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Abstract

We study spin systems defined by the winding of a random walk loop soup. For a
particular choice of loop soup intensity, we show that the corresponding spin system
is reflection-positive and is dual, in the Kramers-Wannier sense, to the spin system
sgn(ϕ) where ϕ is a discrete Gaussian free field.

In general, we show that the spin correlation functions have conformally covariant
scaling limits corresponding to the one-parameter family of functions studied by
Camia, Gandolfi and Kleban (Nuclear Physics B 902, 2016) and defined in terms of
the winding of the Brownian loop soup. These functions have properties consistent
with the behavior of correlation functions of conformal primaries in a conformal field
theory. Here, we prove that they do correspond to correlation functions of continuum
fields (random generalized functions) for values of the intensity of the Brownian loop
soup that are not too large.
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1 Introduction

The random walk loop soup (RWLS) was introduced by Lawler and Trujillo Ferreras
[28] as a discrete analog of the Brownian loop soup (BLS) of Lawler and Werner [29]. The
latter is a collection of planar loops of various sizes positioned at random, uniformly and
independently, within a planar domain. Each loop is a Brownian path constrained to begin
and end at the same root point, but otherwise with no restriction, and characterized
by a time length t that is linearly related to its average area. The distribution in t

is proportional to dt/t2, so that there are many more small loops than large, and is
chosen to ensure invariance under scale transformations. The overall density of loops is
characterized by a single parameter: the intensity λ > 0.
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Spin systems from loop soups

The BLS turns out to be not just scale invariant, but fully conformally invariant.
For sufficiently low intensities λ, the intersecting loops form clusters whose outer
boundaries are distributed like Conformal Loop Ensembles (CLEs) [43, 44]. CLEs are the
unique ensembles of planar, non-crossing and non-self-crossing loops satisfying a natural
conformal restriction property that is conjecturally satisfied by the continuum scaling
limits of interfaces in two-dimensional models of statistical physics. The loops of a CLEκ
are forms of SLEκ (the Schramm-Loewner Evolution with parameter κ [41, 44]). The
CLEs generated by the BLS correspond to values of κ between 8/3 and 4. For example, it
was recently proved that the collection of outermost interfaces in a planar critical Ising
model in a finite domain with plus boundary condition converges to CLE3 in the scaling
limit [2]. Moreover, the collection of outer boundaries of clusters of loops from the
RWLS also converges to CLE in the scaling limit for appropriate values of the intensity
λ [33, 47].

Motivated by the work of Freivogel and Kleban [17] on bubble nucleation in theories
of eternal inflation, Camia, Gandolfi and Kleban defined and computed certain statistical
correlation functions that characterize aspects of the BLS distribution [6]. They looked in
particular at the net winding of all the loops around a given set of points and found results
consistent with the behavior of correlation functions of primary fields in a conformal
field theory (CFT). The winding of Brownian paths and loops has been the subject of
classical works of Spitzer [45], Yor [51], and Pitman and Yor [39], and more recently
was studied e.g. by Garban and Trujillo Ferreras [18]. It has also been discussed in the
physics literature in connection to anyons (see e.g. [38, 8]).

Using the RWLS, in Section 2 of this paper we introduce spin systems which are
discrete analogs of a one-dimensional subclass of the objects studied in [6]. We note
that similar objects are discussed in Section 6 of [30]. When the intensity of the RWLS
is 1/2, the corresponding spin system σ is dual, in the Kramers-Wannier sense, to the
spin model sgn(ϕ) where ϕ is a discrete Gaussian free field. In Section 3 we show that σ
satisfies the Griffiths inequalities and is reflection-positive. In Section 4, for general λ,
we show that the correlation functions of the spin systems defined in Section 2 converge
to the conformally covariant functions studied in [6]. Our proof uses a convergence
result of a certain observable related to the loop erased walk due Beneš, Lawler, and
Viklund [1].

In the last section, we show that, for values of the intensity λ of the BLS that are
not too large, but still including the most interesting case, λ = 1/2, one can construct
continuum Euclidean fields (random generalized functions) whose correlation functions
are the functions obtained in [6]. These fields do not seem to correspond to any currently
known CFT. As pointed out in [6], the putative CFT associated with those correlation
functions has the interesting feature that the conformal dimensions of the primary
operators are real and positive, but vary continuously and are periodic functions of a
real parameter.

2 RWLS spin fields and the discrete Gaussian free field

The (rooted) random walk loop measure µ̃ is a measure on nearest neighbor loops on
Z2 (possibly scaled by a factor a > 0), which we identify with loops in the complex plane
by linear interpolation. For a loop γ in Z2, we define

µ̃(γ) =
1

tγ
4−tγ ,

where tγ is the time length of γ, i.e. its number of steps. The (rooted) random walk loop
soup L̃ with intensity λ > 0 (see [28]) is a Poissonian realization from the measure λµ̃.
For a > 0, by a discrete domain in the scaled lattice aZ2, we mean a connected subgraph
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Spin systems from loop soups

of aZ2 which can be written as a union of square faces of aZ2. For a discrete simply
connected domain Da in aZ2, let L̃Da be the collection of random walk loops in Da, and
let µ̃Da be the measure µ̃ restricted to loops that stay in Da. By 〈·〉Da = 〈·〉Da,λ we will
denote the expectation with respect to the loop soup with intensity measure λµ̃Da .

