
Multilayer Codes for Synchronization from Deletions
Mahed Abroshan

University of Cambridge
ma675@cam.ac.uk

Ramji Venkataramanan
University of Cambridge

ramji.v@eng.cam.ac.uk

Albert Guillén i Fàbregas
ICREA & Universitat Pompeu Fabra

University of Cambridge
guillen@ieee.org

Abstract—A coding scheme is proposed for synchronization
from a small number of deletions via a one-way error-free link.
The scheme is based on multiple layers of Varshamov-Tenengolts
codes combined with off-the-shelf linear error-correcting codes.

I. INTRODUCTION

Consider two remote nodes having binary sequences X and
Y , respectively, where Y is an edited version of X . In this
paper, we consider the edits to be deletions. Let the length
of X be n bits, and the number of deletions be k. Thus, Y
is a sequence of length m = (n − k), obtained by deleting
k bits from X . In the synchronization model shown in Fig.
1, the node with X (the “encoder”) sends a message M via
an error-free link to the other node (the “decoder”), which
attempts to reconstruct X using M and Y . The goal is to
design a scheme so that the decoder can reconstruct X with
minimal communication, i.e., we want to minimize the number
of bits used to represent the message M .

The deletion model considered here is a simplified version
of the general file synchronization problem where the edits can
be a combination of deletions, insertions, and substitutions.
The general synchronization problem has a number of appli-
cations including file backup (e.g., Dropbox) and file sharing.
Various forms of the synchronization model have been studied
in previous works; see, e.g., [1]–[4]. A number of these works
allow two-way interaction between the encoder and decoder.

In contrast, we seek codes for one-way synchronization:
the message M is produced by the encoder using only X ,
with no knowledge of Y except its length m. We assume that
the decoder knows n, so it can infer the number of deletions
k = (n − m). The message M belongs to a finite set M
with cardinality |M|. The synchronization rate is defined as
R = log2|M|

n . We would like to design a code for reliable
synchronization with R as small as possible; R = 1 is
equivalent to the encoder sending the entire string X .

In this paper, we construct a code for synchronization from
deletions when the number of deletions k is small compared to
n. The output of the decoder is a small list of sequences that
is guaranteed to contain the correct sequence X . Though we
do not provide theoretical bounds on the list size, we observe
from simulations that with a careful choice of code parameters,
the list size rarely exceeds 2 or 3; for reasonably large n, the
list size can be made 1, i.e., X is exactly reconstructed. For

This work has been funded in part by the European Research Council under
ERC grant agreement 259663 and by the Spanish Ministry of Economy and
Competitiveness under grant TEC2016-78434-C3-1-R.

Encoder M Decoder
X

Y

X̂

Fig. 1: Synchronization Model

example, we construct a code of length n = 378 that can
synchronize from k = 7 deletions with R = 0.365, and a
length n = 2800 code which can synchronize from k = 10
deletions with R = 0.135. (Details in Section IV.)

Overview of code construction: The starting point for our
code construction is the family of Varshamov-Tenengolts (VT)
codes [5], [6]. Each VT code is a single deletion correcting
code. As observed in [7], the VT family gives an elegant way
to exactly synchronize from a single deletion: the encoder
simply sends the VT syndrome of the sequence X . The VT
syndrome, defined in the next section, indicates which VT
code X belongs to. The decoder then uses the single deletion
correcting property of the VT code to recover the deleted bit.

In our model, the code needs to synchronize from k > 1
deletions. The encoder sends the VT syndromes of various
substrings of X to the decoder. The length n sequence X is
divided into smaller chunks of nc bits each. The encoder then
computes VT syndromes for two kinds of substrings: blocks
which are composed of adjacent chunks, and chunk-strings
which are composed of well-separated chunks. Fig. 2 shows
an example where X of length 12 is divided into 4 length-3
chunks. The blocks B1 and B2 are each formed by combining
two adjacent chunks, while the chunk-strings C1 and C2 are
each formed by combining two alternate chunks. In this case,
the encoder sends the VT syndromes of B1, B2, C1, and C2.

