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Abstract

This paper describes a version of Martin-Löf’s dependent type theory extended with names and constructs
for freshness and name-abstraction derived from the theory of nominal sets. We aim for a type theory
for computing and proving (via a Curry-Howard correspondence) with syntactic structures which captures
familiar, but informal, ‘nameful’ practices when dealing with binders.
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1 Introduction

We aim to develop a constructive version of nominal logic [15] as a dependent type

theory. From a programming point of view we would like to combine Agda/Coq

style theorem-proving (particularly inductively defined indexed families of types and

dependent pattern-matching) with FreshML [21] style meta-programming for syntax

with binding operations. Achieving these aims requires a constructive treatment

of the nominal sets notion of freshness [16, Chapter 3]. Here we give one such

treatment as an extension of Martin-Löf type theory.

The functional programming language FreshML is impure: it ensures freshness

of names via generativity and (hence) avoids checking that a locally scoped name

1 Partially supported by the UK EPSRC program grant EP/K008528/1, Rigorous Engineering for Main-
stream Systems (REMS).
2 Email: andrew.pitts@cl.cam.ac.uk
3 Supported by the UK EPSRC leadership fellowship (Peter Sewell) grant EP/H005633/1, Semantic Foun-
dations for Real-World Systems.
4 Email: justus.matthiesen@cl.cam.ac.uk
5 Email: jasperderikx@gmail.com

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 312 (2015) 19–50

1571-0661/© 2015 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.04.003

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:andrew.pitts@cl.cam.ac.uk
mailto:justus.matthiesen@cl.cam.ac.uk
mailto:jasperderikx@gmail.com
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.04.003
http://dx.doi.org/10.1016/j.entcs.2015.04.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


does not occur in the support of the meaning of the expression in which it is used.

The original version of the language, ‘FreshML 2000’ [17], attempted to carry out

such checks by inferring freshness information as part of the type system, but was

found to be too restrictive in the context of a Turing-powerful language – the main

difficulty being how to decide whether a name n is fresh for a (higher-order) function

f , written n # f . Within nominal sets [16], the definition of the freshness relation

involves quantification over finite sets of names: n # f means that there exists a

finite set of names supporting f that does not contain the name n. In practice, one

often relies upon the fact that this relation is invariant under permuting names and

uses the following sound method that reflects on a concrete, meta-theoretic version

of freshness, viz. non-occurrence:

To prove n # f , pick a name n′ that does not occur in the current context (that

is, one that is meta-theoretically fresh) and prove (n n′) · f = f , which in the

presence of function extensionality, is equivalent to showing (∀x) (n n′) · (f x) =

f((n n′)·x). (As usual, (n n′)·x denotes the result of transposing names n and n′

in an element x of a nominal set.) Since n′ # f holds by choice of n′, applying the

permutation (n n′) that swaps n and n′ we get n = (n n′) · n′ # (n n′) · f = f ,

as required.

This proof principle was adopted by nominal algebra [9]/nominal equational logic [5]

and emphasised particularly in Clouston’s thesis [4] and the recent work of Crole

and Nebel [7], which both make freshness assertions

Γ � n # t : T

equivalent to equality judgements of the form

Γ[n′ : N ] � (n n′) � t = t : T (1)

where (n n′)� is the (object-level) name-swapping operation, the context Γ contains

hypotheses about freshness of names for free variables and Γ[n : N ] 6 adds to Γ an

extra freshness hypotheses for a (meta-theoretically) new name n of some sort N .

Equality jugements, such as (1), will be axiomatized by the type theory introduced

in Sect. 2.

We call this delegation of freshness to definitional equality definitional fresh-

ness. It means that equality judgements get intertwined with typing judgements

in an extra way from what already happens in dependently typed systems. The

advantage of this approach is that we can give ‘pure’ versions of locally scoped

names and concretion of name-abstractions with a semantics just using nominal

sets, rather than, for example, nominal restriction sets [16, section 9.1]. The next

section describes such a dependent type theory with abstractable names. Since it is

an extension of Martin-Löf’s Type Theory with many of the features of FreshML,

we call it FreshMLTT. Section 3 describes the intended model of FreshMLTT; we

6 Instead of using the ‘flattened’ contexts {n1 # x1 : T1,n2 # x2 : T2, . . .} from [24,9,5,4,7], here we
will use ‘bunched’ ones, as in [19,18,3], because they fit better with the ‘telescopic’ nature of contexts in
dependent type theory.

A.M. Pitts et al. / Electronic Notes in Theoretical Computer Science 312 (2015) 19–5020



organise nominal sets into an instance of Dybjer’s notion of category with families

(CwF) [8] and develop a dependent version of the nominal sets notion of name ab-

straction. The interpretation of FreshMLTT in this CwF is given in Sect. 4, together

with its soundness (Theorem 4.2). Section 5 surveys previous work on combining

nominal sets with dependent types and Sect. 6 outlines what needs to be done to

develop FreshMLTT further. In particular, the question as to whether FreshMLTT

has decidable type-checking is open.

2 FreshMLTT

In this paper we consider an extension of Martin-Löf Type Theory [14] with names

that can be swapped, compared for equality, locally scoped and abstracted. We call

it FreshMLTT. The syntax of its expressions is given in Fig. 1. There are two sorts

of bindable identifier, variables (x) and names (n), and expressions are identified up

to α-equivalence: the binding forms are ν[n : N ] , N[n : N ] , Π(x : T ) , α[n : N ]

and λ(x : T ) . We write fv(e) for the finite set of free variables of an expression

e and fn(e) for its finite set of free names. Capture-avoiding substitution of e for

all free occurrences of a variable x in e′ is denoted e′(e/x); names are not subject

to substitution (see Sect. 2.1). We write dom(Γ) for the finite set of variables and

names that are declared in a context Γ. We adopt Agda-style notation for multiple

context extensions and write Γ[n n′ : N ] rather than Γ[n : N ][n′ : N ], for example.

The forms of judgement of FreshMLTT are given in Fig. 2. The rules for deriving

valid instances of these judgements are listed in Appendix A. We discuss them in

the following sections (2.1–2.3).

2.1 Names

FreshMLTT is intended to be used as a meta-language for describing, and comput-

ing with, the syntax and semantics of various languages. These ‘object languages’

typically involve various sorts of name (for example, names of variables, commu-

nication channels, etc.). Therefore FreshMLTT has a countably infinite collection

N,N ′, . . . ∈ Nsort of distinguished types 7 , called name sorts

Γ � ok

Γ � N
(n-form)

the terms of which stand for object-language names. The usual rules of Martin-Löf

Type Theory for extending a context

Γ � T x /∈ dom(Γ)

Γ(x : T ) � ok
(ctx-ext-v)

Γ � ok (x : T ) ∈ Γ

Γ � x : T
(v-intro)

7 It would be natural to allow name sorts to be parameterised by the elements of other types, but for
simplicity we do not do that here.
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names n ∈ Name (countably infinite set)

name sorts N ∈ Nsort (countably infinite set)

variables x ∈ Var (countably infinite set)

expressions e ∈ Exp ::= Γ | T | t

contexts Γ ∈ Ctx ::= � empty

| Γ(x : T ) extend with variable

| Γ[n : N ] extend with fresh name

types T ∈ Type ::= N sort of names

| (n n) � T name swapping

| ν[n : N ]T locally scoped name

| N[n : N ]T name-abstraction type

| Π(x : T )T dependent function type

. . . (other constructs of MLTT)

terms t ∈ Term ::= x variable

| n name

| (n n) � t name swapping

| if t = n then t else t branch on name equality

| ν[n : N ] t locally scoped name

| α[n : N ]t name-abstraction

| t @ n concretion

| λ(x : T )t λ-abstraction

| t t application

. . . (other constructs of MLTT)

Fig. 1. Syntax of FreshMLTT

allow one to hypothesise a variable (that is, an unknown element) of some type

T ; and so when T = N , we hypothesise an unknown object-level name of sort

N . However in FreshMLTT, in addition to variables x, y, . . . ∈ Var , there is a

disjoint kind of bindable identifier, meta-level names n,m, . . . ∈ Name, together
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Judgements take the form Γ � J , where

J ::= ok well-formed context

| T well-formed type

| t : T typing relation

| (n : N) # T definitional freshness for types

| (n : N) # t : T definitional freshness for terms

| T = T definitionally equal types

| t = t : T definitionally equal terms

Fig. 2. Judgements of FreshMLTT

with associated context extension and introduction rules:

Γ � ok n /∈ dom(Γ)

Γ[n : N ] � ok
(ctx-ext-n)

Γ � ok [n : N ] ∈ Γ

Γ � n : N
(n-intro)

The difference between a variable of type N and a name of type N is that the latter

has a fixed, context-insensitive identity: if n and n′ are different names, then the

Boolean expression n = n′ is convertible to false; whereas if x and x′ are different

variables, then the Boolean expression x = x′ is neutral. For simplicity we do not

introduce a type of Booleans explicitly and instead use test-and-branch expressions

at each type

Γ � t : N Γ � n : N Γ � t1 : T Γ � t2 : T

Γ � if t = n then t1 else t2 : T
(ifeq)

together with the definitional equalities

if n = n then t else t′ = t

if n = n′ then t else t′ = t′

⎫⎬
⎭ (if-comp) (where n �= n′).

Because of those equalities, the validity of the judgements of FreshMLTT is not

preserved under the operation of substituting a term for a name, whereas substitu-

tion of terms for variables does preserve validity, as usual. Instead, names obey a

weaker substitution discipline familiar from the work on nominal logic: validity of

judgements is preserved under permutation of names and in particular, under the

operation of swapping two names.

