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Abstract

Endotype Discovery in Acute Respiratory Distress Syndrome
Dr Romit Samanta

Acute respiratory distress syndrome (ARDS) affects 10% of critical care patients and is
characterised by acute refractory hypoxaemia and bilateral pulmonary infiltrates on thoracic
imaging. Mortality from severe ARDS is approximately 40%, and has not changed in 50
years despite decades of study. Randomised controlled trials of therapies for ARDS have
been unsuccessful due to the heterogeneity of the patient population. This has led repeatedly
to potentially promising therapies being discarded. The primary reason for the failure is that
the underlying biological processes occurring in ARDS are poorly understood.

This thesis attempts to address this heterogeneity, and explores the underlying biology by
using an integrated, unsupervised bioinformatics approach to describe different mechanistic
subtypes (endotypes) of ARDS. The endotypes described here are derived from analysis
of data collected by three UK-based studies: an observational study of sepsis (GAinS), an
observational study of severe influenza (MOSAIC), and a randomised controlled trial of
simvastatin in ARDS (HARP-2).

A combination of automated clustering methods and network analysis tools have been used
to integrate blood biomarkers and gene expression (transcriptomic) data to define distinct
endotypes of ARDS.

Three endotypes of ARDS were identified in each of the studies. Integration of protein
biomarker and transcriptomic data from patients recruited to the GAinS study identified
three endotypes, one of which was characterised by severely dysregulated cytokine release,
which we termed hyper-inflammatory. Two gene modules discriminated these patients from
a hypo-inflammatory endotype, consisting of patients with globally depressed cytokine
concentrations. Enrichment of the genes in these two modules identified genes that were
important in vesicle fusion and cytokine release. Mutations in these genes cause the familial
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type of haemophagocytic lymphohistiocytosis (HLH). The implication here is that these
genes played a role in the severely dysregulated cytokine concentrations observed within
patients with hyper-inflammatory, sepsis-associated ARDS.

Analysis of the cytokines and transcriptomic data collected during the MOSAIC study
identified three endotypes we named: adaptive, endothelial leak and neutrophil driven. The
endothelial leak endotype was characterised by enrichment of genes associated with SLIT-
ROBO signalling. SLIT-ROBO signalling is essential for maintaining pulmonary endothelial
integrity and failure of this mechanism has been shown to cause alveolar oedema in murine
models of sepsis and influenza infection. These patients had significantly lower albumin levels
than the adaptive endotype, and 48.5% of them required mechanical ventilation. Despite
the greater need for mechanical ventilation, the outcomes of these patients were similar to
those of patients with the adaptive endotype, of whom only 20.4% required mechanical
ventilation.

Cluster analysis of patient biomarker concentrations from the HARP-2 study identified three
endotypes. Two of these endotypes had elevated serum IL-6 and sTNFR-1 concentrations,
consistent with a hyper-inflammatory profile. Patients with one of the hyper-inflammatory
endotypes, which we termed MMP-8 dominant, demonstrated a strong therapeutic response
to simvastatin compared with placebo (28-day survival, adjusted HR = 0.35, 95% CI 0.18-
0.71; p = 0.003). Patients with this endotype, who received simvastatin, had a similar 28-day
survival profile to patients with a hypo-inflammatory endotype, characterised by globally
depressed biomarker levels. Patients with the other hyper-inflammatory endotype, which we
termed sRAGE dominant, did not show any therapeutic response to simvastatin.

The endotypes described are temporally stable, and some relate to novel mechanisms not
previously recognised in patients with ARDS. The endotypes are all biologically plausible,
amenable to the development of further mechanistic insights using laboratory-based tech-
niques, and may influence patient outcomes and response to treatments. Further development
and prospective validation of these endotypes are required. If validated, they may offer
the opportunity to stratify patients in future clinical trials to treatments that are more likely
to improve their outcomes, whilst avoiding treatments that might cause adverse effects.
The methods described in this thesis could be applied to other heterogeneous and poorly
understood clinical syndromes.
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CHAPTER 1

Introduction

1.1 Definition and features of acute respiratory distress syn-
drome

Acute Respiratory Distress Syndrome (ARDS) is a type of respiratory failure and patients
present with tachypnoea, rapidly progressive respiratory failure and refractory hypoxaemia.
The pathophysiology relates to pulmonary inflammation and neutrophil recruitment which
increases endothelial permeability. A chain of events are then set in motion resulting in: pul-
monary oedema, alveolar exudates, hyaline membrane formation, reduced lung compliance,
increased physiological dead space and shunting. These processes cause worsening hypox-
aemia and patients become less responsive to supportive measures including mechanical
ventilation. Radiological investigations show diffuse bilateral opacification.1 ARDS was first
described by Ashbaugh et al. in 1967 and formally defined in criteria set out by the American
European Consensus Conference (AECC) in 1994.2,3 This definition was revised in 2012 by
the ARDS Definition Task Force, now referred to as the Berlin Definition, which stipulates
that a diagnosis of ARDS requires the following to be met:4

- Acute respiratory failure (within 7 days of the onset of acute illness), or new and
worsening respiratory symptoms

- Bilateral opacities on chest imaging not fully explained by lobar/lung collapse or
pleural effusions

- Respiratory failure not fully explained by cardiac failure or fluid overload (which can
be assessed by echocardiography)

- Hypoxia with a PaO2-FiO2 ratio <40 kPa
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- Respiratory support with ≥ 5 cmH2O positive end expiratory pressure (PEEP)

This definition categorised ARDS into three groups, determined by the degree of hypoxia
measured by the PaO2-FiO2 ratio :

- Mild: PaO2-FiO2 ratio between 40 and 26.6 kPa, with ⩾ 5 cmH2O continuous positive
airway pressure (CPAP) or PEEP

- Moderate: PaO2-FiO2 ratio between 26.6 and 13.3 kPa, with ⩾ 5 cmH2O PEEP

- Severe: PaO2-FiO2 ratio <13.3 kPa with ⩾ 5 cmH2O PEEP

The higher severity grades are associated with an increased risk of mortality, although their
relative sensitivity for predicting mortality are somewhat lower than one might have expected
given the severity of physiological derangement in these patients (AUC = 0.577).4

ARDS severity has previously also been categorised by using the lung injury score (LIS),
sometimes referred to as the Murray score. This incorporates the degree of radiological
changes (number of opacified lung quadrants on chest imaging) with three clinical features
(static lung compliance, PaO2-FiO2 ratio and level of PEEP).5 This scoring system is
recommended by the Extracorporeal Life Support Organisation (ELSO) as a tool to help
select patients for extracorporeal membrane oxygenation (ECMO). ELSO recommends that
patients with LIS ⩾ 3 should be considered for ECMO. The score is a poor predictor of
mortality during the first 72 hours following diagnosis of ARDS, although a score ⩾ 2.5
between days 4 and 7 is associated with prolonged mechanical ventilation and a higher rate
of in-hospital complications.4

1.2 Epidemiology and patient outcomes

ARDS is common, with approximately 190,000 cases and 74,000 deaths annually in the
USA.6 Following the introduction of the Berlin definition, an international observation study
(LUNG SAFE) was conducted in over 50 countries, involving 459 ICUs over four weeks in
2014. The investigators discovered that approximately 10.4% of ICU patients, and 23.4% of
patients requiring mechanical ventilation satisfied ARDS criteria of at least mild severity,
which often went unrecognised.7 Mortality for patients with severe ARDS during this period
was 46.1% (95% CI 41.9%-51.4%), which was no improvement from that described 50 years
ago, despite the advances in other areas of medicine. The ELSO registry report from 2016
showed that even when patients receive ECMO, the mortality for ARDS patients remains at
46%.8
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ARDS can be categorised as primary (e.g. bacterial or viral pneumonia, direct lung trauma),
or secondary in nature (e.g. non-pulmonary trauma, abdominal surgery, non-pulmonary
sepsis). Primary and secondary causes are also referred to as direct or indirect by some
authors. Neither the primary cause of ARDS nor the severity of hypoxaemia are independently
associated with clinical outcome. Instead, the factors that are independently associated with
increased mortality tend to be non-modifiable and include older age, active malignancy,
haematological malignancy and non-pulmonary organ failure.6

For patients that survive the acute phase of ARDS, there lies ahead a recovery that may
be complicated by long term critical illness. ARDS survivors often suffer from persistent
physical, physiological and neurocognitive deficits that prevent recovery to their pre-morbid
functional state. As many as 66% of survivors fail to recover their exercise capacity to pre-
morbid levels, even 1-2 years after ICU discharge.9,10 Patients have impaired and delayed
recovery of muscle function whilst the majority of patients show no long term pulmonary
dysfunction. There is significant variation in the results of pulmonary function tests following
recovery from ARDS; the consistently identified abnormality across multiple studies is mildly
impaired diffusion factor, which is of uncertain significance. Cognitive impairment, post
traumatic stress symptoms, anxiety and depression are recognised as common in survivors,
and there is a growing need to address the ICU interventions and treatments that might be
contributing to neuropsychological dysfunction.6,11

Health-related quality of life scores (HRQoL) of ARDS survivors demonstrate consistent
decrements in both physical and mental health domains. The results from patients with
ARDS, over the first two years after ICU discharge, are similar to the results from the general
ICU survivor population.12 The health burden of ARDS on the families and caregivers
(psychological, physical and financial) is not often recognised when reporting the epidemi-
ology or outcomes for these patients as there is rarely longer-term (>5 year) follow up.9,13

Neuropsychological disorders contribute more to caregiver burden than physical impairment
in this population.14 31% of survivors who were previously employed never return to work,
and 77% report lost earnings at five years.15 ARDS, therefore, poses a significant burden to
society given the loss of productive economic output with respect to patients and those who
care for them.

1.3 Pathophysiology

Acute inflammation affecting the alveolar-capillary membrane is the primary finding in
ARDS. There is an increase in endothelial permeability, which is associated with acute
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inflammatory mediators and neutrophil recruitment into the airspace resulting in pulmonary
oedema. The combination of activated neutrophils and inflammatory exudate in the alveoli
damages pneumocytes and inactivates surfactant causing distal airspace collapse with pro-
gressive loss of the available surface area for gas exchange. Inflammatory processes inhibit
hypoxic pulmonary vasoconstriction that would otherwise regulate the pulmonary vascular
tone to prevent shunting of deoxygenated blood into the systemic circulation. The resulting
hypoxaemia is compounded by impaired pulmonary compliance, which means that higher
airway pressures are required to maintain alveolar minute ventilation. Given that there is less
healthy lung tissue available to take part in gas exchange (physiological dead space), alveolar
ventilation falls causing accumulation of carbon dioxide and type II respiratory failure.

Efforts to address the abnormal arterial blood gas tensions of oxygen and carbon dioxide
can be partially mitigated by adjustment of mechanical ventilation settings (PEEP, mean
airway pressure, inspiratory time, minute ventilation) or prone positioning. Higher airway
pressures and exposure of healthy lung tissue to higher energy forces are directly injurious to
the lung tissue.16 These effects manifest as worsening inflammation at a cellular level, and
as baro-(pressure), atelec-(repeated cycled closure and opening of lung units), volu-(alveolar
stretch) trauma at a tissue level. Patients may develop pneumothoraces and bronchopleural
fistulae which prolong the duration of mechanical ventilation. If higher tidal volumes are
administered to increase minute ventilation and improve CO2 clearance, there is exacerbation
of pulmonary inflammation which is associated with worse survival.17,18

Lung biopsies show histological changes described as ‘diffuse alveolar damage’, although
only approximately half of patients with a diagnosis of ARDS have this finding at post mortem.
Diffuse alveolar damage is characterised by hyaline membrane formation and pulmonary
exudates that tend to be rich in neutrophils. ARDS exhibits significant heterogeneity; in a
single patient’s lung tissue and between different patients with a diagnosis of ARDS, where
only some of the above features may be apparent.19

Paradoxically, patients tend to die from multi-organ failure and not refractory hypoxaemia.
Based on human experimental data, it has been suggested that in ARDS there is a failure of
the lungs to maintain their immunomodulatory role; trapping activated neutrophils, other
leucocytes and their mediators. These dysregulated immune components are able to break-
through into the systemic circulation. Here they cause dysfunction of other organs, most
commonly the kidneys, shortly followed by the cardiovascular system and liver. Is has been
shown that the lungs of patients with ARDS fail to deprime activated neutrophils, in contrast
to the lungs of patients with sepsis and healthy controls.20 Dysregulated immunological pro-
cesses and multi-organ dysfunction are not unique to ARDS as they feature in patients with
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common direct and indirect causes of ARDS (sepsis, trauma, major abdominal surgery, acute
pancreatitis). Determining the dysfunctional immunological components that are pertinent to
the pathophysiology of ARDS, but separate from other disease processes occurring in these
patients, is therefore complex and difficult to demonstrate experimentally.

Patients who are successfully supported through ARDS may then progress to a prolonged
resolution stage of their pulmonary disease.21 This stage is associated with slow resolution
of pulmonary function, fibroblast proliferation, extracellular matrix and fibrin deposition
and persistent shunting with associated hypoxaemia.1 There is an increasing recognition
that fibroproliferation occurs early in ARDS. High concentrations of N-terminal peptide for
type III procollagen (N-PCP-III) in both the sera and bronchoalveolar lavage fluid (BALF)
at 24 hours in ARDS patients are associated with a worse outcome.22 Prolonged periods
of mechanical ventilation increase the risk of developing other complications of intensive
care or hospital treatment (e.g. secondary infections, delirium, venous thromboembolism,
pressure sores, myopathy and neurocognitive dysfunction).23

1.4 Treatment of ARDS

There have been many multi-centre trials aimed at improving the outcomes for patients with
ARDS (Table 1.1). Of all the interventions studied there have been only two supportive
measures and two pharmacological therapies that improved outcomes for patients:

– Low tidal volume ventilation (6 mL/kg predicted body weight)17

– Cis-atracurium, a non-depolarising neuromuscular blocking drug that prevents contrac-
tion of skeletal muscles24

– Prone positioning25

– Dexamethasone, a steroid drug26

The DEXA-ARDS trial showed an improvement in outcomes for patients randomised to
dexamethasone but the trial was stopped early at 88% planned recruitment (288/314 patients)
by the data safety monitoring board. This was because of the low enrolment rate of this study.
The authors reported significant benefits for patients receiving dexamethasone with respect
to improvement in ventilator free days (4.8 day reduction [95% CI 2.57 to 7.03]; p<0.0001)
and 60-day mortality (absolute risk reduction -15.3% [95% CI -25.9 to -4.9]; p=0.0047).
However these are partial results due to the early cessation of the trial and must be interpreted
with caution.26
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The lack of precise biological mechanisms to target therapies has been a persistent theme
in ARDS. Patient heterogeneity and limited characterisation of patient features, using the
available diagnostic criteria, only compound the noise in the data when studying this condition.
In heterogenous syndromes there will be members of the patient population who benefit from
a particular intervention, others may come to harm whilst others experience no change to
their outcome. The consequences of being unable to determine which patients might benefit
from a particular set of interventions is that these treatments are discarded resulting in the
persistent high mortality for those with severe disease.7.

ARDS is not unique in having this repeating pattern of unsuccessful interventions. Ran-
domised controlled trials (RCTs) in other critical illnesses syndromes (acute kidney injury,
sepsis, cardiogenic shock) have suffered a similar fate.45–48 Each of the promising interven-
tions and therapies in these organ failure syndromes, based on robust physiological reasoning
or disease models, were expected to deliver improved patient outcomes. The value of these
‘negative studies’ is that they may prevent unnecessary, harmful treatments for our patients.
Examples of this include doctrecogin-α which was found, after marketing, to be associated
with increased mortality.49 Use of hydroxyethyl starch-based fluids are associated with acute
kidney injury in patients with sepsis.50 However, there may have been sub-populations of
ICU patients that would have benefited from the treatments in each of these failed RCTs.
These trials may have befallen a Type II statistical error by failing to apply their interventions
to the correct patients.

