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Chapter 1

General introduction

This thesis is mainly on stationary turbulence, but two chapters on wavelet transforms are also
included. Wavelet transforms are better than Fourier transforms at characterising local structure
(since they use localised waves instead of Sine waves). Local structure in turbulence is not well
understood, and this motivates the study of wavelet transforms in connection with turbulence.
This chapter reviews main results in these two fields and summarises the contents of later
chapters. Each chapter contains a more exhaustive introduction, and is either self-contained or,

in the case of Chapter 3, continues the previous chapter.

1.1 Part 1: Turbulence

1.1.1 A short history

Turbulence was described already by Leonardo da Vinci, but systematic study of this
phenomenon did not begin until 1883. That year, Osborne Reynolds gave a talk at the
Royal Society and published a paper on turbulence in cylindrical pipes. Reynolds (1894)
soon realised that the random nature of turbulence requires a statistical approach for its
analysis. He derived an equation for the mean momentum directly from the Navier-Stokes
equation by separating the velocity field into mean and fluctuating parts. However, there
was little progress the next 40 years in deriving results directly from the Navier-Stokes
equation.

The kinetic theory of gasges inspired much early work on the statistical theory of tur-
bulence. For instance, work on turbulent diffusion (Taylor, 1921). Einstein had described,
in one of his famous 1905 papers, molecular diffusivity in terms of the random motion
of molecules. Taylor showed that turbulent diffusion resembles molecular diffusion only
asymptotically at times much larger than those characterising velocity disturbances. At
small times, on the other hand, fluid elements are displaced from initial positions by the



mean flow. Velocity disturbances alone determine the rate at which pairs of fluid elements
separate. Richardson (1926) measured this rate of separation by releasing pairs of balloons
in the atmosphere. He found that the separation ! satisfies

2
% ~ K143, (1.1)
where ¢ is the separation in time and K is a dimensional constant, It was crucial to
discover that turbulent diffusivity, in contrast to molecular diffusivity, increases with the
separation. Balloons with separation in the inertial range move apart mainly through
velocity disturbances at the corresponding length scale. An estimate for the magnitude of
these velocity disturbances is readily derived from Egq. 1.1. But it took another 15 years
before this estimate was derived by Kolmogorov (1941 a, b) and Obukhov (1941).
Richardson (1922) observed that turbulence ‘cascades’ kinetjc energy from large scales
to small scales. Kolmogorov (1941 a) and Obukhov (1941) based their theory of turbulence
in statistical equilibrium on this picture. It was suggested by Kolmogorov (1941 a) that
turbulence at high Reynolds number has an approximately universal form in the inertial
range that depends only on the mean rate of viscous energy dissipation € per unit mass.

The equilibrium energy spectrum E(k) is then given by
E(k) ~ C M3 5513, (1.2)

when the wavenumber % lies in the inertial range. This result has been confirmed in
many experiments and numerical simulations. Most recently, Zocchi et al. (1994) find
that there is no noticeable deviation from —5/3 at the rather high Taylor micro-scale

Reynolds number of Ry ~ 1900 (using helium gas). Note that the dimensional constant

K in Richardson’s 4/3-law has the dimension of €/2. With the wisdom of hindsight, it is
striking that Richardson did not use his idea of an energy cascade to explain the 4/3-law.

Taylor (1935) suggested that the distribution of velocities in turbulence is approxi-
mately homogeneous and isotropic when the Reynolds number is high. Homogeneity de-
notes invariance under translations. Isotropy denotes invariance under both rotations of
the coordinate system and reflections of the coordinate axes. It was shown that turbulence
In a wind tunnel is approximately homogeneous and isotropic. Dynamical comsequences
of homogeneity and isotropy for velocity correlations were deduced by von Kérmén &
Howarth (1938). These authors obtained an equation for the energy transfer during the

decay of homogeneous and isotropic turbulence. The methods used in deriving this equa-




tion (see Chapter 2) form the basis for most analytical work on the statistical theory of

turbulence.
Kolmogorov (1941 b) extended, without proof, the equation of von Kdrman & Howarth

to turbulence in statistical equilibrium. Kolmogorov's equation admits an approximate
solution at inertial scales (see Chapter 2). This solution depends only on the scale and
the mean rate of viscous energy dissipation ¢ per unit mass; it then partially confirms
the hypothesis made in the two previous papers (Kolmogorov, 1941 a; Obukhov, 1941).
This solution is so far the only result for the equilibrium structure of turbulence obtained
directly from the Navier—Stokes equation.

One of the most important experimental results since 1941 is that turbulence is inter-
mittent (Batchelor & Townsend, 1949). That is, regions with large velocity derivatives
occupy only a small fraction of total space. The Kolmogorov—Obukhov theory then de-
scribes accurately only the distribution of velocity differences near the root—mean-square
velocity difference. There is still no adequate theory for the entire distribution of velocity
differences. However, numerical simulations can now resolve the small-scale structure of
homogeneous turbulence. These simulations show that intermittency at small scales is

associated with intense vortex tubes.
The Kolmogorov~Obukhov theory fails also for two—dimensional turbulence. Von Neuw-

mann realised this already in 1949. But there has apparently not been any attempt so far
to construct a theory of two—dimensional turbulence from first principles, as done by von
Kérmén & Howarth (1938) and Kolmogorov (1941 b) for three-dimensional turbulence.
Suggestions for dimensional hypotheses (e.g., Bray, 1966; Kraichnan, 1967 ; Leith, 1968;
Batchelor, 1969), which at any rate are not complete explanations, cannot account for all

the results observed in experiments and numerical simulations.

1.1.2 Owverview

The main purpose of this thesis is to develop the statistical theory of forced turbulence.
It is, in my opinion, remarkable that the theory of homogeneous turbulence in statistical
equilibrium has been developed so far without much attention to the forcing required to
maintain the turbulence against viscous energy dissipation. Forcing has of course been
considered in many contexts, such as various closure models, but the most important
analytical work in the subject — that of Kolmogorov (1941 b) — still has not been
extended rigorously to forced turbulence. Moreover, it seems that proper analysis of
the contribution from forcing leads to the solution of several important problems in the
statistical theory of turbulence.



Chapter 2 extends Kolmogorov’s equation for the energy cascade in three—dimensional
turbulence to forced turbulence of dimension dy (where dy = 2 or dp = 3). The turbulence
is assumed homogeneous, isotropic, and stationary. It is shown that Kolmogorov’s equa-
tion is the leading—order approximation at small scales in three—dimensional turbulence.
The general equation is solved for three-dimensional turbulence, both when forced at a
single wavenumber and for general (smooth) forcing. The former extends Kolmogorov’s
solution to all scales at which viscous forces are negligible. The physical meaning of the
general solution is briefly discussed.

Chapter 3 begins with a discussion of two-dimensional turbulence. The equation
derived in the previous section is then solved for two—dimensional turbulence under general
forcing. It is assumed that the forcing injects kinetic energy at small scales and extracts
some of it again at large scales. This leads to a prediction for the third—order moment
of two-dimensional turbulence in statistical equilibrium. The structure at large scales
corresponds to an inverse energy cascade and, as the scale increases, to an inverse enstrophy
cascade. The structure at small scales corresponds first to a palinstrophy cascade (mean—
square vorticity gradient), and, as the scale decreases, to an enstrophy cascade. When the
characteristic Reynolds number of those structures in the vorticity field responsible for
viscous energy dissipation increases, the enstrophy cascade to small scales is inhibited and
the enstrophy cascade to large scales is enhanced. The energy spectrum is determined by
considering the effects of intermittency. This energy spectrum is in good agreement with
experimental and numerical results.

Chapter 4 presents an exact theory for the energy cascade in a particular type of
anisotropic turbulence in statistical equilibrium. The turbulence is assumed homogeneous.
But instead of isotropy, only reflectional invariance in a plane is required. Reflectional in-
variaice in a plane is much easier to justify than full isotropy. For instance, turbulence in
cylindrical pipes can presumably be considered reflectionally invariant in the plane nor-
mal to the mean flow, provided that the Reynolds number is high and the separations

considered are much smaller than the distance to the wall. The third—order moment is de-
rived. The tensor analysis of von K4rmdn & Howarth (1938) is avoided by deriving instead

equations for the transfer of both kinetic energy and mean—square angular momentum,

Chapter 5 concerns the Lagrangian structure of homogeneous turbulence in statistical
equilibrium (i.e., stationary; I use the terms interchangeably). It is argued that the La-
grangian acceleration decorrelates rapidly along fluid trajectories. This agrees with recent

numerical results. Ithen derive the Lagrangian velocity correlation at inertial-range sepa-




rations. This correlation falls off linearly, as first conjectured by Landau & Lifshitz (1944).
But the rate of fall off equals the integral over positive time separations of the forcing cor-
relation. In particular, the rate of fall off depends on the conditions at large scales and
is not a universal function of the energy dissipation e. Kolmogorov’s hypothesis of a uni-
versal equilibrium structure of three~dimensional turbulence at high Reynolds numbers,
therefore, is not entirely correct for the Lagrangian velocity correlation. Moreover, this
result explains why different experiments often give different constants of proportionality
when ¢ is used for comparison.

I'finally consider applications to turbulent diffusion. First, Taylor’s result for the mean—
square displacement of fluid elements is extended to orders at which turbulent velocity
disturbances contribute. Next, I derive a version of Richardson’s 4/3-law for the rate at
which the actual and expected position of a fluid element, where the expected position is
that based on initial position and velocity, diverges. This is apparently the first derivation
of such a 4/3-law directly from the Navier-Stokes equation.,

Chapter 6 presents a heuristic model for intermittency in homogeneous turbulence. It
is first pointed out that the kinetic energy associated with intermittency remains at scales
much larger than the Kolmogorov dissipation scale. I suggest instead that intermittency
Is associated with helicity transfer to small scales. Predictions are then derived for the
Reynolds numbers of vortex tubes and the asymptotic behaviour of structure functions
as the order tends to infinity. The agreement with experimental and numerical results
is good. In an appendix, it is argued that spiral~shaped vorticity distributions assumed
by Lundgren (1982) are far too unstable to exist in turbulence at high Reynolds number.

The roll-up of such spirals has been proposed as a model for the energy cascade by several
authors.
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1.2 Part 2: Wavelet transforms

1.2.1 Definitions and previous works

This section reviews previous work on wavelet transforms. Each chapter on wavelet trans-
forms contains a more exhaustive review and general reviews can be found in the book
by Meyer (1990) (the construction of orthogonal wavelet bases, in particular, is described
in detail in these books). Applications to turbulence are discussed in the review by Farge
(1992).

Wavelet transforms generalise Fourier transforms and they arise by using localised
waves instead of Sine waves. These localised waves are known as analysing wavelets and
are usually denoted by g(t) (for the continuous wavelet transform) and by () (for the
discrete wavelet transform). Wavelets are formed from the analysing wavelet by two
transformations. The first transformation is to scale the analysing wavelet by a positive

parameter A > 0,
t
90~ 9(3)- (1.3)

The inverse, A~L, is then similar to a wavenumber or a frequency in Fourier analysis. The

second transformation is to translate the scaled analysing wavelet,

a0 o(55). (14)

Translations are required to reconstruct the function f(¢). The wavelet transform is defined
by (Grossman & Morlet, 1984; Holschneider & Tchamitchian, 1991),

s we (5 e

- /_ :° Flw) 5 Ow) explirw] dw (1.5)

W(A,r)

where r is a real number, A is positive and the complex conjugate of g(t) is denoted by
g*(t). The wavelet transform focusses at ¢ = r as the scale A decreases. The behaviour of
the wavelet transform in this limit is similar to the procedure for constructing the delta-
function, except that the total integral of the analysing wavelet g(t) should be zero. In

fact, the analysing wavelet should generally satisfy the following three conditions,

1 o< /Ig(t)|2dt < o0



@ [ ema=o

co |= 2
(3) o<cgd:°f27r/ @dw < 0.
8]

where the Fourier transform §(w) is defined as follows,

d(w) = -—\/% /_:o g(t) e’ de. (1.6)

The analysing wavelet is said to be ‘admissible’ (Grossman & Morlet, 1984) and the
wavelet transform is then invertible (e.g., Holschneider & Tchamitchian, 1991). The so—
called Mexican Hat wavelet satisfies these conditions,

(&) = o [ whemv /2t g 1.7
g = Tom o e . (1.7)

This analysing wavelet is progressive: the Fourier transform vanishes for all negative fre-
quencies. If g(t) is progressive, the imaginary part of ¢(t) is the Hilbert transform of
the real part (Zygmund, 1959). Progressive analysing wavelets often simplify the wavelet
transform for the same reason as the exponential of imaginary argument often simplifies
the Fourier transform (when compared with, say, the Cosine transform}. Another example

(see Figures 1.1 and 1.2 below) are the wavelets defined by

Im(t) = %(1 —i)" N om0, (1.8)

We call these Poisson wavelets, because they are proportional to derivatives of the Poisson
kernels used in Fourier analysis. The Mexican Hat wavelet and the Poisson wavelets are
considered in Chapter 7.

As the Fourier transform, the wavelet transform has a discrete and a continuous version,
Following the naming in Fourier theory, we call the discrete representation a wavelef series
and the continuous representation a wavelet integral. The discrete wavelet transform is
formed in the same way as the continuous wavelet transform, but using only scales and
positions of the form

rig = 2774 (1.10)
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Figure 1.1: The real and imaginary parts of the Poisson wavelet with m = 2,
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Figure 1.2: The wavelet transform of a Sine wave; the position of the ridge depends linearly
on the frequency of the Sine wave.

where 4,7 € Z. In this case, the analysing wavelet, which is usually denoted by %(¢),
must Satiit-] much stricter conditions (see, for instance, Meyer, 1990).

An important property of wavelet transforms is the ability to characterise the Holder
continuity of functions. Recall that a function f : IR — IR is Holder continuous with
exponent «, 0 < a < 1, if there exists a € > 0 such that

swp|f(x) - f()] < Che (1.11)

lo—yl<h "~
for all h > 0. For bounded functions, this condition holds for all A > 0 whenever it holds
for A > 0 sufficiently small (though generally with a different constant). To determine

the Hélder continuity by means of wavelet transforms, the analysing wavelet must be
continuously differentiable and satisfy the following conditions

(1) there exist C > 0, C' > 0, ¢ > 0, and m_ > 0, such that
gl € C(L+ D™ and [g'(8)] < C' (14 [2))**

(2)  thefollowing relations are satisfied :

+oco +oo
/ g(t)dt=0 and f tg(t)di=0

o0

-0
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Figure 1.3: The wavelet transform of the function F(t) = M2 exp(~t) H(2), where H (?)
is Heaviside’s function, with the complex—valued Mexican Hat wavelet. The discontinuity
in the derivative is clearly detected.

When these conditions are satisfied, the wavelet transform characterises the Hélder conti-
nuity. '

Theorem 1.1 Suppose that the function f(t) to be analysed is square integrable and con-
tinuous. Let the analysing wavelet satisfy the two above conditions with m > o for some
@ €10,1[. Then the function is Hélder continuous with exponent o if and only if

WA r)=00%) (1.12)
holds uniformly in r.

This theorem translates a result due to Calderdn & Zygmund (1961) into wavelet termi-

nology. The version here is due to Holschneider & Tchamitchian (1991), although they
forget the condition of continuity.

1.2.2 Overview

Chapter 7 contains a proof of the existence of 2, Gibbs phenomenon for wavelet integrals.
The Gibbs phenomenon for the orthogonal wavelet transforms was considered earlier by

10




Jaffard (1989). But it is necessary to consider the Gibbs phenomenon for wavelet integrals

separately, because the class of admissible analysing wavelets for wavelet integrals is much
larger than the class of admissible analysing for orthogonal wavelet series. Furthermore,
the discretisation of wavelet transforms influences the convergence properties of truncated
wavelet series near singular points. The Gibbs pheomenon for wavelet integrals may
therefore be different from the Gibbs phenomenon for wavelet series. In Chapter 7, it
is shown that there is a Gibbs phenomenon for wavelet integrals and that the overshoot
is always less than the overshoot for Fourier integrals (whereas, the overshoot may he
infinite for orthogonal wavelet series; Jaffard, 1989). The overshoot is expressed in terms
of the analysing wavelet, and the asymptotic number of oscillations in the truncated
wavelet integral around the original function is determined (this number may be finite,
even zero, whereas the Fourier Gibbs phenomenon asymptotically has an infinite number

of oscillations).

Chapter 8 concerns the wavelet analysis of fractals represented by continuous func-
tions on the unit interval. It is shown that the decay of wavelet transforms of continuous
functions defined on finite intervals, as the scale tends to zero, typically determines the
box dimensions of the graphs (the existence of these box dimensions follows). Such a re-
sult was basically conjectured, though not stated explicitly in this form, by Holschneider
(1988). It is then easy, for instance, to determine box dimensions of graphs of Weierstrass
functions.

11



Part 1

Turbulence
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Chapter 2

The energy transfer in forced
turbulence

An equation is derived for the energy transfer in forced turbulence in statistical equilibrium;
the turbulence is assumed homogeneous and isotropic, and may be either two—dimensional or
three-dimensional. The equation for three~dimensional turbulence has Kolmogorov’s equation as
a leading-order approximation at small scales and correets a similar equation obtained by Yakhot
(1992). In addition, the equation for three-dimensional turbulence is solved, both for forcing that
acts at a single wavenumber and for general forcing. The equation for two—dimensional turbulence

is solved in Chapter 3.

2.1 Introduction

The only analytical result, so far, for the inertial-range structure of stationary turbulence
was obtained by Kolmogorov (1941 b) from an equation for the energy transfer in lo-
cally isotropic turbulence. The inertial-range solution of this equation is the third-order

moment of velocity differences u,,

4
(W)~ — e, (2.1)




where € is the mean rate of viscous energy dissipation per unit mass and the brackets {:)

denote an ensemble average. The velocity difference u, is defined as follows,
u, = [u(x +re,t) — u(x,t)] ‘e, (2.2)

where e is an arbitrary unit vector. Local isotropy means, basically, that the distribution
of u, is independent of x, e, and . However, the approximation denoted by ~ requires
both that B — oo and that /L — 0 (where R is the Reynolds number and L is the
integral scale). The last limit is necessary because forcing is ignored. Moreover, it must
be possible to derive an equation for the energy transfer in forced turbulence in two
dimensions. Therefore, let us derive a general equation for the energy transfer in forced
turbulence, of dimension either two or three.

The outline is as follows. In section 2, the kinematical consequences of homogeneity and
isotropy are first extended from furbulence in three dimensions to turbulence in dimension
do (where dy = 2 or dp = 3); these relations then lead to an equation for the energy
transfer in forced turbulence with dimension dp. In section 3, the equation is solved
for dy = 3, extending the solution of Kolmogorov (1941 b) from inertial scales to all
scales where viscous forces are negligible; the equation for dy = 2 is solved in Chapter 3.
Recently, Yakhot (1992) derived an equation for the energy transfer in forced turbulence
in three dimensions, apparently the first attack on this problem; but the analysis in the
present chapter indicates that his equation, for which no complete proof is given, requires

correction.

