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We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are
linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of
two partial differential equations for two gauge invariant fields that describe the most general linear
perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a
function of its three parameters and find no unstable modes. In addition, we find that the lowest radial
overtone QNMs that are connected continuously to the gravitational l ¼ m ¼ 2 Schwarzschild QNM
dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave
function and l measures the number of nodes along the polar direction). Furthermore, the (lowest radial
overtone) QNMs with l ¼ m approach Reω ¼ mΩext

H and Imω ¼ 0 at extremality; this is a universal
property for any field of arbitrary spin jsj ≤ 2 propagating on a KNBH background (ω is the wave
frequency and Ωext

H the black hole angular velocity at extremality). We compare our results with available
perturbative results in the small charge or small rotation regimes and find good agreement.
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Introduction.—The uniqueness theorems [1,2] state that
the Kerr-Newman black hole (KNBH) [3,4] is the unique,
most general family of stationary asymptotically flat black
holes (BHs) of Einstein-Maxwell theory. It is characterized
by three parameters: massM, angular momentum J ≡Ma,
and charge Q. The Kerr, Reissner-Nordström (RN) and
Schwarzschild (SCHW) BHs constitute limiting cases:
Q ¼ 0, a ¼ 0, and Q ¼ a ¼ 0, respectively.
Given their uniqueness, the most relevant question to

consider is the linear mode stability of these BHs. It is
known that the Kerr, RN, and SCHW BHs are linear mode
stable. Indeed, the perturbation study of the linearized
Einstein(-Maxwell) equation gives the quasinormal mode
(QNM) spectrum of frequencies (that describes the damped
oscillations of the BH back to equilibrium) resulting in no
unstable modes [5–21] (see review [22]). Remarkably, for
these BHs, the QNM spectrum turns out to be encoded in
a single separable equation—known as the (odd mode)
Regge-Wheeler and (even mode) Zerilli equations [5–7]
(for RN and SCHW) and the Teukolsky equation [13] (for
Kerr, RN, and SCHW)—that effectively yields a pair of
ordinary differential equations (ODEs). Even though the
nonlinear stability of Kerr remains an open problem (see,
however, [23–25] for recent progress), it is also believed to
be stable beyond the linear level.
Unfortunately, it does not seem possible to cast a general

perturbation of a KNBH as a single partial differential
equation (PDE). Therefore, obtaining the QNM spectrum
of KNBHs requires solving coupled PDEs. Naïvely, one
expects to find a system of nine coupled PDEs. However,

working in the so-called phantom gauge Chandrasekhar
reduced the problem to the study of two coupled PDEs [15]
(see also [26]). Despite this significant progress, finding the
QNM spectrum and addressing the problem of the linear
mode stability of the KNBH has remained a major open
problem of Einstein-Maxwell theory since the 1980s, when
Chandrasekhar’s seminal work [15] was published.
Recently, there have been some notable efforts to address

this problem. References. [26–28] have found the QNM
spectrum in a perturbative small rotation and charge,
respectively, expansion around the RN and Kerr BHs.
These works find no sign of linear instability; however,
such an instability is more likely to be found in extreme
regimes where both Q and a are large. Another remarkable
effort to infer the (non-)linear stability of KNBHs has been
made in [29], where the full time evolution of some KNBH
with a given initial perturbation is considered, finding no
sign of a nonlinear instability. However, since nonlinear
simulations are computationally costly, the search in moduli
space is modest.
In this Letter, we derive two coupled PDEs that reduce to

the Chandrasekhar coupled PDE system upon gauge fixing
and compute the QNM spectrum of the KNBH to a high
degree of accuracy. Up to 99.999% of extremality, we find
no sign of a linear mode instability for any of the
gravitoelectromagnetic modes that are described by l ¼
1; 2; 3; 4 and jmj ≤ l. We use two distinct numerical
methods that have been developed to solve efficiently
similar systems of (several coupled) ODEs and PDEs that
appear in QNM, superradiant and ultraspinning instability
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studies [30–39]. One of these methods formulates the
problem as a quadratic eigenvalue problem in the frequency
and employs a pseudospectral grid collocation. The other
method searches directly for specific QNMs using a
Newton-Raphson root-finding algorithm. We refer the
reader to [30–39] for details. The pseudospectral exponen-
tial convergence of our method, and the use of quadruple
precision, guarantees that the results are accurate up to,
at least, the tenth decimal place.
Notation.—We use the standard nomenclature of the

