
Examining Raft’s behaviour during partial network
failures

Chris Jensen
chris.jensen@cl.cam.ac.uk
University of Cambridge

Cambridge, United Kingdom

Heidi Howard
heidi.howard@cl.cam.ac.uk
University of Cambridge

Cambridge, United Kingdom

Richard Mortier
richard.mortier@cl.cam.ac.uk
University of Cambridge

Cambridge, United Kingdom

Abstract
State machine replication protocols such as Raft are widely 
used to build highly-available strongly-consistent services, 
maintaining liveness even if a minority of servers crash. As 
these systems are implemented and optimised for production, 
they accumulate many divergences from the original specifi-
cation. These divergences are poorly documented, resulting 
in operators having an incomplete model of the system’s 
characteristics, especially during failures. In this paper, we 
look at one such Raft model used to explain the November 
Cloudflare outage and show that etcd’s behaviour during the 
same failure differs. We continue to show the specific opti-
misations in etcd causing this difference and present a more 
complete model of the outage based on etcd’s behaviour in an 
emulated deployment using reckon. Finally, we highlight the 
upcoming PreVote optimisation in etcd, which might have 
prevented the outage from happening in the first place.

CCS Concepts: • Computer systems organization →Avail-
ability; • Software and its engineering → Software test-
ing and debugging.

Keywords: Raft, Partial-Partition, etcd, Cloudflare
ACM Reference Format:
Chris Jensen, Heidi Howard, and Richard Mortier. 2021. Examining 
Raft’s behaviour during partial network failures. In 1st Workshop 
on High Availability and Observability of Cloud Systems (HAOC’21), 
April 26, 2021, Online, United Kingdom. ACM, New York, NY, USA, 
7 pages. https://doi.org/10.1145/3447851.3458739

1 Introduction
Modern cloud services are deployed across geographically 
distributed datacenters for performance and resilience. To 
manage configuration data, these deployments require highly-
available strongly-consistent databases like etcd [1], which 
is used in systems such as Kubernetes [2] and Openstack [3].

HAOC’21, April 26, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8336-3/21/04.
https://doi.org/10.1145/3447851.3458739

Follower Candidate Leader

starts up/
recovers

times out,
starts election

times out,
new election

receives votes from
majority of nodes

discovers new
term or leader

discovers new term

Figure 1. Transitions between the node states for Raft.

When implementing systems such as etcd, an implementa-
tion of Raft [20], many practical challenges arise that are not
covered by the original description.
Challenges for practical deployments include how to en-

sure performance (the system achieves high throughput and
low latency) and availability (the system can always respond
correctly to client requests). However, although the protocol
specification guarantees correctness, performance and avail-
ability depend on the state of the servers and network that
connects them. A recent outage at Cloudflare [17] showed the
importance of availability. There, despite a well-engineered
deployment of etcd, they experienced an extended service
impairment due to an intermittent failure in a load-balanced
switch. They state that the failure caused a partial network
partition within their etcd cluster which caused it to be live-
locked until the failure was resolved.

Following a brief introduction to Raft and partial network
partitions, we make the following contributions: (i) reckon,1
an open source benchmarking tool that allows for a wide
range of topologies and failures to be emulated; (ii) an elabo-
rated version of Cloudflare’s etcd postmortem, showing how
Raft can experience multiple leader elections during a partial
partition; (iii) we highlight some optimisations in etcd that
make the Raft based model inaccurate, and present a more
accurate model of the outage; (iv) we highlight PreVote as
an existing solution for these problems.

2 Background and related works
Raft [19, 20] is a leader-based consensus protocol for provid-
ing strongly consistent state machine replication (SMR) [22]
in the presence of node failures and faulty networks. From an
application programmer’s perspective, a deployment using
1https://github.com/cjen1/ reckon

1

11

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

https://doi.org/10.1145/3447851.3458739
https://doi.org/10.1145/3447851.3458739
https://github.com/cjen1/reckon
https://creativecommons.org/licenses/by-nc-sa/4.0/


A B

C

A B

C

Figure 2. Full (left) vs partial (right) partition.