2.2 The general equation for energy transfer in forced tur-
bulence

Assume the turbulence homogeneous and isotropic in the sense of Taylor (1935) (i.e., the
distribution of velocity components is invariant under translations in both time and space,
as well as under rotations of the coordinate system : &I}él reflections of coordinate axes).
The energy transfer in homogeneous and isotropic is the simplest possible, and is therefore
the natural starting point. Two-dimensional turbulence is approximately homogeneous at
small scales whenever this is true about the energy injection at large scales (the arguments
are similar to those for turbulence in three dimensions, and rely on the empirical result
that inertial forces increase as the length scale decreases from the largest scale to the
scale at which energy is injected). Isotropy includes invariance under reflections of the

coordinate axes and thus excludes, for instance, turbulence with mean rotation.

14




2.2.1 Kinemalical consequences of homogeneily and isotropy

Von Kirmén & Howarth (1938) express double and triple correlations for homogeneous
isotropic turbulence in three dimensions through correlations of the velocity component
parallel to the separation. Let us extend these relations to turbulence of dimension dj.

Define first the correlation between velocity components u; and U5,
Rij(r) = (wi(x) uj(x + 1)), (2.3)

where the brackets {-) denote an ensemble average. Since the turbulence is isotropic, this

correlation has the form (Batchelor, 1953, p. 45)
R,‘j(r) = F(r)r; T4 G(T) di5, (2.4)

where F(r) and G(r) are scalar functions. Incompressibility gives

L=ri[(do+ 1) F+rF +r7 1G] =0, (2.5)

where F' denotes the derivative with respect to r and where the summation convention
applies to repeated indices. This equation is satisfied only if

(do+ V) F+rF +r71G =0, (2.6)
Define longitudinal and lateral correlations,

f(r) = (umx)wm(x+rer))
g(r) = (wa(x)us(x+req)), (2.7)

where e; is the first reference vector. It then follows from Eq. 2.4 that

f = »rPF+G
g = G, (2.8)
and from Eq. 2.6,
— r !
g~f+d0_1f- (2.9)

The auto—correlation is the contraction,
R(r) = Ri(x). (2.10)

15




Equation 2.9 then gives,
R(r}=f+(do-1)g=dof+rf. (2.11)
Consider next the third—order correlation
Siji(r) = (ui(x) uj(x) wi(x + r)). (2.12)

Since the turbulence is isotropic, the third-order correlation can be written in terms of

even scalar functions (A, B, and C)
Sijl(r) =Arr;m+ B (r; 6ﬂ + 75 6i)+ Cry 5,'3'. (2.13)
Since A(r) depends only on r = |r|,

V-(Ar) = doA+r A

¢4 _ ndd 2.14
dry rodr’ (2.14)
Incompressibility then implies that

% = {(d0+2)A+rA’+ %B'] riTi [2B+doc+rc’] 6i; =0. (2.15)

And this is the case only if

(do+2)A+rA' +2r71B = 0
2B+dyC+rC' = 0. (2.16)

The tensor Sjj(r) is first—order, solenoidal, and isotropic; any such tensor is easily shown
to vanish if bounded. That is,

Art 1 2B+ dyC =0, (2.17)
This equation and Eq, 2.16 together show that

C

r

A (2.18)

Equation 2.17 then gives
B = _%Q ¢ - l1"

;¢ (2.19)

16




Define

(w(x) mx +rer))
- 5111(7'81). (220)

k(r)

The above results give

Er) = Ar*+2Br4Cr
—(do — 1) r C(r). (2.21)

The third-order correlation is now completely determined by &(r),

I el D (do—l)“’"k'] it 6 k )
Sis(r) = [(dgwl)r3] T,'rj."r;+[ 2(do—1)7 (riési+7y 611)—1"(0!0-- 3 r16i;. (2.22)

On setting ! = ¢ and summing over ¢,
1 do+ 1}k
Sii(r) =< [k' + &] T (2.23)
2 r
For dq = 3, this relation agrees with that derived by von Kdrmén & Howarth (1938); see

also Eq. 3.4.35 in Batchelor (1953). It is convenient to express the above results in terms
of the velocity differences u,. Note first that

’U.2
£y = (o) - Sl
k(r) = Wﬁg). (2.24)

Equations 2.11 and 2.23 then give

RE) = ()= 3 (rgmdo) fud)
Sii) = 2 (3 + 22wy, (225)

eLs ful’l('[[{'Oﬁj o’C r\
" r - \\/

where 7 = [r[. The auto—correlation is even and the third-order moment is odd. Having

extended the tensor analysis of von Kdrman & Howarth (1938) to turbulence of dimension

dy, it is now straightforward to extend the work of Kolmogorov (1941 b) similarly.
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2.2.2 Dynamical consequences of homogeneity and isotropy

We now extend the equations of von Kérmén & Howarth (1938) and Kolmogorov (1941
b) to forced turbulence in statistical equilibrium (i.e., stationary turbulence). We then
consider an incompressible velocity field u(x, ) that satisfies the Navier—Stokes equation

with forcing f(x,t),

du

' 1
e a — 2 —— ]
6t+(u Viu v Vu pr+f

V.ou = 0, (2.26)

Consider next two points, xg and Xy, and regard each point as independent of the other.
Let the subscripts 0 and 1 denote conditions at the corresponding points; for instance,
ug = u(xo). On multiplying the equation at xg by uy, and the equation at x; by ug, and
then adding the results,

ad
_3—1;(“0 ~uy) + Ve ((up-u)u — (ug-uy)ug) = 21/‘{7?(110 “uyp)

+={uy - Vopo -+ ug - Vipy)

L
f
+ (uy o + wo - f1), (2.27)
where the divergence and the Laplacian are with respect to the relative position r = x; —xq.
Von Kérmédn & Howarth (1938) use the identity 8/8r = 8/8x; — 8/8xp to transform
differential operators in xo and x; into differential operators in r. But simple examples
show that this identity generally fails when the two points xg and x; vary independently.
The correct argument is that ensemble averages in homogeneous turbulence depend only
on the relative position r.

Moreover, von Karman & Howarth (1938) use both homogeneity and isotropy to show
that the pressure terms in Eq. 2.27 either vanish or tend to infinity as r tends to zero. But
homogeneity suffices, provided that averaging over ensembles with xp varying and x; fixed
is equivalent to averaging over space with x¢ varying and r fixed. (This assumption does
not require a type of ergodic hypothesis, as often claimed, but rather that the velocity field
in widely separated regions can be regarded as independent realisations; but the details of
this question are beyond the compass of the present paper). The average over space may
be performed by integrating over spheres centered at the origin, dividing by the volume,
and then letting the radius tend to infinity.
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Suppose now that we seek the average of a divergence. We may then transform the
integral over the interior of the sphere into an integral over the surface. The surface
integral will generally increase no faster than the surface area as the volume tends to
infinity, so that the average of any divergence is zero (it suffices that the absolute value
of the vector, whose divergence is averaged, has finite average). Incompressibility implies

that both pressure terms in Eq. 2.27 are divergences. For instance,
(u1 - Vopo) = (Vo - [ug po] )- (2.28)

The two pressure terms then vanish. The physical interpretation is that pressure fluctua-
tions transfer kinetic energy between different regions without changing the total kinetic
energy (Batchelor, 1953). In addition, the time derivative on the left side of Eq. 2.27
vanishes by stationarity. We then obtain

Ve {(uo-ug)ur — (uo-up) ue) = 20 VER(r) + {u; - fo + ug - fy). (2.29)

The two relations in Eq. 2.25 show that

1/ d d do+1 3_(£_d0—1d)(i )2
S(Tdr+do) (d’r-l_ " )(ur)-u d?‘2+ - Td’r+do (uy—{uy-fo+ug-f).

(2.30)
To simplify this equation, use the following identity to write the viscous term in a form
similar to the term in which the third-order moment occurs (where the constant dg should
be regarded not as a function, which vanishes on differentiation, but as the operator of

multiplication),

d® do—1d d d d*  dp+1d
(o3 (e re) = (ara) G20 5) e

It is easily shown that the differential operator rd/dr 4+ dy has unique inverse within

the class of functions bounded at the origin; this class of functions is appropriate because
velocity differences in realistic flows are bounded at all scales. The first integral of Eq. 2.30

then gives an equation for the energy transfer,

d do+ 1 ay d? do+1 d ) 2
(F+25) ) =6 (g5 + 22 D) iy - F), (2.52)
where
F(T) = pto f pdo—1 (u1 cfp+ug- f1> dx. (233)
o

(ot 1o be conlused wedl
19 vl oo, {(2.4)7
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(The correlation between velocity and forcing is here considered a function of ). Since the YAriable_

turbulence is stationary, viscous energy dissipation equals energy transfer through forcing,

e = —v{u-Via)

= (u-f). (2.34)

Then F(0) = 2¢/do. The left side of Eq. 2.32 represents inertial energy transfer in velocity
disturbances with characteristic length scale r; on the right side, the first term represents
viscous energy dissipation and the second represents energy transfer from velocity dis-
turbances at other length scales. Yakhot (1992) similarly obtains an equation for the
energy transfer in forced turbulence in three dimensions (i.e., dy = 3). But he apparently
overlooks the step in which the divergence is inverted, and consequently ends up with an
equation that, wrongly, has dy = 0 in the expression for F(r) in Eq. 2.33.

We now see, as was first pointed out by Yakhot (1992), that Kolmogorov’s equa-
tion arises for three-dimensional turbulence by assuming F(r) ~ F(0). To justify this
approximation, suppose that the Fourier transform of forcing concentrates around the
wavenumber 27/L. Suppose that the forcing is smooth, so that we may approximate the
following correlation by its Taylor series,

50 2
{wp - fi +uy - fy) ~ Z G, T (2.35)
n=0 N an

whenever 7 = |r| is much smaller than the forcing scale L. Suppose that the turbulence
transfers kinetic energy mainly to small scales and that the forcing f varies significantly
only over scales larger than some length scale L. A simple dimensional argument then
shows that a, is of order U3/L?"+1. Therefore, when r << L, the first term, ag, dominates,
giving Kolmogorov’s equation. Let us now solve the equation for energy transfer in three—

dimensional turbulence without any approximation; this solution is of independent interest

and, moreover, helps prepare the discussion of two—-dimensional turbulence.




2.3 Solution for three—dimensional turbulence

2.3.1 Sine wave forcing

Consider first the simplest case of forcing at a single wavenumber. The forcing function
F(r) can then be written as a combination of algebraic and trigonometric functions, giving
an inertial-range solution of Eq. 2.32 that is exact in the limit of zero viscosity. The
analysis proceeds by expressing F(r) as an integral over Fourier transforms of velocity
and forcing. Define these Fourier transforms as follows,

Tuk) = g—i;-gfm%u(x) exp[—ik x] dx

TE(k) = -é-%r-é- fmf(x) expl=i k x] dx. (2.36)

The time-coordinate is ignored here because the Fourier transforms are used only for
averages that are independent of time. Assume that both the velocity u and the forcing
f are convolutes, that is, tempered distributions for which the convolution theorem on

Fourier {ransforms holds. Then
{uo -y +uy - fo) = 1673 fma cos(k - ) (Tu(k) - TE(k)") dk. (2.37)

The average on the left side is invariant under rotations of the coordinate system and is
therefore unchanged by averaging over the sphere with radius » = |r|, centered at the

origin. Define the angle # by k-r = kr cosf. The Cosine has integral

kg
/II cos(k-r)dr = 27rr2/ cos(kr cos@) sin 6 dé
Iy ¢

1
2mr? / cos(krz) de
-1

4mrk™! sin(kr). (2.38)

The average over the sphere is then (see also p. 36, Batchelor, 1953)

(o~ i + 1y - fo) = 16 7° f % (Tu(k) - T£(k)") dk. (2.39)

]]13

Note that this relation holds only in three dimensions. Suppose now that the forcing acts

only at the wavenumber kg > 0. The average in the integrand, since the turbulence is
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isotropic, depends only on the modulus £ and not on the direction of the wavevector,
Integrating over the sphere with radius equal to k then gives,

(ug - £ + uy + fo) = 6474 fo ” -’“—nk(-éﬂ (Tu(ke) - TH(ke)*) k2 dk, (2.41)

where e is an arbitrary unit vector. Since the left side equals 2¢ at r = 0, the Fourier
transform is given by

(Tu(k) - TI(k)") = :377:4_195 §(k ~ ko). (2.42)

On substituting this Fourler transform in Eq. 2.41,

Sin(ko T)

(‘UO . f1 + uy - fo) =2¢ (243)
kar
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Figure 2.1. Minus the third-order moment (uf) for turbulence forced at a single wavenum-

ber; the straight line is Kolmogorov’s asymptotic result 4/5¢r. Lengths and velocities are non—

dimensionalised such that ky = 1 and ¢ = 1; the forcing scale is then L = 2.

On dimensional grounds, the term representing viscous energy dissipation is negligible

at scales larger than the Kolmogorov dissipation scale 77 = v3/4 ¢~1/4. Substituting Eq. 2.43
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on the right side of Eq. 2.32 gives the following approximate solution, valid at length scales

where viscous forces are negligible,

o0 7 Lan 2ndl
3 » (=L)"kg" T
(ur) 12¢ nzz% (2n + 5) (2n + 3) (20 + 1)]

= —12¢ky®r? [ (% - kg) sin(kor) — ?_;"2 cos(ko 7). (2.43)

This solution is exact in the limit of zero viscosity and thus improves, particularly at large
scales, on Kolmogorov’s result in Eq. 2.1 (see Figure 2.1); the two solutions agree to the
leading order as kgr tends to zero. Equation 2.43 holds also when r is larger than the
forcing scale L = 2w /ko, where Kolmogorov’s prediction no longer holds. But this part of
the solution is only visible in real flows when the forcing scale I is much smaller than the

characteristic scale for the flow domain.

2.3.2  (eneral forcing

Consider now the general solution at scales where viscous forces are negligible. We seck
a simple interpretation of the correlation between velocity and forcing. Define rotation

fields by successive applications of the rotation operator,

n times

e
Vixu=Vx...Vxu, (2.44)
and similarly for the forcing. The Fourier transforms satisfy

TVt xu] = ikxT[V*! x u
TIV*xf] = ikxT[V*!xf1). (2.45)

Since the velocity field is incompressible, the Fourier transforms of all rotation fields are

perpendicular to the wavevector k,
k- T[V" x ul(k) = 0. (2.46)

By combining this result with the two previous equations, we see that the scalar product

of the two Fourier transforms is given by

T[V® x u] - T[V* x f}" = K* TV x u] - T[V"! x f}". (2.47)
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Note that the forcing need not be N6~ di U@f_ﬁfe{t for this identity to hold. If we use indue-
tion over n to reduce this result further, and assume that ensemble (or space) averaging

commutes with integration over wavenumbers,

{({(V* xu) (V" x 1))

gr® fma (T[V" x u] - T[V" x f]*) dk

g 3 fma K (T - TF*) dk. (2.48)

These averages are the rates at which the forcing transfers mean squares of the rotation
fields V™ x u to the turbulence. From Eq. 2.39,

n r 2n _
F(r) = 1623 Z f 3 (251:1),?273{_3) (Tu(k) - TH(k)") dik. (2.49)
Then, from Eq. 2.48,
F(T’) -9 i (_1)'n ( (V'n X u) ) (Vn X f)) 7,271.' (250)

(2n+ 1) (2n + 3)

The forcing, of course, should be smooth. The general solution at scales where viscous

forces are negligible is now

(=1 (V" xu)- (V" X)) an
_122 (2n+ 1) (2n+ 3) (2. + 5) L (2:51)

n=0

The rate of energy transfer at small scales then depends not only on the rate at which the
forcing transfers kinetic energy to the turbulence, as Kolmogorov’s equation indicates, but
also on the rates at which the forcing transfers all other squares (V™ x u)?; this is because
the mean kinetic energy is non—zero when just one of the mean squares is non-zero. In
particular, the lowest order correction to Kolmogorov’s prediction in Eq. 2.1 represents

enstrophy transfer through forcing,

(u?)m—%ﬁf‘—%g(w V % £) 17 (2.52)

In three-dimensional turbulence, enstrophy transfer through forcing is negligible compared
with enstrophy production through advection; this is why Kolmogorov’s prediction in
Eq. 2.1 holds asymptotically at small scales. But two-dimensional turbulence does not
produce enstrophy by advection, so we expect that, in this case, the term representing

enstrophy transfer through forcing is important.
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Chapter 3

The local structure of
two—dimensional turbulence

i

In chapter 2, an exact equation was derived for the energy transfer in forced turbulence of dimension
either two or three, and this equation was solved for the case of three dimensions. We now solve
the equation for the case of two dimensions. It is assumed that the Fourier transform of forcing
concentrates in two regions, around a wavenumber 2 7/L; and then at wavenumbers smaller than

2#%/Ls, where Ls is much larger than L;. At small scales, hetween the dissipation scale 5 and the

forcing scale L1, the solution is given by, K

1 i
(u2) ~ é-a'ra-— é—ggﬁrs, (3.1)
where o is the mean rate of viscous enstrophy (mean—square vorticity) dissipation and § is the
mean rate of palinstrophy (mean-square vorticity gradient) transfer through forcing. In large

scales, between L; and Lg, the solution is given by,
(ud) ~ —%(E—e)r— E(A—c::) 73 (3.2)
T 2 8 ’

where E and A are, respectively, the rates of energy and enstrophy transfer at the scale I,y through
forcing. The ratio £/¢ is proportional to the Reynolds number. As the ratio A/«, a free parameter,
increases to infinity, the enstrophy range at small scales contracts and the enstrophy range at large
scales expands. Physically, this corresponds to the appearance of large vortices. Finally, the energy

spectrum is estimated.
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3.1 Introduction

The study of two-dimensional turbulence is motivated by the observation that velocity
disturbances in both the atmosphere and in oceans rarely exceed 10 kilometers in the
vertical direction, yet may extend over several thousand kilometers in horisontal directions.
Nevertheless, there are so far no analytical results for the equilibrium distribution of
velocity differences ., in two—dimensional turbulence. This contrasts sharply with three—
dimensional turbulence, for which Kolmogorov’s 4/5-law has been around for more than

50 years. The equation derived in the previous chapter is almost the solution to this

problem,
d 3\ 5 (d 3dY,,
(5o+3) @ =6v(g7+25) (-6 F(), (3.3)
where
F(r)=r"2 / z{uy-fy+uo-fi)de (3.4)
0

(Recall that the correlation between velocity and forcing is a function of z). All we now
need is the correct approximation to the forcing function F(7). The approximation used for
turbulence in three dimensions is not valid. Since turbulence in two dimensions does not
produce enstrophy through advection, the mean enstrophy (w?) for stationary turbulence
depends mainly on the forcing. In particular, the mean enstrophy presumably remains
bounded as the viscosity v decreases to zero. This contrasts with three—dimensional tur-
bulence, for which advection produces enstrophy at a rate that increaseSto infinity as the

viscosity decreases to zero. Now, when the turbulence is homogeneous,
e=wv(w?), (3.5)

so that ¢ — 0 as v — 0 (Bray, 1966; Batchelor, 1969). Recall that Kolmogorov’s equation
is based on the approximation F(r) ~ F(0) = e. But it is unlikely that the rate of
energy transfer associated with large velocity disturbances, where viscous forces are much
smaller than inertial forces, decreases to zero in this imit. This shows that F(r) requires
a different approximation when the turbulence is two-dimensional. Physically, this is
because the turbulence in two dimensions transfers kinetic energy mainly to large scales
(Fjgrtoft, 1953; Bray, 1966; Kraichnan, 1967; Batchelor, 1969).