2.2 Definitional freshness

When computing with object languages involving names, the relation of not oc-

curring free in a language expression is of crucial importance. In particular one

frequently has to introduce names that are not free in the current context. This
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is supported in FreshMLTT by the context extension rule (ctx-ext-n) mentioned

above: in the context Γ[n : N ] it is intended that any variables declared in Γ are

restricted to range over object-level entities in which the name n does not occur free.

The nominal sets relation of freshness (a # x) [16, Chapter 3] provides a syntax-

independent meaning for ‘does not occur free’, the constructive properties of which

are formalised by FreshMLTT. To do so, there are expressions for the operation of

swapping two names in types or terms

Γ � n : N Γ � n′ : N
Γ � T

Γ � (n n′) � T
(swap-typ)

Γ � n : N Γ � n′ : N
Γ � t : T

Γ � (n n′) � t : (n n′) � T
(swap-term)

and definitional equalities

Γ � T ΓΔ � ok

[n : N ], [n′ : N ] ∈ Δ

ΓΔ � (n n′) � T = T
(fresh-hyp-typ)

Γ � t : T ΓΔ � ok

[n : N ], [n′ : N ] ∈ Δ

ΓΔ � (n n′) � t = t : T
(fresh-hyp-term)

that formalize a basic property of freshness: a # x ∧ a′ # x ⇒ (a a′) · x = x [16,

Proposition 3.1]. Another key property of freshness is that given any element x

of a nominal set, there is some atom a with a # x. A consequence of this are

structural rules for eliminating unused fresh-name assumptions, taken from the

work on nominal equational logic [5] and algebra [9]:

ΓΔ � T ΓΔ � T ′

Γ[n : N ]Δ � T = T ′

ΓΔ � T = T ′ (n-elim-typ)

ΓΔ � t : T ΓΔ � t′ : T
Γ[n : N ]Δ � t = t′ : T

ΓΔ � t = t′ : T
(n-elim-term)

As explained in the Introduction, FreshMLTT can make judgements about

whether a name is fresh for an expression via definitional equalities involving swap-

ping with a name that is known to be fresh from the context:

Γ � n : N Γ � T

Γ[n′ : N ] � (n n′) � T = T

Γ � (n : N) # T
(fresh-typ)

Γ � (n : N) # T

Γ[n′ : N ] � (n n′) � t = t : T
Γ � (n : N) # t : T

(fresh-term)

Such definitional freshness judgements are needed to express the properties of name

abstraction, to which we turn in the next section.

Remark 2.1 Note that definitional freshness can hold even if a name n is not

meta-theoretically fresh for an expression e, that is, even if n occurs free in e. For

example n occurs free in the term if n = n′ then n else n′, but nevertheless

�[n n′ : N ] � (n : N) # (if n = n′ then n else n′) : N

is a valid judgement in FreshMLTT, because of the definitional equality (if-comp)

mentioned above.
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2.3 Abstracting and locally scoping names

The usual formation and introduction rules for dependent functions

Γ(x : T ) � T ′

Γ � Π(x : T )T ′ (Π-form)
Γ(x : T ) � t′ : T ′

Γ � λ(x : T )t′ : Π(x : T )T ′ (Π-intro)

discharge a variable from the context. In FreshMLTT there are formation and

introduction rules for name abstractions, which involve discharging a fresh name

from the context:

Γ[n : N ] � T

Γ � N[n : N ]T
( N-form)

Γ[n : N ] � t : T

Γ � α[n : N ]t : N[n : N ]T
( N-intro)

Name abstraction types can be used to indicate that a syntactical construct in

some object language is a binder. For example, assuming FreshMLTT is augmented

with data types for finite lists [14, Chapter 10], one might introduce a dependent

type Term(�) for λ-terms whose free variables are in the list � : List(N) (using the

name sort N to represent variables in λ-terms). Then the operation for forming λ-

abstractions could be given type Π(� : List(N)) ( N[n : N ]Term(consn �)) � Term(�).

The notation for name abstraction types, N[n : N ]T , is chosen to suggest

its Curry-Howard relationship with the freshness quantifier of nominal logic [16,

Sect. 3.2]; see Remark 3.7. Simultaneously it formalizes a dependent version of the

nominal sets notion of name abstraction [16, Chapter 4]; see Sect. 3.6. In partic-

ular the elimination rule for name abstractions uses a special form of application,

called concretion and written t @ n. We know from the theory of nominal sets that

to be meaningful such a concretion requires the name n to be fresh for the ab-

straction to be concreted, t : N[n′ : N ]T ; and since types can depend upon names,

we should also require n to be fresh for the type T . So the hypotheses of the N-
elimination rule will be definitional freshness judgements Γ[n′ : N ] � (n : N)#T and

Γ � (n : N) # t : N[n′ : N ]T . What should be the type of the concretion t @ n in its

conclusion? For dependent functions, Π-elimination involves making a substitution

to get the result type of a function application:

Γ � t : Π(x′ : T ′)T Γ � t′ : T ′

Γ � t t′ : T (t′/x′)
(Π-elim)

We cannot do the same for concretion and take its result type to be T (n/n′), because
as we mentioned at the end of Sect. 2.1, validity of FreshMLTT judgements is not

preserved in general by name-substitutions, only by name-permutations. 8 This

8 Cheney’s DNTT [3] does use name-substitution (see Fig. 9 in that paper), but constrains concreting
names n to be meta-theoretically fresh for T , so that T (n/n′) is equal to the result of permuting n and n′
in T . Definitional freshness is a weaker and hence more expressive constraint on concreting names.
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suggest that we use the result type (n n′) � T and the following elimination rule:

Γ[n′ : N ] � (n : N) # T Γ � (n : N) # t : N[n′ : N ]T

Γ[n′ : N ] � t @ n : (n n′) � T
(2)

Note that the context in the conclusion has to be Γ[n′ : N ] rather than just Γ,

because the bound name n′ in N[n′ : N ]T becomes a free name in (n n′) � T .
However, from the hypotheses of (2) (together with properties of name-swapping

up to definitional equality) one can deduce Γ[n′ : N ] � (n′ : N) # (n n′) � T and

(hence) Γ[n′ n′′ : N ] � (n n′) � T = (n n′′) � T . In other words the result type

(n n′) � T of the concretion in (2) is independent up to definitional equality of the

choice of bound name n′ in N[n′ : N ]T . It is important, from the point of view of

expressivity of the system, to capture this fact linguistically. We can do so by using

a form of local scoping for names in expressions, which we write as ν[n : N ] e. Such

expressions can be introduced by the rules

Γ[n : N ] � (n : N) # T

Γ � ν[n : N ]T
(local-typ)

Γ[n : N ] � (n : N) # t : T

Γ � ν[n : N ] t : ν[n : N ]T
(local-term)

and manipulated with the computation rules

Γ[n : N ] � (n : N) # T

Γ[n : N ] � ν[n : N ]T = T
(local-typ-comp)

Γ[n : N ] � (n : N) # t : T

Γ[n : N ] � ν[n : N ] t = t : T
(local-term-comp)

We will see later (Proposition 3.5 and Theorem 4.2) that these rules have a sound

interpretation in terms of nominal sets. They formalize the form of locally fresh

name commonly used in syntax-manipulating constructions, where the meaning of a

construction depending upon some fresh names is (provably) independent of which

particular fresh names are chosen; see [16, Sect. 3.3]. When the constructions involve

first-class functions, it is important to have a linguistic form for this kind of name

scoping, since an expression like λ(x : T )ν[n : N ] t is not in general definitionally

equal to ν[n : N ]λ(x : T )t and so the local scoping cannot float to the top-level and

become implicit in the context.

Using locally scoped names, we strengthen (2) to get FreshMLTT’s rule for

N-elimination:

Γ[n′ : N ] � (n : N) # T Γ � (n : N) # t : N[n′ : N ]T

Γ � t @ n : ν[n′ : N ] (n n′) � T
( N-elim)
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Γ � n : N Γ � T

Γ � 〈〈n : N〉〉T (abs-form)
Γ � n : N Γ � t : T

Γ � 〈n : N〉t : 〈〈n : N〉〉T (abs-intro)

Γ � (n : N) # t : 〈〈n′ : N〉〉T
Γ � t @ n : (n n′) � T

(abs-elim)

Γ � n : N Γ � (n′ : N) # t : T

Γ � (〈n : N〉t) @ n′ = (n n′) � t : (n n′) � T
(abs-comp)

Γ � (n : N) # t : 〈〈n : N〉〉T
Γ � 〈n : N〉(t @ n) = t : 〈〈n : N〉〉T (abs-uniq)

Fig. 3. Admissible rules for non-binding name abstraction

The associated computation and uniqueness (η) rules are:

Γ[n′ : N ] � (n : N) # t : T n �= n′

Γ � (α[n′ : N ]t) @ n = ν[n′ : N ] (n n′) � t : ν[n′ : N ] (n n′) � T
( N-comp)

Γ � t : N[n : N ]T n /∈ fn(t)

Γ � t = α[n : N ](t @ n) : N[n : N ]T
( N-uniq)

We will see in Sect. 4 that they are sound for the nominal set semantics developed

in Sect. 3.