Let D∗a denote the dual of Da, whose vertices are the faces of Da. For z ∈ D∗a we
define

ÑDa(z) =
∑

γ∈L̃Da

Nγ(z),

where Nγ(z) is the winding number of γ around z. We define the random walk loop soup
spin field by

σ(z) = σDa(z) = eiπÑDa (z),

which takes values ±1.
Let ∂Da ⊂ aZ2 \Da be the set of vertices at graph distance 1 from Da. The discrete

Gaussian free field (DGFF) on Da with boundary conditions ψ is a multidimensional
Gaussian variable ϕ : Da ∪ ∂Da → R satisfying φ|∂Da = ψ with density given by

1

Z
exp

(
− 1

2

∑
x∼y

(ϕx − ϕy)2
)

where the sum is over all edges {x, y} in Da ∪ ∂Da. Equivalently, ϕ is a Gaussian variable
with mean given by the harmonic extension of ψ, and covariance Cov(ϕx, ϕy) = G(x, y),
where G is the Green’s function of simple random walk killed on hitting ∂Da.

The DGFF ϕ can be thought of as a model of a random surface whose elevation above
a point x in the plane is given by ϕx, and where large gradients between neighboring
points are penalized. The continuum counterpart – the Gaussian free field (GFF), to
which the DGFF converges in an appropriate sense in the scaling limit, is too rough to
be defined pointwise but can still be made sense of as a random generalized function.
It is a Gaussian field with covariance given by the Green’s function of two-dimensional
Brownian motion, and, as such, is conformally invariant. It turns out that the GFF is a
universal object in random conformal geometry as its (carefully defined) level and flow
lines encode different variants of the Schramm-Loewner Evolution curves [42, 36]. It
is also the scaling limit of other discrete models like the height function of the dimer
model [25].

A deep connection between random walk loop soups and the DGFF in form of the
celebrated isomorphism theorems has its roots in the seminal work of Symanzik [46]. We
will focus on the result of Le Jan [30] which may be viewed as an extension of Dynkin’s
isomorphism [13, 14]. Consider a random walk loop soup L̃. Count the number of visits
of all loops in L̃ to a vertex x, and denote the number by Nx. The occupation field of L̃ at
x, denoted by Tx, is a sum of Nx (globally) independent exponential random variables
with mean 1 together with 1

2 times one additional exponential variable with mean 1

(or in other words a Gamma(1, 1
2 ) random variable). Le Jan [30] proved that the joint

distribution of (Tx)x∈Da for a loop soup with intensity λ = 1
2 is equal to that of 1

2 (ϕ2
x)x∈Da .

Later Lupu [34] provided a coupling between L̃ and ϕ that also accounts for the signs
of ϕ. His result is in turn intrinsically related to the Edwards–Sokal coupling between
the Fortuin–Kasteleyn model with q = 2 and the Ising model [16, 15, 35].

The Ising model [23] on Da is a random assignment s : Da → {−1,+1} of spins to the
vertices of Da drawn according to the law with the discrete density w.r.t. the counting
measure given by

1

Z ′
exp

(
− 1

2

∑
x∼y

J{x,y}(sx − sy)2
)
,
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Spin systems from loop soups

where the positive numbers J{x,y} are called coupling constants, the sum is taken over
all edges {x, y} of Da, and Z ′ is the normalizing constant. The relation with the DGFF is
that the law of the sign sgn(ϕ) conditioned on the amplitude |ϕ| is the Ising model with
free boundary conditions and coupling constants

J{x,y} = |ϕxϕy|. (2.1)

A fundamental construction of Kramers and Wannier [26] assigns to an Ising model with
free boundary conditions on Da an Ising model with +1 boundary conditions on the dual
domain D∗a. In the dual model, the spins are assigned to the vertices of D∗a (which are
the faces of Da), and the spin of the unbounded face is fixed to be +1. For an edge e, let
e∗ be the dual edge crossing e. The dual coupling constants satisfy the Kramers–Wannier
duality relation:

Je∗ = −1

2
log tanh Je. (2.2)

Recall that ϕ is defined on the vertices, and σ on the faces of Da. In view of the
following theorem, (2.1), and (2.2), the spin field σ with parameter λ = 1

2 can be thought
of as a Kramers–Wanier dual of sgn(ϕ) – the sign of a DGFF.

Theorem 2.1 (Sampling σ with λ = 1
2 from the DGFF and Ising model). Consider the

following algorithm:

(1) Sample the amplitude of the DGFF |ϕ| on Da with 0 boundary conditions.

(2) Sample the Ising model on the dual domain D∗a with +1 boundary conditions, and
coupling constants given by

J{x,y}∗ = −1

2
log tanh |ϕxϕy|. (2.3)

The resulting assignment of ±1’s to the faces of Da is distributed like the spin field σ

with parameter λ = 1
2 .

Proof. Let L̃ be a random walk loop soup in Da with intensity λ = 1
2 together with

its occupation field (Tx)x∈Da . For an edge e, let Ne be the total number of unoriented
traversals of e by all loops in L̃. It is known1 that conditioned on the value of (Tx)x∈Da ,
(Ne)e∈E(Da) is distributed like a sourceless random current in Da with parameters (as
defined in [21, 11], with β = 1)

J{x,y} = 2
√
TxTy. (2.4)

Note that the value of σ(z) is determined by the edges with odd values of Ne in the
following way: draw a simple path in the dual graph connecting z with infinity and count
the number of odd-valued edges that cross the path. Set σ(z) = −1 if the resulting
number is odd, and σ(z) = +1 otherwise.

It is a standard consequence of the Kramers–Wannier duality that the set of odd-
valued edges in the random current is distributed like the set of dual edges separating
opposite spins in the Ising model dual to that defined by (2.4) (see e.g. [12]). This means
that conditioned on (Tx)x∈Da , which by Le Jan’s results is distributed like 1

2 (ϕ2
x)x∈Da ,

the spin model σ has the law of an Ising model on D∗a with coupling constants given
by (2.3).