It is increasingly apparent that critical illness is a collection of poorly characterised, heteroge-
neous clinical syndromes rather than distinct diseases. Our current, routine biochemical tests
and physiological measurements are unable to differentiate the nuances between different
subtypes. Avoiding repetition of the failures over the past 50 years will require patient
stratification to determine which groups of patients may or may not benefit from a novel
therapeutic intervention. This problem is not unique to critical care. Still, given there are no
definitive, diagnostic biomarkers for many critical illnesses (ARDS, sepsis) the diagnostic
uncertainty in these patients compounds the potential errors.

In light of the many discarded treatments, there is an urgent need for a tailored approach. The
goal is to characterise patients accurately into disease subtypes by incorporating genomic and
our understanding of biological processes with the physiological response to acute illness.
This individualisation of care is often referred to as precision or stratified medicine. The
expectation is the ability to seamlessly integrate multi-modal information to individualise
therapy and change the disease trajectory.
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1.5 Stratification approaches in ARDS

Methods that have been used to stratify patients with ARDS can broadly be classified
into:

- Biomarkers

- Genomics

- Physiology

1.5.1 Biomarkers in ARDS

The FDA define a biomarker as:

“A defined characteristic that is measured as an indicator of normal biological
processes, pathogenic processes, or responses to an exposure or intervention,
including therapeutic interventions. Molecular, histologic, radiographic, or
physiologic characteristics are types of biomarkers. A biomarker is not an
assessment of how a patient feels, functions, or survives.”

BEST (Biomarkers, EndpointS, and other Tools) Resource.
FDA-NIH Biomarker Working Group 2016.

Biomarkers are classified according to the role they are being used for. In ARDS, investigators
have focused on diagnostic biomarkers and prognostic biomarkers. Accurate biomarkers
are necessary for ARDS as the Berlin definition (and its predecessors), which are based on
clinical measurements, are poor predictors of patient outcomes.4 Diagnostic biomarkers
determine the presence or absence of a disease or disease subtype (e.g. sweat chloride in
cystic fibrosis). Prognostic biomarkers indicate the likelihood of a future clinical event in
an identified population (e.g. prostate-specific antigen and likelihood of prostate cancer
progression). Predictive biomarkers are used to identify individuals that might respond
differently to a given treatment or environmental exposure (e.g. thiopurine methyltransferase
genotype or activity and risk of toxicity from azathioprine). An identified biomarker may not
attribute a mechanism to the disease in question and so positive correlations or associations
must be interpreted with appropriate caution.

In ARDS, diagnostic and prognostic biomarkers have been sought by measuring cytokines
and chemokines in serum and sampled lung washings (BALF). The search for the ARDS
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equivalent of a high sensitivity troponin following myocardial injury remains elusive. Due to
the severe hypoxaemia in patients with ARDS, sampling the lungs is not feasible in large
observational studies. The biomarkers measured in such studies are from blood samples and
can be classified as pulmonary-derived, vascular-derived or cytokines.

Pulmonary

Pulmonary biomarkers are derived from pulmonary epithelial tissue. These proteins may be
released into the circulation following injury to alveolar type I or alveolar type II cells.

- soluble receptor for end glycosylation products (sRAGE) is strongly expressed in
pulmonary epithelium, especially alveolar type I cells. sRAGE plasma levels in
patients with severe ARDS have been shown to correlate with mortality. High levels
of detectable plasma sRAGE are not specific to ARDS as other pulmonary and non-
pulmonary diseases are associated with raised levels.51

- Surfactant protein D (SP-D) is one of four surfactant proteins produced by alveolar
type II cells. Raised levels correlate with ARDS mortality and levels tend to be higher
in direct ARDS.51

- Krebs von den Lungen-6 (KL-6, now officially named Mucin-1) is associated with
mortality in ARDS. It is a large glycoprotein expressed on type II alveolar cells and
is associated with lung inflammation. Raised levels are associated with mortality in
ARDS patients.51

Vascular

Vascular biomarkers have a role in endothelial function or coagulation. These include
angiopoietin-2 (Ang-2), von Willebrand factor (vWF) and plasminogen activator inhibitor-1
(PAI-1).

- Angiopoietin-2 is one of a family of growth factors stored and secreted by endothelial
cells. They affect vascular permeability and remodelling of vascular tissue. Raised
circulating Ang-2 also associated with sepsis, diabetes and both solid and haematolog-
ical malignancies.52 Raised Ang-2 in both ARDS and at risk patients are predictive
of mortality and correlate with ARDS development in patients with severe traumatic
injuries.53,54

- Von Willebrand factor is an important glycoprotein involved in coagulation. It binds
coagulation factors, platelets and endothelial cells to help achieve haemostasis fol-
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lowing vascular injury. Raised vWF levels are associated with sepsis and ARDS.
Ware et al. (2004) found there was no difference in concentrations between patients
with non-septic and sepsis-associated ARDS. However, higher concentrations were
associated with mortality in these patients with ARDS. The authors also found that
vWF concentrations were significantly lower in patients with trauma associated ARDS
compared with ARDS related to other causes.55

- Plasminogen activator inhibitor-1 (PAI-1) is protein released by endothelial cells that is
responsible for the inhibition of tissue plasminogen activator (tPA) and urokinase. Both
of these two enzymes are responsible for activation of plasmin which catalyses the
degradation of fibrin, the primary protein constituent of blood clots. PAI-1 therefore
promotes fibrin integrity. High levels of PAI-1 are found in both the alveoli and
plasma of patients with ARDS, and are associated with higher mortality.56 This
protein may play a role in alveolar fibrin deposition and inappropriate activation of
coagulation vascular microthrombosis in pulmonary capillaries, both of which of which
are histopathological features in patients with ARDS.19

Cytokines

Cytokines are proteins that play a role in immunological signalling. IL-2, IL-4, IL-6, IL-8,
IL-1β , TNF-α have all been associated with ARDS and mortality. Their overlap with sepsis
and other inflammatory states (trauma, burns) makes them less useful as single predictors in
ARDS. A recent meta-analysis indicated that IL-8 was the most strongly associated with the
diagnosis of ARDS (of the above cytokines), whilst IL-2 and IL-4 were strongly associated
with mortality.57
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Do combinations work better?

Ware et al. (2010) developed a predictive model which used a combination of physiological
features (APACHE III, age, number of organ failures, alveolar-arterial oxygen difference,
age) with eight biomarkers (SP-D, vWF IL-6, IL-8 TNFR-1, PAI-1, ICAM-1 and protein C)
in 528 patients to predict mortality in ARDS.58 They developed models in both sepsis and
trauma-associated ARDS, using patients without ARDS as controls. The strongest predictors
that were common to both the trauma and sepsis-associated ARDS were the combinations
of APACHE-III, IL-8 and SP-D (AUC =0.834). This approach was validated in a further
paper (Zhao et al. 2017) using the same predictors in 1538 patients; the model performed
well (AUC = 0.74), but not quite as well as their original 2010 paper (AUC = 0.85).59 The
same group has also used similar a strategy for diagnosis of ARDS where, using 100 patients,
developed a five biomarker panel (SP-D, sRAGE, IL-8, CC16 and IL-6) for diagnosing
ARDS in sepsis (AUC = 0.75).60

Calfee et al. (2015) showed that measurements of single proteins performed adequately as
predictive and diagnostic biomarkers. By comparing the relative concentrations of different
cytokines in patients with direct (pneumonia, aspiration, thoracic trauma) and indirect (sepsis,
trauma) ARDS, they found raised SP-D and sRAGE to be significantly higher in patients with
direct ARDS, and Ang-2 to be significantly higher in patients with indirect ARDS. These
results were validated from samples collected and analysed post hoc from a multi-centre
study of patients (n = 853). Their findings were consistent with the association of direct
ARDS with pulmonary epithelial injury, and non-direct ARDS with endothelial inflammation.
Unlike other attempts to find predictive signals in ARDS, this approach described differential
biological processes, albeit crudely, compared with a purely statistically-driven, model
optimisation approach.61
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1.5.2 Genomic studies in ARDS

There have been six human transcriptomic studies (using microarrays), two genome-wide
association studies (GWAS) and three focused genome association studies in ARDS.

Transcriptomics

The largest transcriptomic study to date was by Sweeney et al. (2018) who investigated
whole blood gene expression in 148 patients ARDS and 268 controls. They found a set
of 30 differentially regulated genes, which enriched for expression in metamyelocytes
and granulocytes. The authors attributed this signal to inflammatory and non-pulmonary
processes. A seven-gene subset of the thirty performed poorly and had low generalizability
for diagnosis of ARDS. The authors proposed no mechanisms based on these results.62

Kangelaris et al. (2015) investigated differential gene expression between patients with
ARDS and sepsis controls (n = 57), creating two models, one of which was adjusted for
age, sex, batchi, type of ARDS (direct / indirect) and neutrophil counts. Fifteen genes were
differentially expressed, of which four were consistently upregulated. qPCR was performed
to confirm the higher expression levels of these genes. One of these genes was CD24,
the granulocyte receptor for platelet P-selectin, which is involved in platelet-neutrophil
interactions and was later identified in a genome-wide association study (GWAS) by Bime et
al. (see below). The other three genes were: lipocalin-2 (also known as NGAL), bactericidal
permeability-increasing protein (BPI) and neutrophil collagenase (MMP-8), all of which are
associated with neutrophils.63

Howrylak et al. (2009) examined whole blood gene expression in 13 patients with ARDS
and 21 sepsis controls. They found eight differentially expressed genes, the strongest of
which was the ferritin heavy chain. The role of raised ferritin was presumed to be a sign
of oxidative stress in ARDS patients, however, their results did not suggest any further
mechanistic insights and was limited by a small sample size.64

Chen et al. (2013) used the same data collected by Howrylak et al. (2009) submitted to
the gene expression omnibus (GEO) repository. Using updated informatics methods they
identified twenty differentially expressed genes (12 upregulated, 8 downregulated). Following
enrichment, the authors focused on occludin (OCLN) and HLA-DQB1. OCLN is a membrane
protein involved in tight junction assembly which may be influenced by TNF-α and IL-
18 signalling. HLA-DQB1 is a major histocompatibility complex (MHC) class II protein.

i‘Batch’ refers to non-biological factors, usually environmental or technical conditions that change ex-
periment results. High throughput genomics experiments are particularly susceptible to batch effects due to
variability in the chemistry of the reaction steps and sensitivity to detect small changes in gene expression.
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MHC proteins present antigens to immune cells and so play an integral role in the immune
system.65

Dolinay et al. (2012) performed whole blood gene expression on 88 patients with sepsis and
ARDS. The study focused on validating the role of inflammasomes and IL-18 in ARDS using
a mouse model. Results from the gene expression data confirmed the high expression of
inflammasome related genes (caspase-1 and ASC) in ARDS compared with sepsis patients.
Kangelaris et al. attempted to replicate these findings but found the relative expression of
IL-18 was lower in the patients recruited to their study.63,66

Juss et al. (2016) compared the transcript profiles blood neutrophils in ARDS patients with
healthy volunteers (n = 12) and found 1319 differentially expressed genes. This list was
refined to 216 differentially expressed genes when the healthy volunteer neutrophils were
GM-CSF treated. There was an interesting overlap between the upregulated, differentially
expressed genes from these neutrophils and the results from a study comparing leucocyte
gene expression in burns patients with healthy volunteers.67

Genome-wide association studies

Two GWAS have been published in ARDS. Christie et al. (2012) identified 159 enriched
single nucleotide polymorphism (SNPs) in 812 patients following major trauma (600 discov-
ery, 212 validation).68 One locus, PPFIA1, was significant following expression quantitative
trait loci (eQTL) analysis of a B-lymphoblastoid cell line. This result was of nominal sta-
tistical significance and no polymorphism had genome wide significance. PPFIA1 encodes
liprin-α which is involved in cell adhesion and cell-matrix interactions.

The second GWAS, conducted by Bime et al. (2018), recruited 232 African-American
patients with ARDS and the authors identified an intragenic SNP in SELPLG to be associated
with increased susceptibility of developing ARDS. This gene encodes P-selectin glycoprotein
ligand-1 (PSGL1). The role of this gene in ARDS was demonstrated using murine models
of ventilator induced and lipopolysaccharide (LPS)-induced lung injury. The authors found
increased expression in these mice, and attenuation of response after treatment with neutral-
ising antibodies.69 This protein had previously been identified by Kangaleris et al. (2015)
which offered some validity to this finding.63

Although both GWAS highlighted some potential insights into ARDS their results were of
borderline statistical significance; the p value for rs471931, a cis-acting SNP influecning
the differential expression PPFIA1, was of low significance. In order to identify the SNP
rs2228315 in SELPLG, the p value threshold had to be lowered from the normal Bonferroni
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corrected threshold of p < 3.5 × 10−8 to p < 10−3. Both of these studies can therefore only
be considered hypothesis generating.

Focused genomic association studies

Three focused genome association studies have identified three loci associated with ARDS.
Hernandez-Pachecho et al. (2018) integrated transcriptomic analysis of a murine ARDS
model with Christie et al.’s (2012) GWAS study to identify prioritized genes that might be
important in ARDS.68,70 Four candidate genes were identified. One SNP (rs9513106 in
FLT1) was associated with a lower risk ARDS in a Spanish intensive care genotyped cohort
of 1,124 individuals. A validation cohort from a GWAS of 2,355 individuals from the USA
confirmed these results with statistical estimates of effect size that were similar to that found
in the discovery cohort. A meta-analysis of both studies found the C allele at this locus
in FLT1 was associated with an odds ratio equal to 0.77 (95% CI 0.65-0.92; p=0.003) for
sepsis-induced ARDS.

FLT1 encodes a tyrosine kinase receptor with an extracellular ligand-binding region contain-
ing seven immunoglobulin-like domains. FLT1 belongs to the vascular endothelial growth
factor (VEGF) receptor family. These domains can bind VEGF-A, VEGF-B and other growth
factors that increase endothelial permeability, causing tissue oedema. High levels of VEGF
have previously been identified in the bronchoalveolar lavage fluid of patients with ARDS.71

The function of this protein and the prospect of polymorphisms in this gene influencing the
risk of ARDS were therefore plausible.

The second of these three focused genome association studies was published by Reilly et
al. (2018).72 The investigators genotyped 703 patients with sepsis as part of the Molecular
Epidemiology of SepsiS in the ICU (MESSI) study. The genomic analysis was limited to a 70
kilobase region around the ANPT2 gene which encodes the protein angiopoietin-2 (Ang-2), a
marker of endothelial activation previously associated with poor outcomes in ARDS (Section
1.5.1). SNPs that were associated with raised levels of Ang-2 were then tested for associated
with ARDS. The authors undertook two approaches to verify their findings: Mendelian
randomization and mediation analysis.

Mendelian randomization (MR) uses genetic mutations as fixed instruments to assess the
causal effect of observed associations (plasma Ang-2) with outcomes (ARDS risk). The
model incorporates adjustments for confounding variables that might influence both the
observed variable and the outcome. For example, in this study the authors used APACHE-III
scores, pulmonary source of infection and genetic ancestry as confounders. This methodology
allows for assessment of the effects of genetic mutations on outcomes, via an instrumental



1.5 Stratification approaches in ARDS 15

variable, in observational studies. Mediation analysis uses intermediate variables (plasma
Ang-2) to quantify the causal effect of explanatory variables (SNP alleles) on the outcome
(ARDS).

The authors demonstrated the association of five unlinkedii SNPs in patients of European
ancestry with plasma Ang-2 concentrations. Of these, two (rs2442608 and rs2442630) were
associated with ARDS, with rs2442630 having the largest effect size (OR = 1.38, 95%
CI 1.01-1.87; p = 0.04). The MR analysis calculated that the genetically predicted Ang-2
concentration, as determined by the collective effects of the five identified SNPs, significantly
increased the risk of ARDS (adjusted OR = 2.25, 96% CI 1.06-4.78; p= 0.035).

These findings were consistent with the earlier biomarker studies of Ang-2 and their results
suggested that this protein and its effects might be an important therapeutic target for drug
development. The authors were unable to demonstrate a causal effect of these SNPs in
patients of African ancestry, even though raised Ang-2 concentrations in these patients was
associated with ARDS. Ang-2 was associated with ARDS in patients with pulmonary or non-
pulmonary sepsis. This was not consistent with the findings of Calfee et (2015)’s biomarker
study which found higher levels of Ang-2 in patients with indirect (non-pulmonary) causes
of ARDS.61 This inconsistency probably reflects the inter-observer variation in diagnosing
patients with ARDS.