2.4 Non-binding name abstraction

FreshML [21] uses a non-binding form of name abstraction which is definable in

FreshMLTT as follows:

〈〈n : N〉〉T � N[n′ : N ](n n′) � T (3)

〈n : N〉t � α[n′ : N ](n n′) � t (4)

(where n′ /∈ fn(n, T, t)). Note that n occurs free in 〈〈n : N〉〉T and 〈n : N〉T ,
whereas it is bound in N[n : N ]T and α[n : N ]t. Admissible rules for this form of

name abstraction are shown in Fig. 3.

If Γ[n n′ : N ] � t : T , then it is a consequence of (fresh-hyp-typ) and the conversion

properties of the swapping operation (n n′) � that Γ[n n′ : N ] � (n n′) �T =T ′ and
Γ[n n′ : N ] � (n n′) � t = t′ : T ′, where t′ and T ′ are the expressions obtained from t
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and T by transposing occurrences of n and n′. It follows that

Γ[n : N ] � T

Γ � N[n : N ]T = ν[n : N ] 〈〈n : N〉〉T (5)

Γ[n : N ] � t : T

Γ � α[n : N ]t = ν[n : N ] 〈n : N〉t : N[n : N ]T
(6)

are admissible rules. Conversely, one could take the non-binding form of name

abstraction as primitive, with rules as in Fig. 3, and then define the binding form

from it using locally scoped names as in (5) and (6).

Non-binding name abstractions in the FreshMLTT meta-language are used when

one has to refer to an object-level bound name in more than one textual location.

Here is an example.

Example 2.2 As usual we write T � T ′ for the non-dependent function type, that

is, for Π(x : T )T ′ when x /∈ fv(T ′). For non-dependent name abstractions we write

〈〈N〉〉T � N[n : N ]T where n /∈ fn(T ) (7)

(which is definitionally equal to the non-binding abstraction 〈〈n : N〉〉T when n /∈
fn(T )). In the nominal sets semantics given below, the type 〈〈N〉〉T is modelled by

a nominal set of name abstractions [16, Chapter 4]. These are known to commute

with exponentiation up to isomorphism in the category of nominal sets (see [16,

Proposition 4.14]); and indeed we can express an isomorphism 〈〈N〉〉(T � T ′) ∼=
〈〈N〉〉T � 〈〈N〉〉T ′ within FreshMLTT. In fact we can give a dependently typed

generalisation of this isomorphism

N[n : N ] Π(x : T )T ′ ∼= Π(y : N[n : N ]T ) N[n : N ] T ′(y @ n/x) (8)

as follows. Define

T1 � N[n : N ] Π(x : T )T ′

T2 � Π(y : N[n : N ]T ) N[n : N ]T ′(y @ n/x)
i � λ(z : T1)λ(y : N[n : N ]T )α[n : N ] (z @ n)(y @ n)

j � λ(f : T2)α[n : N ]λ(x : T ) f(〈n : N〉x) @ n

Using the derived rules in Fig. 3 one can show that if

Γ[n : N ] � T

Γ[n : N ](x : T ) � T ′
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are provable in FreshMLTT, then so are

Γ � i : T1 � T2

Γ � j : T2 � T1

Γ(z : T1) � j(i z) = z : T1

Γ(f : T2)) � i(j f) = f : T2

Note that in the subexpression f(〈n : N〉x) @ n of j we use the non-binding name

abstraction 〈n : N〉x, rather than α[n : N ]x (which is equal up to α-equivalence to

α[n′ : N ]x for any n′), because after applying the function f we have to concrete at

the same name n in order for the typing to work out.

3 Families of Nominal Sets

We will give a semantics to FreshMLTT using nominal sets with sorted atoms. Thus

we assume there is a fixed set A of atoms, partitioned into countably infinitely many

subsets A =
⊎

N∈Nsort AN , indexed by the sorts of name N ∈ Nsort in FreshMLTT.

Each subset AN is countably infinite. We write a, b, . . . for typical elements of A.

Let G be the group of permutations π of A that respect sorts (π a ∈ AN , if

a ∈ AN ) and are finite (in the sense that π a = a for all but finitely many a ∈ A). A

nominal set is a setX equipped with a G-action with respect to which every element

has a finite support. This means that for each x ∈ X there is a finite subset A ⊆fin A

satisfying (∀π ∈ GA) π · x = x, where GA � {π ∈ G | (∀a ∈ A) π a = a}. Nominal

sets are the objects of a category that we will denote by Nom and whose morphisms

are equivariant functions (f(π · x) = π · (f x)), with composition and identities as

in the category of sets. We refer the reader to [16] for an introduction to nominal

sets and in particular to Sect. 4.7 of that book for the many-sorted version we use

here.

3.1 Nom as a category with families

To model FreshMLTT we will endow Nom with the structure of a category with

families (CwF) [8]. In general a CwF is specified by a category C with a terminal

object 1, together with the following structure:

• For each object X ∈ C, a collection C(X), whose elements are called families

over X.

• For each object X ∈ C and family E ∈ C(X), a collection C(X � E) of elements

of the family E over X.

• Operations for re-indexing families and elements along morphisms in C

E ∈ C(X) f ∈ C(Y,X)

E[f ] ∈ C(Y )

e ∈ C(X � E) f ∈ C(Y,X)

e[f ] ∈ C(Y � E[f ])
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satisfying

E[idX ] = E (A ∈ C(X)) (9)

E[f ◦ g] = E[f ][g] (E ∈ C(X), f ∈ C(Y,X), g ∈ C(Z, Y )) (10)

e[idX ] = e (e ∈ C(X � E) (11)

e[f ◦ g] = e[f ][g] (e ∈ C(X � E), f ∈ C(Y,X), g ∈ C(Z, Y )) (12)

• For each family E ∈ C(X), a comprehension object X.E ∈ C equipped with a

projection morphism p ∈ C(X.E,X), a generic element v ∈ C(X.E � E[p]) and

a pairing operation

f ∈ C(Y,X) E ∈ C(X) e ∈ C(Y � E[f ])

〈f , e〉 ∈ C(Y,X.E)

satisfying

p ◦ 〈f , e〉 = f (13)

v[〈f , e〉] = e (14)

〈f , e〉 ◦ g = 〈f ◦ g , e[g]〉 (15)

〈p , v〉 = idX.E (16)

Definition 3.1 We make the category Nom of nominal sets and equivariant func-

tions into a CwF as follows:

• The collection Nom(X) of families of nominal sets E over a nominal set

X ∈ Nom consists of X-indexed families of sets (Ex | x ∈ X) equipped with

a dependent G-action

actE ∈ ∏
x∈X

∏
π∈GEx � Eπ·x (17)

satisfying a finite support property given below. We will write π · e for the appli-

cation of actE to x ∈ X,π ∈ G, e ∈ Ex, leaving E and x as implicit arguments.

To qualify as an action (17) has to satisfy for all x ∈ X, π, π′ ∈ G and e ∈ Ex

π′ · (π · e) = π′π · e∈ ∈

Eπ′·(π·x) = Eπ′π·x
and

ι · e = e∈ ∈

Eι·x = Ex

(18)

(where ι denotes the identity permutation). In addition act is required to satisfy

the following finite support property: for every x ∈ X and e ∈ Ex there is a finite

set A ⊆fin A of atoms satisfying

(∀π ∈ GA) π · x = x ∧ π · e = e

(so that in particular A supports x in X and hence Eπ·x = Ex for any π ∈ GA).

In this case we will say that A is a finite support for e dependent upon x.
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• The collection Nom(X � E) of elements of a family E ∈ Nom(X) consists of

those dependent functions e ∈ ∏
x∈X Ex that are dependently equivariant, in the

sense that π · (e x) = e(π · x) ∈ Eπ·x, for all x ∈ X and π ∈ G.

• The re-indexing of E ∈ Nom(X) along f ∈ Nom(Y,X) is the Y -indexed family

of sets E[f ] � (Ef y | y ∈ Y ) with dependently-typed G-action inherited from E:

if e ∈ E[f ]y = Ef y, then we get π · e ∈ Eπ·(f y) = Ef(π·y) = E[f ]π·y (using the

fact f , being a morphisms in Nom, is equivariant). Similarly, the re-indexing of

e ∈ Nom(X � E) along f ∈ Nom(Y,X) is e[f ] � λ(y ∈ Y ) � e(f y), which is in

Nom(Y � E[f ]), because e is dependently equivariant and f is equivariant.

• For each E ∈ Nom(X), the comprehension objectX.E ∈ Nom is the nominal set

given by the disjoint union of sets
∑

x∈X Ex equipped with the G-action mapping

(x, e) ∈ ∑
x∈X Ex to π · (x, e) = (π · x, π · e), given by the G-action of X in the

first component and the dependent G-action of E in the second component. Note

that by definition of Nom(X), every (x, e) ∈ ∑
x∈X Ex is finitely supported with

respect to this G-action and hence X.E is indeed a nominal set.

The projection morphism p ∈ Nom(X.E,X) is given by first projection:

p(x, e) � x. The generic element v ∈ Nom(X.E � E[p]) is given by second

projection: v(x, e) � e ∈ Ex = E[p](x,e). Given E ∈ Nom(X), the pair-

ing of f ∈ Nom(Y,X) and e ∈ Nom(Y � E[f ]) is the equivariant function

〈f ,e〉 ∈ Nom(Y,X.E) given by mapping each y ∈ Y to 〈f ,e〉 y � (f y, e y) ∈ X.E.

It is easy to check that these definitions satisfy (9)–(16) and so make Nom into a

CwF.