Incidentally, we have resolved a problem raised by von Neumann (1949). He remarked
that Kolmogorov’s equation must use the dimension in some important manner, because
the corresponding equation for two-dimensional turbulence  not seem plausible. We

A
does
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see that the important assumption is that the turbulence transfers kinetic energy almost
entirely to small scales, which fails in two dimensions. Along the same lines, Hama (1953)
derived an equation for the energy transfer in decaying turbulence in two dimensions and
concluded, wrongly, that the energy transfer resembles that in three dimensions. This
conclusion is omly correct if the approximation used in three dimensions holds also in
two dimensions, and we have just seen that this is not so. Now, let us find the correct

approximation to F(r) for two~dimensional turbulence.

3.2 Basic assumptions

The equation for energy transfer can be solved in complete generality for smooth forcing,
and this will be done, but to get physically interesting predictions it is necessary to specify
the type of forcing considered. Since ¢ decreases with v, and since the energy transfer
at large scales is only weakly dependent on », turbulence in two dimensions transfers
kinetic energy from velocity disturbances at the smallest forcing scale to larger velocity
disturbances (Bray, 1966; Kraichnan, 1967; Batchelor, 1969). Unless some mechanism
extracts kinetic energy from the largest velocity disturbances, the (ensemble-averaged)
kinetic energy increases with time and we cannot regard the turbulence as stationary. Let
us then suppose that kinetic energy is extracted at large scales at exactly the rate required
for stationarity (numerical simulations often model this energy extraction as linear drag
at small wavenumbers; e.g., Maltrud & Vallis, 1991). Moreover, when kinetic energy is

injected and extracted by separate forcing fields,
=1+, (3.6)

where the first term represents energy injection and the second energy extraction. Since
F(r) is linear in f,
F(r)y = F(r) + F(r), (3.7)

with the same use of indices as before. Let us assume that the Fourier transform of f
concentrates around the wavenumber 2 7 /L, and the Fourier transform of f; concentrates
solely at wavenumbers smaller than 27/Ls. To solve Eq. 3.3 explicitly at scales larger
than L, we require that L, is much larger than L. That is, kinetic energy is extracted

from velocity disturbances that are much larger than those into which kinetic energy is
injected. At small scales, r << L1, inertial forces decrease no slower than {(w?)r, so there

is generally no scope for inertial ranges in two-dimensional turbulence (not even at large
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scales, because fj is generally larger than the inertial forces associated with these scales).
Let us now discuss the first three terms in the Taylor series in Eq. 3.37.

3.2.1 Kinetic energy

Let us consider how the three different rates of energy transfer are related: the rate of
energy extraction by viscous forces, the rate of energy injection at the scale Ly, and the
rate of energy extraction at the scale L. From the Navier—-Stokes equation, by well known

arguments, we get
(u-f1)+(u-f2)zy(w2). (38)
Since vorticity is materially conserved for inviscid flows, the typical velocity variation

across a distance L; is comparable with (wz)l/ ?Li. We may then define a Reynolds

number R for the motion at scale L1 as follows,

n1/2 LQ—

Denote by E the rate at which forcing injects kinetic energy at the scale L,
E={u-f). (3.10)
Then, by a simple dimensional estimate of E,
E x Re, (3.11)
as R tends to infinity. Now, in the same limit,
(u-f2) ~ E, (3.12)

so that, as already remarked, two-dimensional turbulence transfers kinetic energy mainly
to large scales. This equation shows that the first (non—zero) terms in the Taylor series of
Fi(r) and Fg(_v")/gre both much larger than €, but almost cancel on addition.

dbo:«._t' ’
3.2.2 FEnstrophy

The behaviour of enstrophy is more complicated than the simple transfer to large scales
of kinetic energy. Consider first the vorticity equation,
dw

E-ku-Vw:VVZw%—(ﬁ, (3.13)
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where the vorticity w is considered a scalar and where ¢ is the component of V X f normal

to the plane of the flow. Multiply by vorticity and average,

(we) = v {(Vw)?), (3.14)
where the viscous term was transformed by Green's first identity. Define,
o= v {{Vw)?). (3.15)
Then, using the above notation,

a={wd) + (wda). (3.16)

Suppose that f; acts, for instance, only at wavenumbers in the range from 27/L, to
47/Ly. The second term on the right side of Eq. 3.16 would then seem to be negligible,
so that

a ~ {wdr), ‘ (3.17)

as Ly /L, tends to zero. In this case, the turbulence transfers enstrophy mainly to small
scales (as some previous authors have suggested; Bray, 1966; Kraichnan, 1967; Batchelor,

1969). But it turns out that this assumption on the forcing at scale Ly is too restrictive.

3.2.3 The réle of vortices

Two-dimensional turbulence often has large vortices {e.g., Fornberg, 1977; McWilliams,
1984; Melander et al., 1987; Legras, Santangelo, & Benzi, 1988; Santangelo, Benzi, &
Legras, 1989; Maltrud & Vallis, 1991; Dritschel, 1993; Borue, 1994; Boubnov, Dalziel, &
Linden, 1994). That is, the vorticity field has patches with diameters comparable with
the forcing scale Ly (Maltrud & Vallis, 1991).

When the fraction of the vorticity field associated with vortices increases, the mean
palinstrophy ((Vw)?) decreases and, thereby, the mean rate of viscous enstrophy dissipa-
tion a. Let us then compare the rate at which the forcing injects enstrophy at the scale

L1 with the mean rate of viscous enstrophy dissipation e,

/
0= (3.18)

(44

where the numerator scales like the mean rate of enstrophy injection at the forcing scale

Li. (In general, @ cannot be interpreted as a Reynolds number for structures in the
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vorticity field, as it depends also on the fraction of total space occupied by the smallest
structures). Let us consider the enstrophy budget when @ is large. Define,

A= (wé)}, (3.19)
and note,
A o (w2, (3.20)
so that,
AxQa. (3.21)

as ¢ tends to infinity. In this limit, Eq. 3.16 becomes,
(w o) ~ —A. (3.22)

Enstrophy extraction from velocity disturbances at the scale L, is then comparable with
enstrophy injection at the scale L;, so enstrophy indeed flows increasingly to large scales
as {) increases. Since the rate of viscous enstrophy dissipation « is determined by the
mean palinstrophy ((Vw)?), let us finally consider the averaged equation for palinstrophy

transfer.

3.2.4 Palinstrophy

Palinstrophy, in contrast to kinetic and enstrophy, is not conserved for inviscid flows in two
dimensions. But it turns out that vortices reduce the rate of palinstrophy production by
inertial forces, so that the equation for palinstrophy resembles the equation for a quantity
that is conserved in the inviscid limit. The averaged equation for palinstrophy transfer is
easily obtained,

(Vaw - V) = (Vw - (Vw - V)u) + v { (VZw)?). (3.23)

The first term on the right side represents extension of isovorticity lines by inertial forces
(Batchelor, 1969; Tatsumi, 1980). The extension of isovorticity lines is then produces
palinstrophy — just as the extension of vortex lines in three-dimensional turbulence pro-

duces enstrophy. Denote by # the mean rate of palinstrophy transfer through forcing,
B = (Vw- V). (3.24)

To evaluate the rate of palinstrophy production, denote by s the non-negative eigenvalue
of strain (assuming this eigenvalue non—zero), and by g; and g, the componenis of the

vorticity gradient Vw along the two eigenvectors of strain. Then

(Veo - (Veo - Vyu) = (s (g} - g3))- (3.25)
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The two components of the mean palinstrophy, g7 and g2, and hence the inertial term in
Eq. 3.25, decreases as the characteristic length scale for vortices increases. Consider the
extreme case where the mean palinstrophy is associated with the vorticity field at large
scales. The mean rate of palinstrophy transfer through forcing is unchanged and is then

comparable with the mean rate of viscous palinstrophy dissipation,
8~ v((Vw)?), (3.26)

and palinstrophy can be regarded as an ‘approximate invariant’ in the inviscid limit.
Introducing vortices is then analogous to reducing the dimension from three to two: the
former prevents the extension of isovorticity lines and the latter prevents the extension of

vortex lines.
Suppose now that the turbulence transfers palinstrophy mainly to small scales, in the

sense that the forcing at scale Ly does not contribute to 8. The only contribution is then
from the forcing at scale Ly, so that 8 satisfies,

B U/LS, (3.27)

where U is the characteristic velocity differences at the scale ;. Equation 3.27 holds
generally when Lo/Lq is sufficiently large. The physical picture is that the mean-square
vorticity gradients is associated with length scales much smaller than L, which, evidently,

is correct when the Fourier transform of f; concentrates around 27 /L;.

3.3 Formal expression for the forcing function

We now determine the forcing function F(») by considering the Fourier transforms of
velocity and forcing. The arguments are analogous to those for three~dimensional turbu-
lence, in the previous chapter. Once more, we seek the Taylor series of F'(r). The Fourier

transforms are now defined as follows,

Tuk) = :L%ri . u(x) exp{—ik x] dx
Tik) = 4—1{—2 /]R'-’ f(x) exp[—i k x] dx. (3.28)
Then
(ug - £ + 1y - fo) = 872 fm2 cos(r k) (Tu(k) - TH(k)") dk, (3.29)
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and isotropy again implies that the ensemble average in the integrand depends only on
the magnitude of the wavevector k = |k|. To average over the angle 6, deflned by k-r =
kr cosf, note first that

/ cos(kr cos@)dl = L i (=1 E2n pln /” cos®™ 4 df. (3.30)
27 2w = : 0

It is also possible to write the integral on the left side as a Bessel function, but the Taylor
series is more helpful here. Since (e.g., Gradshteyn & Ryzhik, 1980),

n~1
- —on 2n 2n
cos?™ g =272 {EHOQ( . )cosQ(n—k)H—i—( N )}, (3.31)
we get

27
/ cos™™ f dff = 22+ ( 2n ) 7, (3.32)
0

n

where 7 is any non-negative integer. (Gradshteyn & Ryzhik [1980, p. 369] then seem to
be mistaken on the value of this integral — as can also be seen by direct calculation when
n is small). After substituting in Eq. 3.30,

Py f cos(kr cosf)df = Z (- rl))z 27 2 pin (3.33)

Equation 3.29 can then be written as follows, assuming, once more, that integration and

summation commute,

(g fy +uy - fp) = 8 72 Z (?g,)zl);n p2n /m,z k27 (Tu(k) THK)™) dk. (3.34)

The follwing identity is obtained in the same way as for three-dimensional turbulence,
(VP x u)- (V" X £)) = 472 fm2 ™ (Tu - TF*) d, (3.35)
so that

(=1 (V" x W) (V" x9)) o,
221 (nl)2

(ug-fl-}-ul-fg):QZ

n=0

(3.36)
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Finally, by the definition of F(r),

F(?‘)-—»Z( l)n (anu) (Van)) 2n

22 (n 4+ 1) (n!)? (3-37)

n=0

Let us note, in passing, that Eq. 3.3 has the following formal sclution, at scales where

viscous forces are negligible,

(u3) ~ 32( D" ((V* x ). (Van)>T2n+1_

92n (n+ 1) (n + 2) (n!)? (3.38)

As in three dimensions, we see that the energy transfer depends not only on the rate at
which forcing transfers kinetic energy to the turbulence, but also on the rates at which
it transfers the squares of all other rotation fields (V™ x u)®. We shall now see that
the transfer of higher order rotation fields (n > 1) dominates the energy transfer at small
scales in two—dimensional turbulence. But, first, it is useful to check the above Taylor

series of F(r) by solving Eq. 3.3 in the dissipation range.

3.4 Solution in the dissipation range

At small scales, the dissipation term and the forcing term are of equal magnitudes, but
the inertial term is small. To satisfy Eq. 3.3 at small scales, the first terms in the Taylor
series of the dissipation and the forcing term should then cancel. It is useful to check this
condition by calculating the Taylor series of the dissipation term. The Taylor; series of
F(r) in Eq. 3.37 serves as comparison.

Consider the inertial term in Eq. 3.3 as r tends to zero. Assume that the Taylor series
of u, converges uniformly with respect to variations in botl position and ensemble. The

terms in the Taylor series of u2 may then be averaged individually. Hence,
dur\® 3 7 78u\? 8%
3 ~ _1 3 = _l 1 4
tur) < (5:1:1) >T T3 ( (5321) dz? >T (3.39)
<8'H-1 (82u1)2>rs+£<(%)2 &3y >T5’
dz1 \ Oz} 2 Oxzy/ Oaf

as r tends to zero. The coefficient of »* changes sign under the reflection e; — —e; and

then vanishes by isotropy. To see that the coefficient of »3 also vanishes, consider an

arbitrary point at which the strain matrix does not vanish. Denote by s the non-negative
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eigenvalue of strain at this point (the other eigenvalue is then —s by incompressibility).

The strain rate along the first reference vector e, is given by

61!.1

32, = cosf — g sin 6, (3.40)

where 8 is the angle between e; and the eigenvector for the eigenvalue s. Since the flow
is isotropic, the distribution of # is uniform in the interval [0,2 7] and independent of the

strain eigenvalue s. The average over ensermnbles may then be carried out by averaging

first over angles # and then over eigenvalues s. Hence,

() S

For comparison, the strain rate cubed has non—zero average in three dimensions because

the turbulence produces enstrophy through the extension of vortex lines (Batchelor &
Townsend, 1947).

To derive a Taylor series for the dissipation term in Eq. 3.3, note first that the corre-

lations of higher—order rotation fields V* x u are derivatives of the velocity correlation,

(V" x a)(x)- (V" x w)(x+ 1)) = (~1)" V>"R(x), (3.42)

where V2 is the Laplacian in two dimensions (Batchelor, 1953). Batchelor derives this
result for turbulence in three dimensions, but the extension to two dimensions is straight-

forward. The Taylor series of the velocity correlation R(r) is then

e (=1 (V" x u)’

'n.:.-..O

This Taylor series presumably converges everwhere, provided that the forcing f is smooth;
though, the exact radius of convergence is of no consequence and the series need only be

__M an asymptotic expansion. It was shown above that
R(r) = (u?) - (1 + —d—) (u?). (3.44)
2dr/V "
We then obtain the following Taylor series for the second—order moment (u2),

- (- (V" x w)*) 2n
W) =2, (n+1)(2n)2(2n—2)%-...- 22 o (3.45)

n=1
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and the dissipation term in Eq. 3.3 has the following Taylor series,

@ _ (=1)" (V™! x u) Vo,
(a’:r? + ;E;> (u?) =2v Z N T Yo P, (3.46)

Equation 3.3 must hold separately at each order as the scale r tends to zero. Since only

the dissipation term and the forcing term contribute at orders 7% and r2, Eq. 3.3 gives the

following conditions on the first coefficients,

v(w?) = {(u-f) v{(Vw)?) = (we). (3.47)

We have already seen that these equations are satisfied when the turbulence is two—
dimensional and stationary (they represent stationarity of the mean kinetic energy and
the mean enstrophy). The conclusion is that the first two terms in the Taylor series of
F(r) have the form imposed by the dissipation term in Eq. 3.3, which of course indicates

that this Taylor series is correct.

3.5 Solution at small scales

We now solve Eq. 3.3 at scales r for which the viscous term is negligible, yet smaller than
Ly. (Since inertial forces, on dimensional grounds, decrease no slower than (w?)r as r
tends to zero, the forcing f; dominates in this range). Equation 3.27 implies that the

Taylor series in Eq. 3.37, when r << L4, can be approximated as follows,

L o2, 1 5.4
F(r)~ ¢ bl +192ﬁ'r. (3.48)

Simplify the notation,

1) = (5+2) e

D(r) v (Ed% + i’- d%) (u?), (3.49)

so that,
I(r)=6D(r)~ 6 F(r). (3.50)

It is shown in the appendix that F(r) — ¢ is much larger than D(r) — ¢ when 7 is much

larger than the characteristic correlation length 5 for vorticity gradients,

I(r) ~ —6 [F(r) — q). (3.51)
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This approximation is possible only in two dimensions (see the appendix). Hence, using
Eq. 3.48,

3 2 1 4
I(r) ~ qar® =5 Br%, (3.52)
giving
1 1
(uf ~ “S“'Oi?‘s - %ﬁf‘s. (353)
This is the solution of Eq. 3.3 at small scale. The first term represents the enstrophy

‘cascade’ to small scales, first conjectured by Batchelor (according to Bray, 1966), and

also by Kraichran (1967). Equation 3.53 has one further characteristic length scale,

A = (327“‘)1/2, (3.54)

which is the Jargest length scale at which the enstrophy term dominates. From the defini-
tion of @,

A x Q V2L, (3.55)

so the palinstrophy range expands as ¢ increases. This is because vortices inhibit en-
strophy dissipation, implying that the turbulence transfers more enstrophy to large scales
and less to small scales. The statistical structure then depends on ; this probably ex-
plains, in part at least, the frequent disagreement hetween different numerical simulations

of two-dimensional turbulence.

3.6 Solution at large scales

It is now easy to solve Eq. 3.3 at large scales, L; << r << Ly. In this range, Fi(7) is
negligible, by assumption. Since we assume that the turbulence transfers palinstrophy
mainly to small scales, the first two terms in the Taylor series of F5(r) of dominate when
r << L. To determine these terms, consider the equations for the conservation of mean

kinetic energy and mean enstrophy,

(u-f;) -I- (u'fg)
(we1) + {w ¢a), (3.56)

€

(a4

where ¢, as before, is the component of the rotation of the forcing f perpendicular to the

plane of the flow. Recall that we denote the rates of energy and enstrophy transfer at the
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scale Ly as follows,

E = (u'fl)
A = (W) (3.57)

Then

(u-fz) = e—E
{wea) = a— A (3.58)

Note that £ > ¢ and A > «, provided that there is no mean transfer of kinetic energy or
enstrophy at the scale L. When r << Lo,

Fyr)me—FE - @ 2, (3.59)

Fquation 3.3 then has the approximate large—scale solution,
3y 3 1 3
(ur)~§(E——€)T—"8~(A—a)r. (3.60)

The first term represents the inverse energy ‘cascade’, first conjectured by Kraichnan
(1967), and not previously studied analytically; however, when ) increases, the second

term dominates in a wider range. In fact, define

F—¢ 1/2
Ag = (A«»cr) . (3.61)

The energy transfer at large scales then corresponds to an inverse energy cascade in the
range L1 << r << Az and an inverse enstrophy cascade in the range A, << 7 << Lj.