An earlier study by Gong et al. (2007) used a nested-case control model to investigate
the role of SNPs in a single gene (MBL2).73 MBL2 encodes the protein mannose binding
lectin-2 which had been previously associated with increased susceptibility to severe to
bacterial (meningogococcal, pneuomococcal) and viral (hepatitis B, severe acute respiratory
syndrome caused by coronavirus) infections. The authors investigated four SNPs associated
with this gene, three in exon 1 and one in an adjacent promoter region. 752 ICU patients, of
which 237 developed ARDS, were genotyped at these four loci. Patients with homozygous
alternative alleles of SNP rs1800450 (codon 54 of MBL-2) were associated with significantly
worse multi-organ dysfunction, higher APACHE-III scores, increased risk of ARDS and
higher mortality, compared with individuals who were homozygous or heterozygous for the
reference allele. The frequency of the minor allele of this haplotype in the studied population
was 14%. There was no secondary validation of these results. The authors attributed the
worse outcomes of patients with the BB allele at MBL-2 codon 54 to increased susceptibility
to infection.

iinot in linkage dysequilibrium
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The results from candidate gene studies have to be interpreted with caution as they have been
shown to be at risk of producing false positive results which can not be replicated despite
compelling, statistically significant associations.74 There are a number of reasons why false
positive associations may arise from these studies:

1. The candidates genes may have been selected as part of a larger search for association
between SNPs and disease features, but the results were only reported with respect
to a candidate gene or genomic region. Casting a wide net and then only reporting
the significant associations from a small number of genes would reduce the multiple
correction penalty. Calculated p values would therefore appear smaller and more
significant, when they may have arisen by chance alone.

2. Selection of the genomic region for analysis is subject to the investigators discretion.
Inclusion of neighbouring promoter and siliencer regions, cis-acting response elements,
the local topologically active domain which might contain additional epigenetic targets
that might associate with the candidate gene and influence its expression may or may
not be included as part of these studies.

3. The biological plausibility of a candidate gene is an inadequate prior and does not
provide adequate assurance against a false positive finding.75

4. The definition of replication is subject to interpretation as there is a relative hierarchy
in the quality of replication studies. A relaxed approach would permit any SNP with
any direction of association with phenotype using any statistical test. A more stringent
approach might require the exact same SNP, with same direction of association and the
same statistical test, would help to eliminate false positive associations in the validation
set.75

5. A negative finding from a candidate gene study does not exclude it from a genuine
association. Some associations have been found to be significant following meta-
analysis. However, negative studies are often subject to a negative publication and
time-lag biases which introduces a delay for these studies to be incorporated into a
meta-analysis.74
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1.5.3 Clinical variable-based subtypes of ARDS

Attempts to score, stratify or predict outcomes in ARDS patients based on clinical variables
have not been shown outperform existing scoring systems (APACHE-III, SAPS, SOFA).
It is widely acknowledged that the Berlin definition is a relatively poor predictor of out-
comes.4,76,77

Villar et al. (2015) described four phenotypes based on a combination of PaO2-FiO2 ratio
<150 mmHg (20 kPa) and PEEP >10 cmH2O. This differs from the Berlin definition which
stratifies patients with PaO2-FiO2 ratio 300 mmHg (40 kPa), 200 mmHg (26.7 kPa) and
100 mmHg (13.3 kPa) whilst receiving PEEP ≥ 5 cmH2O. This method was more predictive
of mortality if applied at 24 hours after ICU admission. Groups with lower PaO2-FiO2 ratio
and higher PEEP requirements had a significantly higher mortality, but they also had higher
APACHE scores and incidence of multi-organ failure. The authors acknowledged this in
their discussion but did not incorporate these additional covariates into their analysis or make
adjustments for them. Bos et al. (2016) used this scoring system in Dutch patients with
ARDS and found the phenotype groups to align with 30-day mortality.78,79

From a patient perspective, an important study by Wang et al. (2014) found that whilst
acute physiological derangement predicted short term outcomes (ICU / 30 day mortality),
these factors failed to predict, the more patient-focused, 1 year mortality outcome. In their
multivariate model, the strongest predictors of 1 year survival were age, comorbidities and
discharge destination. They found patients admitted to ICU had a 24% hospital mortality,
reflecting the improvements in supportive care, but 41% 1 year mortality.80

Each of the methods described above (biomarkers, genomics and physiology) are limited by
recurring themes of low predictive validity, poor choice of control populations and comparator
groups. Low predictive validity arises where the study findings can not be externally validated
with other data, prospectively or, for the most part, yield no new mechanistic insights
into the disease. A recurring issue with these studies is that patients with sepsis were
the control cohort. There has been little acknowledgement of the inherent heterogeneity
within sepsis itself. Treating the results from patients with sepsis as a statistically static
control seems inherently flawed. These patients cannot be considered as equivalent to
controls for an in vitro experiment or animal model. Adjustment for clinical covariates
or stratification using clinical variables will not mitigate this heterogeneity if they do not
reflect the differences in the underlying biological processes. Patients with different diseases
or syndromes (cardiogenic shock, pneumonia, acute liver failure, major haemorrhage),
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characterised by different biological processes, can arrive at the same physiological endpoints
e.g. PaO2-FiO2 ratio < 100 mmHg, vasoplegic shock, high SOFA score.

Bos et al. (2019) have recently been able to demonstrate ARDS endotypes within a heteroge-
neous sepsis population. These patients had been recruited to an observational study of septic
called the Molecular Diagnosis and Risk Stratification of Sepsis (MARS).81 In this study
patients with sepsis from the MARS cohort, with and without ARDS were characterised
into hyper-reactive and hypo-reactive subtypes based on their cytokine profiles. This study
was an extension of the authors’ previous work on endotyping ARDS using hierarchical
clustering.82

Differential gene expression, from whole blood transcriptome microarray analysis, between
the patients in these two subtypes, revealed a number of processes that might be at work to
differentiate non-inflamed and reactive ARDS. However, this study failed to acknowledge
the degree of overlap between the sepsis patients and ARDS patients which was apparent in
Figure 4 of their paper (Figure 1.1).

In this figure, the differential gene expression results from healthy controls, patients with
sepsis, reactive and non-inflamed ARDS are shown, projected onto the first two principal
component axes. K-means clustering was used to fit a medioid to each group of patients.
These medioid locations are shown as coloured squares. Each medioid square was used to
summarise the differentially expressed genes in non-inflamed ARDS, reactive ARDS and
sepsis (as a single entity) from healthy controls.

Across both of the presented principal components in Figure 1.1, the gene expression profiles
of septic patients (grey coloured points) spans from the healthy control population (black
coloured points) to the reactive ARDS patients (red coloured points), and overlaps the
uninflamed ARDS patients (green coloured points). The first principal component was used
by the authors to determine the contributing pathways differentiating these groups of patients
from each other. This figure captures the biological heterogeneity, at a gene expression level,
in patients with sepsis or ARDS and demonstrates why direct comparisons between these
two critical illness syndromes are difficult to interpret. Collapsing all of the heterogeneity
amongst the grey points in this figure into the medioid represented by the grey square, which
approximated closely to the medioid represented by the uninflamed ARDS patients (green
square) might suggest that the uninflamed ARDS patients are similar in their gene expression
profiles to patients with sepsis. This interpretation would be incorrect given the high variance,
within the first principal component, of gene expression profiles in septic patients.
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Fig. 1.1 Figure from Bos et al. (2019) showing gene expression PCA of patients with sepsis
and ARDS subtypes. Left and right panels show the profiles from discovery and validation
cohorts respectively. The x-axis shows the first principal component explaining around 56%
of variance of the most differentially expressed genes in the derivation cohort. The y-axis
shows the second principal component explaining around 8% of variance. Dots represent
individual patients with colours identifying groups. The larger rectangle shows the location
of the medioid for each group. The two ARDS subtypes overlie the septic patients and their
separate medioids are plotted.

The apparent variation within the septic patients has not been accounted for, with
only a single medioid for the entire spectrum of disease plotted. Taken from Figure 4 of Bos
et al. (2019).81

Reprinted with permission of the American Thoracic Society.
Copyright © 2020 American Thoracic Society. All rights reserved.
Lieuwe D. J. Bos, Brendon P. Scicluna, David S. Y. Ong et al.
Understanding Heterogeneity in Biologic Phenotypes of Acute Respiratory Distress
Syndrome by Leukocyte Expression Profiles.
AJRCCM 200(1) 2019 42-50.
The American Journal of Respiratory and Critical Care Medicine is an official journal of the
American Thoracic Society.
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1.6 Successful endotyping approaches in other diseases

Diseases that might have previously been well characterised by their symptoms, natural
history, clinical signs and investigations are now being recognised as collections of het-
erogeneous variants with different underlying pathophysiology. Examples include asthma,
chronic obstructive pulmonary disease (COPD) and breast cancer. The opportunity to better
describe these syndromes has emerged due to complementary improvements in scientific
methods (genomics, high sensitivity assays) and computational methods (high dimensional
data analysis, neural networks) all of which are increasingly accessible and have led to the
new field of systems biology.

It is now possible to combine data from high-throughput biological methods with symptoma-
tology and treatment information to generate models that identify novel patient sub-clusters.
The characteristics that these specific subgroups share are better enriched for mechanisms
compared with analysis of observable clinical features and characteristics in isolation. This
might explain why genome-wide association and genetic linkage analysis of twins and family
studies have not revealed new insights into clinically heterogeneous respiratory diseases like
asthma or COPD outside of rare subsets (e.g. α-1 antitrypsin deficiency). Phenotypes that are
characterised by specific pathobiological mechanisms are referred to as ‘endotypes’. As an
illustrative example, sickle cell disease could be considered an endotype of anaemia.

1.6.1 Asthma

Asthma has long been recognised as a highly heterogeneous syndrome with subsets of patients
that have remained treatment resistant. Following a number of major epidemiological studies
and patient symptom-driven surveys to which latent class and other clustering methods have
been used, new insights have emerged, pathological processes characterised and therapies
developed.

The efforts of investigators to discover endotypes in asthma has involved use of different
clustering methods. Loza et al. (2016) used partitioning around medioids (PAM) clustering
on two asthma studies (ADEPT and U-BIOPRED) with training cohort sizes of 156 and 82,
respectively. Validation steps were both longitudinal (ADEPT) and in a larger U-BIOPRED
cohort (n = 397).83 Four described phenotypes, which incorporated the biological data and
patients symptoms were longitudinally stable, and biologically distinct.

Siroux et al. (2011) used latent class analysis (LCA) clustering on data obtained from two
other asthma cohorts EGEA2 (n = 641) and ECRHSII (n = 1895). The authors identified
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four phenotypes that shared similar features across both cohorts.84 The authors found
the LCA methods tended to relegate the importance of allergic symptoms. These results
could be interpreted as clustering methods removing traditional clinical biases from the
accepted disease model. Each identified phenotype had distinct health-related quality of life
(HRQoL) scores and biological features. The identified clusters also overlapped with other
studies.85,86

There have been multiple iterations of latent class methods on patients symptoms, physiology
and blood tests to determine asthma endotypes. These have further been extended into
transcriptomic and biomarker-based studies to reveal the underlying processes e.g. TH2 and
non-TH2 mediated asthma.87,88

Hinks et al. (2016) used topological data analysis and Bayesian belief networks to identify
six asthma phenotypes in 194 patients. These phenotypes were determined using data from
assessment of symptoms, treatment response, physiological and protein biomarkers from
sputum and blood. Validation used a separate 106 patient cohort where four of these six
clusters were replicated, the other two clusters were small and their absence attributed to
overfitting in the derivation cohort. The degree of inflammation was not found to correlate
with clinical features which reiterated the theme of clinically-based phenotypes failing to
stratify patients correctly.89

1.6.2 Breast cancer

Molecular features (hormone receptors, HER2 status) have long been associated with breast
cancer outcomes. Dawood et al. (2011) developed a composite multi-variable model of
immunohistochemical features which they validated in a large cohort of 1,957 patients. They
found five distinct tumour phenotypes of which ‘luminal A’ had a worse prognosis than
the other four.90 The advantage of this approach was that it could applied to preserved
histological samples, without the need for gene expression profiling using microarrays.
The same group also found that ductal carcinoma in situ (DCIS) displayed the same five
phenotypes found in invasive breast cancer but at different relative frequencies in a sample of
2897 patients.91

The success of these approaches in oncology has lead to the development of platform trial
design. Platform trials evaluate multiple treatments in a heterogeneous population and assume
that treatment effects might also be heterogeneous. Treatment groups can change over time
as data from the study is evaluated, and may even be dropped if there is evidence of harm or
futility. The advantages of this approach are that they enrich the treatment groups for patients
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that might be more likely to benefit from a particular treatment or intervention (response-
adaptive randomisation). Lower numbers of patients are necessary for each treatment group
and unsuccessful interventions can be discarded earlier. These approaches might therefore
be more economical for sponsors whilst reducing the number of potentially exposed patients,
unnecessarily, to adverse events.

The I-SPY2 trial was an example of a platform trial in breast cancer where patients were
stratified using biomarkers (oestrogen receptor, progesterone receptor, HER2 status, microar-
ray results) and randomised to receive either: paclitaxel with one of three new drugs, or
paclitaxel and trastuzumab with one of three new drugs as neoadjuvants prior to surgery.92

I-SPY2 led to six new investigational treatments being advanced to phase three trials with
each drug matched to biomarker signatures where they were most efficacious.93

Similar approaches are now being pursued in intensive care medicine and infectious diseases.
The PREPARE research network is an EU funded platform collaboration which is designed
to offer a rapid clinical research-based response to new or re-emergent epidemics.94 The
MERMAIDS-ARI study is a PREPARE funded, observational platform study of acute respi-
ratory infections in 2000 adults. It was due to finish recruitment in April 2019 but has since
been adapted to include patients with COVID-19. The International Severe Acute Respira-
tory Infection Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) is
study of COVID-19 that implements a coordinated research response across the UK. Its aims
are to phenotype patients using clinical and biological variables using a set of pre-defined
and tested research tools created in preparation for respiratory infection outbreaks.95

1.6.3 Sepsis

Two recent studies have used whole blood RNA sequencing to identify endotypes in patients
with sepsis, one from MARS Consortium and the other from the Genomic Advances in
Sepsis (GAinS) study.96–98

The MARS consortium, from the Netherlands, used consensus clustering to find the best
clustering method and random forests to select the best genes that classified each endotype.
Using the 140 gene-based classifier, the investigators found four groups which they labelled
Mars 1-4. 306 patients were used in the discovery cohort, and their findings were validated
externally using another cohort from the Netherlands (n = 206) and results from the GAinS
study (n = 265, in this paper).

