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a b s t r a c t

Precision medicine, aka stratified/personalized medicine, is becoming more pronounced
in the medical field due to advancement in computational ability to learn about patient
genomic backgrounds. A biomaker, i.e. a type of biological process indicator, is often used
in precision medicine to classify patient population into several subgroups. The aim of
precisionmedicine is to tailor treatment regimes for different patient subgroupswho suffer
from the same disease. A multi-arm design could be conducted to explore the effect of
treatment regimes on different biomarker subgroups. However, if treatments work only on
certain subgroups, which is often the case, enrolling all patient subgroups in a confirmatory
trial would increase the burden of a study. Having observed a phase II trial, we propose a
design framework for finding an optimal design that could be implemented in a phase III
study or a confirmatory trial. We consider two elements in our approach: Bayesian data
analysis of observed data, and design of experiments. The first tool selects subgroups and
treatments to be enrolled in the future trial whereas the second tool provides an optimal
treatment randomization scheme for each selected/enrolled subgroups. Considering two
independent treatments and two independent biomarkers, we illustrate our approach
using simulation studies. We demonstrate efficiency gain, i.e. high probability of recom-
mending truly effective treatments in the right subgroup, of the optimal design found by
our framework over a randomized controlled trial and a biomarker–treatment linked trial.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A randomized controlled trial (RCT) has been the gold standard for testing a new intervention in medicine, especially in
phase III confirmatory studies. Many treatments work differently in different patient subgroups, and in this case RCTs which
enroll all patients are not necessarily the most efficient approach in phase III. Instead enriched designs that recruit patients
likely to benefit have considerable advantages. There is a danger that enriching a phase III trial toomuchmay lead tomissing
out on a patient subgroup that would have actually benefited.

This therefore motivates phase II trials of targeted agents investigating not only whether a drug works but in which
patient subgroups it works in. Several ‘biomarker-driven’ trial designs have been proposed to allow investigation ofmultiple
treatment arms in different patient subgroups (Buxton et al., 2014; Kaplan et al., 2013; Kaplan, 2015;Middleton et al., 2015).
In the case where each treatment can be tested in each subgroup, the number of hypotheses to be tested in a trial can be very
large. Some recent papers providing an overview of biomarker-driven trial designs include Antoniou et al. (2016), Renfro and
Sargent (2017), Antoniou et al. (2017) and Parmar et al. (2017).
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One important aspect of biomarker-driven trial designs that has not been well researched is how to use the information
collected from a phase II trial assessing multiple treatments and biomarkers to design the most efficient phase III designs.
In particular it would be very useful to have a framework which determines which treatments should be tested in phase III,
and in which biomarker subgroups. There has been some work in the context of evaluating a single experimental treatment
(Ondra et al., 2016), but to our knowledge none that investigates novel multi-arm phase II biomarker-driven trial designs.

Considering a regression model with first order interaction terms, we propose a tool to design a confirmatory trial based
on the analysis of an observed phase II trial or a historical study. There are two elements in this tool: Bayesian data analysis
on data of a phase II trial, and the application of design of experiments to finding an optimal design for future experiment.
The focus of our tool is to find an efficient design that could reject false null hypotheses in the confirmatory trial with high
power.

Bayesian data analysis is a flexible approach where the knowledge and confidence of clinicians can be incorporated into
the framework via the specification of a prior distribution. When the sample size of the observed trial is small, we suggest
bootstrapping thedata for the Bayesian analysis, and conjecture a subset of hypotheses thatwould be tested in a confirmatory
trial based on a posterior predictive distribution from the analysis. We then use the notion of design of experiments to find
the optimal treatment randomization scheme for the future experiments based on these information. Design of experiments
is an approach that provides guidance on data collection such that sufficient information could be collected for a future
experiment.We consider aweighted version of L-optimal criterion that resemble the idea ofMorgan andWang (2010)where
they considerweightedD-, A-, and E-optimal designs for a factorialmodel. Sverdlov and Rosenberger (2013) reviewmethods
on finding optimal allocation formulti-armclinical trials,where the designdepends on theunknownparameters of a factorial
model. We note that the Bayesian data analysis in our framework is independent of the commonly used Bayesian optimal
design framework, see for example Kathryn and Verdinelli (1995) for the review on Bayesian optimal design framework.
Our framework can be generalized to finding a Bayesian optimal design for generalized linear and nonlinear models.

The structure of the paper is as follows. We present a statistical model and hypothesis testing procedure for the trial
with biomarker setting in Section 2. We introduce our novel design approach in Section 3, and conduct simulation study to
compare the performance of the proposed optimal designs with two commonly employed designs in Section 4. We discuss
our work and provide some insights into future research topics in Section 5.

