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Abstract: Recent improvements in cost-effectiveness of high-throughput technologies has allowed 

RNA sequencing of total transcriptomes suitable for evaluating the expression and regulation of 

circRNAs, a relatively novel class of transcript isoforms with suggested roles in transcriptional 

and post-transcriptional gene expression regulation, as well as their possible use as biomarkers, 

due to their deregulation in various human diseases. A limited number of integrated workflows 

exists for prediction, characterization, and differential expression analysis of circRNAs, none of 

them complying with computational reproducibility requirements. We developed Docker4Circ for 

the complete analysis of circRNAs from RNA-Seq data. Docker4Circ runs a comprehensive 

analysis of circRNAs in human and model organisms, including: circRNAs prediction; 

classification and annotation using six public databases; back-splice sequence reconstruction; 

internal alternative splicing of circularizing exons; alignment-free circRNAs quantification from 

RNA-Seq reads; and differential expression analysis. Docker4Circ makes circRNAs analysis easier 

and more accessible thanks to: (i) its R interface; (ii) encapsulation of computational tasks into 

docker images; (iii) user-friendly Java GUI Interface availability; and (iv) no need of advanced 

bash scripting skills for correct use. Furthermore, Docker4Circ ensures a reproducible analysis 

since all its tasks are embedded into a docker image following the guidelines provided by 

Reproducible Bioinformatics Project. 

Keywords: circRNA; reproducible analysis; pipeline; docker images 

 

1. Introduction 

CircRNAs are circular RNA molecules with no free 5’/3’ ends, formed by back-splicing (BS) 

events [1]. To date five categories of circRNAs have been defined, arising respectively from: (i) One 

or more exons of the linear transcript (exonic); (ii) an intron of the linear transcript (intronic); (iii) an 
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antisense transcript including exons (antisense); (iv) a transcript of the same gene locus of the main 

linear transcript, but not exonic or intronic (intragenic); and (v) a transcript from nongenic regions 

(intergenic) [2]. Exonic circRNAs are the main category and here the mechanism is clearly 

dependent on the same machinery that carries out normal exon splicing, involving in this case a 

downstream 5’ splice site and an upstream 3’ splice site. In 2013, Jeck et al. described two possible 

models for circRNA formation [3]. In the “lariat driven circularization” model, an exon skipping 

event generates a long intron lariat containing the skipped exon(s), which undergoes back-splicing 

to generate a circRNA. The “intron-pairing-driven circularization” suggests that introns flanking 

the circularizing exon(s) are paired forming a stem-loop structure, due either to complementary 

sequences, such as inverted Alu, or to interacting RBPs bound to the two introns. 

The expression of circRNAs has been reported in almost all tissues, with special enrichment in 

the brain, and displays features of tissue specificity that is often not correlated with the expression 

of the cognate linear isoforms. Interestingly, there are many reports of altered circRNA expression 

in pathological tissues, including cancer, and the relative stability of circRNAs due to the lack of 

free ends makes them detectable also in body fluids [4]. 

Several circRNAs databases are also becoming available including circBase [5], Tissue-Specific 

CircRNA Database (TSCD) [6], circRNADb [7], Circ2Disease [8], ExoRBase [9], Cancer Specific 

CircRNA Database (CSCD) [10], CircFunBase [11], and Circ2Traits [12], increasing the accessible 

information on annotated circRNAs. 

Appreciation of circRNAs has escaped the common procedures for gene expression analysis 

until recently. However, aside from dedicated approaches such as Poly(A+)-depletion or RNAseR 

treatment followed by RNA-Seq, an increasing number of total RNA-Seq datasets suitable for 

circRNAs evaluation in a number of different biological contexts is nowadays available. This makes 

definitely relevant the possibility of studying circRNAs expression in a variety of cells and tissues 

using available datasets, thus expanding rapidly the knowledge on circRNAs regulation and 

functions in different experimental or pathological contexts. 

The identification of circRNAs in RNA-Seq data relies solely on reads mapping to back-

splicing junctions. The problem is analogous to identify novel splicing isoforms in linear transcripts, 

which may be quite hard when these isoforms are expressed at a low level, as indeed in the case of 

circRNAs. Once a back-splicing is predicted, establishing genomic features and reconstructing 

circRNA structure is necessary, based on the available data. Finally, differential expression analysis 

can be performed. 