The Mars-1 endotype was found to have the worst 28-day survival and was the most consistent
endotype across the validation cohorts in terms of mortality. Using combinations of the
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identified genes in the 140-gene classifier and gene expression ratios, they attributed two
top-performing genes to each endotype. In Mars-1 these were bisphosphoglycerate mutase
(BPGM) and transporter 2, ATP binding cassette subfamily B member (TAP2). BPGM
is a 2,3-diphosphoglycerate, which modulates oxygen affinity to haemoglobin. TAP2 is
a member of the superfamily of ATP-binding cassette transporters involved in antigen
presentation. Enrichment analysis of differentially expressed gene signatures in Mars-1
identified downregulated pathways associated with innate and adaptive cell functions, and
upregulation of pathways associated with haem biosynthesis and aberrant metabolic function.
The authors suggested the metabolic dysfunction, which had previously described in sepsis,
associated with this endotype represented a failure of immuno-metabolic circuits leading to
immunoparalysis and poor survival.96

The GAinS study recruited patients admitted to ICU with sepsis due to either community-
acquired pneumonia or faeculent peritonitis. Transcriptomic analysis of blood from 265
patients identified a sepsis response signature (SRS) associated with higher mortality and
T-cell exhaustion. The authors considered patients with this SRS-1 phenotype to be immuno-
incompetent. The SRS phenotypes were discovered using a combination of hierarchical
clustering on the 10% most variable gene probes and sparse generalized linear models fitted
to mortality. Enrichment and pathway analysis of top 3,080 differentially expressed genes
showed functional differences related to T-cell activation, apoptosis, phagocyte movement,
endotoxin tolerance and hypoxic response. 41% of the patients were categorised as SRS-1.
A seven gene subset was identified as being predictive of SRS-1, which was successfully
validated in a cohort of 106 patients. Similar outcomes of organ failure and mortality were
observed in the validation SRS-1 group.97

The authors proceeded to investigate genomic-level modulation of sepsis by using their gene
expression results as a quantitative trait for cis- and trans-eQTL mapping. These methods
enriched for known immune-related pathways and genes (PI3K signalling, antigen presenta-
tion, mitochondrial dysfunction). The authors were unable to reproduce an association with
the intronic FER variant that was described in their previously published GWAS of septic
patients.99

Of note, was the finding that the Mars-3 and SRS-2 endotypes, both low-risk groups, cor-
related well with each other. Both were characterised by heightened expression of genes
predominantly involved in adaptive immune functions, adding a degree of external validity
to both of these studies.96

The SRS phenotypes have been incorporated into a secondary analysis of the VANISH
randomised controlled trial, which was published in 2016.100. This study investigated the
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use of different vasopressors for cardiovascular support in septic shock (norepinephrine,
vasopressin) alongside gluccocorticoids (hydrocortisone). The secondary analysis study
imputed the SRS phenotypes into the treatment arms post hoc, and found that patients with
the immunocompetent SRS-2 phenotype had worse outcomes if administered hydrocortisone.
This effect was based on small numbers; 31 patients in the SRS-2 hydrocortisone group. This
was the first example of how transcriptomic-guided therapy might influence patient outcomes
in sepsis.101

Seymour et al. (2019) have recently described four sepsis phenotypes (α , β , γ , δ ) de-
rived from a combination of pooled observational studies and randomised controlled trials
(PROWESS, ProCESS, ACCESS) of patients with sepsis.102 The PROWESS, ProCESS
and ACCESS studies were all RCTs for patients with sepsis where activated protein-C,
goal-directed fluid therapyiii and eritoraniv respectively were investigated. Clinical variables
were combined with 27 protein biomarkers and the optimum number of phenotypes was
derived using a combination of two clustering methods: consensus k-means clustering and
ordering points to identify clustering structure (OPTICS).103 Genomic data was not included
in this analysis. Latent class analysis was used as an independent, confirmatory method
to determine the optimal phenotype number, based on Bayesian information criterion and
posterior probabilities. The mean values for standardized variables in each group were
consistent when comparing the different phenotypes, irrespective of whether the group was
derived using a consensus k-means clustering or LCA method.

The α and δ phenotypes were well separated for short term mortality outcomes. The authors
suggested that the δ phenotype, which was associated with poor outcomes, cardiovascular
and liver dysfunction, aligned with the SRS-1 and Mars-2 endotypes form the GAinS and
MARS sepsis studies. Also that the α phenotype, which was associated with better short-term
outcomes aligned with the SRS-2 and MARS-2 endotypes.

The authors conducted simulations to determine the outcomes of patients that might have been
randomised to different treatment arms of the PROWESS, PROWESS and ACCESS studies.
Enrichment of baseline patient characteristics for a given endotype preceded simulation.
The expected differences in mortality were compared within the same simulation. The
results of these simulations suggested that patients with the more unwell δ phenotype, would
have suffered harm from eritoran and goal-directed fluid therapy, whilst the α phenotype
would have had better outcomes with goal-directed fluid management. These endotypes
were derived from clinical variables and biomarkers without the need for analysis of gene

iiiGoal-directed fluid therapy refers to titrated administration of intravenous fluids to a physiological target.
ivAn investigational drug for the treatment of severe sepsis.
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expression. This study raised the possibility that real-time assignment to an endotype
was feasible, and a stratified approach to sepsis management might be available for future
studies.

1.7 Successful endotyping approaches in ARDS

Calfee et al. (2014) demonstrated, by using latent class analysis (LCA), that the physiological,
biochemical and cytokine characteristics of patients enrolled in the ARDSnet:ARMA and
ALVEOLI RCTs, could be combined to define two classes. These two classes were termed
hyper-inflammatory and hypo-inflammatory.104

Latent class analysis is a structural equation model which uses latent structure (hidden groups)
to explain outcomes. LCA has been widely used in the social and psychological sciences
where it helps to predict behaviours, voting trends and psychopathology. LCA differs from
other clustering methods because it estimates a likelihood for the fitted model. Fitted models
with different numbers of latent classes can be compared using statistical, likelihood-based
methods that are not possible with other unsupervised clustering methods. An optimum
number of classes is therefore determined statistically.

The hyper-inflammatory group, who constituted one-third of the enrolled patients, were char-
acterised by higher concentrations of IL-6, soluble TNF receptor-1 (sTNFR-1), plasminogen
activator inhibitor-1 (PAI-1), lower bicarbonate and platelets. The degree of respiratory
failure did not differ between the groups. This was an important finding since PaO2-FiO2

ratio was the established method of differentiating clinical subtypes of ARDS, but it also
demonstrated new insights into patients with ARDS.

Stratified treatment responses in each arm of the ALVEOLI study (high PEEP and low
PEEP strategies) were identified in patients from each latent class. Patients in the hyper-
inflammatory class had significantly improved primary outcome (hospital mortality) if they
were randomised to the high PEEP intervention. There were no benefits of a high PEEP
strategy for patients with the hypo-inflammatory class.

Follow up studies have applied Calfee et al.’s methods to the FACTT and HARP-2 studies,
and they have been able to demonstrate the existence of the same two latent classes in the
patients enrolled into both of these trials.105,106 Furthermore, following post hoc stratification
of patients into each treatment arm, they found the primary interventions to have significantly
benefited the patients assigned to the hyper-inflammatory class (conservative fluid strategy
and simvastatin). The same group have also been able to demonstrate that these endotypes are
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stable over time.107 There is consistency in the methodology used by Calfee’s group: using
LCA to assign patients in an unsupervised manner, defining classes that do not align pre-
existing biases relating to ARDS (degree of respiratory failure, primary diagnosis), external
validation in multiple studies. These methods set the results from their work apart from all
others to date.

Although LCA lends some insights into ARDS, it is not a complete model. The same group
could not replicate their findings in a post hoc analysis of the the SAILS study (rosuvastatin
in ARDS). Although they successfully identified two latent classes that were consistent with
their previous findings, there was no benefit of rosuvastatin to patients classed as hyper-
inflammatory. The authors attributed this to the relative lipophilicity of different statins. In
addition, one might consider a two-class model as identifying only a single endotype (hyper-
inflammatory) whilst assigning the rest to an alternative group. Although the two-class LCA
model performed best in each of the studies it was applied to, as determined by Bayesian
information criterion, this method did not capture any of the heterogeneity in, or explain any
features of the larger, hypo-inflammatory group.108

Latent class analysis has been used by other authors to describe ARDS endotypes; Reilly
et al. (2014) retrospectively studied 1,245 major trauma patients (injury severity score
>15) of which 394 developed ARDS (189 derivation, 205 validation).109 They used LCA
to determine three classes which were principally defined by the time, after admission, of
developing ARDS. The model was simplified to two groups, using 48 hours as the threshold
for defining ‘early’ or ‘late’ onset ARDS.

The early group were defined as being more likely to have had thoracic injury, lower blood
pressure and received a blood transfusion. This group had higher Ang-2 and sRAGE levels
but only the Ang-2 level was significantly higher after correction for multiple comparisons.
Mortality was similar in both groups. The authors used a validation cohort and found
that thoracic injury and blood pressure were consistent in the early-onset group, but the
requirement for blood transfusion was not. Details about model fit, misclassification rates
and receiver operating curves were not included.

The authors successfully identified a subset of ARDS due to haemorrhagic shock that
had features consistent with the published literature on ARDS and trauma (raised Ang-2).
However, their model was based upon incorporating a large number of variables in a relatively
small sample size. The frequency of clinical events would, therefore, have been relatively low.
This is relevant because variations in data quality and recording during initial acute trauma
care compared with late, in-hospital care might influence the model fit. Similar to the other
studies listed above, there was minimal exploration of the second identified class.109
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1.8 Background to studies used in this thesis

The results and data collected by three studies, all conducted in the UK, were generously
shared to enable the analysis for this thesis to be undertaken. A brief outline of each of these
studies follows.

Genomic Advances in Sepsis (GAinS)

The Genomic Advances in Sepsis study was a collaborative observational study of sepsis
conducted between 2005 and 2016. The chief investigators were Charles Hinds and Julian
Knight. The biological (transcriptomic, soluble immune mediator) characterisation of patient
samples has been conducted by the Wellcome Centre for Human Genetics, Oxford, UK.
Adult patients with septic shock, admitted to intensive care were recruited by the participating
study centres. This study also formed part of the GenOSEPT consortium, an international
consortium investigating the genomics of sepsis. 658 patients were recruited in the UK for
the GAinS study. There have a been a number of publications from arising from this study:
FER gene SNP association with better outcomes in sepsis99, sepsis phenotypes SRS1 and
SRS297, sepsis transcriptomic responses in faeculent peritonitis and community-acquired
pneumonia.98

Mechanisms of Severe Acute Influenza Consortium (MOSAIC)

The Mechanisms of Severe Acute Influenza Consortium was established in 2009, following
the emergence of pandemic influenza caused by the A(H1N1)pdm2009 virus. The Consor-
tium lead investigator was Peter Openshaw, Centre for Respiratory Infection at Imperial
College London. MOSAIC established a network of eleven hospitals in London and Liv-
erpool where hospitalised patients were recruited, along with a network of nine specialist
research centres. The Consortium captured the UK’s pandemic waves of winter 2009/10 and
winter 2010/11. A total of 255 adults and children were recruited to the MOSAIC prospective
observational cohort study over these two periods. Healthy adult and paediatric controls were
also recruited. Patient recruitment ceased in early 2011. The primary publication arising
from this work (Dunning et al) was published in 2018.110

HMG-Co-A reductase inhibitors in ARDS-2 (HARP-2)

The HARP-2 study was a randomised controlled trial (ISRCTN 88244364) of simvastatin in
ARDS conducted between 2010-14. The rationale for simvastatin use in ARDS was based
on a measurable reduction in pulmonary and systemic inflammation in healthy subjects who
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were challenged with inhaled lipopolysaccharide (50µg LPS) and administered simvastatin
compared with those who received placebo.111 The chief investigator was Danny McAuley,
Northern Ireland Clinical Trials Unit which is part of Queen’s University, Belfast. The trial
sponsor was Belfast Health and Social Care Trust. 539 patients were randomised as part of
this study. The primary outcome was an improvement in ventilator free days (VFDs) by day
28. VFD refers to the number of days a patients is off a ventilator, 28 days after recruitment.
This method of outcome measurement will score 0 for both a patient who dies before day
28 and a patient who is still on a ventilator at day 28. The trial did not achieve the primary
outcome of a reduction in VFDs by day 28 (p = 0.06). The trial results were published in
2015.37

The details of ethical approvals for each of these three studies are available in Appendix
A.



1.9 Summary and aims 29

1.9 Summary and aims

ARDS came into sharp global focus in 2020 due to the COVID-19 pandemic, yet there have
been no direct treatments to date that have addressed the underlying biology in patients
with ARDS. The efforts of researchers in this field have been repeatedly hampered by
patient heterogeneity and poor characterisation of the biology. Approaches to address this
have generally only considered one aspect of the nature of this syndrome - biomarkers,
gene expression, physiology, cause. The most successful approach to date by Calfee and
colleagues integrated clinical measurements with biomarkers. Integration of the biology of
ARDS is required to characterise the underlying mechanisms. The heterogeneity of patients
with ARDS mandates that such an exercise will require collation of a large quantity of
experimental and clinical data.

The aim of this thesis is to demonstrate endotypes in patients with ARDS using the data
collected by these three studies. These endotypes will be characterised by different under-
lying biological processes and immunological responses in these patients. Demonstration
of endotypes may enable future studies to adopt stratified approaches to ARDS and im-
prove the prospects for interventional studies to deliver treatments that benefit patients with
ARDS.
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1.10 Hypothesis and thesis overview

The hypothesis that this thesis will address is:

“Within the heterogenous clinical syndrome of ARDS there are distinct
mechanistic endotypes that can be identified using intergrated phenotyping
methodologies."

The data collected by the GAinS, MOSAIC and HARP-2 studies were shared by their
research teams to address this hypothesis. The methods by which the data were integrated
and mechanistic insights gained from each of these studies is described in the following
chapters.

Chapter 2 describes the methods used to discover sub-types and how these data were inte-
grated to provide insights into the underlying mechanisms.

The results are separated into three chapters: Chapter 3 demonstrates clustering of biomarker
and transcriptomic data, and results of applying standard bioinformatic methods. Chapter
4 describes how protein biomarker clusters and gene expression modules were integrated
together to define endotypes that were based on biological processes. Finally, Chapter
5 integrates these endotypes with clinical features and outcome data so that they can be
described in a patient related context.

Chapter 6 is a general discussion of the findings and possible limitations of this work.
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Methods

2.1 Overview of methods

The broad philosophy underlying this project is: “there are subtypes of ARDS that can be
identified using biological features and described by their underlying mechanisms. Although
these subtypes are defined irrespective of outcomes, they may associate with particular
outcomes and clinical features.”

If one considers a single organ syndrome like acute hepatitis, in the absence of patient history,
the blood tests that are used to diagnose liver dysfunction (alanine aminotransferase, alkaline
phophatase, bilirubin) may all be grossly deranged due to several causes. The aetiology of
acute hepatic dysfunction that causes major derangement of these blood markers may include
severe paracetamol toxicity, ischaemic, alcohol-related, autoimmune or viral hepatitis. Trying
to model patient outcomes of acute hepatic dysfunction using only these liver function tests
without an understanding of the underlying pathology and aetiology could be considered an
analogy for the conduct of research into ARDS. This example is not intended to be a criticism
of researchers or their methods, but reflects how the processes that might lead to ARDS are
far removed from the measures and surrogate markers used to model and predict outcomes
for this syndrome. The example also serves, in a crude way, to highlight the differences
between diseases and organ failure syndromes in general.

Except for latent class analysis-based methods, the other attempts to endotype ARDS de-
scribed in the introduction section have used outcomes or clinical variables as dependant
variables upon which independent predictors were fitted in regression models. This type of
analysis is often referred to as supervised learning, as the regression algorithms attempt to
adjust and optimise the influence of independent variables to fit the given labels. The flaw
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in these methods is that multiple biological pathways and processes may converge on these
outcomes similar to the example of acute liver dysfunction above. Using an outcome label
as a predictor, therefore, leads to loss of information from the underlying data structure and
only serves to identify features of the final common pathway that occurs during or leading
to death, not the initial processes that started this chain of events. For specific diseases
with clearly defined mechanisms (for example antibody-driven autoimmunity) well-defined
outcomes may better reflect the underlying biology, but given the heterogeneity of patients
who develop ARDS, supervised approaches will continue to face these difficulties.

The approach taken for endotype discovery in this thesis has remained unsupervised, with
outcomes or other clinical features of the data only incorporated to delineate the differences
between subtypes once they already been defined a priori.

Unsupervised learning approaches involve the identification of hidden structure or self-
similarity between samples. These structures may be referred to as clusters. The number
of clusters within a given set of data is therefore unknown. The number of clusters can be
derived either using established algorithms or by inspection of the cluster features that are
concordant with external information.

If a set of clusters is identified, their features and the method by which theses clusters were
derived needs to be transparent, as the purpose of this study is to determine the mechanisms
that underlie an identified endotype. This requirement precludes the use of neural network-
based approaches for unsupervised learning (for example variational autoencoders). Neural
networks use multiple layers of nodes, which behave like primitive neurons, with varying
weights and activation thresholds to minimise a cost function. They are an effective approach
for classification problems and perform with high accuracy. Decoding the features that give
rise to clusters using these approaches is, however, non-trivial and may bear no resemblance
to the original data after it has been processed through multiple layers of nodes.

