K for GdBa2Cu3O7–δ) a dedicated cryogenic system must be installed to
accompany any superconducting motor. Additionally, a portable magnetisation
system needs to be developed with which to charge the trapped-field magnets.
Both these systems introduce additional weight to the electric motor, which will
decrease the total specific power.

3. Magnetic field stability.

After magnetisation the trapped magnetic field in a bulk superconductor does not
remain constant – instead it decays over time following a logarithmic decay rate:
if the magnetic field decays by 10 % in the first 10 min after magnetisation, it will
subsequently decay an additional 10 % in the following 100 min. Additionally, if
the superconductor is exposed to external changing magnetic fields, as will be the
case in an electric motor, the decay of trapped field may be markedly accelerated
as a consequence of hysteretic losses and heat generation. Thus, understanding
this decay is of great interest as it may help ultimately in its mitigation.
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This dissertation deals with the third problem – its aim is to discuss the effect AC
magnetic fields have on the trapped field of a bulk superconductor. The goal will be
to mimic the magnetic environment, expected in a rotating machine, and analyse its
effects on magnetised bulks.

1.2 Thesis outline

In Chapter 2 the physics of superconductivity is introduced and the most important
theories describing the behaviour of type-II superconductors are summarised. For the
purposes of this thesis classical electromagnetism is sufficient to describe the relevant
physical phenomena, hence the underlying quantum mechanical picture is not studied
in detail. As we shall see, the Bean critical state model [6] along with Maxwell’s
equations is sufficient to account for most of the observables of interest, such as the
critical current density, or the magnetisation of the superconductor. Bulk (RE)BCO
superconductors (where RE is a rare earth or yttrium, B is barium, C is copper, and O
is oxygen) are introduced and their properties discussed as these materials are studied
in the subsequent chapters.

In Chapter 3 the methods used throughout the experimental work towards this
thesis are described. This entails sample preparation and growth - the method used
to manufacture the bulk (RE)BCO superconductors is the top-seeded melt growth
technique [7]. Next, the magnetisation procedures to charge the bulk superconductors
are described; field cooled magnetisation (FC), and pulsed field magnetisation (PFM).
They are used to probe the full field-trapping capabilities and the realistically achievable
trapped fields of the samples, respectively. Since, subsequent to magnetisation, the
samples are exposed to time-varying magnetic fields, next the generation of the AC
magnetic field is described, along with the measurement of the sample response (be it
with Hall sensors or pick-up coils). Finally, a finite element modelling (FEM) technique
is detailed, which is employed to generate numerical simulations to compare with the
experimental data.

In chapters 4, 5, and 6 the experimental results are presented and analysed. Each of
the chapters begins with a literature review in which the most important relevant studies
are summarised, followed by the the presentation and analysis of new experimental
results acquired for the production of this thesis.

Chapter 4 looks at the influence of AC magnetic fields on the trapped magnetic
field in a bulk superconductor in the crossed-field configuration. Here, the orientation
of the AC field is perpendicular to the direction of the trapped field, which is the
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configuration found to lead to the greatest rate of decay of trapped magnetic field. An
empirical analytical model is presented, with which the time dependence of trapped
field in the crossed-field configuration can be predicted accurately, provided the value
of critical current density in the superconductor is known. The model is corroborated
with measurements of decay, and with FEM simulations, and all three are found to be
in excellent agreement.

Chapter 5 looks at the parallel field configuration, in which, unlike in Chapter 4,
the AC magnetic field is applied parallel to the direction of the trapped magnetic
field. Initially, the highest achievable trapped magnetic field in a (RE)BCO sample
is determined using PFM, and subsequently the sample is exposed to external AC
magnetic fields. The decay of trapped field is analysed as a function of the AC magnetic
field amplitude and frequency, and of the operating temperature of the superconductor.
Then, the parallel configuration is compared to the crossed-field configuration in terms
of decay of trapped field, and measures to mitigate decay are discussed.

Chapter 6 looks more deeply into the microscopic picture of the mixed state of
type-II superconductors, and into the interaction of flux vortices with their pinning
centres. The Campbell model [8] is introduced as the extension of the Bean critical
state model in the regime of low-amplitude applied AC magnetic fields and reversible
vortex movement within the flux pinning potential (this reversible movement is not
accounted for within the Bean model framework). The governing partial differential
equations for vortex movement are introduced and solved numerically in their complete
form, and analytically in a linearised form, which proves convenient for comparison of
theory with experiment. The data are presented and the Campbell penetration depth
in a bulk (RE)BCO superconductor is discussed.

Finally, in Chapter 7, the conclusions are drawn and the further work is outlined.
Here, the plans for a superconducting rotating ersatz motor, with which to test
the bulk superconductors in a real machine environment, are described. Since the
actual magnetic environment in a superconducting rotating machine will likely be
a combination of the parallel and crossed-field configurations, the ersatz motor will
provide a more accurate test for the expected performance of bulk superconductors,
acting as trapped-field magnets.



Chapter 2

The physical background

2.1 The fields B, M and H

As a preface to this chapter we begin with an overview of the definitions and meanings
of the three fields that arise in magnetodynamics: the magnetic field density B
(here referred to simply as magnetic field), the magnetic field strength H, and the
magnetisation M. The purpose of this overview is to establish the nomenclature
used in the rest of this thesis, and to define unambiguously the relations between the
fields in normal magnetisable (e.g. ferromagnetic) materials and in superconducting
materials. In the latter the focus will be on type-II superconductivity. For a thorough
discussion on the meaning of Maxwell’s equations in normal matter, see [9], and for
superconducting matter, see [10].

2.1.1 Normal matter

On the molecular scale of matter the microscopic magnetic field, b, is defined by the
two Maxwell’s equations

∇ · b = 0, (2.1)

and
∇ × b = µ0

(
J + ϵ0

∂E
∂t

)
, (2.2)

where µ0 and ϵ0 are the vacuum permeability and permittivity, respectively, J is the
current density and E is the electric field. Equations 2.1 and 2.2 tell us that the field
b is lossless, i.e. there are no magnetic sources (monopoles) or sinks, and that the
field arises as a consequence of moving charges and time-varying electric fields. By
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averaging these equations over a length scale much greater than the microscopic scale
over which b varies, we can obtain the corresponding equations for the macroscopic
magnetic field, B. This is the magnetic field, in Tesla, that we generate by passing
current through a conductor, or that we measure using a Hall or inductive sensor.

In matter a second field has to be introduced to take into account the contribution of
any magnetic dipoles present. A distribution of magnetic dipoles, which are effectively
microscopic current loops, leads to an equivalent macroscopic distribution of current
density J in the material. While in electrical insulators this current density is equivalent
to the current density in equation 2.2 (Ampere’s law), in electrical conductors the
current density in equation 2.2 includes also the ohmic current due to a potential
difference across the conductor. Here, the discussion is limited to the current density in
the absence of any current sources or sinks, hence the current density that arises from
the distribution of magnetic dipoles is equivalent to the current density in Ampere’s
law.

In the absence of current sources charge conservation dictates

∇ · J = 0. (2.3)

Hence, there exists a vector potential, M, for which the critical current density can be
written as

∇ × M = J. (2.4)

This vector potential is typically referred to as magnetisation and can be calculated
with the additional boundary condition M = 0 at the material surface. Equation
2.4, however, is insufficient to fully define magnetisation. A gradient of any scalar
may be added to M and equation 2.4 will still hold. Hence, the formal definition of
magnetisation is as a volume density of magnetic dipoles,

1
2

∫
V

r × J dV =
∫

V
M dV, (2.5)

where the integral goes over the volume of the material. The microscopic picture, here,
is that of a volume density of magnetic dipoles in matter, which may be affected by,
and contribute to, the magnetic field.

It is possible to arrive at the above expression by substituting equation 2.4 into the
left hande side of equation 2.5 and transforming the integral with the use of Stokes’
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theorem, ∫
V

r × (∇ × M) dV = −
∮

∂V
r × (M × dS) −

∫
V

(M × ∇) × r dV. (2.6)

The surface integral on the right hand side is over the boundary of the the volume
(where M = 0), hence it is equal to zero. The term in the second integral is simply
(M × ∇) × r = −2M, which brings us to equation 2.5.

In principle, the magnetic field and the magnetisation are independent fields –
they arise due to moving charges and bound magnetic dipoles, respectively – and are
sufficient to describe the magnetodynamics of matter. However, in some cases it is
convenient to define an additional field, the magnetic field strength, as

H = B
µ0

− M. (2.7)

The magnetic field strength can be used to describe finite size effects due to which
the magnetisation in matter does not change linearly with magnetic field (see the
example, below). In the absence of any applied magnetic field the H field is sometimes
referred to as the demagnetising field, HD. This is because its direction can be opposite
the direction of magnetisation, hence demagnetising the material. In vacuum, however,
the fields B and H differ only by a factor of µ0 and are equivalent.

Additionally, in isotropic materials at small magnetic fields the relation between B
and H is linear,

B = µH, (2.8)

where µ is the material permeability (µ = µ0 in vacuum). Throughout this thesis the
fields B and M will be referred to as independent fields, which, once known, fully
define the field H.

As an example of the above, let us look at a simplified case of a ferromagnetic cylinder
of radius r0 and height h0 in which there is a constant density of magnetic dipoles. The
magnetisation is assumed constant in the z-direction, M = M0(1 −H(r− r0))êz, where
H(r − r0) is the Heaviside step function and êz is the unit vector in the z-direction
(Figure 2.1 (a)).

To calculate the magnetic field at the centre of the cylinder we firstly find the
equivalent surface currents from M via equation 2.4, which in one dimension in
cylindrical coordinates reads

− ∂

∂r
(M0 (1 −H (r − r0))) êϕ = M0δ (r − r0) êϕ = J êϕ, (2.9)
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r

J

(b)

Fig. 2.1 (a) The magnetisation of a uniformly magnetised cylinder and (b) an equivalent
surface current.

where r is the radial coordinate, êϕ the unit vector in the ϕ-direction, J the surface
current density, and δ (r − r0) is the Dirac delta function. The currents calculated in
this way (shown in Figure 2.1 (b)) are used purely for the purposes of calculation; the
microscopic picture remains one of a density of magnetic dipoles.

Next, the magnetic field in the centre of the cylinder due to the surface currents
can be calculated using the Biot-Savart law,

B (r) = µ0

4π

∫
V

J (r′) × (r − r′)
|r − r′|3

d3r′. (2.10)

The cylinder inhabits the space −h0/2 ⩽ z ⩽ h0/2 and r ⩽ r0, hence we can evaluate
the z-component of the magnetic field as

B = µ0

4π

∫ r=r0

r=0

∫ z=h0/2

z=−h0/2

rM0δ(r − r0)
(r2 + z2)3/2 2πr dr dz. (2.11)

Integrating, and defining the cylinder aspect ratio η = h0/2r0, we arrive at the result

B = µ0M√
1 + η−2 . (2.12)

Note the magnetic field and the magnetisation have the same sign (i.e. they are both
positive). The demagnetising field can then be expressed as

HD = B

µ0
−M =

(
1√

1 + η−2 − 1
)
M = N(η)M, (2.13)
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Fig. 2.2 The demagnetisation factor as a functing of the cylinder aspect ratio η = h0/2r0.

where we defined the demagnetisation factor N(η). It can be seen that HD ≤ 0 for all
values of η. The total magnetic field strength, in the presence of an external magnetic
field B0, can be written as

H = HD + B0

µ0
. (2.14)

The demagnetisation factor for a varying cylinder aspect ratio η is shown in Figure
2.2. In the η → ∞ limit, which represents an infinitely long and thin cylinder, the
demagnetisation factor is zero. Hence, HD = 0 and B = µ0M + B0. In the case
η → 0, which represents a flat and infinitely wide cylinder the demagnetisation factor
is N = −1, hence H = −M and B = B0. This latter case is equivalent to a current
loop of infinite radius carrying a current where the magnetic field in the centre decays
inversely with the loop radius (as r → ∞, B → 0).

2.1.2 Superconducting matter

Superconductors are diamagnetic materials, hence the direction of magnetisation is
opposite the direction of the applied magnetic field. In type-II superconductors (see
characterisation of superconductivity in Section 2.2.3) the absolute value of magnetisa-
tion was shown by Abrikosov [11] to increase linearly with magnetic field up to the first
critical field, and decay inversely with field between the first and second critical fields
(the mixed state). At the second critical field the magnetisation is zero. Additionally,
the absolute value of magnetisation in the mixed state is typically much smaller than
the applied field; µ0M ≪ B. The maximum value of magnetisation itself depends on
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Fig. 2.3 The Abrikosov magnetisation (dimensionless) as a function of applied magnetic
field for a varying Ginzburg-Landau parameter. The two critical fields, BC1 and BC1
are marked for the κ = 10 case. Reproduced from [13].

the Ginzburg-Landau parameter κ; a larger value of κ leads to a decreasing absolute
value of magnetisation (see Figure 2.3). In the present work the discussion will mainly
focus on cuprate superconductors, for which the Ginzburg-Landau parameter is κ ≈ 100
[12]. Hence, a very good approximation will be

M = 0, (2.15)
B = µ0H. (2.16)

Then, Maxwell’s equations in type-II superconductors are identical to those in vacuum
and we can set the magnetic permeability to µ = 1.

There is, however, a second type of magnetisation that can be defined in type-II
superconductors, which is not the Abrikosov magnetisation in Figure 2.3. It is the total
magnetic moment per unit volume due to persistent transport currents flowing through
the superconductor and can formally be defined in the same way as in normal matter
via equation 2.5. These transport currents are similar to e.g. eddy currents in a normal
metal induced in a changing magnetic field as per Faraday’s law of induction. The
currents in a normal metal, however, will decay much more quickly than the persistent
currents in a superconductor, hence it is meaningless to talk about a magnetic moment
at longer timescales.
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The superconductor magnetisation, defined in this way, can be useful for describing
the current-carrying capabilities of the material as typically its value will be proportional
to the current. Its value will also be proportional to the size of the sample, however,
making the local magnetisation ill defined. Conversely, in normal materials the local
magnetisation is well defined as the local density of magnetic dipoles.

Additionally, the distinction between the Abrikosov magnetisation and the total
magnetic moment per unit volume due to transport currents is made apparent when
calculating the total loss in the superconductor, Q = E · J. If the total current density
is written as a sum of the (Abrikosov) magnetising currents and transport currents,
J = JM + JT , the total loss can be calculated as Q = E · JT. The magnetisation
currents are lossless and, hence, E · JM = 0.

A typical experiment involving type-II superconductors is to measure the so called
magnetisation hysteresis loop (see the Bean model, Section 2.2.5) in which the magneti-
sation of a superconducting sample is measured as a function of applied magnetic field.
The magnetisation in this case is the total magnetic moment of the sample per unit
volume, and not the magnetisation in equation 2.7. Hence, when interpreting these
experiments the value of permeability remains µ = µ0. The slope of the magnetisation
curve is due to the flux pinning forces, which are themselves the underlying cause for
irreversible behaviour and hysteresis. Throughout this dissertation, unless explicitly
stated otherwise, the term magnetisation will be used to describe the second type of
magnetisation, the total magnetic moment per unit volume. The Abrikosov magnetisa-
tion will be assumed zero, such that the relation B = µ0H will always hold. Hence, the
magnetic field B will be sufficient for the complete description of magnetodynamics in
type-II superconductors.

2.2 The physics of superconductivity

2.2.1 Definition

Superconductivity is a state of matter, exhibited by certain materials when cooled
below a material dependent transition temperature. Its onset is accompanied by a
vanishing electrical resistivity and an expulsion of magnetic fields from within the
interior of the material. These properties make superconductors distinct from all other
materials and particularly interesting for certain applications requiring high current
carrying capabilities, and, equivalently, high magnetic field. Formally, the two defining
properties can be written as follows:
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1. B = 0; exclusion of the magnetic field from the material [14],

2. ρ = 0; vanishing electrical resistance in the material [15].

The two properties define a new state of matter, superconductivity, which occurs
in certain matter when it is cooled down below a material dependent transition
temperature, called the critical temperature, TC . The first property defines the
Meissner-Ochsenfeld effect, in which the material, when cooled below TC , expels all
magnetic field from its interior such that it is zero throughout the superconductor
(except in a thin surface layer; see London penetration, below). This was initially
observed by measuring the magnetic field between two superconducting cylinders,
which itself suddenly rose when the temperature was lowered below TC , indicating
expulsion from the superconductor.

The second property states that the electrical resistance of the superconductor
approaches zero, i.e. there is little dissipation of current flow. For example, a supercon-
ducting loop in which current is circulating will be able to support the current with
little decay over time (with the decay constant on the order of 1012 s [16]). Both these
properties are independent and do not follow from one another.

2.2.2 The London equations

Superconductivity is fundamentally a quantum mechanical phenomenon, and yet some
observable predictions can be made using a purely classical approach. Specifically, both
properties defining the superconducting state, zero magnetic field and zero electrical
resistivity, can be described using the London equations [17]. Assuming there is a
number density nS of charge carriers inside the superconductor with charge q, mass m
and velocity vS, Newton’s second law for one such carrier can be written as

m
dvS

dt
= qE, (2.17)

where E is the electric field at the position of the charge carrier. Next, the current
density J can be written in the usual form

J = nSqvS. (2.18)
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Calculating the time derivative of the above equation and substituting into equation
2.17, we get the first London equation

dJ
dt

= nSq
2

m
E, (2.19)

which describes the constitutive relation between the electric field and current density.
As an example, let us consider the effect of an impulse of electric field, E = E0 δ(t), on
a superconductor without any current (δ(t) is the Dirac delta function). Inserting the
electric field impulse into the (one-dimensional) London equation, we arrive at

dJ

dt
= nSq

2E0

m
δ(t). (2.20)

This differential equation can be solved readily by using the Laplace transform to obtain
an equivalent algebraic equation. In the simplest case, in which L(dJ(t)/dt) = sJ(s),
and L(δ(t)) = 1, where s is the complex frequency, the resultant algebraic equation
becomes

J(s) = nSq
2E0

m

1
s
. (2.21)

Then, taking the inverse Laplace transform of the above, whereby L−1(1/s) = H(t)
(H(t) is the Heaviside step function), we obtain the result

J = nSq
2E0

m
H(t). (2.22)

This equation, albeit derived from simple assumptions, is able to capture the lossless
behaviour of the current in a superconductor - the current remains constant after the
electric field is removed. Additionally, the calculated current has a finite (maximum)
value, which, as described in later sections, is also a physical result.

To obtain an equation, describing the magnetic field behaviour we can apply the
curl operator to equation 2.19,

d

dt
∇ × J = nSq

2

m
∇ × E. (2.23)

Then, substituting in Faraday’s law of induction, ∇ × E = −∂B/∂t, and integrating
with respect to time, we arrive at the second London equation

∇ × J = −nSq
2

m
B. (2.24)
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This equation relates the magnetic field inside the superconductor with the current,
and encapsulates sufficient physics to describe the Meissner effect. By expressing the
current using Ampere’s law, ∇ × B = µ0J, we can write

∇ ×
(

1
µ0

∇ × B
)

= −nSq
2

m
B. (2.25)

Then, making use of the vector calculus identity for the vector Laplacian ∇2B =
∇ (∇ · B) − ∇ × (∇ × B), with ∇ · B = 0, we arrive at the equation

∇2B = µ0nSq
2

m
B. (2.26)

The solution of the above equation is an exponential decay of the magnetic field with
distance from the material boundary. The characteristic distance, over which the
magnetic field decays, is the London penetration depth

λL =
√

m

µ0nSq2 . (2.27)

Thus, the magnetic field in reality is not excluded completely from the superconductor;
there exists a layer of thickness λL beneath the surface of the superconductor up to
which the magnetic field can penetrate. For (RE)BCO materials, studied in this work,
the London penetration is on the order of ≈ 100 nm [18], and is anisotropic, reflecting
the crystal anisotropy of the material (see Section 2.3).

2.2.3 Type-I and type-II superconductivity

The London penetration depth is a characteristic distance over which the magnetic
field decays inside the superconductor. However, there are two distinct types of
superconductivity, which can be characterised based on the way in which the magnetic
field is excluded from the superconducting material. The phase diagrams illustrating
this differing behaviour are shown in Figure 2.4.

Type-I superconductivity is present in most elemental metals such as mercury,
aluminium or lead, with critical temperature values typically below 10 K. When cooled
below its critical temperature, TC , a type-I superconductor undergoes a first-order phase
transition, which is accompanied by the expulsion of magnetic fields from the interior of
the superconductor (the Meissner state) and by the vanishing of the material electrical
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Fig. 2.4 The superconducting phase diagram of type-I (left) and type-II (right) super-
conductivity.

resistance. The magnetic field expulsion is due to the flow of lossless electric currents
(supercurrents) in the field-penetrated region in the periphery of the superconductor.

The superconducting state can exist only at sufficiently small applied external
fields - the superconductor is driven normal if the external field is increased above
a temperature dependent limiting value, called the critical field, BC = µ0HC . This
is due to the superconducting energy at fields above the critical field being larger
than the equivalent magnetic energy in the normal state. Since initially B = 0 in the
superconductor, it follows M = −H. The superconducting energy up to BC , then, can
be written as

BC∫
0

MdB = −
BC/µ0∫

0

µ0HdH = −B2
C

2µ0
. (2.28)

Then, the definition of BC becomes

B2
C

2µ0
= fN − fS, (2.29)

where fN and fS are the free energy per unit volume of the normal and superconducting
state, respectively.

Equivalently, there exists a maximum current, called the critical current, IC , that
can flow through the superconductor before superconductivity is suppressed. The
equivalence for a long and thin wire of radius r is given by Silsbee’ rule [19]

BC = µ0IC

2πr . (2.30)
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The two parameters – the critical temperature and the critical magnetic field –
confine the superconducting phase space to what we see in Figure 2.4 (left). Above BC

or above TC the material transitions from the superconducting to the normal phase.
A second form of superconductivity, called type-II superconductivity, is present

in some of the most technologically useful materials, such as NbTi or Nb3Sn, or high
temperature superconductors like YBa2Cu3O7–δ (see Section 2.3). These materials are
useful because in type-II superconductors the magnetic field can penetrate the material
without suppressing superconductivity, which allows for significantly higher values of
critical field and critical current.

At magnetic fields lower than the first critical field BC1 (equivalent to BC in type-I
superconductors) the superconductor is in the Meissner state with magnetic fields
penetrating up to the London depth. Below BC1 the phase diagram for both types
of superconductivity is identical. Increasing the magnetic field above BC1, however,
leads to a phase in which superconductivity coexists with the normal phase, called the
mixed state (see Section 2.2.4). Then, if the magnetic field is raised further, above a
second critical field BC2, superconductivity is suppressed and the material is driven
normal. The type-II superconductivity phase diagram is shown in Figure 2.4 (right).

In order to characterise superconducting materials into type-I or type-II a second
characteristic length scale, besides the London penetration depth, has to be considered.
This is the superconducting coherence length, ξ. This is a characteristic length, given
by the Ginzburg-Landau theory [20, 21], which determines the scale over which the
charge carrier density in the superconductor decays to zero (in contrast to the London
penetration depth, which itself determines the scale over which the magnetic field
decays to zero). In (RE)BCO superconductors the coherence length is on the order
of ≈ 1 nm [12] and is anisotropic depending on its direction in the crystal. The ratio
of the two length scales, the Ginzburg-Landau parameter κ = λL/ξ, can be used to
classify whether a superconductor is type-I or type-II. For type-I κ < 1/

√
2 and for

type-II κ > 1/
√

2.
The Ginzburg-Landau theory of superconductivity built on Landau’s theory of

second order phase transitions [22] to describe the transition of normal matter into
the superconducting state. In general, Landau’s theory describes the free energy of
a system as a polynomial function of some order parameter, which is chosen so that
its value is finite below the transition and zero above it. For a superconductor this
order parameter is the Cooper pair wave function, ψ, for which |ψ|2 = nS, the Cooper
pair density. Based on this formulation the Ginzburg-Landau theory predicts the two
characteristic lengths, λL and ξ. Their ratio, the parameter κ has to do with the surface
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energy between the normal and the superconducting state. If κ > 1/
√

2, the surface
energy becomes negative, making it favourable to form a large number of normal
domains within the superconductor. Abrikosov showed [11] that the most energetically
efficient configuration would take the form of a triangular lattice of normal filaments
inside the superconductor. This state of coexisting superconducting and normal matter
is known as the mixed state and the normal filaments are known as flux vortices.

2.2.4 Flux vortices and flux pinning

In the mixed state the magnetic field penetrates the superconductor in the form of flux
vortices (also Abrikosov vortices [11]). These are thin filaments of normal material,
surrounded by circulating current and each carrying a flux quantum, Φ0 = h/2e0

(h is the Planck constant, e0 the electron charge). Each flux vortex behaves as a
magnetic field line; the number density of flux vortices, ρB, is directly related to the
local magnetic field density by

ρB = B

Φ0
. (2.31)

Since each vortex is essentially a vortex of current, the distribution of vortices in a
material determines the macroscopic current density flowing through the material.

Flux vortices in the mixed state repel each other if they are of the same sense
(current circulating in the same direction), and attract each other if of the opposite
sense. Additionally, a flux vortex can interact with the defects in the material lattice,
and can be subjected to random thermal forces. The Langevin equation describing
vortex movement can be written as [23]

ηvv = FL + FP + Fth, (2.32)

where ηv is the vortex flow viscosity, FL = J×B is the Lorentz force, FP is the pinning
force, and Fth is the thermal actuation force.

Without thermal fluctuations and without any interaction between vortex and
superconductor the only acting force would be the Lorentz force, FL. This is the
repulsive or attractive vortex-vortex interaction and is the consequence of the magnetic
energy stored in a distribution of flux vortices.

Next, the introduction of the vortex-matter interaction leads, firstly, to flux flow
viscosity, ηv. Flux vortices are filaments of normal material, hence their movement
through the superconducting matrix requires energy - vortex movement leads to
dissipation. This dissipation can be accounted for by considering the loss due to the
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flow of supercurrent through the normal vortex core as a consequence of its movement
(the Bardeen-Stephen model [24]). When all the forces on the right hand side of
equation 2.32 are evaluated the resultant leads to vortex flow and to dissipation.

Vortex flow dissipation presents a stark contrast to the situation in type-I super-
conductors, in which the current flow is lossless. In type-II superconductors in the
mixed state, any change in the magnetic field will – through the movement of flux
vortices – lead to dissipation. For practical application purposes this is not desirable
as dissipation leads to losses and, hence, to a lower utility of applications that employ
type-II superconductors. Therefore, it is desirable to impede vortex movement by
introducing barriers, called pinning centres, into the superconducting matrix. Pinning
centres are typically imperfections, irregularities or inclusions [25] purposefully engi-
neered into the superconducting matrix during the manufacturing process (see Section
2.3.2). Physically, pinning centres are areas of normal material that act as potential
wells, in which flux vortices get trapped due to a reduction of the total free energy
of the system if the vortex normal core and the normal pinning centre overlap. The
contribution of the pinning centres in the Langevin equation is summed up under the
pinning force term, FP .

The final term in equation 2.32 is the thermal actuation force, Fth. This force is
a consequence of random thermal fluctuations felt by the flux vortices and leads to
an Arrhenius type time evolution of the flux vortex distribution. For instance, if the
Lorentz force and the pinning force are equal and opposite the flux vortex will be
pinned in place. Then, if the vortex is acted upon by an additionall (small) thermal
force, it may become unpinned and escape the superconductor. This process, known
as flux creep, leads to a slow decay of current over time in type-II superconductors
(see Section 2.2.6).

2.2.5 The Bean critical state model

As mentioned in the previous section, it is desirable to introduce pinning centres to the
superconductor so as to impede vortex movement and mitigate dissipation. Type-II
superconductors with sufficiently many such pinning centres are sometimes referred
to as hard superconductors. Despite the generally complex equation governing vortex
movement, there exists a simple model – the Bean critical state model [6] – with which
the behaviour of hard superconductors can be explained.

The introduction of pinning centres to the superconducting material leads to
hysteresis in the dependence of the current density in the superconductor on applied
magnetic field - the change in current with a change in magnetic field depends on the
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Fig. 2.5 A magnetisation loop of a GdBa2Cu3O7–δ sample at 50 K. The arrows show
the direction of the loop as the magnetic field is cycled. Reproduced with permission
from Yunhua Shi (unpublished).

magnetic history of the superconductor. Equivalently, pinning centres lead to hysteresis
in the magnetisation loops of these materials. A characteristic magnetisation loop for
GdBa2Cu3O7–δ is shown in Figure 2.5.

Superconductors are diamagnetic materials, meaning that the direction of induced
currents in the superconductor will be such that the resultant magnetic field opposes the
change in external magnetic field. At small (positive) applied fields this is seen in the
negative value of magnetisation. Due to the flux pinning and consequent irreversibility,
however, the magnetisation can become positive once the applied magnetic field is
reversed.