1 The first observation that this conditional distribution should be the one of a random current can be found
in [49] (the discussion after Proposition 7). However, the parameters of the current in [49] are incorrect. In
Proposition 3.2 of [31], an almost correct statement is given (modulo a missing factor of 2 resulting from the
fact that each unoriented edge corresponds to two oriented edges) and the proof uses Gaussian integrals.
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Proposition 2.2 (Sampling σ with λ = 1
2 from the DGFF and coin flips). Consider the

following algorithm:

(1) Sample the Gaussian free field ϕ on Da with 0 boundary conditions, and let η be
the set of dual bonds separating vertices with different values of sgn(ϕ).

(2) For each dual bond {x, y}∗ /∈ η, sample an independent Bernoulli random variable
with success probability exp(−2|ϕxϕy|), and let ω be the set of edges with a success
outcome.

(3) For each connected component of η∪ω (treated as a subgraph of the dual graph D∗a,
including isolated vertices) that does not touch the outer boundary of D∗a, sample
an independent, symmetric (±1)-valued random variable, and assign its value to
each face of Da in that connected component. Assign +1 to the remaining faces.

The resulting configuration of ±1’s on the faces of Da is distributed like the spin field σ
with parameter λ = 1

2 .

Proof. From Theorem 2.1 and the Edwards–Sokal coupling between the (FK) random
cluster model with parameter q = 2 and the Ising model (see e.g. [22]), it is enough to
prove that the set η after step (2) is distributed like the random cluster model on D∗a
with wired boundary conditions and parameters

p∗{x,y}∗ = 1− exp(−2J{x,y}∗) = 1− tanh |ϕxϕy|.

To this end, consider an FK model on Da with free boundary conditions and param-
eters pe. Recall that in the Edwards–Sokal coupling, to recover the random cluster
model configuration from the Ising spin configuration sgn(ϕ) with coupling constants
Je satisfying pe = 1− exp(−2Je), one performs independent Bernoulli percolation with
success probabilities pe on the edges whose endpoints carry the same spin. The dual
random cluster configuration with wired boundary conditions is hence distributed like
independent percolation on D∗a with success probabilities 1− pe = exp(−2Je) union with
the dual edges separating opposite spins. Hence, η after step (2) is distributed like a
random cluster model on D∗a with wired boundary conditions and success probabilities
(see, for example, equation (6.5) of [22])

p∗{x,y}∗ =
2− 2p{x,y}

2− p{x,y}
=

2 exp(−2|ϕxϕy|)
1 + exp(−2|ϕxϕy|)

= 1− tanh |ϕxϕy|

which completes the proof.

Remark 2.3. To a configuration of loops one can naturally assign a 1-form, i.e., an
antisymmetric function on the directed edges of Da given by the difference of the total
number of jumps of the loops along the directed edge and its reversal. It is clear that
this 1-form is divergence free in the sense that the sum of values over all directed edges
emanating from a single vertex is zero. This makes it posssible to define a height function
of the collection of loops by summing up the total flux of the 1-form across paths in
the dual graph as it is done e.g. to define the height function of a dimer model. In this
language, the field ÑDa(z) is exactly the height-function, and our construction of the
spin system is analogous to the relation of the XOR-Ising model and the height function
of a related dimer model [10, 4, 12].

3 Griffiths inequalities and reflection positivity

In this section we prove that the spin field is positively correlated for all λ > 0, and
its “massive” version is reflection positive at λ = 1

2 .
The following inequalities satisfied by the spin field are classical in the context of

ferromagnetic spin systems [20, 24].
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Proposition 3.1 (Griffiths inequalities). Let Da ⊂ D′a be any two finite discrete domains
in aZ2. Let λ > 0, and z1, . . . , zn, w1, . . . , wk, be faces of Da. Then,

(i) 〈
∏n
j=1 σ(zj)〉Da ≥ 0,

(ii) 〈
∏n
j=1 σ(zj)〉Da ≥ 〈

∏n
j=1 σ(zj)〉D′a ,

(iii) 〈
∏n
j=1 σ(zj)

∏k
j=1 σ(wj)〉Da ≥ 〈

∏n
j=1 σ(zj)〉Da〈

∏k
j=1 σ(wj)〉Da .

Proof. Using the definition of the spin field and the expression of the n-point function
in the first displayed equation in the proof of Theorem 4.3 of [6], we can express the
n-point function as

〈σ(z1) . . . σ(zn)〉Da =
〈
(−1)

∑n
j=1 ÑDa (zj)

〉
Da

= exp
[
λµ̃
(
(−1)

∑n
j=1Nγ(zj) − 1

)]
= exp

[
− 2λµ̃Da

(
γ :
∑n
j=1Nγ(zj) is odd

)]
, (3.1)

from which the first two inequalities immediately follow. Moreover, we get that

〈
∏n
j=1 σ(zj)

∏k
j=1 σ(wj)〉Da

〈
∏n
j=1 σ(zj)〉Da〈

∏k
j=1 σ(wj)〉Da

=

exp
[
4λµ̃Da

(
γ :
∑n
j=1Nγ(zj) is odd, and

∑k
j=1Nγ(wj) is odd

)]
≥ 1,

which gives the third inequality.