SMR behaves as a single machine even when implemented
using physically distributed hosts. SMR is achieved in Raft
based systems by replicating a shared log, often read and
write requests, which can then be applied to a state machine.

Raft replicates the shared log by using rounds of decisions,
denoted by monotonically increasing terms, where within a
term a leader is elected to decide the ordering of new entries
appended to it. To prevent old leaders from influencing future
terms, every nodewill only participate in the newest (highest)
term it has heard of. Since each node includes its current
term in every message, messages from older (lower) terms
are rejected, and alert the sender to the new term.

Raft’s mechanism for transitioning to a new term is based
on first determining if the leader for that term has crashed
(or does not exist). Each follower tracks when it last heard
from the leader, and if that is greater than an election timeout,
as shown in Figure 1, it will become a candidate and call
an election. It does this by incrementing its term, sending
election requests to the other nodes and finally waiting for
a majority to vote for it. If the sender’s log is at least as up
to date as the recipient’s, and the recipient has not voted
for any other node during that term, it will vote for the
sender. In the situation that a candidate does not receive
sufficient votes within its timeout, it will retry with a higher
term. Additionally, leaders periodically send empty heartbeat
requests to their followers to avoid being declared crashed.

When a client wants to submit a request to be replicated,
it first contacts a random server, learns of the leader, and
dispatches its request directly to it. The leader will then add
that entry to its log before replicating it to the other nodes. If
a follower of the leader receives the message, it will add the
entry to its log and reply with an acknowledgement. Once
an entry has been added to the log of a majority of nodes,
the leader will mark it as committed, apply the request to its
state machine and return the result to the client.

The main reason for SMR as implemented in Raft and sim-
ilar protocols is that they increase the reliability of a system
by tolerating some nodes crashing, or being partitioned away
from the majority. For example, if a Raft cluster experiences
a full network partition, and the leader is partitioned from
the majority, then, having received no messages from the
leader, a node in the majority can call and win an election.
Although a node which is fully partitioned away from the
majority can be treated as having crashed, this is not the
case with partial partitions. For example, as seen in Figure 2

Coordinator Client Spawner

node: A

node: B

node: C

Mininet network

Operation

Response

Fai
lur
es

Figure 3. An exemplar deployment of reckon used in Sec-
tion 4. A Client Spawner emulates some number of clients
accessing the system from a given network gateway. An ex-
ternal Coordinator generates the mininet network and passes
the requests to the client spawner, as well as injecting failures
into the system.

given three fully-connected nodes, A, B and C, a full network
partition results in A being unable to communicate with B
and C, while in a partial network partition A can still com-
municate with C. This means that some information from A
can reach B via C. Since they are non-trivial to reason about
and can have a large impact on production cloud systems,
partial partitions are a problem that has recently drawn the
attention of the research community [5, 6].
As critical components in modern distributed systems,

there have been many studies of the performance of Raft and
other SMR protocols [13, 18, 21, 24]. However, most either
do not consider failures or consider only node crashes.
One approach, which allows one to test a wide variety

of failures, is to build a model of the system and simulate
injecting failures into it. An example of this is Paxi [4], a
prototyping framework for modelling strongly-consistent
replication protocols, that supports partial network failures.
However, it requires protocols to be re-implemented within
its framework and so modelling real-world systems results in
a parallel implementation being maintained. Having parallel
implementations can be problematic: it is common (as wewill
see in this paper with etcd and Raft) for the implementation
to diverge from the specification. Another separate modelled
implementation is an opportunity for further divergence.
Another approach is to try multiple deployments and in-

troduce failures into those. Both Jepsen [12] and NEAT [6]
use this approach. Jepsen is a database testing framework,
which takes a deployment of servers and applies requests
against them. Concurrently, it injects failures into these sys-
tems, for example killing nodes while the system is running
and checks the transactions for properties such as transac-
tion isolation and linearisability. Similarly, NEAT takes a
deployment of servers and injects partial partitions into it.
It has shown that partial partitions can cause data-loss due
to conflicting views of reality between nodes.

2

12



0 4,000 8,000 12,000 16,000 20,000 24,000

Achieved Rate (req/s)

0

50

100

150

200

L
a
te

n
c
y
 (

m
s
)

3

5

7

9

Number
of servers

(a) Median (solid line) and 99th percentile (dotted line) latency at the
achieved throughput when the target is increased from 1 to 24k req/s.