The Bean critical state model explains this by making two assumptions about the
behaviour of the superconductor:

1. There exists a maximum current density that can flow through the superconductor,
the critical current density, JC .

2. Any electromotive force applied to a superconductor will induce the full critical
current density.

These two assumptions follow naturally from the Langevin equation for flux vortex
flow if the pinning force, FP , is assumed to be sufficiently large, so that the thermal
actuation force, Fth, can be neglected, and there can be no flux vortex movement, such
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that ηvv = 0. Then, what remains is

FL + FP = JC × B + FP = 0. (2.33)

Equation 2.33 is the definition of critical current density. The Bean model assumptions
state that if there is any current flowing through the superconductor it must be the
full JC . Bean first formulated his model for a critical current density independent of
magnetic field - this was later extended to take into account the observed decrease
of current density with increasing magnetic field. For instance, the Kim model [26]
assumes JC ∝ 1/B, which explains the shape of the magnetisation hysteresis remarkably
well.

As an example let us consider the magnetisation hysteresis of an infinite cylinder of
radius r0, where the magnetic field B0 is applied and cycled parallel to the cylindrical
axis (z-direction). This is the so-called zero field cooled magnetisation procedure,
which will be discussed further in Section 2.3.3. The two examples considered will
be the Bean model, in which JC(B) = J0

C is constant, and the Kim model, in which
JC(B) = J0

C/(1 +B/B1), where J0
C and B1 are constant parameters.

The magnetic field profiles inside the superconductor can be calculated using
Ampere’s law, ∇ × B = µ0JC . The external magnetic field is applied along the
cylindrical axis, hence the current is induced in the azimuthal direction, JC(B) =
±JC(B)êϕ, where êϕ is the unit vector in the azimuthal direction. Since the cylinder
is assumed infinite in the z-direction the only non-zero field component will be parallel
to the cylindrical axis (due to cylindrical symmetry). Then, Ampere’s law simplifies to
the onedimensional form

∂B

∂r
= ±µ0JC(B), (2.34)

where the sign on the right hand side depends on the direction of change of the applied
field. In general, the currents will be induced so as to oppose any change in the external
magnetic field. The integration of equation 2.34, along with the boundary condition
B(r = r0) = B0, leads to the field profiles, shown in Figure 2.6 and the corresponding
current density is shown in Figure 2.7 (Bean model in red, Kim model in blue).

When the external magnetic field is first increased shielding currents are induced in
the sample periphery. The magnitude of the currents determines the magnetic field
gradient inside the superconductor as per equation 2.34. Hence, the magnetic field
decreases with distance until it reaches zero at a depth

λB = B0

µ0JC

, (2.35)
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Fig. 2.6 The magnetic field profile inside the superconductor during the (a) increasing
and (b) decreasing portion of the applied field B0 (Bean model red, Kim model blue).
The applied field at points 1, 2, 3, and 4 are, respectively, BP/2, 2BP , 1.5BP , and 0.
The values of magnetisation for each of the four applied fields are shown in Figure 2.8.
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Fig. 2.7 The current distribution inside the superconductor during the (a) increasing
(0.5 T → 2 T) and (b) decreasing (1.5 T → 0 T) portion of the applied field B0,
corresponding to the magnetic field profiles in Figure 2.6. Red lines are the Bean
model, blue the Kim model.
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called the Bean penetration depth. This is the depth up to which currents are induced
when a magnetic field of amplitude B0 is applied. In the case of the Kim model, in
which the value of the critical current density varies with magnetic field, the slope of
B(r) inside the superconductor will not be constant, instead its value will be determined
by the local magnetic field density. And, since the value of JC was chosen to decrease
with increasing magnetic field, the penetration depth in the Kim model will be greater
than in the Bean model (Figure 2.6, blue lines).

The applied field, at which the Bean penetration depth becomes equal to the radius
of the sample, is called the penetration field, BP . Once the magnetic field is increased
up to BP the superconductor is fully penetrated and the induced currents circulate in
the entirety of its cross section. In the framework of the Bean model with constant
JC , the magnetisation at this point reaches its maximum (absolute) value and remains
unchanged until the external magnetic field starts decreasing (see Figure 2.8, below).

When the applied magnetic field is ramped down from its maximum value the
irreversible behaviour begins to take place and there appears hysteresis in the magneti-
sation loop. This is because the gradient of the magnetic field inside the superconductor
is ±µ0JC(B) and so the change in applied field in the decreasing portion of the ramp
needs to be twice the value (for constant JC) in the increasing portion of the ramp
for the same Bean penetration depth λB. This leads to a non zero current density
distribution in the superconductor even when the external field has reached zero.

The magnetisation of the superconductor can be calculated from the current
distribution similarly to the magnetic field profile, with the equation

∇ × M = J. (2.36)

The boundary condition, here, must be M(r = r0) = 0, as the magnetisation is zero
outside the superconductor. Then, the total magnetisation can be calculated as the
cross section average of the local magnetisation. The resulting magnetisation as a
function of applied field is shown in Figure 2.8.

A common practical application of the Bean model is determining the critical
current density of a superconducting sample, JC , and its dependence on magnetic
field and temperature. This is done by measuring the magnetisation loop at a given
temperature and calculating the current density by equation 2.36. As an example, the
current distribution in a fully magnetised cubic superconducting sample of dimensions
2a× 2a× 2a is shown schematically in Figure 2.9.

The sample dimensions are typically chosen to be small so that the applied field
will be larger than the penetration field. The current density can be assumed constant
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1, 2, 3, and 4 are, respectively, BP/2, 2BP , 1.5BP , and 0. The corresponding magnetic
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throughout the sample and the magnetisation can be calculated as

M = 1
2V

∫
r × J dV. (2.37)

Due to symmetry the integral can go over an eighth of the cubic sample (i.e. the
cross-sectional area below the dashed line in Figure 2.9). Then,

M = 4 1
2 (2a)3

∫ x=a

x=0

∫ z=a

z=−a
xJC (x dx) dz = aJC

6 . (2.38)

Assuming the value of magnetisation changes sign when the applied field changes sign,
the width of the magnetisation loop ∆M = 2M can be used to determine the critical
current density as

JC = 3∆M
a

. (2.39)

A characteristic JC(B, T ) dependence for GdBa2Cu3O7–δ bulk superconductors,
extracted from magnetisation loop measurements with the help of equation 2.39, is
shown in Figure 2.10. Since the pinning force decreases with applied magnetic field,
this manifests itself in the field dependence of JC . However, the value of JC does not
decrease monotonically with increasing field; instead there appear broad peaks where
JC reaches a local maximum. This is the so-called matching or fishtail effect [27] and
occurs because the density of pinning centres matches the density of flux vortices ρB.

The magnetic field, at which the critical current density reaches a sufficiently
low value, typically agreed to be 100 A cm−2 [29], is called the irreversibility field,
Birr. The irreversibility field represents a practical limit for the usability of type-II
superconductors and is typically significantly lower than the second critical field BC2.

It can also be seen from Figure 2.10 that JC increases markedly with decreasing
temperature, e.g. an order of magnitude between the temperatures 70 K and 40 K. For
this reason most practical applications aim to employ superconductors at temperatures
significantly below TC at which the achievable current densities and trapped fields
become significantly increased.

The Bean model, while being able to capture the hysteretic behaviour in the
magnetisation loop, quantitatively differs from the real picture in Figure 2.5. The Kim
model, with the field dependent critical current density, captures the real behaviour
much more accurately. The framework of the Bean model and its extensions has become
extremely useful in interpreting the behaviour of hard superconductors. However, as is
the case with most physical models, the Bean model is merely a simplification of the
physical picture and breaks down beyond the domain of its validity. For instance, as it
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Fig. 2.10 The JC(B) dependence of a GdBa2Cu3O7–δ superconductor, calculated from
measured magnetisation loops using equation 2.39. Reproduced from [28].

assumes a large pinning force in comparison to the thermal actuation force, it does not
take into account the thermal unpinning of flux vortices. This phenomenon, known as
flux creep, can be especially significant in high temperature superconductors.

Additionally, the Bean model assumes that any Lorentz force will induce the full
critical current density to flow through the superconductor. In reality, the flux vortices
are held in place by pinning centres of finite size, which are essentially potential wells
of finite depth. Hence, a sufficiently small Lorentz force will not displace the vortices
from their pinning sites; it will instead cause vortex oscillation within the well without
dissipation. This is the so called Campbell penetration, which becomes relevant at
sufficiently small magnetic fields. These limitations of the Bean model will be discussed
in Sections 2.2.6 and 2.2.7, respectively.

2.2.6 Flux creep

A commonly observed phenomenon in high temperature superconductors is a logarith-
mic decay of transport currents due to thermal activation of flux vortices from their
pinning sites, or flux creep [30]. This phenomenon is more apparent in high-temperature
superconductors because the thermal energy, kBT (where T is the temperature and
kB is the Boltzmann constant), can be significantly larger than in low temperature
superconductors due to higher values of TC . Consequently, the thermal actuation force,
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Fth in equation 2.32, can no longer be neglected and flux creep cannot be described
within the Bean model framework. Anderson and Kim proposed a mechanism for this
decay based on a random unpinning of flux vortices due to thermal oscillations [31].

In the presence of a stochastic thermal force a distribution of pinned flux vortices
will oscillate randomly, each vortex within its respective pinning centre. At random time
intervals a vortex will become unpinned and subsequently escape the superconductor.
The rate of this process will be determined by the depth of the effective pinning
potential, U , compared with the thermal energy kBT .

To derive a governing equation for this decay we start with a current distribution
inside the superconductor as a function of time

J(t) = 1
µ0

∂B(x, t)
∂x

, (2.40)

where ∂B(x, t)/∂x is the local magnetic field gradient at a time t. The local magnetic
field can be expressed in terms of the number of flux vortices per unit area, dNB/dS as

B = ρB

Φ0
= 1

Φ0

dNB

dS
. (2.41)

The rate of change of NB due to random unpinning can then be obtained from the
Arrhenius creep rate equation [32],

dNB(t)
dt

= −N0ω0e
(−U/kBT ), (2.42)

where N0 is the number of flux vortices at time t = 0 and ω0 is a characteristic rate of
vortex unpinning. Hence, we can write the initial current density as

J0 = 1
µ0Φ0

∂

∂x

dN0

dS
(2.43)

and, taking the time derivative of equation 2.40, we arrive at the expression for decay

dJ

dt
= −J0ω0e

(−U/kBT ). (2.44)

At this point the form of the pinning potential U must be chosen in order to calculate
the time dependence of the current density. In general the effective pinning potential
will be a decreasing function of current density. When the value of the current density
is JC the Lorentz force will be equal and opposite the pinning force (equation 2.33).
Hence, the effective pinning potential will be zero (e.g. if we further increase the
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Fig. 2.11 The tilted washboard potential representing the effective pinning potential
for a varying current density.

Lorentz force the flux vortex will become unpinned). If the current is lowered below
JC the Lorentz force decreases and the effective pinning potential increases. This
behaviour can be represented schematically by the tilted washboard potential, as shown
in Figure 2.11.

Initially Anderson and Kim proposed a linearly decreasing pinning potential with
current, which leads, upon integration of equation 2.44, to a logarithmic decay of
current over time, consistent with observations. Subsequent measurements of the
pinning potential dependence on current [33] have shown that in some cases the
pinning potential does not decrease linearly with current, instead the dependence is
logarithmic,

U ∝ log J. (2.45)

Substituting this expression into equation 2.44, integrating, and comparing the result
to the value of resistivity given by the Anderson flux creep theory [30], we arrive at a
power-law relation between the electric field and current density

E = E0

(
J

JC

)N

, (2.46)

where the exponent N = U0/kBT . Equation 2.46, typically referred to as the E-J
power law, is a useful approximation for the relation between the electric field and the
current density and is commonly used in numerical simulations to model the resistivity
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Fig. 2.12 The E-J power law for a varying exponent N . The value N = 1 represents
Ohm’s law, and N → ∞ represents the Bean model.

of a superconducting material. This is because the value of the parameter N can be
tuned to describe anything from normal matter (the E-J power law for N = 1 is simply
Ohm’s law) to an ideal hard superconductor (for N → ∞ the power law approaches
the Bean model). Between the two extremes the value of N determines the flux creep
rate of a superconductor. For good quality superconductors with a low rate of creep
a typical value is N = 20, whereas lower values in the range of N = 5 represent a
higher creep rate. In practice it can be difficult to justify any particular choice of N
because the creep rate will depend on the temperature, the magnetic history of the
superconductor, the applied magnetic field, and the rate at which the applied magnetic
field is changed. Moreover, the measurement of N as a function of all the mentioned
parameters can be difficult. Hence, the value of N used in numerical simulations is
typically chosen such that the simulated rate of decay due to flux creep at self-field
(zero applied magnetic field) matches the measured rate of decay [34, 35]. The shape
of the E-J power law for different values of the exponent N is shown in Figure 2.12. It
can be seen that increasing the value of N leads to a higher electric field at current
densities below JC . Hence, the total losses Q = E · J will be higher for lower values of
N .
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2.2.7 The Campbell model

As mentioned in Section 2.2.5 the Bean model neglects the finite size of pinning centres
and consequently it breaks down if the applied electromotive forces acting on the flux
vortices are sufficiently small so as not to displace the vortices from their pinning
centres. Campbell proposed an alternative model [8, 36] in which the pinning force is
not constant (equal end opposite the Lorentz force) for all vortex displacements; instead,
for small displacement the force is proportional to the displacement (Hooke’s law). At
small displacements the flux vortex response is assumed linear and without dissipation.
Hence, within the framework of the Campbell model, the calculated hysteretic losses
will be lower than those predicted by the Bean model.

The purpose of the following paragraphs will be to derive a dynamic equation
for flux motion due to external time varying magnetic fields within the Campbell
model. Hence, the magnetic field profile, the total flux, and the induced voltage (as
the time derivative of the flux) will be calculated. Since the induced voltage itself is
easily measurable with pick-up methods, the Campbell model will provide a convenient
method of measuring flux vortex movement on a nanometre scale.

To analyse the effect of finite pinning centres let us consider, firstly, the mixed state
in a uniform magnetic field B0 (Figure 2.13 (top)). Since the magnetic field is assumed
constant throughout the superconductor the vortex density will be constant as well.
The vortex spacing in the x-direction can be written as

a = Φ0

B0l
, (2.47)

where l is the vortex spacing perpendicular to the x-direction (in the subsequent
discussion l will be kept constant, whereas a will be made to change). A small vortex
displacement from its equilibrium position will lead to a local perturbation of magnetic
field b(x) (we use lower case letters to emphasise b(x) ≪ B0). We write the local vortex
displacement from the equilibrium position as y(x) (Figure 2.13 (bottom)). Hence, the
new vortex spacing at x can be written as

a′ = a+ y(x+ a) − y(x). (2.48)

The right hand side of the above equation can be approximated with a derivative
(provided the vortex spacing a is much smaller than the scale over which y varies), as

a′ = a

(
1 + dy

dx

)
. (2.49)
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Then, the resultant local magnetic field can be written as

B′ = B0 + b(x) = Φ0

a′l
= B0

1
1 + dy/dx

≈ B0 (1 − dy/dx) , (2.50)

where we assumed dy/dx ≪ 1. Dividing the above equation by B0 we arrive at

b(x)
B0

= −dy

dx
, (2.51)

which is the relation between the local flux displacement and the local change in
magnetic field, and describes flux conservation. As we shall see below, Campbell
showed that a sufficiently small external AC magnetic field leads to an average vortex
displacement from equilibrium, y(x), which is largest just below the surface of the
superconductor and decays with depth as

y(x) ∝ exp
(

− x

λC

)
. (2.52)

Here, λC is the Campbell penetration depth and is determined by the effective size of
the pinning centres, i.e. the maximum reversible displacement d of the flux vortices
from their equilibrium positions.

To show how the pinning force FP determines vortex displacement we start with
the force balance equation for a single vortex

FP = FL, (2.53)

where FL = J(x) × B0 is the local Lorentz force per unit volume. Writing the current
density J(x) in terms of the magnetic field gradient via Ampere’s law, the force balance
equation reads

FP = −B0

µ0

db(x)
dx

. (2.54)

Then, the magnetic field gradient can be expressed in terms of the vortex displacement,
y(x), by derivating the flux conservation equation 2.51 and substituting into the above
equation, which gives

FP = B2
0

µ0

d2y

dx2 . (2.55)

Equation 2.55 determines how the pinning force affects the vortex displacement and
applies more generally than just in the framework of the Campbell model. For instance,
in the Bean model framework the pinning force is constant and equal in size to the



2.2 The physics of superconductivity 31

a

x

y(x)B = B0 + b(x)

B = B0

Fig. 2.13 Top: a constant distribution of pinned flux vortices (red wavy lines) corre-
sponds to a constant magnetic field B0. Bottom: a vortex displacement y(x) from its
equilibrium position in the pinning potential leads to a local change in magnetic field,
b(x).

Lorentz force,
FP = ±B0JC . (2.56)

Substituting this expression into equation 2.55 and integrating once, the magnetic field
profile becomes

b(x) = −B0
dy

dx
= ∓µ0JCx+ const., (2.57)

which is identical to the result for b(x) in the Bean model framework, calculated with
Ampere’s law ∇ × b(x) = µ0JC .

The Campbell model expands on the Bean model to include the possibility of
reversible vortex movement for small displacements y(x) from equilibrium. This
expansion is done by modifying the pinning force to include a linear region at small
displacements and to transition to a constant value at large displacements. The physical
justification for the linear region is that regardless of the overall shape of the pinning
potential, locally in the vicinity of its minimum it can be approximated by a harmonic
potential. Then, if the potential is quadratic in displacement, the force will be linear.
Additionally, the choice of pinning force must capture the irreversible behaviour of the
Bean model at large displacements – for large values of y(x) the pinning force must
approach ±B0JC , where the sign is determined by the direction of change of y(x).
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In the virgin state – before any change in the external field, when all the vortices are
in their equilibrium positions – a commonly employed [37–40] candidate dependence of
pinning force FP on local displacement y(x) is

FP (y(x)) = B0JC

(
1 − exp

(
−y(x)

d

))
. (2.58)

Here, d represents the maximum reversible displacement before the vortex becomes
displaced from the pinning centre (effectively, d is the radius of the pinning potential).
For small vortex displacements y(x) ≪ d the exponential can be approximated by a
linear function as

FP ≈ B0JC

(
1 −

(
1 − y(x)

d

))
= B0JC

d
y(x) = αLy(x), (2.59)

where we introduced the Labusch parameter αL, the curvature of the pinning potential
at its minimum [41]. The pinning force defined by equation 2.58 is linear for small
displacements, hence it is a suitable candidate to describe reversible vortex movement.
Additionally, at large displacements y(x) ≫ d its value approaches B0JC , which is the
pinning force in the Bean model framework.

To account for hysteresis due to a cycling external field let us consider a vortex that
has been displaced a distance y0 ≫ d from its equilibrium position when the magnetic
field is reversed. The pinning force just before the reversal will be FP ≈ B0JC and
must transition to FP ≈ −B0JC at y = −y0. Additionally the slope of the force just
after the reversal must be identical to the initial slope in the virgin state – its value will
be determined by the curvature of the pinning potential αL. Hence, for the hysteresis
force curve the dependence 2.58 may be used with both axis scaled by a factor of two
and with the origin moved to y0. The hysteretic pinning forces can be expressed in
terms of the virgin pinning force 2.58 as

F±
P = ±

(
2FP (y0 ± y

2 ) − FP (y0)
)
, (2.60)

where the sign depends on whether the displacement is increasing (+) or decreasing
(−). This is represented graphically in Figure 2.14.

To calculate the vortex displacement y(x) at all times the hysteresis force term is
substituted into the force balance equation 2.55, which can subsequently be integrated
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Fig. 2.14 The pinning force hysteresis in the Campbell model. The initial curve is
FP (y) from equation 2.58. The two loop curves are 2FP ((y0 + y)/2) −FP (y0) (top) and
− (FP ((y0 − y)/2) − FP (y0)) (bottom). The slope at y = 0 is the same as at y = y0,
and is determined by the curvature of the pinning potential, αL.

to obtain y(x) and b(x). For the initial virgin state the equation can be written as

B2
0

µ0

d2y

dx2 = B0JC

(
1 − exp

(
−y(x)

d

))
(2.61)

The value of the Campbell penetration depth can be found by analysing the char-
acteristic length scale of the above equation. By introducing the reduced variables
x̃ = x/λC and ỹ = y/d, the equation becomes

d2ỹ

dx̃2 = 1 − exp (−ỹ), (2.62)

where
λC =

√
B0d

µ0JC

= B0√
µ0αL

. (2.63)

The Campbell penetration depth is the characteristic distance over which a perturbation
of magnetic field b(x) decays due to the finite reversible movement of the flux vortices
within their pinning centres. Its value is determined by the maximum reversible
displacement d (provided the applied field B0 and the critical current density JC are
known). Hence, the measurement of λC can be used to determine the effective size
of the pinning centres in the superconductor. The Campbell field profiles, compared
to those predicted by the Bean model, are shown in Figure 2.15. The profiles are
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Fig. 2.15 The Campbell (red) and Bean (black, dashed) magnetic field profiles during
the (a) increasing and (b) decreasing portion of the applied field. x = 0 is the centre
of the superconductor and x = x0 is the surface.

calculated by solving the differential equation for the vortex displacement y(x), from
which b(x) is calculated with the flux conservation equation 2.51. The boundary
conditions used are set such that the displacement at the centre of the superconductor
is y(x = 0) = 0 (due to symmetry) and the field at the surface is equal to the applied
field, b(x = x0) = Bapplied.

2.3 Bulk (RE)BCO superconductors

2.3.1 Crystal structure

Two increasingly important superconducting compounds are YB2Cu3O7–δ (YBCO) and
GdB2Cu3O7–δ (GdBCO), both members of the (RE)BCO family (where RE is a rare
earth or yttrium). The (RE)BCO family, discovered in 1986 [42], is significant because
its member compounds exhibit record high values of TC , such that they form part
of a new group, called high temperature superconductors. YBCO and GdBCO, in
particular, exhibit critical temperatures of TC = 92 K [43], which is, significantly, above
the boiling temperature of liquid nitrogen and, as such, technologically important.

YBCO, along with the other members of the (RE)BCO family, has a tetragonal or
orthorombic unit cell, shown in Figure 2.16. The crystal structure is defect perovskite,
in which the oxygen concentration, denoted as 7 − δ, determines the shape of the
unit cell and whether the compound is superconducting or insulating (notice the two
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Fig. 2.16 The unit cell of GdBa2Cu3O7–δ. Here, δ = 0.5. The Cu and O ions in the
dashed line planes are in reality not exactly coplanar, instead they are slightly displaced
in the c-direction. The dimensions are a ≈ b ≈ 3.8 Å and c ≈ 11.7 Å (see text).

additional oxygen atoms on the bottom face of the unit cell in Figure 2.16, due to
which 7 − δ = 6.5). When δ = 1 the unit cell is tetragonal and the phase is not
superconducting. The optimal concentration is δ = 0.07, at which the compound is
superconducting with a highest value of TC and the unit cell is orthorhombic [44].

A characteristic feature of the crystal structure is its layered form that leads to
anisotropic macroscopic observables. The two short axis of the primitive cell are
commonly denoted as the a and b directions, whereas the long axis is the c direction.
The typical side lengths of the primitive cell are, depending on the doping, a ≈ b ≈ 3.8 Å
and c ≈ 11.7 Å [44]. Hence, quantities such as the critical current density and the
critical field typically exhibit cylindrical symmetry - their values in the ab-plane differ
from their value in the c-direction. Importantly, the critical current density (at self-field,
i.e. zero applied magnetic field) is highest in the ab-plane, which has to be taken into
account when developing practical applications. As an example, bulk superconductors
are typically grown such that the c-direction is perpendicular to the expected direction
of induced currents, hence maximising the relevant JC .

A possible practical form of (RE)BCO superconductors are bulk single grains. These
are essentially (bulk) single crystals, i.e. three dimensional bodies of superconductor
(as opposed to e.g. superconducting tapes or wires, which are thin in one or two
dimensions). The term single grain is used instead of single crystal due to a high
concentration of pores, inclusions and cracks, which interrupt the long range order
formally required to define a single crystal. Bulk superconductors (bulks) are the
only materials known today which offer high current carrying capabilities in all three
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Fig. 2.17 A schematic illustration of the bulk preform prepared for heat treatment. A
typical diameter of the bulk preform is 30 mm.

cardinal directions. This is especially useful for applications such as magnetic levitation
[45], where it is of great importance that the current carrying capabilities be high in
all the crystallographic directions so as to provide an opposing force to a displacement
of a levitated object in any direction.

Another important application of bulks is as quasi-permanent trapped field magnets
(more in Section 2.3.3). The high critical current densities, achievable in YBCO and
GdBCO today offer pathways toward high values of trapped field. Since the bulks are
typically on the order of 10 mm to 50 mm in size they offer a practical way towards high
portable magnetic fields. Other notable applications include e.g. magnetic bearings,
magnetic lenses, magnetic resonance imaging devices, drug delivery systems [46–49].

2.3.2 Manufacturing process

The most commonly employed method of manufacturing bulks is the top seeded melt
growth (TSMG) technique [7, 50], where the growth of the superconducting matrix is
nucleated by a seed crystal of a desired lattice parameter. Initially, the raw powder
is pressed into a preform of a desired, commonly cylindrical, shape. In the case of
YBCO the raw powder will consist of a mixture of YBa2Cu3O7–δ (Y123) and Y2BaCuO5

(Y211), with possible additions of Ag2O for improved mechanical strength and thermal
conductivity [51]. The Y211 phase is non-superconducting and is added to Y123 to
provide normal areas needed for flux pinning.

After pressing the preform is prepared for heat treatment in a configuration, shown
in Figure 2.17. The seed crystal is placed at the centre of the top surface of the preform
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from which the sample growth will nucleate during heat treatment. The seed crystal is
typically a (RE)BCO thin film with a higher melting temperature than of the bulk to
be manufactured (so that the seed crystal itself does not melt). If the bulk is made
with the addition of Ag2O a buffer pellet is placed between the seed crystal and the
preform to protect the seed crystal from the silver, which can degrade the seed. The
buffer is of the same composition as the bulk, but without the added Ag2O. Then, the
preform is placed onto an Y123 substrate, which has a lower melting temperature than
the preform, hence it prevents nucleation from the bottom surface. Finally, this is
placed on zirconium rods that are placed onto an aluminium oxide plate. The entire
assembly is placed into a furnace for heat treatment.

The heat treatment temperature profile is designed to achieve peritectic decomposi-
tion of the bulk and subsequent solidification, based on the reaction [52]

2 YBa2Cu3O7–δ
1080 °C Y2BaCuO5 + L(Ba3Cu5O8), (2.64)

where L denotes a liquid phase.
The bulk is initially heated to above the peritectic temperature, TP , to achieve

partial melting of the Y123 phase. Above TP , which is between 1000 °C and 1080 °C
for (RE)BCO, the Y123 phase decomposes into Y211 and a liquid phase Ba3Cu5O8.
The temperature is subsequently lowered slowly below TP during which the liquid
phase reacts with Y211 and recombines into a single Y123 phase. If the heat treatment
is successful the result is a single grain bulk of mostly Y123 phase with uniformly
distributed inclusions of the Y211 phase, providing pinning centres throughout the
superconducting matrix. The bulk is not yet superconducting, however, due to an
insufficient oxygen concentration. Hence, the final stage of the manufacturing process
is bulk oxygenation, during which the bulk is heated to around 400 °C in an oxygen rich
atmosphere. During the oxygenation process the oxygen stoichiometry is changed such
that it approaches it optimum value at which the crystal structure is orthorhombic
and the material superconducting.

Superconducting bulks can be used as trapped field magnets, provided there exist a
means to induce transport currents to circulate inside the bulk. For an infinite cylinder
of radius r0, in which a current density of magnitude JC is flowing in the azimuthal
direction, the trapped field at the centre can be calculated using the Biot-Savart law as

B = µ0JCr0. (2.65)
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Hence, it is desirable to manufacture single grain bulks of large radii in order to
maximise the achievable trapped field. However, due to the nature of the manufac-
turing process, during which the single grain grows from the seed crystal outwards, it
becomes increasingly difficult to produce larger bulks. They typically show deteriorated
superconducting properties, such as lower values of TC and JC , as compared with
smaller bulks. Thus, there exists a trade-off between manufacturing a larger bulk and
a bulk with superior superconducting properties.

2.3.3 Magnetisation methods

There exist two conventional methods of inducing a circulating transport current in the
superconductor (i.e. magnetisation techniques): zero field cooled magnetisation (ZFC)
and field cooled magnetisation (FC). Both are shown schematically in Figure 2.18.

With ZFC the magnetisation is induced by cycling an external magnetic field from
zero to a maximum value and back to zero while the temperature is kept below TC .
This is essentially represented by the first and second quadrants of the magnetisation
loop in Figure 2.8. To achieve a fully magnetised bulk, i.e. a bulk in which the current
circulates through the entire cross-section, the maximum value of the applied field
must be at least twice as high as the penetration field for a particular sample.

With FC the magnetisation is induced by first ramping the magnetic field to its
maximum value when the temperature of the bulk is above TC , so that the bulk is not
superconducting. The applied field is then kept at its maximum value and the bulk is
cooled below TC in field. Subsequently, the applied field is ramped back to zero. For
the FC technique the maximum applied field need only be as high as the penetration
field, half what is needed with the ZFC technique. However, the applied field must be
held at its maximum value for the time needed to cool down the bulk.