Note that the spin field cannot be directly defined on the whole square lattice aZ2

due to the fact that large random walk loops carry infinite mass and hence each face
of aZ2 is covered by infinitely many loops. With the help of the second inequality from
the theorem above, we can define an infinite volume limit field as the finite domain Da

approaches Z2. However, by analyzing the correlation functions and using e.g. the fact
that the mass of random walk loops in aZ2 passing through a single edge is infinite, we
see that the field is trivial, i.e., it is a collection of iid symmetric (±1)-valued variables.

One can get around this issue by considering a massive version of the loop mea-
sures [5]. Let κ > 0. For a loop γ in Z2, we define the massive loop measure by

µ̃κ(γ) =
1

tγ
(4 + κ)−tγ .

Under µ̃κ, the total measure of large loops intersecting a bounded region of space decays
exponentially with the size of the loops. One can hence define a spin field σκ directly
from the infinite volume loop soup with intensity measure λµ̃κ(γ).

We will now show that this spin model is reflection positive. (See [3] for more
information on the concept and use of reflection positivity in the context of lattice spin
models. The question of reflection positivity in the loop soup context is addressed
in Chapter 9 of [30]). Z2 has a natural reflection symmetry along any line l going
through a set of dual vertices. Such a line splits Z2 in two halves, Z2

+ and Z2
−. We

also split accordingly the dual graph (Z2)∗ in two halves, (Z2
+)∗ and (Z2

−)∗, such that
(Z2

+)∗ ∩ (Z2
−)∗ = V ∗l , where V ∗l is the set of vertices of (Z2)∗ that lie on l.

Let F+ (respectively, F−) denote the set of all functions of the spin variables
(σ(z))z∈(Z2

+)∗ (respectively, (σ(z))z∈(Z2
−)∗). Let ϑ be the reflection with respect to l.

With a slight abuse of notation, it induces a map ϑ : F± → F∓ given by ϑf(σ) = f(σ ◦ ϑ),
f ∈ F±. Let 〈·〉κ

Z2 denote expectation with respect to the infinite volume loop soup with
intensity measure λµ̃κ.
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Proposition 3.2. For all κ > 0 and λ = 1/2, the infinite volume massive spin field σκ is
reflection-positive, i.e., for all functions f, g ∈ F+, 〈fϑg〉κ

Z2 = 〈gϑf〉κ
Z2 and 〈fϑf〉κ

Z2 ≥ 0.

Proof. The proof uses the Markov property of simple random walk loops described
in [49], and is analogous to that of Lemma 8.1 of [7] where a spin field for the non-
backtracking loop soup was defined. An alternative way to prove the result is to notice
that the spin field is a function of the edge-occupation field of the loop soup that was
shown to have a Markov property by Le Jan [31].

4 Convergence of correlation functions

In this section we prove that the correlation functions of the spin fields converge, in
the scaling limit, to conformally covariant functions. These are the functions studied
in [6] and, as we explain in the next section, they are the correlation functions of the
corresponding continuum winding fields. We also study the effect of a small perturbation
of the boundary of the domain on the value of the field.

To state our results, we need to introduce the Brownian loop measure and the
Brownian loop soup which are continuum analogs of the notions from the previous
sections. A (rooted) loop γ of time length tγ is a continuous function γ : [0, tγ ]→ C with
γ(0) = γ(tγ). Given a domain D ⊂ C, a conformal map f : D → C, and a loop γ in D, we
define f ◦ γ to be the loop f(γ) with time parametrization given by the Brownian scaling
f ◦ γ(s) = f(γ(t)), where

s = s(t) =

∫ t

0

|f ′(γ(u))|2du,

and tf◦γ = s(tγ). In particular, if Φa,b(w) = aw+ b, a 6= 0, then Φa,b ◦γ is the loop γ scaled
by |a|, rotated around the origin by arg a and shifted by b, with time parametrization
s(t) = |a|2t, and time length tΦa,b◦γ = |a|2tγ .

By µbr we denote the complex Brownian bridge measure, i.e., a probability measure
on loops rooted at 0 of time length 1 induced by the process Bt = Wt − tW1, t ∈ [0, 1],
where Wt is a standard complex Brownian motion starting at 0. For z ∈ C and t > 0, by
µbrz,t we denote the complex Brownian bridge measure on loops rooted at z of time length
t, i.e., the measure

µbrz,t = µbr ◦ Φ−1√
t,z
.

The Brownian loop measure is a σ-finite measure on loops given by

µ =

∫
C

∫ ∞
0

1

2πt2
µbrz,tdtdA(z).

This measure is clearly translation invariant and it is easy to check that it is scale
invariant. This means that µ = µ ◦ Φa,b for any a > 0 and b ∈ C. Since µ inherits rotation
invariance from the complex Brownian motion, we actually have that µ = µ ◦Φa,b for any
a, b ∈ C, a 6= 0. To recover the full conformal invariance of Brownian motion one has to
consider µ as a measure on unrooted loops, i.e., equivalence classes of loops under the
relation γ ∼ θrγ for every r ∈ R, where θrγ(s) = γ(s+ r mod tγ).

If D is a domain, then by µD we denote the measure µ restricted to loops which stay
in D. Let D,D′ be two simply connected domains, and let f : D → D′ be a conformal
equivalence. The full conformal invariance of µ is expressed by the fact that µD′ ◦f = µD.
A proof of this can be found in [27].

The Brownian loop soup LD = LD,λ with intensity parameter λ > 0 is a Poissonian
collection of loops with intensity measure λµD. We write L = LC. The Brownian loop
soup inherits all invariance properties of the Brownian loop measure. In particular, LD′
has the same distribution as f [LD].
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Let r(D, z) denote the conformal radius of D seen from z. For a mesh size a > 0, let
Da be the largest discrete domain in aZ2 that is contained in D, and D∗a its dual. For
z ∈ D, let za ∈ D∗a be a dual vertex closest to z (chosen in any deterministic way if there
is more than one such vertex). Let ∆ = λ/8.