0 10 20 30 40 50 60 70 80 90 100

Latency (ms)

0.0

0.5

1.0

C
u

m
u

la
ti

v
e
 f

ra
c
ti

o
n

(b) Measured latency when driven at 10,000 req/s.

Figure 4. Write performance of etcd deployed with 𝑁 = 3, 5, 7, 9 nodes.

3 Emulating consensus
Reckon allows investigators to cheaply reproduce real world
failures by taking a midpoint between modelling everything
and physically reproducing the failure. Specifically, we use
Mininet [10, 15] to run a production system inside of an
emulated deployment and to inject failures into it. Although
this approach sacrifices some accuracy in terms of network
and node resource constraints, it allows us to cheaply test real
systems in a wide range of deployment and failure scenarios.
Mininet uses network namespaces and cgroups as light-

weight virtualisation mechanisms to emulate each node, con-
necting them using virtual Ethernet devices and software
switches. The result is that both node and network properties
can be varied dynamically by altering the Mininet configu-
ration. Though originally focused on testing new Software
Defined Networking approaches [14], it also allows arbitrary
programs to be run on the emulated nodes. Reckon thus
builds a specified topology in Mininet, deploys production
consensus systems and simulated clients to the virtualised
nodes, and exercises network configuration APIs to inject
failures. Figure 3 shows the setup used in Section 4.
A test begins with the Coordinator transferring a time

series of requests to the clients before waiting for a ready
signal from each client. Once all ready signals are received it
sends a synchronised start signal to all clients. This reduces
control path interference in the test results.
A key concern for a modern load generator is to avoid

coordinated omission [23], where a synchronous closed-loop
load generator delays sending subsequent requests, while
waiting for an exceptionally slow request to complete. Al-
though most load generators use a closed-loop client model,
most clients of cloud systems are open-loop, each submitting
only a small number of requests. This results in a mismatch
when only a single high latency request is observed when in
an open-loop model multiple requests would.
Two existing approaches to resolving this concern are

as follows: (i) use an open-loop load generator, as used in
NoSQLMark [9]; and (ii) record request latency starting from
when the request should have been sent rather than when it
was actually sent, as used by YCSB [8]. Although the latter

approach is simpler to implement and can have higher per-
formance, it also exhibits stalling artefacts during failures
where some requests do not return while others succeed. In
these cases, for each request a thread sends, if it does not
return that thread can no longer apply requests, thus eventu-
ally all threads will block. As a result, we use an open-loop
system model for the clients.
To provide some basic confidence in the tool, Figure 4

reports request latency and throughput of etcd running inside
reckon. For etcd, the maximum throughput we can test is
24 000 req/s and achieve a latency of 60ms to 100ms. At
target rates above 24 000 req/s, the arrival rate of requests will
exceed etcd’s maximum service rate and hence the number
of concurrent requests within etcd increases. Once a limit
is breached, etcd rejects requests with the error “too many
requests”, invalidating those tests.
For this test, and the tests in Section 4, we use a simple

topology of all nodes and a single client spawner connected
to a central switch. We do not limit the latency or bandwidth
of those links and thus, in theory, the links are instantaneous
with unlimited bandwidth, but in practice, they are limited by
the underlying hardware. The nodes are running etcd v3.4.14
with an election timeout of 500ms and a heartbeat of 100ms,
while the client spawner uses a single Golang v1.11 etcd
client v3.4.14 to asynchronously apply requests. The requests
are write requests to random 8 byte keys with 10 byte pay-
loads. The host system is running an Intel Xeon 4112 (16
core) processor, with 196GB of RAM and a Dell 4T7DD SSD.
Although each test has been run five times, for clarity we
only show a single representative trace.

4 Reproducing Cloudflare’s outage
On November 2nd 2020, Cloudflare experienced a failure for
six minutes in a load-balanced switch, during which time
their etcd cluster became unavailable [17]. As their database
cluster management system uses etcd for cluster member
discovery and coordination, etcd being unavailable caused it
to promote a new primary database. This in turn caused a
rebuild of all their replicas, putting their control plane in a
degraded state for six and a half hours.