Both techniques necessitate a low ramp rate of the applied field once the bulk is
superconducting so as to prevent heating of the bulk. The electric field induced in the
superconductor is, per Faraday’s law, proportional to the ramp rate of the magnetic
field. Hence, the loss Q = E · J and the temperature rise ∆T are proportional to the
ramp rate. For this reason both techniques require a long time and a lot of power to
magnetise the bulk (depending on the maximum applied field and on the temperature
at which the bulk is kept).

The highest trapped field achieved to date in a bulk superconductor is 17.6 T
between a stack of two 25 mm diameter GdBCO bulk superconductors [5]. This
trapped field was achieved using a superconducting magnet and the FC technique. The
applied field was initially ramped to 18 T with the bulk temperature kept above TC .
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Fig. 2.18 The field cooled ((a) and (b)) and zero field cooled ((c) and (d)) magnetisation
techniques. While the maximum applied field using the FC method needs to be equal
to the penetration field, BP , it needs to be equal to 2BP using the ZFC method.
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Then, the bulk was cooled down to 26 K and kept constant for the remainder of the
procedure. Finally, the applied field was slowly ramped down, magnetising the bulk.

Both the FC and the ZFC technique typically take several hours to complete and
require large superconducting magnets for the generation of the applied field. This is
not very practical for portable applications for which a technique called pulsed field
magnetisation (PFM) shows great promise [53, 54]. PFM is a variant of the ZFC
technique in which the applied field is not ramped slowly from zero to its maximum
value and back to zero; instead it is applied in the form of a short (on the order of
milliseconds) pulse. Since the bulk is superconducting throughout the PFM procedure
the pulse generates a significant amount of heat leading to a reduction in JC and a
lower achievable trapped field. The record trapped field achieved with PFM is 5.2 T in
a GdBCO bulk [53]. The pulse of magnetic field is typically generated by discharging
a capacitor bank through a copper solenoid, hence the magnetising equipment can be
made more portable than that needed for the FC and ZFC techniques.

An additional advantage of the PFM technique in bulk superconductors is the flux
jump effect [55, 56], by which the magnetic field suddenly enters into the superconductor
during the ramp up portion of the pulse. Essentially, the heat generation due to the
penetrating field increases the temperature in the periphery of the bulk and decreases
the local JC . Hence, the field penetration is increased, and with it the volume in which
heat is generated, resulting in a further temperature increase. In some cases this can
lead to an avalanche effect, called the flux jump, which can be used to increase the
trapped field achieved by PFM. Since the flux jump occurs due to a sudden decrease
in the superconductor shielding capability, PFM can be seen as a combination of FC
and ZFC; whereas during FC the shielding is zero due to the temperature being above
TC , during PFM the shielding will approach zero due to the flux jump effect.

2.3.4 Magnetisation decay in bulks

Once the bulk is magnetised it can be used instead of conventional magnets as a
quasi-permanent trapped field magnet. However, as the name suggests, the trapped
field will invariably decay over time. The intrinsic reason for decay is flux creep,
discussed in Section 2.2.6, which leads to a logarithmic decay of trapped field over
time. Flux creep cannot be avoided completely since the random thermal forces will
always be present, their magnitude proportional to kBT . Lowering the temperature of
the superconductor is an effective way of reducing decay.

Even in the absence of flux creep the trapped field may decay over time provided
there is a mechanism by which the current density is made to either decrease in
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amplitude or change the direction of its flow. Both these mechanisms will arise if a
magnetised bulk is exposed to time-varying magnetic fields.

If a magnetised bulk is exposed to AC magnetic fields there will be currents induced
below the surface of the bulk to shield it from the change in external field. The
shielding currents will flow according to the Bean model and the depth of the shielding
regions will be determined by the AC field amplitude and the value of JC . Hence, the
currents in the shielding regions will no longer contribute to the trapped field, which
will, consequently, be reduced. In general, the mitigating measure to avoid decay due to
current redistribution is, as in the case of flux creep, a reduction of the superconductor
temperature. This is because at lower temperatures the value of JC will be increased,
leading to a reduced thickness of shielding regions (lower Bean penetration depth λB)
and to a lower degree of current redistribution.

Aside from current redistribution an undesired effect of AC fields applied to the
bulk is temperature rise. As discussed in Section 2.2.4 the movement of flux vortices is
a dissipative process and leads to losses. An AC magnetic field will, effectively, force
flux vortices to move in and out of the superconductor up to the depth λB, leading to
heat generation per unit volume Q = E · J. The subsequent temperature rise will be
determined by numerous factors and can be, in principle, difficult to calculate. The
amplitude of the AC field will, at a given value of JC , determine the value of λB, hence
it will determine the volume in which heat is generated. The frequency of the AC field
will, per Faraday’s law, determine the magnitude of the electric field and, with it, the
value of Q. Additionally, the superconductor heat capacity and thermal conductivity
can be temperature dependent, hence the change in temperature may not go linearly
with Q.

To avoid temperature rise in real applications the bulks need to be in good thermal
contact with the coolant or cryocooler. Typically a thermally conductive vacuum
grease will be used between bulk and holder, or alternatively sheets of indium can be
used to provide good thermal contact. The aim is to achieve a higher effective cooling
power Qeff of the cryogenic system, compared with the total heat

∫
QdV generated in

the superconductor.
When talking about cylindrical bulks there are two principal axis along which the

AC field can be applied: parallel and perpendicular to the cylindrical axis (we assume
the trapped field is parallel to the axis). These are commonly refereed to as the parallel
and crossed field configuration [57].

The parallel configuration (Figure 2.19 (a)) is well studied and generally well
understood. Since the applied field is along the axis of the bulk the configuration is
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Fig. 2.19 The parallel (a) and crossed field (b) configuration. The trapped field direction
is represented in red and the AC field orientation in blue arrow.

axially symmetric and relatively straightforward to model numerically. The applied
field is always perpendicular to the current in the superconductor, hence the Lorentz
force, FL = J × B is well defined.

In the crossed field configuration (Figure 2.19 (b)) the external field is applied
perpendicular to the direction of the trapped field. Hence, the problem is no longer
axially symmetric and needs to be modelled in three dimensions. Additionally, some
parts of the circulating current will be parallel to the direction of the applied field, in
the so-called force free configuration [58], since J × B = 0. In such a configuration
flux vortices can break and rejoin – in a process called flux cutting [59, 60] – or pass
through other vortices. This complicates the physics of the crossed field configuration,
which remains a less well understood problem.



Chapter 3

Methods

In this chapter the experimental methods employed throughout the work towards this
thesis will be outlined. The experimental work can be split into three distinct groups:

1. Sample manufacture and preparation,

2. magnetic field generation (either DC, AC, or pulsed field), and

3. measurement and data acquisition.

The sample manufacture and preparation entailed growing the bulk superconductors
from raw powders and of machining the samples into a desired shape - depending on
the specific requirements of a given measurement. The sample preparation is described
in detail in Section 3.1.

The generation of magnetic field was necessary, firstly, for the magnetisation of
the samples and, secondly, to expose the samples to time-varying magnetic fields,
simulating the likely magnetic environment in a real machine. For the magnetisation
procedure the two main methods used were field cooled magnetisation (FC) and pulsed
field magnetisation (PFM). FC will have been used to determine the maximum field-
trapping capabilities of the bulk, whereas PFM was used to probe the more realistically
achievable trapped field. The way by which the magnetic field was generated for
magnetisation purposes is described in detail in Section 3.2. The generation of the AC
magnetic field is described in Section 3.3.

The measurable quantities of interest in all experiments were, ultimately, the local
magnetic field B, the total magnetisation M, the critical current density JC , and their
respective time dependencies. For the local magnetic field measurement on the surface
of the superconductor an array of Hall sensors was used. This method allowed for the
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magnetic field profile in the superconductor to be measured directly, which allowed for
a straightforward comparison with theory (e.g. the Bean model).

The total magnetisation of a sample and, thus, the critical current density in a
background magnetic field, was measured using a SQUID magnetometer. Essentially,
the magnetic moment of a sample is measured by passing it through a set of coils
and measuring the induced voltage. This is done at a range of values of applied
magnetic field, hence measuring the magnetisation loop. Subsequently, the critical
current density is calculated with equation 2.39.

3.1 Sample manufacture and preparation

All samples characterised in this study were GdBa2Cu3O7–δ bulk superconductors
manufactured with the top-seeded melt growth technique. The raw powders from
which the bulk preforms were made were all identical in composition, but were from
several different batches meaning that their respective grain size and purity will vary.
Hence, the superconducting properties of the manufactured bulks will vary as well (a
difference of 5 % to 10 % in trapped field of two same size bulks is common).

The specific temperature profile of the heat treatment of the bulk will also vary
depending on the sample size and the powders used. As an example, a larger bulk will
typically require a slower ramp rate and a longer holding time at maximum temperature
in order to reach equilibrium and peritectic melting throughout the entirety of the
sample. The cooling period will be longer as well due to the growth front needing to
propagate a longer way to the edge of the sample from the seed crystal.

In this section the manufacturing procedure for a triangular bulk, shown in Figure
3.1 (a), is outlined. The purpose of its non-standard shape is to maximise the total flux
of an assembly of several such bulks, as a triangle can tile a surface more efficiently
than a circle (the improvement of the triangular shape over the cylindrical shape is
discussed in Appendix A). The manufacturing procedure for all other bulks was similar
qualitatively, but the heating temperature profile varied from bulk to bulk depending
on its size. For a discussion on the microstructure of single grains manufactured with
the top-seeded melt growth technique, see [61].

3.1.1 Pressing the bulk preform

To make the bulk preform the raw powders were ground together to form a uniform
mixture. The composition of the mixture is shown in Table 3.1.
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(a)

(1)

(2)

(3)

(4)

10 mm (b) 10 mm

Fig. 3.1 (a) A successfully grown GdBa2Cu3O7–δ single-grain after heat treatment: (1)
the seed crystal; (2) the buffer layer between the seed and the bulk; (3) the growth
sector boundary, along which the growth rate is highest; (4) the growth sector region.
(b) An example of an unsuccessful growth of a bulk with numerous sub-grains apparent.

Component Wt percent Mass (g)
GdBa2Cu3O7–δ 67.5 9
Gd2BaCuO5 22.5 3

Ag2O 9 1.2
BaO2 0.9 0.12

Pt 0.2 0.02
Total 13.3

Table 3.1 The composition of the raw powders for the bulk preform (the sum of the
masses does not equal the total mass due to rounding errors).
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The GdBa2Cu3O7–δ (Gd123) is the main superconducting phase in powder form,
which will, subsequent to the heat treatment, account for the superconducting matrix
in the bulk. The Gd2BaCuO5 (Gd211) phase is not superconducting and is added to
the Gd123 phase to provide normal inclusions which act as vortex pinning centres,
leading to a higher value of JC .

The silver oxide Ag2O is added to the preform to increase the mechanical strength
of the bulk as the silver, upon melting, may seep into the pores and cracks that form
during the growth of the single grain. The reduced porosity will lead to an increased
survival rate of the bulks subjected to stress [62]. Additionally, the silver helps increase
the thermal conductivity of the bulk, which is desirable for the purposes of effective
cooling.

The barium oxide BaO2 is added to prevent substitution of gadolinium on barium
sites in the crystal structure [63]. Such substitution is undesired as it leads to lower
values of TC and JC . Finally, the addition of platinum prevents the formation of large
Gd211 grains [64], which ideally should be on the order of nanometres in scale and
homogeneously distributed throughout the superconducting Gd123 matrix to provide
pinning centres.

Once the raw powder is mixed, it is poured into a rubber mould, which subsequently
is pressurised in a cold isostatic press up to 2000 bar. This helps to increase the density
of the preform by about 100 %. Cold isostatic pressing of the bulk preform has been
shown to yield an improved distribution of Gd211 across the bulk [65], as compared
to uniaxial pressing and subsequent sintering, thus yielding a more homogeneous
distribution of vortex pinning centres and a higher critical current density.

While the above process of preparing the sample preform is kept unchanged across
different samples, the subsequent stage in the manufacture of single grains – the heat
treatment, described in the next section – needs to be adjusted based on the specific
batch the raw powder has been sourced from (as the raw powder is expensive it will
be bought in individual batches of several kilograms). The batch-to-batch variation in
powder particle size means that the heat profile needs to be adjusted for each individual
powder batch for successful growth. For example, Figure 3.1 (a) and (b) shows a
photograph of a successfully and unsuccessfully grown sample, respectively, using the
same temperature treatment during the heat treatment for both samples, but raw
powders sourced from different batches.
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Fig. 3.2 The temperature profile during the heat treatment of the bulk preform. The
dashed line represents the peritectic temperature. The durations and heating/cooling
rates, defining the above profile, are shown in Table 3.2.

3.1.2 Heat treatment

After pressing, the preform was prepared for the heat treatment as shown schemat-
ically in Figure 2.17. The temperature profile during the heat treatment is shown
schematically in Figure 3.2 and in detail in Table 3.2.

The initial stage of the heat treatment of the bulk is a quick ramp to just below
the peritectic temperature, TP , followed by the second stage in which the temperature
is kept constant. This is to allow for the preform to shrink at the high temperature
– a common feature for ceramic materials – and to allow gasses to escape, reducing
porosity. In the third and fourth stages the sample is heated above TP , and held at a
high temperature to allow the Gd123 to melt. If the duration of this (fourth) stage is
too high the chances of destroying the seed crystal increase, hence the total time at
peak temperature is only 30 min. Subsequently, in the fifth stage the sample is cooled
back below TP , which is when the growth starts to nucleate at the seed crystal.

To increase the chances of growing a single grain, the temperature, once below TP ,
must be decreased at a low ramp rate (compared to the initial heating rate). However,
the growth rate of the crystal at a higher temperature is lower – and increases with
decreasing temperature – which is why the temperature is initially decreased more
rapidly in the sixth stage, followed by a slow ramp rate in the seventh stage. The
seventh stage is when the majority of crystal growth takes place (which is also why
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Stage T1 (K) T2 (K) Rate (K/h) Duration (h)
1 300 1203 50 12.6
2 1203 1203 n/a 1
3 1203 1341 80 1.725
4 1341 1341 n/a 0.5
5 1341 1285 -50 1.12
6 1285 1278 -0.7 10
7 1278 1253 -0.4 62.5
8 1253 1248 -1 5
9 1248 300 -0.4 13.5

Total 108
Table 3.2 The temperature profile during the bulk growth. Here, nine distinct stages
are shown with the initial and final temperatures, T1 and T2, respectively, the ramp
rate (if applicable), and the total duration of each stage.

this is the longest stage of the entire process). By the time this stage is finished the
growth front along the growth sector boundary should have reached the sample edge.
However, since the growth along the growth sector region is slower (by a factor of

√
2,

due to the geometry of the growth fronts), the sample is not immediately cooled to
room temperature; in the eighth stage the temperature is still ramped at a relatively
low rate to allow for the final growth of the sample at the edges in the middle of the
growth sector regions. Finally, the sample is cooled back to room temperature in the
ninth, and final, stage.

After the heat treatment the bulks are placed into an oxygen-rich environment at
T = 400° for up to ten days so that the crystal structure is oxygenated, which transforms
the unit cell from tetragonal to orthorhombic, and the bulk becomes superconducting.

Unlike with the cylindrical bulk the azimuthal angle of the placement of the seed
crystal is not arbitrary on a triangular bulk since the properties of the superconductor
on the growth sector boundaries may differ from those in the growth sector regions
[66]. For this reason two different placements of the seed crystal were trialled in order
to compare any potential differences of the properties of the bulks. Two bulks were
grown with two different seed placements: one with the seed crystal side parallel to
one of the side edges, and another with the crystal side at a 45° angle. The images of
the resulting bulks are shown in Figure 3.3. The trapped fields of the two bulks are
T = 77 K were measured to be 0.62 T and 0.61 T, indicating that the placement of the
seed crystal has little effect on the superconducting properties.
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(a) 10 mm (b) 10 mm

Fig. 3.3 Successfully grown single-grain bulks for two different rotations of the seed
crystal. In (a) the side of the seed crystal is parallel to the bottom edge. In (b) the
seed is rotated by 45° with respect to the placement in (a). The arrows indicate the
direction of crystal growth (the growth sector boundaries are apparent diagonally
between the arrows).

In total, six triangular bulks were manufactured (as shown in Figure 3.4) for the
purpose of constructing a six pole pair ersatz motor with which the performance of
the bulks in a machine environment can be tested. The progress of this project is
summarised in Section 7, below.

3.2 Magnetisation procedure

3.2.1 Field cooled magnetisation (FC)

The field cooled magnetisation technique (FC) was used to determine the field-trapping
capability of the samples, and to fully magnetise the samples before exposing them to
time-varying magnetic fields. This was done typically at liquid nitrogen temperature,
at which none of the samples examined were capable of trapping magnetic fields above
around 1 T. Hence, a 1.5 T electromagnet was used for FC at 77 K as, in principle, this
was sufficient to fully magnetise all the samples.

The FC procedure consisted of placing the samples in a non-magnetic stainless
steel dewar, which was inserted into the bore of the electromagnet, and the magnetic
field ramped up to 1.5 T. Then, the dewar was filled with liquid nitrogen to cool
the superconductor samples below TC . Once thermal equilibrium was reached, the
magnetic field was ramped to zero over a period of 100 s. The slow ramp rate was to
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#1 10 mm #2 #3

#4 #5 #6

Fig. 3.4 Triangular bulk superconductors labelled #1 to #6 with centre trapped fields
at 77 K, respectively, 0.77 T, 0.73 T, 0.78 T, 0.74 T, 0.76 T, 0.70 T.

prevent excessive heating of the samples, which would lead to a reduction in trapped
magnetic field. After magnetisation, a waiting period of 5 min to 15 min was established
to allow for any heat, generated during the magnetisation process, to dissipate. At the
end of the waiting period the centre trapped field was measured using a Hall sensor.
This measured trapped field was assumed to be the maximum trapped field of the bulk.

3.2.2 Pulsed field magnetisation (PFM)

The PFM system, designed by Dr Difan Zhou [67], consisted of a cryogenic system and
a pulsing system. The cryogenic system is shown in Figure 3.5.

For cooling below TC the sample was connected via a copper holder (Figure 3.5 (a))
to the cold stage of a cryocooler (Figure 3.5 (b)). The copper holder was slotted so as
to prevent large eddy currents from being induced during pulsing, and generating heat.
The cryocooler was a two-stage Gifford-McMahon (manufactured by Sumitomo, model
number CH-204) with a base temperature of 10 K and cooling power 7.5 W at 20 K.

The sample and the cryocooler together were enveloped in a stainless steel can
(Figure 3.5 (c)), which was used to keep the cryogenic system under vacuum. Atop
the steel can a G10 box was placed (Figure 3.5 (d)), containing the pulsing copper
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(a) (b)

(c) (d)

Fig. 3.5 (a) The sample (black) in a copper holder, which itself is connected to the (b)
cold stage of the GM cryocooler. (c) The steel vacuum can. (d) The G10 box with a
copper solenoid submerged in liquid nitrogen.
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Wire diameter 2.6 mm
Solenoid height 60 mm
Inner diameter 50 mm
Outer diameter 140 mm
Number of turns 300

Table 3.3 The geometry of the pulsing coil.

+
−U0

S1

C

D1

D2

T

S2

L

0 100 200 300 400 5000
0.2
0.4
0.6
0.8

1

t (ms)

B
(n

or
m

al
ise

d)

Fig. 3.6 (Left) The circuit diagram of the pulsing rig. For charging the capacitor bank,
C, S1 is closed and S2 is open. Subsequently, S1 is opened and S2 is closed, and the
pulse of current through the coil is triggered by the thyristor, T . (Right) The resulting
pulse of magnetic field in the bore of the discharge coil.

solenoid, submerged in liquid nitrogen. The coil bore size was sufficient to fit over the
narrow part of the vacuum can, in which the sample was held. The solenoid geometry
is shown in Table 3.3.

Alternatively to this setup, the sample could be placed directly into the bore of
the copper solenoid and submerged into liquid nitrogen - this was convenient for
measurements at 77 K. For this purpose bespoke sample holders were made from G10.

The main components of the pulsing part of the system were a capacitor bank
and a pulsing coil - the circuit diagram is shown in Figure 3.6 (left). The operating
principle was as follows: initially, the capacitor bank was charged by connecting it
to a DC current supply. Once a desired voltage across the bank was achieved the
capacitors were disconnected from the power supply and discharged through a solenoid
or split-pair type pulsing coil. This produced a pulsed current (and, hence, magnetic
field), which was used to magnetise the superconductor.

The pulsing rig is essentially a damped LCR circuit. The capacitors are connected
with the discharge coil through a diode D1 and a thyristor T . The diode is used to
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Cbank 208 mF
Lcoil 4 mH
Rcoil (300 K) 240 mΩ
Rcoil (77 K) 35 mΩ
V -B characteristic 20 mT V−1

pulse rise time 30 ms
pulse duration 500 ms

Table 3.4 The specifications of the PFM rig.

prevent a reverse voltage on the capacitors, and the thyristor is used to complete the
circuit to generate the pulse. Additionally, a second diode, the flyback diode D2, is
connected in parallel with the coil.

The resulting pulse shape, which will depend on the total capacitance, resistance
and inductance of the circuit, is shown in Figure 3.6 (right). Given a set capacitance of
the bank, and a set coil inductance, the characteristic time of the circuit can be varied
by changing the resistance. Since it is desirable to generate a pulse with as short a rise
time as possible in order to trigger the flux jump effect in the superconductor [67], the
resistance of the circuit has to be as low as possible. For this reason the pulsing copper
solenoid is placed into a liquid nitrogen bath. Finally, the peak magnetic field value
during the pulse is varied by varying the initial voltage across the capacitor bank, and
the relation is linear: doubling the voltage will double the peak magnetic field. The
specifications of the circuit and the pulsing coil are shown in Table 3.4.

3.3 AC magnetic field generation

Once the superconductor is magnetised, either by using FC of PFM, it is of interest to
determine its response to an AC magnetic field. To genereate the AC field a copper
solenoid is connected with an AC current supply, and the sample is inserted into the
bore of the solenoid. Since the current-magnetic field characteristic of the coil is known
(it is measured by passing a known DC current through the coil and measuring the
generated magnetic field with a Hall sensor), the applied AC magnetic magnetic field
can be inferred by measuring the amplitude of the AC current. For this reason the coil
is connected in series with a shunt resistor (of a known resistance), and the voltage
drop across the resistance is monitored throughout.
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Depending on the type of measurement performed, a different setup will have
been used to obtain the experimental data, presented in the results chapters, below
(Chapters 4 - 6). The main differences between the setups are:

1. The direction of applied AC magnetic field with respect to the trapped field
(parallel or perpendicular),

2. The temperature, at which the sample was kept (at 77 K in liquid nitrogen, or at
lower temperatures using a GM cryocooler),

3. The type of measurement performed (measurement of local magnetic field with
Hall sensors, or of total flux with a pick-up coil).

Based on these differences the different setups used are summarised in the following
sections.

3.3.1 Decay measurements in the perpendicular
configuration

In the perpendicular (crossed-field) configuration the AC magnetic field is applied
perpendicular to the direction of trapped field of the superconductor. Therefore, in
our setup, two different solenoid coils were used: first for magnetisation and second for
the application of the AC magnetic field.

For measurement of trapped-field decay in the crossed-field configuration, presented
in Chapter 4, the following procedure was employed. The sample was initially magne-
tised using the field cooled (FC) magnetisation procedure in a 1.5 T electromagnet, as
described in the previous section.

Following magnetisation the sample was inserted into a bore of a copper solenoid,
which was, itself, submerged in liquid nitrogen. This setup is shown in Figure 3.7. The
sample is held in the centre of the bore with a G10 holder (not shown in the schematic).
On the top surface of the sample a Hall sensor, or Hall sensor array, is mounted to
monitor the local trapped magnetic field over time - the Hall voltages are acquired
using a data acquisition card connected with a computer for storing data.

Throughout this work the Hall sensor model used was Lakeshore HGT-2101, which
has a sensitivity of 1.1 V T−1 to 2.8 V T−1.
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Fig. 3.7 The experimental setup for crossed-field decay measurements. The single grain
(black rectangle) is inserted into the bore of the solenoid with its trapped field (red
arrow) perpendicular to the orientation of the AC magnetic field (blue arrow). The
trapped field over time is measured using a Hall sensor mounted on its surface (yellow
rectangle).
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Fig. 3.8 The experimental setup for measuring the decay of trapped field (red arrow)
in the parallel configuration (AC magnetic field in blue). The bulk (black rectangle)
is fitted with an array of Hall sensors (yellow) and a temperature sensor (red). Prior
to the AC field application the solenoid is connected with a capacitor bank, which
produces a pulse of magnetic field.

3.3.2 Decay measurements in the parallel configuration

In the parallel field configuration the AC magnetic field is applied parallel to the
direction of the trapped magnetic field. For this reason the coil with which the sample
has been magnetised can be used subsequently to generate the AC magnetic field.
Thus, in the parallel configuration (results presented in Chapter 5), the sample was
magnetised using PFM. After magnetisation, the charging coil was disconnected from
the capacitor bank and connected to an AC current source. The schematic is shown in
Figure 3.8.

The decay measurements were done initially with the superconductor at 77 K in a
liquid nitrogen bath. Subsequently, the measurements were done at lower temperatures
as well, by using a GM cryocooler. The sample was connected to the cryocooler with a
bespoke copper holder (shown in Figure 3.5 (a)). The schematic of the placement of
the copper solenoid with respect to the sample is shown in Figure 3.9.
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Fig. 3.9 The setup used for measurements at temperatures below 77 K.

3.3.3 Pick-up measurements in the parallel configuration

The total flux through, or total magnetisation of, a superconducting sample can be
measured by a magnetometry technique, typically involving the measurement of induced
voltage through a pick-up coil wound round the sample. This method gives information
about the whole sample; however, for the pick-up method to work the flux has to be
changing in some way. A standard method is to induce a changing flux by applying
an AC magnetic field, or another possibility is by changing the position of the sample
with respect to the pick-up coil, such as in a SQUID magnetometer, or in a vibrating
reed magnetometer.

Generally, the induced voltage in a coil wound round a superconductor can be
expressed as

Ui = −N ∂Φ
∂t
, (3.1)

where N is the number of turns in the coil. If the superconductor is axially
symmetric (e.g. a cylinder) and B(r, t) is the radial magnetic field profile in the
superconductor, the induced voltage can be expressed as

Ui = −2πN
∫ ∂B(r, t)

∂t
dr, (3.2)

where r is the radial coordinate.
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Fig. 3.10 The circuit diagram of the measurement set-up (in red is the driving AC coil,
in blue the pick-up circuit connected to the data acquisition card). The sample with
the two enveloping coils is inserted into a superconducting DC magnet (not shown).
The two balancing rigs are labelled No. 1 and No. 2.

The pick-up coil method was used in this work to measure the Campbell penetration
depth, with the results presented in Chapter 6. The measurement procedure consisted
of exposing a non-magnetised superconducting sample to AC magnetic fields and
measuring its response in the form of induced voltage in a pick-up coil. To extract the
desired signal from the measured voltage a precise balancing rig had to be constructed
- the circuit schematic is shown in Figure 3.10.

The sample (shown in black rectangle in Figure 3.10) was fitted with a pick-up
coil of 1000 turns, wound tightly round its cross-section. The sample with the pick-up
coil was, then, inserted into the bore of a larger solenoid, which was used to produce
the external AC magnetic field by passing an alternating current through it. The
current amplitude was set so that the AC magnetic field amplitude was 1 mT, and its
frequency was set to 300 Hz. The sample with the two coils was then inserted into the
bore of a superconducting magnet (not shown in Figure 3.10), used to produce the
larger DC magnetic field, up to the amplitude of 6 T. The temperature of the sample
was kept constant at 70 K by using helium gas in the variable temperature insert of
the superconducting magnet.

In addition to the pick-up coil wound round the sample there were two balancing
rigs connected in series in order to eliminate noise from the measurement. In Figure
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3.10 the sensing circuit is shown in blue, the driving AC circuit in red, and the two
balancing rigs used labelled number 1 and 2.

The first balancing rig consisted of a variable mutual inductance between the
sensing and the driving circuit. By tuning the variable mutual inductance a signal
in phase with the pick-up voltage could be added to, or subtracted from, the pick-up
voltage. This was used to subtract any pick-up voltage induced in the sensing coil
due to the finite thickness of the winding. The pick-up coil had 1000 turns in several
layers, therefore not all the wire was in direct contact with the sample. This means
that an AC magnetic field, passing through the inner layers of the coil, would induce
a voltage in the outer layers. This voltage had to be subtracted from the signal as it
carried no information about the flux penetration into the sample. This was done by
applying an AC magnetic field to the sample in the virgin state - at zero DC magnetic
field - and at a low amplitude of 1 mT, below the first critical field. At that point, the
balancing rig 1 was tuned so that the measured signal was zero. This meant that all the
aforementioned voltage due to the finite thickness of the pick-up coil was subtracted
- and any signal measured subsequently at non-zero DC magnetic field would give a
direct measure of the flux penetration beyond the London penetration depth.