Remark 3.2 For each object X ∈ C of a CwF, one can make C(X) into a category

by taking, for each E,E′ ∈ C(X), the set of morphismsC(X)(E,E′) to beC(X.E �
E′[p]) with identities given by generic elements and composition given by e′ ◦ e �
e′[〈p , e〉]. Then the mapping E ∈ C(X) �→ p ∈ C(X.E,X) extends to a full and

faithful functor to the slice category

C(X) → C/X (19)

E
e→ E′ �→ X.E

〈p,e〉 ��

p
��

X.E′

p
��

X

The re-indexing operations are mapped to pullback functors between slices, since

for each E ∈ C(X) and f ∈ C(Y,X)

Y.E[f ]
〈f◦p,v〉 ��

p

��

X.E

p

��
Y

f
��X

(20)

is a pullback in C; see [11, Proposition 3.9]. When C = Nom, the functors (19) are

not only full and faithful, but also essentially surjective and hence equivalences. This
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E ∈ C(X) F ∈ C(X.E)

ΠE F ∈ C(X)

f ∈ C(X.E � F )

lam f ∈ C(X � ΠE F )

f ∈ C(X � ΠE F ) e ∈ C(X � E)

app f e ∈ C(X � F [〈idX , e〉])

(ΠE F )[g] = Π(E[g])(F [〈g ◦ p , v〉])
(lam f)[g] = lam f [〈g ◦ p , v〉]

(app f e)[g] = app (f [g]) (e[g])

app (lam f) e = f [〈idX , e〉]
lam(app (f [p]) v) = f

Fig. 4. Π-types in a CwF

is because, given p : E → X in Nom/X, the X-indexed family of sets (p−1{x} | x ∈
X) inherits a dependent G-action from the G-action of E (since p is equivariant);

and for each x ∈ X, if A ⊆fin A supports e in E and p e = x, then it is a support for

e ∈ p−1{x} dependent upon x, in the sense of Definition 3.1. So (p−1{x} | x ∈ X)

is an object of Nom(X). It is sent by the functor (19) to

π1 :
∑

x∈X p−1{x} = {(x, e) | p e = x} → X

which is isomorphic in Nom/X to p : E → X via the second projection function

π2 : (x, e) �→ e, whose inverse is e �→ (p e, e).

3.2 Π-types in Nom

The contexts, types-in-context, terms-in-context and term-substitutions of Martin-

Löf Type Theory are interpreted in a CwF by its objects, families, elements and

morphisms respectively; see [11, Sect. 3.5]. CwFs provide an essentially algebraic

formulation of Type Theory syntax in nameless (de Bruijn index) style and conse-

quently one can translate each type-forming construct to an equivalent structure

within CwFs. For example, the extra structure (Π, lam, app) corresponding to Π-

types is given in Fig. 4. Since Nom is a topos and hence is in particular locally

cartesian closed, it follows from Remark 3.2 that as a CwF Nom has this structure.

We can describe (Π, lam, app) in this case as follows:

• Π: given E ∈ Nom(X) and F ∈ Nom(X.E), first note that we get a dependent

G-action on the X-indexed family of sets (
∏

e∈Ex
F(x,e) | x ∈ X) by mapping

f ∈ ∏
e∈Ex

F(x,e) to π ·f � λ(e ∈ Eπ·x) � π · (f(π−1 · e)). To get a family ΠE F ∈
Nom(X), for each x ∈ X we take (ΠE F )x to be the subset of

∏
e∈Ex

F(x,e)

consisting of those f that have a finite support dependent upon x with respect

to the above action.
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• lam: if f ∈ Nom(X.E � F ), then for each x ∈ X one can check that

lam f x � λ(e ∈ Ex) � f(x, e) ∈ ∏
e∈Ex

F(x,e)

is supported (dependently upon x) by any finite subset A ⊆fin A supporting

x in X; hence lam f x ∈ (ΠE F )x. Furthermore x �→ lam f x is dependently

equivariant (because f is) and hence lam f ∈ Nom(X � ΠE F ).

• app : if f ∈ Nom(X � ΠE F ) and e ∈ Nom(X � E), then for each x ∈ X we

have f x ∈ (ΠE F )x ⊆ ∏
e∈Ex

F(x,e) and e x ∈ Ex; hence

app f e x � (f x)(e x) ∈ F(x,e x) = F [〈id , e〉]x

and one can check that x �→ app f e x is dependently equivariant, because f and

e are. So we get app f e ∈ Nom(X � F [〈id , e〉]).
It is easy to see that these operations satisfy the properties in Fig. 4.

3.3 Name objects in Nom

For each sort of names N ∈ Nsort , the set AN of atoms of that sort becomes

a nominal set once we endow it with the G-action given by function application,

π · a � π a, with respect to which each a ∈ AN is supported by {a}.
From Remark 3.2 we have that the categoryNom(1) of families over the terminal

object 1 is equivalent to Nom. For each X ∈ Nom we will not make a notational

distinction between a nominal set Y and the corresponding family in Nom(X)

which is constant with value Y . In particular, for each sort of names N ∈ Nsort ,

we just write AN ∈ Nom(X) for an object of names regarded as a constant family

over X. The elements a ∈ Nom(X � AN ) of this family are just the equivariant

functions a ∈ Nom(X,AN ).

To interpret branching on name equality we will use the following operation in

the CwF Nom:

a, b ∈ Nom(X � AN ) e, f ∈ Nom(X � E)

ifeq(a, b, e, f) ∈ Nom(X � E)
(21)

where

ifeq(a, b, e, f)x �
{
e x if a x = b x

f x otherwise
(x ∈ X) (22)

3.4 Swapping names in context

If a, b ∈ AN are atoms of the same sort N , as usual we write (a b) for the permu-

tation in G that interchanges a with b, leaving all other atoms fixed. We lift the

action x �→ (a b) ·x from elements of nominal sets to families and their elements in

the CwF Nom as follows
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The operation

a, b ∈ Nom(X � AN ) E ∈ Nom(X)

(a b) · E ∈ Nom(X)
(23)

is defined by

((a b) · E)x � E(b x a x)·x (x ∈ X)

with dependent G-action

act (a b)·E xπ e � actE ((b x a x) · x)π e (x ∈ X,π ∈ G, e ∈ ((a b) · E)x)

∈ Eπ·(b x a x)·x
= E(b(π·x) a(π·x))·π·x (using equivariance of a and b)

= ((a b) · E)π·x

In other words, the action of π on e ∈ ((a b)·E)x is the action of π on e ∈ E(b x a x)·x
given by the family E. 9

Similarly, the operation

a, b ∈ Nom(X � AN ) e ∈ Nom(X � E)

(a b) · e ∈ Nom(X � (a b) · E)
(24)

is defined by

((a b) · e)x � e((b x a x) · x) (x ∈ X)

∈ E(b x a x)·x = ((a b) · E)x

which is dependently equivariant with respect to the above dependent G-action,

since ((a b)·e) (π·x) � e((b(π·x) a(π·x))·(π·x)) = π·e((b x a x)·x) = π·((a b)·e)x,
using equivariance of a, b and dependent equivariance of e.

3.5 Freshness in context

If X ∈ Nom, x ∈ X and a ∈ A, we write a # x for the usual nominal sets freshness

relation: by definition it means that there is a finite subset A ⊆fin A supporting x

in X with a /∈ A; see [16, Sect. 3.1]. If E ∈ Nom(X), then the freshness relation for

the nominal set X.E corresponds to a dependent version of freshness: if x ∈ X and

e ∈ Ex, then by Definition 3.1, there is some finite subset A ⊆fin A−{a} supporting

e dependent upon x iff a # (x, e) holds for the nominal set X.E. In this case it is

tempting to write ‘a # e’, but will avoid doing so, because it is easy to forget that

a # x is also required for this to make sense.

9 We write (b x a x) · x in the above, rather than (a x b x) · x, to indicate that when using equivariant
functions valued in general permutations rather than just transpositions, we should define (π · E)x to be
E(π x)−1·x. Of course (b x a x) · x = (a x b x) · x, since transpositions are self-inverse.
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As well as freshness for elements of families, we will need a notion of freshness

for families themselves. Given E ∈ Nom(X) and x ∈ X, it makes no sense to write

‘a # Ex’ because, given the way we have defined families of nominal sets, Ex is not

an element of a nominal set. Instead we use the fact that the freshness relation

can be characterised equationally: a # x holds iff (a b) · x = x holds for some (or

indeed, any) fresh b. In the CwF Nom we can replace ‘fresh b’ with use of the

separated product [16, Sect. 3.4]:

X ∗ AN � {(x, a) ∈ X × AN | a # x} (25)

This is a nominal subset of the product: the G-action on X ∗AN is well-defined by

π · (x, a) = (π · x, π a) (since the freshness relation is equivariant); and with respect

to this action (x, a) is finitely supported by A ∪ {a}, if A ⊆fin A supports x in X.

This separated product will be used to model the extension of typing contexts with

a fresh name. First and second projection yield

p ∈ Nom(X ∗ AN , X) p(x, a) � x (26)

ν ∈ Nom(X ∗ AN � AN ) ν(x, a) � a (27)

The first will be used to model weakening a judgement from a typing context to

one extended with a fresh name and the second will model the fresh name itself.

Definition 3.3 Given a ∈ Nom(X � AN ), using the operations in (26) and (27)

we get a[p], ν ∈ Nom(X ∗ AN � AN ). Then for any family E ∈ Nom(X) and any

element e ∈ Nom(X � E), using the swapping operations from Sect. 3.4 we define

a #X E � (a[p] ν) · E[p] = E[p] ∈ Nom(X ∗ AN ) (28)

a #X e � a #X E ∧ (a[p] ν) · e[p] = e[p] ∈ Nom(X ∗ AN � E[p]) (29)

Note that the equality of families of nominal sets in (28) means not only that for

all (x, b) ∈ X ∗AN the sets E(a x b)·x and Ex are equal, but also that the dependent

G-actions on these two families of sets are equal.