It is for the above reasons of methodological transparency that hierarchical clustering and
weighted gene co-expression networks were used to determine the endotypes of ARDS for
this project. Both of these methods are unsupervised and widely used in the literature for
identification clusters and to identify groups of important genes. These methods were also
chosen because they are reproducible and do not depend on random starting values (seeds).
To determine the differentiating features of each cluster a linear discriminator analysis method
was used. The manner in which it transforms data can be visualised easily and the relative
importance of contributing features are easily interpreted. An outline of the overall data
analysis methodology is shown in Figure 2.1. A detailed discussion of each component of
this workflow is presented step-wise in this chapter.
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Fig. 2.1 An outline of the methods used in this analysis to define endotypes of ARDS
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2.1.1 Data sources

The data for this is analysis was generously provided by the research groups who conducted
them. The microarray data from the MOSAIC study is publicly available in a Gene Expression
Omnnibus (GEO) repository (reference:GSE111368). Only subsets of the GAinS data are
available in public repositories but are available to collaborators of the Wellcome Centre for
Human Genomics, Oxford, UK at request, subject to agreement. The HARP-2 study data is
the property of the Northern Ireland Clinical Trials Unit. Sharing of data for this thesis was
subject to contract.

A comparative overview of each of these studies is laid out in Table 2.1
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GAinS MOSAIC HARP-2

Inclusion
diagnosis

Sepsis – Faeculent
peritonitis / Community

Acquired Pneumonia
Suspected Influenza ARDS

Exclusion
Criteria

Declined / Withdrawn
consent

Declined / Withdrawn
consent

Declined / Withdrawn
consent

<18 years old <16 years old
Advanced directive for
witholding life support Pregnancy

Palliative trajectory Statin contraindication
Pregnancy

Immune-compromise
Not intubated /

ventilated
Recruitment
period Dec 2005 – Mar 2016 Nov 2009 – Jan 2011 Dec 2010 – Mar 2014

Data collection Prospective Retro- and prospective Prospective

n 658 212 539
Mean Age (sd) 63.4 (15.9) 43.1 (15.2) 53.9 (16.4)
no Male (%) 370 (56%) 110 (47%) 307 (57%)

Intervention None, observation only None, observation only
CTIMP: Simvastatin

(n = 259)
Control group Cardiac surgery Healthy controls Placebo (n = 281)
No with ARDS 317 Not formally attributed 539

Physiology Day 1 – Day 7 Day 1 – Day 14 Day 1 – Day 28
Biochemistry /
Haematology Day 1 – Day 7 Day 1 – Day 14 Day 1 – Day 28

Imaging Chest radiograph
report

Chest radiograph
features -

Biomarkers
Multiple cytokines /

chemokines at multiple
time points

Multiple cytokines /
chemokines at multiple

time points

5 cytokines /
chemokines at

multiple time points

DNA Yes Yes
Collected,

analysis pending
Whole blood
RNA

Yes (multiple
time points)

Yes (multiple
time points) -

Plasma
Proteomics In progress - -

Treatment Organ support
Antibiotics

Organ support
Antibiotics
Antivirals

Simvastatin / Placebo
Organ support

Outcomes
ICU / Hospital

Mortality,
Organ failure

Hospital mortality,
Severity of

respiratory failure

28d / 90d / ICU / hospital /
1yr mortality,

Quality of life measures

Table 2.1 Overview of each of the studies used in this project contrasting their differing
features and common elements.
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2.1.2 Sampling times and patient status

Each of the acutely unwell patients recruited to the contributing studies for this thesis
will have had a unique illness trajectory. The time-frame in which a patient developed
symptoms, presented to hospital, was admitted to critical care, had a diagnosis compatible
with recruitment to a study and underwent biological sampling was subject to considerable
variation. If repeated samples were taken then these could have also been at different stages of
their acute illness: during deterioration or recovery from their primary illness. This variation
in patient course is illustrated in Figure 2.2.

Figure 2.2 serves to demonstrate the difference between scientific experiments conducted in
the laboratory with controlled parameters and the heterogeneity of clinical studies involving
acutely unwell patients. Sampling patients at set time points, for example, admission
to hospital or critical care, are subject to variation in the patients’ symptoms, degree of
physiological derangement and their interactions with the health systems treating them.
Patients may be at different stages of their evolving illness at these predetermined times
and thus the biology captured by biomarkers or gene expression will be subject to the same
variation.

An additional source of variation occurs for patients recruited after admission to intensive care
who were transferred from another intensive care setting. Academic health centre hospitals
often receive patients from smaller hospitals for specialist management. These centres, where
many patients for critical care research studies are recruited, have local research infrastructure
and higher capacity intensive care units. Recruitment to clinical research studies of critically
unwell patients may, therefore, be over-represented by patients admitted to academic health
centres who may not be representative of the wider population.

Figure 2.2 also illustrates how the outcome of death (red asterisk and red line) may be an
additional source of variation. The figure denotes these events as “palliative trajectory" which
reflects a change in the focus of care to symptom control and withdrawal of life-sustaining
treatment. These decision are made by treating teams where they believe, on the balance or
probabilities, that maximal therapy is deemed to have failed, will only prolong the patient’s
suffering and is unlikely to change the ultimate outcome. Decisions concerning the limitation
of critical care interventions are subject to individualised consideration of the patient’s
illness in the context of their pre-morbid functional status, patient’s wishes, patient family’s
knowledge of a patient’s prior expressed wishes (where the patient is incapacitated) and the
biases of the treating clinical team.
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It could be hypothesised that humans, broadly speaking, only have a finite number of
stereotyped responses to severe acute illness, although they may transition between these
different states during their illness. Assigning labels to patients based on clinical events and
outcomes will miss this heterogeneity as different processes may result in similar outcomes.
Using these labels in analytical approaches may therefore direct the analysis incorrectly.
Consideration of all sampling time points consistent with acute illness (but not convalescence)
might offer the opportunity to learn the features that describe commonly occurring biological
states. This requires taking the unsupervised learning approach described above, but also
to use all the available biological data from all sampling times. There is a trade-off here as
restricting the analysis to recruitment day samples alone might produce results that can be
applied to clinical practice. The data collected at study recruitment is more likely to reflect
the patient populations recruited to observational studies and clinical trials. Using multiple
sampling times requires many variables to ensure identified states are robust, otherwise small
deviations in a single variable between different sampling times will cause instability of
identified states.
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2.1.3 Biological sample collection, processing and analysis

This project used the results obtained by analysis of clinical samples from three different
studies:

1. Genomic advances in sepsis (GAinS)

2. Mechanisms of severe acute influenza (MOSAIC)

3. Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury
to Reduce Pulmonary dysfunction. (HARP-2)

The background for each of these was described in section 1.8. The research teams that were
responsible for each of these studies collected, processed and conducted the experiments that
generated these results. The methods for how each study conducted these steps are reported
in primary publications associated with them. Their laboratory methods have been included
here in Appendices B and C.

2.1.4 ARDS diagnosis

To ensure that comparisons between patients recruited to each study were consistent, the
Berlin criteria for diagnosis of ARDS (Section 1.1) was used to identify ARDS cases.4 Many
of the patients recruited to the GAinS study preceded publication of the Berlin definition.
For patients recruited to the GAinS study, the Berlin criteria was applied using the available
arterial blood gas, ventilator (PEEP setting) and radiographic features that were shared by
the GAinS research team.

The inclusion criteria for recruitment to the HARP-2 study stipulated a diagnosis of ARDS
as per the Berlin definition.

Patients recruited to the MOSAIC study preceded the Berlin definition. There was incomplete
radiographic and mechanical ventilator data in the study database and so it could not be
determined which patients could be diagnosed with ARDS retrospectively. The study authors
used the respiratory SOFA score to grade the severity of respiratory failure. The components
of this score are listed in Table 2.2.

The focus of this thesis was to determine the endotypes of patients with critical illness.
Patients recruited to the MOSAIC study were in the midst of a pandemic and so patients with
respiratory SOFA score equal to one were excluded for this analysis. This patient cohort
was considered to be too heterogeneous as a positive test for influenza infection in these
patients may have been in the context of another acute illness requiring admission to hospital.
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Patients with respiratory SOFA scores greater than equal to two from the MOSAIC study
were considered for analysis in this thesis. The biological data from these patients was
more likely to capture the relative differences between patients with moderate and severe
respiratory failure attributable to influenza infection alone. Patients with a respiratory SOFA
score equal to one were excluded from analysis.

PaO2-FiO2 ratio, mmHg (kPa) SOFA score

≥ 400 (53.3) 0
< 400 (53.3) 1
< 300 (40) 2
< 200 (26.7) and mechanically ventilated 3
< 100 (13.3) and mechanically ventilated 4

Table 2.2 Respiratory component of the sequential organ failure (SOFA) score
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2.2 Hierarchical clustering

Hierarchical clustering is a method that separates data into groups that are distinct from
each other and are broadly similar within groups. Projection of data points to a multi-
dimensional space is based on their numerical properties and number of features, with each
feature adding an extra dimension. The distance between objects can be measured in this
projected space based on their coordinates or location. Clustering methods can be classified
as being agglomerative (start with individual data points and group neighbours together) or
divisive (start with all data points as a collection and divide them step-wise until you arrive
at individual data points).

The distances between data points can be calculated in the ways shown in figure 2.3. Both
the Euclidean and Manhattan methods are special cases of the Minkowski method (equation
2.1) which describes distances (D) in n- dimensional space, where p = 1 for Manhattan and
p = 2 for Euclidean distances. Cosine similarity is used to compare the similarity between
vectors in high dimensional space and plays a role in text mining and computer vision.

D(X ,Y ) =

(
n

∑
i=1

| xi − yi |p
) 1

p

(2.1)

In biological data, the Euclidean distance method tends to be preferred as this measure
incorporates all the available information about each data point. Data should be scaled before
calculation of Euclidean distances or else the influence of points will be determined by their
magnitude instead of whether they are outlying with respect to their distribution. This is
particularly important with biological assays, some of which have a large dynamic range
whilst others can only measure quantities of an analyte within a small range of values.

Clusters are determined by the distance between groups of neighbouring objects. This is
performed based on a number of predetermined algorithms that determine how one cluster is
linked to the next (referred to as linkage). The different linkage methods are represented in
figure 2.4.

In order to minimise the amount of variation between members of a cluster the Ward method
of clustering was used in the this project. These methods are part of the standard R software
statistical package (version 3.6.2). The Ward linkage method used was called by the argument
“Ward.D2” in the hclust function. This function squares the distances before calculating
within cluster sum of squares. The other linkage methods were also assessed prior to deciding
upon the Ward linkage as the preferred method.



42 Methods

Fig. 2.3 Distance methods used in hierarchical clustering.
S•T represents the dot (scalar) product of the the vectors S and T

Compete linkage: 
greatest possible distance

Single linkage: 
smallest possible distance

Average linkage: 
average of all distances

between all points

Ward linkage: 
minimisation of within cluster 

sum of squares error

Fig. 2.4 Linkage methods used in hierarchical clustering
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2.2.1 Determination of the optimum number of clusters

After the distances and linkage methods between individual points have been calculated,
pairs of points that are similar are grouped together. The algorithms for distance and linkage
are then repeated, using the new groups instead of individual. Each step produces a new join
between groups, called branches, containing more members than the previous until all points
have been joined. The distance between points and how they join can be represented in a
diagram called a dendrogram, which resembles an inverted tree.

The dendrogram linking all data points together may be cut to produce groups of data points,
called clusters. The cut height will determine the number of clusters and assign a membership
label to each terminal leaf of the dendrogram (Figure 2.5).

Fig. 2.5 Demonstration of how a dendrogram can be ’cut’ (dashed line) at different heights
to produce distinct clusters. Colours represent the different branches assigned to each cluster.

There is no standardised method for deciding where to cut a given dendrogram tree. With
two or three dimensional data, visual inspection allows for clusters to be observed directly.
Once data exceeds this then visual methods are not possible without intermediate steps that
reduce dimensionality, but these may remove information and fail to observe adjacency in
non-visualised dimensions. One of many possible methods to determine the optimum cluster
number is to use an alternative clustering method. For this thesis, the alternative clustering
method used was k-mean clustering.
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K-means clustering is a semi-supervised clustering method where a given (k) number of
centres (centroids) are randomly placed in the data space. The distance from each data point
to a given centroid is calculated and the centroid position is moved so as to minimise the
within cluster sum of squares error (WCSS) value. The algorithm then iterates this process
until all the centroids are stationary at each iteration. The total WCSS can then be plotted
per number of centroids and this produces a characteristic scree or ’elbow’ plot where the
WCSS decays exponentially. The point of maximum curvature prior to flattening of this
line, usually determined by inspection, is conventionally considered the optimum number of
clusters (k-centroids) as it represents a trade-off between over-fitting and classification error
(Figure 2.6).
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Fig. 2.6 Schematic of how k-means centroids migrate to find their stable locations. The graph
is a representation of a scree plot showing the elbow method of identifying (by inspection)
the optimum number of k (highlighted red in this case).

K-means is referred to as a semi-supervised method as the number of centres has to be
stipulated by the observer of the data, and is not automated. Convergence to stable centroids
may also depend on initial starting conditions as the initial points are random. It is not always
possible to determine the elbow of the scree plot if the data is unstructured and in these cases
the WCSS may decrease linearly with k instead of exponentially.

The elbow method favours clusters that are circular or spherical shaped and it is these patterns
of data which will give the highest scores and sharpest elbow plots. There are also many other
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indices that estimate the optimal number of clusters. For this project the Nbclust package in
R, which calculates thirty different clustering metric measurements, was used to determine
the optimum number of clusters by majority vote.113
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2.2.2 Management of missing data

Experimental failures and erroneous results can lead to missing values in biological data. The
experiments for measurement of protein biomarkers were carried out in other institutions and
the details of reasons for missing values or experimental discrepancies were unavailable. It
was assumed that the results from these experiments had undergone adequate quality control
as part of any standard ELISA protocol. Nevertheless, there were some missing data points in
the protein biomarker results from both the GAinS and MOSAIC studies. The management
strategy for missing values in data analysis can involve exclusion or imputation of the missing
value. Samples with a high proportion of missing values should normally be excluded whilst
single missing values are usually imputed. There is no set threshold for when to exclude data
or impute data points and this subject to the investigators own understanding of the data, its
provenance and the implications of either imputation or exclusion.

If missing data is to be imputed there are many possible ways of achieving this. The
simplest method is to use the mean value for the assay for all other samples. This method
reduces the variance of the data. A popular method in the data science literature is to use
multivariate imputation by chained equations (MICE), which is available via the MICE
library in R.114

The MICE library uses conditional multiple imputation with ordinary least squares (OLS)
regression to impute missing values for each variable. This is repeated several times to
produce multiple imputed data sets. A further OLS regression addresses the uncertainty
associated with these imputed values and a pooled repeated analysis dataset is created.
The final regression coefficient for the variable to be imputed is the mean of these pooled
coefficients. Imputation using MICE-based techniques perform well and are widely used in
the literature.115 Potential limitations of the MICE method include the need for a random
seed as some steps involve random numbers. This has implications for ensuring reproducible
results.

Both mean and MICE-based imputation were assessed in this project for the protein biomarker
data. Cluster assignments based on the complete (no missing values) data were compared
with cluster assignment following imputation using either of these two strategies. Cluster
concordance was assessed using the Rand index which measures concordance between
different clustering methods. The Rand index is bound by the values 0 (no concordance) and
1 (complete concordance). Unlike simple accuracy calculations, the Rand index can take into
account different cluster labels and the arrangement of clusters. The adjusted Rand index
(ARI) is a more conservative application of the Rand index which involves corrections for
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grouping of the data if they had arisen by chance.116 The correction methodology applied in
ARI overcomes the tendency for randomly generated data to have a high Rand index as the
number of samples increases in a data set. The imputation method with the highest adjusted
Rand index score was used.

