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Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields
by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle
is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-
angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and
quadrupole sources for temperature and polarization. We show that while the corrections are negligible for
the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum
that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the
total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission
angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-
scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a
percent. While not important for planned observations, the signal could ultimately limit the ability of delensing
to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to
multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection
angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude
less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The
field-rotation B modes dominate the other effects on small scales.

I. INTRODUCTION

Lensing is the leading non-linear effect in the CMB because
the distance to last scattering is much larger than the matter-
radiation equality scale (so the large number of lenses boosts
the amplitude), and because the small-scale perturbations and
sharply-defined acoustic scale make the CMB quite sensitive
to relatively small shifts in angular scale. For the B-mode
polarization, lensing is also expected to be the dominant sig-
nal from scalar perturbations, and on large scales may also be
an important confusing signal for any signal from primordial
gravitational waves [1–3]; see Ref. [4] for a review of CMB
lensing. The lensing B modes can be largely removed by de-
lensing [3, 5, 6], though the extent to which this is possible in
practice depends on the noise (and foregrounds), and the ex-
tent to which the simplest CMB lensing gradient-remapping
approximation holds, as well as the size of other non-linear
effects.

CMB lensing is usually modelled as a simple remapping,
where the lensed CMB X̃(n̂) observed in direction n̂ is taken
to be what we would have observed in an unlensed CMB in
direction n̂′, where the deflection angle α relates the two di-
rections. This is, however, not strictly correct: because lens-
ing changes the direction of photon propagation, a photon
we observe originating from direction n̂′ will typically not
have left the last-scattering surface on the same trajectory as
it would have done in an unlensed universe. The photon emis-
sion angle is typically deflected away from the normal to the
background last-scattering surface by an angle of O(α). This
means that the treatment of sources with intrinsic angular de-
pendence, i.e., the Doppler (dipole) source for the temperature
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anisotropies and the quadrupole source for the temperature
and polarization, is in error at O(α) in the standard remap-
ping approach. Since the angular dependence of the source
is at most quadrupolar, and the deflection is O(10−3), the ef-
fect is expected to be small: the change in emission angle
does not change the observed scale of the perturbations, so is
expected to be subdominant to the lensing convergence and
shear, which enter with angular derivatives that enhance the
effect on small scales [4, 7, 8]. Although the emission-angle
effect has, in principle, been included in some previous theo-
retical analyses [8, 9] there has not been an explicit calculation
and quantification, so it remains important to quantify whether
the effect is negligible or not. We give the first explicit calcu-
lation and show that, although small, the large-scale B-mode
signal could ultimately be important once the main lensing
signal has been substantially removed by delensing.

In the lensed universe the background last-scattering sur-
face is also perturbed by (Shapiro) time delay. Photons are
emitted perpendicular to the perturbed surface, as required by
Fermat’s principle, but the source tensors have to be evaluated
at the perturbed positions. The angular gradient of the time
delay is the same as the emission angle to the background
normal (as required for the emission direction to remain or-
thogonal to the perturbed surface), so both effects need to be
considered together as they are parametrically of the same or-
der. Reference [7] has calculated the time-delay terms, so
in this paper we focus mainly on the emission-angle correc-
tions. However, to calculate the full correction to the lens-
remapping approximation we include both effects, and show
that for the polarization there are substantial cancellations be-
tween them. This reflects the fact that a locally-constant gra-
dient in the last-scattering distance produces almost no effect
on the power spectrum of small-scale perturbations because
the local emission geometry looks like a rotated version of
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the background geometry (and hence has the same power by
statistical isotropy).

For the polarization, there is also the possibility that the
emitted polarization at last scattering gets rotated before it is
observed. Lensing by vector and tensor modes can rotate po-
larization at linear order [10], but here we focus on scalar per-
turbations. In the Born approximation, interactions between
multiple lensing events along the line of sight are neglected
and so events are treated independently. For a single lensing
deflection along the background line of sight, the entire pho-
ton path, the emission point and observed point all lie on a sin-
gle plane. By symmetry, for lensing by scalar perturbations,
which have no handedness, there can be no polarization rota-
tion in this case. However, at next order where the influence
of lenses at different distances along the line are included on
the action of any given lens, coplanarity can be lost and po-
larization rotation generated. The rotation arises because as
the photon trajectory is bent, the polarization is parallel trans-
ported along the unit sphere defined by the photon propaga-
tion directions. As is well known, parallel transport around a
closed curve on the sphere will generate a net rotation given
by the spherical area of the enclosed region. Approximating
the lensing as propagating the polarization directly from the
emitted to the observed direction is in error by the area en-
closed by the true path and the direct (great-circle) route. The
rotation angle is therefore expected to be O(α2) ∼ O(10−6)
and hence negligible. However, there has recently been some
confusion over this issue, so we give an explicit calculation
and demonstrate that it is indeed negligible as expected (con-
trary to the conclusion of Refs. [11, 12]1).

The polarization-rotation effect should not be confused
with field rotation that appears in post-Born lensing and can
also generate B-mode polarization [3, 15, 16]. The field ro-
tation describes how a ray bundle is twisted as it propagates,
generating a rotation of a small image. To see that the field
and polarization rotation are distinct effects it is sufficient to
consider a simple example. Imagine two shearing lenses (at
different redshift) centred on a background line of sight, with
the axis of their ellipticities misaligned. The combination of
the misaligned shears will generate a second-order field rota-
tion of a ray bundle centred on the background line of sight.
However, the central photon in the ray bundle remains exactly
unperturbed, and hence its polarization does not rotate at all.
For arbitrarily small lenses the field rotation can be come ar-
bitrarily large, but any polarization rotation is negligible as all
the rays in the bundle are very close to the unperturbed back-
ground ray. The field and polarization rotation are both sec-
ond order in perturbations, but the field rotation is quadratic
in the shear rather than quadratic in the deflection, and hence
is much larger on small scales.

This paper is organised as follows. We start in Sec. II by de-
scribing the Born-approximation lensing geometry and show
how to calculate the relevant emission angle. Then in Sec. III
we calculate the effect on the temperature power spectrum

1 References [13, 14] only appear to agree with Refs. [11, 12] because they
assumed their result.

from the change in the Doppler (dipole) source. (The ef-
fect from the smaller quadrupole source is calculated in Ap-
pendix A.) Section IV describes the transport of the polariza-
tion, and how at the leading post-Born level polarization ro-
tation can be generated. We then use these results in Sec. V
to show that the polarization rotation power spectrum and the
effect on the CMB are both negligible. In Sec. VI we focus on
the more interesting emission-angle effects, and calculate the
corresponding CMB power spectra. For simplicity we initially
neglect time-delay terms (which have been calculated sepa-
rately in Ref. [7]), however they are highly anti-correlated to
the emission-angle effect on the polarization. We consider the
combined effect of emission angle and time delay in Sec. VII
in order to calculate the full correction to the standard lensing
B-mode power spectrum.

Throughout we assume a flat ΛCDM cosmological model
with purely adiabatic scalar perturbations evolving accord-
ing to general relativity. For numerical results we use
power spectra from camb [17], with baryon density Ωbh

2 =
0.02214, dark matter density Ωch

2 = 0.127, scalar pertur-
bation power at k = 0.05 Mpc−1 of As = 2.118 × 10−9

with constant spectral index ns = 0.965, Hubble parame-
ter H0 = 66.88 km s−1 Mpc−1, reionization optical depth
τ = 0.0581, and one minimal massive neutrino with

∑
mν =

0.06 eV [18]. Corrections to the matter power spectrum from
non-linear growth are modelled by using halofit [19, 20].
Since the effects that we are calculating are small, it is not
necessary to calculate them to high precision, so we use the
flat-sky and Limber approximations for simplicity where ap-
propriate. The full-sky generalization is straightforward, and
briefly presented in Appendix C for our main B-mode result.
We work in the conformal Newtonian gauge using natural
units with c = 1, neglecting correlations between the lenses
and the CMB. We only consider second- and higher-order ef-
fects related to lensing, taking the CMB anisotropy sources at
recombination to be those in linear-theory in the Newtonian
gauge evaluated at the background recombination conformal
time η∗. Additional non-linear effects at recombination are
generally expected to be smaller as the lensing deflections,
emission angle and time delay gradients are enhanced by the
large number of lenses along the line of sight to last-scattering.
Throughout, we denote 3D derivatives projected perpendicu-
lar to the line of sight by ∇⊥, while covariant derivatives on
the sphere are denoted by∇a or ∇.