The following result follows easily from Definition 3.3:

Proposition 3.4 Suppose a, a′ ∈ Nom(X � AN ) and e ∈ Nom(X � E). Then

a #X E ⇒ a′ #X (a a′) · E (30)

a #X e ⇒ a′ #X (a a′) · e (31)

ν #X∗AN
e[p] (32)

�
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Proposition 3.5 (name restriction) There are operations

E ∈ Nom(X ∗ AN ) ν #X∗AN
E

resE ∈ Nom(X)
(33)

e ∈ Nom(X ∗ AN � E) ν #X∗AN
e

res e ∈ Nom(X � resE)
(34)

satisfying

(resE)[p] = E ∈ Nom(X ∗ AN ) (35)

(res e)[p] = e ∈ Nom(X ∗ AN � E) (36)

We call resE a name restricted family and res e a name restricted element (of a

name restricted family).

Proof. From definition (28) we have that ν #X∗AN
E implies that E(x,a) = E(x,b)

for all x ∈ X and a, b # x (and the dependent G-actions on each family are equal).

So resE is well-defined by

(resE)x � E(x,a) where a # x (x ∈ X) (37)

and clearly satisfies (resE)[p] = E. Similarly, if ν #X∗AN
e, then definition (29)

implies that e(x, a) = e(x, b) ∈ E(x,b) = E(x,a) for all x ∈ X and a, b # x. So res e

is well-defined by

(res e)x � e(x, a) where a # x (x ∈ X) (38)

and clearly satisfies (res e)[p] = e. �

The form of locally scoped name embodied by the above proposition might seem

trivial, but it is exactly the kind that occurs in connection with concreting name

abstractions, as we see next.

3.6 Dependent name abstraction

We next describe structure in the CwF Nom that enables us to model dependently

typed name abstraction, generalizing the usual notion of name abstraction for nom-

inal sets [16, Chapter 4] and putting into the context of CwFs the fibred category

construct Σ∗
N from [18, Sect. 3.3.2].

Definition 3.6 Given E ∈ Nom(X ∗ AN ), consider the X-indexed family of sets

NNE, where for each x ∈ X

( NNE)x � {(a, e) | a ∈ AN ∧ a # x ∧ e ∈ E(x,a)}/ ≈x

is a quotient set. The equivalence relation ≈x relates (a, e) and (a′, e′) iff (b a) · e =
(b a′) · e′ ∈ E(x,b) holds for some b ∈ AN with b �= a, b �= a′, b # (x, e) and
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b # (x, e′), or equivalently, for any such b. We will write the ≈x-equivalence class

of (a, e) as 〈a〉xe. We get a well-defined dependent G-action on NNE by defining

π · 〈a〉xe � 〈π a〉π·x(π · e). If A ⊆fin A supports e ∈ E(x,a) dependent upon (x, a),
then it also supports 〈a〉xe ∈ ( NNE)x. (In fact A− {a} supports 〈a〉xe, as the next

lemma shows.) So we get an operation

E ∈ Nom(X ∗ AN )

NNE ∈ Nom(X)
(39)

that we call dependent name abstraction for families of nominal sets.

Remark 3.7 (Curry-Howard for N) If X ∈ Nom and ϕ(a, x) is a property of

elements of AN ×X that is equivariant (that is, (∀π ∈ G) ϕ(a, x) ⇒ ϕ(π a, π · x)),
then the freshness quantifier ( Na ∈ AN )ϕ(a, x) means that ϕ(a, x) holds for some

a ∈ AN with a # x, or equivalently, for any such a; see [16, Sect. 3.2]. There

is a form of Curry-Howard correspondence between this quantifier and dependent

name abstraction. For we can regard each family E ∈ Nom(X) as an equivariant

property ϕE(x) of elements x ∈ E, by defining ϕE(x) to hold iff Ex is inhabited.

Then ϕ NNE(x) holds iff ( Na ∈ AN )ϕE(x, a).

Lemma 3.8 Suppose E ∈ Nom(X ∗ AN ) and x ∈ X.

(i) For all 〈a〉xe ∈ ( NNE)x and a′ ∈ AN , a′ # (x, 〈a〉xe) ∈ X. NNE iff either

a′ = a, or a′ # ((x, a), e) ∈ (X ∗ AN ).E.

(ii) For each f ∈ ( NNE)x and a ∈ AN with a # (x, f) ∈ X. NNE, there is a unique

f @x a ∈ E(x,a), called the concretion of f at a, such that f = 〈a〉x(f @x a).

Proof.

(i) The proof is similar to the proof of [16, Proposition 4.5].

(ii) Existence: by definition of NNE, f is of the form 〈a′〉xe for some a′ # x and

e ∈ E(x,a′). If a′ = a, we can take f @x a = e; otherwise, by part (i) we have

a # ((x, a′), e) and hence (a a′) · e ∈ E(x,a) with (a′, e) ≈x (a, (a a′) · e).
Therefore f = 〈a′〉xe = 〈a〉x(a a′) · e and we can take f @x a = (a a′) · e.

Uniqueness: if 〈a〉xe = 〈a〉xe′ ∈ ( NNE)x, then (a, e) ≈x (a, e′) and hence for

a suitably fresh b we have (b a) · e = (b a) · e′ and therefore e = e′.
�

There is a name abstraction operation for elements of families

e ∈ Nom(X ∗ AN � E)

abs e ∈ Nom(X � NNE)
(40)

which is well-defined by

abs e x � 〈a〉xe(x, a) where a # x (41)

since the right-hand side is independent of the choice of a ∈ AN satisfying a # x

and does give a dependently equivariant function.
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We next lift the process of concreting a name abstraction at a fresh atom to an

operation in the CwF Nom. This involves using the version of name restriction

given by Proposition 3.5. Suppose f ∈ Nom(X � NNE) and a ∈ Nom(X � AN )

satisfy a #X f and hence also a #X NNE. From the latter it follows that E ∈
Nom(X ∗AN ) satisfies a[p] #X∗AN

E and hence by Proposition 3.4 that ν #X∗AN

(a[p] ν) ·E. So as in Proposition 3.5 we can form res (a[p] ν) · E ∈ Nom(X). For

each x ∈ X, picking any b # x, by Lemma 3.8 we get (f x) @x b ∈ E(x,b) and hence

(a x b)·((f x)@xb) ∈ E((a x b)·x,a x) = (res (a[p] ν) · E)x, by (37). Furthermore, this

element of (res (a[p] ν) · E)x is independent of the choice of of b, because a #X f .

To see this, suppose b′ # x and let e � (f x) @x b and e′ � (f x) @x b′. Thus

f x = 〈b〉xe = 〈b′〉xe′. From a #X f , that is (a[p] ν) · f [p] = f [p], we get

f((a x b) · x) = f x = f((a x b′) · x) and hence 〈a x〉x(a x b) · e = (a x b) · f x =

〈a x〉x(a x b′) · e′; therefore (a x b) · e = (a x b′) · e′, by definition of ≈x.

In this way we get an operation

f ∈ Nom(X � NNE) a ∈ Nom(X � AN ) a #X f

conc f a ∈ Nom(X � res (a[p] ν) · E)
(42)

well-defined by:

conc f a x � (a x b) · (fx@x b) where b # x (43)

It is not hard to see that NN , abs and conc are stable under re-indexing

( NNE)[g] = NN (E[g ∗ AN ]) (44)

(abs e)[g] = abs(e[g ∗ AN ]) (45)

(conc f a)[g] = conc(f [g])(a[g]) (46)

and satisfy the following forms of β- and η-conversion:

conc(abs e) a = res((a[p] ν) · e) (47)

abs(conc(f [p]) ν) = f (48)

Remark 3.9 (adjoint characterization of NN) The non-dependent name ab-

straction [AN ]Y discussed in [16, Sect. 4.7] is the special case of (39) when X = 1

and E = Y [p] for some Y ∈ Nom(1) ∼= Nom. The functor [AN ]( ) : Nom →
Nom can be characterised as the right adjoint to the separated product function

( ) ∗ AN : Nom → Nom; see [16, Theorem 4.12]. Similarly, NNE can be given a

characterization as a right adjoint, as follows:

For each X ∈ Nom there is a functor ( ) ∗ AN : Nom(X) → Nom(X ∗ AN )

which takes an object E ∈ Nom(X) to the family given by

(E ∗ AN )(x,a) � {e ∈ Ex | a # (x, e) ∈ X.E} ((x, a) ∈ X ∗ AN ) (49)

with dependentG-action inherited from that for E: π ∈ G, e ∈ (E∗AN )(x,a) �→ π·e ∈
(E∗AN )(π·x,π a). The functor takes morphisms f ∈ Nom(X)(E,E′) = Nom(X.E �
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E′[p]) to f ∗AN ∈ Nom(X ∗AN )(E ∗N AN , E′ ∗AN ) = Nom((X ∗AN ).(E ∗AN ) �
(E′ ∗ AN )[p]), where

(f ∗ AN )((x, a), e) � f(x, e) (((x, a), e) ∈ (X ∗ AN ).(E ∗ AN )) (50)

(which is well-defined, because f is dependently equivariant and hence satisfies

a # (x, e) ∈ X.E ⇒ a # (x, f(x, e)) ∈ X.E′). The functor ( ) ∗ AN : Nom(X) →
Nom(X ∗ AN ) is in fact full and faithful: faithfulness is immediate (since for any

(x, e) ∈ X.E we can always find some a ∈ AN with a # (x, e)); fullness amounts to

the fact that since g ∈ Nom((X ∗ AN ).(E ∗ AN ) � (E′ ∗ AN )[p]) satisfies

a # (x, e) ∈ X.E ⇒ a # (x, g((x, a), e)) ∈ X.E′

we get a well-defined f ∈ Nom(X.E � E′[p]) by defining

f(x, e) � g((x, a), e) where a # (x, e)

and f ∗ AN = g.