Newman-Penrose formalism to denote components of the
curvatures, electromagnetic field strength, and connections
[40]. Xð0Þ denotes background quantities, while Xð1Þ
denotes a perturbed quantity at the linear order.
Formulation of the problem.—We write the KNBH

solution in standard Boyer-Lindquist coordinates ft; r;
θ;ϕg (time, radial, polar, azimuthal coordinates) [4]. Its
event horizon, with angular velocity ΩH and temperature
TH, is generated by the Killing vector K ¼ ∂t þ ΩH∂ϕ.
The location of the horizon rþ is given by the largest root
of the function Δ. These quantities are given in terms of
the parameters fM;a;Qg as follows:

Δ ¼ r2 − 2Mrþ a2 þQ2;

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2 −Q2
p

;

ΩH ¼ a
r2þ þ a2

;

TH ¼ 1

4πrþ

r2þ − a2 −Q2

r2þ þ a2
: ð1Þ

The KNBH has a regular extremal configuration when its
temperature vanishes and its angular velocity reaches a
maximum. For fixed M and Q, this occurs for the extremal
rotation parameter a ¼ aext ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

. Thus, at extrem-
ality (ext) we have

Text
H ¼ 0 ⇔ Ωext

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

2M2 −Q2
¼ aext

M2 þ a2ext
: ð2Þ

We consider the most general perturbation of a KNBH
(except for trivial modes that shift the parameters of the
solution). Using the fact that ∂t and ∂ϕ are Killing vector
fields of the Kerr-Newman (KN) background, we Fourier
decompose its perturbations as e−iωteimϕ. This introduces
the frequency ω and azimuthal quantum number m of the
perturbation. By formulating the perturbation problem in
the Newman-Penrose (NP) formalism, we obtain a set of
two coupled partial differential equations that describe the
perturbations of a KNBH

�

O−2 þ Φð0Þ
11 P−2

�

φ−2 þ Φð0Þ
11 Q−2φ−1 ¼ 0;

�

O−1 þ Φð0Þ
11 P−1

�

φ−1 þ Φð0Þ
11 Q−1φ−2 ¼ 0; ð3Þ

where differential operators fO;P;Qg are given in the

Supplemental Material [41], φ−2 ¼ Ψð1Þ
4 and φ−1 ¼

2Φð0Þ
1 Ψð1Þ

3 − 3Ψð0Þ
2 Φð1Þ

2 (the Ψ’s and Φ’s are standard NP
scalars defined in the Supplemental Material [41]).
Substituting the background values of the NP quantities,

the above equations reduce to

ðF−2 þQ2G−2Þψ−2 þQ2H−2ψ−1 ¼ 0;

ðF−1 þQ2G−1Þψ−1 þQ2H−1ψ−2 ¼ 0; ð4Þ

where second order differential operators fF ;G;Hg are
given in the Supplemental Material [41] and

ψ−2 ¼ ðr̄�Þ4Ψð1Þ
4 ;

ψ−1 ¼
ðr̄�Þ3

2
ffiffiffi

2
p

Φð0Þ
1

�

2Φð0Þ
1 Ψð1Þ

3 − 3Ψð0Þ
2 Φð1Þ

2

�

; ð5Þ

with r̄ ¼ rþ ia cos θ. We emphasise that ψ−2 and ψ−1 (as
well as φ−2 and φ−1) are gauge invariant perturbed
quantities; i.e., they are invariant under both linear diffeo-
morphisms and tetrad rotations. Furthermore, these are the
NP scalars that are relevant for the study of perturbations
that are outgoing at future null infinity and regular at

the future horizon [42]. Fixing a gauge in which Φð1Þ
0 ¼

Φð1Þ
1 ¼ 0, we obtain the Chandrasekhar coupled PDE

system [15] (see also the derivation in [26]). Finally, note
that in the limit Q → 0 and/or a → 0 these equations
decouple yielding the Teukolsky equation.
In order to solve these equations, we need to impose

appropriate boundary conditions. The t − ϕ symmetry of
the KNBH guarantees that we can consider only modes
with m ≥ 0, say, as long as we consider both positive and
negative ReðωÞ; when a ¼ 0, this enhances to a t → −t
symmetry and the QNM frequencies form pairs of
fω;−ω�g.
At spatial infinity, a Frobenius analysis of (4), and the

requirement that we have only outgoing waves, fixes the
decay to be (s ¼ −2;−1)

ψ sj∞ ≃ eiωrr−ð2sþ1Þþiω
r2þþa2þQ2

rþ

�

αsðθÞ þ
βsðθÞ
r

þ � � �
�

;

where βsðθÞ is a function of αsðθÞ and its derivatives along
θ, whose exact form is fixed by expanding (4) around
spatial infinity.
At the horizon, a Frobenius analysis, and requiring only

regular modes in ingoing Eddington-Finkelstein coordi-
nates, yields the near-horizon expansion