The intersecting VT constraints of the blocks and the
chunk-strings help the decoder to iteratively determine the
approximate locations of the edits. The VT syndromes serve
a dual purpose: i) they can be used to recover deleted bits in
blocks or chunk-strings inferred to have a single deletion; this
recovery may result in new blocks and chunk-strings with a
single deletion; ii) the VT syndromes also act as checks that
eliminate a large number of deletion patterns, allowing the
decoder to localize the deletions to a relatively small set of
chunks. The final ingredient of the message is a parity check
syndrome of X using a linear code. This is used to recover the
deletions in chunks that still remain uncertain at the decoder
after processing the intersecting VT constraints.

C1
1 = x1x2x3 C1

2 = x4x5x6 C2
1 = x7x8x9 C2

2 = x10x11x12

C1 = x1x2x3x7x8x9 C2 = x4x5x6x10x11x12

B1 = x1x2x3x4x5x6 B2 = x7x8x9x10x11x12

Fig. 2: Blocks and chunk-strings structure for the example where l1 = l2 = 2

We refer to this code construction as a two-layer code as
the chunks are combined to form two kinds of intersecting
substrings. The construction can be generalized to combine
chunks in multiple ways to form many layers of intersecting
substrings. Increasing the number of constraints in the code
improves its synchronization capability at the cost of increas-
ing the rate and decoding complexity.

The problem of one-way synchronization from k deletions
is closely related to the problem of communicating over a dele-
tion channel that deletes k bits from a length n codeword [8].
The channel coding version of the proposed code construction
will be discussed in an extended version of this paper.

Notation: We denote scalars using lower-case letters and
sequences using capital letters. The subsequence of X from
index i to index j is denoted by X(i : j) = xixi+1 · · ·xj .
Matrices are denoted by bold capitals. We use brackets for
merging sequences, so X = [X1, · · · , Xu] is a super-sequence
defined by concatenating the sequences X1, · · · , Xu.

II. CODE CONSTRUCTION AND ENCODING

We begin with a review of VT codes. The VT syndrome of
a binary sequence W = (w1, . . . , wn) is defined as

syn(W) =

n∑
j=1

j wj (mod(n+ 1)). (1)

For positive integers n and 0 ≤ s ≤ n, we define the VT code
of length n and syndrome s, denoted by

VTs(n) =
{
W ∈ {0, 1}n : syn(W) = s

}
, (2)

as the set of sequences W of length n for which syn(W) = s.
The n+ 1 sets VTs(n) ⊂ {0, 1}n, for 0 ≤ s ≤ n, partition

the set of all sequences of length n. Each of these sets VTs(n)
is a single-deletion correcting code. The complexity of the VT
decoding algorithm is linear in the code length n [9].

Constructing the message: The message M generated by
the encoder consists of three parts, denoted by M1,M2, and
M3. The first part comprises the VT syndromes of the blocks,
the second part comprises the VT syndromes of the chunk-
strings, and the third part is the parity check syndrome of X
with respect to a linear code.

The first step is to divide X = x1x2 · · ·xn into l1 equal-
sized blocks (assume that n is divisible by l1). The length of
each block is denoted by nb = n

l1
. For 1 ≤ i ≤ l1, the ith

block is denoted by Bi = X((i− 1)nb + 1 : inb), and its VT
syndrome is sBi = syn(Bi). The first part of the message is

the collection of VT syndromes for the l1 blocks, i.e., M1 =
{sB1 , sB2 , · · · , sBl1

}. Since each sBi is an integer between
0 and nb, the number of bits required to represent the VT
syndromes of the l1 blocks is l1dlog(nb + 1)e.