II. CMB LENSING GEOMETRY

To start with we consider the lowest-order Born approxi-
mation, where all lensing events are evaluated along the back-
ground line of sight and interactions between these events are
ignored, so they can be considered independently. The cor-
responding geometry for a single CMB lensing event is illus-
trated in Fig. 1. At emission, the photon direction e makes
an angle d with the background direction −n̂′. Analogously
to the case of the deflection vector α, we can define the tan-
gent space vector d(n̂) of length d that points in the direc-
tion of the transverse component of e (parallel transported
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FIG. 1. Geometry of CMB weak lensing in the Born approxima-
tion. The photon observed in direction n̂ originates from direction
n̂′ on the last-scattering surface, related by the deflection angle α.
The photon is emitted in the direction of the unit vector e, which
differs from the normal −n̂′ by an angle d. The approximation usu-
ally used in CMB lensing is that the lensed and unlensed fields are
related by X̃(n̂) = X(n̂′), where the unlensed field X is evaluated
in the background geometry so that it is assumed that the emission
direction is −n̂′. In reality, the unlensed source differs from the
background one because the components of the velocity, quadrupole
and polarization tensors along e differ at first order from those along
−n̂′.

back to n̂). In the flat-sky approximation n̂′ = n̂ + α and
d = n̂′ + e = α + ∆e, where ∆e is the difference be-
tween e and −n̂. The lensing deflection angle between e
and the line of sight n̂ is calculated using the standard result
d∆e/dχ = 2∇⊥Ψ, and the result for α is the weighted form
of this, dα/dχ = −2(1 − χ/χ∗)∇⊥Ψ. Here, Ψ is the Weyl
potential (equal to the Newtonian potential once radiation is
negligible), and χ∗ is the comoving distance to recombina-
tion.

We define potentials so that for scalar perturbations α =
∇φ and d = ∇ψd, where the relevant new power spectra in
the Born and Limber approximations are then

CψdL = 4

∫ χ∗

0

dχ

χ2χ2∗
PΨ(Llim/χ, z(χ)) (2.1)

CφL = 4

∫ χ∗

0

dχ

χ4
(1− χ/χ∗)2PΨ(Llim/χ, z(χ)) (2.2)

CφψdL = −4

∫ χ∗

0

dχ′

χ3χ∗
(1− χ/χ∗)PΨ(Llim/χ, z(χ)),(2.3)

where PΨ is the power spectrum of the Weyl potential at the
relevant redshift and Llim ≡ L + 1/2. The emission angle
d has an RMS amplitude of approximately 2.8 arcmin, com-
parable to the deflection angle α, but with more power on
smaller scales, as shown in Fig. 2.
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FIG. 2. Power spectrum of the standard lensing deflection α = ∇φ,
compared to the power spectrum of d = ∇ψd, the deviation of
the emission angle away from the normal to the background last-
scattering surface. The sign is defined so that the cross-spectrum is
negative: d is defined to point in the direction of the transverse com-
ponent of the emission direction, but α points from the background
emission point to the actual emission point. Results are calculated
using the Limber approximation and hence are not accurate at very
low multipoles L.

III. EMISSION-ANGLE EFFECT ON THE
TEMPERATURE POWER SPECTRUM

The standard lensing remapping approach is correct for
scalar source terms for the temperature anisotropies. The most
important non-scalar source is the Doppler effect from the
electron bulk velocity at last scattering: Tv(n̂) = e−τe · vb.
Here, vb is the baryon velocity in the Newtonian gauge and
τ is the optical depth to reionization. In the presence of lens-
ing, the lensed Doppler contribution observed along the line
of sight n̂ is

T̃v(n̂) = e−τe · vb(χ∗n̂′), (3.1)

where e is the emission direction at the lensed point χ∗n̂′

on the last-scattering surface. Writing e = − cos(d)n̂′ +

sin(d)d̂′, where d′(n̂′) points along a great circle on the 2-
sphere from −n̂′ to e (i.e., d(n̂) parallel transported to n̂′),
we have

e · vb(χ∗n̂′) = − cos(d)n̂′ · vb(χ∗n̂′)
+ sin(d)d̂′(n̂′) · vb,⊥(n̂′;χ∗n̂

′), (3.2)

where vb,⊥(n̂′;χ∗n̂′) is the (transverse) projection of the
baryon velocity perpendicular to n̂′ at the point χ∗n̂′. This
naturally decomposes the baryon velocity into a spin-0 field
on the celestial sphere, n̂ · vb(χ∗n̂), and a spin-1 field
vb,⊥(n̂;χ∗n̂). The evaluation of these fields at the lensed
direction n̂′ can be handled with the usual covariant series
expansion of the lensing-remapping approach [21]. For ex-
ample, the spin-1 field vb,⊥(n̂′;χ∗n̂′) after parallel transport-
ing to n̂ along the connecting great circle is vb,⊥(n̂;χ∗n̂) +
α(n̂) · ∇vb,⊥(n̂;χ∗n̂) + · · · . Note also that d′(n̂′) trans-
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FIG. 3. Power spectrum of the transverse velocity potential from
camb with pre-reionization visibility weighting (solid blue) and the
delta-function visibility approximation of Eq. (3.6) (dotted blue).
The orange line shows the cross-correlation with the unlensed tem-
perature (dashed green). Note that spectra are plotted with additional
factors of ` so they all scale in roughly the same way, but the veloc-
ity potential power only enters with two fewer ` factors than shown
here.

ports back to d(n̂). The standard lensing-remapping approx-
imation takes Doppler terms T̃ std

v (n̂) ≈ −e−τ n̂′ · vb(χ∗n̂′),
so expanding and keeping terms to third order we find the cor-
rection term

∆T̃ = e−τ
(
d2

2
n̂ · vb + d · (vb,⊥ +α ·∇vb,⊥) + · · ·

)
,

(3.3)

where everything is evaluated in direction n̂. The first term is
just the reduction in the usual dipole component because it is
no longer observed along the background line of sight. The
second term is the leading linear correction from the trans-
verse velocity component, and the third term is the leading
lensing correction to that.

The new terms depend on the transverse component of the
baryon velocity at recombination. To give simple analytic re-
sults we use the delta-function visibility approximation, so the
CMB photons are all sourced from a single sphere at comov-
ing distance χ∗. Expanding in harmonics and defining a ve-
locity potential ψv we then have

e−τvb,⊥(n̂;χ∗n̂) = ∇ψv(n̂) (3.4)

= −e−τ∇
∫

d3k

(2π)3

vb(k)

kχ∗
eik·n̂χ∗ , (3.5)

where the transverse velocity potential has power spectrum

Cψv` = 4πe−2τ

∫
dk

k

Pv(k, η∗)
(kχ∗)2

[j`(kχ∗)]
2. (3.6)

Here, Pv is the dimensionless power spectrum of vb(k). For
numerical work we calculate the power spectrum more ac-
curately using camb [17] to account for line-of-sight aver-
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FIG. 4. Emission-angle effects on the CMB temperature power spec-
trum are dominated by terms involving the cross-correlation of the
lensing and emission-angle Doppler terms. The convolution (2 × 2;
blue) and 1 × 3 (orange) terms in Eq. (3.8) are shown dashed and
partly cancel, leaving the total shown in the solid green line.

aging due to the finite thickness of last scattering2. The ve-
locity potential is also correlated to the unlensed temperature
anisotropies, and the corresponding numerical power spectra
are shown in Fig. 3.

We write the total lensed temperature anisotropy as the
standard lensing-remapping result plus the correction of
Eq. (3.3). Series expanding to third order then gives

T̃ = T +α ·∇T +
1

2
αaαb∇a∇bT + ∆T̃ + · · · . (3.7)

Expanding into harmonics and calculating the power spectrum
gives a correction to the standard perturbative result for the
lensed temperature power spectrum given by

∆C̃TT` ≈
∫

d2L

(2π)2
[L · (`−L)]2

×
(
CψdL Cψv|`−L| + 2CψdφL CTψv|`−L|

)
− `2CTψv`

∫
dL

L

L4CψdφL

2π
− CTTv`

∫
dL

L

L4CψdL
2π

, (3.8)

where Tv(n̂) = −e−τ n̂ · vb(χ∗n̂) is the standard Doppler
contribution to the unlensed temperature. The first term in the
convolution integral on the right-hand side is analogous to the
usual (2× 2 order) lensing result, but is suppressed by O(`2)

here as lensing brings in additional gradients [O(`2Cψv` ) =
O(CTT` )]: the contribution to the power is at the 10−3 µK2

level, hence negligible. The second term in the convolution
integral comes from cross-correlation of the emission-angle
effect with the leading term in the expansion of the stan-
dard lensing-remapping approximation, α · ∇T . This term

2 The synchronous-gauge camb source is−(vsyncb +σ)g/(kχ), where g is
the visibility before reionization and σ the scalar part of the shear.
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is larger, as shown in Fig. 4, because lensing involves addi-
tional transverse gradients. The remaining terms are 1× 3 or-
der; their sum is similar in magnitude to the convolution term
and partly cancel with it. The total is negligible compared
to cosmic variance, so for the CMB temperature the standard
lensing remapping approximation is adequate.