3

13



They state that the failed switch created a partial partition,
blocking communication between two nodes (A and B) of
the three-node cluster. Since the follower (A) was no longer
receiving any communication from its leader (B), it “repeat-
edly initiated leader elections, voting for itself, while node
[C] repeatedly voted for node [B] which it could still connect
to”. This re-elected B and restarted the cycle. Since “leader
elections are disruptive, blocking all writes until they’re re-
solved”, this makes the cluster unavailable until the failure
is fixed.
We demonstrate the utility of reckon by emulating the

effect of the failed switch directly on an etcd cluster and
comparing its behaviour to what we would expect from Raft.
We model the scenario as follows. Our network is three

nodes connected directly to a central switch, as well as a
client spawner attached to the switch (Figure 3). To mimic
the failed switch and subsequent partial partition, we inject
iptables rules to block traffic. Finally, as the main impact of
the failure was to make the cluster unavailable to writes,
we use a write-only workload of 1000 reqs/s from a single
open-loop client.
Raft’s expected behaviour during a partial partition is

shown in Figure 5a. Although there may be multiple leader
elections, on each iteration C has an opportunity to call an
election which it can win with a vote from A. C’s promotion
would result in the partial partition no longer affecting the
cluster. Note that this possibility makes Cloudflare’s situation
more difficult to reproduce since their elections repeatedly
“did not promote a leader node [A] could reach”.

4.1 Leader crash
We begin by showing the standard behaviour of etcd when a
leader crashes (Figure 6a).When B is killed at 20 s, an election
occurs and, per the Raft specification, requests submitted dur-
ing this time are delayed until the election completes. When
B is brought back online at 40 s, it receives all the requests it
has missed, spiking its bandwidth to 2.5MB/s. Additionally,
since B coming online does not affect the availability of the
system, there is no change in successful requests.
The final feature of this figure is that rather than solely

messaging the leader, the client messages all nodes. This
is due to load-balancing behaviour in the clients and the
servers. Specifically, for each request, etcd clients dispatch it
to a node chosen by some strategy. If the recipient is not the
leader, it will forward the request to the leader. In etcd v3.4 it
maintains a separate TCP connection to each server and uses
a simple round-robin load-balancing strategy.2 Therefore,
the client sends an equal proportion of traffic to each node
and once B has failed, there is no more traffic between it and
the client. Sometime after B recovers the client retries the
connection and, finding it working, adds it back to the pool.

2https://github.com/etcd-io/ etcd/pull/9860

1 2 3* 4 5
C

A

B

(a) Possible behaviour of Raft: ➀ Initially B is the leader and can
replicate entries (black) to A and C.➁During the partition B can no
longer replicate entries to A. ➂ Since A is not receiving messages
from B, from its’ perspective B has crashed, so it increments its
term and calls an election (blue). The partition blocks the election
request to B, however C still receives it and hence updates its term
before rejecting the request (red) due to A’s missing log entries. (∗)
At this point, C can call an election.➃ If B tries replicating an entry,
C rejects it since B now has a lower term. As a result, B updates its
term and resigns. ➄ B can now call an election where C will vote
for it, returning the cluster to the same state as at the start of the
partition (➁).

1 2 3 4 5*

A

C

B

(b) etcd’s behaviour during a partial partition: ➀ Initially B is the
leader and can replicate entries to A and C. ➁ During the partition
B cannot replicate entries to A. ➂ From A’s perspective B has
timed out and it calls an election, but in contrast to Raft, C ignores
this request. As a result, B does not need to step down and can
continue to replicate requests. ➃ When the partition is removed,
A’s election request is received by B, which causes B to resign, and
➄ call another election, which it can win. (∗) After B steps down C
also has a chance to be elected.

Figure 5

4.2 Partial partition
Figure 6b shows a trace of etcd during a partial partition.
In contrast to the expected behaviour of Raft, etcd does not
experience any leader elections during the partition and
only experiences a single one afterwards. Additionally, even
though there are no leader elections, etcd clients experience
degraded performance throughout the partition, with a third
of requests being substantially delayed. A message trace of
etcd’s behaviour during the partial partition, reconstructed
from its logs, is shown in Figure 5b.

