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We propose a scheme to realize lattice potentials of sub-wavelength spacing for ultracold atoms.
It is based on spin-dependent optical lattices with a time-periodic modulation. We show that the
atomic motion is well described by the combined action of an effective, time-independent, lattice
of small spacing, together with a micro-motion associated with the time-modulation. A numerical
simulation shows that an atomic gas can be adiabatically loaded into the effective lattice ground
state, for timescales comparable to the ones required for adiabatic loading of standard optical lattices.
We generalize our scheme to a two-dimensional geometry, leading to Bloch bands with non-zero
Chern numbers. The realization of lattices of sub-wavelength spacing allows for the enhancement
of energy scales, which could facilitate the achievment of strongly-correlated (topological) states.

Optical lattices have allowed experiments on ultracold
atomic gases to investigate a large range of lattice models
of quantum many-body physics [1]. Their development
led to the realization of strongly-correlated states of mat-
ter, such as bosonic and fermionic Mott insulators, and
low-dimensional gases [2]. In its simplest form, an optical
lattice consists of the optical dipole potential associated
with a standing wave of retro-reflected laser light. It can
be described as a periodic potential V (x) = U0 cos2(kx),
of spatial period d = λ/2, where λ is the laser wavelength
and k = 2π/λ. More complex optical lattices, such as su-
perlattices [3, 4] or two-dimensional honeycomb lattices
[5, 6], can be generated with suitable laser configurations.
The recoil energy Er = h2/(8md2), where h is Planck’s
constant and m is the atom mass, sets the natural energy
scale for elementary processes, such as atom tunneling
between neighboring lattice sites, as well as the temper-
ature range T . Er/kB ∼ 100 nK, typically required for
quantum degeneracy.

For a large class of models, the physical behavior is
dictated by processes associated with even much smaller
energies, such as super-exchange or magnetic dipole in-
teractions [1]. The associated temperature scales remain
out of reach in current experiments. In order to circum-
vent this limitation, it is desirable to find novel schemes
for generating optical lattices with spacing deff � λ,
in order to enhance the associated energy scale Eeff

r =
h2/(8md2

eff) [7]. Schemes have been proposed to gener-
ate lattices of sub-wavelength spacing, based on multi-
photon optical transitions [8] or on adiabatic dressing of
state-dependent optical lattices [7]; the realization of lat-
tices with spacing deff = λ/4 was reported in Ref. [9]. An
interesting alternative would be to trap atomic gases in
the electromagnetic fields of nano-structured condensed-
matter systems [10–12].

In this letter, we propose a novel scheme leading to
lattices of spacing deff = d/N , N being an arbitrary inte-
ger, based on spin-dependent lattices with time-periodic
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FIG. 1. Stroboscopic scheme for engineering short-spacing
lattices, illustrated on the case N = 4. We make use of a
periodic potential V (x, t) of spatial period d, that is shifted of
the distance d/N after every time step of duration T/N (blue
curves). The effective potential Veff(x) (red curve), resulting
from time averaging, exhibits a spatial period deff = d/N .

modulation. In the regime of large modulation frequency
[13–16], the atom dynamics is governed by an effec-
tive static periodic potential of spacing deff , with an
additional micro-motion. This description is confirmed
by a numerical simulation, which shows the possibility
to load adiabatically the ground state of the effective
lattice and to perform Bloch oscillations. We discuss
the extension of the scheme to two-dimensional lattices
with non-trivial topology. Lattices with artificial mag-
netic fields, generally leading to topological bands, were
recently realized in experiments, with standard lattice
spacing [17]. For those systems, increasing the energy
scale using short-spacing lattices could prove important
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for creating strongly-correlated states such as fractional
Chern insulators [18, 19].

A basic scheme of our method is pictured in Fig. 1.
Consider a periodic potential V (x) of period d, which
is abruptly shifted by the distance d/N at stroboscopic
times tn = (n/N)T , n ∈ Z, leading to a time-periodic
potential V (x, t) of period T . Provided that T is much
smaller than typical timescales of atomic motion, the
atoms experience an effective time-averaged potential
Veff(x) =

∫
V (x, t)dt/T . A simple calculation shows that

Veff(x) is given by the sum of all harmonics of the po-
tential V (x), whose orders are multiples of N [20]. The
effective potential Veff(x) is thus spatially periodic, of
spatial period deff = d/N .