1.1. Motivating trial

As themotivation for the work that follows, we consider a phase II trial that, at the time of writing, is under consideration
for funding. This trial will test two experimental targeted treatments (T1 and T2), against chemotherapy control, for high
grade serous ovarian cancer. Two biomarkers are included (B1 and B2) with it being thought likely (but not definite) that T1
will work best in B1 positive patients and T2 in B2 positive patients. Patients can be positive for B1, B2, both or neither.

The endpoint used for efficacy is six month change in the level of circulating tumor DNA in the blood, which will be
treated as normally distributed on the log scale. The objective of the phase II trial is to determine which of T1 and T2 should
be tested in a larger phase III trial, and in which patient subgroups. The methodology in this paper will be used for helping
to make this decision.

2. Background and notation

Let vector xi = (xi1, . . . , xiL) be a biomarker profile of patient iwhere xil = 1 represents patient i is positive for biomarker
l, and xil = 0 otherwise, l = 1, . . . , L; Tik be the experimental treatment indicator where Tik = 1 indicates that patient i
receives treatment k. The response model for patient i is

yi = α +

K∑
k=1

Tikβk +

L∑
l=1

xilγl +

K∑
k=1

L∑
l=1

Tikxilδkl + ϵi,

where α is the placebo/control effect for a patient with a negative biomarker profile, i.e. xi = (0, . . . , 0), βk is the main
effect of experimental treatment k, γl is the main effect of biomarker l, and δkl is the interaction between treatment k and
biomarker l. A placebo/control treatment is indicated by Tik = 0, ∀k = 1, . . . , K . The residual errors, ϵi, are assumed to be
identically and independently distributed, and that they are normally distributed with zero mean and a common variance
σ 2, i.e. ϵi

iid
∼ N(0, σ 2), i = 1, . . . , n.

As an example, consider a trial where there are two experimental treatments and two biomarkers, i.e. K = 2 and L = 2,
and that each patient receives only one treatment (either Ti1 = 1 or Ti2 = 1) or a placebo/control treatment, Ti1 = 0 and
Ti2 = 0. The response model is

yi = α + β1Ti1 + β2Ti2 + γ1xi1 + γ2xi2 + δ11xi1Ti1 + δ12xi2Ti1 + δ21xi1Ti2 + δ22xi2Ti2 + ϵi (1)
= f (xil, Tik)θ + ϵi,

where

f (xil, Tik) = (1, Ti1, Ti2, xi1, xi2, xi1Ti1, xi2Ti1, xi1Ti2, xi2Ti2)
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Table 1
Biomarker–treatment combinations, model parameters for each combination, difference between the effect of a treatment and the placebo/control within
the subgroups, and randomization scheme of some designs.

i′ xi1 xi2 Ti1 Ti2 Treatment effect Difference to control ξrct ξtlt ξ ∗

L

1 0 0 0 0 α 1/3 1/3 0.46
2 0 0 1 0 α + β1 β1 1/3 1/3 0.54
3 0 0 0 1 α + β2 β2 1/3 1/3 0.00

4 0 1 0 0 α + γ2 1/3 1/2 0.46
5 0 1 1 0 α + γ2 + β1 + δ12 β1 + δ12 1/3 0 0.00
6 0 1 0 1 α + γ2 + β2 + δ22 β2 + δ22 1/3 1/2 0.54

7 1 0 0 0 α + γ1 1/3 1/2 0.46
8 1 0 1 0 α + γ1 + β1 + δ11 β1 + δ11 1/3 1/2 0.54
9 1 0 0 1 α + γ1 + β2 + δ21 β2 + δ21 1/3 0 0.00

10 1 1 0 0 α + γ1 + γ2 1/3 1/3 0.47
11 1 1 1 0 α + γ1 + γ2 + β1 + δ11 + δ12 β1 + δ11 + δ12 1/3 1/3 0.00
12 1 1 0 1 α + γ1 + γ2 + β2 + δ22 + δ21 β2 + δ22 + δ21 1/3 1/3 0.53

ξrct = randomized controlled trial; ξtlt =biomarker–treatment linked trial; ξ ∗

L =optimal design for the first illustration.

is a row vector of the design matrix, denoted by X , of the regression model, and

θ = (α, β1, β2, γ1, γ2, δ11, δ12, δ21, δ22)T

can be estimated by least squares estimator, θ̂ = (XTX)−1XTy, that has cov(θ̂ ) = (XTX)−1σ 2, where

XTX =

n∑
i=1

f T (xil, Tik)f (xil, Tik)

= n
m∑

i′=1

ni′

n
f T (xi′ , Ti′ )f (xi′ , Ti′ )