For the second part of the message, we divide each block
into l2 chunks, each of size nc bits. We assume that n

l1
is

divisible by l2; the length of X is n = ncl1l2. For 1 ≤ j ≤ l2,
the jth chunk within the ith block is denoted by

Ci
j = X((i− 1)nb + (j − 1)nc + 1 : (i− 1)nb + jnc). (3)

The jth chunk-string is then formed by concatenating the jth
chunk from each of the l1 blocks. That is, the jth chunk string
Cj = [C1

j , C
2
j , · · · , C

l1
j], for 1 ≤ j ≤ l2. Fig. 2 shows the

blocks and the chunk-strings in an example where X of length
n = 12 is divided into l1 = 2 blocks, each of which is divided
into l2 = 2 chunks of nc = 3 bits.

The second part of the message is the collection of
VT syndromes for the l2 chunk-strings, i.e., M2 =
{sC1

, sC2
, · · · , sCl2

}, where sCj
denotes the VT syndrome

of the jth chunk string. Since the length of each chunk-string
is ncl1, each sCj

is an integer between 0 and ncl1. Therefore
the number of bits required to represent the VT syndromes of
the l2 chunk-strings is is l2dlog(ncl1 + 1)e.

The final part of the message is the parity check syndrome
of X with respect to a linear code. Consider a linear code
of length n with parity check matrix H ∈ {0, 1}z×n. Then
M3 = HX is the third component of M . The coset of the
linear code containing X will be used as an erasure correcting
code. In our experiments in Sec. IV, the linear code is chosen
to be either a Reed-Solomon code, or a random linear code
defined by a random binary parity check matrix. The number
of bits in M3 is equal to the number of rows of H , i.e., number
of binary parity checks in the code, z. The overall number of
bits required to represent the message M = [M1,M2,M3] is

l1dlog2(nb + 1)e+ l2dlog2(ncl1 + 1)e+ z. (4)

Since nb = ncl2, normalizing by n = ncl1l2 gives the
synchronization rate R of our scheme

R =
z

n
+
dlog2(ncl2 + 1)e

ncl2
+
dlog2(ncl1 + 1)e

ncl1
. (5)

Example 1. Suppose that we want to design a code for
synchronizing a sequence of length n = 60 from k = 4
deletions. Choose the chunk length nc = 4, so that there
are 15 chunks in the string. Divide the string into l1 = 5
blocks, each comprising l2 = 3 chunks. Thus there are 5 blocks
each consisting of 3 adjacent chunks, and 3 chunk-strings each
consisting of 5 separated chunks.

We use a Reed-Solomon code defined over GF (24) with
length 24−1 = 15. We also choose the parity check matrix to
have 4 parity check equations in GF (24), so we can recover
4 erased chunks using this Reed-Solomon code.

Assume that the sequence X in GF (24) is

X = [4 10 5 0 3 14 7 7 1 0 2 4 4 6 8]T . (6)

0

2

3

a

1

2

3

b

1c

d
Discarded

h
Discarded

2e
(0, 1, 2)

1f
(0, 2, 1)

g
Discarded

i

j

Fig. 3: Tree representing the valid block vectors for Example 2.

Each symbol above represents a chunk of nc = 4 bits. The
first block [4 10 5] in binary is B1 = 0100 1010 0101. The
VT syndrome of this sequence is sB1 = syn(B1) = 10. The
VT syndromes of the other four blocks are 6, 3, 4, and 11,
respectively. We therefore have M1 = {10, 6, 3, 4, 11}.

We similarly compute M2. The first chunk-string [4 0 7 0 4]
in binary is C1 = 0100 0000 0111 0000 0100, with VT
syndrome sC1 = 11. Computing the VT syndromes of the other
chunk-strings in a similar manner, we get M2 = {11, 20, 4}.

The final part of the message is the syndrome of X with
respect to the Reed-Solomon parity check matrix. We use the
following parity check matrix H in GF (24):

H =


1 1 1 1 · · · 1
1 2 4 8 · · · 214

1 4 3 12 · · · 22(14)

1 8 12 10 · · · 23(14)

 (7)

to compute M3 = HX = [11, 6, 13, 2]T . As z = 16
bits are needed to represent the parity check syndrome, the
total number of bits to convey the message is 5dlog(13)e +
3dlog(21)e+ 16 = 51 bits.