The temperature (and E-mode polarization) quadrupole at
recombination also contributes to the observed temperature at
a low level, so the perturbation to the emission angle will also
affect the observed components of the quadrupole tensor. This
is smaller than the Doppler effect, and hence negligible, but is
discussed in Appendix A for completeness.

IV. CORRECTIONS TO THE POLARIZATION
REMAPPING APPROXIMATION

The polarization observed along the line of sight n̂ was
emitted at the lensed position χ∗n̂′ in the propagation direc-
tion e. The polarization source tensor is defined by ζab ≡
3
4Iab − 9

2Eab and has contributions both from the temperature
quadrupole Iab and the E-mode polarization quadrupole Eab
(see Ref. [22]). For convenience we define the polarization
temperature source Sab ≡ −ζab/4. The emitted linear po-
larization tensor is given by the transverse projection of the
source tensor3

P emit
ab (e) = [(δac − eaec)(δbd − ebed)Scd(χ∗n̂′, η∗)]TT,

(4.1)
where [. . .]TT denotes the symmetric, trace-free part projected
orthogonal to e. As the photon direction e(χ) changes along
the line of sight due to lensing, it describes a curve on the unit
sphere connecting the emitted direction e and the observed
direction −n̂. As we review briefly below, the polarization
tensor is parallel-transported along this curve. Denoting the
operation of parallel transport along this path by Γ(eχ)0

χ∗ , the
observed, lensed polarization is given by4

P̃ab(−n̂) = e−τΓ(eχ)0
χ∗P

emit
ab (e;χ∗n̂

′), (4.2)

where P emit
ab (e;χ∗n̂′) is the emitted polarization along direc-

tion e at the lensed position χ∗n̂′. The standard lens remap-
ping result instead uses the polarization emitted at position
χ∗n̂′ along the radial direction −n̂′, and parallel transports
this along the great circle connecting n̂ and n̂′. Denoting this
parallel-transport operation by Γ−n̂−n̂′ , the standard result is

P̃ std
ab (−n̂) = e−τΓ−n̂−n̂′P

emit
ab (−n̂′;χ∗n̂′). (4.3)

This is in error because the true emission angle e differs from
−n̂′, and because the emitted polarization is parallel trans-
ported along a different path, with the latter effect giving rise

3 Note that Ref. [22] has a sign error that is corrected in Ref. [23]. In camb
the sign convention for the polarization is also opposite to that used here.

4 For analytic results we neglect reionization except via an overall e−τ

damping of the sub-horizon perturbations.

to a rotation of the polarization. In this section we calculate
these corrections to the standard lens remapping result.

Generally, the polarization of a photon is described by
a (complex) spacelike 4-vector εµ with ε∗µε

µ = −1. In
the Lorenz gauge, this is perpendicular to the photon 4-
momentum pµ and is parallel transported along the photon
path in spacetime. A gas of photons can be described by
a Hermitian-tensor-valued one-particle distribution function,
fµν(xα, pβ), such that the number density of photons in phase
space in a polarization state εµ is εµ∗fµνεν . The tensor fµν is
parallel transported along the photon path in phase space (Li-
ouville’s theorem). For an observer with 4-velocity uµ, we
can introduce the observed polarization vector ε̃µ obtained
by projecting εµ with the screen-projection tensor Hµν =
gµν − uµuν + eµeν :

ε̃µ = Hµνεν . (4.4)

Here, gµν is the spacetime metric and eµ is a unit spacelike
vector describing the propagation direction relative to the ob-
server (so that pµ ∝ uµ + eµ). The observed polarization has
the virtue of being independent of the residual (electromag-
netic) gauge freedom in the Lorenz gauge, which allows the
addition to εµ of a vector parallel to pµ. The dynamics of ε̃µ

follows from the parallel transport of εµ:

Hµν(pα∇αε̃ν) = 0. (4.5)

We can similarly screen-project the distribution function to
obtain f̃µν = HµαHνβfαβ , which satisfies

HµρHντ
(
pα∇αf̃ρτ

)
= 0. (4.6)

It follows that the components of f̃µν are constant when ex-
pressed relative to a pair of screen-projected basis vectors that
are transported according to Eq. (4.5). The symmetric, trace-
free part of f̃µν is the linear polarization tensor Pab(e).

For scalar perturbations, we work in the Newtonian gauge

ds2 = a2(η)
[
(1 + 2ψ)dη2 − (1− 2φ)δijdx

idxj
]
, (4.7)

and introduce an orthonormal tetrad of vectors with X0 =
a−1(1 − ψ)∂η and Xi = a−1(1 + φ)∂i for i = 1, 2, 3. We
adopt an observer with 4-velocity equal to X0, i.e., at rest in
the spatial coordinates. The photon direction has components
eı̂ relative to this tetrad, which we denote by e. The observed
polarization is similarly represented by its tetrad components
ε̃ı̂, which we denote by the unit complex 3-vector ε̃with ε̃·e =
0. Expressed in terms of ε̃, Eq. (4.5) reduces to

(δij − eı̂e̂)
dε̃̂

dη
= 0. (4.8)

Along with the constraint ε̃ · e = 0, this fully determines
the evolution of the polarization direction. Equation (4.8) has
a simple physical interpretation: as the photon propagates, its
direction e(η) defines a curve on the unit sphere and the polar-
ization direction ε̃ is parallel transported along this curve. The
polarization tensor Pab inherits the same parallel-transport
law.
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FIG. 5. Geometry of the transport of CMB polarization on a section
of the sphere of photon propagation directions, with the polarization
directions indicated by the black sticks. The polarization observed
to be propagating along −n̂ is emitted along a direction e (at the
point χ∗n̂′ on the last-scattering surface). The polarization is par-
allel transported along the path e(χ) on the sphere from e to −n̂.
The standard lens remapping result instead considers the polariza-
tion emitted along −n̂′ and parallel-transports this to the direction
−n̂ along the great circle connecting these two directions. We relate
the standard result to the true transport by first parallel transporting
from e to −n̂′ along the connecting great circle of length d. We fur-
ther parallel transport from −n̂′ to −n̂ along the connecting great
circle of length α. The polarization after this latter two-step path is
denoted by the dashed stick at −n̂. This has to be further rotated (in
a right-handed sense) by an angle β about n̂ to obtain the true po-
larization after propagation along e(χ) (denoted by the solid stick at
−n̂). The magnitude of β is given by the area enclosed by the path
e(χ) and the great circles of length d and α; for the configuration
shown here β is positive. Generally, for small angles, β is given by
Eq. (4.14).

As the true curve e(η) between the emission direction e and
the received direction −n̂ differs from the great circle that
connects these directions, parallel transporting the polariza-
tion tensor along the true path will lead to a rotation compared
to parallel transport along the great circle, with the angle given
by the spherical area enclosed by the two paths. The geome-
try is illustrated in Fig. 5. In detail, if transporting along e(η)
gives a rotation β′ (in a right-handed sense about n̂) compared
to transport along the great circle, for small deflections

β′ =
1

2
n̂ ·
∫ χ∗

0

de

dχ
× [e(χ) + n̂] dχ, (4.9)

where we have switched to comoving distance χ for later con-
venience. This will be second order in the deflections, i.e.,
O(α2). Note that rotation is a post-Born effect: it relies on a
non-zero e(χ) + n̂ from lensing elsewhere along the line of
sight interacting with the lensing event de/dχ at χ.

To relate to the standard remapping result, we also have
to deal with the fact that the emission angle e differs from
the radial vector from the emission event, −n̂′. We do so as
follows. First, at the lensed point−χ∗n̂′ on the last-scattering
surface, we parallel transport the emitted polarization tensor
for the direction e along the great circle from e to −n̂′. This
operation, which we denote by Γ−n̂

′

e , can be expressed as a

covariant series expansion [21]

Γ−n̂
′

e P emit
ab (e) = P emit

ab (−n̂′) + d′ ·∇eP
emit
ab (−n̂′)

+
1

2
d′cd′d∇e,c∇e,dP

emit
ab (−n̂′) + · · ·

= P emit
ab (−n̂′) + 2d′〈aS

(1)
b〉 (n̂′)− d′〈aSb〉cd′c

+d′〈ad
′
b〉n̂
′cn̂′dScd + · · · . (4.10)

Here, d′(n̂′) is the tangent vector of length d that points along
a great circle towards e (i.e., just d(n̂) parallel transported
to n̂′), angle brackets denote the symmetric, trace-free, pro-
jected part on the enclosed indices (i.e., the TT projection),
and the projected vector S(1)

a (n̂) ≡ (δba − n̂an̂
b)Sbcn̂c. In

Eq. (4.10), the source tensor S and S(1)
a (n̂′) are evaluated at

position χ∗n̂′. Note that we can relate the projected Sab that
appears in the d′〈aSb〉cd′c term to the (projected and trace-free)
polarization tensor using the fact that Sab is 3D trace free, so
Eq. (4.10) can also be written as