Many computational tools were developed for predicting circRNAs from RNA-Seq data [2,13], 

and different tools were proposed for the post-prediction analyses including FUCHS [14] and CIRI-

AS [15] for defining circRNAs internal structures, Sailfish-circ [16], and circTest [17] for circRNAs 

quantification and differential expression analysis and CircView for visualization of circRNAs 

predictions [18]. Furthermore, our group recently proposed the CircHunter algorithm for the 

characterization and quantification of circRNAs using public RNA-Seq datasets [19]. All these 

aspects clearly highlight the need for workflows able to provide a comprehensive characterization 

of circRNAs. Extensive pipelines were designed for this purpose like CirCompara [20], Ularcirc 

[21], and circtools [22]; however, they do not meet the computational reproducibility standards 

suggested by Sandve and colleagues [23]. 

In this paper, we present Docker4Circ, a comprehensive framework for circRNAs analysis 

providing: (1) circRNAs prediction from RNA-Seq data; (2) classification and annotation of 

circRNAs over six public databases; (3) reconstruction of the back-splicing sequence; (4) internal 

alternative splicing for multi-exonic circRNAs; (5) alignment-free circRNAs quantification from 

RNA-Seq reads, and (6) differential expression analysis. The distinctive features of Docker4Circ are 

the usability and portability on all Unix-like systems achieved through docker containerization, an 

R interface and a Java Graphical User Interface (GUI); and the computational reproducibility of any 

performed analysis since it follows the guidelines provided by the Reproducible Bioinformatics 

Project (RBP) (http://reproducible-bioinformatics.org/) [24,25]. 
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2. Results 

2.1.A Framework to Create Modular Workflows for Reproducible Analysis of circRNA Data 

We designed Docker4Circ as an integrated computational framework to the goal of providing 

all the common steps from RNA-Seq reads to full analysis of circRNA structure and expression, 

allowing a number of user-defined options in an easy interface. Docker4Circ consists of an R library 

(integrated into Docker4Seq package [23]) and a set of docker images. The framework includes 

public analysis tools for RNA-Seq read quality control (FASTQC), read alignment (BWA and 

STAR), circRNA prediction (CIRI2 and STARChip), circRNA internal sequence analysis (CIRI-AS), 

circRNA classification (CircHunter), and expression analysis (CircHunter and DESeq2). 

Furthermore, additional functions were included to allow the integration of multiple circRNAs 

predictions from different tools and the circRNAs annotation with the information stored in public 

databases. To facilitate the usage of these tools and to achieve the computational reproducibility of 

the analysis, all the Docker4Circ tools are pre-installed into a set of docker images (according to the 

guidelines of the RBP). The Docker4Seq R library provides a simplified user interface to run 

Docker4Circ, for which no knowledge of the docker commands is needed. 

The framework functionalities are grouped in four modules: circRNAs prediction (Module 1), 

circRNAs classification and annotation (Module 2), the Back-Splicing (BS) sequence analysis 

(Module 3), and circRNAs expression analysis (Module 4) (Figure 1). 

Moreover, to simplify the use of Docker4Circ for users with no scripting experience, R 

functions can be controlled by a dedicated GUI, which is a part the 4SeqGUI project 

https://github.com/mbeccuti/4SeqGUI (Figure 2a). 

Details on the usage of each function are reported in the Supplementary Material of the 

manuscript. Docker4Circ functions and associated test data can be downloaded from 

https://github.com/kendomaniac/docker4seq. 

 

Figure 1. Schematic representation of the Docker4Circ modules with indication of all the functions 

(reported in bold in the hexagons) and the input/output files involved (reported in the squares). The 

different modules implemented in the framework are reported with different colors. BS = back-

splicing. 
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Figure 2. (a) The Docker4Circ Graphical User Interface. Each module implemented in the 

framework is accessible using the panel on the left, the right panel reports the fields and parameters 

of each function; (b) Bar plot reporting the Docker4Circ classification of circRNAs identified in the 

analysis of RNA-Seq datasets from CRC cell lines; (c) Volcano plot reporting the -log10 p-value and 

the log2 expression fold change (red dashed lines) computed between Docker4Circ counts of BS 

supporting reads from RNA-Seq datasets of NCM and CRC tissue samples. 

2.1.1. Module 1: circRNAs Prediction 

This module is designed to predict circRNAs using either CIRI2 [26] or STAR Chimeric Post 

(STARChip) [27] starting from RNA-Seq reads. 

The CIRI2 prediction analysis is implemented by the function wrapperCiri. This function 

initially calls the fastqc function for quality control of the input RNA-Seq reads using FASTQC 

(Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Then it executes the 

bwa function for performing read alignment using BWA [28]. Finally, ciri2 function is called to 

execute the CIRI2 algorithm on the read alignment obtained by BWA. 