4

14

https://github.com/etcd-io/etcd/pull/9860


0.0

0.5

1.0

S
u

c
c
e
s
s

ra
te

0

2

0 5 10 15 20 25 30 35 40 45 50 55 60

Timestamp (s)

0.0

0.5

B
a
n

d
w

id
th

 (
M

B
/s

)

total
A-B
A-C
B-C
A-Client
B-Client
C-Client

Traffic
Direction

(a) Leader crash and subsequent recovery.

0.0

0.5

1.0

S
u

c
c
e
s
s

ra
te

0

2

0 5 10 15 20 25 30 35 40 45 50 55 60

Timestamp (s)

0.0

0.5

B
a
n

d
w

id
th

 (
M

B
/s

)

total
A-B
A-C
B-C
A-Client
B-Client
C-Client

Traffic
Direction

(b) Partial partition between A and its leader (B).

Figure 6. Rate of successful (completed in < 0.1 second) requests with bandwidth used under different conditions. Bandwidth
direction has been normalised to the naming convention in Figure 5. Failures are injected at 20s, recovery is at 40s.

Examining some optimisations that etcd has accumulated
explains why etcd’s behaviour diverges from Raft’s.

One of these optimisations is CheckQuorum. As discussed
in Section 6 of the Raft paper [20], CheckQuorum means that
if a node has a stable leader it will ignore election requests
from other nodes. It promotes stability when cluster mem-
bers change and “if a leader is able to get heartbeats to its
cluster, then it will not be deposed by larger term numbers.”
Although etcd enables this optimisation for followers, it

is currently disabled for leaders.3,4 This means that rather
than A’s election request causing C to reject B’s replication
request, it is ignored. Hence, B does not learn of A’s higher
term during the partition and can continue to service re-
quests. Once the partition is healed, B receives A’s requests
causing it to step down and another election is called.

The other optimisations are the client request forwarding
and round robin dispatch behaviour discussed in Section 4.1.
Considering requests that arrive at A during the partition
since A believes the leader has crashed, it has nowhere to
forward these requests. These requests time out and are suc-
cessfully retried against another node. Since the client uses
a simple round-robin stragtegy to choose targets, it will dis-
patch two third of its requests to B and C which will proceed
as normal and a third to A which will be delayed. Thus, we
arrive at a third of requests sent during the partition be-
ing delayed and, by our threshold, unsuccessful. Previous
versions of etcd’s client (<v3.4) would stop using the connec-
tion after detecting multiple failing requests. However the
approach was scrapped because it was “so tightly coupled
with old gRPC interface, that every single gRPC dependency
upgrade broke client behavior.”5 Although these requests are
delayed, they are still eventually successful, and hence are a
performance issue rather than an availability issue.
The final behaviour is that when the partition is healed

either B or C could be elected (in Figure 6b, C is elected). Since

3https://github.com/etcd-io/ etcd/ issues/12673
4https://github.com/etcd-io/ etcd/commit/a7a867c1
5https:// etcd.io/docs/v3.4/ learning/design-client/

0 1 2 3 4 5 6 7 8 9 ≥10

Number of elections

0

5

10

15

20

C
o
u

n
t

Figure 7. Number of elections before etcd elects C and re-
covers from an intermittent partial partition of A from B. We
stop the test after 10 partial partitions, and the first one is
always between the initial leader and a follower.

A did not receive updates from B during the partition, its
log will be missing entries. Thus, when an election is called
A can vote for either B or C, since they have longer logs.
Therefore, after the partition both B and C can be elected
having received a vote from A and themselves.

4.3 Intermittent partial partition
Using the behaviour shown in Figure 6b we can start to more
fully reproduce the failure observed by Cloudflare. In the
postmortem, Cloudflare states that the switch failure meant
that each server “only sees an issue with some of its traffic
due to the load-balancing nature of LACP”. We model this
failure as an intermittent partial partition that transitions
repeatedly between the partition being in place or removed.