Γ−n̂
′

e P emit
ab (e) = P emit

ab (−n̂′) + 2d′〈aS
(1)
b〉 (n̂′)

− d′〈aP emit
b〉c (−n̂′)d′c +

3

2
d′〈ad

′
b〉n̂
′cn̂′dScd + · · · . (4.11)

In this way, the contributions of the source tensor Sab have
been decomposed into a spin-2 field (the TT projection
P emit
ab (−n̂;χ∗n̂), where the second argument denotes the

3D position), a spin-1 field S(1)
a (n̂;χ∗n̂), and a spin-0 field

n̂an̂bSab(χ∗n̂).
The first term on the right of Eq. (4.11) is related to the

standard lens-remapping result for the lensed polarization,
Eq. (4.3), by parallel transport from −n̂′ to the observed di-
rection −n̂ (and multiplication by e−τ ). Applying the Γ−n̂−n̂′
parallel transport operation to the other terms can be handled
with a covariant series expansion around n̂, e.g.,

Γ−n̂−n̂′S(1)
a (n̂′;χ∗n̂

′) = S(1)
a (n̂;χ∗n̂)

+α ·∇S(1)
a (n̂;χ∗n̂) + · · · , (4.12)

and d′(n̂′) transports back to d(n̂). It follows that

e−τΓ−n̂−n̂′Γ
−n̂′
e P emit

ab (e;χ∗n̂
′) = P̃ std

ab (−n̂)

+ 2e−τd〈a
[
S(1)
b〉 +α ·∇S(1)

b〉

]
− d〈aPb〉c(−n̂)dc

+
3

2
e−τd〈adb〉n̂

cn̂dScd + · · · , (4.13)

correct to second order in lensing displacements. Here, all
terms on the right are evaluated in direction n̂, and Pab(−n̂)
is the unlensed polarization. The quantity on the left is almost
the observed polarization, Eq. (4.2), differing only because of
the different paths involved in the parallel tranport and hence
a rotation about n̂. To obtain the observed polarization, we
rotate by an angle β, where β is the area enclosed by the path
e(χ) and the great circles connecting e to −n̂′ and −n̂′ to
−n; see Fig. 5. This total area is the sum of β′ from Eq. (4.9)
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and the area of the spherical triangle formed by −n̂, e, and
−n̂′, so that for small angles to leading order we have

β =
1

2
n̂ ·
∫ χ∗

0

de

dχ
× [e(χ) + n̂] dχ+

1

2
n̂ · (d×α) . (4.14)

Note that this is second-order in lensing deflections.
Expressing polarization in terms of complex combinations

of the Stokes parameters, ±2P (n̂) = (Q ± iU)(n̂) =
ea±e

b
±Pab(−n̂) (where, in the flat-sky approximation, e± =

ex ± iey with ex and ey forming a right-handed set with
the observed propagation direction−n̂), under a right-handed
rotation of the polarization by β about n̂ we have ±2P →
e∓2iβ±2P . It follows from Eq. (4.13) that the observed,
lensed polarization is given to second order in deflections by

±2P̃ = e∓2iβ
±2P̃

std + ea±e
b
±

[
2e−τda(S(1)

b +α ·∇S(1)
b )

− daPbcdc +
3

2
e−τdadbn̂

cn̂dScd
]

+ · · · . (4.15)

The leading-order effect of rotation is just to rotate the usual
lensed polarization by β, and the remaining terms are correct
at third order in perturbations so there are no couplings be-
tween polarization rotation and emission angle terms. Since
β and ψd are different parities, there are also no correlations
between them.

V. POLARIZATION POWER FROM POLARIZATION
ROTATION

To lowest order we can evaluate the polarization rotation
angle β of the previous section using the Born approximation
results for e(χ) andα. For the part β′, we have from Eq. (4.9)

β′ ≈ 2εab

∫ χ∗

0

dχ∇a⊥Ψ(n̂χ, z(χ))

∫ χ

0

dχ′

×∇b⊥Ψ(n̂χ′, z(χ′)). (5.1)

For the contribution n̂ · (d×α)/2, we have

1

2
n̂ · (d×α) = −2n̂ ·

[∫ χ∗

0

dχ
χ

χ∗
∇⊥Ψ(n̂χ, z(χ))

×
∫ χ∗

0

dχ′
(

1− χ′

χ∗

)
∇⊥Ψ(n̂χ′, z(χ′))

]
= −2εab

∫ χ∗

0

dχ∇a⊥Ψ(n̂χ, z(χ))

∫ χ

0

dχ′

∇b⊥Ψ(n̂χ′, z(χ′))

(
χ− χ′
χ∗

)
,

(5.2)

and combining with β′ gives

β ≈ 2εab

∫ χ∗

0

dχ∇a⊥Ψ(n̂χ, z(χ))

∫ χ

0

dχ′

×∇b⊥Ψ(n̂χ′, z(χ′))

(
1− χ

χ∗
+
χ′

χ∗

)
. (5.3)
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FIG. 6. Upper: Power spectrum of the polarization rotation angle β
compared to the spectrum for the convergence κ and field rotation ω.
The rotation and field rotation are both odd parity and are correlated
(negative values shown as dotted lines). Lower: Corresponding BB
polarization power spectra. The polarization rotation contributions
are negligible on all scales.

The corresponding lowest-Limber-approximation power
spectrum is

Cβ` = 4

∫
d2L

(2π)2
[L× `]2

∫ χ∗

0

dχ

χ4
PΨ(L/χ, z(χ))

×
∫ χ

0

dχ′

χ′4
PΨ

( |`−L|
χ′

, z(χ′)

)(
1− χ

χ∗
+
χ′

χ∗

)2

.

(5.4)

Numerically the RMS rotation is 〈β2〉1/2 ≈ 3 × 10−7, about
a tenth of an arcsecond. The rotation is quadratic in the
O(10−3) deflection angle and hence is very small. Indeed,
it is much smaller than the post-Born field rotation ω, which
is quadratic in the shear and so much larger on small scales;
see Fig. 6.

The odd-parity polarization rotation field is correlated to
the field rotation. Using the standard series result for the field
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rotation [3, 16] we obtain

Cβω` = 4

∫
d2L

(2π)2
[L× `]2L · (`−L)

×
∫ χ∗

0

dχ

χ4

(
1− χ

χ∗

)
PΨ(L/χ, z(χ))

∫ χ

0

dχ′

χ′4

(
1− χ′

χ

)
×
(

1− χ

χ∗
+
χ′

χ∗

)
PΨ

( |`−L|
χ′

, z(χ′)

)
. (5.5)

Note that 〈ω(n̂)β(n̂)〉 = 0 (first and second derivatives at
a point are uncorrelated), so the cross-correlation spectrum
changes sign to integrate to zero.

The higher-order nature and hence very small size of the
rotation angle ensures that rotation effects are negligible, but
to be explicit we show some of the corresponding contribu-
tions to the CMB BB power spectra in Fig. 6. Here, we only
considered terms involving the β rotation power and ω field-
rotation cross-correlation, neglecting cross-terms with the curl
component of d and using the Gaussian approximation results
for the lensed power given in the Appendix B. The rotation-
induced polarization is negligible on all scales, and has power
spectrum that is parametrically smaller than the field-rotation
induced signal since the latter scales like shear squared rather
than deflection squared (hence scaling with a relative `2).

Note that we have assumed lensing by purely scalar fluctu-
ations. Non-linear evolution of scalar modes can also source
secondary vector and tensor modes that could also rotate the
polarization as well as produce field rotation [10]. However,
the sourced second-order non-scalar modes are also expected
to have very low amplitude [24–28].