The STARChip prediction-pipeline is implemented through wrapperSTARChip embedding the 

functions starChimeric, starChipIndex, and starchipCircle. Before running wrapperSTARChIP, the 

genomic sequence should be indexed using STAR through the function rsemstarIndex. In 

wrapperSTARChIP the RNA-Seq reads are aligned against indexed genomes using the starChimeric 

function which exploits the chimeric alignment mode of STAR algorithm. The chimeric alignments 

are then evaluated for candidate circRNA junctions using the function starChipIndex to pre-process 

the reference STAR genome index. Finally, the starchipCircle function returns a list of circRNAs 

supported by a user-defined minimum number of BS-supporting reads detected in a defined 

https://paperpile.com/c/FWsJCE/WKeJ
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number of samples. An additional filter based on the count per million reads, the linear splicing 

information, as well as the circRNA annotation, can be also provided by the function. 

Finally, we provided two functions for processing and overlapping multiple circRNA 

predictions. Specifically, we designed the function circrnaMergePredictions to merge the predicted 

circRNAs in each sample given a specific prediction tool. This function searches within the sample 

folders the circRNA predictions as stored in files named with a suffix “tool.crna” and 

“tool.count_table”, where tool is the chosen prediction tool (e.g., suffix ciri2 for CIRI2 prediction). 

Then, it creates a joined BS count table from different samples and removes those circRNAs 

characterized by a few BS-supporting reads in each sample and by a low average number of BS-

supporting reads among biological replicates of the same experimental condition (these two 

thresholds are passed to the function circrnaMergePredictions as input parameters). Finally, the 

function circrnaOverlapResults was designed to merge circRNAs predictions derived by different 

tools. It returns a list of predictions in which only the circRNAs discovered by at least N tools are 

considered (where N is an input parameter of this function). It is important to point out that these 

two functions are currently implemented to support the circRNA predictions derived from eleven 

tools: ACFS [28], CIRI [29], CIRI2 [26], Find_Circ2, CIRCexplorer [30], CIRCexplorer2 [31], DCC 

[17], KNIFE [32], STARChip [27], Uroborus [33], and circRNA_Finder [34]. 

2.1.2. Module 2: circRNAs Classification and Annotation 

In this module, an extensive annotation of the circRNAs predicted in Module 1 is performed 

through the following two functions: circrnaClassification and circrnaAnnotations. The 

circrnaClassification function considers the Ensembl transcriptome annotations by overlapping the 

exons genomic coordinates against circRNAs genomic coordinates. Each overlap is classified on BS 

position within the annotations and the number of exons involved. This function is able to 

distinguish unconventional circRNAs classes including intronic and intergenic circRNAs, or 

circRNAs whose BS sites do not coincide with exon boundaries (putative exon circRNAs), as 

reported in [19]. Specifically, if both circRNA BS sites coincide with the exon boundaries then 

circRNAs are classified as monoexonic or multiexonic depending on the number of exons involved. 

Conversely, the circRNAs are classified as intronic, intergenic, or putative exon if at least one BS site 

falls within intronic, intergenic, or intra-exonic regions, respectively. The circrnaClassification 

function takes as input the list of predicted circRNAs, the exons/transcripts data, and the selected 

genome assembly. The output of this function is thus a circRNAs classification at the transcript and 

gene level. The circrnaPrepareFiles function can be used to retry the exons/transcript data, in case 

they are not available, using the biomaRt R package [35]. These functions can be applied on 

circRNA sets defined in human transcriptomic data (hg18, hg19, or hg38 genome assembly) as well 

as on data obtained in model organisms, including Mus musculus (mm9, mm10 assembly), Rattus 

norvegicus (Rn6), Drosophila melanogaster (dm6), and Caenorhabditis elegans (ce11).  

On the other side, the circrnaAnnotations function compares the list of predicted circRNAs with 

a set of online circRNA databases. Based on the genomic coordinates of the input circRNAs, the 

function provides to the user their related information by querying six databases: circBase [5] and 

TSCD [6], ExoRBase [9], Circ2Disease [8], CSCD v2 [10], and CircFunBase [11]. Each circRNA 

identified in these databases is associated with their annotations including: Genomic coordinates 

and length, the cell lines in which a circRNA was detected, the best overlapping gene and 

transcript, the study in which it was discovered (from circBase), the information about the fetal or 

adult human and mouse tissues in which the circRNA was detected (from TSCD), the circRNA 

expression in disease and normal tissues (from CSCD, Circ2Disease, CircFunBase), the circRNA 

detection in circulating exosomes (from ExoRBase), andmiRNAs and proteins predicted to bind its 

sequence (from TSCD).  