Unfortunately this does not produce repeated leader elec-
tions throughout the failure. Instead, there is a window in
which C can call, and win, an election. Thus subsequent par-
titions will not affect the cluster. Figure 7 shows the number
of iterations before the cluster recovers.

4.4 Intermittent full partition
If instead we intermittently fully partition A from both B
and C, as in Figure 2 and Figure 8, then no matter which of
B or C is elected, A cannot reach it when the partition is put
back in place, causing the cycle to repeat. Additionally, as the
time between failures decreases it will cause a greater pro-
portion of time to be spent in leader elections. Although this

5

15

https://github.com/etcd-io/etcd/issues/12673
https://github.com/etcd-io/etcd/commit/a7a867c1
https://etcd.io/docs/v3.4/learning/design-client/


0.0

0.5

1.0

S
u

c
c
e
s
s

ra
te

0

2

180 200 220 240 260 280 300 320 340 360 380 400 420

Timestamp (s)

0.0

0.5

B
a
n

d
w

id
th

 (
M

B
/s

)

total
A-B
A-C
B-C
A-Client
B-Client
C-Client

Traffic
Direction

Figure 8. Intermittent full partition of a follower (A) from
the remainder of the cluster (B and C), transitioning every
10s between the partition being in place or healed.

0.0

0.5

1.0

S
u

c
c
e
s
s

ra
te

0

2

0 5 10 15 20 25 30 35 40 45 50 55 60

Timestamp (s)

0.0

0.5

B
a
n

d
w

id
th

 (
M

B
/s

)

total
A-B
A-C
B-C
A-Client
B-Client
C-Client

Traffic
Direction

Figure 9. Partial partition when PreVote is enabled

explanation diverges from Cloudflare’s network level failure,
it more closely replicates the application level behaviour of
multiple leader elections causing a prolonged outage.

5 Conclusion
In this paper, we have used reckon to reproduce Cloudflare’s
November 2020 outage in their etcd cluster. We show that
due to various optimisations in etcd, the explanation based
on Raft is incomplete. Specifically, although with Raft we
would expect a leader election soon after the partial network
partition is put in place, we find that due to etcd’s Check-
Quroum optimisation there are no leader elections except
one when the partition is healed. Additionally, we find that
during the partition, a third of requests are delayed due to
both etcd’s client dispatch strategy and etcd’s request for-
warding behaviour. Finally, we conclude that an intermittent
full partition of a follower from the remainder of the cluster
may have caused the outage. Although this diverges from
Cloudflare’s network level partial partition, it more closely
reproduces the high-level behaviour of repeated leader elec-
tions throughout the failure.

This class of failures, where a faulty node repeatedly calls
leader elections, disrupting the cluster is well known and
a theoretical fix exists. This fix is the PreVote optimisation,
which requires that before any node calls an election, it
first checks that it can be elected by requesting pre-votes
from nodes that would vote for it. This means that when the

80 100 120 140 160 180 200 220 240 260 280 300 320

Latency (ms)

0.0

0.5

1.0

C
u

m
u

la
ti

v
e
 f

ra
c
ti

o
n

Figure 10. CDF of write request latency in an edge style
deployment. This emulates 7 colocated nodes with 40ms
links between them, with write requests equally distributed
among the colocated clients. In this topology single round-
trip-time (RTT) (80ms) commits can only occur if the client
is co-located with the leader and dispatches directly to it.
Otherwise they achieve a minimum of either 2∗RTT (160ms)
by dispatching directly to the leader (or to the co-located
node which forwards to the leader); or 3 ∗ RTT (240ms) if
they choose to send to an intermediate node.

follower A is partitioned from the leader, although it will time
out and try calling an election, it will not get sufficient pre-
votes to do so, thus preventing it from disrupting the cluster.
PreVote has been available in etcd since v3.4,6 however, it was
not enabled by default due to concerns over its production-
readiness. It will be enabled, by default, in the upcoming
etcd v3.5 release. Figure 9 is the same test as in Figure 6b
except with PreVote enabled, and shows that there are no
leader elections throughout the partition nor an election
afterwards. Although PreVote would likely have prevented
the outage observed at Cloudflare, since it does not change
client request semantics, any requests sent to A during the
partition are still substantially delayed. Another potential fix
is via Overlay Networks [5, 7, 16]. These effectively reroute
around partial partitions, resulting in B’s messages to A
going via C. Additionally they may solve the more general
issue of delayed client requests since if a client can reach
both sides of a partition then communication between the
sides can occur via the client.
We believe that reckon can be a valuable tool for both