Conventional optical lattices present a spatial modu-
lation proportional to the intensity pattern of interfering
light waves, which exhibit spatial frequencies of at most
twice the light momentum k. Thus, applying the stro-
boscopic scheme in Fig. 1 to these potentials could not
lead to effective lattices of period deff < λ/2. This re-
striction does not apply to spinful particles subjected
to spin-dependent optical lattices. As an illustration,
consider a spin-1/2 particle evolving in the potential
V (x) = VL cos(2kx)σz + VBσx, where σu (u = x, y, z)
are the Pauli matrices. In a dressed state picture, the
atom may follow adiabatically the state of lowest energy
V−(x) = −

√
V 2

L cos2(2kx) + V 2
B . As this potential ex-

hibits harmonics of the spatial frequency 2k of all orders,
the lattice spacings achievable by applying the strobo-
scopic scheme to V−(x) can be made arbitrarily small.

We describe in the following a modified, more practical,
version of this scheme, which consists of a spin-dependent
optical lattice with smooth temporal variations, given by

V (x, t) = VL cos(2kx− Ωt)σz + VB cos(NΩt)σx. (1)

This potential satisfies V (x + d/N, t + T/N) = V (x, t),
with d = π/k, thus, it can be viewed as a continuous
version of the stroboscopic scheme. Understanding the
physical effects of the potential (1) falls within the de-
scription of time-periodic Hamiltonian systems [13–16].
Following Ref. [15], we describe the dynamics of an atom
between the times ti and tf as

U(ti → tf) = e−iK(tf )e−
i
~ (tf−ti)Heff eiK(ti), (2)

where we introduce a time-independent, effective Hamil-
tonian Heff and a time-periodic kick operator K(t). The
three operators in (2) describe, from right to left, the
role of the initial phase of the Hamiltonian at time ti, the
evolution from ti to tf according to a stationary Hamil-
tonian, and the micro-motion related to the final phase
of the Hamiltonian at time tf .

The expressions for the effective Hamiltonian
Heff and kick operator K(t) can be calculated
through a perturbative expansion in powers of
1/Ω, see Refs. [14, 15]. To lowest-order, this yields
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FIG. 2. Band structure of a dynamic optical lattice of spac-
ing deff = d/4, corresponding to the parameters N = 4, and
VL = VB = ~Ω = 200Eeff

r . In (a), we make use of the spa-
tial and temporal translational symmetries Tx, Tt and label
the eigenstates by their quasi-momentum −k ≤ q < k and
quasi-energy −~Ω/2 ≤ ~ω < ~Ω/2. The Bloch-Floquet bands
can be unfolded using the additional symmetry T ∗, leading
to the band structure in (b), indexed by the modified quasi-
momentum −4k ≤ q̃ < 4k. The unfolding of the band struc-
ture can be followed from the different coloring of successive
bands.

Heff =
p2

2m
+ Veff(x), (3)

Veff(x) =
Ueff

2
cos(2Nkx)σx, Ueff =

2VB

N !

(
VL

~Ω

)N

, (4)

K(t) =
−VL

~Ω
sin(2kx− Ωt)σz +

VB

N~Ω
sin(NΩt)σx. (5)

The effective potential (4), which describes a periodic
potential of depth Ueff and spatial period deff = d/N , was
derived under the assumption that N is an even integer
(a similar potential is found for N odd). The expression
(4) has been obtained based on a Born-Oppenheimer
approximation, in which the kinetic energy term is
neglected and one calculates the effective potential for
a given position x, treating internal degrees of freedom
(σj operators) quantum-mechanically. One finds that
the terms neglected here are smaller than those given
in (4), by a factor Er/(~Ω) � 1. Furthermore, this
approximation is validated by a direct comparison
with the full quantum treatment (see below). In the
Supplementary material we show that the perturbative
expansion can be resumed, with respect to either the
variable VL/(~Ω) or VB/(~Ω). There we also discuss the
generalization of this modulation scheme to an arbitrary
spin F , through the substitution σu → 2Fu [20].