Noteworthy, if the version of the genome assembly used for the circRNA prediction is not 

compatible with those present in circBase and TSCD, the genomic coordinates are converted using 

the UCSC LiftOver program [36]. The circrnaAnnotations is compatible with the human (hg18, hg19, 

and h38) and mouse (mm9, mm10) genome assemblies. 
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2.1.3. Module 3: circRNAs Sequence Analysis 

This module is designed for the analysis of the back-splicing circRNAs sequence. The 

circrnaBSJunctions function takes as input the list of selected circRNAs and the human genome 

sequence providing the reconstructed BS sequences of the input circRNAs. The function exploits a 

python script which identifies two sets of genomic coordinates of 35 base pairs starting from the 

boundaries of the exons involved in the circularization. To reconstruct BS sequences, these genomic 

coordinates are then used as input for the functions getSeq and xscat provided by the R package 

GenomicRanges [37]. circrnaBSJunction can be applied on circRNA set defined in human data (hg18, 

hg19, and hg38) or defined using model organisms data (mm9, mm10, Rn6, dm6, and ce11). 

Moreover, ciri_as function implements the CIRI-AS analysis to detect internal alternative 

splicing (AS) events involving the exons composing the predicted multi-exonic circRNAs [15]. 

Specifically, ciri_as takes as input BWA alignment files used for the CIRI2 circRNAs prediction, the 

reference genomic sequence (in fasta format), the gene annotations (in GTF/GFF), and the list of 

CIRI2-predicted circRNAs. Its output is the list of alternative splicing events involving the exons of 

the circRNAs under study. 

2.1.4. Module 4: circRNAs Expression Analysis 

This module provides the expression analysis of circRNAs. The differential expression analysis 

is based on the DESeq2 R package [38]. The function wrapperDeseq2 takes as input the circRNA BS 

count table generated by the R functions provided by the Module 1 and computes the differential 

expression analysis for each circRNA with respect to a specific covariate. 

Conversely, if the user is interested in quantifying the expression of the set of circRNAs 

predicted in the previous modules in other independent RNA-Seq dataset, we provided the 

function circrnaQuantification. This function applies a two-step procedure to count the sequencing 

reads supporting a BS junction. In practice, the first step of the function takes as input the sample 

reads, the set of sequences and a threshold N and it returns the corresponding set of reads which 

contains at least N sub-sequences of length k (called k-mer) shared with the set of pre-defined BS 

sequences. The k-mers are stored in RAM exploiting an ad-hoc C++ hash table class implementation 

to optimize the trade-offs between the memory utilization and the execution time.  

The second step takes as input the reads selected in the first step and directly align them 

against the pre-defined BS sequences. For this step, the Smith–Waterman algorithm provided by 

SIMD Smith–Waterman C++ library [39] is used. The circrnaQuantification function can be applied 

by providing the input circRNAs BS junctions in fasta format, the RNA-Seq data to analyze in fastq 

format, and six parameters: the k-mer length, the number of threads, the dimension of the hash 

table, the dimension of the collision list, the number of k-mers that must be matched to the sequence 

and the number of perfect matches required to consider the sequence represented in the RNA-Seq 

data. The circRNAs BS count table obtained can then be joined together using the mergeData 

function and analyzed by the wrapperDeseq2 function for a differential expression analysis. 

2.1.5. How to Integrate a New Functionality in the Framework 

As part of the RBP, Docker4Circ allows also users to include novel functionality in the 

framework by creating their own functions and Docker images. For this purpose, a template 

function called skeleton is provided as a prototype to build the docker controlling function. 

Furthermore, a tutorial on “how to create the docker image called via the skeleton.R function” was 

created (see available online: http://www.reproducible-bioinformatics.org/ in the section “How to 

be part of the Reproducible Bioinformatics project”). 

2.2. Examples of the Application of Docker4Circ Framework 

In the following section, we used Docker4Circ to identify the set of circRNAs expressed from 

RNA-Seq data of normal colon mucosa (NCM) NCM460 cell line and colorectal cancer (CRC) 

SW620 and SW480 cell lines [40] (Section 2.2.1). The expression analysis module was also used to 

https://paperpile.com/c/FWsJCE/5Nfnv
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quantify the expression of the circRNAs identified in an RNA-Seq dataset of primary CRC and 

paired NCM tissue data set (GSE104178) [41] 

2.2.1. Docker4Circ for the Reproducible Analysis of circRNAs Expressed in Colorectal Cancer Cell 

Lines 

The Docker4Circ modules were used to predict, classify, annotate, and analyze the expression 

of the circRNAs in NCM and CRC cell lines. The expression analysis (Module 4) was exploited to 

measure the expression of the detected circRNAs in an RNA-Seq experiment obtained from 

primary CRC tissues and adjacent normal tissue. 