III. DECODING ALGORITHM

The goal of the decoder is to recover X given Y , n
and the message M = [M1,M2,M3]. From M1,M2, the
decoder knows the VT syndrome of each block and each
chunk-string. Using this, the decoder first finds all possible
configurations of deletions across blocks, and then for each
of these configurations, it finds all possible chunk deletion
patterns. Since each chunk is the intersection of a block and a
chunk-string, each chunk plays a role in determining exactly
two VT syndromes. The intersecting construction of blocks
and chunk-strings enables the decoder to iteratively recover the
deletions in a large number of cases. The decoder is then able
to localize the positions of the remaining deletions to within
a few chunks. These chunks are considered erased, and are
finally recovered by the erasure-correcting code. The decoding
algorithm consists of six steps, as described below.

Step 1: Block boundaries

In the first step, the decoder produces a list of candidate
block-deletion patterns V = (a1, · · · , al1) compatible with

Y , where ai is the number of deletions in the ith block. Each
pattern in the list should satisfy

∑l1
i=1 ai = k with 0 ≤ ai ≤ k.

The list of candidates always includes the true block-deletion
pattern. It is convenient to represent the candidate block-
deletion patterns as branches on a tree of depth l1, as shown
in Fig. 3. At every level (block) i = 1, . . . , l1, branches are
added and labeled with all possible values of ai. Specifically,
the tree is constructed as follows.

Depth 1 of the tree: Consider the first nb received bits
Y (1 : nb), compute its VT syndrome u = syn(Y (1 : nb)) and
compare it with sB1

, the correct syndrome of the first block.
There are two alternatives for the k branches of the first level.

1) u = sB1 : First, the decoder adds a branch with a1 = 0,
corresponding to the case that the first nb bits are
deletion-free. The first block cannot have just one dele-
tion, because in this case the single-deletion correcting
property of the VT code would imply that u 6= sB1

. How-
ever, it is possible that two or more than two deletions
happened in block one, and by considering additional
bits from the next block, the VT-syndrome of first nb
bits accidentally matches with sB1

. For example, consider
blocks of length nb = 4, and let the first two blocks of X
be 0100 1111 . . ., with the underlined bits deleted we get
Y = 001111 In this case u = sB1 = 2. The decoder
thus adds a branch for a1 = 0, 2, . . . , k.

2) u 6= sB1
: Block one contains one or more deletions and

the decoder adds a branch for a1 = 1, 2, . . . , k.
Depth i+ 1, 1 ≤ i < l1: Assume that we have constructed

the tree up to depth i. Consider a branch of the tree at depth
i with the number of deletions in blocks 1 through i given by
a1, a2, · · · , ai, respectively. This gives us the starting position
of block (i+ 1) in Y . Denote this starting position by

pi+1 = nbi− di + 1. (8)

where di =
∑i

j=1 aj is the number of deletions on the branch
up to block i. Compute the VT syndrome of next nb bits u =
syn (Y (pi+1 : pi+1 + nb − 1)). There are two alternatives:

1) u = sBi+1
: If (k−di) < 2 then the only possibility is that

ai+1 = 0. Instead, if (k − di) ≥ 2, k − di − 1 branches
are added for ai+1 = 0, 2, . . . , k − di.

2) u 6= sBi+1
: If (k − di) > 0 then there are (k − di)

possibilities at this branch: the ith block can have
1, 2, · · · , (k−di) deletions. If (k−di) = 0, it is assumed
this is an invalid branch, and the path is discarded.

Example 2. Assume k = 3 deletions, l1 = 3 blocks, and
that the true deletion pattern is (0,2,1), i.e., there are zero
deletions in the first block, two deletions in second block, and
one deletion in third block. The tree constructed by the decoder
depends on the underlying sequences X and Y . In Fig. 3,
we illustrate one possible tree constructed for this scenario
without explicitly specifying X and Y .