In order to test the validity of the effective Hamil-
tonian (3), we performed a numerical study of the full
time-periodic Hamiltonian using the Floquet formalism.
Since the Hamiltonian H is invariant under the sym-
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metries Tx : x → x + d and Tt : t → t + T , we
look for eigenstates written as Bloch-Floquet wave func-
tions ψq,ω(x, t) = ei(qx−ωt)uq,ω(x, t), where uq,ω(x, t) is
d-periodic in x and T -periodic in t [24, 25]. Eigenstates
are labelled by their quasi-momentum −k < q ≤ k and
quasi-energy 0 ≤ ~ω < ~Ω. An example of the band
structure calculated numerically for N = 4 is plotted in
Fig. 2a. The band structure exhibits gap openings once
every four bands, at the momenta Nkp, where p ∈ Z∗,
as expected for a lattice of spacing d/N .

The band structure can be unfolded, making use of the
additional symmetry T ∗ : x → x + d/N, t → t + T/N .
As explained in the Supplementary Material, eigenstates
associated with the symmetries Tx, Tt and T ∗ can be
written as ψq̃,ω(x, t) = ei(q̃x−ωt)vq̃,ω(x, t), where vq̃,ω(x, t)
is d/N -periodic in x and 2π-periodic in (kx−Ωt) [20]. We
show the band structure calculated within this formalism
in Fig. 2b, which is very close to that expected for a
lattice of spacing d/N and depth Ueff ' 10.9Eeff

r [26] .

The practical relevance of the short-spacing lattice de-
scribed above is based on the ability to load atoms into
the ground state of the effective potential (4). The anal-
ysis of this loading protocol requires special care, as the
effective-Hamiltonian approach inherent to Eq. (2) as-
sumes a constant lattice depth [15]. In fact, we find that
the concept of the effective Hamiltonian can be modified
so as to describe the time-evolution under a ramp of the
moving-lattice depth VL, see Ref. [20]. We simulate the
lattice loading from a numerical calculation of the full
dynamics of an atomic wave packet under the action of
the potential (1). Starting from a gaussian wave packet,
spin-polarized along x, we solve the Schrödinger equa-
tion, discretized in space and time, with a lattice depth
VL slowly ramped up for a duration tramp. As shown
in Fig. 3a, a ramp duration tramp = 20~/Eeff

r leads to a
state with strong spatial modulations of spacing d/N , as
expected for a wavepacket prepared in the lowest band
of the effective lattice (4). The calculated population
in the effective lowest band is 93 %, close to the value
expected with standard optical lattices for such a ramp
duration. In the Supplementary Information we analyze
the momentum distribution, which corresponds to the
one expected for the ground state of the effective lattice,
slightly modified by the micro-motion [20].

The system description as an effective d/N lattice is
also supported by a numerical simulation of Bloch os-
cillations. We calculate the action of a linear potential
−Fx applied to the state obtained after the lattice load-
ing. As shown in Fig. 3b,c, the wave packet undergoes
Bloch oscillations, revealed as real-space oscillations of
its center of mass. Both the amplitude and period of this
oscillation agree well with those expected for an effective
lattice of period d/N and depth Ueff inferred from band
structure calculations.