3.7 Comparison with data

The rigorous estimates of the third-order moment are now used to support heuristic
estimates of the energy spectrum E(k). But we must first consider how intermittency,
due to vortices, affects the energy spectrum. For this, denote by P(r) the fraction of total

space in which the energy transfer is active. Suppose that

Pr)~ C ({T)q (3.62)
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for some constant C'. Denote by v(r) the root—-mean—square velocity difference u, in the
region where the energy transfer is active. Suppose now that the third—order moments

{(u3) is determined by the contribution from this region,
(ud) o« P(r)ov(r)> (3.63)

This is assumed in the so—called S-model for intermittency (Novikov & Stewart, 1964;
Frisch, Sulem & Nelkin, 1878). Similarly, the intermittent part of the velocity field prob-
ably determines the energy spectrum (since the velocity field is more irregular here than

in other regions),

E(K)~ CPE ) kT 0ok, (3.64)

where v(r) was assumed a power-law and where C is another constant. From the three

previous equations, together with the above results for the third-order moment,
(( CLo?RLTP 343 2xp 15> k>> 21 AT}
Co BB LR 18343 2 AT >> b >> 27 L7

B(k) ~ ¢ (3.65)
Cs(E — €)¥3 813 27 L7 s> k>>21AF!

{ Ca(A—)¥3k3 2r A >>k>>2x L7t

The energy spectrum predicted by Kraichnan (1967) appears when ¢ = 0 and @ is
of order unity, so that A; is comparable with Ly; the meaning of these two conditions is
that there should be no intermittency, and enstrophy should be transferred almost entirely
to small scales. There is empirical support for both the enstrophy range {Ogura, 1958;
Wiin-Nielsen, 1967; Maltrud & Vallis, 1991) and the energy range (Lilly, 1969; Frisch
& Sulem, 1984; Herring & McWilliams, 1985; Sommeria, 1986; Maltrud & Vallis, 1991).
Moreover, it has recently been shown rather conclusively that atmospheric turbulence has
a k=% range at wavelengths from about 600 to 3000km (e.g., Nastrom & Gage, 1985).

However, many simulations also indicate that the energy spectrum is steeper than k>
when vortices are present. We can now explain this result, apart from the well-known

effect of intermittency. Suppose, for the sake of definiteness, that the intermittency is in
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the form of elongated vortex filaments. Then ¢ = 1 and we get,
((CLo?RLTMPE103 2rp-l 55 ks> 2 AT
Co B3 LM 9x AT Ss k>> 2 LTt

E(k) ~ { (3.66)
Cs(E—e)?Pk~33  2n L' >>k>>27AF!

[ C4(A — a)?/3E3 27 A S>> k>> 2w L7

Maltrud & Vallis (1991) find that the energy spectrum for flows with vortices has two
distinct ranges at wavenumbers larger than the forcing wavenumber 27 /L. In the range
at small wavenumbers, those next to the forcing wavenumber, the energy spectrum is,
approximately, a power—law with exponent —4.5. On the other hand, in the range at large
wavenumbers, those next to the dissipation wavenumber, the exponent is aproximately
—3.6. Similar results were obtained by Santangelo, Benzi, & Legras (1989) for decaying
turbulence. It is then plausible that the range at small wavenumbers is associated with
intermittent palinstrophy transfer to small scales, while the range at large wavenumbers is
associated with intermittent enstrophy transfer. Moreover, the inverse enstrophy transfer,

and the corresponding £~3 range for the energy spectrum, was recently seen numerically

(Borue, 1994); Borue even verified, by removing all large vortex patches, that this form of .

the spectrum is due to enstrophy transfer to large scales.

3.8 Appendix: the dissipation scale

To show that the dissipation scale for I{r) scales like the correlation length 7 for vorticity
gradients, let us first write the dissipation term as an integral over the correlation of
vorticity gradients. From Eq. 3.3, or by direct calculation, it follows that any smooth

function f(r) satisfies,

rordr 1 dN\? d2 3 4N\ r
—2 e e _ (4 Qo 4 —2
T _/0 y( 5+ y) f(y)dy (dyg + . dy) T fg y f(y) dy, (3.67)

where the inverted differential operators are unique when the answer is assumed finite and

zero at r = (. Moreover,
2 d -1 I (7}

(d_ L3 *) sy = [ [0 f(w) dvdu, (3.68)
T T 4] 1}
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so that Eq. 3.67 becomes

r2 /(;Ty(d—d:—z-]-ié)“lf(y)d? :/{)Tu_sfouv/:yf(y)dydvdu. (3.69)

It was shown previously, in the proof of Eq. 3.3, that
r
D(r) = -2v:7* [y V2R(y)dy, (3.70)
0
where y = |y|. Write

D(r) = 6—21/?_2] y V2 VR(y) dy
0

= ¢ 2w—2f (d—2+3i)_1v43( )d (3.71)
= o ¥ 2 Ty dy y)ey. .

On reducing by means of Eq. 3.69 and Eq. 3.42,
Diry=¢-2v / u"S/ v f y{Vw(x) Vw(x+ y))dy dvdu. (3.72)
0 0 0

Note that D"(0) = —a/4 = —F"(0), which again agrees with the Taylor series of F(7).
When y << 7,
(Vo(x) Vw(x+y)) = ((Vw)?), (3.73)
giving
D(ry~e¢— %arz, (3.74)

because |y| < r in Eq. 3.72. Furthermore, for r >> 1,

D(r)—¢ 1
3 << g (3.75)

Therefore, as we wanted to prove, F(r) — ¢ is much larger than D(r) — ¢ whenever 7 is
much larger than the correlation length 7 for vorticity gradients. Note that this analysis
is possible only in two dimensions, because otherwise a does not appear in both the
expansion for F(r) and the expansion for D(r). In fact, when the turbulence is three—
dimensional, the second term in the expansion for D(r), which still represents viscous
enstrophy dissipation, diverges as the Reynolds number R tends to infinity, and is soon
much larger than . The usual dimensional arguments for estimating 7 {(e.g., Bray, 1966;

Batchelor, 1969; Kraichnan, 1967) generally fail, because they require that the turbulence

is not intermittent.




Comments.

It is assumed in this chapter that the distribution of velocity components is invariant
under reflections of two given basis vectors about the origin. For instance, under

the following reflections,
ey > —ey and es — —es. (4.39)

A more accurate term than ‘reflectional symmetry in a plane’ is then ‘reflectional
symmetry about an axis’ (in this case, the axis through the origin parallel to e1).
In practice, this axis will be parallel to the mean flow. Full isotropy requires also

reflectional invariance in the direction parallel to e;, as well as rotational symmetry.

There is a mistake in (4.25). To show that the pressure term vanishes, assume
that » = r e;, where e; is one of the two basis vectors that are reflected in the origin.

Then it must be shown, for instance, that

<uli %> =0. (4.40)

But

= 0 (4.41)

The last equality was by reflectional symmetry. The other terms can be dealt with
similarly. If it is assumed, moreover, that the correlation between velocity and pres-
sure gradient is continuous in the separation », all pressure terms vanish. However,
in contrast to the statement in the chapter, this holds only when r is perpendicular

to the axis of reflectional symmetry. For (4.34) to hold as it stands, reflectional

symmetry in the e; direction is also required.




Chapter 4

The local structure of anisotropic
turbulence

Kolmogorov’s theory of locally isoiropic turbulence (Kolmogorov, 1941 b) is extended to turbulence
that is still homogeneous and stationary, but which, instead of being isotropic, is only reflectionally
invariant in some plane. Equations are derived for the transfer of both kinetic energy and mean—
square angular momentum. The combined solutions of these two equations give, when r is in the

inertial range,

8 4 o
(uf) ~ —EET— 5 Z(u; _f;')'r;, (41)

where ¢ is the mean rate of viscous energy dissipation per unit mass and where the brackets ()
denote an average over space. Here the f; denote components of the forcing. If the correlation

between velocity and forcing is invariant under rotations of the coordinate system, then

€, (4.2)

Lo

(ui fi) =

and the above result reduces to that derived by Kolmogerov (1941 b) for lacally isotropic turbu-
lence. But in general, anisotropy at large scales results in anisotropy at smnall scales, though only

in the coefficient of ¢r.
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4.1 Introduction

It is natural to question whether isotropy is essential for Kolmogorov’s (1941 b) classical
work on the energy transfer in turbulence. After all, since homogeneity excludes mean
energy transfer between different regions, it follows from stationarity that the flux of
kinetic energy is approximately constant at inertial scales.

I consider this question by first deriving an equation for the transfer of kinetic energy
and then an equation for the transfer of mean-square angular momentum (for velocity
disturbances at different scales). The first equation holds when the turbulence is homo-
geneous and stationary; the second equation holds when the turbulence, in addition, is
invariant under reflections in some plane. The inertial terms in these equations are diver-
gences with respect to the separation between the points considered. Isotropy allows the
inversion of these divergences without having to introduce undetermined functions. But
inversion, without undetermined functions, is possible already under the much weaker
condition of reflectional invariance in a plane.

Reflectional invariance in a plane is a plausible approximation in many contexts. For
instance, turbulence in channels or pipes, at scales small compared with the distance to the
wall, can probably be regarded as reflectionally invariant in the plane normal to the mean
flow. The most significant consequence of reflectional invariance in a plane seems to be
that the mean vorticity vanishes; since mean rotation usually affects turbulent structure,

reflectional invariance in a plane, in contrast to full isotropy, has clear physical significance.

4.2 The transfer of kinetic energy

Let us first derive an equation for the mean energy transfer in turbulence that is homo-
geneous and stationary. Since stationarity is possible only when the turbulence is forced,
consider an incompressible velocity field u that satisfies the Navier—Stokes equation with
forcing f,

fu

1
= V) - P v/
t—}-(u Ju vV p+f

V-u=0. (4.3)

The origin of forcing is of no concern here (but note that the forcing should be rotational,
because homogeneity and incompressibility together imply that conservative forces, on
average, transfer zero kinetic energy to the turbulence). Choose two points, xp and x;.

Define the relative position r = x; — Xg. In the following, velocities and differential
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operators with subscripts 0 and 1 denote values at the corresponding points. Similarly,
the subscript r on differential operators denotes differentiation with respect to the relative
position r. The Navier-Stokes equation immediately shows that the velocity difference

between these two points (the relative velocity) satisfies the equation
8 . . 1 1
'é‘t‘(ul —ug)+(u1-Vi)u —{ue-Vo)ug = v Viu; —v Vgug— p V1P1+; Vopo+fi—1. (4.4)

Regard now xg and r as independent variables. Differentiation with respect to x; then
equals differentiation with respect to r, with x kept constant. It also equals differentiation
with respect to xg, with r kept constant. Write the inertial term as the sum of a term
that involves only velocity differences and a term that represents advection by the velocity
field at xq,

(u1 Viu = ([‘11 — ug}- Vr)[us — ug] + (uo - V1)uy
(a1 — wg] - Ve )[u; - uo] + (ug - Vo)uy, (4.5)

where the differentiation in the last term was changed from x; to xo. We may similarly
change the first Laplacians in Eq. 4.4 from x; to xg. To simplify the notation, let v =

u; — up dencte the relative velocity. Then

8 1
—é% + (v -Vilv+(uy - Vo)v=v ng - ;Vo(pl —po)+ 1) — 1o, (4.6)

To obtain an equation for the energy transfer, multiply by the relative velocity v,

16V2 1 a 1 2 3 1
-2--5]:—-}-§V1--[vv ]+EVQ'[HOV ]"i I/V-VOV—~;VQ'[V’(pl—pg)}-{—\"'(fl—fo), (47)

where incompressibility of the velocity field, and hence the relative velocity, was used.
Define averages over space by integrating (with respect to xg) over a sphere, divide by the
volume, and let the radius tend to infinity. The average of the divergence of any vector

with finite average is then zero. In particular,

(Vo-[upv?]}={Vy-[v(p1 —m)]) =0, (4.8)

where the brackets {-) denote the average over space (since the turbulence is homogeneous,
assume that ensemble averaging equals space averaging). Homogeneity and stationarity

then give

%Vr-(vvz):y(v-\_"gv)-l—(v-(f]——fo)), (4.9)
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Standard vector identities show that the viscous term can be written as follows,

v-Viv = —v-VogXVgxVv

- —(VOXV)Z-I-V()'[V'VQXV].
The last term is a divergence with respect to xp and its average is zero. Then
1
LV (vV) = v (w1 —w0)?) + (v- (1 — ).
Moreover, since the turbulence is stationary,
(u-£) = v (03,

so that, finally,

i
EVI-- (va) = v{w 'wg)'—' (UQ - 4wy fo)

(4.10)

(4.11)

(4.12)

(4.13)

This equation describes the energy transfer in homogeneous and stationary turbulence.

As for isotropic turbulence, a dimensional estimate shows that the viscous term is small

at scales much larger than the Kolmogorov dissipation scale n = (#3/€)/%.  Assume

reflectional invariance in the plane spanned by e; and e3. Equation 4.13 then has the

inertial-range approximation,

Vr - {vvi)~ —de,
with solution,

(vv?) ~ --%er-}—V,- x U,
where U(r) is unknown. Since,

Uy,
" Vip = €5 = U,
r-V, xU=g¢zur 5‘rj 0

we get,

4
(e -vv?)~ -3

(4.14)

(4.15)

(4.16)

(4.17)

where e = r/|r| and r = |r|. The solution, however, involves several velocity components

and we now seek statistics associated with only one velocity component. Von Kirmdn

& Howarth (1938) use isotropy and tensor analysis for this purpose. I now describe an

alternative approach, more general than tensor analysis.
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4.3 The transfer of mean—square angular momentum

We seek an equation for the transfer of kinetic energy associated with only one velocity
component. This is possible by observing that the total kinetic energy density is deter-
mined by the kinetic energy density associated with only one velocity component and then

the mean—square angular momentum,
r2v? = (r )’ + (rx v)2 (4.18)

Since we already have an equation for the transfer of the total kinetic energy, let us then

derive an equation for the transfer of mean—square angular momentum. Simplify first the

notaticn,
W o= rxXvwv
p = r(p1—p)
F = rx(fi —f), (4.19)

where w is the angular momentum associated with relative velocities and F is torque due

to forcing. Note that

(v:-Vi)w = rx(v:-Va)v4+v XV
= rX (v -Vi}v. {(4.20)
That is, the cross product with r commutes with differentiation. Equation 4.6 then gives

ow 1
—a—i——i—(v-Vr)W-l-(uo'Vo)W:VVgW—;VOXP+F- (4.21)

On multiplying by w and averaging, previous section show that

%(V-erg)=V(W-V3W)*%(W-Vo><p)+(w-F), (4.22)

using homogeneity and stationarity. Reflectional invariance now implies, together with

homogeneity, that the pressure term vanishes. We have,

w-Voxp = (rxv)-(rx Volp—po])
= r?v-Volp1 — po] — (r - v)(r - Volp1 — po])
= Vo (v [p1— pol) — (r-v)(r Vo[ps - po)), (4.23)
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where Vg X r = (¢ was used for the first line and Vg - v = 0 for the second. The first term
in the last equation, since it is a divergence with respect to xo, vanishes after averaging.

Now

((r-v)(r -Vo[lpr —po])) = ‘Zj’n‘ T; <’U,’ "af—OJLm — pol >, (4.24)

where the zg; are components of xg. Invariance under reflections of e; and ez implies that

terms with 7 # 7 vanish,

((x-v)(r:Volp1 — pa] ))

1

d
ZT? < vy BTm[pl - Po})

1

= sz < —&f_o r? (v [p1 - po])>, (4.25)

where incompressibility was used for the last line. This average is then a divergence with
respect to xg and then vanishes. Therefore, pressure does not contribute to the equation

for the mean—square angular momentum,

% (v Vew?) = v {w - V2w) + (w - F). (4.26)

The left side represents transfer of mean-square angular momentum by ‘inertial torques’,
whereas the terms on the right side represent, respectively, transfers by ‘viscous torques’

and ‘forcing torques’. The viscous term and the forcing term are given by
v(w-Viw) = —2r%¢—27%v {ww) — 20 {{ug-1t)V2(up 1))
+u (a1 - 1) V5 (wo 1)) + v ({uo-r) Vi (us - r))
(w-F) = 2r%¢—r*{u;-fo+ug-fi) ~2{(ug-r)(fH-r))
H{(ur 1) (B 1))+ { (o 1) (B - 1)), (4.27)

The first terms on the right sides clearly cancel after adding the two equation. Moreover,

since r is independent of xp, the third terins also cancel. Hence, on adding the two

equations,
(o Viw) o+ (w-F) = =200 (w o) -+ v ( (1 1) V(o 1))
+v{(ug-r)Vi(ug - 1)) — 72 {uy - fo + ug - fy)
+{(uy-r){fo-r))+ {(up-r)(fy - r)). (4.28)
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The inertial-range approximation is then,

(v-Vew?)~ = (m o+ uo f1) + ((ur-x) (fo - r) + (w0 r)(f1 1)), (4.29)

B | =

and since r is much smaller than the forcing scale I,
1
E(V-erz)~—-—27‘2€+2((u-r)(f-r)), (4.30)

where subscripts on the right side are now unnecessary. Since v is incompressible, the left
side can be written as a divergence with respect to r. On inverting this divergence, as in

the previous section,
2 4 3 -1
(e vw )N-—-gﬁ?’ +de- V. {({u-r)(f 1)}, (4.31)

where the inverse of the divergence is unique (the undetermined component is rotational

and then vanishes by reflectional invariance). Since,

{{u-r)(f-1)) =D {wi fi) 7, (4.32)

i

and
viteri= %’r? r, (4.33)
we get,
(e-vw2)~—§€T3+§'r Z(u;fi)'r?. (4.34)

We have solved the equation for the transfer of mean—square angular momentum. If the
turbulence was not reflectionally invariant, the mean vorticity could be non-zero, the
mean—square angular momentum ({with respect to some fixed point} would depend on
the position, and we would expect transfer of mean-square angular momentum between

different regions, rather than exclusively to small scales.

4.4 Conclusion

To confirm the conjecture that full isotropy has little significance for the energy transfer
to small scales, let us finally extend Kolmogorov’s 4/5-law to turbulence that is only
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reflectionally invariant in a plane, though still assumed homogeneous and stationary. On
combining Eqs. 4.17 and 4.34,

8 4 -1
3, Y = A
{uy) 5ETTET zi:(u, fi)rf. {4.35)
When the turbulence is isotropic, (u; f;) = ¢/3 for each i and Kolmogorov’s 4/5-1aw
appears. On the other hand, if only one component of the forcing (say fi) is different

from zero, then

4
(u2) ~ —3 €N (4.36)
when r = (r,0,0), and
(u3) ~ —% €r, (4.37)

when either r = (0,r,0) or r = (0,0,7). In particular, anisotropy at large scale generally
remains at small scales and the turbulence does not approach isotropy as the Reynolds
number tends to infinity. However, the order of magnitude of the third-order moment at
small scales is the same as for isotropic turbulence.

It was indicated in the previous section that other types of energy transfer, rather than
energy transfer to small scales, are possible if the condition of reflectional invariance in a

plane is relaxed; it should be possible to extend the analysis in the present paper to some

of these other types of energy transfer.