The second balancing rig consisted of a set of two mutual inductances between the
sensing and the driving circuit, connected with a variable resistor. In contrast to the
balancing rig 1, this was used to subtract any unwanted signal a quarter period out of
phase with the pick-up voltage. If there are any flawed connections present in either
of the circuits this will lead to parasitic capacitances in the connections - shifting a
portion of the signal by one quarter period. A similar effect will be seen in the presence
of conductors in the vicinity of the sensing circuit - the AC magnetic field will induce
eddy currents in the conductors, which will, in turn, induce a back emf in the sensing
circuit. This will be shifted in phase by a quarter period as well. For these reasons,
the balancing rig number 1 was insufficient to subtract all of the parasitic signal, and
the second balancing rig was used. With both the rigs the signal could be balanced to
0.1 %. Additionally, the signal was averaged over 1000 periods of AC field to improve
the resolution.

3.4 Finite element modelling

In addition to the experimental work finite element modelling (FEM) was performed
in order to compare measured data with theory. For this a commercial FEM package
Comsol Multyphysics 5.3a was used. FEM simulations have become a standard way
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of numerical analysis of high-temperature superconducting materials, because type-II
superconductors, in particular, can be adequately described in most applied-type
problems with just Maxwell’s equation without the need to look at the microscopic
picture. For a detailed review of superconductor FEM modelling, see [34].

Essentially, FEM consists of creating a grid of points, called the mesh, in a geometry
that matches the geometry of an experiment we wish to model. Hence, Maxwell’s
equations, in conjunction with a constitutive relation, are solved in each point of the
mesh in a self-consistent way. As an example, in the H-formulation [34], employed
here, Ampere’s law,

∇ × H = J, (3.3)

and Faraday’s law,
∇ × E = −µ0

∂H
∂t

, (3.4)

are solved with the addition of the constitutive E-J power law,

E

E0
=
(
J

JC

)N

, (3.5)

where the electric field, E, is assumed parallel to the current, J. The value of the
constant E0 determines the electric field when the current density becomes J = JC ,
and is typically chosen to be E0 = 1 µV cm−1 [34]. The value of JC will typically be
measured as a function of B and input into the model by means of a look-up table,
or its value will be chosen such that the trapped field predicted by FEM will match
the measured trapped field. The value of N will determine the rate of flux creep; here,
N = 20 is chosen, which is a typical value for high-quality superconductors with a low
flux-creep decay rate (see the results section in Chapter 4 for more details).



Chapter 4

Crossed-field decay in bulk
superconductors

4.1 Background

Bulk superconductors, employed as quasi-permanent trapped-field magnets, appear a
likely candidate for future applications in which high magnetic fields in small volumes
are a requirement. A prime example of such a potential application is a permanent-
magnet electric motor or generator, in which conventional magnets are used to generate
the magnetic field in the rotor or stator [68]. Permanent magnet electric machines are
attractive as the magnetic field is generated passively, hence avoiding the need for slip
rings or additional power supplies. However, the limitation of conventional magnets
to generating magnetic fields of at most 1.8 T imposes an upper limit to the power
density of these machines. In contrast, bulk superconductors can generate trapped
magnetic fields an order of magnitude higher and are, as such, attractive alternatives
for future light-weight electric motors.

Despite the initial order-of-magnitude improvement in magnetic field, however,
the trapped field in a bulk superconductor will decay with time due to flux creep.
The decay will further be accelerated in the presence of AC magnetic fields – a likely
magnetic environment in rotating electric machines due to the inevitable non-ideal
nature of the motor or generator. For this reason it is of interest to study the effects of
external time-varying magnetic fields on the time-dependence of the trapped field in
bulk superconductors.

In this chapter the focus will be on one specific geometry, the crossed-field configu-
ration, shown schematically in Figure 4.1. In this thesis the analysed material will be
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Fig. 4.1 A schematic of the crossed-field configuration. The external magnetic field,
magnetising the bulk, is initially applied along the c-direction, which induces currents
to flow in the ab-plane. Subsequently, BAC is applied parallel to the ab-plane. In points
P1 and P2 the current is, respectively, perpendicular and parallel to BAC .

exclusively GdBa2Cu3O7–δ in bulk form and so it is convenient to define the geometry
of the problem in this initial section and refer to it throughout the text.

The crossed-field configuration in this work is defined as follows. We begin with a
single-grain bulk superconductor in the shape of a cylinder in which the crystallographic
c-direction is parallel to the cylindrical axis. The bulk is magnetised along the c-direction
by one of the aforementioned magnetisation techniques, which induces a current to flow
in the azimuthal direction everywhere in the bulk (red arrow in the ab-plane, Figure
4.1), leading to a trapped field parallel to the c-direction. The bulk is said to be fully
magnetised if the current density throughout is J = JC (JC can be a function of the
local magnetic field, B).

Following magnetisation an AC magnetic field, called here the crossed-field, is
applied perpendicular to the c-direction, and its effects on the trapped field are studied
by means of a Hall probe array or a pick-up coil. Typically, the trapped field decays
over time in what is called the crossed-field decay. This particular configuration is
interesting to study as it has been shown to lead to the largest rate of decay [57] (this
is true for applied fields of double polarity; for homopolar applied fields the direction
leading to the greatest decay is anti-parallel to the trapped field). For this reason



4.2 Previous studies 63

it remains important to first understand crossed-field decay in order to subsequently
mitigate against it.

4.2 Previous studies

In this section the relevant studies of the crossed-field effect will be summarised. A
common thread among all of them is the effect of a magnetic field, applied perpendicular
to some axis, on the trapped field or magnetic moment along the axis. Ultimately,
the applied field will induce currents to flow in shielding regions below the surface
of the superconductor, and this can adequately be explained within the Bean model
framework. Another common thread, when the applied crossed-field is an AC magnetic
field, is a rapid decay of trapped field over time. Most of the studies mentioned here
find that the decay of trapped field over time is exponential – especially at short times
immediately after the start of AC field application, and for AC field amplitudes which
fully penetrate the superconductor. In the subsequent section this exponential decay
– in conjunction with the logarithmic decay due to flux creep – will be taken as an
assumption in the derivation of an analytical model, used to predict crossed-field decay
in bulk superconductors.

Some of the earliest work on the effects of mutually perpendicular components of
magnetic field applied to a superconductor was done by LeBlanc and Mattes on coils
of NbTi, a low temperature type-II superconductor [69]. The authors showed that
the component of the magnetic moment along the axis of the coil will change as the
magnetic field component perpendicular to the axis of the coil changes (even when the
magnetic field component along the axis does not change). This is explained as being
due to currents induced perpendicular to the direction of the total magnetic field (the
sum of the parallel and perpendicular components).

Funaki and Yamafuji [70–72] studied the effect of an AC magnetic field applied to
a linear array of superconducting wires, used to approximate an infinite slab. They
showed that if a DC magnetic field is applied perpendicular to the wires and an AC
magnetic field is applied along the wires, the shielded magnetic field at the centre of
the array will approach the DC magnetic field value. Here, again, the AC field changes
the component of the magnetic field, perpendicular to its orientation. Additionally,
they showed that the magnetic field penetrates the wires in shielding regions of induced
current, the thickness of which depends on the amplitude of the applied field.

Park and Kouvel [73] studied the crossed-field effect in a YBa2Cu3O7–δ bulk su-
perconductor. The authors magnetised a single-grain superconducting disk along the
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c-direction and measured the magnetic moment components in the c-direction and
in the ab-plane (Mc and Mab, respectively). They showed that, although the Mab

component obeys a Bean-like hysteresis, the Mc component decays essentially to zero in
the first few cycles of applied AC field. This is in contrast to the much slower intrinsic
decay due to flux creep.

Fischer et al. [74, 75] measured magnetisation loops (for a DC magnetic field
along the c-direction) in YBa2Cu3O7–δ platelets while simultaneously applying an AC
magnetic field parallel to the ab-plane. The loops were shown to become narrower
for an increasing amplitude of AC field. Additionally, the irreversibility field was
shown to decrease and to approach zero as the AC field magnitude reaches the value
of the penetration field for the sample. At that point the magnetic moment becomes
reversible and the critical current density zero.

All these studies point to a decay of magnetisation due to an applied crossed-field,
which itself effectively renders the magnetic moment reversible. In essence, the crossed
field, by shaking the pinned flux vortices, reduces the effective pinning force to zero,
making the vortices free to move under the influence of the Lorentz force. Then, the
time dependence of magnetisation cannot be predicted by the Bean model as, if the
pinning force is zero, JC = 0.

Instead, the time dependence of current density in the superconductor with zero
pinning force can be analysed by the Langevin equation 2.32, where the pinning force
is assumed zero,

ηvv = ηv
∂y

∂t
= B0J, (4.1)

where ηv is the vortex viscosity, y is the vortex displacement, v its time derivative, the
vortex velocity, and B0J is the Lorentz force. Since the current density is J > JC = 0
the above equation describes vortex flux flow. The subsequent derivation of the time-
dependence equation for y proceeds in a similar way to the derivation of equation 2.55
(the differential equation describing the Campbell penetration depth), giving

ηv
∂y

∂t
= B2

0
µ0

∂2y

∂t2
, (4.2)

which can be solved by a separation of variables. It can be shown that the vortex
velocity decays exponentially with time,

v ∝ exp
(

− t

τ

)
, (4.3)
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where the decay time τ ∝ ηv. In essence, a distribution of vortices, contributing to
a bulk current density, will be pushed apart by the Lorentz force in the absence of
pinning. As the vortices move further apart the current density will decrease, and so
too will the Lorentz force. Hence, the rate of change of current will be proportional to
the current itself, leading to exponential decay.

In the case of crossed-field decay this situation may arise because, due to the
AC-field-induced moving of vortices back and forth, the vortices cannot remain pinned
and the effective pinning force becomes zero. For example, the total force acting on a
vortex, averaged over one period of AC field, is proportional to the Lorentz force as
the force due to the AC field averages to zero.

The exponential-like decay has been observed elsewhere as well. Willemin et al.
[76] explained the phenomenon as being due to the shaking of the flux vortex lattice.
They showed that, provided the amplitude of the crossed-field is sufficient, the decay
of magnetic moment in a YBa2Cu3O7–δ single-grain is exponential across several orders
of magnitude of magnetisation. Subsequently, LeBlanc et al. [77] conducted similar
measurements in a stack of Bi2Sr2Ca2Cu3O10+x thin films and they showed that, while
the decay of magnetisation initially appears exponential, at longer times the decay
rate decreases and the magnetisation plateaus at some non-zero value. As we shall
see in the following section, this plateauing is a common feature in our results as well.
This is due to the incomplete penetration of the crossed-field and a combination of the
exponential decay, mentioned here, and the logarithmic decay due to flux creep.

More recently, Vanderbemden et al. [78] studied the crossed-field decay in single
grain YBa2Cu3O7–δ, noting the tilting of trapped field due to the induced shielding
regions with a non zero component of current in the c-direction. The authors cor-
roborated this in subsequent studies [79, 80] in which experiment was complemented
with finite-element modelling (FEM). In order to simplify the numerical modelling
the authors employed a 2D infinite-slab model as an approximation of the 3D bulk,
showing that the results agree qualitatively with the experimental data. The FEM
proved useful in predicting the distribution of current across the cross-section of the
superconductor. Due to the now widespread availability of commercial FEM pack-
ages it has become standard practice to analyse the crossed-field configuration in a
combination of experimental analysis and numerical modelling.

Badía-Majós and López [81] first showed that, using FEM, the pure Bean model
(constant JC and the E−J power law exponent N → ∞), in conjunction with Maxwell’s
equations, is sufficient to describe the initial rapid decay and subsequent plateauing
of magnetisation provided that there is some current-free region beyond the depth to
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which the initial magnetising field has penetrated. However, with the infinite value of
N the intrinsic decay due to flux creep cannot be predicted. Numerous later studies
have successfully employed FEM analyses with a finite value of N across different
materials and geometries, including studies done on (RE)BCO bulks [82–85] and tape
stacks [86–89], MgB2 bulks [90], and Bi2Sr2Ca2Cu3O10+x tapes [91].

The wide scope of the studies mentioned is a testament to the great versatility
and applicability of this combined experimental and modelling approach. However, a
remaining issue is that, depending on the complexity of the study, the calculations done
by FEM software packages can take days to weeks to perform. This is due – in part
– to the highly non-linear behaviour of the superconductor, described by the E − J

power law, which entails large changes in electric field for even small perturbations of
current density at J ≈ JC . Moreover, in order to perform a sweep of the parameter
space (e.g. to change the AC magnetic field frequency or amplitude across a range of
values), the total calculation time increases further, making the studies impractical.
Hence, analytical models will always be preferable – at least initially, with simplified
geometries – as they are much less computationally demanding.

In the following section I present an analytical model with which I explain the
trapped field decay in a bulk superconductor in the crossed-field configuration. The
model takes into account both the rapid exponential-type decay due to the crossed-field,
as well as the slower logarithmic decay due to the intrinsic flux creep. The model is
subsequently compared with measurements of trapped field decay in a GdBa2Cu3O7–δ

bulk superconductor and is shown to agree very well with the data. Additionally, FEM
analysis is performed to serve as a benchmark against which the analytical model
can be compared, and to help visualise some of the geometrical assumptions made in
the derivation of the analytical model. I show that the analytical model reproduces
very well the FEM predictions of the current density redistribution, as well as of the
penetration depth of shielding currents due to the crossed-field.

4.3 Two mechanisms of trapped-field decay: an
analytical model

4.3.1 Derivation

The goal of this section is to derive a model with which the time dependence of
trapped field in a bulk in the crossed-field configuration can be predicted. In summary,
the model is based on calculating the trapped field on the surface of the bulk from



4.3 Two mechanisms of trapped-field decay: an analytical model 67

an assumed current distribution using the Biot-Savart law. The AC magnetic field
is assumed to penetrate the superconductor in shielding regions, which are regions
of thickness λ (the Bean penetration depth), as measured perpendicularly from the
superconductor surface (see Figure 4.2). The time dependence of the current density is
assumed to change at the penetration depth of the AC field: beyond the penetration
depth the current is assumed to decay logarithmically due to flux creep, whereas
within the penetration depth of the surface it is assumed to decay exponentially due
to the crossed-field. The model is purely empirical; here, no microscopic derivation is
presented. For this reason all the assumptions will be justified only in comparing the
model with experiment and FEM analysis.

To start, let us consider a fully magnetised cylindrical bulk superconductor of
height h and radius R, shown schematically in Figure 4.2 (a). The current density
everywhere in the bulk is J = JC , with the currents flowing in the azimuthal direction.
The trapped field at the centre of the top surface of the bulk (z = r = 0) can be
calculated via the Biot-Savart law as

B(r = 0) ≡ B0 = µ0

4π

∫∫∫ J(r′) × (r − r′)
|r − r′|3

d3r′ = 1
2µ0Jchf

(
R

h

)
, (4.4)

where, for the purposes of clarity in the subsequent derivation, we defined the function

f(x) = ln
(
x+

√
1 + x2

)
. (4.5)

Since all the currents contribute constructively to the trapped field there are two
fundamentally different mechanisms by which the trapped field can be made to decay:

1. reduction of current density, and

2. redistribution of current density.

If the current density, flowing through the superconductor, decreases such that J < JC

– regardless of the mechanism by which J decreases – the trapped field will decay.
Conversely, even if the current density remains critical, if some of the current changes
its direction of flow so that it no longer circulates in the azimuthal direction, the
trapped field will decay as well.

Once the initial magnetisation is established the bulk is exposed to an external
crossed-field perpendicular to the direction of magnetisation. The crossed-field will
penetrate the bulk from the top and bottom surfaces up to the field-dependent Bean
penetration depth, λ, forming shielding regions I and III (shown in gray in Figure 4.2
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Fig. 4.2 (a) A schematic representation of a fully magnetised bulk superconductor:
the current density is J = JC , flowing in the azimuthal direction. (b) The change of
current density due to the crossed field: in the shielding regions I and III the current
changes direction every half-cycle of the applied field. The thickness if the region is the
penetration depth, λ. (c) Plan view (top-down) of the shielding regions. The thickness
is αλ, where α is the critical current anisotropy. (d) A projected view of the induced
currents in the region between the inner and the outer cylinder (the inner cylinder
corresponds to region II in (b)).
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(b)). In these regions the crossed-field will affect the established circulating current in
much the same ways as discussed in the previous section: the current will be made
to decay exponentially with time. More accurately, the current contribution to the
trapped field (i.e. the product J(r′) × (r − r′) in equation 4.4, averaged over one period
of crossed-field) will decay exponentially with time; however, mathematically the final
calculated trapped field is identical in both situations. Hence, the time dependence of
current density in regions I and III can be written as

J(t) = JC exp
(

−t− t1
τ

)
, (4.6)

where t1 is the time at which the crossed-field is turned on, such that J(t = t1) = JC ,
and τ is a characteristic time constant of decay and will depend on the crossed-field
amplitude and frequency.

In region II in Figure 4.2 (b), which is beyond the penetration depth of the crossed-
field, the current is assumed to decay due to flux creep and its time dependence can be
written as

J(t) = JC

(
1 − k ln

(
t

t1

))
, (4.7)

where k is the logarithmic decay rate. The time dependence of current is, again, chosen
such that J(t = t1) = JC .

In addition to the formation of three distinct regions along the bulk height, the
crossed-field will induce shielding currents to flow in the c-direction along the sides of
the bulk so that the current loops are completed (shown in Figure 4.2 (c) and (d)).
The thickness of these regions will be determined by the Bean penetration depth as
well; however, due to the anisotropy of critical current density, α, the thickness will be
αλ. The critical current anisotropy in GdBa2Cu3O7–δ is [83, 92]

α = Jab
C

J c
C

≈ 3, (4.8)

where Jab
C is the critical current density in the ab-plane and J c

C is the critical current
density in the c-direction. The typical values of α can range from ≈ 1.5 to ≈ 10, but
the value α = 3 at zero applied magnetic field is corroborated by our measurements,
as discussed in the Results secton, below.

Albeit not perfectly cylindrical, the shielding region in Figure 4.2 (c) will be assumed
to be a tube with the outer diameter R and thickness αλ in order to simplify the
calculation. The time dependence of critical current density in this region is assumed
exponential, as in the regions I and III.
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Fig. 4.3 The schematic representation of equation 4.9 (red), as compared to flux creep
(blue). The characteristic time of the initial exponential decay is determined by τ ,
whereas the decay amount at t ≫ τ is determined by λ. Here, τ = 50 s and k = 0.05.

Once the geometry of shielding regions is established, and the time dependence
of current density is assumed exponential in the shielding regions and logarithmic
elsewhere, equations 4.6 and 4.7 can be substituted into the Biot-Savart law. Integration
gives the time dependence B(t) as

B(t) = µ0JC

2

{
exp

(
−t− t1

τ

) [
h f

(
R

h

)
− (h− λ) f

(
R − αλ

h− λ

)
+ λ f

(
R − αλ

λ

)]

+
(

1 − k log
(
t

t1

)) [
(h− λ) f

(
R − αλ

h− λ

)
− λ f

(
R − αλ

λ

)]}
.

(4.9)

Here, the expressions in square brackets are purely geometric: in the first term
they correspond to the integral of current density over the shielding regions and in
the second term they correspond to the integral over the rest of the bulk. Hence, for
a given bulk geometry, equation 4.9 is simply a weighted sum of an exponential and
logarithmic function and it is shown graphically in Figure 4.3.
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The model, as defined by equation 4.9, is a function of several parameters. The
normalised time dependence of trapped field (i.e. equation 4.9, divided by B0) is
independent of the value of JC , hence its parameters remain τ , k, and λ.

The parameter τ determines the rate of initial decay due to current redistribution
in the shielding regions as defined in Figure 4.2. Its value will depend both on the
intrinsic properties of the superconductor, as well as the exact crossed-field applied.
For example, the characteristic constant of current decay in the absence of pinning (as
shown in equation 4.3) will be proportional to the vortex viscosity, ηv. Conversely, if
the crossed-field is an AC magnetic field and its frequency increases, the value of τ will
likely decrease as there are more cycles applied per unit time during which the current
can decay (see the results section, below).

The parameter k is the logarithmic decay rate of current and is relevant at times
t ≫ τ . In the case of flux creep its value approaches [30]

k = −∂ log J
∂ log t = kBT

U0
, (4.10)

where kB is the Boltzmann constant, T is the temperature, and U0 is the pinning
potential in the absence of pinning. It is expected that the decay rate due to crossed-
fields will approach the value of k for flux creep once the circulating current in the
shielding regions has gone to zero.

The final parameter is λ, the Bean penetration depth. Its value determines the
thickness of the shielding regions and the amount of decay beyond flux creep at times
t ≫ τ . Its can be used as an input parameter for the model to predict the decay or,
conversely, decay measurements can be used to infer the value of λ (see the results
section, below).

4.3.2 Decay as a function of aspect ratio

The total decay beyond that of just flux creep, ∆B(λ)/B0 (see Figure 4.3), determined
by the penetration depth λ, is of interest because it characterises the performance of the
superconductor at long times – this is particularly important for practical applications
requiring a stable and time-independent magnetic field. Its value can be calculated
from the ratio of the geometric factor of the logarithmic term in equation 4.9, and the
initial trapped field (equation 4.4), giving

∆B(λ)
B0

= 1 −
{(

1 − λ

h

)
f [(R − αλ) / (h− λ)]

f [R/h] −
(
λ

h

)
f [(R − αλ) / (λ)]

f [R/h]

}
, (4.11)
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Fig. 4.4 (a) The normalised decay from equation 4.11 as a function of penetration
depth for different values of aspect ratio γ. (b) The decay as a function of aspect ratio
for different values of penetration depth λ.

where we use the definition of f(x) from equation 4.5. The dependence of decay on
the value of λ for different values of the bulk aspect ratio γ = R/h is shown in Figure
4.4 (a).

The result seemingly favours a large aspect ratio γ = R/h (squat and wide bulk)
as the decay decreases with increasing γ, reaching its minimum value λ/2h for γ → ∞.
This is because the trapped field, as defined by equation 4.4, is calculated at the top
surface of the bulk. In long and thin bulks (γ ≪ 1) all the current will circulate close
to the axis of the cylinder and, after the shielding regions are formed, the untouched
region II in Figure 4.2 will be moved a distance λ away from the surface. Conversely,
in squat and wide bulks a large portion of the current will circulate at a large distance
from the cylinder axis. Hence, after the shielding regions are formed, the currents
at radius R will be moved to a distance

√
λ2 +R2 ≈ R, which will itself have a less

negative impact on the trapped field.
The above result, favouring a large γ, is in contrast with the low value of γ, which

is favoured in order to maximise the initial trapped field. For example, the initial
trapped field in equation 4.4 can be rewritten in terms of γ as

B0 = 1
2µ0JCR

f(γ)
γ

. (4.12)
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The function f(γ)/γ equals unity at γ = 0 and decreases with increasing γ. Hence, the
trapped field will be maximised for a long and thin superconductor. Looking back at
Figure 4.4 (a), however, increasing the value of γ by increasing the height for a given
radius also leads to a decreased ratio λ/h. This is equivalent to moving leftwards in
the graph, in which direction decay decreases. This effect is shown in Figure 4.4 (b),
in which the radius R, and the value of λ are kept constant and the aspect ratio is
varied by varying the height h. Here, the decay is lowest at a low aspect ratio γ, which
means that, in fact, both the initial trapped field will be maximised and the decay
minimised for long and thin bulks.

In the above analysis the calculation of decay is done by keeping either the bulk
radius or its height constant, and varying the bulk height or radius, respectively,
meaning there is no limitation imposed on the bulk volume. A more realistic analysis,
therefore, might be one of decay as a function of aspect ratio in a bulk with a constant
volume.

Assuming the volume of the superconductor is V0 = πR2h, and its aspect ratio is
γ = R/h, the trapped field of a fully magnetised bulk can be written as

B0(γ) = 1
2µ0JC

(
V0

π

)1/3 f(γ)
γ2/3 . (4.13)

The terms in front of the fraction are all constant, hence the trapped field will be
highest when f(γ)γ−2/3 is maximum. This function indeed exhibits a maximum at
γ = 1.67 (see figure 4.5 (b), black curve).

With the added constraint of a constant volume the decay (equation 4.11) can be
rewritten in terms of the aspect ratio γ and the reduced penetration depth, which we
define here as β = λ/h. The decay, then, takes the form

∆B(λ)
B0

= 1 −

(1 − β)
f
(

γ−αβ
1−β

)
f(γ) − β

f
(

γ−αβ
β

)
f(γ)

 , (4.14)

and is shown in Figure 4.5 (a). The normalised decay decreases with increasing γ for
all values of penetration β. However, since the initial trapped field exhibits a maximum
at γ = 1.67, the actual final trapped field (i.e. the initial trapped field minus the actual
– non normalised – decay) exhibits a maximum as well. This is shown in Figure 4.5 (b).
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Fig. 4.5 (a) The normalised decay as a function of γ, for different values of β = λ/h,
with the constant volume constraint. (b) The initial trapped field (f(γ)γ−2/3, black
curve), and the final trapped fields as functions of γ for different values of β. The black
points represent the values of γ at which the field is maximum.

4.4 Critical current anisotropy

As discussed in the previous section the geometry of the shielding regions in the
superconductor will be determined by the value of the Bean penetration depth, which
will, in turn, be determined by the critical current density. Since in the crossed-field
configuration the applied magnetic field is perpendicular to the c-axis of the bulk, a
portion of the shielding currents will be induced parallel to the c-axis. Due to the
critical current anisotropy α, however, the magnitude of these currents will be lower
than those, induced in the ab-plane. Consequently, the Bean penetration depth will
vary depending on the direction of induced currents. For this reason it is important to
be able to measure the current anisotropy in order to predict accurately the geometry
of the shielding regions.

A commonly employed technique of measuring the critical current density in bulk
superconductors is the measurement of magnetisation loops from the thickness of which
the value of JC can be inferred. However, in the derivation of the relation between
the magnetisation loop thickness and critical current density [93] it is assumed that
the critical current density is isotropic. This is applicable to the situation in which
the external magnetic field is applied parallel to the c-axis, inducing currents in the
ab-plane, and the magnetisation parallel to the c-axis is measured.
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Fig. 4.6 A schematic of one quarter of the cross-section of the cuboid sample. Here,
JB/JC > b/c. The surface element used in the integration is dS = x dy + y dx.

In order to measure the magnetisation due to the currents parallel to the c-axis,
the magnetic field has to be applied perpendicular to the c-axis. Since a portion of the
currents will still be induced in the ab-plane, the problem is no longer isotropic and
the above approach no longer applies. In the following paragraph the relation between
the an anisotropic current density and magnetisation will be derived (for more details,
see [94]).

We start with a rectangular bulk of dimensions 2a×2b×2c parallel to the z-, x- and
y- axes, respectively, and with a ≫ b ≈ c. We magnetise the superconductor parallel to
the a-direction, inducing currents in the xy-plane, in which the critical current density
is anisotropic. We assume the current density parallel to the b-dimension is JB, and
parallel to the c-dimension it is JC . The current distribution of a fully magnetised
superconductor is shown in Figure 4.6. Due to symmetry only one quarter of the
cross-section has to be considered.

The line, separating the regions with different current directions, is defined by the
equation

y = k(x− b) + c, (4.15)

where k = tan θ = JC/JB. In the schematic in Figure 4.6 this separating line crosses
the y-axis at y > 0, which is true if c/b > k, or, equivalently,

JB

JC

>
b

c
. (4.16)
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The following derivation will be for this condition; for the case c/b < k the derivation
is the same, with the substitutions b ↔ c and JB ↔ JC .

The magnetisation of a rectangle with this assumed current density distribution
can be calculated as

M = 1
2V

∫∫∫
r × J(r) dV, (4.17)

where r is the radial vector from the origin to the volume element dV , carrying a current
density J(r). The integral is evaluated over the whole volume of the superconductor,
V = 8abc.

Since the a-dimension (perpendicular to the xy-plane in Figure 4.6) is assumed
much larger than b or c, the current is assumed unchanging with the z-axis (no
demagnetisation effects due to finite size). Hence, the integral in the z-direction gives
simply the height, 2a, and the remainder is a surface integral in the xy-plane. In the
region with the current J = JC the cross product to be integrated is

r × J(r) = x JC , (4.18)

and the surface element equals

dS = (k (x− b) + c) dx. (4.19)

Similarly, in the region with the current J = JB the cross product is

r × J(r) = y JB, (4.20)

and the surface element
dS =

(
y − c

k
+ b

)
dy. (4.21)

Inserting the above expressions into equation 4.17 the integral gives

M = 1
16abc

[
2a · 4JC

∫ b

0
(k (x− b) + c) dx+ 2a · 4JB

∫ c

c−kb

(
y − c

k
+ b

)
dy

]
, (4.22)

where the factor 4 before the integrals is due to integrating only over a quarter of the
cross-section. The result, then, can be written as

M = JCb

2

(
1 − JC

JB

b

3c

)
, (4.23)
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is in agreement with the literature [94] and reduces to the expression for the isotropic
case if JB = JC .