The potential V (x, t) written in (1) corresponds to
the sum of a time-modulated magnetic field and a spin-
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FIG. 3. (a) Atomic density of a wave-packet loaded into a
dynamic lattice of spacing deff = d/4. We start from a gaus-
sian wave-packet, spin-polarized along x, of wave function
ψ(x, t = 0) = exp[−x2/(2σ2)], with σ ' 1.4 d (red dashed
line). The lattice depth VL is slowly ramped up for a du-
ration tramp = 20~/Eeff

r from VL = 0 to VL = V 0
L , and lat-

tice parameters N = 4, V 0
L = VB = ~Ω = 200Eeff

r . The
atom density after loading is spatially modulated, with a pe-
riod d/4 (blue line). (b) Evolution of the density distribution
during Bloch oscillations, calculated for the dynamic lattice
parameters of (a), and for a force F = Weff/(8 deff), where
Weff ' 0.06Eeff

r is the expected bandwidth of the lowest band
for Ueff = 10.9Eeff

r . (c) Evolution of the center-of-mass posi-
tion during Bloch oscillations, calculated for a standard op-
tical lattice of depth Ueff = 10.9Eeff

r (red dashed line), and
for the dynamic optical lattice (blue line). The time and spa-
tial coordinates are plotted in units of the ideal Bloch period
τB = 2N~k/F and amplitude Weff/F .

dependent optical lattice moving at the velocity vlatt =
Ω/(2k). In the above discussion we considered the ef-
fect of this potential as an effective static optical lattice.
An alternative view is obtained in the frame of reference
moving at the velocity v = vlatt, where the potential
V (x′ = x−vt, t) consists of the sum of a modulated mag-
netic field and a very deep static lattice VL cos(2kx′)σz,
with VL ∼ ~Ω � Ueff . Both points of view can be rec-
onciled by a proper interpretation of the band structure,
as illustrated for the case N = 2 in Fig. 4. Among the
eigenenergies ω(q̃) calculated numerically in the labora-
tory frame v = 0, we identify the Bloch bands corre-
sponding to a static effective lattice of spacing deff . The
eigenenergies ω′(q̃) corresponding to a frame of reference
moving at a velocity v can be deduced from those in the
laboratory frame using the relation ω′ = ω− q̃v/~. In the
frame moving at v = vlatt, we observe Bloch bands cor-
responding to a very deep static optical lattice of period
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FIG. 4. Band structure corresponding to the dynamic lattice
for the parameters N = 2, VL = VB = ~Ω = 10Eeff

r . The
panels correspond to different frames of reference, of veloc-
ity v = 0 (left) and v = vlatt = Ω/(2k) (right). The blue
points correspond to the band structure of an optical lattice
of spacing deff = d/N and depth Ueff ' 2Eeff

r , at rest in the
laboratory frame. The red dots correspond to the band struc-
ture of an optical lattice of spacing d and depth U ' 74Er

(' 9Ueff), at rest in the frame of velocity v = vlatt [27].
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FIG. 5. (a) Momentum-space representation of the effective
couplings in Eq. 6, illustrated as arrows of length 2Nk, ori-
ented along the unit vectors±ei (i = 1, 2, 3), and proportional
to Pauli matrices. Quantum states are represented in the ba-
sis {|+z〉 (filled dots), |−z〉 (circles)}. (b) Phase accumulated
around a triangular subcell of the k-space lattice. Due to
the internal-state degree of freedom, the unit cell of the lat-
tice is formed by four triangular subcells. The same phase
of φ = π/2 is found to be accumulated around all subcells,
indicating that the lowest energy band is associated with a
non-trivial Chern number νCh = 1 [28].

d.

We now consider a 2D extension of our scheme. The

time-dependent part of the Hamiltonian is taken as

V (r, t) = VL cos(2ke1 · r− Ω1t)σ̂z + VB cos(NΩ1t)σ̂x

+ VL cos(2ke2 · r− Ω2t)σ̂x + VB cos(NΩ2t)σ̂y

+ VL cos(2ke3 · r− Ω3t)σ̂y + VB cos(NΩ3t)σ̂z,

where the unit vectors e1,2,3 have directions as repre-
sented in Fig. 5. For a suitable choice of the frequencies
Ω1,2,3 [29], each line of the equation above can be treated
individually, which results in an effective potential of the
form [30]

Veff(r) ' Ueff

2
[ cos(2Nke1 · r)σx + cos(2Nke2 · r)σy

+ cos(2Nke3 · r)σz], (6)

where N is taken to be an even integer. These couplings
are illustrated in quasi-momentum space in Fig. 5a. Fol-
lowing Ref. [28], the topological Chern number associ-
ated with the lowest energy band can be readily obtained
from these couplings. Indeed, the Chern number mea-
sures the flux of the Berry curvature Ω(q) over the entire
(momentum-space) unit cell:

νCh =
1

2π

∫

unit cell

Ω(q)d2q, (7)

which can be directly evaluated by calculating the phases
accumulated by a state as it performs a loop around
the triangular subcells [28]. For the effective lattice de-
scribed by eq. (6), each unit cell is constituted of four
triangular subcells, and we find an accumulated phase of
π/2 within each of them (see Fig. 5b). In this configu-
ration, the Chern number of the lowest band is given by
νCh = (1/2π) × 4 × (π/2) = 1. Generally the reasoning
above is valid only in the weak-binding regime; however,
for the coupling (6), νCh is unchanged for all values of
Ueff . Note that the size of the unit cell in real space
scales as 1/N2; we thus expect the flux density to be in-
creased by a factor of N2 compared to standard optical
lattices.

The method discussed above is based on applying
strong spin-dependent optical lattices, for which Lan-
thanide atoms would be most suited for a practical im-
plementation. Indeed, the optical lattices could be gener-
ated using laser light close to a narrow optical transition,
which would lead to deep, spin-dependent lattices with
negligible Rayleigh scattering effects (for Dy atoms, one
can achieve ratios ~Γscattering/VL ∼ 10−7) [31–33].

In conclusion, we introduced a novel scheme to en-
gineer spatially periodic atom traps of sub-wavelength
spacing, based on the application of spin-dependent op-
tical lattices. A natural extension of this work would
be to include interactions between atoms in the effective
lattice description, and to understand whether micro-
motion plays a significant role in scattering properties
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[34–36]. This aspect will play a central role for investi-
gating quantum many-body physics with short-spacing
lattices.
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340, 1202 (2013).

[12] O. Romero-Isart, C. Navau, A. Sanchez, P. Zoller, and
J. I. Cirac, Phys. Rev. Lett. 111, 145304 (2013).

[13] P. Avan, C. Cohen-Tannoudji, J. Dupont-Roc, and
C. Fabre, J. Phys. 37, 993 (1976).

[14] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A 68,
013820 (2003).

[15] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027
(2014).

[16] M. Bukov, L. D’Alessio, and A. Polkovnikov,
arXiv:1407.4803 (2014).
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S.I. EFFECTIVE POTENTIAL CREATED BY
THE STROBOSCOPIC SCHEME

In this Section, we present the calculation of the ef-
fective lattice potential produced via the stroboscopic
scheme illustrated in Fig. 1 (main text). We start from
a periodic potential V (x) of period d, which can be de-
composed in Fourier series as

V (x) =
∑

p∈Z
Vp e

i2πpx/d.

The method consists in shifting the potential V (x) of
the distance d/N , after each time interval T/N . For N
integer, this leads to a time-periodic potential V (x, t)
of time period T . For a sufficiently short period T ,
the atomic motion is governed by the effective potential
Veff(x), equal to the time average of V (x, t):

Veff(x) =
1

T

∫ T

0

V (x, t)dt

=
1

N

N∑

j=1

V (x+ jd/N)

=
∑

p∈Z
Vp e

i2πpx/d 1

N

N∑

j=1

ei2πpj/N

=
∑

p multiple of N

Vp e
i2πpx/d.

It is then apparent that the effective potential Veff(x) is
periodic, of period deff = d/N .

S.II. CALCULATION OF THE EFFECTIVE
POTENTIAL

In this section we give details about the establishment
of the effective Hamiltonian (eqs. (3), (4) in the main
text). We first provide a simple description of the effec-
tive Hamiltonian in a Born-Oppenheimer approximation,

∗ sylvain.nascimbene@lkb.ens.fr

and discuss further the relevance of this approximation
for typical lattice parameters.