2.2.3 Cluster stability

Unlike regression-based methods a hierarchical cluster model does not have an associated
estimation of likelihood or cost when the model is fitted to the data. This is because all
values are assigned to a cluster so there is no way to determine an error or residual values.
Although the partitions are consistent within the same data, there is no guarantee this will be
the case with unseen (hold out) data, even if this new data is derived from the same parent
distributions. To assess stability and whether clusters were reproducible, the data was split
into fractions (70:30) and each fraction was clustered independently. Cluster assignments
from each split were compared with cluster assignments using all the data by calculating
the adjusted Rand index. This process was bootstrapped by re-sampling 500 times, using
the same splitting ratio. The mean Rand index with confidence intervals were reported.
This method only accounted for cluster partitions and their relative sizes, not the properties
associated with data contained in each cluster.

2.3 Microarrays

DNA microarrays are an early implementation of high throughput gene expression analysis. A
microarray consists of a chip with DNA probes of known sequence attached that complement
segments of known gene sequences. Microarray experiments require mRNA extracted from
cells to be converted to complementary DNA (cDNA) using a reverse transcriptase (RT)
enzyme reaction. The cDNA is then amplified using a polymerase chain reaction (PCR),
labelled with fluorescent dyes and placed on the microarray plate. cDNA sequences that
are complementary to probe sequences will form hydrogen bonds and hybridize, remaining
attached, whilst sequences that are not complementary are washed off. The reaction between
probes and cDNA depends on the chemical and environmental conditions present at the time
of the experiment. The fluorescent dyes, attached to hybridized cDNA, are excited using a
dual channel laser. The intensity of the signal is detected by a scanner and translated into a
numeric value which represents the relative expression of the gene compared with a control
sample. (Figure 2.7).
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Fig. 2.7 Schematic of a microarray experiment.
RT/PCR: Reverse transcriptase, polymerase chain reaction

The probe sequences, chemistry of how they hybridize and version of the target organism
genome used to synthesise the probe sequences vary by chip versions and manufacturer.
Fortunately for this project, the GAinS and MOSAIC studies, by coincidence, both used the
same microarray version and manufacturer (Illumina HumanHT-12 v4 BeadChip) to quantify
gene expression. However, the representation of genes from one microarray chip to the next
can still vary due to the manufacturing process, even if chips are the same version. As the
probe sequences are fixed, they may fail to hybridize with variant sequences that contain
mutations and so the expression of these genes will not be captured by these experiments.
cDNA sequences may also hybridize with probes if they have partially complementary
sequences. This is known as cross-hybridization and can be a source of false-positive
results.

2.3.1 Preprocessing and management of batch effects

Results from microarray experiments therefore require careful quality control and review
before inferences can be made. Standard processing workflows for Illumina microarray data
are described in the documentation for two R packages lumi and limma.117,118
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The probe intensity results from a microarray experiment should, in theory, form a normal
distribution. In practice, many probes have intensities with high variance and there is a
significant amount of experimental noise, which is more apparent in low-intensity probes.119

The raw intensity data tends to display a long right-sided tail and so intensity values are
initially log-transformed.

The second step is quantile normalisation: the relative intensities of each probe are ranked
across the genes, an average rank is calculated across all samples and intensity values are
replaced by these new averaged ranks. This preserves the ranks of the genes but information
is lost with respect to their relative intensities. A modification of this method is ‘robust
spline normalisation’ (RSN) which combines quantile normalisation with a continuous
transformation using a regression spline fit. The parameters for this spline fit are estimated
by comparing probes that are strongly differentially expressed. An estimated intensity for
each probe is then calculated using this estimated parameter as a scaling factor. There are
many methods for normalising microarray results; RSN performs well when compared with
alternatives.120

After normalisation, probe intensities often vary between microarray experiments that have
been carried out at different times, even if they are chip same version. Sources of this variation
can occur at any point in the pathway shown in Figure 2.7. Ambient environmental conditions
can influence enzyme performance and efficiency of amplified cDNA hybridization with the
array probes. These differences attributed to external conditions that are unrelated to the
biology being tested in the experiment are often referred to as ‘batch effects.’

There are a variety of methods to adjust for batch effects. A widely used method that is easy
to implement is the ‘ComBat’ method from the SVA library in R.121 This function uses an
empirical Bayes transformation where the background gene levels in each batch are used to
estimate the prior distribution. Variances are pooled across arrays to ‘shrink’ each batch.122.
The overall effect is to shrink the mean and variance of the expression levels of the genes.
Compared with other batch effect correction methods, ComBat performs well and is widely
used.123
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2.4 Weighted gene co-expression network analysis

Weighted Gene Co-expression Network Analysis (WGCNA), recently renamed weighted
correlation network analysis, uses network-based methods to resolve the challenges of in-
terpreting data characterised by repeated sample measurements using large numbers of
features. A practical example is the results from microarray experiments where several thou-
sand probes are measured simultaneously from samples subjected to different experimental
conditions. As the number of probes dwarfs the sample size, meaningful comparisons are
difficult to demonstrate reliably after multiple comparison correction. Genuine signals in
these data may be statistically suppressed without a large sample size with low experimental
heterogeneity.

2.4.1 Network construction and intuition

WGCNA, published in 2005, could be described as inferring guilt-by-association, where
the strength of the correlation determines the association. The first step is to calculate the
correlations between all measured values within a sample (e.g. gene probe intensities),
across all measured samples.124 This is performed using Pearson’s correlation across all
probe pairs which produces a similarity matrix. If two gene probes are expressed at similar
levels between samples consistently, then they will have a consistently high correlation. In
graph and network theory, the correlations are interpreted as the weights of edges between
each of the nodes. The correlation matrix can be interpreted as a weighted network (Figure
2.8).

Simplification of this network uses thresholds which prune edges and identify consistently
linked communities of nodes. A hard-threshold approach refers to the pruning of connections
that are below a set value (r < 0.8 in Figure 2.8). Unweighted networks are generated by a
hard-threshold approach and are useful for observation of the network interactions within
a focused set of biological processes. If the focus of the analysis is to determine a global
view of the network, which incorporates contributions from all processes, then unweighted
networks are preferred.

Weighted networks may preserve information between nodes but are noisy and are described
as random networks. In random networks, the number of connections between nodes tends
to form a normal distribution and are uninformative. Biological networks are generally
considered examples of scale-free networks where key genes or proteins control the function
and expression of many others. A scale-free network is one where the probability for a given
node to be connected to another decays as a power law or shows a power law-like asymptotic
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distribution (Equation 2.2). In a scale-free network, most nodes have very few connections
and a few have many. This property persists independent of network size. Scale-free network
phenomena can be observed when studying the links between websites on the internet or
interactions on social media platforms. Several key nodes have concentrated connectivity
(e.g. google.com). New nodes added to the network are more attracted to these established
nodes (preferential attachment), which are referred to as hubs.
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To translate a weighted-network into a scale-free network a soft-power threshold is used.
The connection weights are raised to an increasing power value (β , Equation 2.3) until the
connectivity distribution between nodes resembles one described by the power law.

The power law:

P(k) ∼ k−γ (2.2)

k is connectivity, P(k) is the probability of a node being connected
γ is a constant calculated as the slope of the log P(k), log k plot.
Generally, 3 ⩾ γ ⩾ 2

Adjacency using a soft power threshold:

ai j = |cor(xi,x j)|β (2.3)

a is the adjacency matrix of i and j
xi is the expression of i

The generalized topological overlap-based dissimilarity measure:

dT,[m]
i j = 1− t [m]

i j (2.4)

di j is the dissimilarity of genes (nodes) i and j,
T, [m] is the m-th order TOM
t [m]
i j is a generalised TOM

Fig. 2.9 Equations for network analysis of gene expression used in the WGCNA library.
TOM: Topological overlap measure

Larger values of β will reduce adjacency, causing a greater degree of pruning and the
resulting networks will appear to be more sparse. To arrive at an optimum value of β the,
r2 of the linear model between log10P(k) and log10k is calculated. r2 > 0.8 is considered
to be sufficient to represent a scale-free network that obeys the power law. A scale-free
network allows for measurement of overlap between groups of connected genes and all the
other genes in the network. This is referred to as topological overlap measure (TOM). TOM
implementation in WGCNA allows for recognition of connections between higher order
neighbourhoods (communities that are slightly further away).
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A dissimilarity measure is calculated on a higher-order TOM (Equation 2.4). Hierarchical
clustering with average linkage produces dendrogram branches that are more pronounced
(separated by larger distances) than other dissimilarity methods.125. In contrast to standard
dendrogram cutting of hierarchical clusters, the WGCNA authors developed a novel branch
cutting method called ‘dynamic tree cut’. This approach uses a flexible dendrogram cutting
method, where the minimum module size and minimum cut height can be directly stipulated,
to aid detection of groups of connected genes.126

The result of dynamic tree cut is the isolation of dendrogram branches into groups of
coexpressed genes, referred to as gene modules.

2.4.2 Downstream analysis of results after applying WGCNA

Genes within a module can be said to be highly connected and have a similar co-expression
profile. Each gene module is assigned a module eigengene (ME) property, a representative
gene for each module. An ME can be considered the first principal component of a given
module. The relative distances between MEs were calculated and clustered on a dendrogram
to visualise how closely related individual modules are to each other. Unassigned genes were
labelled as ME0 (‘grey’) and these represented the group of poorly connected, presumed to
be background, genes.

Data from microarray and other high throughput genomic experiments are subject to the
p ≫ n problem where experimental results generate many more variables than the number of
available samples. In addition, results from high throughput experiments are often noisy. If
standard regression algorithms are used to make inferences, these models may over-fit and
perform poorly with new, unseen data. WGCNA manages this problem by identifying genes
that are consistently poorly connected to others in the network. Unassigned genes can either
be treated as a single entity or isolated from downstream analysis. The remaining modules
may contain as few as fifty genes or many thousands. WGCNA, therefore, effectively reduces
the noise from high dimensional data and facilitates meaningful analysis of gene expression
data by organising genes into highly connected groups. The module eigengene concept has
additional utility; a large number of genes can be represented by a single value that can be
used for correlation with experimental conditions or sample traits.

WGCNA has been used successfully to explore the differentially expressed genes in muscle
tissue from patients with ICU-acquired weakness.127 The investigators correlated gene
modules with patient phenotypes (muscle strength and function) at different stages of their
recovery (seven days and six months after discharge). Gene module function was determined
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using enrichment analysis of the constituent probes. Pathways from the key modules were
associated with mitochondrial function, calcium handling, muscle structure development and
extracellular membrane deposition (healing and repair). The authors validated their findings
in an experimental porcine model and independent ICU cohort.

The WGCNA library contains a consesnsusBlockwise function which can compare samples
from multiple microarray experiments simultaneously, as long as they have a sufficient num-
ber of probes in common. The GAinS researchers conducted gene expression quantification
for recruited patients with four separate microarray experiments. Each microarray result
contained data from a mixture of three groups of patients (community-acquired pneumonia,
faeculent peritonitis and cardiac surgery). Before using this function, the soft power threshold
values for each of the microarray experiments were determined, to ensure that the networks
derived from each microarray experiment had similar properties.

2.5 Data integration and linear discriminant analysis

Correlation coefficients between gene modules clinical variables were calculated to establish
whether modules were associated with clinical phenotypes. p values were corrected using
the Benjamini-Hochberg method.

The protein biomarker values from each contributing study were segmented into plausible
clusters based on consensus hierarchical clustering using the NbClust library.113 The dif-
ferences between identified clusters were explored using linear plots of averaged, grouped
values for each cytokine and with heatmaps. These relationship between points in assigned
clusters were visualised using principal component analysis (PCA). PCA is a dimension
reduction method for high-dimensional data which maximises the variance of data along
fitted orthogonal axes, using singular value decomposition (SVD). It can, therefore, capture
the dominant directions of variance in the data. SVD is an algebraic manipulation of matrices
that is widely used in many statistical and data analysis methods. Each principal component
explains the data variance in sequentially decreasing proportions.

Gene modules identified by WGCNA have several numeric properties. For each sample,
the algorithm calculates the explained variance for the relationship between the sample
and the first principle component of each identified gene module. The package refers to
these values as ‘kME’s. kME values were zero-scaled on the mean to enable integration
with the protein biomarker data. Clusters were re-visualised in the principal component
space to determine whether gene expression results from WGCNA disrupted the structure or
arrangement of points in each cluster. The relative loadings of cytokines and kMEs values
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were visualised in a ‘biplot’. A biplot is a projection of data points using the values from
the first two principal components as horizontal and vertical axes. Arrows are drawn for
each variable on this plot from the (0,0) co-ordinate. The direction and magnitude of each
arrow represents the explained variance (loading) of that variable with respect to the first two
principal components. Arrows that point horizontally contribute to the explained variance
of the first principal component, vertical arrows to the explained variance of the second
principal component.

2.5.1 Linear discriminant analysis

A linear discriminant analysis (LDA) model was fitted to determine the most discriminant
features between clusters. LDA is similar to PCA in that it defines new linear functions
(axes) to fit the data. The key difference between LDA and PCA is that LDA is supervised
and seeks to maximise the differences between assigned labels. PCA, on the other hand, is
unsupervised and it defines m new axes that account for the variance along orthogonal axes,
where m is the number of variables in the data.

Both the PCA and LDA calculate the relative loadings of contributing variables for their
fitted axes. The magnitude of a loading represents its contribution to the principal component
in question. In LDA only k−1 discriminant axes are fitted, where k is the number of prior
groups. These axes can also be considered decision boundaries. The loadings in LDA
represent the relative contributions of the variables to the discriminant axes. To calculate
these loadings LDA uses a comparison matrix of cross-products and within-group sum of
squares, whereas PCA uses a similarity matrix.

Figure 2.10 demonstrates principal component and linear discriminant analysis approaches
for Fisher’s iris flower data. There are four measurements for each of 150 flowers that belong
to three different species. The PCA biplot (A) shows the data projected on to the first two
principal components. The red arrows demonstrate how each of the variables contributes to
the respective axes. Here petal width and petal length primarily contribute to the first principal
component (PC1); the loadings are parallel to the PC1 axis. Sepal width contributes to the
second principal component (PC2) as its loading is orientated in the PC2 direction.

B is a representation of the linear discriminant decision boundaries if they are projected into
the PC1 and PC2 subspace. LD1 and LD2 are both almost orthogonal to PC1 and parallel
to PC2. If the data points are then projected, using matrix multiplication, onto the LD1 and
LD2 axes then we see them distributed as shown in C. The groups appear better separated.
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There is less overlap between the versicolor and virginica species when they are projected on
to the LD1 axis, compared with projection onto the PC1 axis in A.
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Fig. 2.10 Representation of loadings in principal component (PCA) and linear discriminant
(LDA) analysis using Fisher’s iris data, which contains the measurements of three different
iris flower species. A A biplot showing the loadings of how the four variables contribute to
the first two principal components. (Note these loadings have been scaled up for clarity). B
shows the LDA-based decision boundaries (discriminant axes) represented in the PC1 and
PC2 subspace. The actual boundaries are hyperplanes in the four dimensional space of the
original data. C shows the data projected onto these LD axes and how they serve to separate
the labelled groups. D shows the relative loadings of variables with respect to each linear
discriminant. PC: principal component. LD: linear discriminant
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The advantages of using LDA over other methods of classification are that the decision
boundaries that it creates are of low variance and stable compared with the decision bound-
aries estimated by more complex classification methods (random forests, support vector
machines).128 Additionally, LDA implements classification problems with multiple groups in
a straightforward and easy to interpret with respect to the loadings that it estimates. The goal
of this project was to understand the differences between identified sub-groups of patients, not
create a model that may predict with high accuracy but might be difficult to interpret.

The implementation of LDA in the MASS library in R allows the user to fit an LDA model
with multiple labels and the calculate the relative importance of the contributing features.129

The scaling coefficients can be used to linearly transform the data matrix so that the points
can be projected onto a new linear discriminant axis as shown in Figure 2.10c.

2.5.2 Assessment of LDA model performance

Several strategies were considered to assess LDA model performance. The validation test set
approach involves splitting the data into a training set and testing set by randomly selecting
70% of samples for training. The model is fitted using the training data and then tested on
the unseen (hold-out) testing data. The fitted model is used to predicted cluster labels using
the testing data and these can be compared with the actual cluster labels to determine the
accuracy of the model. The classification error can also be reported using the area under the
receiver operating characteristic curve (AUROC).