The problem with this result for the current anisotropy measurement, however, is
that the value of M depends both on the value of JB and of JC . Moreover, the value
of JB cannot be inferred from magnetisation loop measurements in the isotropic case,
in which JA = JB and the magnetic field is applied parallel to the c-direction. This
is because in the isotropic case the pinned flux vortices are parallel the c-direction
with the current flowing in the ab-plane, whereas in the anisotropic case, described
above, the flux vortices are all parallel to the a-direction and the current is induced
in the bc-plane. Hence, the value of JB will differ in the two cases. A prime example
of this is the different values of the irreversibility field (the magnetic field, at which
the magnetisation loop becomes reversible as the value of critical current density
approaches zero). When the vortices are pinned in the ab-planes the irreversibility field
increases significantly, as compared to the isotropic case.

The equation 4.23 must be simplified in some way so that it can be used for
anisotropy measurements. A convenient way of doing this is by choosing the sample
dimensions so that c ≫ b, which means the second term in equation 4.23 can be
neglected, giving

M = JCb

2 , (4.24)

which will be accurate with a relative error of ≈ b/3c.

4.5 Results

The sample used in this part of the study was a GdBa2Cu3O7–δ bulk superconductor,
30 mm in diameter and 6 mm in height. The bulk was manufactured by the top-seeded
melt growth technique initially 12 mm in height and subsequently cut into half along
its height. The top half was used for the decay measurements, whereas the bottom
half was further cut into rectangular samples and used for JC(B) measurements using
a SQUID magnetometer.

The bulk used for decay measurements was initially magnetised parallel to the
c-direction using FC in a 1.5 T electromagnet in a liquid nitrogen bath. After the bulk
was cooled to 77 K the magnetic field was ramped to zero at a ramp rate of 0.015 T s−1.
After magnetisation the trapped field was allowed to stabilise over a waiting period
of 900 s, which was established to dissipate any heat that might have been generated
during the magnetisation process. At the end of the waiting period the centre trapped
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field was measured to be 0.9 T (measured using a calibrated Hall sensor mounted on
the centre of the top surface). This was assumed to be the trapped field of a fully
magnetised bulk, used as the initial condition for the subsequent crossed-field decay.

The bulk was inserted into the bore of a solenoid coil with its trapped field
perpendicular to the axis of the coil. The coil, along with the bulk, was submerged
in a liquid nitrogen bath. To generate the crossed-field an AC current was passed
through the coil, its amplitude monitored throughout the measurement using a lock-in
amplifier and a shunt resistor in series with the coil. The measurement consisted of the
application of several thousand cycles of AC magnetic field at different amplitudes and
frequencies and data acquisition of the Hall sensor voltage using a data acquisition
card (DAQ) and a PC. Additionally, a Cernox® temperature sensor was mounted
atop the bulk surface with which the temperature was monitored, insuring isothermal
conditions.

From the bottom half of the as-grown bulk two cuboid samples were cut for the
purposes of measuring the critical current anisotropy from magnetisation loops. The
first sample was of dimensions a = 2.85 mm, b = 2.75 mm and c = 5.65 mm, and
was used to measure the JC(B) dependence of the current in the ab-plane using the
isotropic magnetisation equation (the magnetic field was applied parallel to the c-axis).
The second sample was of dimensions a = 4.7 mm, b = 1.18 mm and c = 5.6 mm, and
was used to determine the JC(B) dependence of current in the c-direction. Here, the
magnetic field was applied parallel to the a-direction and the critical current density
was inferred using equation 4.24. The error in the estimate of JC , as determined by
the ratio of the sample dimensions, was b/3c = 7 %.

4.5.1 Decay measurements

The measurements of trapped field in the crossed-field configuration for a varying
amplitude of AC magnetic field, and at two different frequencies, are shown in Figure
4.7. As expected, the decay rate is largest immediately following the start of AC field
application, after which its value decreases and appears to stabilise independently of
the amplitude of applied field. Hence, the total amount of decay increases with the field
amplitude largely because of the initial rapid decay at short times. This fits well with
the picture of currents decaying exponentially in the shielding regions, the thickness of
which will be directly proportional to the AC magnetic field amplitude.

Shown in black in Figure 4.7 are the least-square fits of the analytical model to the
measured data, with which they appear in excellent agreement. The model, here, has
three free parameters, k, τ , and λ. Their values, as determined by the fit, are shown
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Fig. 4.7 (a) The decay of trapped field in the crossed-field configuration for varying
values of AC magnetic field amplitude at a frequency of 8 Hz, and temperature 77 K.
(b) Decay measurements as in (a), at the frequency 16 Hz.
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in Figure 4.8. Additionally, the temperature rise due to the crossed-field, as measured
by the temperature sensor on the bulk surface, is shown.

The value of τ , shown in Figure 4.8 (a), determines the rate of exponential decay of
trapped field at short times immediately after the start of crossed-field application. Its
value decreases with increasing crossed-field amplitude, meaning that the decay is more
rapid at higher crossed-field amplitudes. It is possible that this amplitude dependence
is an artefact of the fit, as the biggest discrepancy between the model at data is at
t ≈ 100 s after the start of crossed-field application.

The value of τ also depends on the frequency of the crossed-field. In the Bean
model framework the decay per cycle should be independent of frequency. Hence, the
values of τ at the frequency 8 Hz should be twice the values at 16 Hz. From our data
the ratio appears to be τ ≈ 1.4 at all amplitudes of crossed-field. It is possible that the
ratio is lower than the value, predicted by the Bean model, due to the magnetisation
becoming reversible in some regions, in which case the value of τ depends on the vortex
viscosity ηv and is, hence, independent of frequency.

The values of k, given by the least-squares fit, are shown in Figure 4.8 (b). They
represent the logarithmic decay rate at times t ≫ τ , the decay rate when the currents
in the shielding regions have gone to zero. A larger (absolute) value of k means a larger
rate of decay of trapped field

∂B

∂t
∝ −k

t
. (4.25)

The values of k at all field amplitudes are within 20 % of their average value, which
itself is about twice the value of flux creep (zero applied field). It is expected that the
decay rate will approach a constant value across all crossed-field amplitudes. However,
the fit gives a slight dependence of k on the crossed-field amplitude. A possible reason
for this is a small temperature rise, which will increase with amplitude (Figure 4.8
(c)), and which will cause an increase in the rate of decay. Additionally, as with the
values of τ , it is possible that this dependence of k on amplitude is an artefact of the
least-squares fit.

The parameters τ and k both determine the rate of decay of trapped field. As such,
their values cannot be determined very precisely from the least-square fit of the model
to the data. This is because the fit minimises the residuals between the values of the
model and the data, and not between their respective time-derivatives. Hence, there is
no direct constraint on the local rate of decay of trapped field, possibly leading to a
large error in the values of τ and k.

Conversely, the value of the penetration depth, λ, determines the amount of decay
at times t ≫ τ , hence it is expected that the error, here, will be significantly lower.
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Fig. 4.8 The dependence on the crossed-field amplitude of: (a) the exponential decay
rate τ , (b) the logarithmic decay rate k, (c) the temperature rise, and (d) the penetration
depth λ. In (b) the black point at zero represents the flux creep decay rate.
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The values of λ, extracted from the fit, are shown in Figure 4.8 (d). Increasing the
crossed-field amplitude leads to an approximately linear increase in the value of λ,
the penetration depth of shielding currents. This is in qualitative agreement with the
prediction of the Bean model, which states

λ = BAC

µ0JC

. (4.26)

To quantitatively corroborate this result, however, the value of JC(B) needs to be
known. In the following section the JC(B) anisotropy data are presented.

4.5.2 Current anisotropy measurements

The magnetisation loop measurements, from which the critical current density was
calculated, are shown in Figure 4.9 (a). When the magnetic field was applied parallel
to the c-direction (blue symbols) the magnetisation exhibited the characteristic fishtail
effect whereby there appears a local maximum at around B = 1 T. Conversely, the
fishtail effect was not observed when the magnetic field was applied parallel to the ab-
plane, with the magnetisation value at zero applied field reaching much lower absolute
values, implying a significant critical current anisotropy, as discussed in the previous
sections.

The irreversibility field values also differ in the two cases: in the anisotropic case
the irreversibility field increases markedly as compared to its value in the isotropic
case, where Birr ≈ 5 T. This implies that the part of the current that is induced in the
ab-plane in the anisotropic case indeed does not have the same dependence on B as
the current in the ab-plane in the isotropic case (as discussed in the previous section).

The increase in the value of Birr when the magnetic field is applied parallel the
ab-planes has been observed in previous studies [95–97] and has to do with the intrinsic
pinning of flux vortices by the ab-planes. While the critical current density for B||c
decreases rapidly with increasing applied magnetic field, its value for B||ab remains
within 10 % of its self-field value between the applied magnetic fields 1 T and 5 T. In
this latter case the vortices are pinned strongly in place along their entire length by
the ab-planes, hence the increase in Birr.

The critical current densities, inferred from magnetisation measurements using
equation 4.23 for the anisotropic and 2.39 for the isotropic case, are shown in Figure 4.9
(b). Their values will determine the penetration depth of shielding currents, λ, parallel
to the ab-plane and the c-direction. Since the critical current anisotropy, α, shown as
a function of B in the inset of Figure 4.9 (b) is α ≈ 3 at self-field (zero applied field),
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Fig. 4.9 (a) The magnetisation loop measurements of a cuboid sample, where the
magnetic field was applied parallel (blue) or perpendicular (red) to the c-direction.
(b) The corresponding calculated critical current densities with the exponential fits in
black line. The inset of (b) is the critical current anisotropy, α.

and the maximum crossed-field amplitude is at most BAC = 125 mT, the value of α
will be treated as constant for the purposes of our analysis.

To determine the value of penetration depth from the critical current density
measurements, we fit the JC(B) data with an exponential function up to the applied
field value of B = 1 T. This suffices because none of the applied or trapped magnetic
fields in our crossed-field decay measurements exceed this value. The fitted JC(B)
dependence can, subsequently, be inserted into Ampere’s law, with which the value of
λ can be calculated and compared with the values, predicted by the fit of the analytical
model to the decay data.

The exponential function, fitted to the JC(B) data, is of the form

JC(B) = J1 + J2 exp
(

− B

B1

)
, (4.27)

where J1, J2 and B1 are fitting parameters. The two fits are represented as black
lines in Figure 4.9 (b), and are defined by the parameters J1 = 1.65 × 108 A m−2,
J2 = 1.46 × 108 A m−2, B1 = 0.32 T for the isotropic case, and J1 = 0.27 × 108 A m−2,
J2 = 0.70 × 108 A m−2, B1 = 0.19 T for the anisotropic case.

Once the critical current density is shown to obey the dependence 4.27 in the
relevant applied field range, the expression can be substituted into Ampere’s law,
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Fig. 4.10 The values of penetration depth λ, as determined by the analytical model fit
to the decay measurements (symbols), compared to the values, calculated from the
measured JC(B) data (equation 4.29). The values of 3λ (open symbols) appear in
agreement with the value of λ, calculated from the JC(B)||c data.

∇ × B = µ0JC(B), which can be solved in the cartesian coordinate system provided
the value of λ is sufficiently smaller than the bulk radius. Subsequently, Ampere’s law
can be integrated with respect to B from zero to the amplitude of the applied field
BAC , giving the magnetic field profile as

B(z) = B1 log
[{

1 + J2

J1
exp

(
−BAC

B1

)}
exp

(
B0 − J1µ0z

B1

)
− J2

J1

]
, (4.28)

where z is the distance measured inwards from the superconductor surface. Hence, the
penetration depth, λ, can be calculated by substituting B(z) = 0, and solving for z,
giving the result

λ = BAC

µ0J1
− B1

µ0J1
log

(
J1 + J2

J1 + J2 exp (−BAC/B1)

)
, (4.29)

which reduces to the Bean penetration depth for a constant JC , BAC/µ0JC , by substi-
tuting J1 = JC and J2 = 0. The result can be used to validate the values of λ, given by
the analytical model fit to the crossed-field decay data. This is shown in Figure 4.10.

The values of λ given by the model appear in excellent agreement with those given
by JC(B) data. In essence, this means that measurements of crossed-field decay can be
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used to determine unambiguously the size of the shielding regions in the superconductor
provided the geometry of the superconductor and its critical current anisotropy is
known.

Also shown in Figure 4.10 is the comparison between the penetration depth,
calculated from the JC(B)||c data, and the value of αλ, given by the model fit (where
α = 3). The agreement, here, implies that the choice of α = 3 is justified.

4.5.3 FEM simulation

To justify the assumptions about the geometry of shielding regions in the derivation of
the analytical model, FEM simulations were performed using the commercial package
Comsol Multyphysics 5.3a. The majority of the modelling work was done with the
help of Fernando Perez.

For the purposes of simplifying the FEM simulation, and to reduce the computation
time, the bulk was approximated in the 2D infinite slab geometry, shown schematically
in Figure 4.11. The dimensions of the slab were chosen so that the slab cross-section
was equal to the cross-section of the bulk: 30 mm in width (along the x-axis) and
6 mm thick (along the z-axis). This geometry is convenient for modelling the real 3D
geometry of bulk superconductors as it is sufficiently physical to capture qualitatively
the superconductor behaviour caused by changing magnetic fields. However, a drawback
of this method is its inability to capture the critical current anisotropy of the material.
As an example, in the crossed-field configuration the shielding regions formed due to
the external AC magnetic fields will have currents flowing both in the ab-plane and in
the c-direction. This cannot be modelled in the 2D infinite slab geometry.

The slab was magnetised by zero-field cooling (ZFC) with the magnetic field applied
along the z-axis, and the trapped field parallel to z calculated 0.5 mm above the top
surface of the slab (this is to account for the active area of the Hall sensor in the
experimental setup being slightly above the bulk surface). The critical current density
was assumed independent of magnetic field (Bean model), and its value chosen so that
the trapped field of the model matched the experimentally measured trapped field of a
fully magnetised bulk.

The ZFC procedure itself consisted of ramping the applied magnetic field from
zero to 3 T over 150 s, and subsequently ramping it back to zero with the same ramp
rate. The temperature of the slab was set to 77 K and was assumed constant, hence no
thermal model was employed (the heat generation Q = E · J was assumed negligible).

After the magnetisation procedure the slab was allowed to undergo flux creep for
a period of 900 s (to match with experiment), after which the external AC magnetic
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Fig. 4.11 The meshed slab with 7829 degrees of freedom (nodes), along with the chosen
coordinate system. The mesh is finer close to the edge of the slab as there the current
density is expected to vary the most after the crossed-field is applied.

field (crossed-field) was applied perpendicular to the z-axis at a frequency of 8 Hz and
varying amplitudes from 25 mT to 125 mT. The resulting decay of trapped field is
shown in Figure 4.12.

The trapped field decay was simulated for a total duration of 50 s, or 400 cycles
at a frequency of 8 Hz. Qualitatively the FEM simulation captures the experimental
data well as the simulated decay rate and amount both increase with the crossed-field
amplitude.

Quantitatively there is some discrepancy between the model and the data. The
measured initial decay rate immediately after the start of the crossed-field application
is much lower than predicted by FEM, whereas, at t = 950 s, the measured decay rate
is greater than predicted by FEM. In terms of the analytical model this means that
the FEM predicts a more rapid decay of current in the shielding regions, than what is
indicated by experiment.

A possible explanation for this discrepancy is the choice of field-independent value of
JC . In reality, as the trapped magnetic field decays, the local magnetic field everywhere
in the superconductor will change, hence the value of JC can change as well. This
means that the shielding ability of the superconductor will likely change throughout
the duration of the application of crossed-field.

Another possible source of error is the constant value of N = 20 in the E-J power
law, which determines the rate of decay in the regions beyond the penetration depth
of shielding currents. In reality the value of N may depend on the local magnetic
field, as well as the crossed-field amplitude and frequency. Additionally, while the
E-J power law serves as a good approximation of the Bean model, it remains only an
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Fig. 4.12 The comparison of trapped field decay, predicted by FEM, with the measured
decay.

approximation. It is possible that the exact relation between electric field and current
density differs from the E-J power law, which will lead to a discrepancy between the
observed and simulated rate of decay.

The FEM analysis assumes there is no temperature rise in the bulk and, while
the measured temperature on the bulk surface remains lower than 200 mK at all
crossed-field amplitudes (Figure 4.8 (c)), the temperature rise in the centre of the
superconductor will be higher. Hence, the value of JC will likely decrease with time
and this behaviour will not be captured by the FEM simulations.

Finally, the FEM simulation is two-dimensional, approximating the bulk supercon-
ductor with an infinite slab geometry. This means that, while in reality the current
loops must always be completed, this is not the case in the infinite-slab geometry.
Hence, there will be no current flowing in the c-direction and there is no way to capture
the critical current anisotropy.

In addition to the decay of trapped field over time, the current distribution across
the slab cross-section can be compared with the assumed shielding regions in the
derivation of the analytical model. The distribution of current density after 10 cycles
of applied crossed-field is shown in Figure 4.13. The distribution labelled 0 mT is of a
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Fig. 4.13 The current density distribution after 10 cycles of crossed-field with varying
amplitudes at 8 Hz. The arrow in red corresponds to the z-axis in Figure 4.14 (a).
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Fig. 4.14 (a) The current density as a function of distance (parallel to z; red arrow
in Figure 4.13), averaged over the area x = −8 mm to x = −7 mm. (b) The values of
penetration depth given by FEM simulation, the analytical model, and calculation
from the measured JC(B) dependence.

fully magnetised slab immediately before the crossed-field is applied. As expected, the
current approaches its maximum value ±JC everywhere across the cross-section. This
is equivalent to the azimuthal current flow in a cylindrical bulk.

The current distribution labelled from 25 mT to 125 mT are of the slab after 10 cycles
of applied crossed-field at each respective amplitude. It is apparent that the shielding
regions are induced from the top and bottom surfaces of the slab, corresponding to
the shielding regions of thickness λ in the derivation of the analytical model. The
thickness, here, is almost constant across the width of the slab due to the slab’s aspect
ratio - there are only minor demagnetisation effect due to the field lines curving at the
edges of the slab.

As predicted by the analytical model, the thickness of the shielding regions increases
with the crossed-field amplitude. The circulating current beyond the thickness of the
shielding regions appears unperturbed which is, again in alignment with the analytical
model. What remains is to compare the values of the penetration depth, predicted
by the model, with the values, given by FEM. Here, we define the penetration depth
as the average distance from the slab surface, at which the current density changes
sign (shown in Figure 4.14 (a)). The comparison of the penetration depth given by
the analytical model and FEM, is shown in Figure 4.14 (b). They appear in good
agreement.
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4.6 Discussion

In this chapter I derived an analytical model with which the decay of trapped field in
the crossed-field configuration can be analysed. The model is based on the different time
dependence of the current, contributing to the trapped field, depending on whether it is
within the penetration depth of the crossed-field of the surface of the superconductor.

The model, initially general, is applied to the case of a cylindrical bulk superconduc-
tor and the specific geometry of the induced shielding regions. The time dependence
of trapped field is derived using the Biot-Savart law, giving an analytical expression,
which itself can be fitted to measured data.

I have shown that the model is able to reproduce the measured data remarkably
well, or, equivalently, is able to determine the value of its parameters, namely the
penetration depth λ, by a least-square fit to the measurements. I have shown that the
values of λ, predicted by the analytical model, FEM simulations, and calculated from
the measured JC(B) dependence, are all in good agreement.

I have derived the analytical model under the assumption of isothermal conditions.
This will not always be the case, as demonstrated by our temperature measurements
on the surface of the bulk. As shown in Figure 4.8 (c), the temperature rise increases
with the crossed-field amplitude and frequency. Hence, if the crossed-field amplitude
or frequency increase sufficiently to cause the generated heat, Q = E · J, to overcome
the cooling power of the cryogenic system, the temperature of the superconductor will
increase and the assumption of the isothermal conditions will become invalid.

Regardless, if the temperature of the superconductor stabilises at a temperature
T < TC , the model may still be valid, with only minor reconsiderations in its derivation.
Once the temperature stabilises isothermal conditions may, again, be assumed since
the heat will be generated in the shielding regions close to the superconductor surface,
where the cooling power of the cooling system is highest. Then, once the initial transient
has stabilised and the superconductor temperature stabilises, the model can be derived
as above, provided that the JC(B) dependence at that temperature is known.

In terms of the wider scope of this thesis, the results presented here are important
as they elucidate the mechanism of decay of trapped field within the range of AC
amplitudes and frequencies studied. Current redistribution is shown to be the main
cause for decay, with temperature rise due to AC losses not playing as significant a
role. Hence, the decay of trapped field at long times increases approximately linearly
with the AC field amplitude due to the linear increase of the Bean penetration depth,
λB, and, with it, the thickness of the shielding regions in the periphery of the sample.
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Thus, potential mitigation measures can be discussed in terms of the reduction of λB;
if λB decreases, the shielding regions decrease and the decay of trapped field will be
lower. One way of accomplishing this (without changing the material studied) is simply
by reducing the operating temperature of the superconductor. This will lead to an
increase in the critical current density, and a lower penetration depth. Controlling the
temperature as an effective way of mitigating trapped field decay is discussed in the
following chapter.





Chapter 5

Parallel-field decay in bulk
superconductors

5.1 Background

In this chapter the decay of trapped field in the parallel configuration will be discussed.
Here, the AC magnetic field is applied parallel to the direction of the trapped field of
a bulk superconductor. The effect of the parallel field on the superconductor will be
discussed in terms of trapped-field decay and of temperature rise due to heat generation.
In the second half of the chapter the parallel field configuration will be compared
with the crossed-field configuration in terms of decay of trapped field, and an effective
decay mitigation measure - controlling the temperature of the superconductor - will be
discussed.

The parallel-field configuration is an axially symmetric problem provided that the
geometry of the superconductor is also axially symmetric. The applied magnetic field
is perpendicular to the current density everywhere, meaning that the Lorentz force on
the flux vortices in the superconductor is simply FL = BJ , where B is the magnetic
field amplitude and J the current density.

Hence, the simplest model with which the parallel-field configuration can be de-
scribed is that of a cylinder of infinite height (Figure 5.1) in which the currents flow
in the azimuthal direction and the external magnetic field is applied parallel to the
cylindrical axis (z-axis). Due to symmetry this can be treated as a one-dimensional
problem because the only non-zero component of trapped magnetic field (and of mag-
netisation) will be parallel to z. Equivalently, the only non-zero component of induced
current density will be in the azimuthal direction. Ampere’s law in one dimension in
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cyllindrical coordinates, (r, ϕ, z), can be written as

− ∂BZ

∂r
= µ0Jϕ. (5.1)

Within the Bean model framework the current density, Jϕ, can assume the values ±JC

and zero, giving the trapped magnetic field of a fully magnetised cylinder as

B(r) = µ0JC(r0 − r) = B0 − µ0JCr, (5.2)

where B0 = µ0JCr0 is the centre trapped magnetic field (and is equal to the penetration
field, BP ), and r0 is the cylinder radius. This is shown in Figure 5.1 (a) (black line).

Consequently, if the cylinder is exposed to an external AC magnetic field of
amplitude BA, the trapped field will decay by BA in the first quarter period during
which the applied magnetic field is anti-parallel to the trapped field (the decayed
trapped field profile is shown in red in Figure 5.1 (a)). Subsequently, the trapped
field will remain at a constant value and will be no longer affected by the applied AC
magnetic field. This is due to the formation of shielding regions below the surface of
the superconductor up to the Bean penetration depth of the applied magnetic field
(shielding regions are shown in gray shading in Figure 5.1 (a)). The decay of trapped
field over time is shown in Figure 5.1 (b).

Going from the infinite-cylinder geometry to a cylinder of height h complicates
the problem because the magnetic field lines will now be curved based on the current
density distribution in the superconductor, which will, itself, now become a function
of the z-coordinate (J = JC for |z| ≤ h/2, J = 0 elsewhere). The problem remains
cylindrically-symmetric, however, which means that the magnetic field due to an
arbitrary current density distribution can be calculated using the Biot-Savart law in
two dimensions. As an example, the z-component of magnetic field due to a fully
magnetised bulk superconductor of height h and radius r0, is shown in Figure 5.2
(a). This distribution is calculated by numeric integration of the Biot-Savart law. For
comparison, Figure 5.2 (b) shows the magnetic field of the same bulk, but in which
the current density is zero for r > 0.8r0. This will be the case, for example, when the
external AC magnetic field penetrates from the outer surface and causes the currents
in the shielding region of thickness 0.2r0 to go to zero (on average, over one period of
AC field). The corresponding magnetic field profiles are shown in Figure 5.2 (c) and
(d).

In principle, the calculation of magnetic field from a given current density distribu-
tion is straightforward. However, for an accurate simulation of change of trapped field
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Fig. 5.1 (a) The trapped field profile of a fully magnetised infinite cylinder (black), and
the profile after the application of an AC magnetic field (amplitude BA) parallel to
the direction of trapped field. The gray shading indicates shielding regions in which
the trapped field profile oscillates between the upper and lower red dashed lines. (b)
Top: the applied AC magnetic field waveform. Bottom: The decay of trapped field for
different amplitudes of applied AC field.
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due to an external changing magnetic field, the induced current density itself must first
be calculated. For this reason the Biot-Savart law has to be used in conjunction with
Faraday’s law, Ampere’s law, and an E-J relation. To this end FEM simulations are
typically employed in a 2D axially-symmetric formulation [98–100].

Based on this analysis above, the initial trapped field, B0, will decay to zero if the
amplitude of applied magnetic field is equal to or greater than the penetration field,
BA ≥ BP . However, experiments also show that an applied magnetic field with an
amplitude much smaller than the penetration field can cause a full decay of trapped
field [57]. The reason for this is temperature rise.

Due to the hysteretic behavior of the superconductor the AC magnetic field will
induce losses in the superconductor, which can be calculated from the area of the
magnetisation loop or, equivalently, from the scalar product of the induced electric
field and current density,

Q =
∫

M dB = E · J. (5.3)

For an infinite cylinder the losses per unit volume per cycle evaluate to

Q =


2B2

A

µ0

(
2β
3 − β2

3

)
β < 1,

2B2
A

µ0

(
2

3β
− 1

3β2

)
β > 1,

(5.4)

where β = BA/BP . This is derived in Appendix B in two ways, demonstrating the
equivalence 5.3.

The heat generated, Q, is an increasing function of the applied AC magnetic field
amplitude. Additionally, since it is evaluated per cycle, the total heat generation will
increase with AC frequency. Hence, if the amplitude or frequency of the AC field
is sufficient, the heat generation may overcome the cooling power of the cryogenic
system, causing a temperature rise in the superconductor. This, in turn, will lead to a
reduction in JC , and to decay of trapped magnetic field. Controlling the temperature
of the superconductor, therefore, remains an important problem to be addressed.

In the following section the relevant literature will be discussed. The studies focus
in large part on the experimental determination of trapped field decay due to an
applied parallel AC magnetic field, where heat generation and temperature rise are
pivotal parameters to be understood. Next, the measurement data of trapped field
decay in a GdBCO bulk are presented and discussed. Here, discussion focuses on the
means by which controlling the temperature helps to reduce decay. Lastly, the parallel
configuration will be compared with the crossed-field configuration in terms of trapped
field decay and its mitigation.
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5.2 Previous studies

In order to ascertain the viability of high temperature bulk superconductors to act
as quasi-permanent trapped-field magnets in rotating machines, Tsuda et al. [101]
investigated the influence of a parallel AC magnetic field on the trapped field in an
YBCO bulk superconductor in a liquid nitrogen bath at 77 K.

In their experiment the authors used FC to magnetise a 45 mm diameter, 3 mm
thick YBCO bulk, giving a peak trapped field of 80 mT. The bulk was subsequently
exposed to a parallel AC magnetic field and the decay of trapped field was measured.
The trapped field was shown to decay significantly in the first few periods of AC field
application, after which the decay rate reduced markedly. This is attributed to the
formation of shielding regions, as discussed in the previous section, and to the successful
removing of heat, generated in the superconductor, avoiding a significant temperature
rise.

Ohyama et al. [102] performed additional experiments with the same setup to
ascertain the influence of the amplitude and frequency of applied field on the decay
of trapped field. It was found that increasing the amplitude of the AC magnetic field
leads to a greater total decay of trapped field (due to the increased thickness of the
shielding regions). Increasing the frequency was found to lead to a greater decay rate
per unit time, but to a lower decay rate per unit cycle. This is explained as being
due to a lower penetration depth at a higher frequency. In particular, a higher rate of
change of magnetic field, ∂B/∂t, leads, as per Faraday’s law, to a larger electric field,
E. This corresponds, in turn, to a larger value of current density (as per the EJ-power
law). Hence, the penetration depth at a higher frequency of AC magnetic field will be
decreased, leading to a lower decay per cycle.