VI. POLARIZATION POWER FROM EMISSION-ANGLE
EFFECTS

Since the polarization rotation is negligible, we focus on
the leading emission-angle terms of Eq. (4.15) and revert to
the Born approximation5. For scalars perturbations we can
expand the symmetric, trace-free polarization source tensor in
harmonics as

Sab = −
∫

d3k

(2π)3

(
k̂ak̂b −

1

3
δab

)
S(k)eik·x. (6.1)

The leading correction to the lensed polarization that is linear
in d(n̂) is then

∆P̃
(2)
ab = 2e−τd〈aS(1)

b〉

= −1

2
e−τ

∫
d3k

(2π)3

ζ(k)

k2
in̂ · k d〈a∇⊥b〉eik·x

= −1

2
e−τd〈a∇b〉

∫
d3k

(2π)3

ζ(k)

k2

d

dχ

(
eik·x

χ

)
(6.2)

5 Post-Born corrections to d, which could enter the third-order P (3)
ab term

discussed below, would not contribute to the 1 × 3 power spectrum term
below because 〈d〉 = 0 by isotropy.
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FIG. 7. Power spectrum of the longitudinal polarization potential
from camb (orange) and its cross-spectrum with the polarization po-
tential ψE (green, with dotted lines indicating negative values). Note
that these spectra are shown with additional factors of ` to have sim-
ilar scaling to CEE` (blue, which here includes the additional large-
angle power generated by scattering at reionization).

evaluated at x = χ∗n̂. Here, ζ(k) = −4S(k). We define the
polarization potential

ψζ(n̂) ≡ −1

4
e−τ

∫
d3k

(2π)3

ζ(k)

k2

d

dχ∗

(
eik·n̂χ∗

χ∗

)
, (6.3)

so that e−τS(1)
a = ∇aψζ and ∆P̃

(2)
ab = 2∇〈aψd∇b〉ψζ . We

further define

ψE(n̂) ≡ −1

4
e−τ

∫
d3k

(2π)3

ζ(k)

k2χ2∗
eik·n̂χ∗ , (6.4)

so that the unlensed polarization is Pab = ∇〈a∇b〉ψE . We de-
fine our sign convention for the flat-sky E and B harmonics so
that the E-mode is E(`) = `2ψE(`) following Ref. [4]. When
we write the unlensed E-mode field it should be understood as
evaluated using only the sources at recombination (we discuss
additional contributions from lensing of reionization sources
in Sec. VII below).

The corresponding relevant auto- and cross-spectra are

C
ψζ
` =

π

4
e−2τ

∫
dk

k
Pζ(k, η∗)

[
1

k

d

dχ∗

(
j`(kχ∗)
kχ∗

)]2

,

(6.5)

C
Eψζ
` =

π

4
`2e−2τ

∫
dk

k
Pζ(k, η∗)

× j`(kχ∗)
(kχ∗)2

1

k

d

dχ∗

[
j`(kχ∗)
kχ∗

]
. (6.6)

Figure 7 shows corresponding numerical results from camb
using visibility-weighted sources.6 Taking the spin-±2 com-
ponents of ∆P̃

(2)
ab and expanding in flat-sky spin harmonics

6 The camb source for ψζ is 1
4k2χ

d
dη

(gζ) where g is the visibility prior to
reionization (with sign difference due to the sign convention of camb).
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gives second-order terms including emission-angle and stan-
dard remapping effects

∆E(`) =

∫
d2L

(2π)2

(
2[`·L−L2 cos(2ϕL`)]ψζ(L)ψd(`−L)

−L · (`−L) cos(2ϕL`)E(L)φ(`−L)

)
, (6.7)

∆B(`) =

∫
d2L

(2π)2

(
2[`×L−L2 sin(2ϕL`)]ψζ(L)ψd(`−L)

−L · (`−L) sin(2ϕL`)E(L)φ(`−L)

)
. (6.8)

Here, ϕL` ≡ ϕL − ϕ` is the angle between L and `, and
we use l × L = `L sinϕL`. Evaluating the corresponding
correction to the usual lens-remapping perturbative result for
the power spectrum gives

∆C̃BB` = 4

∫
d2L

(2π)2

(
[`×L−L2 sin(2ϕL`)]

2C
ψζ
L Cψd|`−L|

−[`×L−L2 sin(2ϕL`)]L·(`−L) sin(2ϕL`)C
Eψζ
L Cφψd|`−L|

)
.

(6.9)

Numerical results are shown in Fig. 8. On large scales the
spectrum is white with

∆C̃BB` ≈ 4

∫
L5dL

4π

(
C
ψζ
L CψdL − C

Eψζ
L CφψdL

)
≈ 2× 10−10 µK2. (6.10)

The auto-correlation part (first term in brackets in the inte-
grand) dominates the total, corresponding to an effective noise
level of approximately 0.05µK arcmin: about 1 % of the
large-scale lensing-related B-mode amplitude should be due
to the emission-angle effect.

To calculate the leading correction to the E-mode polariza-
tion power spectrum we need to include the third-order terms
from Eq. (4.15):

∆P̃
(3)
ab ≈ 2e−τd〈aα ·∇S(1)

b〉 − d〈aPb〉cdc

+
3

2
e−τd〈adb〉n̂

cn̂dScd. (6.11)

The first term 2∇cφ∇〈aψd∇c∇b〉ψζ comes from evaluating
the leading emission-angle term at the lensed position χ∗n̂′,
the second term accounts for reduction in the standard trans-
verse polarization because it is no longer observed along the
background line of sight, and the third term is a new signal
from sensitivity to the radiation quadrupole at last scattering
aligned along the background line of sight. The last term
does not contribute to the 1 × 3 power spectrum terms since
〈d〈adb〉〉 = 0 at a point, but the other two terms do giving a
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FIG. 8. Emission-angle contributions to the CMB B-mode polar-
ization power spectrum compared to standard gradient (blue) and
post-Born curl (orange) lensing signals. The correction to the B-
mode power spectrum from emission-angle effects (red) has a white
spectrum on large scales, and, on the scales most relevant for pri-
mordial gravitational waves, dominates that from field rotation (the
curl-induced B-mode polarization is a total derivative and has a blue
spectrum on large scales). For reference the dashed line shows the
B-mode power expected from primordial gravitational waves with
tensor-to-scalar ratio r = 10−5. The standard lensed E-mode spec-
trum is also shown (black) along with the corrections from emission-
angle effects (green).

total leading-order correction to the lensed power spectrum

∆C̃EE` = 4

∫
d2L

(2π)2

(
[` ·L−L2 cos(2ϕL`)]

2C
ψζ
L Cψd|`−L|

− [` ·L−L2 cos(2ϕL`)]L · (`−L) cos(2ϕL`)C
Eψζ
L Cφψd|`−L|

)
+ 2`2C

Eψζ
`

∫
dL

L

L4CφψdL

2π
− CEE`

∫
dL

L

L4CψdL
2π

. (6.12)

As shown in Fig. 8, this correction is many orders of magni-
tude smaller than the standard lensing result, and hence en-
tirely negligible compared to cosmic variance.

VII. TIME DELAY

In the previous sections we have assumed that the source
tensors are evaluated at the background last-scattering sur-
face. However, as previously studied in Ref. [7], the sources
are actually radially perturbed due to the time delay induced
by potentials along the line of sight. Including time delay,
the CMB sources should be evaluated at n̂′(χ∗ + δχ), where
δχ = 2

∫ χ∗
0

Ψ dχ is the time-delay correction to the back-
ground last-scattering radius. We neglect the geometric time
delay as it is higher order, being second order in deflections.
The time delay is related to the emission angle (with potential
ψd) because the geometric factors are such that δχ/χ∗ = ψd.
We can simply therefore reuse previous results for the emis-
sion angle power spectrum. Note that the perturbation to the
normal of the last-scattering surface is ∇δχ/χ∗ = ∇ψd = d,
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FIG. 9. The geometry of Born-approximation CMB lensing account-
ing for time delay, which distorts the background last-scattering sur-
face (black arc of circle) by a radial distance δχ to give a perturbed
surface (thick orange line). Photons are emitted at angle d to the nor-
mal −n̂′ to the background last-scattering surface, but are emitted
perpendicular to the perturbed surface. Red and blue lines indicate
peaks and troughs of a plane-wave perturbation, with wavevector k,
which describes the radiation perturbations. If the last-scattering sur-
face is at a nearly constant angle to the background line of sight com-
pared to the wavelength of the radiation perturbations, the local pho-
ton emission geometry would be the same as in the background if k
were rotated by angle d so that the emission trajectory, last-scattering
surface and wavevector remain at the same angles (and the phase is
shifted to compensate the change in emission point). Since a rotated
k is statistically equivalent by isotropy, this means that any change
in the small-scale power due to emission angle and time delay is sup-
pressed (compared to either effect individually, where rotating the
wavevector does not give the same geometry because the emission
angle and last-scattering surface are then not orthogonal). For B
modes part of this cancellation happens at the map level at second
order: the rotated emission geometry is locally equivalent to that in
the standard remapping approximation and hence does not generate
additional B modes from E modes.

so the time delay distorts the last-scattering surface in just
such a way that the lensed photon path remains normal to
it. Figure 9 illustrates the geometry, and also explains why
we might expect to see a partial cancellation between the po-
larization signal produced by emission angle and time delay
effects.