This model validation approach works well for data with a large number of samples. The
accuracy estimates can vary with smaller sample sizes depending on how the training and
testing sets are sampled. If borderline cases are under-represented in the training set, then the
model may fail to classify borderline cases correctly in unseen testing data. This phenomenon
is often referred to as over-fitting.

To obtain accurate estimates of model performance and avoid over-fitting, three approaches
are possible. One approach, called bootstrapping, involves resampling the data points with
replacement and calculating the average accuracy of the model over hundreds or thousands
of iterations. Each iteration uses a different random sample of training and testing data
points.

The second approach is called k-fold cross-validation. The data is split into a number (k) of
subsets, and the hold-out method is repeated k times. The average performance across all
k-folds is reported. This approach is computationally expensive but is feasible on relatively
small data.
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The third approach, called leave-one-out cross-validation, involves removing a random data
point and predicting the class of the removed point using the rest of the data. This is repeated
for k-1 times, where k is the number of samples in the data set. It amounts to an extreme form
of k-fold cross-validation and is best suited for smaller data sets due to its high computational
cost.

For the analysis presented in this thesis, leave one out cross-validation was used due to
the relatively small cluster sizes. The caret library in R automates the above process and
reports accuracy but there is no associated confidence interval, nor can AUROC be calculated
without hold-out testing data.130 To ensure that there was an appreciation of the variance
of this accuracy statistic and to calculate AUROC, a bootstrapped approach was also taken.
This offered an additional way to check model performance but also facilitated reporting of
average model accuracy and AUROC statistics with confidence intervals.

2.6 Endotype characterisation

Once endotypes had been identified, clinical variables were used to characterise each en-
dotype. Comparisons between endotypes were made for biochemical, physiological and
haematological variables using analysis of variance (ANOVA) with Tukey’s post hoc test
or Kruskal-Wallis test with Dunn’s test depending on the individual variable distributions.
Binary categorical features (e.g. positive bacterial culture) were compared using logistic
regression or the χ2 test. Ordinal variables (e.g. SOFA score) were compared using the
Kruskal-Wallis test.

Patient outcomes were compared using logistic regression, time to event methods (Kaplan-
Meier analysis) and where adjustments were made for other measured variables, Cox propor-
tional hazards were estimated.

Cluster stability was determined using the adjusted Rank index (Section 2.2.3). Cluster
transitions over time were observed using Sankey diagrams.

2.6.1 Enrichment of gene lists

Microarray probes were linked to genes in the human genome using the illuminaHumanv4.db
library which contains a database of annotated probes available on the version of microarrays
used in this study.

Each gene module, identified by WGCNA, was submitted to online enrichment tools which
calculated the relationships between gene lists and known biological pathways. The statistical
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over-representation test was used to identify processes and themes for each module. For a
given list of random genes one would expect these genes to be associated with a pathways
spread proportionately across the genome. If multiple genes from a submitted list are
associated with a single process and this is greater than expected compared with a reference
list then this pathway was said to be over-represented.

The binomial statistic is used to calculate the significance level of the represented pathway,
with the null hypothesis that there is no difference from the expected number of gene in the
reference genome. The p value generated by this binomial comparison is sometimes referred
to as the hypergeometric p value. This process involved multiple comparisons to be made
simultaneously (one for each potential pathway). Hypergeometric p values were corrected
using the Benjamini-Hochberg method.

Each gene module was labelled with the over-represented pathway with the highest signifi-
cance level attributed to it. Where no known pathway was significantly associated with a
gene list, the module was labelled ’no significant pathway’.

There are a number of platforms and tools available for enrichment of gene lists. In this thesis,
metascape [https://metascape.org] and enrichR (https://maayanlab.cloud/Enrichr/) were both
used as they both simultaneously collate the results from a number of gene ontology databases
(KEGG, GO) and pathway databases (reactome).131,132

2.6.2 Determination of differential gene expression

Microarrays were designed to compare the expression of genes between tissue samples that
were subject to different experimental conditions prior to extraction of mRNA. A standard
workflow for differential gene expression analysis usually involves the following steps:

- Quality control and normalisation steps outlined above in section 2.3.1.

- Linear model fit to experimental model conditions for every sample in a binary, model
matrix arrangement called a ‘design’ matrix. Each column of this matrix is an experi-
mental condition and will form a new term in a linear regression model. Each row is a
sample.

- A second ‘contrasts’ matrix which uses the design matrix to create a new matrix based
on which contrasting experimental conditions or disease state are to be compared.
For example, comparing endotype ‘A’ and endotype ‘B’. Simple experiments do not
require a contrast matrix.
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- The linear model is fitted similarly to standard linear regression, using linear algebraic
methods.

Comparing gene expression between two conditions using a linear model amounts to com-
parison of means using a t-test. Moderation of the t-statistic is necessary as microarray data
tend to have a low number of replicates and are subject to multiple tests of a large number of
genes with limited variance estimates. Shrinkage of variances using the background levels of
other genes (V0) gives better estimates of variance (V̂g) for a given gene (g) with variance V
(equation 2.5).

V̂g =V0 +Vg (2.5)

The limma R package uses an empirical Bayes method to moderate the t-statistic, which in
addition to shrinking the variances of the residual values from the linear model, provides
extra degrees of freedom. The overall affect of these methods is to produce more robust
linear models which determine differential gene expression more reliably. These moderation
methods have been validated using spike-in control experiments and simulations.118,133

The results from application of the above statistical methods are presented in a table contain-
ing estimates of the following values for each probe:

- the log2 fold change

- B-statistic, which represents the log-odds of a gene being differentially expressed

- calculated p value

- Benjamini-Hochberg adjusted p value (false discovery rate).

The results from this table were presented in a scatter plot, often referred to as a ‘volcano’
plot, which highlighted genes that had statistically significant differential expression based
on their false discovery rate (FDR) and log2 fold change. Genes identified as significant were
submitted for pathway enrichment as described in section 2.6.1 to determine the biological
processes that might be important in different sub-types.

2.7 General statistical methods

All analysis was conducted in the statistical language R version 3.6.2.134 The list of packages
used include: dplyr, ggplot2, WGCNA, MASS, survival, survminer, ggfortify, cowplot, lumi,
limma, illuminaHumanv4.db, networkD3, htmltools.117,135–143
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For descriptive data results are presented as mean with standard deviation, or median with
inter-quartile range. Comparisons were made using Student’s t-test for normally distributed
data and Wilcoxon-rank sum tests for non-normal data. Where more than two groups were
compared, ANOVA with Tukey’s post hoc test was used for normally distributed variables
and Kruskal-Wallis with Dunn’s test for non-normally distributed variables. Time to outcome
data was analysed using the Kaplan-Meier method. If multiple covariates were used the
Cox proportional hazards were estimated. Pearson’s correlation coefficient was used to
measure correlations between variables. Heatmaps were used to assess the clusters and cells
were coloured by the z-score values of each variable. Correlation heatmaps used Pearsons’
correlation coefficient values to colour the cells. The significance threshold used was p <
0.05 and where multiple comparisons were made the false discovery rate (FDR) was used for
correction.

Schematics and figures were produced using Lucidchart (www.lucidchart.com) and Adobe
Illustrator (Adobe Inc, CA, USA). Result plots were created using R.





CHAPTER 3

Clustering of biological data

3.1 Overview of results

The results section of this thesis is divided into three separate chapters: clustering, integration
and characterisation. These represent each stage of the bioinformatic analysis. A detailed
overview of these steps was shown in Figure 2.1. A simplified version is shown in Figure
3.1.

Fig. 3.1 Simplified schematic of the data analysis workflow of this thesis. Protein biomarker
values were combined with explained variance values of gene modules calculated by
WGCNA. This combination of features was used to discriminate the differences between
patients with severe respiratory failure / ARDS in each cluster using an LDA model. Key
gene modules were enriched to identify the dominant biological processes and pathways.
Clinical information was then integrated in order relate mechanism to clinical features and
patient outcomes.
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3.2 Hierarchical clustering of protein biomarkers

Soluble immune mediators are proteins released by both non-immune cells in response to
damage or recognition of infection, and by cells directly involved in the immune response to
infection and injury. An ever-increasing number of immune mediators are recognised for the
role in recruitment and modulation of immune cells. Collectively these proteins are called
cytokines. Cytokines are generally grouped based on the types of immune cell that release
them or they recruit. For example, type 1 interferons (IFN-α and IFN-β ) are associated
with an anti-viral immune response, whilst TNF-α is associated with granulocyte-mediated
immune responses. Not all immune mediators that influence immune function are cytokines:
granulocyte-macrophage colony-stimulating factor (GM-CSF) is a growth factor affecting
granulopoeisis that also functions as a cytokine.

The aims of this step of the analysis was to determine if there were different groupings of
patients (clusters) with similar concentrations of protein biomarkers. Similarities between
independently-derived clusters might infer stereotyped immune responses in the context of
critical illness.

3.2.1 Preprocessing and imputation

The data provided for this study consisted of measurements of 26 protein biomarkers in 199
samples for the GAinS study and 34 protein biomarkers in 378 samples for the MOSAIC
study. For the MOSAIC study, there were technical replicates of IL-8 assays. The mean value
across both replicates was used. The protein biomarker data in the MOSAIC study included
68 samples taken during convalescence. 310 samples remained after exclusion. Further
exclusions for samples with rSOFA score less than two or with more than three missing
values, meant 154 samples from the MOSAIC study remained for cluster analysis.

Measured protein biomarker concentrations were log-transformed and scaled (centred on the
mean) prior to analysis as the distribution of these data were right skewed. Scaling improves
the performance of Euclidean distance-based clustering and allows for integration with other,
similarly scaled variables in downstream analysis. The proportion of missing data was equal
to 0.6% for the GAinS samples and equal to 0.9% for the MOSAIC samples. Where data was
missing in a given sample, generally, only one or two values were absent. It was considered
low risk to impute these missing values instead of discarding all the data from these samples
entirely.
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The adjusted Rand index was used to the assess the performance of different imputation
methods. Table 3.1 shows that imputation with the mean performed better than MICE-based
imputation.

Complete data clusters
1 2 3

1 96 0 0
Mean imputed
data clusters 2 0 59 0

3 0 0 21

Adjusted Rand index = 1

Complete data clusters
1 2 3

1 92 2 2
MICE imputed

data clusters 2 1 58 0

3 0 0 21

Adjusted Rand index = 0.91

Table 3.1 The effect of different imputation strategies (mean, MICE) on cluster assignment
using hierarchical clustering for the protein biomarker Values from the GAinS study. ‘Com-
plete data clusters’ refers to clustering of samples with no missing values (n = 176). The
hierarchical clustering dendrogram was cut to generate three clusters. The same clustering
methods were used on the protein biomarker value with missing data (n = 199), after impu-
tation. The imputed data cluster assignments were compared with complete data clusters
assignments for the in-common samples (n = 176). Concordance was evaluated using the
adjusted Rand index. Imputation using the mean had perfect concordance (adjusted Rand
index = 1) compared with imputation using MICE (adjusted Rand index = 0.91).
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3.2.2 Hierarchical clustering: linkage methods

Four different linkage methods were available for hierarchical clustering: Ward’s, average,
single and complete. Projection of the protein biomarker values into the principal component
(PC) space demonstrated no obvious separation of data points into distinct clusters. Hier-
archical clustering methods served to segment these data points into different groups. The
effect of each linkage method was assessed visually using pair-wise scatter plots of the first
three principal components. The data points were segmented into increasing cluster divisions
(k) to see the effect of data segmentation as k increased. Figures 3.2 and 3.3 demonstrate how
each of the linkage methods segmented the protein biomarker values into three or four groups.
On this basis, the Ward linkage method of hierarchical clustering was chosen as it produced
consistent segmentation of data points that could be easily interpreted and visualised.

Inclusion of all patients in clustering

The method of hierarchical clustering assigns every data point to a cluster. This may result in
outlier samples becoming incorporated into these clusters which might influence downstream
analysis. Alternatively, outliers may be assigned to a separate cluster by the linkage method,
in which case clustering provides a useful method for excluding outlier samples. It can
be seen from the principal component plots (Figures 3.2 and 3.3) that no samples required
exclusion, nor was it the case that clustering identified an outlier group as a distinct cluster in
these data.
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Figures 3.2 and 3.3 Visualisation of the segmentation of protein biomarker data in the
principal component space using different hierarchical clustering linkage methods. Each
point is a study sample which represents the combined results from 26 (GAinS) or 35
(MOSAIC) protein biomarker assays, projected into the principal component space. Only the
first three principal components (PC) are shown here. Colours indicate cluster assignment.
Three or four clusters were chosen to emphasise the effect of linkage methods on clustering.
The Ward and complete linkage methods produced similar cluster assignments with the
GAinS protein biomarkers, but this was not the case with the MOSAIC protein biomarkers.
The single and average linkage methods did not produce easy to interpret cluster assignments
for either set of protein biomarker results. Ward linkage was chosen as the preferred linkage
method for hierarchical clustering.
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3.2.3 Hierarchical clustering of protein biomarker profiles from pa-
tients recruited to the GAinS study identified three clusters

Hierarchical clustering using Euclidean distance and Ward linkage gave an optimum cluster
number of three for protein biomarker profiles from patients in the GAinS study. This number
was derived from a combination of inspection of the dendrogram, k-means elbow method,
the NbClust cluster metrics (Figure 3.4) and heatmap visualisation (Figure 3.5). The number
of samples and mean protein biomarker z-scores in each cluster are listed in Table 3.2.

(a) K-means elbow method (b) NbClust optimal cluster selection output

Fig. 3.4 Optimal cluster determination for the protein biomarker values in the GAinS study
using (a) k-means elbow method and (b) the majority voting methods from NbClust. Both
methods suggested that three clusters was the optimal number for these data.

The mean, log-transformed values of each measured protein biomarker for each cluster group
are shown in Figure 3.6. The line plot and the heatmap (Figure 3.5) both demonstrate the
polarised distributions of protein biomarkers observed in these three clusters. Each cluster
had statistically significant different concentrations for all measured protein biomarker s
(Appendix D.1). The concentrations of the protein biomarkers in the ‘purple’ cluster were
on average, universally elevated whilst the concentrations in the ‘green’ cluster were, on
average, universally depressed. The ‘yellow’ cluster had relatively uniform concentrations
that approximated the means of the log-scaled sample values. The polarised nature of the
identified clusters suggests there is severe immune dysregulation in patients with sepsis, who
may have globally elevated or depressed cytokine and chemokine concentrations.

Figure 3.5 also shows how patients with a diagnosis of ARDS are distributed across all three
clusters. This demonstrates the heterogeneity, at an immunological level, of ARDS in the
context of sepsis.
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Protein biomarker Yellow cluster (1) Purple cluster (2) Green cluster (3)

n 98 59 42
CCL3 (MIP-1α) 0.1014 0.7788 -1.3308
IL-1β 0.0174 0.9148 -1.3256
IL-2 -0.0826 0.8233 -0.9638
IL-4 -0.0554 0.7844 -0.9726
IL-5 0.0630 0.7961 -1.2653
CXCL10 (IP-10) -0.1105 0.8403 -0.9225
IL-6 0.1348 0.7530 -1.3722
IL-8 0.0189 0.8824 -1.2836
IL-10 0.0520 0.8191 -1.2720
CCL11 (Eotaxin-1) -0.0147 0.8259 -1.1260
IL-12p70 -0.0691 0.8523 -1.0360
IL-13 0.0371 0.7734 -1.1732
IL-17A -0.0175 0.7364 -0.9936
IFN-γ 0.0235 0.9216 -1.3495
GM-CSF 0.0834 0.8496 -1.3880
TNF-α 0.0903 0.8988 -1.4733
CCL4 (MIP-1β) 0.0058 0.8707 -1.2367
IFN-α -0.0539 0.7544 -0.9340
CCL26 (Eotaxin-3) 0.0900 0.8396 -1.3895
CCL2 (MCP-1) 0.0477 0.5878 -0.9370
CXCL11 (I-TAC) 0.0508 0.8669 -1.3364
CXCL9 (MIG) -0.0592 0.9853 -1.2459
TNFR-2 -0.0510 0.8936 -1.1362
CCL22 (MDC) -0.1504 0.8793 -0.8842

Table 3.2 Mean z scores of protein biomarkers from samples in each GAinS cluster. Samples
from the ‘purple’ cluster had globally raised protein biomarker concentrations whilst samples
from the ‘green’ cluster had globally suppressed protein biomarker concentrations. All three
clusters appear to have, on average, polarised responses. The relative concentrations and
distributions of each measured protein biomarker in patients from each cluster are shown in
Appendix Figure D.1.
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Fig. 3.5 Heatmap showing the relative values of measured protein biomarkers, on the z scale
(zero-centred), for GAinS samples in each cluster. The cluster dendrogram derived by Ward
linkage method is on the left side of the heatmap, dividing the samples into the clusters
labelled by their colour bars, or ARDS status. It can be observed that there were patients
with ARDS in each of the three clusters (blue and grey bands). NA: missing value
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Fig. 3.6 Mean protein biomarker values in samples from each GAinS cluster. The three clus-
ters were characterised by polarized distributions of protein biomarker concentrations. This is
another representation of how different each of the clusters were. Cluster 2 (purple) samples
had significantly elevated concentrations of all measured cytokines ans chemokines, suggest-
ing a dysregulated, excessive cytokine response involving both pro- and anti-inflammatory
cytokines. Cluster 3 (green) had significantly lower mean concentrations of all measured
protein biomarker suggesting pan-suppression of cytokine responses.
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3.2.4 Hierarchical clustering of protein biomarker profiles from pa-
tients recruited to the MOSAIC study identified three clusters

Hierarchical clustering using Euclidean distance and Ward linkage gave an optimum cluster
number of three for the protein biomarker profiles from the MOSAIC study. This number
was derived from a combination of inspection of the dendrogram, k-means elbow method,
NbClust cluster metrics, (Figure 3.7) and heatmap visualisation (Figure 3.8). The number of
samples assigned to each cluster are listed in Table 3.3.