The prediction of circRNAs in NCM and CRC cell lines was performed using the CIRI2 

pipeline, implemented by the wrapperCiri function. As reported in Table 1, among the different 

samples the lowest number of circRNAs predicted by CIRI2 was 4,624, while the highest circRNAs 

predicted was 16,006 (average value = 9,474). The complete list of circRNAs, together with the 

number of BS-supporting reads for each sample, is reported in Table S1. The number of circRNAs 

decreases from NCM to CRC cell lines, as previously reported by the authors [40]. 

Using the ciri2MergePredictions function we merged the circRNAs predicted in each sample 

into a single circRNAs list. This list is composed of 7,086 out of 31,694 circRNAs characterized by 

more than two BS-supporting reads in at least two replicates and an average value of BS-supporting 

reads higher than 10 (Table S2). Observe that 99.80% (n = 7,072) of the circRNAs belonging to our 

list was previously detected by Jiang et al [40]. Starting from the same datasets, the circRNAs 

prediction was also performed with the STARChip pipeline. The analysis predicted 2,933 circRNAs 

of which 94.7% overlapped with CIRI2 (Table S3). 

As previously observed by our group, circRNAs can be synthesized by complex splicing 

patterns involving exonic, intronic, and intergenic regions [19]. To better characterize the genomic 

regions involved in the back-splicing process of the 7,086 circRNAs predicted by CIRI2, we applied 

the function circrnaClassification that provides an accurate classification of each circRNA based on 

BS site location with respect to Ensembl transcript annotations. At the transcript level, the exons of 

15,454 transcripts were associated with at least one circRNA, while 7,200 unique classifications were 

provided at the gene level (Figure 2b). The discrepancy between the number of inputs circRNAs 

and the unique classification results is due to those circRNAs that can be attributed equally to two 

or more genes sharing the same exons. Table S4 provides the classification results at the gene level 

with information of involved exons. Given our circRNAs classification, we observed that exonic 

circRNAs were the class associated with the highest expression and the circRNAs predicted on the 

HIPK3 (exon 2), CAMSAP1 (exons 2–3), and ASXL1 (exons 2–4) were the most expressed circRNAs 

in both normal and cancer cell lines (Table S4). These circRNAs were also identified by Jiang and 

coworkers as the most expressed circRNAs [40]. 

To further characterize the structural properties of the circRNAs in our list, we applied the 

sequence analysis module of Docker4Circ to identify AS events involving the exons composing the 

circRNAs. This analysis was performed with CIRI-AS algorithm implemented in the ciri_as function 

and generated an average of 780.3 AS events involving multi-exonic circRNAs in our set (Tables 1 

and S5). 

Subsequently, to describe our circRNA set based on public database information, we applied 

the circrnaAnnotations function of Docker4Circ. The annotation with data from the six databases 

highlighted 4,950 circRNAs annotated in CircBase, 540 and 508 circRNAs annotated in the adult 

and fetal tissue sections of TSCD database, 334 in CircFunBase database, 24 in ExoRBase, 72 in 

Circ2Disease, and 29 in CSCD v2, respectively (Table S6A–G). Interestingly, 83 circRNAs were 

detected in adult colon tissue samples in TSCD data and 26, 2, and 29 were detected in CRC tissue 

using the CircFunBase, Circ2Disease, and CSCD v2 annotations, respectively (Table S6H). A total of 

1,132 circRNAs were not annotated in any of the considered database. 

Finally, using the functions implemented in the expression analysis module, we assessed the 

differential expression level of our list of circRNAs among different experimental conditions or 

from independent RNA-Seq experiments. Then, we performed a differential expression analysis 

https://paperpile.com/c/FWsJCE/JLjcI
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(wrapperDeseq2 function) considering the number of BS-supporting reads measured in NCM and 

CRC cell lines. As reported in Table S7, we identified 705, 655, and 430 circRNAs differentially 

expressed (adj. p-value < 0.001) between NCM460 and SW480 cell lines, NCM460 and SW620 cell 

lines, and SW480 and SW620 cell lines (Table D7). Among them, 639 (90.64%), 613 (93.59%), and 352 

(81.86%) were detected as differentially expressed also by Jiang and coworker [40]. Finally, 208 

circRNAs were significantly differentially expressed in all the comparisons. Among them, the 

circRNAs mapped in EXOC6B (exons 1–3), DCBLD2 (exons 1–2), and ASAP1 (exon 2) were the most 

significant dysregulated circRNAs (Tables S4 and S7). 