Theorem 4.1 (Convergence of the n-point function). Let D be a simply connected
bounded Jordan domain. The limit

lim
a→0

a−2n∆〈σ(za1 ) . . . σ(zan)〉Da =: ψD(z1, . . . , zn)2λ

exists, and there is a positive constant c <∞ such that

ψD(z1, . . . , zn) = cn
n∏
j=1

r(D, zj)
−1/8 exp[µD(γ : Nγ(zj) is odd, |γ ∩ {z1, . . . , zn}| ≥ 2)]

exp
[
− µD

(
γ :
∑n
j=1Nγ(zi) is odd, |γ ∩ {z1, . . . , zn}| ≥ 2

)]
.

Moreover, if f : D → D′ is a conformal map, then

ψD′(f(z1), . . . , f(zn)) = ψD(z1, . . . , zn)

n∏
j=1

|f ′(zj)|−1/8.

Remark 4.2. If n = 2, then ψD can be expressed as

ψD(z1, z2) = c2r(D, z1)−1/8r(D, z2)−1/8 exp[2µD(γ : Nγ(z1) and Nγ(z2) are odd)].

Proposition 4.3 (Boundary perturbations). Let D′ ⊂ D be a simply connected subset of
the unit disk containing 0. For a mesh size a > 0, let σDa(za) be the spin field generated
by L̃Da , and let σD′a(za) be the spin field generated by the loops in L̃Da that stay in D′a.
In this coupling,

lim
a→0

P(σDa(0a) = σD′a(0a)) =: χ(r(D′, 0))

exists, and

dχ(r)

dr

∣∣∣∣
r=1

=
λ

8
,

which equals the scaling dimension ∆ of the winding field.

Proof of Theorem 4.1. We will write the n-point function as the product of 1-point func-
tions and a factor that only depends on loops that are macroscopic in the scaling limit.
We will use a result of Beneš, Lawler and Viklund [1] to determine the asymptotics of the
1-point functions. We will then use the coupling between the Brownian loop measure
and the random walk loop measure of Lawler and Trujillo Ferreras [28] to compute the
limit of the remaining factor.

Using the expression (3.1) from the proof of Proposition 3.1, the 1-point function can
be written as

〈σ(za)〉Da = exp[−2λµ̃Da(γ : Nγ(za) is odd)].
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Hence,

〈σ(za1 ) . . . σ(zan)〉Da∏n
j=1〈σ(zaj )〉Da

= exp
[
− 2µ̃Da

(
γ :
∑n
j=1Nγ(zaj ) is odd, |γ ∩ {za1 , . . . , zan}| ≥ 2

)]
n∏
j=1

exp[−2λµ̃Da(γ : Nγ(zaj ) is odd, γ ∩ {za1 . . . , zan} = {zaj })]
exp[−2λµ̃Da(γ : Nγ(zaj ) is odd)]

= exp
[
− 2µ̃Da

(
γ :
∑n
j=1Nγ(zaj ) is odd, |γ ∩ {za1 , . . . , zan}| ≥ 2

)]
n∏
j=1

exp[2λµ̃Da(γ : Nγ(zaj ) is odd, |γ ∩ {za1 , . . . , zan}| ≥ 2)]

→ exp
[
− 2µD

(
γ :
∑n
j=1Nγ(zj) is odd, |γ ∩ {z1, . . . , zn}| ≥ 2

)]
n∏
j=1

exp[2λµD(γ : Nγ(zj) is odd, |γ ∩ {z1, . . . , zn}| ≥ 2)],

where the convergence holds in the scaling limit a→ 0. To justify the convergence, note
that the sets of loops that appear in the last expression only contain loops that cover
at least two points of {z1, . . . , zn}. With probability one, in the Brownian loop soup in
D there are only finitely many loops covering at least two points of {z1, . . . , zn}. The
distance between these loops and the points is positive with probability one. Hence, if
the Brownian loops are approximated sufficiently well by random walk loops, then the
winding numbers of the Brownian loops around z1, . . . , zn will be the same as the corre-
sponding winding numbers of the approximating random walk loops. The convergence
now follows from the strong coupling of [28] between the Brownian loop soup measure
and the random walk loop soup measure.

To prove convergence of the n-point function, it remains to show convergence of the
1-point function. Recall that r(D, z) denotes the conformal radius of D seen from z. By
Theorem 1.4 of [1] there exist u > 0 and 0 < c1 <∞ such that

a−2∆〈σ(zaj )〉Da = a−λ/4 exp[−2λµ̃Da(γ : Nγ(zaj ) is odd)]

= a−λ/4
[
c1(a−1r(Da, z

a
j ))1/4[1 +O((a−1r(Da, z

a
j ))−u)]

]−λ
.

As a→ 0, r(Da, z
a
j )→ r(D, zj), which implies that

lim
a→0

a−2∆〈σ(zaj )〉Da = c̃1r(D, zj)
−λ/4.

This completes the proof of convergence of the n-point function, i.e. the first statement
of the theorem.

Finally, the conformal covariance of ψD(z1, . . . , zn) easily follows from the conformal
invariance of the Brownian loop measure and of the conformal radius.