We claim that the dependent name abstraction NNE is the value at E ∈
Nom(X) of a right adjoint to ( ) ∗ AN : Nom(X) → Nom(X ∗ AN ). The counit

of the adjunction at E

εE ∈ Nom(X ∗ AN )( NNE ∗ AN , E) = Nom((X ∗ AN ).( NNE ∗ AN ) � E[p])

is given by the concretion operation from Lemma 3.8(ii):

εE((x, a), f) � f @x a (((x, a), f) ∈ (X ∗ AN ).( NNE ∗ AN ))

This is an isomorphism (necessarily, because ( ) ∗ AN is full and faithful), whose

inverse is given by the element of Nom((X ∗ AN ).E � ( NNE)[p]) that maps each

((x, a), e) ∈ (X ∗ AN ).E to 〈a〉xe ∈ ( NNE)x. It has the universal property needed

for the right adjoint at E: for each

f ∈ Nom(X ∗ AN )(E′ ∗ AN , E) = Nom((X ∗ AN ).(E′ ∗ AN ) � E[p])

we have

f̂ ∈ Nom(X)(E′, NNE) = Nom(X.E′ � ( NNE)[p])

well-defined by

f̂(x, e′) � 〈a〉xf((x, a), e′) where a # (x, e′) ∈ X.E′

Then εE◦(f̂ ∗AN ) = f , because concretion satisfies (〈a〉xe)@xa = e (by Lemma 3.8);

and f̂ is the unique such morphism in Nom(X)(E′, NNE), because concretion sat-

isfies f = 〈a〉x(f @x a) (by the same lemma).
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��� ↘ 1 ∈ C

�Γ� ↘ X ∈ C �Γ � T � ↘ E ∈ C(X) x /∈ dom(Γ)

�Γ(x : T )� ↘ X.E ∈ C

�Γ � T � ↘ E ∈ C(X) �Γ(x : T ) � T ′� ↘ E′ ∈ C(X.E)

�Γ � Π(x : T )T ′� ↘ ΠE E′ ∈ C(X)

�Γ � T � ↘ E ∈ C(X) x /∈ dom(Γ)

�Γ(x : T ) � x� ↘ v ∈ C(X.E � E[p])

�Γ � x� ↘ e ∈ C(X � E) x′ /∈ dom(Γ) �Γ � T ′� ↘ E′ ∈ C(X)

�Γ(x′ : T ′) � x� ↘ e[p] ∈ C(X.E′ � E[p])

�Γ � T � ↘ E ∈ C(X) �Γ(x : T ) � t� ↘ e ∈ C(X.E � F )

�Γ � λ(x : T )t� ↘ lam e ∈ C(X � ΠE F )

�Γ � t� ↘ f ∈ C(X � ΠE F ) �Γ � t′� ↘ e ∈ C(X � E)

�Γ � t t′� ↘ app f e ∈ C(X � F [〈id , e〉])

Fig. 5. Semantics of MLTT in a CwF

4 Nominal Set Semantics of FreshMLTT

Hofmann [11, Sect. 3.5] (following Streicher [22]) gives the semantics of Martin-Löf

Type Theory in a CwF C. It takes the form of a partial interpretation function � �

mapping contexts to objects, types-in-context to families and terms-in-context to

elements of families. For simplicity we just consider Π-types, but other constructs

of conventional Martin-Löf Type Theory can be interpreted similarly. Specifically,

given a CwF C with Π-types (see Fig. 4), Fig. 5 inductively defines the graph of

the interpretation function using relations of the following form, where Γ ranges

over context expressions, T over type expressions, t over term expressions, X over

C-objects, E over C-families and e over elements of C-families:

�Γ� ↘ X ∈ C

�Γ � T � ↘ E ∈ C(X)

�Γ � t� ↘ e ∈ C(X � E)

Here, we take �Γ� ↘ X ∈ C to mean that �Γ� is defined (written as �Γ�↓) and equal

to X ∈ C, etc. Hofmann [11, Theorem 3.35] sketches the proof of the following

soundness properties of the interpretation with respect to the provable judgements

A.M. Pitts et al. / Electronic Notes in Theoretical Computer Science 312 (2015) 19–5040



of Martin-Löf Type Theory:

Γ � ok ⇒ (∃X) �Γ� ↘ X ∈ C (51)

Γ � T ⇒ (∃X,E) �Γ � T � ↘ E ∈ C(X) (52)

Γ � t : T ⇒ (∃X,E, e) �Γ � T � ↘ E ∈ C(X) ∧ �Γ � t� ↘ e ∈ C(X � E)

(53)

Γ � T = T ′ ⇒ (∃X,E) �Γ � T � ↘ E ∈ C(X) ∧ �Γ � T ′� ↘ E ∈ C(X) (54)

Γ � t = t′ : T ⇒ (∃X,E, e) �Γ � t� ↘ e ∈ C(X � E) ∧
�Γ � t′� ↘ e ∈ C(X � E) (55)

Taking C to be the CwF Nom discussed in Sect. 3, the interpretation par-

tial function can be extended to the expressions of FreshMLTT. Fig. 6 gives the

additional rules. Types of names are interpreted as name objects (Sect. 3.3) and

dependent name abstraction types by the operation (39). Name swapping on types

and terms is interpreted using the operations in Sect. 3.4. Locally scoping names in

types and terms is interpreted using (33) and (34). Terms for branching on name

equality, for name abstraction and concretion are interpreted using (21), (40) and

(42).

Lemma 4.1 (weakening) If �ΓΓ′�↓ ∈ Nom and �ΓΔΓ′�↓ ∈ Nom, we can define

a generalised projection morphism P(Γ,Δ,Γ′) ∈ Nom(�ΓΔΓ′�, �ΓΓ′�) as follows:

P(Γ, �, �) = id

P(Γ,Δ(x : T ), �) = P(Γ,Δ, �) ◦ p
P(Γ,Δ[n : N ], �) = P(Γ,Δ, �) ◦ p
P(Γ,Δ,Γ′(x : T )) = 〈P(Γ,Δ,Γ′) ◦ p , v〉
P(Γ,Δ,Γ′[n : N ]) = P(Γ,Δ,Γ′) ∗ AN

Then for any term t and any type T , we have 10

�ΓΔΓ′ � T � ≡ �ΓΓ′ � T �[P(Γ,Δ,Γ′)]
�ΓΔΓ′ � t� ≡ �ΓΓ′ � t�[P(Γ,Δ,Γ′)]

Furthermore, the generalised projection morphisms P(Γ, �[n : N ],Γ′) are surjective,

since p ∈ Nom(X ∗ AN , X) (26) is surjective (because given x ∈ X we can always

pick some atom a not in its support and hence with p(x, a) = x). �

Theorem 4.2 (soundness) The soundness properties (51)–(55) of the interpre-

tation of Martin-Löf Type Theory in Nom continue to hold when it is extended to

FreshMLTT. In addition, the following soundness properties for definitional fresh-

10We write x ≡ y the Kleene equality of two potentially undefined expressions, i.e. if one side is defined so
is the other and then x = y.
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�Γ� ↘ X ∈ Nom n /∈ dom(Γ)

�Γ[n : N ]� ↘ X ∗ AN ∈ Nom

�Γ� ↘ X ∈ Nom

�Γ � N� ↘ AN ∈ Nom(X)

�Γ � x� ↘ e ∈ Nom(X � E) n′ /∈ dom(Γ)

�Γ[n′ : N ′] � x� ↘ e[p] ∈ Nom(X ∗ AN ′ � E[p])

�Γ� ↘ X ∈ Nom n /∈ dom(Γ)

�Γ[n : N ] � n� ↘ ν ∈ Nom(X ∗ AN � AN )

�Γ � n� ↘ e ∈ Nom(X � AN ) x′ /∈ dom(Γ) �Γ � T ′� ↘ E′ ∈ Nom(X)

�Γ(x′ : T ′) � n� ↘ e[p] ∈ Nom(X.E′ � AN )

�Γ � n� ↘ e ∈ Nom(X � AN ) n′ /∈ dom(Γ)

�Γ[n′ : N ′] � n� ↘ e[p] ∈ Nom(X ∗ AN ′ � AN )

�Γ � t� ↘ a ∈ Nom(X � AN ) �Γ � n� ↘ b ∈ Nom(X � AN )

�Γ � t1� ↘ e ∈ Nom(X � E) �Γ � t2� ↘ f ∈ Nom(X � E)

�Γ � if t = n then t1 else t2� ↘ ifeq(a, b, e, f) ∈ Nom(X � E)

�Γ � T � ↘ E ∈ Nom(X)

�Γ � n� ↘ a ∈ Nom(X � AN ) �Γ � n′� ↘ b ∈ Nom(X � AN )

�Γ � (n n′) · T � ↘ (a b) · E ∈ Nom(X)

�Γ � t� ↘ e ∈ Nom(X � E)