= n
m∑

i′=1

pi′ f T (xi′ , Ti′ )f (xi′ , Ti′ ),

∑m
i′=1ni′ = n, ni′ and pi′ =

ni′
n correspond to the number and proportion of patients who have the same f T (xi′ , Ti′ ), and m

denotes the number of unique f T (xi′ , Ti′ ).
Without loss of generality, negative values indicate that the treatment is effective on the patients. We can test the

existence of treatment effect on patients with different biomarker profiles by conducting hypothesis tests where

null hypothesis: c ′

rθ = 0,
alternative hypothesis: c ′

rθ < 0,

cr is a vector that indicates the linear combination of regression parameters, i.e. the corresponding treatment effect that is
different to the placebo/control, r = 1, . . . , R is an index of the hypotheses that are possibly be tested in the study. As an
example, consider patients who have biomarker profile (xi1, xi2) = (1, 0), the difference between the effect of Ti1 = 1 and
Tik = 0 ∀k on this subgroup is β1 + δ11. Table 1 shows the treatment effect and the difference to the control/placebo effect for
each subgroup where the responses follow (1), Table 2 shows the possible values of cr whenmodel (1) is the analysis model.

We reject the null hypothesis, c ′
rθ = 0, if the test statistic,

c ′
r θ̂

[c ′
r [cov(θ̂ )]cr ]1/2

< −Zα′ ,

where Zα′ is the (1 − α′)% quantile of a standard normal distribution, with α′ Type 1 error. It is a desired property that
cov(θ̂ ) is small in statistical analysis, reflecting that the data provides good and sufficient information to understand the
underlying random process. In terms of a hypothesis test, smaller values of cov(θ̂ ) lead to higher probability to reject false
null hypotheses (i.e. when the true value c ′

rθ < 0). We note that the real parameter values, θ , are not known in practice but
the covariance matrix of the least squares estimator is inversely proportional to the information matrix, XTX , which does
not depend on θ .

3. Design of confirmatory trial

To investigate the effectiveness of treatments on biomarker subgroups, the biomarker profiles need to be known in
advance. Conventional designs such as a randomized controlled trial would fail to study the treatment effect on different
subgroups when the information on biomarker profiles is unavailable. On the other hand, a biomarker–treatment linked
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Table 2
The possibly tested hypotheses whenmodel (1) is the analysismodel. The rth
column represents the vector cr .

r 1 2 3 4 5 6 7 8

θ cr
α 0 0 0 0 0 0 0 0
β1 1 1 1 1 0 0 0 0
β2 0 0 0 0 1 1 1 1
γ1 0 0 0 0 0 0 0 0
γ2 0 0 0 0 0 0 0 0
δ11 0 1 0 1 0 0 0 0
δ12 0 0 1 1 0 0 0 0
δ21 0 0 0 0 0 1 0 1
δ22 0 0 0 0 0 0 1 1

trial would not administer a linked-treatment to a subgroup with a negative biomarker, and administer all possible tested
treatments to the subgroup who has all negative biomarkers. If treatments work only in biomarker positive subgroups, an
enrichment design could be implemented where the subgroup with all negative biomarkers is excluded in the trial. All
of these commonly used designs consider equal randomization probabilities to assign treatments within subgroups. The
columns, ξrct and ξtlt , in Table 1 show the randomization schemes of a randomized controlled trial and of a treatment linked
trial for a study with two independent biomarkers and two independent treatments.

Instead of using these conventional designs, we propose to design a phase III/confirmatory trial based on an analysis of
a phase II/exploratory study. The idea of our design framework is as follows: analyze an observed data using a Bayesian
framework to provide guidance on selecting a subset of R possibly tested hypotheses and subgroups of patients to enroll in
the confirmatory trial; formulate an analysismodel for the future experiment and find an optimal randomization scheme.We
propose to formulate an analysis model parsimoniously at the design stage to save costs on enrollment and data collection
for the future confirmatory trial. For a chosen model, we consider the notion of design of experiments whereby the optimal
treatment allocation scheme is of interest. An optimal design framework chooses the setting of a confirmatory experiment
through the design matrix X such that some functions of cov(θ̂ ) are minimized. The following sections illustrate the key
ideas of our framework: investigate which hypotheses are more beneficial to focus on in the future experiment, and find an
efficient design that has high probability of recommending truly effective treatments in the right subgroups.

3.1. Specification of relative importance of hypotheses

We now illustrate the selection of hypotheses and subgroups using the data of a previous experiment such as a phase
II study. The idea is to consider an analysis approach that aims to provide insight into a predictive distribution of model
parameters of the future confirmatory trial. We consider a Bayesian approach of data analysis to account for the unseen
uncertainty when selecting a subset of hypotheses that will be tested in the confirmatory trial, reflecting the prior belief or
confidence of an experimenter in terms of what might happen in the future experiment. This is achieved by specifying a
prior distribution for the model parameters. When the sample size of an observed study is small, we propose to use simple
bootstrap procedure on the data, and conduct the Bayesian analysis in each bootstrap replication to overcome the variability
of using only one set of data to make selection of hypotheses. If only the summary statistics of the phase II trial are available,
we recommend to replicate the phase II trial and explore the operating characteristics of the optimal designs for a future
experiment, where each optimal design is obtained based on the analysis of a replication of the phase II trial.