The Born-Oppenheimer approximation consists in ne-
glecting the kinetic energy for the calculation of the effec-
tive Hamiltonian. The position x is considered as a fixed
parameter, while internal degrees of freedom are treated
quantum mechanically. Using the formalism of ref. [S1],
we decompose the Hamiltonian in Fourier series as

H(t) = H0 +
∞∑

j=1

V (j)eijΩt + V (−j)e−ijΩt,

V (1) = V (−1)† = VLe
−2ikxσz/2,

V (N) = V (−N)† = VBσx/2,

V (j) = 0 otherwise.

The effective Hamiltonian can be expanded as a series
in 1/Ω. At lowest order, it reads

Heff =
p2

2m
+ Veff(x),

Veff(x) =
1

N !(~Ω)N

[
V (1), . . . ,

[
V (1), V (−N)

]]
+ h.c.,

with V (1) occurring N times. One calculates

Veff(x) =
V NL VBe

−i2Nkx

2N !(2~Ω)N
[σz, . . . , [σz, σx]] + h.c.

=
Ueff

2

{
cos(2Nkx)σx, N even,
sin(2Nkx)σy, N odd,

where Ueff = 2VB(VL/~Ω)N/N !.
In the main text we consider the case of a (pseudo)-

spin-1/2 for simplicity. The scheme can directly be ex-
tended to an arbitrary spin F . Assuming a coupling
V (x, t) = 2VL cos(2kx − Ωt)Fz + 2VB cos(NΩt)Fx, we
make use of the general commutation algebra of Fu
operators and obtain an effective potential Veff(x) =
Ueff cos(2Nkx)Fx (N even).

We now consider the validity of the Born-Oppenheimer
approximation, which consists in neglecting the non com-
mutation of position and momentum. The latter plays a
role at the order N + 1 of the perturbative expansion
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FIG. S1. Depth Ueff of the effective lattice (in absolute value),
calculated for arbitrary values of VL/(~Ω) (a) or VB/(~Ω) (b)
in the case N = 4. The dashed lines correspond to the lowest-
order perturbation result (4), and the solid lines to the resum-
mation results (S.1) and (S.2).

in 1/Ω. We performed the perturbative expansion up to
the order N + 1 for the case N = 1, and obtained the
expression

Heff =
p2

2m
+
Ueff

2
sin(2kx)σy

+

(
VL

~Ω

)2

Er +
Ueff

2

~k
2mΩ

(p sin(2kx) + sin(2kx)p)σy.

While the first term of order N+1 only represents an en-
ergy offset, the second term can be viewed as a spin-orbit
coupling which may affect the atom dynamics. However,
for typical momenta p on the order of the lattice momen-
tum k, the amplitude of this term is smaller than the
effective lattice depth Ueff by a factor ∼ Er/(~Ω), which
is typically very small for the examples considered in this
Letter.

S.III. RESUMMATION OF
THE PERTURBATIVE EXPANSION OF Heff

The effective potential Veff can be calculated as a se-
ries expansion in powers of the (potentially small) dimen-
sionless parameters VL/(~Ω) and VB/(~Ω), in the high-
frequency limit Ω→∞. In the main text, we provide its

expression in Eq. (4), which corresponds to the lowest-
order term. We note that this derivation, which is based
on the general formula of Ref. [S1], was obtained by ne-
glecting the non-commutativity of the position and mo-
mentum operators; indeed, we verified that the momen-
tum operator is irrelevant in the derivation of the effective
potential, which essentially relies on the spin-dependent
time-modulated components of the Hamiltonian. Thus,
in the following of this Section, which aims to derive the
effective potential in the strong-modulation regime, we
explicitly neglect any effects associated with the kinetic
energy term of the full Hamiltonian.

In this Section, we first derive the expression for the
effective potential Veff , in the case where VL/(~Ω) is al-
lowed to take arbitrary large values (still assuming that
VB � VL, ~Ω). Following Refs. [S2, S3], we perform a
unitary transformation

|ψ′〉 = R(t) |ψ〉 , R(t) = exp

(
−i VL

~Ω
sin(kx− Ωt)σz

)
,

which removes the diverging term ∼ VL ∼ ~Ω from the
time-dependent potential V (x, t) in Eq. 1 (main text).
This leads to a novel time-dependent potential

V ′(x, t) = R(t)V (x, t)(t)R†(t) + i~∂tR(t)R†(t)

= R(t) [VB cos(NΩt)σx]R†(t).