We have shown that the emission-angle terms are negligi-
ble for the temperature and E-mode polarization, and Ref. [7]
also computed the negligible time-delay terms. Both are dom-
inated by the correlation with the lensing signal, so the cross-
correlation of time-delay and emission-angle corrections will
also be negligible, having one fewer derivatives of CMB
fields. Here, we focus on the B-mode polarization where the
small contributions could potentially become important if de-
lensing can be applied efficiently. As we shall see, the time-
delay B modes are highly anti-correlated with the emission-
angle B modes, and they are parametrically of the same order,
so it is important to consider both together to calculate the
total accurately. We have already shown that polarization ro-

tation is negligible, so do not consider it further here. e

A. Total correction to the lensed B modes

Expanding the polarization source tensor at the perturbed
location Sab([χ∗ + δχ]n̂′, η∗) to linear order in δχ, the time
delay gives the second-order correction to the observed polar-
ization

∆P̃
(2)
ab |delay = δχ

dPab
dχ∗

=
δχ

χ∗
∇〈a∇b〉ψt, (7.1)

where δχ/χ∗ = ψd and we defined the polarization derivative
potential7 ψt = χ∗dψE/dχ∗:

ψt ≡ −
χ∗
4
e−τ

∫
d3k

(2π)3
ζ(k)

d

dχ∗

(
eik·n̂χ∗

k2χ2∗

)
. (7.2)

The time-delay contribution to the second-order B-mode po-
larization is then

∆B(`)|delay =

∫
d2L

(2π)2
L2 sin(2ϕL`)ψt(L)ψd(`−L).

(7.3)
The time-delay auto-spectrum together with the cross-
correlation with the lensing and emission-angle terms gives
an additional contribution to the power spectrum

∆C̃BB` |delay =

∫
d2L

(2π)2

(
L4 sin2(2ϕL`)C

ψt
L Cψd|`−L|

+ 4L2 sin(2ϕL`)[`×L− L2 sin(2ϕL`)]C
ψζψt
L Cψd|`−L|

− 2L2 sin2(2ϕL`)L · (`−L)CEψtL Cφψd|`−L|

)
. (7.4)

The first and last term have been calculated before in Ref. [7],
but the middle term is the new contribution from the correla-
tion with the emission-angle term. The time delay and emis-
sion angle B-modes are anti-correlated and have significant
cancellations; see Fig. 10.

To understand these cancellations, we can use Eq. (6.3) to
write Eq. (7.2) as

ψt = ψζ +
e−τ

4

∫
d3k

(2π)3

ζ(k)

k2χ2∗
eik·n̂χ∗

= ψζ − ψE . (7.5)

Using this we can then also write the second-order time-delay
polarization as

∆P̃
(2)
ab |delay = ψd

(
∇〈a∇b〉ψζ − Pab

)
= ∇〈a∇b〉(ψdψζ)− 2∇〈aψd∇b〉ψζ

−ψζ∇〈a∇b〉ψd − ψdPab. (7.6)

7 The camb source for ψt is χ∗
4k2χ2

d
dη

(gζ) where g is the visibility prior to
reionization and the sign is using camb’s convention.
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FIG. 10. Contributions to the correction to the standard lensed B-
mode power spectrum from emission angle and time delay effects,
including their cross correlation and cross-correlation with standard
lensing. The time delay contributions are consistent with Ref. [7], but
the emission angle and time delay terms are anti-correlated (dotted
lines are negative) and the total correction (orange) has substantial
cancellations between terms.

Note that, as shown in Fig. 8, due to the extra derivatives in
ψζ and ψt, we have CψE` = CE` /`

4 ∼ C
ψζ
` /`2, so ψζ ∼ ψt

on relevant scales, though both are typically smaller than `ψE
because radial derivatives are geometrically suppressed in the
angular power [7]. The first term in Eq. (7.6),∇〈a∇b〉(ψdψζ),
is close to ∇〈a∇b〉(ψdψt), which represents the change in
the standard transverse polarization components due to eval-
uating the polarization potential ψE at the radially-displaced
emission location. The time delay itself has a large coher-
ence length (little small-scale power) and is very small, with
RMS amplitude 〈(δχ/χ∗)2〉1/2 = 〈ψ2

d〉1/2 ≈ 5 × 10−5 (cor-
responding to a comoving distance of about 0.7 Mpc). This
term is therefore negligibly small, and is highly suppressed
on large scales as it is a total derivative. It is also pure E-
mode, and hence does not contribute to the B-mode power.
The second term −2∇〈aψd∇b〉ψζ is minus the second-order
polarization from the emission-angle effect, and hence can-
cels with it. The −ψζ∇〈a∇b〉ψd term depends on derivatives
of the emission angle, and describes the contribution of new
components of the polarization tensor due to anisotropic cur-
vature of the last-scattering surface. The final term ψdPab is
important because it correlates with the substantially larger
second-order lensing term α ·∇Pab.

Combining the second-order time-delay contribution of
Eq. (7.6) with the emission-angle term the total can then be
written as

∆P̃
(2)
ab |tot = ψd

(
∇〈a∇b〉ψζ − Pab

)
+ 2∇〈aψd∇b〉ψζ

= ∇〈a∇b〉(ψdψζ)− ψζ∇〈a∇b〉ψd − ψdPab,
(7.7)

where the second term in the final line dominates the auto-
correlation and the last term dominates the correlation with

lensing deflection. Note that since 2∇〈aψd∇b〉ψζ has can-
celled, there are no remaining significant ψζ terms if the last-
scattering surface is locally at a constant angle to the back-
ground one (d = ∇ψd approximately constant on the scale of
the radiation perturbations). The dominant contribution now
only depends on the curvature of the perturbed last-scattering
surface. Since the power spectrum ofψd peaks on large scales,
this substantially reduces the total signal compared to either
time delay or emission angle individually, explaining the can-
cellations seen in Fig. 10 and the different scale dependence
of the total. The fact that the perturbed last-scattering surface
remains normal to the emitted direction means that the domi-
nant correction to the small-scale polarization from a large-
scale lens is obtained by applying the standard differential
operators to the radially-displaced potential (approximately
∇〈a∇b〉(ψdψζ), which is pure E), ensuring that the produc-
tion of B modes is suppressed. The bulk of the second-order
E-mode signal from time delay is also cancelled in the power
spectrum because radial displacements of the source plane are
nearly statistically equivalent by statistical homogeneity [7].

Expanding into harmonics the total second-order contribu-
tion to the B modes including time delay, emission angle and
lensing gives

∆B(`) = −
∫

d2L

(2π)2

(
L2 sin(2ϕL`)ψζ(`−L)ψd(L)

+ sin(2ϕL`)E(L)[ψd(`−L) +L · (`−L)φ(`−L)]

)
,

(7.8)

where, as before, E is the unlensed E-mode polarization ex-
cluding reionization. The corresponding power spectrum is

∆C̃BB` ≈
∫

d2L

(2π)2

(
L4 sin2(2ϕL`)C

ψζ
|`−L|C

ψd
L

− 4

[
`×L− L2

2
sin(2ϕL`)

]
sin(2ϕL`)C

Eψζ
L

×
[
Cψd|`−L| +L · (`−L)Cφψd|`−L|

]
+ sin2(2ϕL`)C

EE
L

[
Cψd|`−L| + 2L · (`−L)Cφψd|`−L|

])
.

(7.9)

The middle term involving C
Eψζ
L is a small part of the to-

tal except on small scales because of the low correlation be-
tween E and ψζ . The Cψd|`−L| parts of the second and third
term are negligible compared to the lensing cross-correlation
terms (which are enhanced by derivatives). The dominant cor-
rections to the lensed B-mode power spectrum are therefore
from the auto-spectrum of the first term in Eq. (7.8) and the
cross-correlation of the second and third (lensing) terms there.
Numerical results are shown in Fig. 11.

On large scales, with contributions dominated by L � `,
we have an approximately white-noise spectrum with

∆C̃BB` ≈
∫
L3dL

4π

(
L2C

ψζ
L CψdL − 2CEEL CφψdL

)
≈ 1.2× 10−10 µK2. (7.10)
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FIG. 11. Corrections to the standard lensed B-mode power spectrum
from the total of time-delay and emission-angle effects, compared
to standard gradient (blue) and post-Born curl (orange) lensing sig-
nals. The green line shows the cross-correlation with standard lens-
ing, which is an important part of the signal on large scales but could
be substantially removed by standard delensing. On the scales most
relevant for primordial gravitational waves, the total is larger than or
comparable to the B modes from post-Born curl lensing. The auto
spectrum of the new terms is approximately white on large scales,
and dominates curl lensing at ` . 100. The dashed lines show
the approximate contribution from B-mode power generated by lens-
ing of polarization from reionization to the similarly coloured solid
lines. For reference the dash-dotted line shows the B-mode power
expected from primordial gravitational waves with tensor-to-scalar
ratio r = 10−5. Additional bispectrum contributions [16] are not
shown and would be partly removed by standard delensing.