Assume that in the first step, the syndrome matches with
sB1

, so we have a1 = 0, 2, or 3 . At node b (corresponding
to a1 = 0), suppose that the syndrome does not match with
sB2 , so we have a2 = 1, 2, or 3. Now suppose that at nodes

c and d, the syndrome does not match with sB2
. At node d,

a1 = 3, so there are no more deletions available for the second
block; so this branch is discarded. At node c, a1 = 2, so the
only possibility is one deletion in the second block. Then if
the syndrome at node h does not match sB3

, the branch is
discarded. At nodes e and f, we assign the remaining deletions
to the last block. At node g, the syndrome does not match with
a3, and the branch is discarded.

Step 2: Primary fixing of blocks

Denote by r1 the size of the list after the first step and denote
the corresponding block-deletion patterns by V1, · · · , Vr1 . In
this second step, for each of the block-deletion patterns, we
restore the deleted bit in blocks containing a single deletion
by using the VT decoder. Specifically, for every block-deletion
pattern V = (a1, · · · , al1), let the ith block of Y with respect
to V be S = Y (pi : pi + nb − ai − 1) where pi is the starting
position of the ith block in Y , defined analogously to (8). If
ai = 1, feed the sequence S to the VT decoder and in Y ,
replace S with the decoded sequence. After this, the ith block
in Y is deletion free, so update the block-deletion pattern V
by setting ai = 0. We carry out this procedure for all blocks
with one deletion in V . This results in a sequence Ŷ , which
is obtained from Y by recovering the single-deletion blocks
corresponding to block-deletion pattern V . Denote the updated
version of block-deletion pattern V by V̂ . Thus at the end of
this step, we have r1 updated candidate sequences Ŷ1, · · · , Ŷr1
with corresponding block-deletion patterns V̂1, · · · , V̂r1 .

Example 3. Consider the code of Example 1 with l1 = 5
blocks, and k = 4 deleted bits. If the list of block-deletion
patterns at the end of the first step is V1 = (1, 1, 1, 1, 0), V2 =
(1, 1, 2, 0, 0), V3 = (1, 2, 1, 0, 0), V4 = (2, 0, 2, 0, 0), then the
updated list of block-deletion patterns is V̂1 = (0, 0, 0, 0, 0),
V̂2 = (0, 0, 2, 0, 0), V̂3 = (2, 0, 0, 0, 0), V̂4 = (2, 0, 2, 0, 0).

Step 3: Chunk Boundaries

In this step, for each updated block-deletion pattern V̂
and the corresponding Ŷ , we list all possible allocations of
deletions across chunks. More precisely, for each pair (Ŷ , V̂)
we list all possible l1 × l2 matrices A = (aij), where aij is
the number of deletions in the jth chunk of the ith block, such
that

∑l2
j=1 aij = ai, the ith entry of V̂ . The jth column of

matrix A, specifies the number of deletions in the l1 chunks
of the jth chunk-string. For example, some of the possible
matrices for V̂4 = (2, 0, 2, 0, 0) in Example 3 are

A1 =


1 1 0
0 0 0
0 1 1
0 0 0
0 0 0

 A2 =


2 0 0
0 0 0
0 1 1
0 0 0
0 0 0

 A3 =


1 0 1
0 0 0
1 0 1
0 0 0
0 0 0

 .
(9)

The algorithm that lists all chunk-deletion matrices A com-
patible with a given block-deletion pattern V̂ = (a1, . . . , al1)
is completely analogous to the tree construction described in
Step 1. In this case, for each block-deletion pattern V̂ , another

tree will be constructed, with each path in the tree representing
a valid chunk-deletion matrix A. A detailed description of this
tree construction is given in [10, p.4]

Step 4: Iterative correction of blocks and chunk-strings

At the end of step 3, the decoder provides a list of pairs
(Ŷ ,A), where Ŷ is a candidate sequence to be decoded
using the chunk-deletion pattern matrix A, with aij being the
number of deletions in the jth chunk of the ith block. Denote
the number of such pairs in the list by r3.