As an example, from Faraday’s law it follows that

E ∝ dB

dt
∆x ∝ ωB∆x, (5.5)

where ∆x is a distance over which E changes and ω is the frequency of AC magnetic field.
Simultaneously, the relation between the electric field, E, and the Bean penetration
depth, λ = B/(µ0J), can be approximated with the EJ-power law

E

E0
=
(
J

JC

)N

. (5.6)
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Substituting Faraday’s law into the EJ-power law, the induced current density reads

J ∝ JC

(
ωB∆x
E0

)1/N

, (5.7)

from which it can be seen that the penetration depth is a decreasing function of
frequency

λ ∝ ω−1/N . (5.8)

Ogawa et al. [103] performed measurements of AC loss in a 45 mm diameter,
20 mm thick YBCO bulk using a pick-up coil method. They found that the losses are
hysteretic and they are larger if the bulk has previously been magnetised, than if it is in
a non-magnetised state. This is explained as being due to a reduced penetration field
BP as a consequence of a lower critical current density in the presence of a trapped
field.

Subsequently, the authors [57] compared the influence of a crossed-field to that
of a parallel field on the trapped field decay. They found that, while generally the
crossed-field configuration leads to a greater amount of decay of trapped field, the
trapped field can be completely erased by the parallel field even if its amplitude is
lower than the full penetration field. This is attributed to the temperature increase
above TC in the superconductor. A study by Yamagishi et al. [104] confirms this by
noting that the temperature of the superconductor can indeed rise to above TC as a
consequence of an applied AC magnetic field, provided its frequency and amplitude
are sufficient (with the amplitude still below BP ).

It can be inferred from these studies that there are two regimes of decay in the
parallel field configuration. The first is one in which the temperature rise is negligible,
this leads to the decay of trapped magnetic field in the first few cycles of applied
AC field, after which the decay rate decreases significantly. This is explained well
within the Bean model framework. The second regime is one in which the decay is
dominated by the temperature rise. The AC field generates heat in the superconductor,
which itself overcomes the cooling power, leading to an increase in temperature and a
decrease in JC . This leads to a decay of trapped field, in some cases to zero (if the
temperature exceeds TC). Hence, it is shown that controlling the temperature is crucial
in controlling the decay of trapped field. Moreover, as we shall see below, reducing the
operating temperature below that at which the superconductor is magnetised, proves
an efficient measure for markedly reducing decay.

Zushi et al. [105] showed the importance of effective cooling of the superconductor
in reducing the decay of trapped field. The authors compared the decay of trapped field
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for a bulk in a liquid nitrogen bath first without and then with a layer of polystyrene
insulation. An epoxy-impregnated YBCO bulk with a peak trapped field of 0.31 T was
exposed to a parallel AC magnetic field at varying amplitudes. For the non-insulated
case the decay was limited to no more than 20 % for all amplitudes of AC field up to
100 mT (peak). Conversely, the decay of trapped field in the polystyrene-insulated case
reached 100 % at a threshold AC field amplitude of 50 mT. Several later studies [106–
109] have focused on analysing the dependence of trapped field decay on temperature,
with similar conclusions about the detrimental effect of an increased temperature in
the superconductor.

5.3 Results

The bulk sample used in this part of the study was a 16 mm diameter, 8 mm thick
GdBa2Cu3O7–δ bulk superconductor, manufactured with the top-seeded melt growth
technique. Its centre trapped field following FC at 77 K was 0.6 T. This sample was
chosen because its smaller diameter and smaller penetration field (as compared with
the likely size of bulks used in real practical applications) allowed for a sweep of a
larger portion of the parameter space since the range of AC magnetic field amplitudes
up to the penetration field is of interest.

5.3.1 Determining the maximum trapped field using PFM

Firstly, PFM was used to magnetise the bulk at different temperatures, and using
different pulse sequences, in order to find a condition as close as possible to the fully
magnetised bulk after magnetisation with FC - subsequently, this would be used to
magnetise the bulk prior to exposing it to AC magnetic fields and measuring decay.
Magnetising with PFM (instead of FC) gives a more realistic picture of the performance
of the bulk in a real machine where FC would not be practical.

Since temperature rise in the superconductor during PFM impedes the maximum
achievable trapped field, it has been shown [110] that a multi-pulse PFM process, in
which the heat is generated in sequential steps (leading to a lower maximum temperature
rise) helps to increase the final trapped field. For this reason, both the single-pulse
and the multi-pulse PFM techniques were employed and the subsequent trapped fields
compared. As we shall see below, single-pulse PFM proved sufficient to magnetise the
sample to its full capacity.
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Fig. 5.3 The time dependence of the applied (BA) and trapped (BT ) field during the
first (a) 1000 ms and (b) 100 ms after the start of the pulse. In (b) the cusp of the red
line at 20 ms represents the start of the flux jump.

An example time dependence of the trapped field during PFM, as measured with a
Hall sensor mounted on the centre of the top surface of the sample, is shown in Figure
5.3. Here, the temperature of the bulk is 30 K, the applied pulse amplitude is 6 T and
the trapped field after PFM is 3 T. Typically with zero field cooled magnetisation
(ZFC), of which PFM is a variant, the applied magnetic field has to be twice the final
trapped field. However, with PFM the trapped field can be significantly reduced due
to additional heat generation during the rapid rise of external magnetic field. It can
be seen, here, how the flux jump effect (especially evident in Figure 5.3 (b), red line,
at 20 ms) can be utilised with PFM in order to maximise the final trapped magnetic
field. Despite the likely additional heat generation the trapped field remains half the
maximum applied field. This is attributed, in part, to the sample volume, which
appears sufficiently small so as not to cause the total heat generation to lead to a
significant temperature rise.

This PFM procedure, of which the above is an example, was performed across a
range of different temperatures from 30 K to 77 K, and pulse amplitudes up to 6.5 T.
The resultant centre trapped magnetic fields in the bulk are shown in Figure 5.4 (a).
The data points shown were obtained by averaging the measured Hall voltage over a
period of 10 s, and the error bar is smaller than the point size.

The trapped field at a given temperature initially increases with the applied pulse
amplitude, reaches a peak value, and subsequently decreases when the pulse amplitude
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Fig. 5.4 (a) The centre trapped fields in bulk A after single-pulse PFM, at different
temperatures. (b) The trapped fields after a two-pulse sequence. The trapped field
values after each of the respective pulses in a sequence are connected with the dashed
line.

is further increased. This is a commonly observed feature of trapped field after PFM
[35, 111].

At small pulse amplitudes the magnetic field does not penetrate into the centre
of the superconductor, leading to a small field trapped in the centre. Increasing the
pulse amplitude leads to an increased trapped field as predicted by the Bean model.
Subsequently, at a critical value of pulse amplitude [67] there is a sudden significant
increase in trapped field. This is due to the applied field penetrating the superconductor
suddenly in what is known as the flux jump effect (as seen in Figure 5.3). At this critical
value of applied field amplitude the trapped field reaches its peak value. Increasing the
amplitude further is detrimental to the trapped field because, while the flux jump still
occurs, the heat generation is increased due to an increase in applied field, leading to
further temperature rise and to a lower trapped field.

The trapped field can be seen to increase with decreasing temperature. Lowering
the temperature will lead to an increase in JC and, in turn, to an increase in trapped
field. However, the heat generation, Q = E · J, increases with JC as well, thus there
likely exists a threshold temperature below which the value of JC is high enough so as
to be detrimental to the trapped field.
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Next, to maximise the trapped field a two-pulse magnetisation study was performed.
Here, the bulk was partially magnetised at temperature T1, where the aim was not
to fully magnetise the superconductor, but rather to initially establish some flux in
the periphery of the bulk. This will lead to less flux movement during the second
pulse, and, in turn, to a lower temperature rise and a higher trapped field. After the
first pulse the temperature was lowered to T2 < T1, at which a much larger pulse was
applied with the intention of fully magnetising the bulk. Typically, the pulse amplitude
during the first pulse was just below the flux jump threshold, whereas the second pulse
was at the threshold, or slightly higher.

Several pulse and temperature combinations were tried, but none led to a markedly
increased trapped field. The results are shown in Figure 5.4 (b). This is attributable
to the size of the sample and the total heat generation within. Because the sample
dimensions are comparatively small compared to the larger bulks in which the multi-
pulse technique was shown to be effective [53, 110], it is likely that the heat generated
is sufficiently well removed from the bulk so that the temperature rise is limited and
not as detrimental to the trapped field as it might be in larger bulks.

Noticeably, in some cases the two-pulse technique leads to a significant decrease in
the final trapped field. Compare, for example, the trapped field of 0.36 T after the two
pulse sequence of 3 T at 60 K and 5.5 T at 30 K, with the trapped field of 2.75 T after a
single pulse of 5.5 T at 30 K. The reason for this decrease in trapped field is that, while
the two-pulse sequence likely is effective in reducing the maximum temperature rise in
the bulk, the temperature does not increase sufficiently so as to trigger the flux jump
effect, which, as discussed above, can be used to greatly increase the trapped field.

The maximum trapped field profile achieved at each temperature after a single
pulse is shown in Figure 5.5 (a). This was measured by an array of five Hall sensors at
radial positions −5 mm, −2.5 mm, 0, 2.5 mm, and 5 mm from the top surface centre,
10 s after PFM (the data points at r = ±8 mm are assumed zero as they are at the
bulk edge). It was found that, due to good temperature control, the trapped field
decayed less than 1 % in the first 10 min after magnetisation.

The trapped field profile does not appear to be symmetric with respect to r = 0.
The most likely reason for this is a misalignment of the Hall sensor array with the
centre of the magnetic field distribution. Since the trapped magnetic field decreases
from 3 T to zero in the span of 8 mm, the average field gradient on the surface will be
equal to 375 mT mm−1. Hence, a misplacement of the Hall sensor by a fraction of a
millimetre can lead to a significant change in the measured trapped field.
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Fig. 5.5 (a) The maximum trapped field profiles following single-pulse PFM at different
temperatures. The applied pulse amplitudes are indicated next to the data. (b) The
trapped field profiles after the first (red) and second (blue) pulse during two-pulse
PFM. In light blue is the trapped field after a single 3 T pulse at 30 K.

In Figure 5.5 (b) is the trapped field after a two-pulse, two-temperature PFM
procedure. It can be seen that the improvement in trapped field is only marginal with
respect to single-pulse PFM, hence single PFM was used to magnetise the bulk in the
remainder of this part of the study.

Next, the field trapping capabilities of the superconductor for different applied pulse
amplitudes by PFM in liquid nitrogen at 77 K were determined. Here, the temperature
was kept constant, and the applied pulse amplitude was varied, and the subsequent
trapped field recorded. This was done for the purposes of the study described in the
following section, in which the influence of the previously established trapped field on
the induced losses is discussed.

The procedure consisted of PFM with a pulse of varying amplitude up to 4 T in
0.5 T increments, followed by the measurement of trapped field 1 min after the pulse.
The measurement was done using three Hall sensors at radial positions 0, 2 mm, and
4 mm from the centre of the top surface. The local trapped field vs pulse strength is
shown in Figure 5.6 (a), with the trapped field profile for different pulse amplitudes
illustrated in Figure 5.6 (b). Here, the trapped field at r = 8 mm was assumed to be
zero, and the trapped fields for r < 0 were mirrored from the data for r > 0 to better
illustrate the shape of the profile.
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Fig. 5.6 (a) The trapped field as a function of applied field amplitude, measured at
three different radial positions at 77 K in liquid nitrogen. (b) The same data as in (a),
presented in the form of trapped field profiles across the bulk diameter. The data at
r < 0 are mirrored from r > 0.

The positions of Hall sensors here are different to those in Figure 5.5, so there is a
the slight difference in the trapped-field values. Also, the cooling, here, was supplied by
the liquid nitrogen bath, as opposed to the GM cryocooler used for the measurements
in Figure 5.5. This is noticeable in the lower reduction of trapped field at applied field
amplitudes greater than 3 T in Figure 5.6 (a).

5.3.2 Decay of trapped field: frequency effect

After the field-trapping abilities of the bulk were established, measurements were
undertaken to determine the effect of parallel AC magnetic fields on the decay of
trapped field. It has been established elsewhere [108] that the losses induced in the
superconductor will depend on whether the bulk has previously been magnetised. This
is due, in part, to the direction of the Lorentz force which will depend on the current
distribution in the bulk (see Appendix C). For this reason I performed a study, in which
the bulk was magnetised to different levels (full, partial, or sub-partial magnetisation;
see Figure 5.7 (a)), after which it was exposed to several thousand cycles of AC
magnetic field at various amplitudes and frequencies. The time-dependence of trapped
field was measured using three Hall sensors at radial positions 0, 2 mm and 4 mm from
the centre of the top surface.
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Firstly, the frequency dependence of decay was studied at 77 K. The amplitude of
the AC magnetic field was kept constant at 45 mT and its frequency varied from 6 Hz
to 48 Hz. The magnetic field was applied for 5000 cycles, after which the remaining
trapped field was measured. The decay of trapped field due to flux creep in this time
period was observed to be lower than 1 % for all frequencies. The normalised magnetic
field after applying 5000 cycles is shown in Figure 5.7 (b)-(d).

The trapped field values after 5000 cycles are normalised to their initial values at
each respective radial position. For all initial trapped fields the normalised remaining
trapped field, B/B0, decreases with increasing radial position. This can be shown to
correspond to a reduction of critical current density to zero at radii up to which the
external magnetic field penetrates (the formation of shielding regions).

As an example, the centre surface trapped field of a fully magnetised bulk with a
constant current density, JC , can be written as

B0 = µ0JC

2 h log
r0

h
+
√

1 +
(
r0

h

)2
, (5.9)

where r0 and h are the bulk radius and height, respectively. From this equation the
value of JC can be estimated, given that for a fully magnetised bulk B0 = 0.6 T. This
gives the value JC = 1.35 × 108 A m−2.

Hence, the radius, beyond which the circulating currents have reached zero after
5000 cycles of AC field, can be estimated by inserting the final centre trapped field,
B = 0.558 T, and solving for the radius, r (here, as an example, we take the value of
B from Figure 5.7 (b), blue symbol at 6 Hz). This gives the value of the new effective
radius as rnew = 7.32 mm (meaning the AC field penetration depth is 8 mm−7.32 mm =
0.68 mm).

Substituting the value rnew as the bulk radius into the Biot-Savart law, the magnetic
field profile of the bulk after the application of 5000 cycles of AC magnetic field can be
calculated numerically (as has been done above, shown in Figure 5.2 (c)). The ratio
of the two profiles can be compared with measurements of B/B0, which is shown in
Figure 5.8. Since the measurement agrees well with calculation, I conclude that the
main mechanism, driving the decay of trapped field, is current redistribution in the
shielding regions at radial positions r > rnew.

In contrast, if heating and the subsequent reduction of JC were the driving mech-
anism of decay, the normalised trapped field after 5000 cycles, B/B0, would be
independent of radial position. If the value of JC is independent of field and position
in the bulk (Bean model), and if the AC fields cause its decrease from JC1 to JC2
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Fig. 5.7 (a) The trapped field profile as measured with the Hall sensor array after
three different pulse amplitudes. The value at r = 8 mm is assumed zero. (b) The
normalised trapped field after 5000 cycles of 48 mT amplitude AC field at different
radial positions following a 3 T pulse. (c) After 2 T pulse. (d) After 1 T pulse.
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Fig. 5.8 The normalised magnetic field after the current beyond r = rnew = 7.32 mm
has gone to zero, calculated with the Biot-Savart law (black line), compared with the
measured data (symbols). The data corresponds to the 6 Hz measurements in Figure
5.7 (b).

everywhere in the bulk, then the final trapped field profile is equal to the initial profile,
multiplied by the constant factor JC2/JC1 everywhere. This behaviour would manifest
itself in the measured data as a constant value of B/B0 for all radii. This is evidently
not the case in Figure 5.7 (b)-(d).

Returning to the results in Figure 5.7, the final normalised field increases with
frequency or, equivalently, the decay per cycle decreases with frequency. As discussed
above, the penetration depth of shielding currents is a decreasing function of frequency,
which means that, in the absence of heating, the decay of trapped field per cycle will
decrease with frequency as well. The data in Figure 5.7 (d) appears with more noise
than in (b) and (c) because the initial trapped field value B0 was lower and varied
more, in relative terms, from pulse to pulse, than it did following 2 T and 3 T pulses.
However, the overall trend of decay with frequency is still clear from Figure 5.7 (d).

As for the influence of the established circulating current on the total induced losses
in the superconductor, the quantitatively similar results in Figure 5.7 (b), (c), and (d)
imply that the effect is minimal for our measured AC field amplitude and frequencies.
This further corroborates the explanation that current redistribution, and not AC loss
Q = EJ , is the main driver of trapped field decay.

To further illustrate this, the temperature of the superconductor was measured
during the application of AC field. The measurement was performed with a Cernox®

temperature sensor, mounted atop the surface of the bulk with Apiezon N vacuum
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Fig. 5.9 The temperature rise measured on the surface of the bulk during the application
of AC magnetic field, at various frequencies. In black is a ∝ ω2 fit to the data.

grease, and insulated from the liquid nitrogen with a 1 mm layer of polystyrene. Here,
the amplitude of the AC field was kept constant at 25 mT, and its frequency varied
from 10 Hz to 80 Hz. The temperature of the bulk was measured 180 s after the start
of AC field application, at which time the temperature stabilised for all frequencies
measured. The result is shown in Figure 5.9.

The temperature rise increases with frequency due to a higher number of completed
cycles of AC magnetic field. The dependence on frequency appears to be quadratic
(∆T ∝ ω2), as indicated by the black line. This is because the generated heat per
cycle, Q = EJ , is proportional to the frequency of the AC field due to Faraday’s law
(E ∝ ∂B/∂t ∝ ωB). Additionally, the number of cycles elapsed, N , is proportional to
the frequency. Hence,

∆T ∝ Qtotal = NQ ∝ ω2. (5.10)

The maximum temperature rise at all frequencies is below 100 mK. This leads to
the conclusion that, within the range of AC field amplitudes and frequencies analysed
here, the heat generation in the superconductor is sufficiently well removed such that
it does not lead to a significant reduction in JC due to heating. Instead, the trapped
field decays as a consequence of the redistribution of current in the shielding regions in
the periphery of the superconductor. This is well explained within the Bean critical
state model.
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Fig. 5.10 The normalised trapped field at different radial positions after the application
of 1000 cycles of AC magnetic field at a frequency of 6 Hz and varying amplitudes up
to 150 mT.

5.3.3 Decay of trapped field: amplitude effect

Next, the influence of the AC magnetic field amplitude on trapped field decay was
studied. For this purpose the bulk was fully magnetised with a 3 T pulse at 77 K, and
subsequently exposed to 1000 cycles of AC magnetic field at a constant frequency of
6 Hz and varying amplitudes up to 150 mT. The low frequency of 6 Hz was chosen
because of the limitations of the current supply - due to the inductance of the AC coil
the maximum current that could be supplied was inversely proportional to the frequency
at which it was supplied. Lowering the frequency meant that a higher amplitude was
achievable. Additionally, 1000 cycles were chosen as this amount prooved sufficient to
cause measurable decay even at the lowest applied AC field amplitudes. The trapped
field profile on the surface of the bulk was measured with three Hall sensors at radial
positions 0, 2 mm, and 4 mm from the centre. The normalised trapped field after 1000
cycles is shown in Figure 5.10.

The normalised decay is, again, a function of the radial position at which it
was measured, indicative of decay due to current redistribution. Additionally, the
normalised magnetic field decreases with increasing amplitude of the AC field. This is
due to the increase of the Bean penetration and, with it, the increase of the thickness
of the shielding regions in the bulk periphery. A higher-amplitude AC magnetic field,
hence, leads to a greater degree of decay of trapped field.
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Fig. 5.11 (a) The time dependence of the bulk temperature during the application of
AC magnetic field (start at t = 0), at different AC amplitudes. (b) The temperature
increase, taken at t = 60 s. The black line represents a least-squares fit of equation 5.3
to the data.

The dependence of surface temperature rise on the AC field amplitude was measured
with a Cernox® temperature sensor mounted on the centre of the top surface of the bulk
and insulated from the liquid nitrogen bath using polystyrene. Here, the AC frequency
was kept constant at 48 Hz and the amplitude was varied. The higher frequency of
48 Hz was chosen to produce more heat, leading to a larger temperature rise and a
cleaner signal. The temperature initially started to increase with a rate, proportional
to the amplitude of the AC magnetic field, and stabilised after 30 s (Figure 5.11 (a)).
The measurement of the increased temperature was made 60 s after the start, averaged
over a period of 5 s. The result is shown in Figure 5.11 (b). Here, the error for all data
points does not exceed 2 mK.

Assuming the temperature increase is directly proportional to the generated heat -
which will be the case if the cooling power remains independent of the temperature of
the superconductor - then the temperature rise can be written as proportional to the
heat in equation 5.4, which is shown in Figure 5.11 in black line. The dependence is
defined as

∆T = a ·
(

2B3
A − B4

A

BP

)
, (5.11)
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where BA is the applied AC field amplitude, BP = B0 = 0.6 T is the full penetration
field for the sample (equal to the maximum trapped field), and a = 751.34 K T−3 is
a fitting parameter. There is some discrepancy between the fit and the data, largest
around the AC amplitude 20 mT. A possible reason for this is a potential leak of the
polystyrene insulation on the temperature sensor, decreasing the measured temperature
rise. Additionally, equation 5.4 describes the heat generation for an infinite cylinder,
and not for a single-grain of finite size, which might be contributing to the discrepancy
as well.

While for the measured amplitudes of applied AC field the temperature rise does
not exceed ∼ 100 mK, the dependence 5.11 is a rapidly increasing function of BA.
For example, extrapolating to the AC field amplitude BA = BP/3 = 200 mT, the
corresponding temperature rise would reach the value ∆T = 10 K, and at BA = BP the
predicted temperature rise would be ∆T ≈ 160 K, well over the critical temperature of
the material.

5.3.4 Decay of trapped field: temperature effect

Decreasing the operating temperature of the superconductor is expected to reduce the
decay of trapped field, since this will lead to an increase in the value of critical current
density. In turn, the penetration depth of shielding currents will decrease and so too
will the volume in which heat is generated by the AC magnetic field. Simultaneously,
however, the heat generated per unit volume, Q = EJ , will increase as well due to the
higher value of JC . Additionally, the heat capacity and thermal conductivity of the
superconductor are both temperature dependent [112, 113]. Hence, the total combined
effect of a change in operating temperature remains a complex problem to analyse.

Here, the influence of temperature on trapped-field decay was studied as follows.
The bulk was fully magnetised using PFM, with its temperature kept at 77 K using
a GM cryocooler. After PFM a waiting period of 10 min was allowed for flux creep
at 77 K, or the bulk was cooled down to 20 K, 40 K, or 60 K. Subsequently, the bulk
was exposed to 5000 cycles of parallel AC magnetic field of amplitude 150 mT at a
frequency of 6 Hz. The trapped field was monitored using an array of five Hall sensors
mounted on the top surface of the bulk at radial positions −5 mm, −2.5 mm, 0, 2.5 mm,
and 5 mm from the centre. The result is shown in Figure 5.12 (a). Due to significant
pick-up noise induced by the AC magnetic field the final trapped field was measured
once the AC magnetic field was turned off.

When the AC magnetic field was applied at the temperature at which the bulk
has previously been magnetised (77 K, red circles in Figure 5.12 (a)), the decay is
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Fig. 5.12 (a) The normalised trapped field after 5000 cycles of 150 mT amplitude, 6 Hz
AC magnetic field at different temperatures. Here, the bulk was previously magnetised
at 77 K. (b) The normalised trapped field as in (a), but with the bulk magnetised at
40 K and warmed to each respective temperature.

significant, surpassing 50 % at the edges of the bulk. This is to be expected, since
the applied field amplitude BA = 150 mT is a quarter of the full penetration field
BP = 600 mT. Correspondingly, the decay of trapped field at the centre is 25 %.

Decreasing the temperature after PFM leads to a markedly decreased decay of
trapped field. At 20 K, 40 K, and 60 K the trapped field is virtually unaffected by the
parallel field, with the decay remaining below 3 % at all radii. This reduction in decay
is due primarily to the increase in critical current density, JC .

Firstly, the increased value of JC leads to a higher penetration field, BP = µ0JCr0,
and a lower Bean penetration depth, λ = BA/(µ0JC). At a given applied field amplitude
BA the thickness of the shielding regions will decrease with increasing JC , thus leading
to a lower decay of trapped field.

Secondly, increasing the value of JC when the bulk has previously been magnetised,
renders the circulating current sub-critical, i.e. J = JC(T1) < JC(T2), where T1 > T2.
This means that the bulk is no longer fully magnetised to its maximum capability at
the lower temperature T2 if PFM was performed at T1. Consequently, any current
redistribution need not necessarily lead to decay of trapped field.

To determine the effect of temperature on the decay of a bulk that is fully magnetised,
PFM was performed at 40 K and subsequently the temperature was increased to between
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70 K and 85 K. Warming the superconductor after PFM insured that the bulk was
fully magnetised at the increased temperature, since the decreasing the value of JC

would limit the circulating current in the superconductor. After warming the bulk, it
was exposed to an AC magnetic field of 150 mT amplitude at 6 Hz. The normalised
trapped field after 5000 cycles is shown in Figure 5.12 (b).

The decay at T = 85 K is significant, 70 % in the centre of the bulk, and up to 85 %
at the edges. However, even for a fully magnetised bulk it is evident that reducing the
temperature leads to a significant reduction in decay. Cooling the bulk by only 15 K, for
example, reduces the decay in the centre by a factor of 3 and on the edges by a factor
of 2. I conclude that, regardless of the degree of magnetisation of the superconductor,
lowering its temperature will lead to a reduction in trapped field decay.

5.3.5 Comparison with crossed-field decay

In order to compare quantitatively the amount of decay of trapped field caused by
parallel AC magnetic fields, and by crossed-fields, the above experiments were repeated
in the crossed-field configuration. The goal, here, was to ascertain the difference in
decay due to the different geometries, and to compare the measurement with theoretical
predictions that can be made with the Biot-Savart law.

Firstly, the trapped field after all the current in the shielding regions has gone to
zero can be compared for both geometries. To recall, in the parallel geometry the
shielding region is a tube of thickness λ, the Bean penetration depth, from the outside
surface of the bulk. In the crossed-field geometry, there are additional shielding regions
of thickness αλ from the top and bottom surfaces (α = 3 for our material). Recalling
the logarithmic function

f(x) = log
(
x+

√
1 + x2

)
, (5.12)

the ratio of the remaining trapped fields in the two geometries, B⊥/B∥ (subscript B⊥

for crossed-field, B∥ for parallel), can be written as

B⊥

B∥
=
[
(h− αλ)f

(
r0 − λ

h− αλ

)
− αλf

(
r0 − λ

αλ

)] / [
hf

(
r0 − λ

h

)]
, (5.13)

where r0 and h are the bulk radius and height, respectively. The ratio is calculated by
integrating the Biot-Savart law in both geometries over the volume of the superconductor
beyond the penetration depth of the shielding currents. The result is shown in Figure
5.13.
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Fig. 5.13 The ratio of the trapped fields after the current in the shielding regions has
gone to zero for the two geometries, as a function of the normalised penetration depth.

Here, it is assumed that r0 = h, as is the case with our bulk sample. Due to the
critical current anisotropy α = 3 the decay in this case is complete (B⊥ = 0) when the
Bean penetration depth reaches αλ = h/2. At that point the penetration from the
top and bottom surfaces is equal to h/2, hence all the circulating current goes to zero.
Conversely, if h > 2αr0, then the shielding currents from the sides of the bulk reach
the centre first, and B⊥ = 0 when λ = r0.

The comparison of the frequency effect on trapped-field decay in both geometries is
shown in Figure 5.14. Here, the applied field amplitude was 45 mT and the temperature
was kept constant at 77 K. The AC field was applied for 5000 cycles at each frequency.

While the overall dependence of decay on frequency appears similar in both con-
figurations, its value in the crossed-field configuration is about twice the value in the
parallel configuration. Taking the average ratio B⊥/B∥ across all frequencies at the
centre (blue triangle values, divided by respective blue circle values from Figure 5.14),
the result is

B⊥

B∥
= 87 %. (5.14)

This can be compared with the value predicted by the Biot-Savart law (Figure 5.13).
First, approximating the critical current density from the trapped field of a fully
magnetised bulk gives the value (see equation 5.9, above)

JC = 1.35 × 108 A m−2. (5.15)



116 Parallel-field decay in bulk superconductors

0 10 20 30 40 5070

80

90

100

Frequency (Hz)

B
/B

0
(%

)

5000 cycles of 45 mT at 77 K

B∥, 0 mm
B∥, 2 mm
B∥, 4 mm
B⊥, 0 mm
B⊥, 2 mm
B⊥, 4 mm

Fig. 5.14 The comparison of normalised trapped field after 5000 cycles of applied AC
magnetic field in the parallel (circles) and the crossed-field (triangles) configuration,
measured at different radial positions.