To illustrate our framework, we use a conjugate prior in the following presentation. Markov chain Monte Carlo (MCMC)
sampling could be used when the posterior distribution is intractable. We define the total sample size of the phase II trial
as nII , the vector of observed responses as yo, design matrix as X0, and regression parameters of the response model of
phase II as θII . For an observed study with a small nII , we first bootstrap yo and X0 with replacement and conduct Bayesian
data analysis on each bootstrap sample. For example, using a normal-inverse-gamma prior, NIG(θ0, V0, a, b), for (θII , σ 2), we
obtain a posterior distribution NIG(θ∗

m, V
∗, a∗, b∗),

θ∗

m =
(
V−1
0 + XT

0 X0
)−1

(V−1
0 θ0 + XTyo),

V ∗
=
(
V−1
0 + XT

0 X0
)−1

,

a∗
= a +

nII

2
,

b∗
= b +

1
2

[
θ T
0 V

−1
0 θ0 + yToyo − (θ∗)T (V ∗)−1θ∗

]
for each bootstrapped sample. The marginal distribution of θII follows a multivariate t-distribution, MVSt2a∗ (θ∗

m, Σ∗) with
Σ∗

= ( b
∗

a∗ )V ∗ and 2a∗ degree of freedom.
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Let wr denote the relative importance of hypothesis r , r = 1, . . . , R. We propose to generate large samples from the
posterior distribution (use MCMC sampling for intractable posterior distribution) to compute

Pr = P(c ′

rθ < τr )

where c ′
rθ is approximately normally distributed with mean c ′

rθ
∗
m, and variance c ′

rΣ
∗cr , and τr could be the minimum

uninteresting treatment difference threshold for hypothesis r . We then find E(Pr ) where the expectation is averaged across
the number of bootstrap replications, and compute wr , the relative importance of hypothesis r , by

wr =

{
E(Pr ) if E(Pr ) ≥ κ , where κ is a user-specified threshold;
0 otherwise.

Hypothesis r is selected and the corresponding subgroup is enrolled into the confirmatory trial ifwr > 0. These information is
then used to formulate a parsimonious linear regressionmodel and the design criterion for finding an optimal randomization
scheme for the future confirmatory trial. Note that

∑R
r=1wr need not sum up to 1 in the design problem.

3.2. Design of experiments

We now describe the design framework for finding an optimal design. After formulating the analysis model parsimo-
niously for the future experiment such that the parameters of interest are estimable, we want to find an optimal design,

ξ ∗
=

{
(x1, T1) · · · (xm, Tm)

p1 · · · pm

}
,

that minimizes
R∑

r=1

wr c ′

r [cov(θ̂ )]cr ∝

R∑
r=1

wr c ′

r

(
n

m∑
i′=1

pi′ f T (xi′ l, Ti′k)f (xi′ l, Ti′k)

)−1

cr , (2)

where wr ≥ 0 reflects the relative importance of the corresponding hypothesis r . This setup has several well-known
optimality criteria as special cases: the design criterion is called L-optimality whenwr = 1 ∀r (page 111 in Luc Pronzato and
Andrej Pazman (2013)); it is an A-optimality when the summation sums the individual variances of the model parameters
and is a c-optimality when R = 1 and w1 = 1. The incorporation of wr into the standard L-optimality resembles the idea
of Morgan and Wang (2010) where the authors consider weighted D-, A-, and E-optimal designs for a factorial model.

A design ξ is called a continuous design when npi′ need not be a positive integer in the optimization search but∑m
i′=1pi′ = 1, pi′ ≥ 0. Otherwise ξ is called an exact design where npi′ is a positive integer. The notion of a continuous design

facilitates the search of an optimal design over a design region. A rounding procedure can be applied to the continuous design
for practical implementation, see for example Pukelsheim and Rieder (1992). The interpretation of pi′ in the conventional
design framework context is that it is the suggested proportion of subgroups who have the corresponding (xi′ , Ti′ ). In the
trial with biomarker setting, it is difficult to enroll the patient subgroups in practice according to the exact proportions.
Hence, we use pi′ to compute the randomization probability for each selected subgroup instead. Note that no rounding
procedure is needed in this case. For a given total sample size, we find pi′ of ξ ∗ byminimizing (2), subject to

∑m
i′=1pi′ = 1. The

relative importance of the selected subset of hypotheses and the subgroups are reflected by the values of wr , r = 1, . . . , R,
and biomarker–treatment combination (xi′ , Ti′ ), i′ = 1, . . . ,m. To avoid confusion, we use the same index r to denote the
hypotheses in the design framework even some of the hypotheses are not selected to be tested in the future experiment.