Table 1. Table reporting the number of RNA-Seq paired reads analyzed, the number of detected 

circRNAs, and the number of alternative splicing (AS) events predicted by CIRI-AS. 

Dataset ID Reads circRNAs AS events 

NCM460_R1 66,144,999 14,003 1,482 

NCM460_R2 70,945,094 16,006 1,790 

NCM460_R3 73,804,226 12,413 1,078 

SW480_R1 88,915,933 8,627 532 

SW480_R2 97,303,573 5,688 335 

SW480_R3 66,144,999 7,154 470 

SW620_R1 91,406,400 1,0216 790 

SW620_R2 67,013,355 4,624 214 

SW620_R3 69,789,394 6,541 332 

Average 76,829,774.78 9,474.67 780.33 

2.2.2. Application of Docker4Circ to Directly Quantify circRNAs Expression from CRC Tissue RNA-

Seq Data 

The expression of the 7086 circRNAs identified using the cell lines data described in the 

previous section, was quantified in an RNA-Seq dataset of primary CRC and paired NCM tissue 

data set (GSE104178) [41]. For this purpose, the sequences of the circRNAs back-splicing junctions 

were reconstructed using the Docker4Circ circrnaBSJunctions function. Using the hash table-based 

approach, the reconstructed BS sequences were searched directly in total RNA-Seq reads bypassing 

the circRNAs prediction in each tissue sample. Using this quantification method, 1,758 circRNAs 

were associated with at least one read. The most expressed circRNAs in NCM samples was 

chr17_45043900_45047675 an intronic circRNA of RP11-156P1.2 gene, whereas a circRNA from the 

RPA3-AS1 gene (exons 2 and 3) was the most expressed circRNA in CRC samples. 

Then, the BS read count table was used as input of a differential expression analysis 

(wrapperDeseq2 function) between the CRC and the paired NCM datasets. We identified six 

circRNAs differentially expressed between CRC and normal colonic mucosa samples (p-value < 

0.01) (Figure 2c and Table S8A). Among the six differentially expressed circRNAs between primary 

tumors and matched normal mucosa, two circRNAs were detected as differentially expressed using 

the CRC cell line data. Specifically, a circRNA encoded by the PSMA3 (chr14_58718837_58724716) 

and one encoded by the HDAC2 gene (chr6_114274441_114277315) were upregulated in primary 

tumors. The circRNA chr14_58718837_58724716 was significantly up-regulated in SW480 compared 

to NCM460 cell lines, while chr6_114274441_114277315 was up-regulated in SW640 compared to 

SW480 cells. 

3. Discussion 

CircRNAs are widely expressed in both cancerous and normal tissues [42,43] and an increased 

number of sequencing experiments is becoming accessible to explore circRNAs expression in a 

specific biological context. To deal with the increasing number of computational resources and 

public datasets available for circRNAs analysis, we propose Docker4Circ as a user-friendly 

framework to guarantee reproducible analysis of circRNAs data. 

https://paperpile.com/c/FWsJCE/rdOMM
https://paperpile.com/c/FWsJCE/JLjcI
https://paperpile.com/c/FWsJCE/wNh4z+4uegQ
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The framework was designed for users with different levels of expertise in computational 

analysis. Specifically, a Java graphic user interface was designed to provide a basic user-friendly 

framework. Conversely, more expert users can exploit the R environment to create their own 

analysis workflows using directly the R functions implemented in Docker4Circ. 

The four modules composing the Docker4Circ framework facilitate the circRNAs prediction 

starting from raw RNA-Seq reads and the comparison of multiple circRNA lists (Module 1), the 

circRNA characterization by defining their genome context and the annotated knowledge about 

their expression (Module 2), the reconstruction of the circRNA BS sequence to easily design qPCR 

primers for validating circRNAs expression (Module 3), and the rapid quantification and 

differential expression analysis of circRNAs level using public datasets (Module 4). Indeed, starting 

from RNA-seq datasets, Docker4Circ provides all the features and annotations needed for further 

experimental work, such as the BS sequence, the genomic status and contextualization of the 

circRNAs within other linear cognate transcripts and alternative splicing isoforms, and potentially 

interacting RBPs and miRNAs. This is a consistent advantage with not having to jump to different 

packages for each of these aspects. In addition, along with the differential expression analysis run 

inside the original dataset, the fourth Docker4Circ Module allows the circRNAs identified in the 

original dataset to be quite rapidly analyzed in other independent external datasets thanks to the 

function circrnaQuantification. 