Making use of the identity e−iγσzσxe
iγσz = cos(2γ)σx +

sin(2γ)σy, we obtain the expression

V ′(x, t) = VB cos(NΩt)

[
cos

(
2VL

~Ω
sin(kx− Ωt)

)
σx

+ sin

(
2VL

~Ω
sin(kx− Ωt)

)
σy

]
.

In the large-frequency limit Ω → ∞, the atom dynam-
ics can be described by an effective stationary potential,
given by [S2, S3]

Veff(x) =
1

T

∫ T

0

V ′(x, t)dt

= JN

(
2VL

~Ω

)
VB cos(2Nkx)σx, (S.1)

assuming N even, and where JN is a Bessel function of
the first kind. This effective potential corresponds to a
spin-dependent optical lattice of spacing d/N and depth
Ueff = 2JN

(
2VL

~Ω

)
VB.

A similar resummation with respect to VB/(~Ω) can
also be derived. Here, we make use of the Floquet repre-
sentation of time-periodic Hamiltonians. We first write
the exact eigenstates of the coupling VB

2 cos(NΩt)σx,
which read

||n, sx〉 =
∑

p∈Z
Jp

(
2sxVB

~Ω

)
|n+ pN, sx〉,
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where n denotes the Floquet quantum number, and sx
is the spin projection along x. The energy of the state
||n, sx〉 is equal to n~Ω. The effect of the coupling
VL cos(kx−Ωt)σx can be understood using perturbation
theory in the degenerate subspace ||n,±〉, which must be
performed at order N . We obtain the expression

Veff(x) =
Ueff

2
cos(2Nkx)σx,

Ueff = 4~Ω

(
VL

2~Ω

)N
∣∣∣∣∣∣

∑
∑N

i=1 pi=−1

∏N
i=1 Jpi [(−1)i 2VB

N~Ω ]
∏N−1
i=1

∑i
j=1(1 +Npj)

∣∣∣∣∣∣
.

(S.2)

We plot in Fig. S1 the lattice depth Ueff given by the re-
summation formulas in Eqs. (S.1)-(S.2) discussed above.
We checked that the formulas (S.1) and (S.2) account
well for the numerical results obtained via direct di-
agonalization of the Bloch-Floquet equations (see Sec-
tion S.IV).

S.IV. EXPRESSION FOR
THE BLOCH-FLOQUET HAMILTONIAN

The modulated potential (1) is invariant under the
space and time translational symmetries Tx, Tt and T ∗,
which all commute with each other. The eigenstates of
the Hamiltonian can thus be written as eigenstates of
those symmetries, which can be expressed as

ψq̃,ω(x, t) = ei(q̃x−ωt)
∑

j,l∈Z
cj,l e

il(kx−Ωt)eijNkx,

where −Nk < q̃ ≤ Nk and 0 ≤ ω < Ω. The spinor
coefficients cj,l are determined by the equations

~(ω + lΩ)cj,l =
~2[q̃ + (l +Nj)k]2

2m
cj,l

+
VL

2
σx(cj,l+1 + cj,l−1)

+
VB

2
σz(cj+1,l−N + cj−1,l+N ).

The numerical data represented in Fig. 2 (main text) is
calculated using the above equations, in a truncated basis
−10 ≤ j, l ≤ 10.

S.V. MICRO-MOTION EFFECTS
IN THE MOMENTUM DISTRIBUTION

In this section, we analyze how the micro-motion as-
sociated with the time-modulation in Eq. (1) affects the
momentum distribution of atoms prepared in the effec-
tive potential Veff of spatial period d/N [Eq. (4)]. Specif-
ically, we consider an atom prepared in the ground state
of the effective potential. This state can be expanded on

0
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FIG. S2. (a) Momentum distribution associated with the
ground state of the effective lattice with spacing d/4 and
depth Ueff = 10.9Eeff

r . (b) Momentum distribution of the
state in (a), taking into account the micro-motion expected
for the dynamic lattice parameters, according to Eq. S.3. The
micro-motion leads to a more complex structure compared
to (a), periodically evolving in time. The lattice parameters
correspond to the ones of Fig. 2 in the main text.

the family of states of momentum multiple of 2Nk (see
Fig. S2a).