Similarly to step 2, in step 4 we use the VT syndromes
(known from M1 and M2) to recover deletions in blocks
and chunk-strings for which the matrix A indicates a single
deletion. Whenever a deletion recovered using a VT decoder
lies in a chunk different from the one indicated by A, the
candidate is discarded. Simulations indicate that this is an
effective way of discarding several invalid candidates. The
iterative procedure is described in detail in [10, p.5]. Denote
the updated candidate pairs at the end of this procedure by
(Ỹ , Ã), and assume there are r4 of them.

As an illustrative example, consider the three chunk-
matrices given in (9). In A1, we can successfully recover all
the deletions. In A2, we can only fix two deletions in the
third block. However, for A3, we cannot recover any of the
deletions. Thus, the updated Ã matrices are

Ã1 =


0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 Ã2 =


2 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 Ã3 =


1 0 1
0 0 0
1 0 1
0 0 0
0 0 0

 .
(10)

Step 5: Replacing deletions with erasures

In this step, for each of the r4 surviving pairs (Ỹ , Ã), we
replace each chunk of Ỹ that still contains deletions with nc
erasures. Hence, if there are ν chunks with deletions (where
0 ≤ ν ≤ k), the resulting sequence will have length n, with
ncν erasures and no deletions. Notice that this operation of
replacing with erasures can be performed without ambiguity
since Ã precisely indicates the starting position of each chunk
and also the number of deletions within that chunk.

The purpose of the linear code is to recover from the
remaining erasures. The minimum distance of the linear code
should be large enough to guarantee that we can resolve all the
νnc erased bits. In Example 1 with four deletions, we will have
at most ν = 4 erased chunks, so we choose a Reed-Solomon
code with 4 parity check equations in GF (24). Some invalid
candidates may be discarded in the process of correcting the
erasures as we may find that the parity check equations cannot
be solved.

Step 6: Discarding invalid candidates

The reconstructed sequences at the end of Step 5, denoted
by X̂ , all have length n and are deletion free. For each of the
r5 sequences X̂ , we check the VT and parity-check constraints
for each of the block and chunk-strings and discard those

not meeting any of the constraints. The surviving r6 distinct
sequences comprise the final list produced by the decoder.

The final list of reconstructed sequences comprises all
length-n sequences that can be obtained by adding k bits to
Y and also satisfy all the VT and parity check constraints.
The correct sequence is always among the r6 candidates. The
synchronization algorithm is said to be zero-error if and only if
r6 = 1 for all sequences and deletion patterns. When r6 > 1,
the list size can be further reduced if additional hash functions
or cyclic redundancy checks are available from the encoder.

IV. NUMERICAL EXAMPLES

To understand the effect of the various system parameters,
we considered the setups shown in Table I. For each setup,
the performance was recorded over 106 simulation trials. In
each trial, the sequence X and the k deletion locations were
chosen independently and uniformly at random. For the first
five setups, we used parity check constraints from a Reed-
Solomon code over GF (2nc) with code length (2nc − 1). For
example, setup 5 uses 7 parity check constraints from a Reed-
Solomon code over GF (26), corresponding to z = 42 parity
bits. In the last two setups, denoted with asterisks, we used
a random linear code, i.e., z binary parity check constraints
drawn in an equiprobable manner.

TABLE I: Number of deletions and code parameters for each setup.

k n l1 l2 nc z R

Setup 1 3 60 5 3 4 4 0.650
Setup 2 3 60 5 3 4 8 0.717
Setup 3 3 60 5 3 4 12 0.783
Setup 4 4 60 5 3 4 16 0.850
Setup 5 7 378 9 7 6 42 0.365
Setup 6 7 486 9 9 6 50∗ 0.325
Setup 7 10 2800 20 20 7 60∗ 0.135

TABLE II: List size after each step.

r̄1 r̄3 r̄4 r̄6 max r6 r6 > 1

Setup 1 1.87 1.92 1.42 1.003 3 3256
Setup 2 1.87 1.92 1.42 1.000 2 25
Setup 3 1.87 1.92 1.42 1 1 0
Setup 4 3.39 6.18 2.53 1 1 0
Setup 5 11.51 74.43 3.42 1 1 0
Setup 6 11.20 28.64 2.55 1 1 0
Setup 7 12.76 26.16 1.57 1 1 0