Hence, the penetration depth for the applied field amplitude BA = 45 mT can be
calculated as λ = BA/µ0JC = 0.27 mm. Substituting this value into equation 5.13, the
calculated ratio reads

B⊥

B∥
= 63 %. (5.16)

The discrepancy between the calculated and measured values of B⊥/B∥ likely stems
from the estimate of the value of JC . Since the real JC is a decreasing function of
magnetic field, estimating its value from the Biot-Savart expression for a constant JC

will give an estimate lower than the value of JC at self-field. In turn, the calculated
value of the Bean penetration depth will bee too high, and the ratio B⊥/B∥ too low.
This is what we see in our comparison, and is illustrated more clearly in the amplitude
analysis, below.

The dependence of trapped-field decay on applied field amplitude in the two
configurations is shown in Figure 5.15. Here, the frequency was kept constant at 6 Hz,
and the amplitude varied up to 153 mT. The AC magnetic field was applied for 1000
cycles at 77 K.

At all radii, the decay increases with increasing amplitude of the applied field - this
is true for both configurations. This is due to the increase of the shielding region volume
with increased penetration depth. As with the frequency analysis, above, the decay in
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Fig. 5.15 The comparison of normalised trapped field after 1000 cycles of applied AC
magnetic field in the parallel (circles) and the crossed-field (triangles) configuration,
measured at different radial positions.

the crossed-field configuration is significantly higher than in the parallel configuration -
reaching almost 100 % at 4 mm at the highest amplitude of applied field.

The ratio of the measured trapped field in the crossed-field and the parallel configu-
ration after 1000 cycles of AC field can, again, be compared with the theoretical B⊥/B∥

ratio. To estimate the penetration depth at a given applied field amplitude, the value
of JC = 1.35 × 108 A m−2 - estimated with the Biot-Savart law - can be used. The
ratio B⊥/B∥ for this case is shown in Figure 5.16 (a) in blue triangles. In a similar way
to the discussion above, the values are much higher than the theoretically predicted
ratio B⊥/B∥ - again, due to the underestimation of the value of JC .

For a more accurate analysis the value of λ at each respective applied field amplitude
can be estimated from actual measured values of the JC(B) dependence. An example
of such a dependence, which is representative of high quality bulk superconductors
[28], is shown in Figure 5.16 (b), red circles. Up to the applied field value of 1 T the
data can be approximated with the function

JC(B) = J1 + J2 exp (−B/B1), (5.17)

where J1 = 2.41 × 108 A m−2, J2 = 2.49 × 108 A m−2, and B1 = 0.2 T (Figure 5.16 (b),
black line). Using this dependence to approximate the penetration depth at a given
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Fig. 5.16 (a) The theoretical ratio B⊥/B∥ (black line), compared with the values
extracted from decay measurements using constant JC (blue triangles), and a using a
measured JC(B) dependence (red diamonds). (b) The measured JC(B) dependence of
a representative bulk superconductor [28] (red circles) and a least-squares fit to the
data (black line, equation 5.17).

applied field amplitude, BA, as

λ = BA

µ0JC(BA) , (5.18)

gives more accurate values of the ratio B⊥/B∥, shown in Figure 5.16 (a) as red
diamonds. Here, the agreement between measurement and theory appears excellent.
This means that the value of JC uniquely determines the ratio B⊥/B∥, provided that
there is little reduction of its value due to temperature rise. Conversely, from the
measurements of trapped-field decay in the parallel and crossed-field configurations,
the JC(B) dependence can be extracted accurately.

5.3.6 Anti-parallel pulsing

In addition to the presence of AC magnetic fields, the bulk in a rotating-machine
environment will likely be exposed to singular parasitic pulses of magnetic field,
provided the magnetisation technique is PFM. For example, in a rotor consisting of
bulk superconductors the magnetisation procedure might consist of sequential PFM of
each bulk in series, using the stator coil to generate a pulse of magnetic field. Since



5.4 Discussion 119

previously magnetised bulks will remain in close vicinity of the pulsing coil during
PFM of subsequent bulks, they likely will be exposed to single pulses of magnetic field,
leading to decay. For this reason a study was performed of the effect of sequential
pulses on the trapped field of a fully magnetised bulk, in the anti-parallel configuration.
Here, the pulses were applied opposite the direction of trapped field because this
configuration will lead to a largest decay of trapped field.

The bulk was initially fully magnetised using PFM at 77 K in a liquid nitrogen
bath, after which a waiting period of 5 min duration was established to allow for flux
creep and the dissipation of heat. Subsequently, the bulk was exposed to a series of
pulses, of varying amplitude, at a rate of ≈ 2 min−1. The trapped field was monitored
using a Hall sensor at the centre of the top surface. The result is shown in Figure 5.17.

The time dependence of normalised trapped field, B/B0, during the sequential
application of an anti-parallel pulse of amplitude BA = 0.75 T is shown in Figure 5.17
(a). The trapped field decreases by 40 % following the initial pulse, after which the
decay due to each subsequent pulse decreases. Once the shielding regions are established
after the first few pulses, the trapped field decay rate per pulse decreases markedly.
Despite heating likely being a cause of decay in addition to current redistribution, the
trapped field is not completely erased even after more than ten pulses of amplitude
greater than the penetration field for the sample, BP = 0.6 T.

The decay as a function of the number of applied pulses, at different pulse amplitudes,
is shown in Figure 5.17 (b). The same qualitative dependence on number of pulses is
present for all amplitudes: the decay of trapped field is large initially, and decreases
with each subsequent applied pulse. Quantitatively, the decay increases with pulse
amplitude, a feature that is well explained within the Bean model framework.

In Figure 5.17 (c) and (d) the time dependence of B/B0 is shown during the first
and tenth pulse, respectively, from Figure 5.17 (a). During the first pulse most of the
current redistribution occurs, hence the value of B/B0 decreases in a step-like fashion.
Conversely, during the tenth pulse most of the current has already been redistributed
and, while during the pulse the trapped field follows the shape of the applied pulse,
the total decay after the pulse is much smaller and likely due to heating.

5.4 Discussion

In this chapter I investigated the effect of parallel AC magnetic fields on the trapped
field in bulk superconductors. First, I presented a magnetisation study in which the
trapped field after pulsed field magnetisation (PFM) was maximised. This was done by
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a systematic scan of the pulse amplitude and pulsing temperature parameters space,
both by single- and multi-pulse PFM. My conclusion, here, was that, while there is
heat generated during PFM, it is sufficiently well removed from the bulk so that the
subsequent temperature rise does not reduce the trapped field significantly. This I
explain as being due to the comparatively small volume of the superconductor, and
sufficient cooling power.

After the field-trapping capability of the bulk was established, the focus moved
to the analysis of decay of trapped field due to external AC magnetic fields, applied
parallel to the direction of trapped field, of varying amplitudes and frequencies. I
showed that, in the absence of temperature rise, increasing the frequency of the AC
magnetic field leads to a lower decay of trapped field per cycle, likely due to a lower
penetration depth at a higher frequency. Conversely, increasing the amplitude of the
AC magnetic field will lead to an increased decay due to a higher penetration depth
and the formation of larger shielding regions in the bulk periphery, in which the current
no longer contributes to the trapped field.

Throughout the application of the AC magnetic field the temperature of the
superconductor was monitored. I have shown that, within the parameter space of this
study, the temperature rise due to AC loss in insignificant, hence current redistribution
remains the governing mechanism of decay. Additionally, I have shown that controlling
the temperature of the superconductor subsequent to magnetisation can lead to effective
ways of mitigating decay. In particular, lowering the temperature of the superconductor
and, in turn, increasing its critical current density will lead to a lower penetration
depth, lower degree of current redistribution, and a lower decay of trapped magnetic
field.

Finally, the decay of trapped field in the parallel configuration was compared with
its value in the crossed-field configuration at the same set amplitudes and frequencies
of AC magnetic field. It was found that the overall dependence of decay on amplitude
and frequency is qualitatively similar in both configurations, yet quantitatively the
decay in the crossed-field configuration is significantly greater than in the parallel
configuration. I have shown that, provided the critical current density JC(B) is known,
the ratio of the trapped fields after the application of the AC magnetic field in both
configurations, B⊥/B∥, can be predicted accurately with the Biot-Savart law.





Chapter 6

The Campbell penetration depth

6.1 Background

In this chapter the focus will shift from the macroscopic behaviour of type-II supercon-
ductors in the presence of time-varying magnetic fields to the underlying microscopic
picture. For this purpose the limitations of the Bean model will be discussed, and its
extension as proposed by Campbell will be outlined.

The Bean critical state model presupposes a maximum value of critical current, JC ,
and assumes that any electromotive force exerted upon the flux vortices will induce the
full JC . The model, in essence, averages the current contribution of many individual
vortices, leading to a bulk critical current density which is proportional to the vortex
density gradient. In this way, as discussed in previous chapters, numerous macroscopic
observables can be accounted for. However, the microscopic picture remains one of
an interaction of an ensemble of flux vortices, which needs to be taken into account
when outside the domain of validity of the Bean model. An example of this is a
superconductor exposed to very low-amplitude AC magnetic fields.

The Bean model assumes that any electromotive force, regardless of its amplitude,
will displace pinned vortices from their pinning centres and establish the critical
state. This neglects the finite sizes of pinning centres and the reversible movement
of flux vortices within the pinning centres themselves. In reality, a sufficiently small
electromotive force (e.g. due to a low-amplitude AC magnetic field) will not unpin the
vortices from their pinning sites; instead, the vortices will be made to oscillate within
their respective pinning sites. Since this movement is reversible, this effect falls out of
the domain of the Bean model. The Campbell model, instead, can be used to analyse
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the vortices as coupled linear harmonic oscillators, which, as we shall see, leads to a
more accurate prediction of the hysteretic losses in the superconductor.

In the following section the relevant body of work is discussed. Next, I derive an
expression for the time dependence of magnetic flux, ΦM , in a superconductor due to an
applied AC magnetic field, provided the magnetic field profiles in the superconductor
can be described within the Campbell model. Subsequently, the time dependence of
induced voltage, Ui = −∂ΦM/∂t, is calculated, and I show that the slope of the voltage
signal, as it passes through zero, is directly determined by the Campbell penetration
depth. This proves convenient for the comparison of theory with experiment. Next,
the experimental setup is described, and the measurement results presented. Finally,
the domain of validity of the Campbell model is discussed.

6.2 Previous studies

The reversible movement of flux vortices within their pinning potentials was first
introduced by Campbell [8, 36]. In an AC susceptibility measurements of a type-II
superconductor, in which a sample of PbBi was exposed to AC magnetic fields and
its response measured using a pick-up coil, it was found that the pick-up voltage
signal at small amplitudes of applied field was directly proportional to the applied field
amplitude, Ui ∝ BA. This is in contrast to the critical state prediction Ui ∝ B2

A (see
the subsequent section for derivation). The linear signal, observed by Campbell, was
attributed to reversible motion of flux vortices. For instance, in the normal state, in
which there is no irreversibility, the induced voltage due to a changing magnetic flux,
ΦM , would be Ui = −∂ΦM/∂t ∝ BA.

Subsequent to Campbell’s work there have been numerous studies published on the
measurement of AC susceptibility of type-II superconductors (see the review paper
[114]). The basic experimental setup always consists of a superconducting sample
exposed to AC magnetic fields at a constant value of DC magnetic field. Then, the
superconductor response is acquired using a pick-up coil wound tightly round the
sample, with the pick-up voltage measured with a lock-in amplifier. This allows for
the analysis of the pick-up signal in phase and out of phase with the generated AC
waveform. Hence, the reversible and irreversible behaviour of the vortices can be
established.
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6.2.1 Determining the pinning potential curvature from λC

On the experimental side, Campbell’s framework has been used typically to establish
the magnetic field profiles below the superconductor surface and, hence, the surface
critical currents [115]. This is possible because the magnetic field profiles in the sample
can be established with a high degree of accuracy, whence the critical current density
can be extracted as the slope of the profile.

Another important parameter, that can be measured through the measurement
of the Campbell penetration depth, is the Labusch parameter αL [41], the effective
curvature of the vortex pinning potential at its minimum. This is useful as the
dependence of αL on temperature and applied magnetic field can be used to determine
the dominant pinning mechanism in a given material.

Recalling from Chapter 2, the Labusch parameter is given as

αL = B0JC

d
, (6.1)

where B0 is the applied DC magnetic field, JC the critical current density, and d the
effective size of the pinning potential (sometimes referred to as the vortex interaction
distance [37]). The value of αL, in essence, determines the slope of the pinning force
at zero displacement - B0JC is the maximum pinning force and d is the maximum
displacement up to which the pinning force is linear. Hence, the ratio of the two
quantities gives the slope of the linear force.

The value of αL can span a large range; from 1012 N m−4 in sintered ceramic
materials to 1020 N m−4 in thin films [116]. This is not surprising as the intrinsic flux
pinning may vary significantly among different materials with different microstructures
and with different inclusions and imperfection responsible for providing the flux pinning
centres. The units of αL are due to it being essentially a spring constant, determined
by a volumetric force density (B0JC is in units N m−3).

Since the Campbell penetration depth is defined as

λ2
C = B0d

µ0JC

= B2
0

µ0αL

, (6.2)

its measurements can be used to determine the value of αL. In studies focusing on the
dependence of αL on magnetic field [117–119], a typical result in (RE)BCO has been
a peak-effect-type dependence. The value of αL at low magnetic fields, and at fields
close to the irreversibility field, Birr, is observed to be low, whereas at intermediate
magnetic field values αL exhibits a broad maximum. This likely has to do with the
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value of JC being a decreasing function of B0 - the product B0JC will be low when
B0 → 0, and when B0 → Birr (see the results section, below).

The temperature dependence of αL in (RE)BCO has been studied extensively
as well [120–123]. Since the effective pinning potential, U , is expected to decrease
exponentially with increasing temperature due to thermal fluctuations [124],

U(T ) ∝ exp
(

− T

T0

)
, (6.3)

it is expected that αL = d2U/dx2 will exhibit a similar dependence on temperature.
This is, indeed, what has been observed in experiments. It is clear that, at a given
value of B0, JC will decrease with increasing temperature and so, too, will αL.

6.2.2 Theoretical studies

As discussed previously, the equation governing vortex motion, the Langevin equation,
is [23]

ηvv = FL + FP + Fth, (6.4)

where ηv is the vortex flow viscosity, FL = J × B is the Lorentz force, FP is the
pinning force, and Fth is the thermal actuation force. In its completely general form
the equation is non-trivial to solve, but can be analysed readily from the standpoint of
the Campbell model after some simplifications are made.

Assuming the superconductor is in a field-cooled state in a constant DC magnetic
field, B0, the vortex lattice will be uniform throughout and J = 0 everywhere. Thus,
the Lorentz force can be neglected in the virgin state. Additionally, assuming a low
enough temperature to allow for stationary conditions, there will be no flux creep
and the thermal activation force can be neglected as well. Then, we are left with the
pinning force, determined by αL, and the viscous drag force, determined by ηv. Since
the pinning force is linear and elastic in the Campbell regime, its interplay with the
viscous force will lead to a kind of wave propagation, modulated by the movement of
flux vortices.

This was established by Brandt [125, 126], who analysed the effect of AC magnetic
fields on the vortex lattice from a theoretical standpoint. Brandt noted that the external
AC magnetic field interacts with the vortices only at the surface of the superconductor,
where they themselves are bent or the vortex lattice is compressed (depending on the
direction of the AC field). Then, due to the inter-vortex coupling via the Lorentz force -
now not zero, since the vortex lattice is no longer uniform - the vortex deformation will
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propagate into the interior of the superconductor in the form of tilt or compressional
waves, with the characteristic wavelength given by the Campbell penetration depth.
Brandt showed that, at a low enough frequency of AC magnetic field, such that the
elastic force (∝ αL) has not been overcome by the viscous force (∝ ηv), the complex
AC penetration depth can be written as

λ2
AC = λ2

C + λ2
L, (6.5)

where λL is the London penetration depth. Subsequently, van der Beek [127] looked at
the effect of frequency on the penetration depth, and showed that the value of λAC

decreases with increasing frequency. Its value is largest in the thermally assisted flux
flow (TAFF) regime, in which the frequency is sufficiently low (and the temperature
sufficiently low) so that the thermal activation force, Fth, is dominant. Increasing ω
sees the system transition first into the Campbell regime, in which the elastic force is
dominant, and subsequently into the flux flow (FF) regime, in which the viscous force
is dominant. Generally, λT AF F > λC > λF F > λL.

6.3 The time dependence of ΦM in the Bean and
Campbell models

6.3.1 The Bean model waveform

To establish the induced voltage waveform due to the changing flux in the supercon-
ductor, first the magnetic field profile must be calculated as a function of the applied
AC magnetic field, and subsequently integrated over the cross-section of the sample,
giving the time dependence of magnetic flux, ΦM (t). Then, its time derivative will give
the induced voltage, Ui = −∂ΦM/∂t.

In an infinite slab geometry (Figure 6.1 (a)), in which the superconductor oc-
cupies the space |x| ≤ a/2, the Bean model gives the magnetic field profile in the
superconductor as

b(x′) =

µ0JCx
′; x′ ≤ x1,

BA(t) − µ0JC(x′ − xP ); x′ > x1,
(6.6)

which is shown in Figure 6.1 (a) in red. Here, the coordinate system is shifted
x → x′ = x − xP for the purposes of simplifying the integral of b(x) (xP is the
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penetration depth of the AC magnetic field). The lower case choice for b(x) is to
emphasise that throughout this part of the study b ≪ B0, where B0 is the applied DC
magnetic field. In the above equation the applied AC magnetic field is

BA(t) = BA cos (ωt) (6.7)

and its penetration depth is
xP = BA

µ0JC

, (6.8)

and
x1 = xP − BA −BA(t)

2µ0JC

. (6.9)

Once the magnetic field profile is known (as a function of the applied AC magnetic
field), the time dependence of the total flux in the slab can be calculated as

ΦM(t) = 2l
xP∫
0

b(x′) dx′ = B2
Al

2µ0JC

(
1 + 2 cos (ωt) − cos2 (ωt)

)
, (6.10)

where l is the dimension of the slab perpendicular to the paper in Figure 6.1 (a). The
factor before the integral is due to its evaluation over one half of the slab width. This
expression is valid for 0 ≤ ωt < π, after which it is repeated with a negative sign every
half-period. It is shown in Figure 6.1 (c) alongside the normal-state magnetic flux,
which is simply ΦM = alBA cos (ωt).

Hence, the induced voltage can be calculated as Ui = −∂ΦM/∂t, giving

USC
i (t) = B2

Alω

2µ0JC

(2 sin (ωt) − sin (2ωt)) , (6.11)

which is shown in Figure 6.1 (d), and appears similar in shape to the measured waveform
in [115]. The above expression reaches maximum, USC , at ωt = 2π/3, which is

USC = 3
√

3
4

B2
Alω

µ0JC

. (6.12)

Additionally, the signal, S, as would be measured with a lock-in amplifier, can be
calculated as

S = 1
2π

2π∫
0

USC
i (t) · sin (ωt) d (ωt) = B2

Alω

2µ0JC

, (6.13)

which goes as S ∝ B2
A, in direct contrast with Campbell’s observation S ∝ BA.
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Fig. 6.1 (a) The schematic of the magnetic field profile in the x > 0 half of the infinite
slab (the profile is symmetrical at x < 0). (b) One period of the applied AC field. (c)
The comparison of the changing magnetic flux in the normal (N) and superconducting
(SC) states. (d) The corresponding induced voltage waveform for the N and SC states.
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6.3.2 The Campbell model waveform

To calculate the time dependence of induced voltage within the Campbell model
framework, the dynamic equations for vortex displacement, y(x), must first be calculated
numerically, whence the total flux can be calculated by integration. Recalling from
Chapter 2, the dynamic equations for vortex displacement can be written as

dy(x)
dx

= −b(x)
B0

(6.14)

db(x)
dx

= − µ0

B0
FP , (6.15)

where y(x) is the vortex displacement from its equilibrium position at position x, b(x)
the local change of magnetic field due to the displacement y(x) (as dictated by flux
conservation), B0 the DC magnetic field with which the mixed state is established (and
on top of which the AC magnetic field is superposed), and FP is the pinning force -
linear for small displacements and constant for large displacements y(x).

Upon integration of the above equations the solution for b(x), the magnetic field
profile inside the superconductor, can be integrated over the sample cross-section,
giving the total magnetic flux. If the sample is a cylinder of radius r0, and the applied
magnetic field amplitude is much smaller than the penetration field, the flux can be
calculated simply as

ΦM =
∫
b(r)dS = 2πr0

r0∫
0

b(r)dr, (6.16)

where we transformed from the Cartesian to the cylindrical coordinate system, b(x) →
b(r). The above expression is true if b(r) is non-zero only in a narrow region of
thickness dx close to the surface, since, then, the field-penetrated area can be written
as dS = 2πr0dx, leading to the above integral. The expression can be simplified further
by calculating the antiderivative of b(r) via the flux conservation equation 6.14, giving

ΦM = −2πr0B0 (y(r0) − y(0)) = −2πr0B0y(r0), (6.17)

where the simplification is due to the boundary condition y(r = 0) = 0 for a cylinder.
Hence, the induced voltage can be calculated by numerical time-derivation of the flux,
which result is shown schematically in Figure 6.2.

It can be seen from Figure 6.2 (b) and (c) that, while both the Bean and Campbell
model waveforms are shifted by one quarter period with respect to the applied field,
they differ in slope as the signal passes zero. In the Bean model the slope immediately
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Fig. 6.2 (a) The normalised AC magnetic field waveform. The corresponding induced
voltage waveforms, calculated within (b) the Bean model framework, and (c) the
Campbell model framework.
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after the reversal of the applied field (e.g. after t = π/ω) is zero. This is because at
that point only a small part of the trapped field profile closest to the surface will be
affected (x′ > x1 in Figure 6.1 (a)). Immediately before t = π/ω, however, almost all
the trapped field up to the penetration depth of the AC field will be affected, with its
rate of change approaching the rate of change of the applied AC field. For this reason
there is a cusp in the induced voltage waveforms at zero.

Conversely, in the Campbell model framework the area affected immediately after
the applied field reversal will be much larger due to the smoothing of the trapped
field profile over the Campbell penetration depth, λC . For this reason the cusp in the
voltage waveform gets smoothed as well, approaching in shape the induced voltage
waveform in the normal state with no irreversibility. As wee shall see below, the slope
of the voltage, as it passes zero, is proportional to the value of λC .

6.3.3 Analytical approximation of the induced voltage

Due to the expression 6.17 being non-analytical (because y(r0) is obtained by numerical
integration), its comparison with experimental data remains cumbersome. It is desirable
to derive an analytical expression, approximating the induced voltage waveform, which
can be compared with measurement in a straightforward manner. An obvious choice
for this is the slope of the induced voltage signal. Since in stationary conditions the
signal will be periodic, it is possible to obtain a high signal-to-noise ratio simply by
measuring, and subsequently averaging, the waveform over a large number of periods.
For this reason, extracting information from the waveform shape, will lead, ideally, to
accurate measurements of the parameters of interest.

Looking again at the pinning force hysteresis, its dependence on vortex displacement,
y, can be written as

FP (y) =

B0JC

(
2 exp

(
y−y0

2d

)
− exp

(
−y0

d

)
− 1

)
; y increasing,

B0JC

(
−2 exp

(
−y+y0

2d

)
+ exp

(
−y0

d

)
+ 1

)
; y decreasing,

(6.18)

where y0 is the maximum vortex displacement before the field is reversed (shown in
Figure 6.3). The displacement reaches its maximum value, y = y0, when the applied
AC magnetic field is at its peak value. At that point the induced voltage signal
will pass through zero (see the waveforms at t = π/ω in Figure 6.2). Hence, if we
approximate the pinning force hysteresis with a linear function at y = y0, and substitute
it subsequently into the dynamic equations for b(x), an analytical expression for the
voltage signal at zero can be obtained.
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Fig. 6.3 The FP hysteresis and its linear approximation in the point P = (y0, F0).

At the peak of the applied magnetic field the hysteresis loop reaches its reversal
point, P = (y0, F0), where F0 = FP (y0). The slope at y = y0 can be shown to equal
B0JC/d, hence the tangent will be

Flinear = B0JC

(
y − y0

d

)
+ F0, (6.19)

which is shown in dotted line in Figure 6.3. This expression can be inserted into the
dynamic equations, which will now have an analytical solution. Integration gives the
expression for vortex displacement as

y(r) =
(
y0 − F0d

B0JC

)(
1 − cosh r − r0

λC

cosh−1 r0

λC

)
− λC

BAC(t)
B0

sinh r

λC

cosh−1 r0

λC

.

(6.20)
This can be inserted into equation 6.17, giving the magnetic flux, the time derivative
of which is the induced voltage. Since in the above expression only the second term is
a function of time, the induced voltage expression simplifies to

Ui = 2πr0λC
∂

∂t
BA(t), (6.21)

which is the approximation for the slope of the voltage signal as it passes zero. In
comparison, the induced voltage in the normal state is given by

UN
i = −πr2

0
∂

∂t
BA(t). (6.22)
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Hence, the ratio of the two voltages is

|Ui|
|UN

i |
= 2λC

r0
. (6.23)

This is shown in dotted line in Figure 6.2 (c). I have shown that by measuring the
induced voltage signal when the superconductor is normal, and when it is in the
superconducting state, their ratio for a given value of r0 is determined by λC . Hence,
the measurement of the slope of the induced voltage signals can be used to determine
the value of λC .

6.3.4 Comparison of hysteretic losses in the two models

The Campbell model can also be used to predict the hysteretic losses per cycle due to
the AC magnetic field. Since some of the vortex movement in the Campbell model is
reversible, the hysteretic losses predicted will be lower than those, given by the Bean
model. For example, the Bean model losses per vortex per cycle, QB, can be written
simply as

QB = 4B0JCy0. (6.24)

This can be verified by considering that during one cycle of applied AC field, the vortex
will move from −y0 to y0, and the vortex pinning force will jump from −B0JC to B0JC .
Hence, in the force-displacement diagram the hysteresis loop will be a rectangle of
sides 2y0 and 2B0JC , its area giving the value of QB, above.

Conversely, the Campbell model losses per cycle per vortex, QC , can be obtained
by integration of the pinning force from −y0 to y0,

QC =
y0∫

−y0

FP (y)dy, (6.25)

where the expression for FP is for the increasing portion of y in equation 6.18. Evaluating
the result, and dividing by the Bean losses, QB, gives

QC

QB

= 2 d
y0

(
exp

(
−y0

d

)
− 1

)
+
(

exp
(

−y0

d

)
+ 1

)
. (6.26)

The hysteresis loops for different values of maximum displacement, y0, are shown in
Figure 6.4. It is apparent that by increasing the value of y0 (the half-width of the loop)
the hysteresis loop in the Campbell model approaches the rectangular shape predicted
by the Bean model. At y0 → ∞ the area of the reversible region will be negligible
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Fig. 6.4 The pinning force-displacement hysteresis for various values of maximum
displacement, y0.

in comparison with the area in which FP ≈ B0JC , and so QC = QB. Conversely, at
y0 → 0 it can be shown that

QC

QB

→ 1
6
y2

0
d2 . (6.27)

6.4 Results

The sample used in this part of the study was a GdBa2Cu3O7–δ bulk, grown by the
top-seeded melt growth technique. Initially, the as-grown sample was of a standard
cylindrical shape, 30 mm in diameter and 10 mm thick. Subsequently, a 5 mm by 5 mm
by 10 mm cuboid, with the longest side parallel to the c-axis, was cut from the bulk.
This was done in order to approximate the long and thin geometry for which the above
theory had been derived. Since the width to height ratio of the sample is still only one
half, it is likely there will be some finite-size effects present, introducing a systematic
error to the measurement (discussed in Section 6.5, below). Reducing the sample
cross-section further, however, likely would lead to a lower signal-to-noise ratio as the
pick-up voltage is directly proportional to the sample cross-section.
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Fig. 6.5 The induced voltage waveform for different values of DC magnetic field. The
AC magnetic field amplitude is 1 mT, frequency 300 Hz, and the temperature is 70 K.
The inset shows the signal for B0 = 0.5 T before averaging over 1000 periods.

6.4.1 Induced voltage waveforms

The induced pick-up voltage signal was measured at various values of DC magnetic
field; in 0.5 T increments up to the maximum 6 T. The induced voltage waveforms are
shown in Figure 6.5.

Initially the voltage waveforms were shifted in phase, indicating vortex viscosity
(ηv in the Langevin equation 6.4), which was zeroed for the purposes of comparison of
the waveforms at different values of B0. The shape of the waveform at all values of B0

is slightly asymmetrical as can be seen by the slight shift of the voltage peaks from the
quarter and three quarter period marks. This indicates that, while there appears some
irreversibility in the vortex movement, mostly the vortices are in the reversible regime
due to the similarity of the waveform to a pure sine wave. Compare the waveform
shape, for instance, with the large shift in the Bean model waveform, Figure 6.2.