Proof of Proposition 4.3. Let the spin fields σDa and σD′a be coupled as stated in the
proposition. We have that

P(σDa(0a) = σD′a(0a))

= P(#(γ ∈ L̃Da : Nγ(0a) is odd, γ \D′ 6= ∅) = 0)

+ P(#(γ ∈ L̃Da : Nγ(0a) is odd, γ \D′ 6= ∅) = 2k for some k ≥ 1)

= exp[−λµ̃Da(γ : Nγ(0a) is odd, γ \D′ 6= ∅)]
+O([λµ̃Da(γ : Nγ(0a) is odd, γ \D′ 6= ∅)]2),
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as r(D′, 0) → 1. This follows from the fact that the random variable #(γ ∈ L̃Da :

Nγ(0a) is odd, γ \D′ 6= ∅) has a Poisson distribution with mean λµ̃Da(γ : Nγ(0a) is odd, γ \
D′ 6= ∅).

Let f : D → D′ denote the conformal map from D onto D′ such that f(0) = 0 and
f ′(0) > 0. By the convergence of the random walk loop soup to the Brownian loop soup
[28], and using Proposition 3 of [48] and Lemma A.2 from [6], we have

lim
a→0

µ̃Da(γ : Nγ(0a) is odd, γ \D′ 6= ∅)

= µD(γ : Nγ(0) is odd, γ \D′ 6= ∅)

=

∞∑
k=−∞

µD(γ : Nγ(0) = 2k + 1, γ \D′ 6= ∅)

=

∞∑
k=−∞

1

2π2(2k + 1)2
log

1

f ′(0)

= −1

8
log r(D′, 0).

Hence,

lim
a→0

P(ṼDa(0a) = ṼD′a(0a)) = r(D′, 0)λ/8 +O
([λ

8
log r(D′, 0)

]2)
=: χ(r(D′, 0))

exists. The last statement of the proposition follows immediately.

5 Brownian loop soup winding fields

In this section we show that, for values of the intensity λ of the BLS that are not too
large, but still including e.g. the case λ = 1/2 for ±1-valued fields, one can construct
continuum Euclidean fields (random generalized functions) whose correlation functions
are the functions obtained in [6].

Following [6], we define a winding field arising from the Brownian loop soup (see
also Section 6 of [30]). We will restrict our attention to bounded domains D. Let γ̄ be the
hull of the loop γ, i.e., the complement of the unique unbounded connected component
of the complement of γ. Here, as we will often do, we treat γ as a subset of C. We say
that γ covers z if z ∈ γ. We will be interested in quantities defined in terms of the total
winding of all loops of the loop soup around any given point z. Since L is scale invariant,
{γ ∈ L : γ covers z, diamγ ≤ δ} is infinite almost surely for all δ > 0. This forces us to
regularize the loop soup so that only finitely many loops cover each point. One way to do
this is to introduce the “ultraviolet” cutoff δ on the size of the loops by defining

LδD = {γ ∈ LD : diamγ > δ}.

Similarly, by µδD we denote the measure µD restricted to loops of diameter larger than
δ. Note that each point z is covered by only finitely many loops from LδD almost surely
since the Brownian loop measure of such loops is finite. We can now define

N(z) = Nδ
D(z) =

∑
γ∈LδD

Nγ(z), (5.1)

where Nγ(z) is the winding number of γ around z (if z ∈ γ, then we put Nz(γ) = 0). Note
that the loops which do not cover z do not contribute to the above sum, and therefore
the sum is finite almost surely. The winding field is then defined by

V δ(z) = V δβ (z) = eiβN(z), β ∈ [0, π],
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The correlation functions of this random field were explicitly computed in [6] in the limit
as δ → 0. In particular, it was proved that the one-point function 〈V δ(z)〉 decays like δ2∆

where

∆ = λ
β(2π − β)

8π2
.

Note that since |δ−2∆V δβ (z)| = δ−2∆ for all z ∈ D, the field δ−2∆V δβ does not converge
as a function on D as δ → 0. Hence, to obtain convergence results, one has to treat
δ−2∆V δβ as an element of a topological space larger than any classical function space.

This is usually achieved by thinking of δ−2∆V δβ as a random distribution, i.e., a random
continuous functional on some appropriately chosen space of test functions where the
action of δ−2∆V δβ on a test function f is given by

δ−2∆V δβ (f) = δ−2∆

∫
D

V δβ (z)f(z)dz.

A convenient framework describing such functionals is given by Sobolev spaces with
negative index, which we here briefly recall, following [9]. Let H1

0 = H1
0(D) be the

classical Sobolev Hilbert space, i.e., the closure of C∞0 (D) in the norm

‖f‖2H1
0

:=

∫
D

|∇f(z)|2dz.

Let u1, u2, . . . be the eigenfunctions and λ1 < λ2 ≤ . . .→∞ the respective eigenvalues of
the positive definite Laplacian on D with Dirichlet boundary conditions. We assume that
u1, u2, . . . are normalized to have unit norm in L2 = L2(D). These eigenfunctions form
orthogonal bases for both H1

0 and L2, and if f =
∑∞
i=1 aiui ∈ H1

0 ⊂ L2, then

‖f‖2H1
0

=

∞∑
i=1

λia
2
i .

One can by analogy define for any α > 0 the Hilbert space Hα0 as the closure of C∞0 (D)

with respect to the norm

‖f‖2Hα0 =

∞∑
i=1

λαi a
2
i .

The Sobolev space H−α is then defined as the Hilbert dual of Hα0 , i.e., the space of
continuous linear functionals h on Hα0 with norm

‖h‖H−α = sup
f : ‖f‖Hα0 =1

|h(f)|.