ψ sjH ≃ ðr − rþÞ−s−
iðω−mΩH Þ

4πTH ½asðθÞ þ bsðθÞðr − rþÞ þ � � ��;
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where bsðθÞ is related to asðθÞ and its tangential derivatives
along θ.
At the North (South) pole x≡ cos θ ¼ 1ð−1Þ, regularity

dictates that the fields must behave as (ε ¼ 1 for m ≥ 2,
while ε ¼ −1 for m ¼ 0; 1 modes)

ψ sjN;ðSÞ≃ ð1∓ xÞεð1�1=2Þðsþm=2Þ½A�
s ðrÞþB�

s ðrÞð1∓ xÞþ �� ��;

where Bþ
s ðrÞ[B−

s ðrÞ] is a function of Aþ
s ðrÞ[A−

s ðrÞ] and its
derivatives along r, whose exact form is fixed by expanding
(4) around the North (South) pole.
We consider only modes with the lowest radial overtone

(n ¼ 0) because these are the ones that have smaller jImωj,
and thus, they are the ones that dominate a time evolution
and are more likely to become unstable near extremality.
Note, also, that we can scale out one of the three parameters
of the solution. Thus, we work with the adimensional
parameters fa=M;Q=Mg (or fa=rþ; Q=rþg) and ωM.
Results and discussion.—Our primary aim is to find

whether KNBHs can be linear mode unstable. For that, we
study the QNM spectrum and check if there are modes with
Imω > 0. Note that, for Q, a → 0, we ought to recover
the SCHW QNMs. In this limit, there are two families of
QNMs, namely the Regge-Wheeler (odd or axial) modes
and the Zerilli (even or polar) modes. These families are
isospectral; i.e., they have exactly the same spectrum [15].
Thus, we only need to distinguish the gravitational modes
(described in Table Vof page 262 [15]—hereafter, Table of
[15]—by the eigenfunction Z2) from the electromagnetic
modes (described in Table of [15] by the eigenfunction Z1).
(These QNMs are also computed more accurately in more
recent studies; see [22]). Each of these is specified by the
harmonic number l ¼ 1; 2; 3; � � � (Z2 modes with l ¼ 1 are
pure gauge modes). When the BH has charge and rotation,
we have to scan a two parameter space in fQ=M; a=Mg.
The above two families become coupled gravitoelectro-
magnetic QNMs and the Schwarzschild eigenvalue l does
not appear explicitly in the KN PDEs (4). However, we can
still count the number of nodes along the polar direction of
the eigenfunctions of (4) and this gives l.
We perform a complete scan in fQ=M; a=Mg for modes

with l ¼ 1; 2; 3, jmj ≤ l (both in the Z1 and Z2 sectors).
For each family, we focus on QNMs with the lowest radial
overtone and smallest jImωj because these are the least
damped and could eventually become unstable for large J
and Q. Modes with l ¼ 4 are also studied, but there, we
focus on modes that approach Imω ¼ 0 at extremality. As
one of our main results, we do not find any unstable mode
with Imω > 0, even when we probe regions in parameter
space for which a=aext ¼ 0.99999. We see this as good
numerical evidence that the KNBH is linearly mode stable.
To illustrate our search, in Fig. 1, we take KNBHs with

Q ¼ a and we display all the QNMs that are continuously
connected to the gravitational Z2 SCHW QNM with

l ¼ 3, namely ωM ¼ 0.59944329 − 0.09270305i (see
Table of [15]). The different QNMs are distinguished by
their azimuthal number m ¼ 0; 1; 2; 3 and by whether they
have positive or negative Reω (modes with m ¼ 0 have a
pair of QNMs fω;−ω�g; see discussion above). All these
modes become degenerate in the Schwarzschild limit (red
disk in Fig. 1). We plot the imaginary (main plot) and real
(inset plot) parts of the frequency ωM as a function of
a=aext ¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

. We see that the most likely mode
to be unstable is the l ¼ 3 mode with Reω > 0 (magenta
triangles). However, we follow this mode up to a=aext ¼
0.99999 and find that, although the Imω quickly
approaches zero as a → aext, it never crosses Imω ¼ 0.
It is also relevant to ask what are the dominant QNMs,

i.e., the modes with the smallest jImωj. We find that the
QNM family that, in the Q, a → 0 limit, approaches the Z2