researchers looking to test a production system’s availability
in various deployments and failure scenarios, and for indus-
try practitioners looking to pre-emptively test edge cases
during development. In the future, we aim to expand our
analysis to systems such as Zookeeper [11], as well as edge
networks. To that end, we can currently emulate a simple
edge deployment. In Figure 10 we depict the CDF of request
latency in an edge style deployment and show that single
round-trip commits can only occur for a small fraction of
requests. We have made reckon available under open-source
licences, and we would warmly welcome pull requests for
new topologies, failure modes, and other features.

Acknowledgements. This work was supported in part
by EPSRC EP/R03351X/1 and EP/M02315X/1.
6https://kubernetes.io/blog/2019/08/30/announcing-etcd-3-4/

6

16

https://kubernetes.io/blog/2019/08/30/announcing-etcd-3-4/


References
[1] [n.d.]. etcd Project Homepage. https:// etcd.io. Accessed : 2021-01-08.
[2] [n.d.]. Kubernetes Project Homepage. https://kubernetes.io. Ac-

cessed : 2021-01-08.
[3] [n.d.]. Openstack Project Homepage. https://www.openstack.org.

Accessed : 2021-01-08.
[4] Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019.

Dissecting the Performance of Strongly-Consistent Replication Pro-
tocols. In Proceedings of the 2019 International Conference on Man-
agement of Data (Amsterdam, Netherlands) (SIGMOD ’19). Associ-
ation for Computing Machinery, New York, NY, USA, 1696–1710.
https://doi.org/10.1145/3299869.3319893

[5] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-
Kiswany. 2020. Toward a Generic Fault Tolerance Technique for Partial
Network Partitioning. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20). USENIX Association, 351–
368. https://www.usenix.org/conference/osdi20/presentation/
alfatafta

[6] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-
Kiswany. 2018. An Analysis of Network-Partitioning Failures in Cloud
Systems. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA,
51–68. https://www.usenix.org/ conference/osdi18/presentation/
alquraan

[7] Yair Amir and Claudiu Danilov. 2003. Reliable communication in over-
lay networks. In 2003 International Conference on Dependable Systems
and Networks, 2003. Proceedings. 511–520. https://doi.org/10.1109/
DSN.2003.1209961

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(Indianapolis, Indiana, USA) (SoCC ’10). Association for Computing
Machinery, New York, NY, USA, 143–154. https://doi.org/10.1145/
1807128.1807152

[9] Steffen Friedrich, Wolfram Wingerath, and Norbert Ritter. 2017. Coor-
dinated Omission in NoSQL Database Benchmarking. InDatenbanksys-
teme für Business, Technologie und Web. 215–225.

[10] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,
and Nick McKeown. 2012. Reproducible Network Experiments Using
Container-Based Emulation. In Proceedings of the 8th International Con-
ference on Emerging Networking Experiments and Technologies (Nice,
France) (CoNEXT ’12). Association for Computing Machinery, New
York, NY, USA, 253–264. https://doi.org/10.1145/2413176.2413206

[11] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale
Systems.. In USENIX annual technical conference. https://dl.acm.org/
doi/10.5555/1855840.1855851

[12] Kyle Kingsbury. [n.d.]. Jepsen: Distributed Systems Safety Research.
https:// jepsen.io

[13] Marios Kogias and Edouard Bugnion. 2020. HovercRaft: Achiev-
ing Scalability and Fault-Tolerance for Microsecond-Scale Datacen-
ter Services. In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys ’20). Association for
Computing Machinery, New York, NY, USA, Article 25, 17 pages.
https://doi.org/10.1145/3342195.3387545

[14] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Veríssimo, Chris-
tian Esteves Rothenberg, Siamak Azodolmolky, and Steve Uhlig. 2015.
Software-Defined Networking: A Comprehensive Survey. Proc. IEEE
103, 1 (2015), 14–76. https://doi.org/10.1109/JPROC.2014.2371999

[15] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network
in a Laptop: Rapid Prototyping for Software-Defined Networks. In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks (Monterey, California) (Hotnets-IX). Association for Com-
puting Machinery, New York, NY, USA, Article 19, 6 pages. https:

//doi.org/10.1145/1868447.1868466
[16] Zhi Li, Lihua Yuan, Prasant Mohapatra, and Chen-Nee Chuah. 2007.