Note that L2 ⊂ H−α, where the action of h =
∑
i aiui ∈ L2 on f ∈ Hα is given by

h(f) =
∫
D
h(z)f(z)dz. It is easily checked that in this case

‖h‖2H−α =
∑
i

1

λαi
a2
i . (5.2)

In our last main result we address the question asked in [6] about the existence of
winding fields as random generalized functions:

Theorem 5.1. Let D be a bounded, simply connected domain with a smooth boundary,
and let ∆ < 1/2. Then for every α > 3/2, the field V δβ treated as a random distribution
converges as δ → 0 in second mean in the Sobolev space H−α, i.e., there exists a random
distribution Vβ ∈ H−α measurable with respect to LD, such that〈

‖δ−2∆V δβ − Vβ‖2H−α
〉
D
→ 0 as δ → 0.
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We also show the non-triviality of winding fields, i.e., that they are not Gaussian.

Proposition 5.2. The conformally covariant functions derived in [6] as limits of the
winding field n-point functions do not satisfy Wick’s relations for Gaussian fields.

The proof of this result is postponed until the end of this section.
The idea for the proof of Theorem 5.1 is to show that the fields V δβ form a Cauchy

sequence in the Banach space L2(Ω, µD;H−α) of H−α-valued, µD-square integrable
random variables. The main ingredient is the following proposition describing the
behavior of the two-point functions. We give the proof after the proof of Theorem 5.1.

Proposition 5.3. Let D be a bounded simply connected domain with a C1 boundary.
For any z, w ∈ D, z 6= w, and ∆ > 0, the limit

lim
δ,δ′→0+

(δδ′)−2∆〈V δβ (z)V δ
′

β (w)〉D =: 〈Vβ(z)Vβ(w)〉D (5.3)

exists. Moreover, if ∆ < 1/2, then the convergence holds also in L1(D ×D, dzdw), and if
∆ ≥ 1/2, then 〈Vβ(z)Vβ(w)〉D /∈ L1(D ×D, dzdw).

We are now ready to prove the convergence of the field in the appropriate Sobolev
space.

Proof of Theorem 5.1. Define the rescaled field Ṽ δβ = δ−2∆V δβ , and note that Ṽ δ ∈ L2

since it is bounded. By (5.2) and orthonormality of ui’s in L2, we have〈
‖Ṽ δβ − Ṽ δ

′

β ‖2H−α
〉
D

=
∑
i

1

λαi

〈∣∣ ∫
D

(Ṽ δβ − Ṽ δ
′

β )ui(z)dz
∣∣2〉

D

=
∑
i

1

λαi

〈∫
D

∫
D

(Ṽ δβ (z)− Ṽ δ
′

β (z))ui(z)(Ṽ δβ (w)− Ṽ δ′β (w))ui(w)dzdw
〉
D

≤
(∫

D

∫
D

∣∣〈(Ṽ δβ (z)− Ṽ δ
′

β (z))(Ṽ δβ (w)− Ṽ δ′β (w))〉D
∣∣dzdw)∑

i

c2

λ
α−1/2
i

,

where in the last inequality we used Fubini’s theorem and the uniform bound ‖ui‖L∞(D) ≤
cλ

1/4
i of [19]. The series in the last expression is finite for α > 3/2 by Weyl’s law [50]

which says that

N(`) =
1

4π
Area(D)`(1 + o(1)) as `→∞,

where N(`) = #{i : λi ≤ `} is the eigenvalue counting function. Therefore the con-
vergence in L1(D × D, dzdw) of the two-point functions from Proposition 5.3 implies
that 〈

‖Ṽ δβ − Ṽ δ
′

β ‖2H−α
〉
D
→ 0 as δ, δ′ → 0+. (5.4)

The space L2(Ω, µD;H−α) of random variables X with values in H−α and such that
〈‖X‖2H−α〉D <∞ is a Banach space with norm 〈‖X‖2H−α〉

1/2 [32]. Therefore, the desired
convergence follows from (5.4) and from the completeness of Banach spaces.

Proof of Proposition 5.3. Assume that δ > δ′ and let z, w ∈ D. For k, l ∈ Z, let

κδz,w =
∑
k,l∈Z

µδD
(
γ : Nγ(z) = k,Nγ(w) = l, z, w ∈ γ̄

)
(1− cos((k − l)β)),

τ δz,w =
∑
k∈Z

µδD
(
γ : Nγ(z) = k, z ∈ γ̄, w /∈ γ̄

)
(1− cos(kβ)),

τ δ
′,δ
w,z =

∑
k∈Z

µδ
′,δ
D

(
γ : Nγ(w) = k, z, w ∈ γ̄

)
(1− cos(kβ)),
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where µδ
′,δ
D is the measure µD restricted to loops of diameter > δ′ and ≤ δ.

Using elementary properties of Poisson point processes, just as in the proof of
Theorem 4.3 in [6], we can express the two-point function in terms of the loop measure.
We get that, for all z, w and δ, δ′,

(δδ′)−2∆〈V δβ (z)V δ
′

β (w)〉D = (δδ′)−2∆ exp
(
− λ(κδz,w + τ δz,w + τ δ

′

w,z + τ δ
′,δ
w,z )

)
. (5.5)

Let mz,w = d(z, ∂D ∪ {w}). By Lemma 3.2 of [6], for δ < mz,w,

exp
(
− λτ δz,w

)
=
(mz,w

δ

)−2∆

exp(−λτmz,wz,w ). (5.6)

An analogous identity holds when we interchange z and w. Moreover, note that κδz,w =

κ
|z−w|
z,w for δ < |z − w|, and τ δ

′,δ
w,z = 0 for δ < |z − w|. Hence, (5.5) and (5.6) imply that if

δ < mz,w and δ′ < mw,z, then

(δδ′)−2∆〈V δβ (z)V δ
′

β (w)〉D = (mz,wmw,z)
−2∆ exp(−λ(κ|z−w|z,w + τmz,wz,w + τmw,zw,z )) (5.7)

which is independent of δ and δ′. This proves (5.3).
We now assume that ∆ < 1/2 and focus on the convergence in L1(D × D, dzdw).