Table II shows the list sizes of the number of candidates at
the end of various steps of the decoding process. Recall that r1
is the number of candidate block-deletion patterns at the end
of step 1, r3 is the number of pairs (Ŷ ,A) at the end of step
3, r4 is the number of pairs (Ỹ , Ã) at the end of step 4, and r6
is the number of sequences X̂ in the final list. Over 106 trials,
the average of ri is denoted by r̄i, the column max r6 shows
the maximum size of the final list, and the column r6 > 1
shows the number of trials for which r6 > 1.

The first three setups have identical parameters, except for
the number of Reed-Solomon parity checks. We observe that
adding more parity check constraints increases the rate and
improves decoding performance by reducing the number of
trials with list size greater than one.

The fourth setup is precisely the code described in Example
1. It has the same values of (nc, l1, l2) as the first three
setups but with a larger number of deletions and parity check
constraints. We observe that increasing the number of deletions
(with nc, l1, l2 unchanged) increases the average number of
candidates in the different decoding steps. In general, choosing
l1 ≥ k ensures that the average list size after step 1 is small.

The fifth setup is a more practical code with length n =
378, and k = 7 deletions. Though the final list size is always
one, there are a large number of candidates at the end of the
third step; this increases the decoding complexity. Comparing
this with setup six, we observe that increasing l2 significantly
reduces the number of candidates at the end of the third step.
This is because of the increase in the number of chunk-string
VT constraints, which allows the decoder to eliminate more
candidates while determining chunk boundaries.

The last setup is a relatively long code. Although the average
number of candidates in each of the decoding steps is not very
high, a small fraction of trials have a very large number of
candidates, resulting in considerably slower decoding for these
trials. For future work, an interesting direction is to consider
lower-complexity decoders that allow for an early elimination
of highly unlikely candidates. This would limit the number of
candidates at the end of each decoding step at the expense of
introducing a probability of error, i.e., a non-zero probability
that the final list does not contain the true X sequence.

ACKNOWLEDGMENT

We thank Jossy Sayir for kindly making his Reed-Solomon
code simulator available to us.

REFERENCES

[1] G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin, “Communi-
cation complexity of document exchange,” in Proc. ACM-SIAM Symp.
on Discrete Algorithms, pp. 197–206, 2000.

[2] S. M. S. Tabatabaei Yazdi and L. Dolecek, “Synchronization from
deletions through interactive communication,” IEEE Trans. Inf. Theory,
vol. 60, pp. 397–409, Jan. 2014.

[3] R. Venkataramanan, V. N. Swamy, and K. Ramchandran, “Low-
complexity interactive algorithms for synchronization from deletions,
insertions, and substitutions,” IEEE Trans Inf. Theory, vol. 61, no. 10,
pp. 5670–5689, 2015.

[4] N. Ma, K. Ramchandran, and D. Tse, “Efficient file synchronization:
A distributed source coding approach,” in Proc. IEEE Int. Symp. Inf.
Theory, 2011.

[5] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Automatica i Telemekhanica, vol. 26, no. 2, pp. 288–
292, 1965.

[6] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4,
pp. 845–848, 1965.

[7] A. Orlitsky, “Interactive communication of balanced distributions and
of correlated files,” SIAM J. Discrete Math., vol. 6, no. 4, pp. 548–564,
1993.

[8] A. Orlitsky and K. Viswanathan, “One-way communication and error-
correcting codes,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1781–
1788, 2003.

[9] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and
Designs, Ohio State University (Ray-Chaudhuri Festschrift), pp. 273–
291, 2000. Online: https://arxiv.org/abs/math/0207197.

[10] M. Abroshan, R. Venkataramanan, and A. Guillén i Fàbregas, “Mul-
tilayer codes for synchronization from deletions,” 2017. (Online)
https://arxiv.org/abs/1705.06670.