�Γ � n� ↘ a ∈ Nom(X � AN ) �Γ � n′� ↘ b ∈ Nom(X � AN )

�Γ � (n n′) · t� ↘ (a b) · e ∈ Nom(X � (a b) · E)

�Γ[n : N ] � T � ↘ E ∈ Nom(X ∗ AN ) ν #X∗AN
E

�Γ � ν[n : N ]T � ↘ resE ∈ Nom(X)

�Γ[n : N ] � t� ↘ e ∈ Nom(X ∗ AN � E) ν #X∗AN
e

�Γ � ν[n : N ] t� ↘ res e ∈ Nom(X � resE)

�Γ[n : N ] � T � ↘ E ∈ Nom(X ∗ AN )

�Γ � N[n : N ]T � ↘ NNE ∈ Nom(X)

�Γ[n : N ] � t� ↘ e ∈ Nom(X ∗ AN � E)

�Γ � α[n : N ]t� ↘ abs e ∈ Nom(X � NNE)

�Γ � t� ↘ f ∈ Nom(X � NNE) �Γ � n� ↘ a ∈ Nom(X � AN ) a #X f

�Γ � t @ n� ↘ conc f a ∈ Nom(X � res (a[p] ν) · E)

Fig. 6. Additional rules for the semantics of FreshMLTT
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ness hold with respect to the relations a #X E and a #X e from Definition 3.3:

Γ � (n : N) # T ⇒ (∃X, a,E) �Γ � n� ↘ a ∈ Nom(X � AN ) ∧
�Γ � T � ↘ E ∈ Nom(X) ∧ a #X E (56)

Γ � (n : N) # t : T ⇒ (∃X, a,E, e) �Γ � n� ↘ a ∈ Nom(X � AN ) ∧
�Γ � T � ↘ E ∈ Nom(X) ∧ �Γ � t� ↘ e ∈ Nom(X � E) ∧ a #X e (57)

Proof. (sketch) The proof is done by mutual induction on the judgements of the

FreshMLTT type system. We omit the induction steps for those judgements that

already appear in MLTT, since a detailed proof (using contextual categories) can be

found in [22, Chapter 3]. The remaining induction steps follow from the properties

of the CwF Nom established in Sect. 3. We give details for the interesting cases.

Case

ΓΔ � T ΓΔ � T ′

Γ[n : N ]Δ � T = T ′

ΓΔ � T = T ′ (n-elim-typ)

ΓΔ � t : T ΓΔ � t′ : T
Γ[n : N ]Δ � t = t′ : T

ΓΔ � t = t′ : T
(n-elim-term)

Assuming ΓΔ � T and ΓΔ � T ′, we apply the induction hypothesis to obtain

�ΓΔ� ↘ X ∈ Nom, �ΓΔ � T � ↘ E ∈ Nom(X) and �ΓΔ � T ′� ↘ E′ ∈ Nom(X).

Assuming also Γ[n : N ]Δ � T = T ′, gives us �Γ[n : N ]Δ� ↘ X ′ ∈ Nom and

E[P(Γ, �[n : N ],Δ)] = E′[P(Γ, �[n : N ],Δ)] ∈ Nom(X ′) using the Weakening

Lemma (4.1). Then E = E′ ∈ Nom(X) follows from the fact that projection

morphisms are surjective.

The induction step for (n-elim-term) similarly follows from the surjectivity of

projection morphisms.

Case

Γ � n : N Γ � T Γ[n′ : N ] � (n n′) � T = T

Γ � (n : N) # T
(fresh-typ)

Supposing Γ � n : N and Γ � T , we obtain �Γ� ↘ X ∈ Nom, �Γ � n� ↘ a ∈
Nom(X � AN ) and �Γ � T � ↘ E ∈ Nom(X) using the induction hypothesis.

It follows from the Weakening Lemma that �Γ[n′ : N ] � T � ↘ E[p] ∈ Nom(X ∗
An). Therefore

�Γ[n′ : N ] � (n n′) � T � ↘ (a[p] ν) · E[p] ∈ Nom(X ∗ AN )

with (a[p] ν) · E[p] = E[p], i.e. a #X E.
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Case

Γ � T ΓΔ � ok [n : N ], [n′ : N ] ∈ Δ

ΓΔ � (n n′) � T = T
(fresh-hyp-typ)

Suppose that Γ � T , ΓΔ � ok and [n : N ], [n′ : N ] ∈ Δ. We only consider

the case where n �= n′ and Δ = Δ1[n : N ]Δ2[n
′ : N ]Δ3. Using the induction

hypothesis we get �Γ�↓, �Δ�↓, �ΓΔ�↓ ∈ Nom and �Γ � T � ↘ E ∈ Nom(�Γ�). We

have ν #�ΓΔ1�∗AN
E[P(Γ,Δ1, �)][p] by (32) and hence a #ΓΔ E′ via the Weakening

Lemma, where a � ν[P(ΓΔ1[n : N ],Δ2[n
′ : N ]Δ3, �)] and E′ � E[P(Γ,Δ, �)].

Similarly, a′ #ΓΔ E′ with a′ � ν[P(ΓΔ1[n : N ]Δ2[n
′ : N ],Δ3, �)]. It follows from

Definition 3.3 and the properties of dependent G-actions that

E′[p] = (a′[p] ν) · (a[p] ν) · E′[p]
= (a[p] a′[p]) · (a′[p] ν) · E′[p]
= (a[p] a′[p]) · E[p]

= ((a a′) · E′)[p]

Since the projection function, p, is surjective, (a a′) · E′ and E′ are equal families

over �ΓΔ� ∈ Nom.

Case

Γ[n : N ] � (n : N) # T

Γ[n : N ] � ν[n : N ]T = T
(local-typ-comp)

Suppose that Γ[n : N ] � (n : N) # T . Then we obtain �Γ[n : N ]� ↘ X ∗AN ∈ Nom

and �Γ[n : N ] � T � ↘ E ∈ Nom(X ∗AN ) satisfying ν #X∗AN
E by applying the in-

duction hypothesis and hence �Γ � ν[n : N ]T � ↘ resE ∈ Nom(X). Consequently,

�Γ[n : N ] � ν[n : N ]T � ↘ (resE)[p] ∈ Nom(X ∗ AN ) by the Weakening Lemma

and (resE)[p] = E ∈ Nom(X ∗ AN ) by (35).

Case

Γ[n′ : N ] � (n : N) # T Γ � (n : N) # t : N[n′ : N ]T

Γ � t @ n : ν[n′ : N ] (n n′) � T
( N-elim)

Suppose Γ[n′ : N ] � (n : N) # T . Applying the induction hypothesis gives �Γ[n′ :
N ]� ↘ X ∗ AN ∈ Nom, �Γ[n′ : N ] � T � ↘ E ∈ Nom(X ∗ AN ), �Γ[n′ : N ] �
n� ↘ a[p] ∈ Nom(X ∗ AN � AN ) and a[p] #X∗AN

E. It follows from (32) that

ν #x∗AN
(a[p] ν) ·E. Hence, �Γ � ν[n : n′](n n′) �T � ↘ res (a[p] ν) · E ∈ Nom(X)

by (33).
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Supposing further that Γ � (n : N) # t : N[n′ : N ]T , we obtain �Γ � N[n′ :

N ]T � ↘ NN �Γ[n′ : N ]T � = NNE ∈ Nom(X) and �Γ � t� ↘ f ∈ Nom(X � NNE)

with a #X f from the induction hypothesis. Hence, �Γ � t @ n� ↘ conc fa ∈
Nom(X � res (a[p] ν) · E).

Case

Γ[n′ : N ] � (n : N) # t : T n �= n′

Γ � (α[n′ : N ]t) @ n = ν[n′ : N ] (n n′) � t : ν[n′ : N ] (n n′) � T
( N-comp)

Suppose Γ[n′ : N ] � (n : N) # t : T with n �= n′. The induction hypothesis provides

us with �Γ[n′ : N ]� ↘ X ∗ AN , �Γ[n′ : N ] � n� ↘ a[p] ∈ Nom(X ∗ AN � AN ),

�Γ[n′ : N ] � T � ↘ E ∈ Nom(X ∗ AN ) and �Γ[n′ : N ] � t� ↘ e ∈ Nom(X ∗ AN �
E) satisfying a[p] #X∗AN

e. It follows from (40) and (42) that conc(abs e) a ∈
Nom(X � res (a[p] ν) · E) and from (31) and (34) that res (a[p] ν) · e ∈ Nom(X �
res (a[p] ν) · E). Hence, conc(abs e) a = res (a[p] ν) · e by (47).