Chapter 6

A model for intermittency in
homogeneous turbulence

Numerical studies show that intermittency in homogeneous turbulence appears when vortex sheets
collapse into strained vortex tubes. Strained vortex tubes have helical streamlines, so that vortex
sheets apparently transfer helicity to vortex tubes. It is then natural to conjecture that this helicity
transfer controls the magnitude of the largest velocity differences for turbulence at high Reynolds

number. Dimensional arguments suggests that the characteristic Reynolds number of the most
intense vortex tubes increases like R;/ % as the Taylor micro-scale Reynolds number R, tends to
infinity. The agreement with numerical results is reasonable. Moreover, If the structure functions
are power—laws in the inertial range, their exponents £, satisfy

2w

Ep~a+ —3 P (6.1)

as p tends to infinity. The exponent o describes the volume fraction in which the helicity transfer
is active; it also controls the Reynolds—number scaling of the largest velocity differences at the
Kolmogorov dissipation scale . For o = 5/3, there is good agreement with both experiments and
numerical simulations. This value corresponds to the preceding estimate of the Reynolds numbers

of vortex tubes. In addition, it is predicted that the most intense vortex tubes occupy a fraction

of space that decreases like R;s/z, but no empirical results are available in this case.




6.1 Introduction

Kolmogorov (1941 a) and Obukhov (1941) consider the rate at which velocity disturbances
in turbulehce transfer kinetic energy to small scales and use it to estimate the characteristic
velocity differences in the inertial range. But Batchelor & Townsend (1949) found that
some velocity differences are much larger than the Kolmogorov—Obukhov theory predicts,
so energy transfer at small scales is highly intermittent instead of uniform.

It has now been established that intermifttency at small scales consists of slender vortex
tubes (e.g., Siggia, 1981; Kerr, 1985; Vincent & Meneguzzi, 1991, 1994; Ruetsch & Maxey,
1992; Jiménez et al., 1993). These tubes have radii that scale approximately like the

Kolmogorov dissipation scale,
n= ()4, (6.2)

where ¢ is the mean rate of viscous energy dissipation per unit mass, and lengths that
scale approximately like the integral scale L (Jiménez et al., 1993). This implies that
intermittency does not transfer kinetic energy to small scales (since the kinetic energy
associated with vortex tubes diverges logarithmically at infinity; Moffatt, 1984). But

kinetic energy is not the only conserved quantity for Euler flows; so is the helicity,
H:/u-de, (6.3)

where w = V X u is the vorticity (Moreau, 1961; Betchov, 1961; Moffatt, 1969). Vortex
tubes are strained by the surrounding flow (Jiménez et al, 1993; Vincent & Meneguzzi,
1994) and the local streamlines resemble helices (She & Orszag, 1990). Moreover, large
fluctuations in the local helicity density in homogeneous turbulence occur in smaller volume
fractions as the scale decreases (Polifke, 1991). All this indicates that intermittency is
associated with helicity transfer to small scales. Let us now consider the consequences of

this hypothesis (the arguments in this chapter are heuristic).

6.2 Reynolds numbers of vortex tubes

Let us begin with a dimensional estimate of the characteristic Reynolds number of the
most intense vortex tubes (i.e., those with the highest vorticity levels). For this purpose,
consider first the mechanism by which vortex sheets may transfer helicity to vortex tubes.
The Reynolds numbers of vortex tubes seem to increase with the Reynolds number of

turbulence (Jiménez et al., 1993), so that viscous forces presumably contribute little to
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the helicity budget, for vortex tubes in high-Reynolds number turbulence. Moreover,
suppose that the rate of helicity transfer to vortex tubes is approximately steady (since
vortex tubes are likely to approch rapidly a state of local statistical equilibrium; Batchelor
& Townsend, 1949). Let & = u - w be the helicity density. The Euler equation for steady
flow then gives

dh .
= Vo, (6.4)

where d/dt = 8/0t + u -V and incompressibility was used. Consider now a fluid volume

V and denote the helicity in this volume by . After integrating Eq. 6.4 over V,

(ii_ftf = /S(n-w) u®ds, (6.5)

where n is a unit normal vector on the surface S of the volume V. Suppose that the
surface has two disjoint components, § = S7J 82, such that n - w is positive on 5y and

non—positive on 5;. Since the vorticity field is incompressible,

0=f81(n-w)d5-}-/51(n-w)d5. (6.6)

Suppose now that there is a characteristic vorticity magnitude wq on the surface §, and a
characteristic difference A in kinetic energy between peints in S; and points in $;. Then,

in order of magnitude,

dH

provided that the areas, A(Sy) and A(S3), are of equal magnitude. This heuristic dis-
cussion does support the hypothesis that vortex sheets transfer helicity to vortex tubes,
because we would expect that the vortex lines associated with collapsing vortex sheets
prefer to ‘enter’ vortex tubes at one end and to ‘exit’ at the other end.

Suppose now that, as vortex sheets form vortex tubes, the tubes rapidly approach an
equilibrium state in which helicity transfer from tubes to the surrounding flow balances
helicity transfer from sheets to tubes. Since the radii of vortex tubes fluctuate strongly
along axes (Jiménez et al., 1993), it is plausible that tubes shed small vorticity filaments,
and thus reduce both the helicity and the total circulation associated with the core (some-
what similar to turbulent diffusion). Let u, denote the characteristic velocity variation

across the cores of the most intense vortex tubes. The left side of the following relation
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is then a natural dimensional estimate for the rate of helicity transfer from tubes to the

surrounding flow,
w2yl x (wz)ll2 U2, (6.8)

Similarly, the right side is 2 natural estimate for the rate of helicity transfer from sheets
to tubes. This estimate follows from Eq. 6.5 by assuming

wo = (w2>1/2

A = U (6.9)

In support, the numerical simulations of Vincent & Meneguzzi (1991) indicate that the typ-
ical vorticity in sheets is comparable with the root-mean—square vorticity. Furthermore,
vortex tubes have lengths that scale like the integral scale I and the typical variation
in the kinetic energy over a distance [ is comparable with the mean kinetic energy I/2.
Equation 6.8, together with standard relations for homogeneous turbulence (Tennekes &

Lumley, 1990}, now gives
u, o B V0, (6.10)

Define a characteristic Reynolds number for the cores of vortex tubes,
R, = u,nfv. (6.11)

Then
R, o< RM®, (6.12)

as the Taylor micro—scale Reynolds number R, tends to infinity. The agreement with

numerical results (see Table 1 below) is reasonable.

R, | RJRY*| R,/RY®
35.8 | 211 38.3
628 | 17.0 33.9
945 | 18.1 38.6
168.1| 165 38.7

TABLE 1. Comparison of predictions for the Reynolds number of vortex tubes with the
numerical results from Jiménez et al. (1993). The first column contains the Taylor micro-scale
Reynolds number in four direct numerical simulations of homogeneous turbulence. The second
column compares the numerical results with the scaling suggested by Jiménez et al.. The third

column compares the numerical results with the prediction derived above.
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6.3 A hypothesis for the structure functions

We have seen that the Reynolds numbers of vortex tubes are compatible with the hy-
pothesis that intermittency is associated with helicity transfer to small scales. Let us now
extend this analysis to all scales between 5 and L, so as to estimate the asymptotic be-
haviour of the structure functions as the order tends to infinity. As in previous chapters,

we define the velocity difference u, as follows,
Uy = [u(x+ re,t) - u(x,t)] -e, (6.13)

where e is a unit vector. Assume that the pth order structure function is an approximate

power—law in the imertial range,

r\ e
(lur|?) = Cp (};) ur, (6.14)
where the (), are non-dimensional constants and the brackets (-) denote an ensemble
average. Assume that this power—law fall-off holds in the range n << 7 << L (this
may fall if vortex sheets contribute to the largest velocity differences at scales comparable
with the sheet thickness). Many theories have been proposed for intermittency (e.g.,
Kolmogorov, 1962; Obukhov, 1962; Novikov, 1961; Novikov & Stewart, 1964; Frisch,
Sulem, & Nelkin, 1978; She & Orszag, 1991; She & Leveque, 1993; Dubrulle, 1994), but
there is so far no agreement about the structure function exponents &, for p > 3. It has
also been suggested that intermittency is in the form of spirals (Lundgren, 1982), rather
than simple tubes or sheets, but these spirals seem very unstable and, probably, do not
appear in real turbulence (see appendix B).

Let us briefly review two of these theories of intermittency, as they have some common
properties with the model considered below. The f-model (Novikov & Stewart 1964;
Frisch, Sulem, & Nelkin 1978) develops the idea of Batchelor & Townsend (1949) that the
volume fraction in which the energy transfer is active decreases like a power-law as the

scale tends to zero. The f-model gives
1
&=5+35(3-D)B-p), (6.15)

where D characterises the typical number of offsprings for inertial-range ‘eddies’ (Frisch et
al., 1978). However, this prediction does not compare well with the higher order structure

function exponents, as found experimentally by Anselmet et al. (1984) and numerically
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by Vincent & Meneguzzi (1991). The S-model seems to fail at large p because of the
implicit assumption that intermittency transfers kinetic energy down to small scales; it
was remarked in the introduction that the kinetic energy associated with vortex tubes

remains at large scales.

Both Anselmet et al. (1984) and Vincent & Meneguzzi (1991) find that the structure
function exponents have the approximate form & ~ p/9 when the order p is large. She &
Leveque (1993) and Dubrulle (1994) treat this asymptotic result as a hypothesis (expressed
in terms of the largest rate of energy transfer). She & Leveque construct a model, without

any physical basis, for which

o-3eal- ("]

This prediction is remarkably accurate at low orders of p. The factor 2 in Eq. 6.16
appears by assuming that the collection of vortex tubes typically occupies a region with
box dimension equal to one (the codimension is then 2). This Is not necessarily true. For
instance, it is necessary that intense vortex tubes are not too strongly deformed when the
Reynolds number is high, and this seems unlikely (particularly as the Reynolds numbers of
the vortex tubes also increase). It is shown below that £, ~ p/9 agrees with the hypothesis
that the largest velocity differences are associated with helicity transfer to small scales.

Define the largest velocity difference max |u,| and the probability P(r) of finding ve-
locity differences comparable with the largest velocity difference. The largest velocity
difference is the limit

max|u] = Jim (Ju[")'" (6.17)

and it exists as a finite function whenever the higher order structure functions are finite
(by Hélder’s inequality). The probability P(r) of finding large velocity differences is the

volume fraction in which
|- > max |u,l (6.18)

(this definition makes sense because max .| is only a characteristic velocity difference and
larger velocity differences will occur). When the turbulence is in statistical equilibrium,

the characteristic rate of helicity transfer by inertial forces associated with intermittency

at scale r is comparable, on dimensional grounds, with the product of the probability P(r)

and the density (max u;|)° /2.
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Hypothesis Large velocity differences at-length scales in the inertial range,
from the integral scale I, to the Kolmogorov dissipation scale 1, are associated
with intermitient helicity cascades in the sense that

P(r) —-————(ma"ii“’”a x %; (6.19)

as v tends to zero within the inertial range.

This hypothesis states that the mean rate of helicity-transfer by inertial forces is con-
stant in order of magnitude whenever r is both much smaller than the integral scale L
and much larger than the Kolmogorov dissipation scale 5. Previous works on helicity
cascades, starting with Lesieur, Frisch & Brissaud (1971} consider energy spectra for he-
licity cascades that occupy all space. In general, such helicity cascades must be to large
scales, because otherwise the energy cascade controls the energy spectrum (this is easily
understood, on dimensional grounds, by noting that the energy spectrum associated with
an energy cascade is much larger than the energy spectrum associated with a helicity
cascade). However, we saw in the introduction that vortex tubes do not transfer kinetic
energy to small scales; therefore, there is no conflict with energy cascades when the helicity

cascade to small scales is associated with intermittency.

6.4 The structure function exponents

We now derive a prediction for the structure functions from the hypothesis that intermit-
tency is associated with helicity cascades. Let us follow Batchelor & Townsend (1949) in

assuming that the probability of finding high intermittent activity is a power-law,

T

P(r) x (E)a, (6.20)

where & > 0 is constant. The S-model is based on a similar assumption (Novikov &
Stewart, 1964; Frisch, Sulem & Nelkin, 1978). The above hypothesis gives

P\ 2/3-af3
) u. (6.21)

max |u,| « (—

L

(Intermittent energy cascades, for comparison, give 1/3 — /3 rather than 2/3 — «/3). It
is shown in appendix A that

(lap[7) ~ Cp P(r) (max Ju,|)?, (6.22)
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where (), is a non—dimensional constant, as p tends to infinity. Then

2-«
brat =y, (6.23)

whenever p is sufficienty large; this relation between & and the higher order structure
function expomnents holds if, and only if, the distribution of large velocity differences is
associated with intermittent helicity cascades.

Since the most intense vortex tubes have characteristic radii that scale like 7, assume
that max |u,| scales like the characteristic velocity variation wu, across the cores of vortex

tubes. It is then easy to show that

P(n) « R;s/z
x (n/L)*". (6.24)

It does not seem that the Reynolds—number dependence of the volume fraction occupied by
vortex tubes has been measured by experimenters. Returning to the structure functions,

we see that o = 5/3. Hence, we expect that

+ £, (6.25)

€p =

Il an
w =3

as p tends to infinity. And, indeed, the agreement with experimental (Anselmet et al.,
1984) and numerical results (Vincent & Meneguzzi, 1991) is good when 12 < p < 22
(Figure 6.1). When p > 22, the prediction in Eq. 6.25 disagrees with the numerical
results. But the margin of error for the numerical results is, in this range, more than 20%
(Vincent & Meneguzzi, 1991).

The estimate of the structure function exponents is not completely convincing. Tt
seems plausible that vortex sheets affect these structure functions at scales larger than 7.
Certainly, the experimental results of Anselmet et al. (1984) indicate that the higher-order
structure functions may have more than one inertial range (I am grateful to H. K. Moffatt
for stressing this point). Nevertheless, I have included the prediction for the structure
function exponents, as it is still too early to conclude that the structure functions are not

simple power-laws.

6.5 Conclusion

We see that at least three independent empirical results agree reasonably with the hy-

pothesis that intermittency is associated with helicity transfer to small scales. As far as |
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Figure 6.1: The structure function exponents £, obtained by Anselmet et al. and by
Vincent & Meneguzzi are represented, respectively, by crosses and triangles. The solid
line is the prediction, y = 5/3 + p/9.

know, there are no other results available for comparison (other estimates of the structure
function exponents do not reach sufficiently high orders, and there is little indication of

the asymptotic slope).

6.6 Appendix A: the largest velocity differences

Let p.(z) denote the probability density fﬁllction for the normalised velocity difference

z = |u,|/U. The pth order structure function is then

(unf?) = P /U ~ pr(@) 3P da. (6.26)

Define the function
Fr(m) = / Pr(u) du. . (6.27)

This is the probability that |u,] > ¢ U. Assume that the distribution p,(v) is continuous

and everywhere positive; then F. is differentiable and invertible. Notice that

'

F.(0)=1 and F.(oc0)=0. (6.28)
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Figure 6.2: Plots of (¢, ~ 5/3)/p, based on the same data as the previous figure, but only
up to p = 20. Crosses and triangles are used as before. The solid line is the prediction

y = 1/9.

Since dF, = —p,,

[ r@eras= [Er @y a, (6.29)

where F"1(«) is the inverse function.
When p is large, the contribution to the pth order structure function is mainly from

large z. Assume now that F,, for large &, has the form
F(z) = f(z/z0) v, (6.30)
where ¢ and yg are functions of » only. The expression in Eq. 6.29 then becomes

/oo pr(z)aPde = yoaf /y; (£ () du. (6.31)
0 0

The first function zor} characterises the largest velocity difference. We may assume that

2o(r) = %ﬁ*—' (6.32)




To determine the second function yp, note that

F,.(a:o) = f(].) Yo, (633)

Since only the product f{1)yp has physical meaning, assume, without loss of generality,
that f(1)= 1. Then, by definition of P(r),

yo(r) = P(r). (6.34)

Assume now that yo(r) tends to zero as r tends to zero; this assumption is natural because

intermitteny occurs in a smaller volume fraction as r decreases. Note that

SN ) = B P (6.35)
and define the constant
¢, = P(L)"! /U TR ()P du. (6.36)
Equation 6.31 then shows that
{lurl?) ~ Cpyo 2 UP, (6.37)

as 7/ L tends to zero. The above expressions for zg and yo then give
g
(|lur[P) ~ Cp P(r) (max |u.[)7, (6.38)

as 7/L tends to zero. This equation holds when p is so large that the assumption in
Eq. 6.30 can be used. This proves Eq. 6.22.

6.7 Appendix: a comment on spirals

Lundgren (1982) has suggested that the fine structure of turbulence is due to vortex sheets
that collapse through instabilities of the Kelvin—Helmholtz type to form vortex tubes.
Strikingly, his model gives an energy spectruin proportional to }:=3/3 in the inertial range,
and this has motivated further work by others (Moffatt, 1984, 1993; Gilbert, 1988; Pullin
& Saffman, 1993, 1994). Nevertheless, there is little evidence for spirals in turbulence at

even moderate Reynolds numbers ( Ry ~ 100) and it is then legitimate to question whether

such spirals are at all possible in fully—-developed turbulence.




Velocity disturbances in the inertial range colllapse rapidly through inertial instabili-
ties and it might seem, at first, that the spiral-model takes full account of these instabil-
ities. But vortex sheets in real turbulence are subject to constant pertubations from the
surrounding flow. Unless the central vortex tubes, around which vortex sheets collapse,
are strong enough that such pertubations can be considered small, more instabilities will
develop along the sheets and these will collapse into rows of vortex tubes.

Let us examine whether the vortex tubes observed numerically are so strong that they
prevent further collapse of vortex sheets, that is, whether they are so strong that spirals
can form. Let us assume that pertubations from the surrounding turbulence deform vortex
sheets, or spirals, at a rate comparable with the root-mean—-square strain rate (which is
proprtional, when the turbulence is homogeneous, to the root-mean-square vorticity).
This strain rate is characteristic of the smallest velocity disturbances; since pertubations
of vortex sheets grow faster the smaller the wavelength (Batchelor, 1967), the smallest
velocity disturbances are presumably the most significant for instability.

The condition that spirals form around vortex tubes is then that these tubes generate
deformation rates that are, at least, comparable with the root—mean-square vorticity. This
condition is easily checked. Denote by I' the total circulation of characteristic vortex tubes
in homogeneous turbulence and define the Reynolds number R, (slightly different from

the previous definition),
R, =—. (6.39)

The above condition must hold at distances up to the integral scale I, and the latter value
gives a lower bound on R,. In fact, suppose that the velocity induced by the vortex tube
is similar to the velocity induced by a vortex line with similar total circulation. Then, at

distances r larger than the dissipation scale 7,

T
u(r) = . (6.40)
The deformation rate is then
T
o(r)=~5—3 (6.41)
so that
B, v
o(r) = —5;. (6.42)

For stability at distance L,
o(L) x (w2, (6.43)




Since

v = (w2)1/2n2
I « R¥*p, (6.44)
we finally get
Ry o (L[n)
x R3. (6.45)

The stability of spirals then requires Reynolds numbers R, that are several orders of
magnitude larger than those found in numerical simulations (Jiménez et al., 1993; see
Table 1). Moreover, for turbulence in the atmospheric boundary layer, we have L = 100m
and n = 0.01m, at least in order of magnitude. Then R, should be around 100 million for
spirals to roll up around vortex tubes. Of course, this males no sense physically, and it

seems saie to conclude that such spirals do not occur when the Reynolds number is high.