We tested Docker4Circ to reproduce analyses performed by Jiang and colleagues [40] on 

circRNAs expression in CRC cell lines showing that our framework is able to reproduce extensively 

their results. Furthermore, we added novel evidence on these circRNAs by executing a 

quantification and differential analysis of their expression level considering RNA-Seq performed on 

CRC and adjacent colonic tissues. This analysis showed two circRNAs differentially expressed both 

in tissues and cell lines models (Table S8B). These circRNAs were annotated, respectively to the 

HNRNPC (exons 1–2) and the PSMA3 (exons 3–5) genes. Furthermore, considering the circRNAs 

detected as differentially expressed in CRC cell lines data, we identified 355 circRNAs detected in 

the primary tissue datasets and five of them are annotated to CRC considering the Circ2Disease or 

CircFunBase annotations. Specifically, the circRNA hsa_circ_0005273 (from the PTK2 gene) was 

annotated to CRC disease in both circ2disease and CircFunBase, while hsa_circ_0002321, 

hsa_circ_0005576, hsa_circ_0004820, and circ_004661 transcribed respectively from the PPP2R5A, 

CDC42, NUP35, and PTPRA genes were annotated to CRC in CircFunBase. Despite further 

experimental validations are needed to assess the expression of these circRNAs in CRC and normal 

colonic mucosa, we showed that our approach is able to provide a reproducible prediction and 

characterization of a circRNAs set. 

As reported in Table S9, all the modules and functions implemented in Docker4Circ can be run 

in a limited amount of time and the overall running time of the workflow was around six or ten 

hours if the CIRI2 or the STARchip prediction is performed, respectively. The workflow was 

performed on an Intel NUC6I7KYK mini-PC with 8 threads confirming that all the Docker4Circ 

functions can be executed on a standard workstation because the only requirement is 32 Gb of RAM 

available if the STAR Chimeric analysis is performed. Moreover, one additional aspect that should 

be considered is the time and computational power requested to run circRNA analysis from RNA-

Seq data concerning elevated number of samples, such as in the case of tumor tissue or sera series, 

often involving (several) hundreds of samples. For this purpose, we included a hash-based circRNA 

expression quantification (circrnaQuantificiation function) which allows the direct computation of 

circRNA expression level from the sequencing reads avoiding the read alignment step, limited to a 

pre-defined set of circRNAs. 

The most important aspect of our framework is its ability to guarantee the computational 

reproducibility of the analysis. This is obtained by embedding each analysis step into a specific 

docker image according to the guidelines of the RBP project. Thanks to this, our framework 

provided analyses whose results can be fully tracked on how they were produced by recording 

each analysis steps and version of tools applied without any data manipulation step. 

https://paperpile.com/c/FWsJCE/rdOMM
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In conclusion, Docker4Circ provides an efficient analysis framework to identify and 

characterize the circRNAs on a large number of sequencing experiments. The usage of Docker 

images ensures a reproducible circRNAs analyses to easily harmonize and combine the study of 

these molecules in different experimental and biological contexts. 

4. Materials and Methods 

The detailed analysis protocol that was followed for the analyses reported in this manuscript 

was released on the protocol.io portal at dx.doi.org/10.17504/protocols.io.9vmh646. The specific use 

of each function and associated parameters are reported in Supplementary Materials of the 

manuscript. 

4.1. CircRNAs Prediction 

To test Docker4Circ, RNase-R RNA-Seq datasets from PRJNA393626 were selected. These data 

consist of a triplicate paired-end total and RNase-R treated RNA-Seq performed on NCM460 

(normal colon cells), SW480 (primary CRC cells), and SW620 cell lines (metastatic CRC cells). 

CircRNAs prediction was performed using the wrapperCiri function of Docker4Circ with the 

following parameters: max.span = 200,000, stringency.value = “high”, and quality.threshold = 10. 

Using this function, reads alignment was performed using the mem mode of BWA v.0.6.1 in default 

settings. CircRNAs prediction was performed using CIRI2 algorithm v.2.06 [26]. Gencode v28 was 

used as reference transcriptome while Ensembl hg19 (GRCh37) as Human reference genome. 