Case

Γ � t : N[n : N ]T n /∈ fn(t)

Γ � t = α[n : N ](t @ n) : N[n : N ]T
( N-uniq)

Suppose Γ � t : N[n : N ]T . We obtain �Γ� ↘ X ∈ Nom, �Γ � N[n : N ]T � ↘
NNE ∈ Nom(X) and �Γ � t� ↘ f ∈ Nom(X � NNE) by applying the induction

hypothesis. Then �Γ[n : N ] � t� ↘ f [p] ∈ Nom(X ∗ AN � NN (E[p ∗ AN ])) by the

Weakening Lemma and conc(f [p]) ν ∈ Nom(X ∗ AN � res (ν[p] ν) · E[p ∗ AN ]) by

(42) using Proposition 3.4. We have res (ν[p] ν) · E[p ∗ AN ] = E ∈ Nom(X ∗ AN )

by (28) and hence abs(conc(f [p]) ν) ∈ Nom(X � NNE). Thus abs(conc(f [p]) ν) =

f ∈ Nom(X � NNE) by (48). �

5 Related Work

The first work on a dependent type theory with features inspired by the nominal

sets treatment of names and binding was by Schöpp and Stark [19,18]. They make

use of a ‘bunched’ structure for typing contexts, whose semantics combines the usual

cartesian product with the separated product X ∗ Y = {(x, y) ∈ X × Y | x # y} of

nominal sets [16, Sect. 3.4]; and they develop an abstract view of separated products

and its adjoints using fibred category theory, together with a corresponding version

of Martin-Löf’s extensional Type Theory [13]. Here we are less ambitious, since we

only consider the special case of X ∗Y when Y = AN is a nominal set of names. We

also use categories with families rather than fibred categories, but to a large extent

that is a matter of personal taste (of the first author). However, we also target the

intensional version of Martin-Löf Type Theory [14], aiming for a system that is not
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only implementable, but also reasonably simple from a user point of view. This is

also one of the aims of Cheney’s DNTT [3], which was partly inspired by the work of

Schöpp and Stark and is the system most closely related to the one presented here.

Syntactically, DNTT adds to LF [10] names and dependent name abstraction types,

with associated abstraction and concretion terms. However, the rule for forming

concretions in DNTT has a strong hypothesis involving meta-theoretic freshness of

the concreting name, rather than the ‘definitional freshness’ we have adopted from

Crole and Nebel [7]. In our notation, the rule is

Γ � t : N[n : N ]T Γ[n : N ]Δ � ok

Γ[n : N ]Δ � t @ n : T

and, for example, it is not strong enough to type the term j in Example 2.2. As

explained in Sect. 2.3, the FreshMLTT rules for concretion involve extra syntactic

constructs, namely terms for swapping names and for locally scoping names. The

latter in particular should make FreshMLTT more expressive than existing ‘nominal’

type theories for encoding syntax-manipulating algorithms involving the creation of

fresh names with a static scope – a common feature when it comes to manipulating

binders with explicit names. Neither DNTT, nor the ‘calculus of nominal induc-

tive constructions’ (CNIC) of Westbrook et al. [26,25] feature constructs for locally

scoped names. 11 There are of course other approaches than the nominal one for

dealing with issues to do with object-language binders in logical frameworks; we

refer the reader to [3, Sect. 2] for a brief survey.

6 Future Work

We plan to develop a notion of normal form for FreshMLTT expressions, together

with an algorithmic version of the rules and an implementation of them. In par-

ticular, we hope to show that FreshMLTT has decidable type-checking. So far we

have normal forms and a (currently partial) normalization result via normalization

by evaluation [1] for a simply typed version of FreshMLTT. For simplicity, we have

presented our theory of dependently typed name abstraction within Martin-Löf’s

open-ended type theory. An implemented version will need a closed system; and

to be reasonably expressive that system should have universes and inductively de-

fined families of types. As the Agda system shows, the usefulness of the latter is

much enhanced by introducing dependently typed patterns [6]. We do not yet know

whether these can be enhanced with FreshML-style name abstraction patterns [20,

Sect. 2.4]. In any case, the use of dependent name abstraction within inductively

defined families of types seems to offer interesting possibilities. For example, the

CwF Nom supports the interpretation of inductively defined types for propositional

freshness, which relate to definitional freshness in the same way that propositional

equality types relate to definitional equality. Such types should allow one to develop

constructive versions of some theorems of nominal logic [15] via the Curry-Howard

11 In particular, the ν types in CNIC are a form of name abstraction, not local scoping.
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correspondence. As well inductive types, dually, it seems worth investigating the

interaction between dependent name abstraction and coinductively defined types;

see for example [12].

We have given a semantics for FreshMLTT by identifying appropriate structure

in the particular CwF of nominal sets. It should be possible to axiomatize that

structure as a generalised algebraic theory [2] extending the one for categories with

families given by Dybjer [8, Sect. 2.2]. In this way one would obtain an algebraic

version of the type theory we study in this paper.
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A The Rules of FreshMLTT
We only give the rules involving the new features of FreshMLTT. For the usual rules of Martin-Löf Type
Theory see [14], [11, Sect. 2], or [23, Appendix A.2].

Structural rules

Γ 	 ok ΓΔ 	 J n /∈ dom(ΓΔ)

Γ[n : N ]Δ 	 J (wkg)

ΓΔ 	 T ΓΔ 	 T ′
Γ[n : N ]Δ 	 T = T ′

ΓΔ 	 T = T ′ (n-elim-typ)

ΓΔ 	 t : T ΓΔ 	 t′ : T
Γ[n : N ]Δ 	 t = t′ : T

ΓΔ 	 t = t′ : T
(n-elim-term)

Well-formed types

Γ 	 ok

Γ 	 N
(n-form)

Γ 	 n : N Γ 	 n′ : N Γ 	 T

Γ 	 (n n′) � T
(swap-typ)

Γ[n : N ] 	 (n : N) # T

Γ 	 ν[n : N ]T
(local-typ)

Γ[n : N ] 	 T

Γ 	 N[n : N ]T
( N-form)

Typing relation

Γ 	 ok [n : N ] ∈ Γ

Γ 	 n : N
(n-intro)

Γ 	 n : N Γ 	 n′ : N Γ 	 t : T

Γ 	 (n n′) � t : (n n′) � T
(swap-term)

Γ 	 t : N Γ 	 n : N Γ 	 t1 : T Γ 	 t2 : T

Γ 	 if t = n then t1 else t2 : T
(ifeq)

Γ[n : N ] 	 (n : N) # t : T

Γ 	 ν[n : N ] t : ν[n : N ]T
(local-term)

Γ[n : N ] 	 t : T

Γ 	 α[n : N ]t : N[n : N ]T
( N-intro)

Γ[n′ : N ] 	 (n : N) # T Γ 	 (n : N) # t : N[n′ : N ]T

Γ 	 t @ n : ν[n′ : N ] (n n′) � T
( N-elim)

Definitional freshness for types

Γ 	 n : N Γ 	 T Γ[n′ : N ] 	 (n n′) � T = T

Γ 	 (n : N) # T
(fresh-typ)

Definitional freshness for terms

Γ 	 (n : N) # T Γ[n′ : N ] 	 (n n′) � t = t : T

Γ 	 (n : N) # t : T
(fresh-term)

Definitionally equal types

Γ 	 T ΓΔ 	 ok [n : N ], [n′ : N ] ∈ Δ

ΓΔ 	 (n n′) � T = T
(fresh-hyp-typ)

Γ[n : N ] 	 (n : N) # T

Γ[n : N ] 	 ν[n : N ]T = T
(local-typ-comp)

(cong-typ): congruence properties for
(n n′) � T , ν[n : N ]T and N[n : N ]T (omitted).
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(swap-typ-comp): computational properties of swapping,

with well-formedness hypotheses omitted:

(n n) � T = T

(n n′) � (n n′) � T = T

(n n′) � (m m′) � T = ((n n′)m (n n′)m′) � (n n′) � T
(where (n n′)m is n′ if m = n, is n if m = n′ and is m otherwise)

(n n′) �N = N

(n n′) � ν[n′′ : N ]T = ν[n′′ : N ] (n n′) � T where n′′ 
= n, n′

(n n′) � N[n′′ : N ]T = N[n′′ : N ](n n′) � T where n′′ 
= n, n′

(n n′) �Π(x : T )T ′ = Π(x : (n n′) � T ) (n n′) � T ′((n n′) � x/x)

Definitionally equal terms

Γ 	 t : T ΓΔ 	 ok [n : N ], [n′ : N ] ∈ Δ

ΓΔ 	 (n n′) � t = t : T
(fresh-hyp-term)

Γ[n : N ] 	 (n : N) # t : T

Γ[n : N ] 	 ν[n : N ] t = t : T
(local-term-comp)

Γ[n′ : N ] 	 (n : N) # t : T n 
= n′

Γ 	 (α[n′ : N ]t) @ n = ν[n′ : N ] (n n′) � t : ν[n′ : N ] (n n′) � T
( N-comp)

Γ 	 t : N[n : N ]T n /∈ fn(t)

Γ 	 t = α[n : N ](t @ n) : N[n : N ]T
( N-uniq)

(cong-term): congruence properties for
(n n′) � t, if t = n then t′ else t′′, ν[n : N ] t, α[n : N ]t and t @ n (omitted).

(swap-term-comp): computational properties of swapping,

with well-formedness hypotheses and types omitted:

(n n) � t = t

(n n′) � (n n′) � t = t

(n n′) � (m m′) � t = ((n n′)m (n n′)m′) � (n n′) � t
(where (n n′)m is n′ if m = n, is n if m = n′ and is m otherwise)

(n n′) � n′′ = (n n′)n′′

(n n′) � (if t=n′′ then t′ else t′′)=if (n n′) � t=(n n′)n′′ then (n n′) � t′ else (n n′) � t′′

(n n′) � ν[n′′ : N ] t = ν[n′′ : N ] (n n′) � t where n′′ 
= n, n′

(n n′) � α[n′′ : N ]t = α[n′′ : N ](n n′) � t where n′′ 
= n, n′

(n n′) � λ(x : T )t = λ(x : (n n′) � T ) (n n′) � t((n n′) � x/x)
(n n′) � t t′ = ((n n′) � t)((n n′) � t′)

(if-comp): computational properties of conditionals,

with well-formedness hypotheses and types omitted:

if n = n then t else t′ = t

if n = n′ then t else t′ = t′ (where n 
= n′)
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