Moreover, it seems that the whole approach, relating the energy cascade to the dynam-
ics of large structures, will always encounter serious problems -£or the following reason.

Since the enstrophy spectrum Q(%) is related to the energy spectrum E(k) as follows,
Q(k) = k* E(k), (6.46)

the enstrophy spectrum (%)} must decrease rapidly as % tends to zero. Otherwise, the
mean kinetic energy (basically the total integral of the energy spectrum) is infinite. But
such rapid decrease as k tends to zero generally fails for both vortex tubes and spirals.
Physically, this is because the kinetic energy associated with vortex tubes is logarithmically
singular at infinity {Moffatt, 1984). Since kinetic energy remains at large scales, the spiral-

model does not represent energy transfer to small scales.
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Chapter 7

The wavelet Gibbs phenomenon

The existence of a Gibbs Phenomenon for the continuous wavelet transform is demonstrated. The
convergence properties of Grossmann—Morlet’s inversion formula, which is a complex version of

the ‘reproducing’ formula of Calderdn, are also considered. An expression for the value of the
overshoot is derived, and it is shown that the reconstructed function may have a number of local
extrema that do not disappear as more small-scale wavelets are included. The wavelet overshoot
is always less than the Fourier overshoot, and it is possible to choose the analysing wavelet such
that there is no overshoot. The value of the overshoot is determined for some analysing wavelets

that are in current use.

7.1 Introduction

When reconstructing periodic functions by means of their Fourler coefficients, it is com-
mon to use only those coefficients that correspond to frequencies smaller than some given
frequency. As is well known, this filtered function has an overshoot of 17.9% in the neigh-
bourhood of simple discontinuities. This is the so—called Gibbs Phenomenon (Wilbraham,
1848; Gibbs, 1899; Carslaw, 1925; Zygmund, 1959; Champeney, 1987). The Gibbs phe-
nomenon for the discrete, orthonormal wavelet transform was examined by Jaffard (1989),
who derived an expression for the overshoot. A similar result for wavelet integrals is the
central result of this chapter. An expression is derived for the overshoot, and it is shown

that the reconstructed function may have a number of local extrema that do not disappear
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as more small-scale wavelets are included. The wavelet overshoot is always less than the
Fourier overshoot, and it is possible to choose the analysing wavelet such that there is no
overshoot. The value of the overshoot is determined for some analysing wavelets that are

in current use.

7.2 The method of proof

Recall that the continuous wavelet transform produces a two-dimensional set of coef-
ficients. In practice, only a finite number of coefficients can be calculated, and those
coeflicients that are not calculated are simply assumed to be zero when reconstructing
the function. The function obtained using only the calculated coefficients is a filtered
version of the original function, and the convergence properties of this filtered function,
as the number of non—zero coefficients is increased, depends on the filter. The filter used
here — probably the simplest possibility — discards all coefficients that have come about
by dilating the analysing wavelet with a factor larger than some given positive number
(the filter is defined in Eq. 7.5). In Fourier theory, this type of filter is called ‘low-pass’
(since only the low frequencies pass through), and 1 adopt this terminology for wavelets as
well; the effect of a wavelet low—pass filter, however, is never identical to that of a Fourier
low—pass filter.

The derivation of the Gibbs phenomenon for Fourier integrals is similar to the deriva-
tion for Fourier series, because both decompositions use Sine waves. This is not the case
for wavelet integrals and wavelet series. Since wavelet integrals admit a much larger class
of functions as admissible wavelets than do wavelet series, the derivation of the overshoot
for wavelet integrals is different from the derivation of the overshoot for wavelet series. To
find the overshoot for wavelet integrals, it is necessary to consider first the inversion for-
mula for wavelet integrals. Grossman & Morlet (1984) gave a somewhat complicated proof
of the inversion formula for wavelet integrals, and I have therefore found it worthwhile to
construct a simple proof that uses nothing but elementary Fourier analysis. The idea of
the proof is essentially due to Calderén (1964), but whereas his version does not clarify the
convergence properties of the inverse wavelet transform, the proof presented here shows
that the inverse wavelet transform converges pointwise almost everywhere and converges
uniformly in intervals in which the function is continuous, These results on convergence
make it easy to determine the overshoot by considering the inverse wavelet transform of
Heaviside’s function.
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7.3 Inversion

In this section, the convergence properties of the inverse wavelet transform are discussed.

In particular, a simple proof is given for the inversion formula derived by Grossman &

Morlet (1984). It is shown that the constant shape of the wavelets, g((t — T}/A), implies

that the wavelet low-pass filter, as defined in Eq. 7.6 below, is equivalent to convoluting the

function with a summability kernel, which again is the same as integrating the product

of the Fourier transform of the function and the Fourier transform of the summability

kernel. A standard summability result is then used to find conditions under which the

convergence of the inverse wavelet transform is uniform. These results appear to be new

in the context of wavelet integrals. First, however, it is necessary to recall a few notions .

from Fourier analysis. |
The Fourier transform of an integrable function always exists but is not necessarily

integrable, so the inverse Fourier transform does not always exist in the usual sense.

Inversion is possible, however, after multiplying the Fourier transform of the function with

a dilated version of the Fourier transform of a summability kernel (Champeney, 1987); this

yields alocalised and parameter-dependent average of the function. A real-valued function

K(t) is a summability kernel if it satisfies the following four conditions (Champeney, 1987;

Chandrasekharan, 1989; Zygmund, 1959):

(K1) K(w)e€ L'(IR)N C°(IR)
(K2) Kw)=K(-w)atalwe R

(K3) E@0)=1

(K4) there exists an s > 1, and an A4 > 0, such that
| K ()] < A(1+|¢])~° for all ¢ € IR.

The parameter—dependent averages are formed by convoluting the function, say f(t),
with dilated versions of the summability kernel,

Koty =1/p K (t/p). (7.1)

For most ‘reasonable’ functions, it can be shown that this convolution tends to the

Lebesgues value of the function almost everywhere as the parameter tends to zero:

Theorem 7.1 Suppose that f(t) € LP(IR) for some p € [1, 3], and that K (w) satisfies con-
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ditions (K1) — (K4) above. It then follows that f(t) has a Fourier transform f € LY(IR) ,
where p~* + ¢~ = 1, and that

m\/% /_ :” Fl) K (Dw)et duo (7.2)

converges to f(t) in the following senses:
(1) to the Lebesgue value fr(t) at each Lebesgue point of f(t);
(2) uniformly to f(t) on an interval [c, d] when f(t) is continuous

on (a,b), where a < ¢ < d < b.

Recall that the Lebesgue values are the numbers fr(t) determined such that

.1 sk
lim > ]0 |F(t+ ) + F(t — ) — 2£2(0)] du = 0, (7.3)

and that the Lebesgue points are the points at which the Lebesgue values exist (Champeney,
1987; Chandrasekharan, 1989; Zygmund, 1959). If the function is locally integrable, then
nearly every point is a Lebesgue point and fr(t) is nearly always equal to f(t) (Champeney,
1987). If f(t-+) and f(t—) both exist, then

1

fu(ty = 5 [FE+) + f(t=)). (7.4)

In particular, if f(t) is continuous at ¢ = #o, then Jo(te) = F(%0).

The above theorem is a rephrased version of a result that can be found, for instance,
in §8 of Champeney (1987). This is not the most general form possible, though adequate
for our purposes. We use the summability kernel defined by

. +eo |G(g)[2
Rwy=2 [*EE L L er (7.5)
Cg Jlwl U

It is shown below that K(w) always satisfies conditions (K1) — (X3) when g(#) is an
analysing wavelet. Condition (K4), however, is not satisfied for all analysing wavelets and
must therefore be added as an extra assumption. The summability kernel in Eq. 7.5 is

derived from the wavelet low—pass filter, defined as follows,

£(8) = %Re U:O /:oo IzV(,\,T)gC—;f) A2 gA dr], (7.6)
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where p > 0. This is a low—pass filier because the smallest scales have been discarded, Just
as in the low-pass filter for the Fourier transform. The convergence properties of Fo(t) as
p — 0 depend on the analysing wavelet, as well as on the behaviour of the function f(t)
in a neighbourhood of the point ¢ = #;. The wavelet low—pass filter does not converge to
the function f(t) at every point, but, as shown below, it does converge to the Lebesgue

value of f(t) at all points where the Lebesgue value exists.

Theorem 7.2 Suppose that g(t) satisfies conditions (1) — (8) in Chapter 1, and that
K (1), as defined in Eq. 7.5, satisfies conditions (K1) — (K4). If f(¢) € L*H(IR), then

fo(t) = \/%_7{/_::0 f(T)K(t ; T) % dr — fr.{t)asp — 0, (7.7)

at each Lebesgue point of f(t), and the convergence is uniform on each closed
interval [b, c] such that f(t) is continuous on some larger open interval (a,d),
where a < b < c < d.

Remark

This result implies the pointwise convergence nearly everywhere of the inverse
wavelet transform. To have uniform convergence when reconstructing func-
tions from their Fourier series, or Fourier transforms, continuity is not a suf-
ficient condition, so the wavelet transform is better behaved than the Fourier
transform when faced with ‘pathological’ functions.

Proof.
Assume, for simplicity, that the analysing wavelet is progressive (that is, the Fourier

transform vanishes for negative frequencies). First we show that K () is a summability

kernel. That K(w) is integrable can be shown by using partial integration and condition
(1), in Section 1.2,

./_-:o |E(w) dw = 4z /e, /(;oo/:o |5(w))?/u du dw
= e, [ | do < oo. (78)

The Fourier transform X (w) is, by its definition in Eq. 7.5, even and continuous:

condition (K1) and (K2) are therefore satisfied. The definition of ¢y in Section 1.3 shows
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that K(0) = 1: condition (K3) is therefore also satisfied. It was assumed from the
beginning that condition (K4) holds, so it follows that K (2) is a summability kernel.

The next step is to show the equivalence of using the wavelet low—pass filter and of
convoluting the function with the summability kernel defined in Eq. 7.5. It follows from
the definition of the wavelet low—pass filter in Eq. 7.6 that

fot) = %Re[[;mL+WW(A,r)g(%l> A"%\dr]

= \/S_WRe[fo+m/+m Flw) eiwtl—g-(j\\id)\dw]

= \/%Re [f(:oo f(w)ei‘“tﬁ'(pw)] dw, (7.9)

where Fubini’s theorem was used to change the order of integration, and Plancherel’s

theorem was used to express the integral over r as an integral over the frequency. The
function f(t) is real-valued, which is equivalent to the condition that fl—w) = Fw).
The summability kernel & (w) is real-valued and even, so the integration in the last line
of Eq. 7.9 can be extended from IR, to IR by

1 Feo . fwt 17
Folt) = == f_ _ feye ko) do, (7.10)

Condition (4) ensures that K (¢) is square integrable and Plancherel’s theorem therefore
shows that

50 =g [ sk (E0) 2 (7.11)

The result now follows from Theorem 7.1 above.
|

Theorem 7.2 is a wavelet version of Riemann’s Localisation Theorem (Chandrasekha-
ran, 1989; Zygmund, 1959), which states that the convergence of the inverse Fourier
transform at a point ¢ = 4, depends only on the behaviour of the function f(¢) in an
arbitrarily small neighbourhood of the point fo. Since analysing wavelets are localised, it
is not surprising that a similar result holds for wavelet transforms.
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7.4 The wavelet Gibbs phenomenon

Before examining the wavelet Gibbs phenomenon, it is natural to enquire about the reasons
for the Fourier Gibbs phenomenon. By inspecting the proof of the Gibbs phenomenon
for Fourier series (see, e.g., Zygmund 1959), it is seen that the constant shape of the
trigonometric basis and the oscillations in the Sine function are essential for the overshoot
to occur. First, if we suppose, for simplicity, that

£() = g sign(t), €]~ +a| (7.12)

then a, = (n7)™?, when n is odd, and a, = 0, when 7 is even. This power-law fall-off
of the odd order coefficients is a consequence of the constant shape of the basis functions.
When the number of terms in the truncated Fourier series, Ng, tends to infinity and ¢
tends to zero such that tNp remains constant, the power-law fall-off of the odd order
Fourier coefficients implies that the truncated Fourier series can be approximated by an
integral. The approximation is given by

: 1 /Nﬂf sin 1.
ane'™ v = dz = ~Si( Ngt), 7.13
\/EMSZNO " 7 Jo z 7 SiMat) (7.13)

where 8i(t) = f§ sinz/z dz is the Sine integral (see Zygmund 1959 for more details). The
truncated Fourier series for Ny = 4 and Ny = 10 are shown in figure 7.1. Second, the

integrand, sin z/z, changes sign whenever 2 = nr, where n € IN, which shows that
Si(7) > Si(27) > Si(3m) > ...

The oscillations in the Sine functions therefore imply that = = 7 is a global maximum for
the Sine integral and that Si(r) > Si(co). This shows that the ratio of the supremum of
the truncated Fourier series to the jump in the function, namely 1/2, tends to Si(m)/Si{ o)
as Ng tends to infinity with ¢ = 7 /Ng.

As pointed out in Chapter 1, analysing wavelets have zero integral and therefore ‘os-
cillate’. Since the wavelets used in the wavelet transform are also of constant shape, the
wavelet transform has both of the properties that lead to a Gibbs phenomenon for Fourier
series and integrals (namely ‘constant shape’ and ‘oscillations’). But square integrability
of the analysing wavelet implies that the wavelets are localised; this is the only essen-
tial difference between the Fourier transform and the wavelet transform. The question is
therefore: how does the localisation of the analysing wavelet affect the overshoot? Is the
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Figure 7.1: Examples of the truncated Fourier series for a step function (four terms, and
twenty terms) :

overshoot larger or smaller than the overshoot for Fourier transforms? It is tempting to try
to answer these questions by direct calculations for particular analysing wavelets, since it
can be done for Fourier series and integrals. However, if one attempts to find an expression
for W(A,r) for Heaviside’s function, for instance, and then inserts this expression in the
inversion formula for the wavelet transform, it soon becomes a very complicated problem
for even simple choices of the analysing wavelet. The reason is that the wavelet transform
of Heaviside’s function is generally a combination of special functions with arguments that
depend in non-trivial ways on A and #. It is shown below that the results from section 7.3
leads to a simple and general expression for the value of the overshoot for il analysing
wavelets that satisfy the three conditions (1) - (3) in Chapter 1. Having derived a general
expression for the value of the overshoot, the above questions can be answered.

Consider now a function with a simple discontinuity at ¢ = to; this means that f(tF )

and f(t7) both exist. Let ¢ = f@E) - ft3) > 0 and suppose, for simplicity, that this is
a positive number,




1.0

8.0 T T T T T

log A

Figure 7.2: The wavelet transform of a step function with the complex—valued Mexican
IHat wavelet

Definition 7.1 The value of the overshoot is the number

Gg = E hm Sup Sup {f (t) M s (7_14)
C 5050 0< <6 2
4]\

where f,(t) is defined in Eq. 7.6. t-1.

Remarks '

1. The limit of the maximal amplitude in the filtered function is 100 x (Gg—1)% larger

than [f(2f) — f(t3)]. Some authors, e.g. Champeney (1987), measure the maximal
amplitude by 50 x (G4 — 1)%.

2. The value of the overshoot for Fourier series and integrals is

it

N o T e e T

2

Gr== fo sint) gy - Si(x)/Si(o0) w 1.179, (7.15)

(here F' for Fourier). See also figure 7.1.

Before proceeding with the proof of the wavelet Gibbs phenomenon, it is useful to

consider the wavelet transform of a discontinuous function. In figure 7.2, a part of the

gt
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wavelet transform of f(1), which was defined in Eq. 7.12, is shown (the wavelet transform
exists because f(t) is bounded). The analysing wavelet used in this example is the Poisson
wavelet with m = 2 (see Chapter 1 for the definition of the Poisson wavelets). The shape
of the modulus of the wavelet transform is determined by the discontinuities at the points
t = nw, n € IN. Near these points the wavelet transform is excited at all scales and the
shape of |W(A,r)| is asymptotically ‘self-similar’.

Theorem 7.3 Let the analysing wavelet g(t) be progressive and satisfy conditions (1) —
(8) in Chapter 1, and suppose that f(t) € L*(IR) is continuous in neighbourhoods to the
right and to the left of t = to. If C = f(t) — f(t5) > 0 ewists and is finite, then there
is an overshoot in the filtered function f,(3). The value of the overshoot, relative to C, is
given by

4
Gg= sup —

o0 |3 2 )
] 5 61 ) doo. (7.16)
M>0€g Jo W

Furthermore,

(1)1 £ G, < G

(2) If |§(w)|*/w is continuous for w € [0, 0o and its Fourier Sine transform changes
sign n times on the positive azis, then f,(t) has ezactly n local extrema fort >0

when p — 0. In particular, if the Fourier Sine transform is negative for positive

arqguments, then there is no overshoot and Gy=1.
Remarks

1. The Fourier Sine transform is here defined as the negative of the imaginary part of
the Fourier transform.

2. Part of the following proof, Eqs. 7.22 — 7.25, uses only the four properties (K1) —
(K4) for the summability kernel X(¢), so these calculations are identical to those for

the inversion of Fourier transforms by summability kernels.

Proof,

We may assume: (1) the discontinuity occurs at ¢ = 0; (2) f@) = =172+ H(t) + »(b),
where H(2) denotes Heaviside’s function and »(¢) is continuous in a neighbourhood of
to = 0. The wavelet transform and its inverse are both linear, so the general case follows
by multiplying a function of this kind with an appropriate constant.
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It was shown in Section 7.3 that

1 Foo t—73\1
fot) = = L ) f(T)I{( - ); dr, (7.17)
and that
/jw K(r)dr = K(0) = 1. (7.18)

It is therefore possible to add and subtract 1/2 from the right—hand side of the above
equation in the following way:

1 oo T\ dr
A1) =—1/2+ ﬁ/_m e+ +1/2 K (E) =8 (7.19)

Using f(¢) = ~1/2 + H (%) + r(t) this becomes

£ = ~1/2+ 7;—?]:0 If(t——_;i) d—; + \/%/_“:’ () I((t;T) %‘C. (7.20)

We now show that the last integral in Eq. 7.20 converges uniformly to r(¢) in a neighbour-

hood of the origin (this does not follow from Theorem 7.2 because the rest term r(¢) is

not square integrable). Choose an @ > 0 such that r(z) is continuous in | — @, af. Consider

the two functions
() = 7() f1-g,0(t)
and
r3(t) = r(£) IR\}—a,a]>
where ]-a,a denotes the open interval from —a to @, and where I ]-a,qa{(t) is the indicator

function on the set | — a,al. Obviously, »(¢) = 71(¢) + ra(t), which inserted in Eq. 7.20
leads to

At = —1/2+m\/%fc)mff(t7)f£_
o Lo (S5 o2
—l-m&-/_;oorg(t).[f(t;’r) ipt.

The function r1(2) is continuous for [¢| # a, so Theorem 7.2 implies that the second integral

(7.22)

in Eq. 7.22 converges uniformly to r(z) when the parameter ¢ belongs to an interval on
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the form |~ a4 ¢, a — €], where a > ¢ > 0. As ry(t) is continuous in this interval, it follows
that r1(t) does not contribute to the asymptotic value of the overshoot.