The actual state created using time-modulated lattices
is expected to be modified by the micro-motion, as

|ψ(t)〉 = e−iK(t) |ψ0〉 , (S.3)

where the expression for the kick operator K(t) is given
in the main text [Eq. (5)]. The latter leads to additional
diffraction peaks at all momenta multiple of 2k, whose
amplitude vary periodically in time, with a period T/N
(see Fig. S2b). This shows that Bragg diffraction does
not give a direct information on the ground state of the
effective lattice.

S.VI. EFFECTIVE HAMILTONIAN
DURING LATTICE LOADING

In this Section, we analyze the adiabatic preparation of
the ground state associated with the effective potential
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FIG. S3. (a) Evolution of the amplitude of the moving optical lattice at position x = 0, during and after the lattice ramp of
duration tramp. (b) Scheme of the ramp discretization: the time interval 0 ≤ t ≤ tramp is decomposed into N steps of duration
∆t. Within each step the depth VL is constant, leading to a time-periodic potential.

Veff(x) of depth U0
eff . We consider a slow ramp of the

moving-lattice depth VL(t) = 0 → V 0
L during the time

interval 0 ≤ t ≤ tramp, such that the effective potential’s
depth U0

eff corresponds to the final value VL(tramp) = V 0
L .

As the definition (2) of the effective Hamiltonian and
kick operators assumes a constant lattice depth [S1], we
expect these notions to be modified during the ramp. It
is the aim of this Section to show how the adiabatic ramp
can still be captured by an effective-Hamiltonian picture.

To analyze this situation, we decompose the ramp into
N steps, and we assume that the time interval ∆t =
tramp/N is short enough, such that VL can be considered
to remain constant within each step. More precisely, we
assume that the lattice depth is equal to VL(j∆t) during
the step j∆t≤ t<(j+1)∆t. We then apply the effective-
Hamiltonian formalism of Ref. [S1] within each time-step,
and write the full time-evolution operator as

Uramp =
0∏

j=N−1

Uj ,

Uj = e−iK0[VL(j∆t)]e−iHeff [VL(j∆t)]∆t/~eiK0[VL(j∆t)].

In the latter expression, and for the sake of simplicity,
we assumed that ∆t was a multiple of the modulation
period, so that the kick operators at the beginning and
at the end of each step only depend on the value of VL (
in fact, they correspond to the kick operator at the time

t = 0, hence the notation K0).
Assuming ∆t short enough, we write

eiK0[VL((j+1)∆t)]e−iK0[VL(j∆t)] ' ei∆t(dVL/dt)dK0/dVL ,
leading to

Uramp = e−iK(tramp)T
{

exp

(
−i
∫
Hramp

eff (t)dt/~
)}

,

where T denotes time-ordering, and where one intro-
duced the slowly varying Hamiltonian

Hramp
eff (t) = Heff |VL(t) − ~

dVL

dt

dK0(tramp)

dVL

∣∣∣∣
VL(t)

=
Ueff(t)

2
cos(2Nkx)σx +

1

Ω

dVL

dt
sin(2kx)σz.

(S.4)

We now estimate a criterion for identifying the adia-
batic regime of the lattice loading. Describing the lattice
loading solely with the first term of eq. (S.4) would lead to
the standard adiabaticity criterion tramp � ~U0

eff/(E
eff
r )2

[S4]. We expect the second term in (S.4) to drive non-

adiabatic transitions for V̇L & ΩEr. Adiabatic lattice
loading thus requires the additional constraint tramp �
(V 0

L /Er)/Ω. As we choose VL . ~Ω, this constraint
should not be the most restrictive.
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