From the slope of the signal at zero, and from the measured voltage signal when the
superconductor is normal (not shown in Figure 6.5), the values of Campbell penetration
depth can be extracted via equation 6.23. This is shown in Figure 6.6 (a).
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Fig. 6.6 (a) The dependence of the Campbell penetration depth on the applied DC
magnetic field. (b) The JC(B0) dependence extracted from magnetisation loops of a
representative sample. The red line is a purely exponential dependence in the absence
of the peak effect. (c) The dependence of d on magnetic field. The red line represents
the vortex spacing in an ideal triangular lattice. (d) The curvature of the pinning
potential at its minimum, the Labusch parameter. The red line is a least square fit of
the function α(B0) = c1 + c2 B

3/2
0 exp (−B0/c3), where c1 = 0.95 N m−4, c2 = 4.76 N

m−4 T−3/2, and c3 = 1.31 T.
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The values of λC at varying DC magnetic fields, as extracted from the induced
voltage waveforms, increase with increasing B0, reaching ≈ 40 µm at B0 = 6 T. In
comparison, the London penetration depth for these materials is ≈ 100 nm [18]. This
means that once the mixed state establishes itself in the superconductor the penetration
depth of the AC magnetic field suddenly increases by two orders of magnitude, as
compared to the London penetration. This is because the flux line lattice mediates the
penetration by means of compressional waves, as discussed in [125]. The local vortex
density - and, hence, the magnetic field - changes due to the movement of vortices in
their pinning centres.

From the measured values of λC the effective pinning centre size, d, can be deter-
mined as

d = µ0JCλ
2
C

B0
, (6.28)

provided that the dependence of JC on magnetic field, B0, is known. A JC(B0)
dependence, measured on a representative sample via magnetisation loop measurements
[28], is shown in Figure 6.6 (b). The corresponding values of d are shown in Figure 6.6
(c).

Similarly to the data presented in the existing literature, discussed in the previous
section, the dependence of d on magnetic field exhibits a peak at intermediate values
of B0 between zero and the irreversibility field, Birr. At magnetic fields approaching
zero the vortex pinning - and critical current density - will be high. The vortices will
be pinned firmly in place, their movement impeded by the deep pinning potentials.
For this reason the value of d will be low. Conversely, at magnetic fields approaching
the irreversibility field the vortex pinning - and critical current density - will be low;
the vortex density, however, will be high. This means that inter-vortex interactions
will dominate, whereby the vortex movement is impeded by adjacent vortices. Hence,
at high magnetic fields the value of d will be low as well. At intermediate fields, there
will, therefore, be a trade-off between these two extremes, leading to a peak in the
values of d.

The red line in Figure 6.6 (c) is the vortex spacing in an ideal triangular lattice
with the vortex lattice corresponding to the magnetic field B0. The spacing, a, can be
written as a function of B0 as

a(B0) =
(

8
3
√

3
ϕ0

B0

) 1
2

, (6.29)
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where ϕ0 is the flux quantum. There is a comparatively large discrepancy between the
measured values of d and the predicted a(B0), especially in high magnetic fields where
the inter-vortex interactions are expected to dominate. A possible reason for this is
the sensitivity of our measurement method to an exact measurement of sample size:
equation 6.23, by which the value of λC - and subsequently d - is determined from the
induced voltage waveforms, depends on r0, the radius of the examined sample. Since it
is difficult to determine the effective cross-section of the superconducting material in
the sample, the error in determining r0 will possibly be non-negligible. This, in turn,
will affect the measurement of λC and d. We are interested, however, in the overall
dependences of λC and d on magnetic field - as discussed above the relevant parameter
values can span orders of magnitude across different samples measured. Additionally,
the parameter d represents the largest distance the vortices can move reversibly, and is
defined in a very specific way via the choice of pinning force dependence on displacement
(equation 6.18). A different choice of displacement dependence of FP will likely lead to
a different prediction of d. Qualitatively, however, the dependence of d on the magnetic
field should remain similar, provided the pinning force captures the transition between
the reversible Campbell regime and the hysteretic Bean regime.

After establishing the values of d at different magnetic fields B0, the Labusch
parameter, αL, can be calculated as the curvature of the pinning potential (or the slope
of the pinning force at y = 0), as

αL = B0JC

d
, (6.30)

which is shown in Figure 6.6 (d). Interestingly, despite its value being inversely
proportional to d, and d exhibiting a peak at intermetiate magnetic field, αL exhibits a
peak as well - at B0 = 2 T. This is likely because of the peak effect in the dependence
of JC on magnetic field (Figure 6.6 (b)). For example, in the absence of the peak effect
the JC(B0) dependence likely will be exponential [128],

JC(B0) = JC0 exp
(

−B0

B1

)
, (6.31)

where JC0 and B0 are constants (the red line in Figure 6.6 (b) is evaluated with
JC0 = 22.0 × 108 A m−2 and B1 = 1.48 T). Similarly, a good measure for the vortex
interaction distance, d, will be the inter-vortex spacing, a(B0) - especially at high
magnetic fields at which the inter-vortex interaction dominates. Hence,

d ∝ a(B0) ∝ B
−1/2
0 . (6.32)
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Inserting the above expressions for JC and d into the definition of αL gives

αL = B0JC

d
∝ B0 exp (−B0/B1)

B
−1/2
0

= B
3/2
0 exp (−B0/B1). (6.33)

This result is shown in red in Figure 6.6 (d) and appears in good agreement with the
measurements. This good agreement is despite the departure of d and JC from the
idealisations, shown in red in Figure 6.6 (b) and (c). The implication, here, is that the
underlying cause of the peak-effect in the JC(B0) dependence possibly is the reason for
the peak in d as well.

6.4.2 Prediction of losses

Once the value of d at different magnetic fields is established, the losses predicted with
the Campbell (QC) and Bean (QB) frameworks can be compared. Recalling equation
6.26, the relevant parameter, determining the ratio QC/QB, is the maximum vortex
displacement from equilibrium normalised to the size of the reversible region, y0/d. If
y0 ≪ d all vortex movement will remain in the reversible region and the hysteretic
losses will approach zero (see the area of the hysteresis loop in Figure 6.4 for low values
of y0). Conversely, if y0 ≫ d most of the vortex movement will be in the regime with a
constant frictional pinning force, FP ≈ B0JC . In evaluating the area of the hysteresis
loop the linear region will be negligible and the losses will approach those predicted by
the Bean model, QB.

The maximum vortex displacement in an AC cycle, y0, will be largest vor vortices at
the surface of the superconductor, since there the applied AC magnetic field amplitude
is completely unshielded. At the surface the vortex displacement is determined by the
boundary condition discussed above, which is identical for the Bean and Campbell
models. For this reason, the maximum vortex displacement can be calculated within
the Bean model framework and the solution will give the correct result when substituted
into the Campbell model. As we shall see, a first-order approximation for the value of
y0 is simply the Bean penetration depth, λB = BA/(µ0JC), where BA is the applied
magnetic field amplitude.

For a superconductor in a constant magnetic field, B0, with a superposed AC
magnetic field, BA, the Bean model gives the magnetic field profile in the superconductor
as

b(r) = B0 + µ0JCr, (6.34)
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Fig. 6.7 The comparison of losses per vortex per cycle in the two models for different
amplitudes of applied magnetic field.

which is valid when BA reaches maximum. Setting r = 0 at the penetration depth
of BA, the above expression goes from r = 0 to r = λB. Then, the flux conservation
equation 6.14 gives

y(r) = −
∫ b(r)

B0
dr = −

r∫
0

(
1 + µ0JC

B0
r′
)
dr′ = −

(
r + µ0JC

2B0
r2
)

+ C, (6.35)

where C = 0 because y(r = 0) = 0. Substituting r = λB, the result is

y0 = |y(r = λB)| = λB + µ0JC

2B0
λ2

B, (6.36)

which approaches y0 = λB when BA ≪ B0. Substituting this result into equation 6.26,
and rewriting in terms of the measured parameters d and λC , the ratio of the Campbell
and Bean losses is

QC

QB

= 2B0

BA

d2

λ2
C

(
exp

(
−BA

B0

λ2
C

d2

)
− 1

)
+ exp

(
−BA

B0

λ2
C

d2

)
+ 1. (6.37)

This result is shown in Figure 6.7.
It is clear that the difference in the prediction of losses by the two models is

comparatively low - this is because the maximum vortex displacement at the chosen
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amplitudes of applied magnetic field is much larger than the respective values of d. For
example, the largest difference between the Bean and Campbell models - the lowest
value of QC/QB = 0.987 - appears at B0 = 2.5 T and BA = 2 mT. The corresponding
maximum vortex displacement is y0 = BA/(µ0JC) = 4 µm. In contrast, the measured
value of pinning size is d = 26 nm, which is a factor of 150 lower. For this reason
the linear region is negligible in the calculation of the hysteresis losses and the Bean
model remains an adequate approximation. However, at lower applied magnetic field
amplitudes, BA, the Campbell model would have to be taken into account.

6.5 Discussion

In this chapter I discussed the validity and limitations of the Bean critical state model,
and its extension by Campbell to include reversible movement of pinned vortices within
their pinning centres. The allowance for a finite pinning centre size introduces new
vortex dynamics into the mixed state, whereby the flux line lattice can be viewed as
an ensemble of coupled linear harmonic oscillators. Their oscillations can be viewed as
compressional waves, which will mediate flux penetration beyond what is predicted
by the Bean model. Therefore, a new length-scale, called the Campbell penetration
depth, λC , must be taken into account. Its value is determined by the effective size of
the pinning centres and does not depend on the amplitude of the changing magnetic
field. I have shown that, since λC determines the time dependence of the magnetic
flux due to an AC magnetic field in the superconductor, its value can be measured
via the observation of the induced voltage waveforms. I have also shown that the
slope of the induced voltage signal, as it passes zero, will be determined by the value
of λC , which allows for convenient data analysis. Additionally, I have extracted the
size of the pinning potential, d, and its curvature, the Labusch parameter, αL, from
measurements, which appear to be in agreement with values reported in the existing
literature.

Some aspects of the underlying microscopic picture, however, remain unclear. In
particular, the shape of the force-displacement hysteresis loop was only assumed and not
explicitly justified. It is clear that in the virgin state the slope of the force-displacement
curve for small displacements is determined by the curvature of the pinning potential.
This is because in the virgin state the vortices will rest in the minima of their potential
wells and will - upon being displaced - experience a linear restoring force back to
equilibrium.
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Conversely, at the peak, and subsequent reversal, of the applied magnetic field the
vortices will not start from the virgin-state equilibrium; instead, having previously
established the critical state, they will move from one edge of the pinning potential to
the opposite before re-establishing the critical state with the current in the opposite
direction. This behaviour will lead to a different hysteresis loop shape than what
is assumed here. A possible alternative picture is one of a vortex pinned on several
point-like defects with the unpinned segments allowed to oscillate in the manner of
vibrations on a string. Then, regardless of the magnetic history of the vortex lattice, its
response is dictated by the elastic modulus of the string-like segments of the vortices.

The aspect ratio of the sample used for pick-up measurements was 5 mm/10 mm =
0.5. The theory, however, was derived for an infinitely long sample, which means
that there are likely some finite-size effects not accounted for. Due to the finite size
of the sample the magnetic field lines will not be completely parallel throughout the
sample, but will curve towards the axis at the top and bottom of the sample. For this
reason the field penetration - and consequently its contribution to the induced voltage
- will be higher at the edges of the sample, leading to an overestimated value of λC .
Ideally, however, this effect will be small since the contribution to the induced voltage
is averaged over the entire height of the sample, in most of which the infinite-height
approximation remains valid.

Finally, I assumed that at the applied AC magnetic field frequency of 300 Hz the
effect of vortex viscosity ηv could be neglected (for comparison, in Campbell’s original
work the AC frequency used was 200 Hz). However, the induced voltage waveforms
(Figure 6.5) were initially shifted in phase, indicating non-negligible viscosity effects.
As an example, the Langevin equation taking into account the viscous force can be
written as

ηv
∂y

∂t
= FL − FP . (6.38)

It can be shown [129, 130] that the solution of the above (generalised) equation decays
over a (generalised) Campbell penetration depth, given by

λC = B0√
αL − iωηv

, (6.39)

where i is the imaginary unit. Hence, the phase shift will be on the order of

∆ϕ ∝ arctan ωηv

αL

, (6.40)

from which the value of ηv can be extracted.
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The results presented in this chapter, while not immediately related to the main
theme of this work, are important as they shed light on the underlying physics of flux
pinning in (RE)BCO bulk superconductors. In turn, this can aid future manufacturing
processes in which the ultimate goal will be to increase the current carrying capabilities
of the material. The Campbell framework provides a convenient way of investigating
the effective size of the pinning centres in the material, d, which is a parameter on a
nanometre scale. This method, combined with the analysis of the microstructure of
the material, will lead to a better understanding of the interaction between the flux
vortices and the material.



Chapter 7

Conclusions and further work

7.1 Conclusions

The behaviour of type-II superconductors in AC magnetic fields remains a complex
problem to study as it will depend on multiple parameters. These include the super-
conductor’s temperature, the cooling power of the cryogenic system, the AC magnetic
field amplitude and frequency, as well as the geometry of the configuration studied. To
this end I have presented a comprehensive experimental study of the parameter space
of interest and presented novel analytical solutions giving insight to the underlying
physics.

I studied the crossed-field configuration, whereby the trapped magnetic field in a
bulk superconductor is made to decay due to an external AC magnetic field, applied
perpendicular to the direction of the trapped field. I derived an analytical model
based on the observation that the rate of decay of trapped magnetic field appears large
immediately after the start of AC field application, and is reduced subsequently at
larger times. This I explained as being due to the formation of shielding regions, as
predicted approximately by the Bean critical state model, in which shielding regions
the trapped magnetic field will decay exponentially in time. This exponential decay
combined with the intrinsic logarithmic decay caused by flux creep is what leads to
the two rates of decay, observed in experiments.

I have corroborated the model with experimental data and with FEM simulations
and all were found to be in excellent agreement. I have shown that, provided the value
of JC of the superconductor is known, the decay of trapped magnetic fields at large
times can be predicted with accuracy. The model is general enough so that it may
be applied to an arbitrary geometry and, while it is derived formally for isothermal



146 Conclusions and further work

conditions, it can readily be extended to account for temperature rise. Hence, the
model provides a useful tool with which the decay of trapped field can be predicted in
a straightforward way and, being analytical, it can be evaluated much more quickly
than corresponding simulations employing FEM.

I have also performed a comprehensive study of the time dependence of trapped
field in the parallel configuration, in which the AC magnetic field is applied parallel
to the direction of trapped magnetic field. Here, the focus was on the effect of heat
generation in the superconductor on the decay of trapped field. While the way in
which shielding currents are induced in the superconductor is well understood and can
be simulated using FEM in a simplified 2D geometry due to symmetry, it has been
observed that AC magnetic fields with amplitudes much lower than the penetration
field BP of a given sample can lead to the total decay of trapped magnetic field. This
can be attributed to the temperature rise in the superconductor, caused by the losses
induced by the AC magnetic field. Hence, understanding the effect of temperature
and of the amplitude and frequency of the applied AC magnetic field on the decay of
trapped field remains an important problem to be studied. In this study I have shown
that the Bean model is sufficient to predict qualitatively the temperature rise in a bulk
superconductor. I have also shown that the reduction of the operating temperature at
which the superconductor is kept is an efficient way of mitigating the decay of trapped
magnetic field.

Finally, I have studied the microscopic behaviour of type-II superconductors in the
mixed state and have shown the limitations of the validity of the Bean critical state
model at small-amplitude applied AC magnetic fields. Since the Bean model does not
account for the reversible movement of flux vortices within the pinning potential, it fails
to predict the superconductor response to AC magnetic fields that are sufficiently low so
as not to displace the vortices from the pinning centres and establish the critical state.
Instead, the Campbell model, which takes into account the reversible movement of the
vortices by introducing a linear pinning force for small displacements from equilibrium,
can be used to predict the behaviour of the mixed state. I have shown that, while
the governing partial differential equations for flux movement in the Campbell model
can be solved only numerically, in their linearised form they can be used to predict
the slope of the induced voltage signal, as caused by the changing magnetic flux in
the superconductor. I used this simplified method to extract the value of Campbell
penetration depth from induced voltage measurements in a bulk superconductor, and,
with it, the effective size of the pinning potential. The extracted values agree well with
the data reported in the literature.
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From the results of this work several conclusions can be drawn, which pertain to
the overarching goal of improving electric motors with the use of bulk superconducting
materials. The decay of trapped field in bulk superconductors, exposed to AC magnetic
fields, is significant at high operating temperatures (approaching TC), and at high
AC magnetic field amplitudes and frequencies. This is true for both geometries
studied; the parallel and the crossed-field configuration. However, it is likely that the
parameter space, studied here, represents the worst case scenario and the measured
decay represents the upper limit to what is likely to be expected in a real application.

As an example, the operating temperature of a real motor is likely to be around
20 K if liquid hydrogen is to be used as coolant [131]. As we have seen, reducing the
operating temperature of the superconductor will lead to a marked decrease in the rate
of decay trapped field. Additionally, the amplitude of the AC magnetic field, felt by
the bulks in a real rotor, is likely to be much smaller than the amplitudes investigated
in this work. This is because in an ideal rotating machine the rotor magnetic field will
follow exactly the rotating magnetic field, generated by the stator. Hence, the AC fields
will arise due to the non-ideal nature of the machine (e.g. higher harmonics generated
by the stator coils), or due to misalignments between the rotor and stator magnetic
fields (e.g. due to externally applied torque on the shaft). The combined effect of a
lower operating temperature and a lower amplitude of external AC magnetic fields
will lead to a marked reduction in the rate of decay of trapped magnetic field in bulks.
However, it remains difficult to predict accurately the exact magnetic environment of
the bulks because it will depend on the exact design of the machine in question. This
problem is addressed in the next section.

7.2 Further work

The present study attempts to simulate the likely magnetic environment in a supercon-
ducting rotating machine by considering, separately, the parallel and the crossed-field
configurations. In reality, however, the magnetic environment will be a combination of
the two configurations, depending on the exact construction of the machine in question.
For this reason a more representative study must include the machine design before
measurements can be performed.

With this purpose in mind an ersatz motor was designed with which the performance
of bulk superconductors can be tested in a realistic environment. The design schematic
of the motor is shown in Figure 7.1.
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Fig. 7.1 The ersatz motor photograph and schematic.

The design is of a dual stator, axial-gap type machine with six bulk superconductors
acting as trapped-field magnets in the rotor. The primary aim of the motor is to
provide the magnetic environment to test the bulk performance in. In the simplest
form of operation the bulks can be magnetised with FC by inserting the entire ersatz
motor into the bore of a DC magnet. The magnetic field 5 mm above rotor assembly,
magnetised in this way, is shown in Figure 7.2. The stator coils, wound in series in
opposite sense, can be connected to a DC current supply, generating a DC magnetic
field that changes direction between two adjacent stator coils (six coils making three
pole pairs).

After magnetisation the rotor can be rotated by connecting the axle to an external
motor. Due to the rotation the bulks will be exposed effectively to an AC magnetic
field, which will be a linear combination of a parallel and crossed-field (since the DC
magnetic field, generated by the stator coils, will not be perfectly aligned with the
coil axis). Subsequently, the time dependence of the trapped field can be measured by
means of an Hall sensor array and a slip-ring through which the Hall voltages can be
acquired.

Alternatively, the bulks can be magnetised individually using FC, and subsequently
inserted into the rotor assembly. This is more difficult as the whole procedure must
be done at cryogenic temperatures. However, once the rotor is assembled, the stator
coils can be connected to an AC current supply, making the machine effectively a
single-phase electric motor. Again, the trapped magnetic field of the bulks can be
monitored using Hall sensors and a slip-ring.
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Another possible mode of operation is the magnetisation of bulks in-situ using
the stator coils as pulsing coils for PFM. To this end, a single stator coil pair can be
connected to a capacitor bank, with which a pulse of magnetic field can be generated.
Subsequently, the stator coils can be connected to an AC current source, as above. In
principle, this is how a practical machine would operate, and so this procedure would
approximate most closely the magnetic environment bulk superconductors would be
exposed to in real applications.

Regardless of the mode of operation this design can be used to predict the time-
varying magnetic fields felt locally by the bulks as a consequence of their rotation
in the stator magnetic field. In particular, the magnetic field components parallel
and perpendicular to the direction of trapped magnetic field can be measured directly
in-situ with an array of Hall sensors. The data obtained can be used subsequently
to estimate the rate of decay of trapped field based on the results presented here in
Chapters 4 and 6.
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Fig. 7.2 (top) A photograph of the rotor with the six bulks. (bottom) The magnetic
field amplitude, BT , measured 5 mm above the surface of the rotor assembly.
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Appendix A

Total flux comparison of a
triangular and cylindrical bulk

In this section the growth procedure for one specific bulk will be outlined; for the
rest the procedure was similar qualitatively, with the temperature profile during heat
treatment varying for preforms of differing sizes. The bulk in question is a triangular
bulk, shown schematically in Figure A.1 (a).

Cylindrical bulks, albeit of a standard shape, have their drawbacks when it comes
to tiling a surface. In order to maximise the total flux generated by a set of bulks both
the maximum trapped field of each respective bulk, and the combined surface area
should be maximised. Tightly packed cylinders form a triangular grid, which covers at
most 90.7 % of the surface. Conversely, triangles can be packed much more efficiently
with the surface coverage approaching 100 %. Hence, in a motor application, in which
the total magnetic loading (the total flux in the air gap) directly determines the output
power, triangular bulks will be preferential.

To estimate the improvement in flux attained by replacing a cylindrical bulk with a
triangular prism let us consider a set of long and thin bulks of circular and triangular
cross-sections (Figure A.1). The bulks are assumed fully magnetised, hence the current
will be equal to JC and will flow in the azimuthal direction in the cylinder and parallel
to the closest side face in the triangular bulk. The trapped field Bz parallel to the long
axis of the bulk (z-direction) can then be calculated from Ampere’s law, which gives
the result for the cylinder

B⃝
z (r) = µ0JC (r0 − r) , (A.1)
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where r is the radial coordinate and r0 the cylinder radius. For the triangular bulk the
result is

B△
z (x) = µ0JC

(√
3a
6 − x

)
, (A.2)

where a is the side length of the triangle and the x-direction is parallel to the triangle
height (

√
3a/6 is one third of the triangle height).

The comparison between the two cases is meaningful if the centre trapped fields
are the same, in which case

r0 =
√

3a
6 , (A.3)

or when the cylinder cross-section is an inscribed circle of the triangle. Then, the total
flux can be calculated as the integral of the magnetic field over the cross-section, giving

Φ⃝ = π

3µ0JCr
3
0 =

√
3π

216 µ0JCa
3 (A.4)

for the cylinder, and
Φ△ = 1

24µ0JCa
3 (A.5)

for the triangle. Their ratio is

Φ△

Φ⃝ = 3
√

3
π

≈ 1.65. (A.6)

This means that, given the same centre trapped field, the triangular cross-section
bulk will generate a 65 % higher total flux. Since this is identical to the ratio of the
respective cross-sectional areas the trapped field, averaged over the area, is the same
in both cases. The difference in flux is purely due to the higher surface area of the
triangle.



165

−2 −1 0 1 2−2

−1

0

1

2

x/r0

y
/r

0

(a) triangular bulk

−2 −1 0 1 2
x/r0

(b) cylindrical bulk

0

0.2

0.4

0.6

0.8

1

Fig. A.1 The magnetic field distribution across the (a) triangular and (b) cylindrical
cross-section for a field-independent JC and the same centre trapped field.





Appendix B

Calculation of losses in an infinite
cylinder

In this appendix the hysteresis losses, Q, in an infinite superconducting cylinder due
to an AC magnetic field parallel to the cylindrical axis are calculated in two different
ways within the Bean model framework. This is to demonstrate the equivalence of the
two expressions

Q =
∫

M dB = E · J, (B.1)

where M is the magnetisation, B the applied magnetic field, E is the induced electric
field and J is the induced current density in the superconductor.

It is shown that the losses per unit volume per cycle evaluate to

Q =


2B2

A

µ0

(
2β
3 − β2

3

)
β < 1,

2B2
A

µ0

(
2

3β
− 1

3β2

)
β > 1,

(B.2)

where BA is the amplitude of the changing magnetic field, β = BA/BP , and BP =
µ0JCr0 is the penetration field with r0 the cylinder radius. Here, the derivation will be
shown for the case β < 1; for the case β > 1 the procedure is similar.

The more straightforward of the two ways in this example is by calculating the
losses as the area of the magnetisation loop,

Q =
∫

M dB, (B.3)

because the magnetisation can be written as a simple function of the applied magnetic
field.
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The local magnetisation can be calculated using the expression ∇ × M = J with
the boundary condition M(r = r0) = 0. Assuming that, in one instant, the applied
magnetic field value is B, where −BA < B < BA, the local magnetisation can be
written as

M(B, r) =

JC(r − r0) + BA−B
µ0

r0 − BA

µ0JC
< r < r0 − BA−B

2µ0JC
,

−JC(r − r0) r0 − BA−B
2µ0JC

< r < r0.
(B.4)

Integrating this expression over the cross-section of the cylinder, and dividing by the
area πr2

0, leads to the dependence M(B). Defining the penetration field as BP = µ0JCr0,
and the reduced applied field as β = BA/BP , leads to the result

M(B) = 2
r2

0

r0∫
0

M(B, r)r dr = 1
4µ0

((
4β − 3β2

)
B +

(
β3 − 2β2

)(
BP − B2

BP

)
− B3

3B2
P

)
.

(B.5)
Subsequently, this can be integrated with respect to the magnetic field, giving the final
result from equation B.1 as

Q = 2
BA∫

−BA

M(B) dB = 2B
3
A (2BP −BA)

3µ0B2
P

= 2B2
A

µ0

(
2β
3 − β2

3

)
, (B.6)

where the factor 2 is because the integral goes from B = −BA to B = BA, only one
half-cycle, whereas Q is the loss per cycle.

An alternative way of calculating the hysteretic losses is via the equation

Q = E · J, (B.7)

where the electric field is given by Faraday’s law from the changing magnetic field as

∇ × E = −∂B
∂t
. (B.8)

This calculation avoids the need for the explicit expression of magnetisation and may
be preferable to the above procedure if M(B) is not analytical.

In cylindrical coordinates Faraday’s law can be written as

1
r

∂ (rE)
∂r

= −∂B

∂t
, (B.9)
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where B is, generally, the z-component of the magnetic field (parallel to the cylinder
axis), and E is the azimuthal component of the induced electric field.

Since the electric field and current density in the superconductor are parallel, the
heat generated will be positive (Q > 0), hence we can deal with absolute quantities and
can omit the minus in front of the time derivative of magnetic field. From the above
equation E can be obtained by integration, where it should be noted that the time
derivative of magnetic field is a function of r. The time derivative can be approximated
by the amount of change in magnetic field during one half cycle of applied field, ∆B,
divided by the duration of one half-cycle, ∆t. From the Bean model we can write

∆B = 2 (µ0JC (r − r0) +BA) , (B.10)

which can be inserted into Faraday’s law, giving the average local field over one
half-cycle as

E(r) = 1
r

∫ ∆B
∆t r dr = 1

∆t

(2
3µ0JCr

2 − (µ0JCr0 −BA) r + C

r

)
, (B.11)

where the integration constant C is determined from the boundary condition that
the electric field be zero at the penetration depth of the applied field, E(r = r0 −
BA/(µ0JC)) = 0. To obtain the heat generation per cycle per volume the above
expression is multiplied by ∆t, and subsequently integrated over the superconductor
cross-section, and divided by πr2

0, giving the result

Q = 2
πr2

0

∫
2πr E∆t JC dr = 4

r2
0

∫
E∆t JC r dr, (B.12)

where the integral is evaluated in the interval r0 − BA/(µ0JC) < r < r0. Evaluating
the integral leads to the result from equation B.1. The normalised loss from equation
B.1 is shown in Figure B.1.
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Fig. B.1 The normalised loss as a function of the reduced applied magnetic field
amplitude, β = BA/BP .



Appendix C

Lorentz force distribution due to
an M-shaped trapped field profile

The decay of trapped field will depend on the established circulating currents because
of the direction of the Lorentz force, FL = J × B, determined by the distribution of
current density in the superconductor. A bulk of radius r0 and height h, for example,
which is partially magnetised using ZFC with the applied field amplitude of BP (and
not 2BP , the minimum amplitude needed for full magnetisation with ZFC), will exhibit
an M-shaped trapped field profile due to current circulating in opposite directions in
the bulk (see Figure C.1).

This means that, locally, the Lorentz force, felt by the flux vortices, can point
inwards into the centre of the bulk. This is shown as negative values of FL in Figure
C.1. This means that if the superconductor in this configuration is exposed to AC
magnetic fields, the flux vortices may become unpinned and move in the direction of
the Lorentz force, towards the centre of the bulk. Hence, this effect could change the
decay of trapped field, as measured by an array of Hall sensors on the surface of the
bulk.
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Fig. C.1 (a) The distribution of current density, J , leading to an M-shaped trapped
field profile. (b) The dependence of J(r) along z = 0. (c) The distribution of BZ

calculated from the distribution of J with the Biot-Savart law. Here, B0 is the trapped
field of a fully magnetised bulk. (d) The corresponding M-shaped profile of BZ along
z = 0. (e) The distribution of the Lorentz force, FL = BJ . Here, F0 = B0J . (f) The
FL profile along z = 0. Negative values correspond to its direction inwards to the bulk
centre.
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