Observe that, by (5.5) and (5.6), for all z, w and δ, δ′,

(δδ′)−2∆〈V δβ (z)V δ
′

β (w)〉D ≤ (δδ′)−2∆ exp
(
− λ(τ δz,w + τ δ

′

w,z)
)

≤ (δ ∨mz,w)−2∆(δ′ ∨mw,z)
−2∆

≤ (mz,wmw,z)
−2∆.

Hence, by (5.3) and dominated convergence, it is enough to show that∫
D

∫
D

(mz,wmw,z)
−2∆dzdw <∞.

Let Br(z) = {w : |z − w| < r}, D = B1(0), and mD
z,w = d(z, ∂D ∪ {w}) = |z − w| ∧ (1− |z|).

Let f : D→ D be a conformal equivalence. By the Koebe quarter theorem, mD
z,w|f ′(z)| ≤

4mf(z),f(w). By Theorem 3.5 of [40], f ′ has a continuous extension to D, and in particular,
‖f ′‖L∞(D) <∞. By integration by substitution, the above integral is equal to∫
D

∫
D

(mf(z),f(w)mf(w),f(z))
−2∆|f ′(z)f ′(w)|2dzdw ≤ 44∆‖f ′‖4−4∆

L∞(D)

∫
D

∫
D

(mD
z,wm

D
w,z)

−2∆dzdw.

Since (mD
z,w)−2∆ ≤ |z − w|−2∆ + (1− |z|)−2∆, it is now enough to note that∫
D

|z − w|−4∆dz ≤
∫
B(w;2)

|z − w|−4∆dz =

∫ 2π

0

∫ 2

0

r1−4∆drdθ <∞,∫
D

(1− |z|)−2∆dz =

∫ 2π

0

∫ 1

0

r(1− r)−2∆drdθ <∞,∫
D

∫
D

|z − w|−2∆(1− |z|)−2∆dwdz ≤
∫

2D

|w|−2∆dw

∫
D

(1− |z|)−2∆dz <∞.

This proves convergence in Lp(D ×D, dzdw) for ∆ < 1/(2p).
We now assume that ∆ ≥ 1/2. Note that, by scale invariance of the Brownian loop

soup, and since the collection of outer boundaries of loops in the Brownian loop soup is

EJP 0 (0), paper 0.
Page 13/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.0
http://ejp.ejpecp.org/


Spin systems from loop soups

thin in the sense of [37],

sup
z,w∈D

τmz,wz,w ≤ 2 sup
z,w∈D

µ
mz,w
C (γ : z ∈ γ̄, w /∈ γ̄, γ̄ ∩ ∂D = ∅)

≤ 2 sup
z,w∈C

µ
|z−w|
C (γ : z ∈ γ̄, w /∈ γ̄)

= 2µ1
C(γ : 0 ∈ γ̄, 1 /∈ γ̄) <∞.

Let ρ = diamD/2. If |z − w| > ρ, then κδz,w ≤ 2µρC(γ ⊂ D) < ∞. Hence, by (5.7), there
exists C > 0 such that

(δδ′)−2∆〈V δβ (z)V δ
′

β (w)〉D ≥ C(mz,wmw,z)
−2∆

if (z, w) ∈ Iδ,δ′ := {(z, w) ∈ D2 : δ < mz,w, δ
′ < mw,z, |z − w| > ρ}. Using the fact that, for

z, w ∈ D, mD
z,w‖f ′‖∞ ≥ mf(z),f(w), and again integrating by substitution, we have a lower

bound of the form

C‖f ′‖4−4∆
L∞(D)

∫∫
f−1[Iδ,δ′ ]

(mD
z,wm

D
w,z)

−2∆dzdw

≥ C‖f ′‖4−4∆
L∞(D)

∫∫
f−1[Iδ,δ′ ]

((1− |z|)(1− |w|))−2∆dzdw →∞,

as δ, δ′ → 0 since f−1[Iδ,δ′ ] ↗ f−1{(z, w) ∈ D2 : |z − w| > ρ}. This shows that
〈Vβ(z)Vβ(w)〉D /∈ L1(D ×D, dzdw) for ∆ ≥ 1/2.

Proof of Proposition 5.2. It is enough to provide one example. To that end, consider
three points, x, y, z, contained in the unit disc D and at equal distance from the center
of the disc and from each other. We write φ(x, y, z) for the three-point function of the
winding field in D, and use analogous notation for the two- and one-point functions.

If the functions defined above satisfied the Wick’s relations for Gaussian fields, they
would in particular satisfy the following identity:

φ(x, y, z)

φ(x)φ(y)φ(z)
− φ(x, y)

φ(x)φ(y)
− φ(y, z)

φ(y)φ(z)
− φ(x, z)

φ(x)φ(z)
+ 2 = 0. (5.8)

Let a denote the µD-measure of all loops that wind an odd number of times around
x, y and z. Let b denote the µD-measure of all loops that wind an odd number of times
around two of x, y and z, and an even number of times around the remaining point. An
easy calculation using Theorem 4.1 shows that (5.8) can be written as

e4λ(a+b)
[
e8λb − 3

]
+ 2 = 0.

However, the last equation cannot be always satisfied because one can, for example,
make b as large as desired by taking x, y and z close to 0. This concludes the proof.
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