As an example, consider that we are interested in testing only the following null hypotheses:

1. β1 = 0; enroll biomarker–treatment combinations, (xi1, xi2, Ti1, Ti2) = (0, 0, 0, 0) and (0, 0, 1, 0).
2. β1 + δ11 = 0; enroll (xi1, xi2, Ti1, Ti2) = (1, 0, 0, 0) and (1, 0, 1, 0).
3. β2 + δ22 = 0; enroll (xi1, xi2, Ti1, Ti2) = (0, 1, 0, 0) and (0, 1, 0, 1).
4. β2 + δ22 + δ21 = 0; enroll (xi1, xi2, Ti1, Ti2) = (1, 1, 0, 0) and (1, 1, 0, 1).

We propose to employ

yi = α + β1Ti1 + β ′

2Ti2 + γ1xi1 + γ2xi2 + δ11xi1Ti1 + δ21xi1Ti2 + ϵi,

where β ′

2 = β2 + δ22 instead of model (1) for the analysis of the future trial. An optimal design problem is to minimize

w1cov(β̂1) + w2cov(β̂1 + δ̂11) + w7cov(β̂2 + δ̂22) + w8cov(β̂2 + δ̂22 + δ̂21),

subject to
∑12

i′=1pi′ = 1, pi′ = 0 for i′ = 3, 5, 9, 11.We note that the parameter δ12 would not be estimable when the optimal
design is used because none of the selected patients would have xi2Ti1 = 1. Besides that, we can only estimate the combined
effect of β2+δ22 here as the enrolled patientswould have Ti2 = 1 only if xi2 = 1. Note that if the experimenter chooses κ = 0
and hence wr > 0 ∀r , model (1) would be used as if in the randomized controlled trial where all subgroups are enrolled into
the trial.

In general, the analysis model for a future experiment could be formulated by considering the model parameters of the
selected hypotheses and the subgroup biomarker profiles. A linear combination of model parameters might be replaced by
a new variable accordingly such that the information matrix is of full rank.
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4. Illustration: a trial with two biomarkers and two treatments

In this section, we conduct simulation studies to illustrate the application of our framework to finding an optimal
design for a confirmatory trial based on Bayesian analysis of a historical study, and make comparisons on the operating
characteristics of a randomized controlled trial, ξrct , a biomarker–treatment linked trial, ξtlt , and optimal designs. Throughout
the illustration, we consider the presence of two independent biomarkers with prevalence rate of 0.3 each, and two
independent treatments that are linked to the biomarkers. In the first part of this illustration, we simulate a set of phase
II data for finding an optimal design based on our framework, and use the bootstrap estimates as the true model parameters
in the simulation of a confirmatory trial. We replicate a confirmatory trial using the randomization scheme of the designs
to study the performance of different designs. In the second part of the illustration, we do not bootstrap a set of data but
replicate the phase II trial according to a set ofmodel parameters to explore the operating characteristics of different optimal
designs,where each optimal design is foundbased on the analysis of a replicated phase II study.We compare the performance
of these optimal designs with ξrct and ξtlt in the simulation of a confirmatory trial where the true model parameters are the
same as those used in the replication of the phase II trial. The first illustration shows the role of κ > 0 on the optimal design
when a set of phase II data is available; the latter illustration reflects the situation where only the summary statistics of a
phase II trial are available, and shows the role of wr on the optimal design when κ = 0.

Consider a phase II randomized controlled trial, ξrct , that studies the effect of two independent treatments, Ti1 and
Ti2, on patients where the information of two independent biomarkers, xi1 and xi2, are available. For nII = 400, we
simulate biomarker profiles using binomial distributionswith prevalence rate of 0.3 for each biomarker, treatment allocation
with equal randomization probability, and a set of yo according to model (1) with ϵi

iid
∼ N(0, σ 2), σ 2

= 1.15 and
θII = (−0.356, −0.213, 0.240, 1, 1, −0.182, 0.240, 0.527, −0.586)T . We note that model (1) has r = 1, . . . , 8, possible
hypotheses (see Table 2). We choose prior values a = 0.0001, b = 0.0001, θ0 = (0, 0, 0, 0, 0, −0.1, 0, 0, −0.1)T , and V0 a
diagonalmatrixwith diag(V0) = (1, 1, 1, 1, 1, 2, 1, 1, 2). The values of θ0 andV0 are chosen to reflect the belief that themodel
parameters of a confirmatory experiment, apart from δ11 and δ22, have no effect on the responses. The variances of δ11 and
δ22 are relatively larger than the variances of other parameters show that there aremore uncertainty in the belief that δ11 and
δ22 may have negative effect on the responses. We consider bootstrapping the data 10000 times in this illustration. For each
bootstrap sample, we compute θ∗