About two-thirds of the total comes from the second term
involving the time-delay correlation with lensing. The first
(auto-spectrum) term is only a quarter the size of the emission-
angle term (Eq. 6.10) due to cancellation with time de-
lay, and corresponds to an effective noise of approximately
0.02, µK arcmin that would not be removed by standard de-
lensing. Equation (7.10) is accurate at the 10 % level for
` . 80, but overestimates the total by around 20 % by ` ≈ 100
as the cross-correlation term starts to be significantly ` depen-
dent. On large scales there is also a contribution from lensing
of polarization generated at reionization. We estimate this us-
ing the same results as for the recombination signal8, but us-
ing the reionization visibility and approximating the redshift
of the reionization source as z ≈ 8.1. This signal is not white,
and dashed lines in Fig. 11 show that, though small, the contri-
bution to the time delay and emission signal is not negligible
at `� 100 (comparable at ` ∼ 10). The new contributions are
relatively more important for the reionization signal because
the standard deflection signal (blue dashed in the figure) is not
as derivatively enhanced as the recombination signal due to
the absence of significant small-scale unlensed E-mode power

8 We use the full-sky result of Appendix C for numerical results, though the
flat-sky result agrees quite well even with such a large-scale source.

from reionization.
The large-scale cancellation between time-delay and

emission-angle effects can also be seen directly from the to-
tal correction to the polarization tensor from these effects by
writing Eq. (7.7) as

∆P̃
(2)
ab |tot = ∇〈a

(
ψd∇b〉ψζ

)
+∇〈aψd∇b〉ψζ − ψdPab.

(7.11)

The first term on the right is a total derivative, and gives a blue
rather than white power spectrum on large scales (and hence
is relatively suppressed there). The second term is half of
the emission-angle contribution, so the total large-scale auto-
spectrum power from that term is one-quarter that from the
emission angle alone.

On small scales (` � 1000) where Cψζ` is small the auto-
spectrum of the first term in Eq. (7.8) follows the emission
angle power:

∆C̃BB` |auto ≈ 4`2Cψd`

∫
d logL

4π
L4C

ψζ
L . (7.12)

However, on small scales this (and the total) is small com-
pared to the B-mode power produced by field rotation (i.e.,
lensing by post-Born curl modes). Note that the equivalent re-
sult for the auto-power spectrum of time delay alone (the first
term on the right of Eq. 7.4) couples to the power spectrum of
the time delay (ψd) directly rather than its gradient.

VIII. CONCLUSIONS

Second-order effects can create important signals in the
CMB, and are dominated by CMB lensing. We calculated
new predictions for the effect of the photon emission angle not
being orthogonal to the background last-scattering surface,
which is not accounted for in the standard lens- remapping ap-
proximation. The emission angle is enhanced to the O(α) ∼
10−3 level by the large distance to last scattering, but is not
derivatively coupled like the main lensing-displacement effect
and hence still very small. For the temperature and E-mode
polarization, the correction to the power spectrum is domi-
nated by the correlation with the larger lensing-displacement
correction, but is negligible compared to cosmic variance. For
the B-mode polarization, the spectrum is about 10−4 of the
dominant lensing B-mode spectrum. It is partly cancelled by
the contribution from time delay, but the total remains sub-
stantially larger than locally-sourced second-order effects at
recombination on the scale of the recombination peak of the
tensor B-mode power spectrum [24, 29]. Since the dominant
B-mode signal can be largely removed by delensing, the to-
tal emission angle and time delay signal could ultimately act
as an important extra source of noise confusion for primor-
dial gravitational waves if the tensor-to-scalar ratio r � 10−5

(if unaccounted for it would contribute a bias in the range
10−6 . ∆r . 2 × 10−6 for tensor B-mode measurements
at ` & 30 with substantial delensing).

At next order in deflections, post-Born lensing can lead to
a more complicated lensing geometry and generate polariza-
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tion rotation. While polarization rotation can efficiently con-
vert E-mode into B-mode polarization, the rotation angle is
only O(α2) (sub-arcsecond) and hence negligible compared
to other signals: polarization rotation can safely be neglected,
as it has been in most previous post-Born calculations [3, 16].
Post-Born lensing also generates field-rotation (curl deflec-
tion) sourced B-modes, which dominate the emission angle
B-modes on small scales because the field rotation is enhanced
by an additional derivative of the unlensed polarization. How-
ever, the post-Born curl B modes are total derivatives so their
spectrum is suppressed by a factor of `2 on large scales. The
combination of the emission-angle and time-delay signals has
a white spectrum on large angular scales, and therefore domi-
nates on the scales relevant for searches for B modes sourced
by primordial gravitational wave. This may be the leading
signal that cannot in principle be delensed.

The code to produce our numerical results is available on
GitHub9 and the final result for the total B-mode power can
be calculated easily using the module in Python camb10.
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Appendix A: Emission-angle corrections to the lensed temperature from the quadrupole source

There is an additional contribution to the CMB temperature anisotropy from the radiation quadrupole (temperature and E-
mode polarization) at recombination, but this is not a large effect. The relevant quadrupole source tensor is the same as the
source of linear polarization, Sab ≡ −ζab/4, which is discussed in Sec. IV. The corresponding contribution to the lensed
temperature observed in direction n̂ is given by the source at x = χ∗n̂′ projected along the emission direction e:

T̃ |quad(n̂) = −e−τSab(χ∗n̂′)eaeb (A1)

= −e−τ
(

cos2d n̂′an̂′b − sin(2d)d̂′an̂′b + sin2d d̂′ad̂′b
)
Sab (A2)

= −e−τ
[(

1− 3

2
d2

)
Sab(χ∗n̂′)n̂′an̂′b − 2d′aS(1)

a (n̂′;χ∗n̂
′) + [Sab]TT(n̂′;χ∗n̂

′)d′ad′b + · · ·
]

(A3)

correct to third order. Here, the final term involves the symmetric, trace-free projection (TT) of the source tensor orthogonal to
n̂′. The second-order correction to T̃ |quad(n̂) from the emission-angle effect is simply ∆T̃ (2)|quad = 2e−τdaS(1)

a (n̂;χ∗n̂),
which can be written as ∆T̃ (2)|quad = 2d ·∇ψζ following the definitions in Sec. VI. For the third-order corrections, we have

∆T̃ (3)|quad = −3

2
d2TQ − dadbPab + 2d · (α ·∇∇ψζ), (A4)

where all terms are evaluated in direction n̂. Here, TQ(n̂) = −e−τSab(χ∗n̂)n̂an̂b is the quadrupole-sourced part of the unlensed
temperature and Pab(n̂) = e−τ [Sab]TT(n̂;χ∗n̂) is the unlensed polarization tensor. Expanding in harmonics and calculating
the power spectrum (including the cross-correlation with lensing, α ·∇T , and the Doppler term, d ·∇ψv) gives

∆C̃TT` |quad = 2

∫
d2L

(2π)2
[L · (`−L)]2CφψdL C

Tψζ
|`−L| + 2

∫
d2L

(2π)2
[L · (`−L)]2CψdL

[
C
ψvψζ
|`−L| + 2C

ψζ
|`−L|

]
− 2`2C

Tψζ
`

∫
dL

L

L4Cφψd

2π
− 3C

TTQ
`

∫
dL

L

L4CψdL
2π

. (A5)

The first and third terms, those involving lensing, are largest but partly cancel. All terms have |`2∆C̃TT` /2π| . 0.04µK2, so
they are all safely negligible compared to cosmic variance (as expected).

9 https://github.com/cmbant/notebooks/blob/master/
EmissionAngle.ipynb

10 http://camb.readthedocs.io/en/latest/emission_
angle.html
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http://camb.readthedocs.io/en/latest/emission_angle.html


14

Appendix B: CMB power spectra from field and polarization rotation

We calculate the effect of lensing on power spectra of the CMB temperature (T), and polarization (E and B) fields. The
post-Born lensing deflection angle may be decomposed into two lensing potentials

αa = ∇aφ+ εab∇bΩ, (B1)

where φ is the lensing potential (describing convergence κ = −∇2φ/2), Ω is the curl potential (describing rotation ω =
−∇2Ω/2), and∇ is the angular covariant derivative.

Working in the flat-sky approximation, the lensed temperature anisotropies can be written as

T̃ (n̂) =

∫
d2`

(2π)2
T̃ (`) ei`·n̂. (B2)

The lensed polarization anisotropies can be defined in an analogous way in terms of the spin-±2 Stokes parameters Q̃± iŨ and
the more physically relevant Ẽ and B̃ modes(

Q̃± iŨ
)

(n̂) = −
∫

d2`

(2π)2

(
Ẽ(`)± iB̃(`)

)
e±i2ϕ` ei`·n̂. (B3)

Here, ϕ` is the angle that ` makes with the x-direction. The unlensed CMB observables {T (`), E(`), B(`)} are defined in
exactly the same way. The lensed (or unlensed) angular power spectra in the flat-sky approximation are then

〈X̃(`)Ỹ (`′)〉 = (2π)2δD(`+ `′) C̃XY` . (B4)

Neglecting emission angle effects, we expand a lensed spin-s field ζ̃s(n̂) as a perturbative expansion in terms of the unlensed
field ζs as [4, 30]

ζ̃s(n̂) = e−isβ
(
ζs(n̂) + αa∇a ζs(n̂) +

1

2
αaαb∇a∇b ζs(n̂) +

1

6
αaαbαc∇a∇b∇c ζs(n̂) +O(α4)

)
. (B5)

Here the e−isβ prefactor accounts for the rotation compared to geodesic parallel transport between n̂′ and n̂ as described in
Sec. IV.