On the analysis of overlay failure detection and recovery. Computer
Networks 51, 13 (2007), 3828–3843.

[17] Tom Lianza and Chris Snook. [n.d.]. A Byzantine failure in the real
world. https://blog.cloudflare.com/a-byzantine-failure-in-the-
real-world/ . Accessed : 2021-01-08.

[18] Parisa Jalili Marandi, Samuel Benz, Fernando Pedonea, and Kenneth P.
Birman. 2014. The Performance of Paxos in the Cloud. In Proceedings
of the 2014 IEEE 33rd International Symposium on Reliable Distributed
Systems (SRDS ’14). IEEE Computer Society, USA, 41–50. https://doi.
org/10.1109/SRDS.2014.15

[19] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Ph.D.
Dissertation. Stanford University. https://web.stanford.edu/~ouster/
cgi-bin/papers/OngaroPhD.pdf .

[20] Diego Ongaro and John Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference (Philadelphia,
PA) (USENIX ATC’14). USENIX Association, USA, 305–320. https:
//dl.acm.org/doi/10.5555/2643634.2643666

[21] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Dumitrel
Loghin, Beng Chin Ooi, and Meihui Zhang. 2019. Blockchains and
Distributed Databases: a Twin Study. arXiv:1910.01310 [cs.DB]

[22] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4
(Dec. 1990), 299–319. https://doi.org/10.1145/98163.98167

[23] Gil Tene. [n.d.]. How NOT to measure latency. https://www.infoq.
com/presentations/ latency-response-time/ Accessed : 2021-02-09.

[24] ZhaoguoWang, Changgeng Zhao, Shuai Mu, Haibo Chen, and Jinyang
Li. 2019. On the Parallels between Paxos and Raft, and How to Port
Optimizations. In Proceedings of the 2019 ACM Symposium on Prin-
ciples of Distributed Computing (Toronto ON, Canada) (PODC ’19).
Association for Computing Machinery, New York, NY, USA, 445–454.
https://doi.org/10.1145/3293611.3331595

7

17

https://etcd.io
https://kubernetes.io
https://www.openstack.org
https://doi.org/10.1145/3299869.3319893
https://www.usenix.org/conference/osdi20/presentation/alfatafta
https://www.usenix.org/conference/osdi20/presentation/alfatafta
https://www.usenix.org/conference/osdi18/presentation/alquraan
https://www.usenix.org/conference/osdi18/presentation/alquraan
https://doi.org/10.1109/DSN.2003.1209961
https://doi.org/10.1109/DSN.2003.1209961
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2413176.2413206
https://dl.acm.org/doi/10.5555/1855840.1855851
https://dl.acm.org/doi/10.5555/1855840.1855851
https://jepsen.io
https://doi.org/10.1145/3342195.3387545
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://doi.org/10.1109/SRDS.2014.15
https://doi.org/10.1109/SRDS.2014.15
https://web.stanford.edu/~ouster/cgi-bin/papers/OngaroPhD.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/OngaroPhD.pdf
https://dl.acm.org/doi/10.5555/2643634.2643666
https://dl.acm.org/doi/10.5555/2643634.2643666
https://arxiv.org/abs/1910.01310
https://doi.org/10.1145/98163.98167
https://www.infoq.com/presentations/latency-response-time/
https://www.infoq.com/presentations/latency-response-time/
https://doi.org/10.1145/3293611.3331595

	Abstract
	1 Introduction
	2 Background and related works
	3 Emulating consensus
	4 Reproducing Cloudflare's outage
	4.1 Leader crash
	4.2 Partial partition
	4.3 Intermittent partial partition
	4.4 Intermittent full partition

	5 Conclusion
	References