m and Σ∗, and generate 10000 samples from the posterior distribution,MVSt2a∗ (θ∗
m, Σ∗), to

compute Pr by choosing τr = 0 ∀r . We then use all Pr from the bootstrap replications to compute E(Pr ) and wr by choosing
κ = 0.5. Based on the values ofwr , we formulate amodel parsimoniously and find an optimal design byminimizing (2) using
the function fmincon in Matlab. In this illustration, we obtained E(P1) = 0.761, E(P2) = 0.683, E(P3) = 0.326, E(P4) = 0.367,
E(P5) = 0.097, E(P6) = 0.032, E(P7) = 0.883 and E(P8) = 0.501. Hence, we have wr = E(Pr ) for r = 1, 2, 7, 8, and wr = 0
for r = 3, 4, 5, 6, in this example. An optimal design denoted by ξ ∗

L is obtained for this setting.
To study the operating characteristics of the design, we conduct simulation study with a larger sample size to reflect the

practice of a confirmatory trial.We compare the performance of ξ ∗

L , with a randomized controlled trial, ξrct , and a biomarker–
treatment linked trial, ξtlt . These designs are different in terms of number of subgroups and treatment allocation scheme, see
Table 1.We use the same prevalence rate, i.e. 0.3 for both independent biomarkers, and sample size of 1000 in the simulation
of the confirmatory trial, whereby the treatment randomization scheme follows a design. In each simulation, we replicate
the biomarker profiles 100 times; for each replication of biomarker profiles, we replicate treatment allocation according
to the randomization scheme 100 times. The responses are generated according to model (1) with the expected model
parameters from the bootstrap replications, θ = (−0.326, −0.155, 0.324, 0.794, 1.061, −0.014, 0.426, 0.290, −0.784),
and σ 2

= 1.15. Using the simulated responses, we estimate themodel parameters by least squares estimation, and compute
the test statistics for hypothesis testwithα′

= 0.05 in each replication. The number of times that a null hypothesis is rejected
is averaged across the replications (both the replication of treatment allocation and biomarker profiles), giving the power of
rejecting a null hypothesis if it is false, or a Type 1 error if it is true. In this illustration, we know c ′

rθ < 0, for r = 1, 2, 7, 8.
We compute the expected number of correct rejection of false null hypotheses (ENCR) to make comparisons between the
designs.

Table 3 shows the effect sizes from different hypotheses and the operating characteristics of different designs in the
simulation of a confirmatory trial. In this illustration, we find that the power of rejecting c ′

7θ̂ is the largest whereas the
power of rejecting c ′

8θ̂ is the smallest; the Type 1 error of rejecting c ′

5θ̂ and c ′

6θ̂ are close to 0. This shows that the true
values of hypotheses play a major part in hypothesis test where large magnitude of model parameters is easier to detect
than others that are close to the bound chosen for a hypothesis test. The other reason that the power of rejecting c ′

8θ̂ is so
small is due to small subgroup sample size and the fact that the power of rejecting a null hypothesis with an interaction term
is generally lower than that with only main effect parameters (Follmann, 2003). The expected sample size of this subgroup
is 1000 ∗ 0.3 ∗ 0.3 = 90, which is not sufficient for detecting the treatment effect that is very close to zero. Comparing the
designs, the optimal design generally achieves larger power of rejecting the false null hypotheses. Consider the expected
number of correct rejection of false null hypotheses (ENCR), we find that ξrct and ξtlt would lose about 11% and 7% efficiency
over ξ ∗

L . Looking at testing c ′

1θ = 0, we find that the power could be increased significantly if the optimal design is used
in the experiment, i.e. 0.11 and 0.12 more than what ξrct and ξtlt could achieve. The randomization scheme of the optimal
design for this corresponding subgroup is 0.46 for receiving placebo and 0.54 for receiving treatment 1, whereas the later
designs are having 1/3 for receiving placebo, treatment 1 and treatment 2. This shows that enrolling a less informative
biomarker–treatment combination could be waste of resources. In particular, c ′

5θ = β2 is not significant in this illustration
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Fig. 1. Frequency of optimal designs that achieve the expected number of correct rejection of false null hypotheses (ENCR).

Table 3
Effect sizes from different hypotheses and probability of rejecting a null hypothesis in the simulation of different designs.