Expanding in harmonics we have the leading terms

ζ̃s(`) ≈ ζs(`)−
∫

d2`1

(2π)2
ζs(`1) eisϕ`1` [`1 · (`− `1)φ(`− `1) + `1 × `Ω(`− `1) + is β(`− `1)]

− 1

2

∫
d2`1

(2π)2

∫
d2`2

(2π)2
ζs(`1) eisϕ`1`

(
[`1 · `2 φ(`2) + `1 × `2 Ω(`2)]

× [`1 · (`2 + `1 − `) φ(`− `1 − `2) + `1 × (`2 − `) Ω(`− `1 − `2)]

+ s2β(`2)β(`− `1 − `2)− 2is [`1 · `2 φ(`2) + `1 × `2 Ω(`2)]β(`− `1 − `2)

)
+ · · · , (B6)

where the cross product is defined by `× L ≡ εab`
aLb and ϕ`1` = ϕ`1 − ϕ` is the angle between `1 and `. If we assume zero

unlensed B modes, we can then relate this to the expansion of the X ∈ T,E,B fields as follows:

X̃(`) ≈ X(`)−
∫

d2`1

(2π)2
X̄(`1)

{
trigX(sϕ`1`) [`1 · (`− `1)φ(`− `1) + `1 × `Ω(`− `1)]− s trigX(sϕ`1`)β(`− `1)

}
− 1

2

∫
d2`1

(2π)2

∫
d2`2

(2π)2
X̄(`1)

(
trigX(sϕ`1`)

{
[`1 · `2 φ(`2) + `1 × `2 Ω(`2)]

× [`1 · (`2 + `1 − `) φ(`− `1 − `2) + `1 × (`2 − `) Ω(`− `1 − `2)] + s2β(`2)β(`− `1 − `2)
}

+ 2s trigX(sϕ`1`) [`1 · `2 φ(`2) + `1 × `2 Ω(`2)]β(`− `1 − `2)

)
+ · · · , (B7)

where s = 2 for X ∈ E,B and s = 0 for X = T , trigE = cos, trigB = sin, trigE = sin, trigB = − cos, trigT = 1, trigT = 0,
and T̄ = T , Ē = E and B̄ = E. For example the leading-order B mode from image and polarization rotation is

B̃(`) ⊃
∫

d2`′

(2π)2
E(`′) [sin(2ϕ`′`) `× `′Ω(`− `′)− 2 cos(2ϕ`′`)β(`− `′)] , (B8)
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where the first term is from curl deflections and the second from polarization rotation.
To leading order for Gaussian fields, the lensed CMB power spectra contributions from curl and rotation are then11 [3, 12, 31]

∆C̃BB` =

∫
d2`1

(2π)2
CEE`1

(
sin2(2ϕ`1`)(`× `1)2CΩ

|`−`1| − 2 sin(4ϕ`1`)`× `1C
Ωβ
|`−`1| + 4 cos2(2ϕ`1`)C

β
|`−`1|

)
(B9)

∆C̃EE` =
(
−`2RΩ − 4〈β2〉

)
CEE`

+

∫
d2`1

(2π)2
CEE`1

(
cos2(2ϕ`1`)(`× `1)2CΩ

|`−`1| + 2 sin(4ϕ`1`)`× `1C
Ωβ
|`−`1| + 4 sin2(2ϕ`1`)C

β
|`−`1|

)
(B10)

∆C̃TE` =
(
−`2RΩ − 2〈β2〉

)
CTE`

+

∫
d2`1

(2π)2
CTE`1

(
cos(2ϕ`1`)`× `1C

Ω
|`−`1| + 2 sin(2ϕ`1`)C

βΩ
|`−`1|

)
`× `1 (B11)

∆C̃TT` =
(
−`2RΩ

)
CTT` +

∫
d2`1

(2π)2
CTT`1 CΩ

|`−`1| (`1 × `)2
, (B12)

where

RΩ ≡
∫

d log `

4π
`4CΩ

` , 〈β2〉 =

∫
d log `

`2Cβ`
2π

. (B13)

Appendix C: Full-sky lensed B-mode calculation

On large angular scales the flat-sky calculation presented in the main text is not expected to be accurate. In this appendix we
give the full-sky calculation of the B-modes induced by emission-angle and time-delay effects. We ignore post-Born effects here
as they are subdominant on the scales relevant for full-sky corrections.

As shown in Sec. VII, the perturbation to the polarization tensor due to the perturbed emission angle and time delay is
∆P̃

(2)
ab = ∇〈a∇b〉(ψdψζ) − ψζ∇〈a∇b〉ψd − ψdPab. The first term is pure E mode, and does not contribute to the B mode.

The perturbed complex polarization is ∆±2P̃ = ea±e
b
±∆P̃

(2)
ab where ea± = θ̂a ± iφ̂a are null basis vectors on the sphere. The

complex polarization ±2P is spin-±2 on this basis, with the line-of-sight direction n̂a completing an orthonormal right-handed
set12 {θ̂a, φ̂a, n̂a}. Expanding the potentials in spherical harmonics and noting that ea±e

b
±∇a∇bYlm =

√
(l + 2)!/(l − 2)!±2Ylm

gives

∆±2P̃ = ea±e
b
±∇a∇b(ψdψζ)−

∑
L′M ′

∑
LM

[
ψζ,LMψd,L′M ′

√
(L′ + 2)!/(L′ − 2)! + ψd,LMEL′M ′

]
±2YL′M ′YLM . (C1)

Using the harmonic expansion definition

±2P (n̂) =
∑
lm

(Elm ± iBlm)±2Ylm(n̂), (C2)

and orthogonality of the spin-weight spherical harmonics we can integrate Eq. (C1) against ±2Y
∗
lm to extract the E and B modes.

Expressing the integral of three spherical harmonics in terms of Wigner-3j symbols this gives the total B-mode coefficients
(including the standard lensing effect [32]) as

iB̃
(2)
`m = (−1)m+1

∑
LM,L′M ′

√
(2L+ 1)(2L′ + 1)(2`+ 1)

4π

(
L L′ `
M M ′ −m

)(
L L′ `
0 −2 2

)
β`LL′

×
{√

(L′ + 2)!/(L′ − 2)!ψd,L′M ′ψζ,LM + ψd,LMEL′M ′ −
1

2
[L(L+ 1) + L′(L′ + 1)− `(`+ 1)]φLMEL′M ′

}
, (C3)

11 This curl result differs from Eq. (52) of Ref. [3], which uses an incorrect
definition of the angle α in their trigonometric factors, giving numerical
results for the C̃BB` that are too large on small scales. References [11, 12]

incorrectly set β = ω, giving numerical results that are wrong by orders of
magnitude on both large and small scales.

12 Note that this differs from the flat-sky convention used in the main text.
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where β`LL′ ≡ [1−(−1)`+L+L′ ]/2. The additional contribution to the full-sky lensing B-mode power spectrum from emission-
angle and time-delay effects at leading order is then

∆C̃BB` =
∑
LL′

(2L+ 1)(2L′ + 1)

4π
β`LL′

×
{[

(L′ + 2)!/(L′ − 2)!C
ψζ
L CψdL′ + CEEL′

(
CψdL − CψdφL [L(L+ 1) + L′(L′ + 1)− `(`+ 1)]

)](
L L′ `
0 −2 2

)2

− CEψζL

[
2CψdL′ − CφψdL′ [L(L+ 1) + L′(L′ + 1)− `(`+ 1)]

]√
(L′ + 2)!/(L′ − 2)!

(
L L′ `
0 −2 2

)(
L′ L `
0 −2 2

)}
. (C4)

On large scales (` � L and L′) the terms on the middle line dominate and we can replace the Wigner 3j symbol with its
asymptotic form

β`LL′

(
L L′ `
0 −2 2

)2

≈ β`LL′
δKL±(`−1),L′

8L
, (C5)

where δKij is the Kroneker delta. This implies a white-noise power spectrum with amplitude

∆C̃BB` ≈
∑
L

L3

4π

(
L2C

ψζ
L CψdL − 2CEEL CφψdL

)
(C6)

≈
∫
L3dL

4π

(
L2C

ψζ
L CψdL − 2CEEL CφψdL

)
, (C7)

which matches the flat-sky result given in Eq. (7.10). Numerical results using Eq. (C4) also agree well with those presented in
Sec. VII.
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