Condition (K4) may be used to evaluate the last integral in Eq. 7.22. If we suppose
that ¢ > 0, then

1 t—7\ dr A ( a—t )_S dr
—_— DK — < == {1 — (7.23
«,/27r! IR.\]-»a,a[TZ( ) ( P ) pl T 2T -/];R.\]-—-a,a.[lrz( I+ P | P ( )

If ¢t €] ~a+e a—¢, as assumed for 74 (%), then the right-hand side in Eq. 7.23 is uniformly
of order O(p*~!). It was required that s > 1, so the contribution from ro(t) converges
uniformly to zero when ¢ €] —a + ¢,a — €.

It has now been shown that the rest term () does not contribute to the asymp-
totic value of the overshoot, and we can therefore ignore the second integral in Eq. 7.20.
The summability kernel K(¢) is even because K(w) is even; the first integral in Eq. 7.22
therefore satisfies

% /0 * .r((t_;_f) .‘f_} —1/2+ “\/é—; /0 " k) ar, (7.24)

where [ K(#)dt = 1 was used. Equation 7.20 now shows that the value of the overshoot

only depends on the supremum over ¢ of the function

!

t/p
v% fo K(r)dr. (7.95)

For wavelet transforms, it is possible to express this function in terms of the analysing
wavelet. If K(7) is expressed as a Fourier integral, using the definition in Eq. 7.5, then
partial integration of the function in Eq. 7.25 gives

tfp oo | = 2
% 0/ K(r)dr = %%fo 15%'—31(%) doo. (7.26)
Since the supremum over ¢ on the right-hand side in Eq. 7.26 is independent of p, we may
take p = 1, so that the overshoot is given by the expression in Eq. 7.16, as we aimed to
show,
We now prove the two inequalities in part 1) of Theorem 7.3. The first inequality
holds because the right-hand side in Eq. 7.16 approaches unity as M tends to infinity.
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The second inequality follows by noticing that the Sine integral, Si(z), is less than or equal

to Si{7) everywhere:

] 2
Gy = sup — j |g(w)| ——Si(Mw) dw
M>0¢Cy JO

= B, ol / [Si(Mw) — sl(w)]!g( D 4,

F

<

28U) _Gp (7.27)
T
The strict inequality in Eq. 7.27 holds because Si(Mw) -~ Si(7) is negative everywhere

except at the point w = w/M, where it is zero. Part 1) of Theorem %.3 has now been
proved.,

When proving the result in part 2) of Theorem 7.3, the contribution from the rest term
can be ignored. This is justified in light of the remarks in the paragraph immediately below
Eq. 7.23. With this simplification, the expression in Eq. 7.26 can be used directly, and we
obtain, after differentiation with respect to ¢,

HOE fo ig( )|2 ———sin(tw/p) dw. (7.28)

It can be shown that differentiation under the integral sign is allowed when conditions
(1) — (3) in Chapter 1 are satisfied. The function |§(w}[*/w is continuous by assump-
tion and integrable by condition (3) in Chapter 1, so its Fourier transform is continuous
(Chandrasekharan, 1989). Hence, if the Fourier Sine transform changes sign at a point
w = wg, then there exists an open interval (¢,d) that contains wg, and such that the sign
of the Fourier Sine transform in (¢,wq) is the opposite of that in (wo, d). Equation 7.28
now shows that f,(t) has a local extremum at ¢ = pwg. If the Fourier Sine transform is
negative for positive arguments, then So(2) > 0 for t > 0. Since £,(0) = 0, it follows that
fo(t) > 0 for all ¢,p > 0. Equation 7.25 and the asymptotic value of the Sine integral,
Si(co) = m/2, imply that fo(00) = 1/2. Thus,

0< f,() < 1/2

for all ¢, p > 0, and there is no overshoot. Part 2) of Theorem 7.3 has now been proved.
O
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The slope at £ = 0, for f(t) = H(t) ~ 1/2, can be found by leiting ¢ tend to zero in
Eq. 7.28,

219l
P Cy

fo(0) = (7.29)

The factor ||g||3¢;* is a measure of the amount of energy the analysis wavelet contains in

frequencies smaller than unity. If most of the energy lies in this range of wavenumbers,
the derivative f}(0) is small.

7.5 Examples

The value of the overshoot and the number of local extrema are now determined for two
kinds of analysing wavelets. The wavelets used below were all defined in Chapter 1. The

number of extrema is compared with the result in Theorem 7.3. The expression in Eq. 7.26
shows that the value of the overshoot is equal to the supremum of

Go() = /O '9(“’”23(114 ) deo (7.30)

over positive M, which is also the exact expression for f,(¢) when ¢ = pM and
F(t) = H(t)— 1/2.

Notice that f,(?) is well defined even though f(t) is not square integrable. The number of
local extrema is found by plotting f1(t) = 1/2 G,4(t) against &.

Example 1: the Complex—Valued Mezican Hat Wavelet
The filtered function fy(t) for the complex—valued Mexican Hat wavelet is shown in figure
7.3. We find that
Gy = sup Go(M) ~ 1.069, (7.31)
M>0

which shows that there is an overshoot of approximately 6.9 %. The Fourier Sine transform
of |§(w)[*/w is (see p.495, Gradshteyn & Ryzhik, 1980)

—u? 1 6u—u3

m/mw e sin(uw) dw = VoRRTE exp(—u?/4) (7.32)
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Figure 7.3: The filtered function f,(2) for the Mexican Hat wavelet, for various values of
2.

and changes sign only once, namely when u = /6. According to Theorem 7.3 there should
be only one local extremum in fi(¢) for ¢ > 0. This conclusion is supported by figure 7.3:

there is only one local extremum, a maximum, and this seems to occur at £ = /6.

Example 2: The Poisson Wavelets

Consider next the Poisson wavelets g,,(t). The Fourier Sine transform of |Gm(w)|?/w is
(p-490, Gradshteyn & Ryzhik, 1980)

1

1 I'(2m)
V27 Jo

o0
2m~-1 _—2w _: —
w ™ sin(uw) dw = Gty

sin{2m tan™ (u/2)). (7.33)

The number of zeros occuring for u > 0 in Eq. 7.33 is equal to the largest integer strictly
smaller than m. - For instance, if 0 < m < 1, there are no zeros in the Fourier Sine

transform, hence no local extrema and no overshoot (sée figure 7.4).

Finally, let us show that the overshoot Gy, for the poisson wavelet gm (1) cc?vverges
toward Gr as m tends to infinity. To make ¢g finite, it is necessary to assume that
m > 1/2. The overshoot is determined by the fanction in Eq. 7.30. This function is an

integral, and after changing variable of integration, Mw  w, the integrand is the function
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Figure 7.4: The filtered function fy(¢) for the Poisson Wavelet with m = 1.

b (w),

A (w) = LM, (7.34)

where M = = /(m — 1/2). The idea is now that this function converges in distribution
toward a delta—function as m tends to infinity; of course, when A, (w) is a delta—function,
the function defined in Eq. 7.30 reduces to the Sine integral and the overshoot is Gp. Now
(see p. 317, Gradshteyn & Ryzhik, 1980),

¢ = fo " hoy(w) dw = 27 1 T(m 4 1)~2 T(2m), (7.35)

and Stirling’s formula (e.g., Gradshteyn & Ryzhik, 1980) can be used to evaluate T'(2m)
in the limjt m — co,

ho(w) 1 [m—1/2 fwelw/=\?""1
rmt) NWJ _ ( - H(w), (7.36)

for w 2> 0. Equation 7.35 shows that

f+oo E’_’"’_@ dew = 1, (7_37)

w0 Cg
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and it is easily shown that

%@ 0 (7.38)

as m — oo, provided w # 7. Moreover, when w = 7,

hm(w) 1 [m-—1/2
e (7.39)

Assuming that the convergence in Eq. 7.38 is uniform outside neighbourhoods of zero, it
follows that A, (w) converges in distribution toward a delta—function. This explains why

the the overshoot Gy, converges toward G as m increases (see the numerical results in
Table 7.1).

Overshoot in %

0.0
2.9
7.0
11.0
14.6
17.1
17.5

B

[t == L B S S R

b e

Table 7.1: 100 x (Cy — 1)% for various Poisson wavelets.
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Chapter 8

Box dimensions and wavelet
transforms

It is shown that wavelet coefficients can be used to characterise the box dimensions of graphs of

continuous functions. The box dimensions of the classical Welerstrass functions are rederived and
previous results for these functions are strengthened.

8.1 Introduction

Previous authors have noticed that wavelet transforms characterise the box dimensions
of measure—theoretic supports (e.g., Holschneider, 1988; Ghez & Vaienti, 1989; Vaienti,

1991; Ghez & Vaienti, 1992). These results basically extend well known results on the
scalings of local densities of measures (e.g., Falconer, 1990). But there has apparently not
been any work on the connection between wavelet transforms and the box dimensions of
the graphs of continuous functions. Recall from chapter 1 that the Hélder exponent for a
function is the largest « such that

|f{z) = fy)| £ Clz -yl (8.1)

for all z and y, and for some constant . Since Holder exponents give lower bounds on
box dimensions (see Proposition 8.2), it is natural to conjecture that the absolute values
of wavelet coefficients often determine hox dimensions. I will now prove this conjecture
for general conditions on the wavelet coefficients.

It is shown below that the existence and value of box dimensions of graphs of con-
tinuous functions can be determined from the corresponding wavelet transforms. The

upper bound on the box dimension follows easily from standard results on the connection
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between the Holder continuity of functions and the box dimensions of their graphs (see
Proposition 8.2 below), and from a recent result by Holschneider & Tchamitchian (1991)
on the determination of Holder continuity by means of wavelet transforms (see Chapter
1). The above conjecture on the connection between the fall-off of wavelet transforms and

lower bounds on box dimensions is proved by exploiting the observation that a local lower

bound on the wavelet transform leads to a lower bound on fluctuations in the function
in an appropriately chosen interval. The lower bounds for the box dimension are equal

to the upper bounds, showing that the wavelet coefficients determine the box dimension

uniquely.

8.2 The determination of box dimensions

Box dimensions are easy to compute and are therefore often used to characterise scale
invariance, though they are not ‘dimensions’ in any rigorous sense (Falconer, 1990). The

hox dimension of a set, when it exists, may be defined as follows (Falconer, 1990):

Proposition 8.1 Suppose that IF C IR? is intersected by ny 6r—mesh cubes with o ™, 0
as k — oo, and bk > cbg for some 0 < ¢ < 1. Then the boz dimension of IF is given by
log ny

D= lim

k—co — log 8i’ (8:2)

provided the limil exists.

The notion of ‘box dimension’ was apparently first introduced by Kolmogorov (1956) in
order to indicate the complexity of different function classes. (Strikingly, box dimensions
were introduced to characterise the complexity of solutions of certain seventh~order equa-
tions, related to Hilbert’s 13th problem, but are now used mainly in physics, such as the
description of turbulent structure).

Rather than counting boxes directly, we rely on the following result (Falconer, 1990),

relating the ‘local envelope’ of a continuous function to the box dimension:

Proposition 8.2 Let f: [a,b] — IR, where b > a, be a continuous function.

(a) If f is Hélder continuous with ezponent « and the bow dimension D exists,
then D < 2 — e,

(b) Suppose that there are numbers K3 > 0 and 0 < a < 1, and a decreasing

sequence as in Proposition 8.1, such that:
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for each t; € [a,b] and k € IN there exisis ty € [a,b] with |t — i3] < & and

|F(t1) — f(E2)] = Kaé. (8.3)
If the box dimension exists, then D > 2 — a.

Remark

The box dimension exists if & in Eq. 8.3 may be chosen equal to the Holder

exponent.

To determine the box dimensions, we then need positive lower bounds on the ‘typical’
differences | f(#1)— f(t2)| for given |t —#3|. This is difficult because | f(¢1)— f(#2)| generally

fluctuates when #; varies and |f; — t3| remains fixed. A similar problem with lower bounds

SRR

occurs when considering the asymptotic behaviour at infinity of entire functions. In this
case the problem is to obtain a lower bound on the maximum value of the function on
a circle of given radius in the complex plane and centred at the origin. This is possible
if the integral of the function along the circle can be estimated, because then the mean

value theorem for integrals can be used: if [ : f(t)dt > ¢, where b > a, then there is at

least one point, tg €]a,b[, such that f(fo) > ¢/(b— a). This trick! is now used to prove

the following theorem.

Theorem 8.3 Suppose that f : [a,b] — IR is continuous and that the analysing wavelet g
satisfies the two conditions in Section 1.3. Let { .}, £ = 0,1,..., be a decreasing sequence
with Ag \, 0, as & — 00, and A1 > c A for some 0 < ¢ < 1 and all k € IN. Suppose
that there is a collection of points {ri;}, @ D such that max{1,2 —m} < D < 2, and 5

T L T SEELILe oy

a, B > 0 with the following properties: L m frowm (1) p.
(a) for each tq € [a,b] and for some choice of k and |,
lto — Thi| < @Az (8.4)
(b) forallk andl,
W)l 2 B2 (8.5)
(¢) and
W (A7) = O(N*"D), (8.6)

1
Littlewood was apparently the first to use the mean value theorem to derive such inequalities; the
example mentioned here is part of his first paper (Littlewood, 1907).
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uniformly in r.

Then the box dimension of the graph exists and is equal to D.

Remarks

1. The sequence {ry;} may be finite for each k.

2. The following proof does not require that r and A are continuous parameters. The

above theorem, therefore, also holds for discrete wavelet transforms.

Proof.
It is straightforward to get an upper bound on the box dimension. By Theorem 1.1

in Chapter 1, condition {c) above is equivalent to the function being uniformly Hélder
continuous with exponent 2 — D. Condition (a) of Proposition 8.2 then shows that the
box dimension, provided it exists, is less than or equal to 2 — D. Thus, it only remains to

show that 2~ D is also the lower bound for the box dimension and that the box dimension
exists,
The proof for the lower bound on the box dimension is more complicated. To use the

mean value theorem for integrals, notice first that

+6 A t
Lo M) - salde > 25 [ iser i) - folllo(5) 1 6)

The norm-inequality for integrals gives a lower bound on the right side of this inequality,

§
sup |g] ;\“[.: | £(t +20) — f(%0)] 19(-;)103

> suplg! : j e+ 10) = £l (5 ) e

A 1 .t
- sup |g| WA to) - X/IR..[_&H}[f(t +to) — f(to)lg (/\) dt|. (8.8)

The last step followed by using the condition that the analysing wavelet has zero integral
(condition (2) in Chapter 1).
We now evaluate the last term in Eq. 8.8 by using the Holder continuity of f(¢) and

the decay at infinity of the analysing wavelet. Condition (1) from the section on Holder

continuity in Chapter 1 implies that

1 foo ¢ K ‘
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for some constant K > 0. To use this upper bound on the last integral in Eq. 8.8, the
wavelet transform |W(X,#o)} in the same line must be sufficiently large; this is the case
when g = ri;. At these points,

)
/ "\ f ) = )l dt > (WA, )| - CA™ §=P=m | (8.10)

2|

5 sup |g|
for some constant C' > 0. To evaluate the right side,let A = Ay and § = 26, = 2 Arah,
for some h > 0 which we can choose independently of k and /. The lower bound on the

wavelet transform in condition (b) in Theorem 8.3 then implies that
|[W (g, ri)l — C AL 61D~ > |8aP2pP=2 — 0 g-1-mp=1-m 92D gl-D (8.11)

provided h is sufficiently large. By combining Eqgs. 8.10 and 8.11, and then using the mean
value theorem for integrals, it follows that there is a t' €] — 6;/2; 6,/2 such that

22—-D

|F + rr) — Flru)| > | 1BaP=2 P2 _C o lmmpmim 62D (8.12)

ahsupg|
Condition (b) in Proposition 8.2 is then satisfied when to = 7 and t; = r + 1. Let
us now show that this condition is satisfied for all g € [a,b] (that is, there is always a
t1 €lto — kit + 6x[ such that the condition is satisfied). For given #y € [a, b} and k € IN,
condition (a) in the theorem shows the existence of an ri € [a,b] with |to — rri| < 6 /h.
Choose now a ' €] — 6;/2;6:/2[ such that Eq. 8.12 holds. Then |tg — #1| < &%, provided
that b > 2. By taking either ¢; = rgy or ¢ = t' + 1y, it follows that

1

| f(t0) = f(t1)] 2 Sah e Ta

oo |BaP~2hP-% _ Co i ptom | 52P (8.13)

and |tg — #1] < 8. This shows that condition (b} of Proposition 8.2 is satisfied. Since the
exponent, 2 — D, is an admissible Holder exponent for the function, as shown earlier in
this proof, it follows from the remark after Proposition 8.2 that the box dimension exists

and is greater than or equal to D.
a

8.3 Weierstrass functions

On a2 historical note, the development of modern analysis was strongly motivated by the

construction of continuous functions that are non—differentiable everywhere {Weierstrass,
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Figure 8.1: The periodic Weierstrass function with ¢ = 2 and & = 244,

1872). Until then, most authors thought continuous functions would be differentiable

everywhere, perhaps with the exception of a few isolated points. However, Weierstrass

showed that the functions,

o

ft)= Ebk sin(aft), te€IR,
k=1

when a’and b are chosen appropriately, are continuous yet non—differentiable everywhere.
Hardy (1916) later showed that the Weierstrass functions are nowhere differentiable when

ab > 1. Here we shall assume ¢ integer, to make the functions periodic, and 0 < b < 1.

The Welerstrass functions are often used as examples of ‘fractals’ (e.g., Falconer, 1990)

and it is then natural to illustrate the above theorem on these functions.

Corollary 8.4 If f : [0,27] — IR is the Weierstrass function defined above, and if ab > 1,

then the graph has boz dimension

logb

D=2+ .
foga

Remark
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Figure 8.2: The wavelet transforms (complex—valued Mexican Hat wavelet) of the Weier-
strass functions with @ = 2 and b = 214,
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Figure 8.3: Logarithmic plot of the modulus of the wavelet transform with r = 1/2. The
wavelet transform fluctuates around a power~law with exponent equal to 1.4 = log b/ log a.
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1. This seems to strengthen previous results, for which it was required that a be ‘large’
(Falconer 1990).

2. The second part of the following proof (in which the Hélder continuity is determined)

is due to Holschneider (private communication).

Proof.
For simplicity, define f(t) on the entire real line, rather than just [0,2x]. This does not

affect the validity of the proof, because the contribution from ‘infinity’ is negligible when
A is small. Choose an analysing wavelet with bounded Fourier transform and support in
the interval [1, a[. The wavelet transform of the Weierstrass function f(¢) is then given by

'3

W(A,r)= 2?_71' §(Aa™) explira®], (8.16)

where n is unique integer such that X ¢” € [1,a[. Notice that
b= glost/lese (8.17)

and that 0 > logb/loga > —1. To show that conditions (a) and (b) in Theorem 8.3 are
satisfied, Suppose that A = a™", for some n € IN. Equation 8.16 is then

g~ logb/loga

Wi(a ™", r) = Tﬁ(l) explira™]. (8.18)
Define,
Tnp = ana: b2 '
where p is an integer from the set [1,...,a" — 1]. Since a is an integer,
0" Ty =0 mod 2r, (8.19)
so that

o~ logb/loga ~
W(a_"’,rnp) = ——"—-2—;—9'(1) (820)

We see that conditions (a) and (b) are satisfied. Since A > a™™, and because the Fourier

transform of the analysing wavelet is bounded, there exists a positive constant Cy such
that
WA, )} < CoA~logb/loga (8.21)
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We have now shown that f(t) is Hélder continuous with exponent —logh/loga, so that

condition {c) of Theorem 8.3 is satisfied.
a

96




Bibliography

structure functions in turbulent shear flows, J. Fluid Mech. 140, 63 — 89.