Effect sizes from different hypotheses in the simulation of a confirmatory trial

c ′

1θ c ′

2θ c ′

3θ c ′

4θ c ′

5θ c ′

6θ c ′

7θ c ′

8θ

−0.155 −0.169 0.135 0.121 0.324 0.750 −0.460 −0.034

Probability of rejecting a null hypothesis in the simulation of a confirmatory trial

c ′

1 θ̂ = 0 c ′

2 θ̂ = 0 c ′

3 θ̂ = 0 c ′

4 θ̂ = 0 c ′

5 θ̂ = 0 c ′

6 θ̂ = 0 c ′

7 θ̂ = 0 c ′

8 θ̂ = 0 ENCR

ξrct 0.43 0.31 0.01 0.02 0.00 0.00 0.90 0.09 1.74
ξtlt 0.41 0.37 0.02 0.02 0.00 0.00 0.96 0.08 1.81
ξ ∗

L 0.54 0.37 NA NA NA NA 0.96 0.08 1.95

ENCR= expected number of correct rejection of false null hypotheses.

and that having the biomarker–treatment combination i′ = 3 (see Table 1) in the experiment is not beneficial. Conjecturing
which hypothesis is significant and to be tested in future experiment is a crucial step in designing the trial.

To illustrate further, we consider the same trial setting but that only the summary statistics of a phase II trial are available.
We consider c ′

rθ = −0.2 for r = 1, 2, 7, 8 and c ′
rθ > 0 for r = 3, 4, 5, 6, and nII = 300. Instead of bootstrapping one data

set (that gives different parameter estimates in each bootstrap replication), we replicate a phase II trial 500 times according
to model (1) with an equal probability randomization scheme. These replications reflect the variability of the error term and
the randomization schemewhile c ′

rθ remain the same across all the phase II replications. For each simulated phase II trial, we
draw 10000 samples from the posterior predictive distribution (i.e.MVSt2a∗ (θ∗

m, Σ∗) that has the same prior as the previous
illustration) and compute wr = E(Pr ) by setting κ = 0. An optimal design is then found based on the analysis of each phase
II replication. Fig. 1 shows ENCR on the x-axis, that are achieved by the 500 optimal designs where each optimal design
corresponds to a simulated phase II study. With total sample size of 1000, nominal Type 1 error of 5%, and true treatment
difference of −0.2 for each hypothesis r = 1, 2, 7, 8, we find that the optimal designs are expected to reject at least 1.65
false null hypotheses in the simulation, whereas ξrct and ξtlt are giving 1.647 and 1.707 respectively.

Table 4 shows the probability of rejecting each null hypothesis c ′
rθ = 0, r = 1, . . . , 8, achieved by ξ ∗

best , ξ
∗
worst , ξrct and ξtlt .

The former two are optimal designs that have the highest and the lowest ENCR (in the simulation of a confirmatory trial)
out of the 500 optimal designs, where each design corresponds to a replication of a phase II study. Across all designs that
have different randomization schemes, we find that the Type 1 error of rejecting each true hypothesis is no greater than
0.03 when the nominal α′

= 0.05 is used in the simulation. Comparing the four false null hypotheses that have the same
true value of −0.2, we find that the power of rejecting c ′

1θ = 0 is the highest and c ′

8θ = 0 is the lowest across all designs.
This is not surprising as the subgroups have different sample sizes and that with prevalence rate of 0.3 for both biomarkers,
the total sample size of i′ = 1, 2, 3, is expected to be 1000 ∗ (1 − 0.3) ∗ (1 − 0.3) = 490, and that of i′ = 10, 11, 12, is
1000 ∗ 0.3 ∗ 0.3 = 90. The last column of Table 4 shows that ξrct and ξtlt would lose about 11% and 7% efficiency in terms of
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Table 4
Probability of rejecting a null hypothesis. We know c ′

rθ < 0, r = 1, 2, 7, 8, and c ′
rθ > 0, r = 3, 4, 5, 6. Each row corresponds to the performance of a

design.

c ′

1 θ̂ = 0 c ′

2 θ̂ = 0 c ′

3 θ̂ = 0 c ′

4 θ̂ = 0 c ′

5 θ̂ = 0 c ′

6 θ̂ = 0 c ′

7 θ̂ = 0 c ′

8 θ̂ = 0 ENCR

ξ ∗

best 0.67 0.42 0.02 0.02 0.01 0.02 0.43 0.32 1.83
ξ ∗
worst 0.61 0.39 0.01 0.02 0.01 0.02 0.35 0.28 1.64

ξrct 0.59 0.39 0.02 0.02 0.01 0.02 0.38 0.29 1.65
ξtlt 0.56 0.45 0.03 0.03 0.01 0.03 0.45 0.24 1.71

ENCR when compared with ξ ∗

best . We find that ξ ∗
worst achieved a similar ENRC when compared to ξrct , but not better than ξtlt .

The latter finding is mainly due to the fact that ξtlt excluded i′ = 5,9 (see Table 1) in the design whereas ξ ∗
worst enrolled these

biomarker–treatment combinations in the trial, when i′ = 5,9 have limited contribution on testing false null hypotheses
r = 1, 2, 7, 8. The former result might be due to the random error of that particular replication of a phase II trial. If we
bootstrap this replicated data assuming that they are the observed phase II data, we would then proceed as in the previous
illustration but with κ = 0, and could potentially obtain a better design than ξ ∗

worst and ξrct for the future experiment.