CircRNAs predicted in at least two out of the three biological replicates in each condition and 

associated with an average number of BS-supporting reads >10 were selected. This prediction 

overlap was performed with the ciri2MergePredictions function of Docker4Circ using the options 

min_reads = 2, min_reps = 2, and min_avg = 10. The list of circRNAs was overlapped with those 

predicted in [40] by converting the circRNA genomic coordinates from hg19 to hg38 human 

genome assembly using LiftOver algorithm [36]. 

For the circRNAs prediction with the STARChip pipeline, the reference genome was indexed 

using the function rsemstarIndex and starChipIndex. Subsequently chimeric read alignments for each 

dataset were detected using the function starChimeric with parameters chimSegmentMin = 20 and 

chimJunctionOverhangMin = 15. Finally, the function starchipCircle was applied to predict the 

circRNAs using the STAR Chimeric alignments. The function was applied with parameters 

reads.cutoff = 1, min.subject.limit = 2, do.splice = “true”, cpm.cutoff = 0, subjectCPM.cutoff = 0, 

annotation = “true”. The ciri2MergePredictions function was used to filter the circRNAs read count 

table using the same parameters exploited during the CIRI2 analysis. The overlap between CIRI2 

and STARChip circRNA predictions was performed by considering their genomic coordinates. 

4.2. CircRNAs Classification and Annotations  

The circRNAs classification was performed using circClassification function (with option 

assembly = “hg19”) applied on the list of circRNAs predicted by CIRI2 and on the reference hg19 

transcript annotations from Ensembl (Ensembl v93) downloaded using the circrnaPrepareFiles 

function of Docker4Circ (with option assembly = “hg19”). 

The circRNA annotation was performed using the circrnaAnnotations function with option 

genome.version = “hg19”. 

4.3. CircRNAs Sequence Analysis 

The 70bp sequences representing the reconstructed circRNA BS junctions were obtained using 

the function circrnaBSJunctions of Docker4Circ. The resulting fasta file was used for the 

quantification analysis. Prediction of internal alternative splicing events involving multi-exonic 

circRNAs was performed using the ciri_as function on each list of circRNAs predicted by CIRI2. 

4.4. Quantification of circRNAs in RNA-Seq Datasets 

https://paperpile.com/c/FWsJCE/WKeJ
https://paperpile.com/c/FWsJCE/rdOMM
https://paperpile.com/c/FWsJCE/21tJ0
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The circrnaQuantification function of Docker4Circ was applied using six RNA-Seq datasets 

from GSE104178 [41]. These data consist of total RNA-Seq performed on three matched pairs of 

colorectal cancer (CRC) samples and matched normal colonic mucosa (NCM) samples. The 

quantification analysis was performed selecting a k-mer length equal to 21 based on the read length 

(75 bp); a minimum number of matching k-mer equal to 17, and a minimum number of perfect 

matches equal to 30. The maximum number of the element stored in the hash table was set to 

1,000,003. DESeq2 v1.20.0 [38] was applied for BS read count normalization and differential 

expression analysis. The algorithm was applied in default settings. The analysis was performed 

using the wrapperDeseq2 function of Docker4Circ on the result of the mergeData function which was 

used to join different circRNA count tables with the covariates indicating the samples classes. 

4.5. Availability of Source Code and Requirements 

The Docker4Circ R functions were integrated into the Docker4Seq R package available at 

https://github.com/kendomaniac/docker4seq. 

The Java GUI can be downloaded from https://github.com/mbeccuti/4SeqGUI. 

The analysis is independent of the Linux operating system applied, while Docker software is 

required. All Docker4Circ modules are already integrated into a Docker image. Each docker image 

tag is then created following rule defined by RBP: Docker image tags are labelled with the extension 

YYYY.NN, where YYYY is the year of insertion in the stable version and NN a progressive number. 

YYYY changes only if any update on the program(s), implemented in the docker image, is done. 

This because any such updates will affect the reproducibility of the workflow. Previous version(s) 

will be also available in the repository. NN refers to changes in the docker image, which do not 

affect the reproducibility of the workflow. 

The Docker4Circ docker images can be created using the Docker files provided in 

https://github.com/cursecatcher/biodocker/blob/master/docker4ciri/Dockerfile.  

The Docker4Circ pipeline can be run by the Docker4Seq R package, by the 4SeqGUI Java 

graphical interface, and directly by the bash command lines using the commands reported in the 

Supplementary Materials of the manuscript. 

4.6. Docker4Circ Running Time Estimation 

The running time of each analysis was computed by considering the execution using 8 threads 

of an Intel NUC6I7KYK mini-PC [25]. Specifically, multithreading was exploited only for the 

execution of the functions ciri2, circrnaQuantification, starChimeric, and starchipCircle. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1. 
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