SCHW QNM with l ¼ m ¼ 2 with ωM ¼ 0.37367168 −
0.08896232i (Table of [15]) is the one that always (i.e., for
a given Q and a) has the smallest jImωj. Therefore, these
QNMs must be the dominant modes in a time evolution of
the KNBH. Since this mode is the most relevant in a time
evolution process, hereafter, we will use it to illustrate our
discussions (other modes will be presented elsewhere).
The plots of Fig. 2 (real part of ωM) and Fig. 3

(imaginary part of ωM) give details of the Z2, l ¼ m ¼
2 mode. We represent the QNMs of the Q ¼ a KNBH by
blue disks, but we also present the QNMs for KNBHs with
fixed charge Q=rþ (see plot legends) as the rotation grows
from zero to aext=M. Figure 2 shows that, as extremality is
approached, we always have Reω → 2Ωext

H . On the other
hand, Fig. 3 shows that Imω → 0− as extremality is
approached. Again, we emphasize that the last point of
each of these curves is, at least, at a ¼ 0.99999aext. Figure 1,
Fig. 2, and Fig. 3 illustrate a general property of the KN
QNMs with l ¼ m (both in the Z1 and Z2 sectors): as
extremality is approached one has Reω → mΩext

H and
Imω → 0−. Collecting previous results [14,20,43,44],

FIG. 1 (color online). All lowest radial overtone QNMs of
Q ¼ a KNBHs that start at the l ¼ 3 SCHW gravitational QNM
(red disc). Note that the family of axisymmetric QNMs (m ¼ 0)
form pairs of fω;−ω�g.
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particularly in [45], we can now state that this is a universal
property for any perturbation spin s. Note that [46] proved
that, at the onset of an instability, i.e., when Imω ¼ 0, the
superradiant inequality Reðω −mΩHÞ ≤ 0 must necessarily
be obeyed. We find that, as extremality is approached, the
linearized modes of KN saturate this superradiant condition
(but do not become unstable). As we discussed above, in
a three-dimensional fQ=M; a=M; ImðωMÞg plot, all the
l ¼ m ≠ 2 QNMs are below the Z2, l ¼ m ¼ 2.
Previously, there were some attempts to find the QNMs

of the KNBH using a perturbative analysis, notably for
small a around the RN QNMs [27,28] and for small Q
around the Kerr QNMs [26]. We use these perturbative
results to further check our results for small a or Q, thus,
establishing the regimes of validity of the aforementioned
approximations. To compare the two perturbative analyses
in a single graphic, it is convenient to look at QNMs with
Q ¼ a, see Fig. 4 (real part) and Fig. 5 (imaginary part). We
see that the approximations of [27,28] ([26]) are within 1%
of the exact results up to ∼25% (∼70%) of extremality.
The different accuracy of the two results is most probably
due to the fact that the weakly charged result is accurate

up to OðQ2=M2Þ [26], while the slowly rotating results are
accurate only up to Oða=MÞ [27,28].
Reference [29] considered the full time evolution of

some KNBHs with a given initial perturbation and found no
sign of a nonlinear instability, which is consistent with our
full parameter scan of the QNMs up to a=aext ¼ 0.99999.
Reference [29] also finds numerical evidence that some
l ¼ m ¼ 2 QNMs of a KNBH (with a=Q > 1) should

have the scaling ω ¼ ωða=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

Þ. We can test this
claim with higher accuracy and we find that it does not hold
(although it must be emphasized that our linear results are
well within the numerical accuracy of [29]; they differ by, at
most, 1%; the error in our results is �10−10 which is some
order of magnitudes smaller than this difference). Coming
back to the fact that these modes approach mΩext

H þ 0i
at extremality, this had to be the case since Ωext

H ≠
Ωext

H ða=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

Þ. To summarize, although the proposed
scaling fails to hold just by a small relative amount (less
than 1%), our numerical and analytical considerations show
that it is only approximate, but not exact.

FIG. 4 (color online). Comparison (for Reω) between the exact
l ¼ m ¼ 2 Z2 QNMs of KN with Q ¼ a (blue disks) with the
small a approximations of [27] (red diamonds with their 1% error
bar) and with the small Q approximations of [26] (green circles).

FIG. 3 (color online). Similar to Fig. 2 but now for ImðωMÞ.
FIG. 5 (color online). Similar comparison to that in Fig. 4 but
now for Imω.

FIG. 2 (color online). Real part of the QNM frequencies with
l ¼ m ¼ 2 of KNBHs with fixed Q=rþ ¼ 0.0; 0.2; � � � ; 0.9 that
start at the SCHW gravitational QNM with l ¼ 2 (red disc).
We also show the l ¼ m ¼ 2 QNMs of Q ¼ a KNBHs.
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