5. Discussion

We have proposed a framework for designing confirmatory trials based on the analysis of a phase II study testing
multiple experimental treatments in different biomarker subgroups. The design framework provides guidance on selecting
biomarker–treatment combinations and a treatment randomization scheme.

When using a single regression model to analyze a multi-arm trial, the dimension of model parameters depends on the
number of biomarker–treatment combinations. For example, in the presence of L binary biomarkers and K experimental
treatments, there are 2L

×K possible hypotheses that test treatment differences between treatments and a placebo. To find an
efficient design, we propose a framework to select a subset of hypotheses out of the many possibly tested hypotheses based
on Bayesian data analysis of a phase II/historical study, and use the notion of design of experiments to find the treatment
randomization scheme for implementing a future experiment. We show that doing a traditional randomized trial enrolling
all patient subgroups is not the most efficient approach when the treatments work only on certain subgroups.

We propose selecting the hypotheses to be tested in a confirmatory trial based on Bayesian data analysis of the phase
II study. When the sample size of the observed study is small, we suggest to consider bootstrapping the available data to
minimize the bias in estimation (due to small sample) that may cause bias in hypothesis selection. When only summary
statistics are available, we suggest simulating the phase II study and exploring the operating characteristics of optimal
designs before choosing one design for implementation. The above illustration shows that wr , κ and τ play important roles
in designing an experiment. In practice, κ and τ should be chosen carefully in discussion with clinicians based on their
experiences. We note that our framework is flexible that each hypothesis may have different κ and τ . The specification
of a prior distribution is another aspect that should reflect the knowledge of the clinicians on the likely magnitude of
the treatment effect. When the posterior predictive distribution of model parameters is not in closed-form, we suggest to
draw large samples using MCMC approaches, aiming to approximate the distribution of future model parameters by normal
approximation.

Concerning the values of wr , we find that small aberration on each wr does not affect the optimal randomization scheme
notably. The operating characteristics of a design depend on the true model parameters more than wr . However, the true
model parameters are never known in practice. Instead of enrolling subgroups according to the optimal proportion, pi,
i = 1, . . . ,m, as suggested by the classical design framework,we convert them into randomization probability as it facilitates
the implementation of a trial that considers subgroup stratification. However, this approach would complicate the sample
size calculation especially when the prevalence rates of biomarkers are at the extreme end of the range. We consider using
a single model in the analysis such that subgroups with small sample sizes may borrow information from other subgroups
that have larger sample sizes.

We have presented the framework for normally distributed responses. We note that our framework could be extended
to nonlinear models where adjustments to the Bayesian data analysis, computation of wr , and the design criterion would be
required. When the model is nonlinear, the covariance matrix of the parameters may depend on the unknown parameters,
leading to issues with finding an optimal design. For a chosen value of the model parameters, the classical optimal design
framework could provide a locally optimal design. An alternative to this is to use a Bayesian optimal design framework
whereby a prior distribution of the model parameters is incorporated into the design criterion for finding an optimal design.
We note that the proposed framework is different to the commonly known Bayesian optimal design framework as we only
use historical data to estimate wr prior to finding an optimal design. Nevertheless, our framework could be extended to
the nonlinear situation accordingly. For example, the observed phase II data may be used to construct the prior distribution
for the unknown parameters in the Bayesian design framework, while the prior distribution in the Bayesian analysis of
phase II data reflects the prior knowledge or confidence of the clinicians on the future experiment. These two different
prior distributions could be the same or different. Other possible extensions of our framework could be the incorporation of
missing data, see Lee et al. (2017a), Lee et al. (2017b), and incorporation of cost functions, see Cook and Fedorov (1995).
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One of the potential topics for future research is to account for the population drift or change in baseline measure of
subgroups in the design framework. When data of control groups from several small trials that studied the same disease
are available, having a design framework that considers this aspect could be beneficial for the clinical community. See for
example Thall and Simon (1990) and Boonstra et al. (2016) who consider the design and information gain when historical
control data is incorporated, and van Rosmalen et al. (2017) for the review of methods for incorporating historical control
data. Besides that,we have not accounted for all the aspects of an analysis plan. For example,when a single statisticalmodel is
chosen to analyze all data, most of the hypotheses are not independent as the information fromdifferent subgroups is shared
across themselves. Futurework could focus on constructing optimal designs that account for issues such asmultiplicitywhile
optimizing the hypotheses selection as our design framework has done here. The issue that arose in subgroup sample size
calculations may also be incorporated and addressed in the prospective design framework.

To conclude, we have proposed a novel design framework for designing a biomarker driven confirmatory trial based on
the analysis of an observed experiment which provides an increased chance of determining which subgroups a targeted
treatment genuinely works in.
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