[2] BATCHELOR, G. K. 1947, Kolmogoroff’s theory of locally isotropic turbulence,
Proe. Cambr. Phil. Soc. 43, 533 ~ 559.

[3] BATCHELOR, G. K. 1953, The Theory of Homogeneous Turbulence, (CUP, 1953).

{4] BATCHELOR, G. K. 1969, Computation of the energy spectrum in homogeneous
two—dimensional turbulence, Phys. Fluids 12, Suppl. II, 233 — 239.

[5] BATCHELOR, G. K. 1967, An Introduction to Fluid Mechanics (Cambridge Uni-
versity Press).

[6] BATCHELOR, G. K. & TOWNSEND, A. A. 1947, Decay of vorticity in isotropic
turbulence, Proe. Roy. Soc. A190, 534 ~ 550.

[7] BATCHELOR, G. K. & TOWNSEND, A. A. 1949, The nature of turbulent motion
at large wave—numbers, Proc. REoy. Soc. A199, 238 - 255.

[8] BETCHOV, R. 1961, Semi-isotropic turbulence and helicoidal flows, Phys. Fluids
4, 925 — 926.

[9] BORGAS, M. S. & SAWFORD, B. L. 1991, The small-scale structure of acceleration
correlations and its role in the statistical theory of turbulent diffusion, J. Fluid Mech.
228, 295 — 320.

[10] BOUBNOV, B. M., DALZIEL, S. B., & LINDEN, P. F. 1994, Source-sink turbulence
in a stratified fluid, J. Fluid Mech. 261, 273 — 303.

[11] BORUE, V. 1994, Inverse energy cascade in stationary two—dimensional homoge-
neous turbulence, Phys. Rev. Lett. 72, 1475 — 1478.

[12] BRAY, R. W. 1966, A study of turbulence and convection using Fourier and numer-
ical analysis, Ph. D. thesis, University of Cambridge (DAMTP).

[13] CALDERON, A. P., & ZYGMUND, A. 1961, Local properties of solutions of elliptic :
partial differential equations, Studic Math. 20, 171-225 . |

97




RSN

[14] CALDERON, A. P. 1964, Intermediate spaces and interpolation, the complex
method, Studie Math. 24, 113 - 190.

[15] CARSLAW, H. S. 1925, A Historical Note on Gibbs Phenomenon. Bull. Amer. Math.
Soc. 31, 420 — 424,

[16) CHAMPENEY, D. C. 1987, A Handbook of Fourier Theorems (Cambridge Univer-
sity Press).

[17] CHANDRASEKHARAN, K. 1989, Classical Fourier Transforms, (Springer-Verlag).

[18] DRITSCHEL, D. G. 1993, Vortex properties of two-dimensional turbulence, Phys.
Fluids A5, 984 — 997.

{19] DUBRULLE, B. 1994, Intermittency in fully developed turbulence: log—Poisson
statistics and scale invariance, Phys. Rev. Letter 73, 959 — 962,

[20] EINSTEIN, A. 1905, On the movement of small particles suspended in a stationary
liquid demanded by the molecular—kinetic theory of heat, Ann. d. Physik 17, p.
549(or, in Investigations on the theory of the Brownian movement, Dover, 1956).

[21] FALCONER, K. J. 1990, Fractal Geometry, (John Wiley and Sons).

[22] FARGE, M. 1992, Wavelet Transforms and Their Applications to Turbulence, Ann.
Rev. Fluid Mech., 395-457.

[23] FIQRTOFT, R. 1953, On the changes in the spectral distribution of kinetic energy
for two—dimensional, nondivergent flow Tellus 5, 225 — 230.

[24] FORNBERG, B. 1977, A numerical study of two—dimensional turbulence, J. Com-
put. Phys, 25,1 - 31

[25] FRISCH, U. & SULEM, P. L. 1984, Numerical simulation of the inverse cascade in
two—dimensional turbulence, Phys. Fluids 28, 1921 — 1923.

[26] FRISCH, U., SULEM, P-L., & NELKIN, M. 1978, A simple model of intermittent
fully—developed turbulence, J. Fluid Mech. 87, 719 -~ 736.

[27] GHEZ, J. M., & VAIENTI, S. 1989, On the Wavelet Analysis for Multifractal Sets,
J. Stat. Phys. 57:415.

[28] GHEZ, J. M., & VAIENTT 1992, S. 1992, Integrated Wavelets on Fractal Sets, I &
I, Nonlinearity 3:777 and 791.

[29] GIBBS, J. W., Nature, LXIX (1899).

[30] GILBERT, A. D. 1988, Spiral structures and spectra in two—dimensional turbulence,
J. Fluid Mech. 193, 475 — 497.

98




[31] GRADSHTEYN, L S., & RYZHIK, 1. M. 1980, Table of Integrals, Series, and Prod-
ucts (Academic Press Inc.).

[32) GROSSMAN, A., & MORLET, J. 1984, Decomposition of Hardy Functions into
; Square Integrable Wavelets of Constant Shape, SIAM J. Math. Anal., (4) 15, 723 -
£ 736.

’ [33] HAMA, F. R. 1953, The spectrum equation of two—dimensional isotropic turbulence,

Proc. 8rd Midwestern Conference on Fluid Mech. (University of Minnesota}), 427 -
433.

[34] HANNA, S. R. 1980, Lagrangian and Eulerian time-scale relations in the daytime
boundary layer, J. Appl. Met. 20, 242 - 249,

[35] HARDY, G., LITTLEWOOD, J. E., & POLYA, G. 1934, Inequalities (Cambridge
University Press). :

[36] HERRING, J. R. & McWILLIAMS, I. C. 1985, Comparison of direct numerical
simulation of two—dimensional turbulence with two—point closure: the effects of
intermittency, J. Fluid Mech. 153, 229 - 242,

[37] HOLSCHNEIDER, M. 1988, On the Wavelet Transformation of Fractal Objects, J.
Stat. Phys., (5/6) 50, 963 — 993.

[38] HOLSCHNEIDER, M., & TCHAMITCHIAN, P. 1991, Pointwise analysis of Rie-
mann’s “non—differentiable” function, Invent. Math. 105, 157 — 175,

[39] INOUE, E. 1951, On the turbulent diffusion in the atmosphere, J. Meteor. Soc.
Japan 29, 246 - 252,

[40] INOUE, E. 1952, On the Lagrangian correlation coefficient for turbulent diffusion
and application to atmospheric diffusion phenomena, Geophys. Res. Rap. 19, 397 -
412,

[41] JAFFARD, S. 1993, Orthonormal and continuous wavelet transform: Algorithms
and applications to the study of pointwise properties of functions, Proceedings of the
IMA Conference on Wavelets, Fractals and Fourier Transforms: New Developments
and New Applications, (Oxford University Press).

[42] JIMENEZ, J., WRAY, A. A., SAFFMAN, P. G., & ROGALLO, R. S. 1993, The
structure of intense vorticity in homogeneous isotropic turbulence, J. Fluid Mech.
255, 65 — 90.

[43] VON KARMAN, T. & HOWARTH, L. 1938, On the statistical theory of isotropic
turbulence, Proc. R. Soc. Lond. A 164, 192 ~ 215.

f44] KERR, R. M. 1985, Higher order derivative correlation and the alignment of small
scale structures in isotropic numerical turbulence, J. Fluid Mech. 153, 31 - 58.

99




3 [45] KOLMOGOROV, A. N. 1941a, The local structure of turbulence in incompressible
' viscous fluid for very large Reynolds numbers, Dokl. Aked. Nauk SSSR 30, 301 -
305; see also Proc. R. Soc. London Ser. A 434 (1991).

[46] KOLMOGOROV, A. N. 1941 b, Dissipation of energy in the locally isotropic tur-
bulence, Dokl. Akad. Nauk SSSRE 82; see also Proc. R. Soc. London Ser. A 434
(1991).

[47] KOLMOGOROQV, A. N. 1962, A refinement of previous hypotheses concerning the
local structure of turbulence in a viscous incompressible fluid at high Reynolds num-
ber, J. Fluid Mech. 13, 82 - 85.

[48] KOLMOGOROV, A. N. 1956, Some fundamental problems in the approximate and
exact representation of functions of one or several variables, in Proc. III Math.
Congress USSR Vol. 2, 28 - 29 (MGU Press, Moscow), {in Russian); an english
translation can be found in Vol. 1 of his Collected Works, (Kluwer Academic Pub-
lishers, 1985).

[49] KRAICHNAN, R. H. 1967, Inertial ranges in two—dimensional turbulence, Phys.
Fluids 10, 1417 - 1423.

[50] LANDAU, L. D., & LIFSHITZ, E. M. 1944, Fluid Mechanics (in Russian) (translated
in 1959; Pergamon Press, London).

[51] LEGRAS, B., SANTANGELO, P., & BENZI, R. 1988, High resolution numerical
experiments for forced two-dimensional turbulence, Europhys. Lett. 5, 37 — 42.

[52] LEITH, C. E. 1968, Diffusion approximation for two—dimensional turbulence, Phys.
Fluids 11, 671 — 673.

[53] LESIEUR, M., FRISCH, U., & BRISSAUD, A. 1971, Théorie de Kraichnan de la
Turbulence, Ann. Geophys. 25, 151 — 165.

[54] LILLY, D. K. 1969, Numerical simulation of two—dimensional turbulence, Phys.
Fluids 12, Suppl. II, 240 ~ 249.

[55] LITTLEWOOD, I. E. 1907, Lond. Math. Soc. Jan. 1.

[66] LUNDGREN, T. S. 1982, Strained spiral vortex model for turbulent fine structure,
Phys. Fluids 25, 2193 - 2203.

[67] MELANDER, M. V., ZABUSKY, N. J., & McWILLIAMS, J. C. 1988, Symmetric
vortex merger in two dimensions: causes and conditions, J. Fluid Mech. 115, 303 -
340.

[58] MEYER, Y. 1990, Ondelettes et Operateurs I - III, (Hermann, Paris).

[59] McWILLIAMS, J. C. 1984, The emergence of isolated coherent vortices in turbulent
flows, J. Fluid Mech. 146, 21 — 43.

100




[60] MALTRUD, M. E. & VALLIS, G. K. 1991, Energy spectra and coherent structures
in forced two—dimensional and beta—plane turbulence, J. Fluid Mech. 228, 321 -
342.

[61] MOFFATT, H. K. 1969, The degree of knottedness of tangled vortex lines, J. Fluid
Mech. 35, 117 - 129.

[62] MOFFATT, H. K. 1984, Simple topological aspects of turbulent vorticity dynamics,
in Turbulence and chaotic phenomena in fluids, (ed. T. Tatsumi, Elsevier).

[63] MOFFATT, H. K. 1993, Spiral structures in turbulent flow, in Proceedings of the
Monte Veritd conference (eds. Dracos & Tsinober; Birkhauser).

[64] MOREAU, J. J. 1961, Constantes d’un flot tourbillonnaire en fluid parfait barotrope,
C. R. Acad. Sci. Paris 252, 2810.

[65] MONIN, A. S. & YAGLOM, A. M. 1975, Statistical fluid mechanics: the mechanics
of turbulence, (Cambridge, Mass.; MIT Press).

[66] NASTROM, G. D. & GAGE, K. S. 1985, A climatology of atmospheric wavenumber
spectra of wind and temperature observed by commercial aircraft, J. Atmos. Sci.
42, 950 - 960.

[67] VON NEUMANN, J. 1949, Recent theories of turbulence, In Collected Works vol.
VI (Pergamon Press, 1963).

[68] NOVIKOV, E. A., & STEWART, R. W. 1964, Intermittency of turbulence and
spectrum of fluctuations in energy-dissipation, Izv. Akad. Nauk SSSR, Ser. Geofiz.
3, 408 — 413 (in Russian).

[69) NOVIKOV, E. A. 1963, Random force method in turbulence theory, Sov. Phys.
JETP 17, 1449 — 1454.

[70] OBUKHOV, A. M. 1941, On the distribution of energy in the spectrum of turbulent
flow, Dokl. Akad. Nauk SSSR 32, 22 - 24.

[71] OBUKHOV, A. M. 1959, Description of turbulence in terms of Lagrangian variables,
Adv. Geophys. 6, 113 — 116.

[72] OBUKHOV, A. M. 1962, Some specific features of atmospheric turbulence, J. Fluid
Mech. 13, 77 — 81.

[73] OGURA, Y. 1958, On the isotropy of large—scale disturbances in the upper tropo-
sphere, J. Meteorol. 15, 375 — 382.

[74] POLIFKE, W. 1991, Statistics of helicity fluctuations in homogeneous turbulence,
Phys. Fluids 3, 115 — 129.

[75] PULLIN, D. L, & SAFFMAN, P. G. 1993, On the Lundgren-Townsend model of
turbulent fine scales, Phys. Fluids 5, 126 — 145.

101




[76] PULLIN, D. I, BUNTINE, J. D., & SAFFMAN, P. G. 1994, On the spectrum of a
stretched spiral vortex, Phys. Fluids @ (9}, 3010 — 3027,

[77] RASMUSSEN, H. O. 1993a, The wavelet Gibbs phenomenon in Wavelets, Fractals,
and Fourier Transforms, Cambridge December 1990, (Eds. Farge, Hunt, & Vassilicos;
Clarendon Press, 1993).

[78] RASMUSSEN, H. O. 1993b, The determination of box dimensions by means of
wavelet transforms, J. Stat. Phys. T1 Nos. 3/4, 817 — 823.

[79] RASMUSSEN, H. 0. 1995a, The local structure of anisotropic turbulence, submitted
to Proc. Roy. Sec. London.

[80] RASMUSSEN, H. O. 1995b, Lagrangian structure of forced turbulence, submitted
to Proc. Roy. Soc. London.

[81] RASMUSSEN, H. O. 1995¢, A comment on spirals, submitted to Phys. Fluids.

[82] RASMUSSEN, H. O. 1995d, The Reynolds numbers of vortex tubes, submitted to
Phys. Rev. Lett..

[83] RASMUSSEN, H. O. 1995¢, A model for the higher—order structure function expo-
nents of homogeneous turbulence, submitted to Phys. Rev. Letl..

[84] RASMUSSEN, H. O. 1995f, The energy transfer in forced turbulence, in preparation.

[85] RASMUSSEN, H. O. 1995g, The local structure of two—dimensional turbulence, in
preparation.

[86] REYNOLDS, O. 1883, An experimental investigation of the circumstances which
determine whether the motion of water shall be direct or sinuous, and of the law of
resistance in parallel channels, Phil. Trans. R. Soc. London 174, 935 — 982,

[87) REYNOLDS, O. 1894, On the dynamical theory of incompressible viscous fluids and
the determination of the criterion, Phil. Trans. R. Scc. London 186, 123 — 161.

[88] RICHARDSON, L. F. 1922, Weather Prediction by Numerical Process, (Dover, New
York).

[89] RICHARDSON, L. F. 1926, Atmospheric diffusion shown on a distance-neighbour
graph, Proc. Roy. Soe. A 110, 709 - 737.

[90] RODEAN, H. C. 1991, The universal constant for the Lagrangian structure function,
Phys. Fluids A 3 (6), 1479 — 1480.

[91] RUETSCH, G. R., & MAXEY, M. R. 1992, The evolution of small-scale structures
in homogeneous isotropic turbulence, Phys. Fluids 4, 2747 — 2760.

102




(92] SANTANGELO, P., BENZI, R., & LEGRAS, B. 1989, The generation of vortices
in high resolution, two—dimensional decaying turbulence and the influence of initial
conditions on the breaking of self-similarity, Phys. Fluids A1, 1027 — 1034.

[93] SAWFORD, B. L. 1991, Reynolds number effects in Lagrangian stochastic models
of turbulent diffusion, Phys. Fluids A 3 (6), 1577 — 1586.

[94] SHE, Z-S. & LEVEQUE, E. 1993, Universal scaling laws in fully developed tarbu-
lence, Phys. Rev. Lett. 72, 336 — 339.

[95] SHE, Z-S., & ORSZAG, S. A. 1991, Physical model of intermittency in turbulence:
inertial-range non—Gaussian statistics, Phys. Rev. Leit. 66, 1701 — 1704,

[96] SIGGIA, E. D. 1981, Numerical study of small scale intermittency in three dimen-
sional turbulence, J. Fluid Mech. 107, 375 — 406.

[97) SOMMERIA, J. 1986, Experimental study of the two-dimensional inverse energy
cascade In a square box, J. Fluid Mech. 170, 139 ~ 168.

[98] TATSUMI, T. 1980, Theory of Homogeneous Turbulence, Advences in Applied Me-
chanies 20, 39 - 133.

[99] TAYLOR, G. 1. 1921, Diffusion by continuous movements, Proc. Lond. Math. Soc.
20 (2), 196 — 211.

[100] TAYLOR, G. I. 1935, Statistical theory of turbulence I - V, Proc. Roy. Sec. A151,
421 - 478.

[101] TENNEKES, H., & LUMLEY, J. L. 1990, A First Course in Turbulence, (MIT).

[102] VINCENT, A., & MENEGUZZI, M. 1991, The spatial structure and statistical
properties of homogeneous turbulence, J. Fluid Mech. 225, 1 - 20.

[103] VINCENT, A., & MENEGUZZI, M. 1994, The dynamics of vorticity tubes in ho-
mogeneous turbulence, J. Fluid Mech. 258, 245 — 254.

[104] WEIERSTRASS, K. 1872, Uber continuierliche Functionen eines reellen Argu-
mentes, die fiir keinen Werth des letzteren einen bestimmten Differentialquotienten
besitzen, Mathematische Werke II (Konigl. Akad. Wiss.), 71-74.

[105] WIIN-NIELSEN, A. 1967, On the annual variation and spectral distribution of
atmospheric energy, Tellus 19, 540 - 559.

[106] WILBRAHAM 1848, Camb. and Dublin Math, Journal, 111, 198 — 201 (I have not
found a copy of this journal).

[107] YAKHOT, V. 1992, 4/5 Kolmogorov law for statistically stationary turbulence: ap-
plication to high—Rayleigh-number Bénard convection, Phys. Rev. Letf. 69, 769 —
771,

103




[108] YEUNG, P. K. & POPE, S. B. 1989, Lagrangian statistics from direct numerical
simulations of isotropic turbulence, J. Fluid Mech. 207, 531 — 586.

[109] ZOCCHI, G., TABELING, P., MAURER, J., & WELAIME, H. 1994, Measurement
of the scaling of the dissipation at high Reynolds numbers, Submitted to Phys. Rev.
E.

[110] ZYGMUND, A. 1959, Trigonometric Series, (Cambridge University Press).

104