(a) K-means elbow method (b) NbClust optimal cluster selection output

Fig. 3.7 Optimal cluster determination for the immune mediator values from the MOSAIC
study using (a) k-means elbow method and (b) the majority voting methods from NbClust.
Both methods suggested that three was the optimal number of clusters.

Samples from the ‘red’ cluster (3) were associated with much higher concentrations of
inflammatory mediators associated with the acute phase response (IL-6, TNF-α). ‘Red’
cluster samples also had significantly higher concentrations of IL-15. Il-15 is associated with
severe disease in influenza which is thought to be mediated by NK cell activation.144 Samples
from the ‘grey’ cluster (2), which represented the largest group, were associated with lower
concentrations of these three mediators but the highest levels of of interferon-α2a (IFN-α2a).
IFN-α2a is a type I interferon and is associated with an anti-viral immune response. Samples
from the ‘blue’ cluster (1) had moderately raised levels of TNF-α . IL-15 and IL-6 and
depressed levels of IFN-α2a similar to samples from the ‘red’ cluster (3). The immune
mediator profiles in the patients from the MOSAIC study were generally less polarised, in
comparison with the clusters identified in the GAinS study.
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Fig. 3.8 Heatmap showing the relative values of measured immune mediators, on the z scale,
for MOSAIC samples in each cluster. The cluster dendrogram derived by Ward linkage
method is on the left side of the heatmap, dividing the samples into the cluster labelled by
their colour bars. The colour bar labelled ‘rSOFA‘ shows the respiratory SOFA scores for
each patient. The dark green boxes indicate samples from patients on mechanical ventilation
(rSOFA ≥ 3). These patients are distributed across all three clusters, although a higher
proportion of them are found in the ‘red’ and ‘blue’ clusters.
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Immune mediator Blue cluster (1) Grey cluster (2) Red cluster (3)

n 50 79 28
CCL5 (RANTES) -0.2236317 0.29514907 -0.9229394
IFN-α2a -0.5764506 0.26389183 -0.8822796
CCL22 (MDC) -0.882019 0.42218442 -0.7077652
CC17 (TARC) -0.6928466 0.37227819 -0.6150973
Vitamin D -0.366662 0.05966778 -0.5413645
IL-12p70 0.14141123 -0.1314306 -0.227186
CCL11 (Eotaxin-1) -0.1549202 0.15225921 -0.1057977
CXCL11 (I-TAC) 0.12904854 0.00264832 0.1483144
IL-29 (IFN-λ) 0.11410136 -0.0596924 0.1551903
IL-5 0.13120274 -0.027955 0.286988
IL-4 -0.0851889 0.09144718 0.3159596
CCL13 (MCP-4) -0.3247548 0.13225012 0.6277915
IL-1 0.25574758 -0.0122592 0.6641887
CCL3 (MIP-1α) 0.13404839 -0.3541256 0.7035267
Neopterin 0.33853049 0.03459873 0.8441284
IL-13 -0.0969028 -0.1374579 0.8840543
IFN-γ -0.0778043 -0.1140423 0.8858542
GM-CSF 0.13160948 -0.0577402 0.9551785
CCL4 (MIP-1β) -0.4020597 0.07512544 0.9799912
TNFR-2 0.83911253 -0.3440906 1.0067219
CCL26 (Eotaxin-3) -0.6345743 0.29252696 1.019404
IL-2 -0.1310917 0.2854464 1.0991339
IL-10 0.25640962 -0.0990634 1.1086215
IL-8 -0.1551415 -0.3011357 1.1266713
TNFR-1 0.89429784 -0.32281 1.2625966
CXCL9 (MIG) 0.32551139 -0.2373243 1.3765793
IFN-β 0.3699887 -0.2387985 1.5182616
CXCL10 (IP-10) 0.04823145 -0.0203755 1.5360618
IL-17 0.24800508 -0.074908 1.5837885
CCL2 (MCP-1) 0.09823013 0.05258789 1.6686114
Procalcitonin 0.6891961 -0.1782709 1.679158
IL-6 0.54364565 0.0336591 1.690874
IL-15 0.51291068 -0.2191639 1.7250176
TNF-α 0.27617064 -0.2659672 1.8052933

Table 3.3 Mean z scores of immune mediator concentrations in patients from each MOSAIC
cluster. Samples from the ‘red’ cluster were associated with significantly higher concentra-
tions of TNFα , IL-6. IL-15 and procalcitonin than the other two clusters. Samples from the
‘grey’ cluster were associated with higher concentrations of CCL5, IFN-α2a and CCL22
than the other clusters. The concentration and distributions of immune mediators in patients
from each cluster is also shown in Appendix Figure D.2.
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Fig. 3.9 Mean immune mediator value in samples from each MOSAIC cluster. Samples from
the the ‘red’ cluster (3) had significantly elevated concentrations of cytokines and chemokines
associated with granulocyte activation. The other two clusters had a mixed, more moderated
response that was closer to the sample mean for the majority of measured immune mediators.
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3.2.5 Hierarchical clustering of biomarker profiles in the HARP-2 pa-
tients did not identify an optimal number of clusters

The HARP-2 researchers measured six protein biomarkers in 511 patients on the day of
randomisation. Biomarker samples were taken in some patients at days 3, 7, 14 and 28
post randomisation but these were inconsistently collected and measured. In addition to
the cytokines IL-6 and sTNFR-1, the study team measured concentrations of four protein
biomarkers: angiopoietin-2 (Ang-2), matrix metalloproteinase-8 (MMP-8), soluble receptor
for advanced glycation end products (sRAGE), surfactant protein-D (SP-D). These protein
biomarkers have previously been shown to be associated with worse outcomes in patients
with ARDS (Section 1.5.1).

Of the six mediators measured by the HARP-2 study team, only IL-6 was in common with
the other two studies in this project.

There was inconsistent coverage of biomarker measurements at times other than day 1
(recruitment). If sampling days 1, 3 and 5 were considered, only four biomarkers had been
measured on these three days, and only in a much smaller sample of patients. Stable clusters
across these three sampling times could not be demonstrated due to the paucity of features.
For these reasons only recruitment day samples were considered for clustering of biomarker
profiles.

The k-means elbow method identified no clear candidate value of k consistent with the start
of a plateau for the within cluster sum of squares values (Figure 3.10a). This suggested that
there was no optimum cluster that could be identified using k-means. The NbClust package
determined that either two or six as optimum cluster numbers (Figure 3.10b).

Inspection of cluster dendrograms and heatmaps produced by the clustering algorithms
suggested that three clusters was a reasonable compromise and served to recognise distinct
properties of these data (Figure 3.12). Both the GAinS and MOSAIC studies had determined
three clusters as the optimum number segmentation of protein biomarker results based on
compelling evidence. This supported with decision to proceed on the basis of three biomarker-
based clusters in the HARP-2 study. To ensure that there was no untoward reason for failure
to identify clusters principal component projections of the cytokine concentrations were
plotted and reviewed (Figure 3.11).

The number of samples (patients) and relative levels of biomarkers in each cluster are shown
in Table 3.4. Samples from the dark green cluster (3) were associated with globally depressed
measured mediators (Figure 3.12). Enforcing a three cluster split caused the second large
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Fig. 3.10 Optimal cluster determination for the protein biomarker concentrations from the
HARP-2 study using (a) k-means elbow method and (b) the majority voting methods from
NbClust. Both methods were inconclusive for an optimum cluster number.
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Fig. 3.11 Principal component projection of HARP-2 protein biomarker values. Each point
is a patient sample taken at recruitment to the study. Each colour corresponds to a different
cluster assignment as determined by the Ward linkage method. Segmentation of the data
is consistently observed in the four visualised principal component projections with this
method.



82 Clustering of biological data

branch to divide into two smaller ones (‘dark red’ and ‘dark yellow’). Samples from the ‘dark
red’ cluster (1) were associated with high MMP-8 concentrations. Samples from the ‘dark
yellow’ cluster (2) were associated with high sRAGE concentrations. Both the ‘dark red’
and ‘dark yellow’ clusters had similar levels of IL-6 and Ang-2. This suggested that there
were two distinct profiles of acute inflammation in patients enrolled in the HARP-2 study,
both with evidence of endothelial injury. This distinction might not have been recognised
if the samples from these clusters had been merged into a single ‘inflamed’ cluster, using a
two-cluster division of these protein biomarker values.

Cluster 1
(dark red)

Cluster 2
(dark yellow)

Cluster 3
(dark green)

n 160 89 262
SP-D 0.307 -0.362 -0.064
sTNFR-1 0.56 0.323 -0.451
sRAGE -0.061 1.438 -0.451
MMP-8 0.663 0.015 -0.41
IL-6 0.652 0.453 -0.552
Ang-2 0.408 0.408 -0.388

Table 3.4 Mean z scores of protein biomarkers in each HARP-2 cluster. Samples from
the ‘dark red’ cluster (1) were characterised by higher MMP-8 concentrations. Samples
from ‘dark yellow’ cluster (2) were characterised by high sRAGE concentrations. Samples
from both clusters had high concentrations of IL-6 and Ang-2. Samples from the ‘dark
green’ cluster (3) had depressed levels of all measured biomarkers. The non-transformed
concentrations of protein biomarkers in each HARP-2 cluster can be seen in Appendix Figure
D.3.
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Fig. 3.12 A Heatmap showing the relative values of measured protein biomarkers, on the z
scale, for the samples in each HARP-2 cluster. The cluster dendrogram derived by Ward
linkage method is on the left side of the heatmap, dividing the samples into the cluster
labelled by their colour bars.
B Mean protein biomarker values in samples belonging to each cluster from the HARP-2
study. Samples from the ‘dark green’ cluster (3) were associated with depressed levels of
most mediators. Samples from the ‘dark red’ cluster (1) had higher concentrations of MMP-8.
Samples from the ‘dark yellow’ cluster (2) had the higher concentrations of sRAGE.
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3.2.6 Assessment of cluster stability

The adjusted Rand index was used to determine the cluster assignment on asymmetrical
partitions of the data which were re-sampled 500 times. The calculated mean, adjusted Rand
index values for each study, are listed in Table 3.5. The adjusted Rand index values are
consistent with relatively stable clusters in the GAinS and MOSAC studies (ARI > 0.7).
Cluster stability was relatively lower for clusters identified in the HARP-2 study (ARI =
0.68).

Study Samples Features Clusters Adjusted Rand index 95% confidence interval

GAinS 199 24 3 0.83 0.82-0.84
MOSAIC 157 32 3 0.74 0.73-0.75
HARP-2 511 6 3 0.68 0.67-0.69

Table 3.5 Adjusted Rand index values for cluster stability using partitioned, re-sampled data.
‘Features’ refers to the number of measured biomarkers

3.3 Discussion of protein biomarker clustering

There is a strong argument for the existence of at least three distinct immune profiles,
determined by hierarchical clustering of protein biomarkers, in both the MOSAIC and GAinS
studies. The ‘purple’ GAinS and MOSAIC ‘red’ clusters both demonstrated evidence of
dysregulated immunity with raised cytokines in groups associated with innate and adaptive
immunity. The polarisation of the relative cytokine concentrations in different patient clusters
from the GAinS study was particularly striking.

There are no similarities between the other identified clusters in the MOSAIC and GAinS
studies. Samples from the ‘green’ GAinS cluster had globally depressed cytokines, suggesting
immune exhaustion or dysregulated suppression. The ‘blue’ cluster from the MOSAIC study
showed an intermediate (relative to the other clusters) acute phase response with IL-6, TNF-
α higher than the mean. Samples from the ‘red’ and ‘blue’ MOSAIC clusters had low
concentrations of CCL5 and INF-α2a, which suggested that lymphocyte mediated anti-
viral immune responses were less predominant in these patients. Samples from the ‘grey’
MOSAIC cluster had low concentrations of IL-6, TNF-α and IL-8, consistent with depressed
innate immunity. However, this was not a globally suppressed cytokine response, as these
patients had higher concentrations of lymphocyte-associated mediators (CCL5, CCL22,
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CC17) and higher levels of IFN-α2a. This suggested a different immune profile in these
patients to influenza infection, possibly mediated by lymphocytes and interferons.

The clustering approach to the measured biomarkers in the HARP-2 study was less robust,
given that an optimum cluster number could not be determined using the methods to hand.
This was likely to be due to the small number of measured biomarkers available. A cluster
number of three was arbitrarily imposed on this data based on: inspection of the dendrogram,
segmentation of data in the principal component space and because of the number of clusters
identified in the GAinS and MOSAIC cytokine data. The calculated adjusted Rand index
of a three cluster split, after bootstrapped resampling, was equal to 0.68 (95% CI 0.67-
0.69). This value was adequate to demonstrate stability, even though it was lower than the
adjusted Rand-index values calculated for the clusters identified in the GAinS and MOSAIC
studies.

Two of the three clusters identified in the HARP-2 data were associated with markers of acute
innate immunity but with different profiles: ‘dark red’ was characterised by increased con-
centrations of IL-6 and MMP-8, ‘dark yellow’ was characterised by increased concentrations
of IL-6 and sRAGE.

It should be noted that in the heatmap figures demonstrating z scores of protein biomarker
values for each sample (Figures 3.5, 3.8 and 3.12), only patient samples-based clustering
has been taken into consideration. The individual protein biomarker s are also arranged
into clusters in these heatmap figures using the same Ward clustering linkage method. The
dendrograms showing the relationships between protein biomarkers are visible at the top of
each heatmap.

The literature on cytokine responses in influenza or any immune-mediated response often
describe ‘modules’ of cytokines acting in concert.145 These modules are often assigned
themes that relate to immune cells that are influenced by or secrete these cytokines. Per-
forming cluster analysis on cytokine levels alone, not on samples, is of interest but fails to
acknowledge the heterogeneity of responses in patients. A cytokine-module approach tends
to eliminate the prospect of identifying heterogeneity of immune responses amongst patients.
This is because deriving these relationships involves:

– calculation of correlation coefficients for a given cytokine across all samples

– clustering on the values of cytokines that are consistently highly correlated with each
other.
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Groups of patients that do not fit the themes of the more dominant cytokine relationships
will therefore be discarded by this method of analysis. If the above method is applied to the
protein biomarker results in the GAinS study the heatmap seen in Figure 3.13 is produced. It
can be seen here that there is a cluster of eleven protein biomarkers (Il-1β , IL-10, TNF-α ,
CCL26, IL-8, IFN-γ ,IL-6, CCL4, CLL3 and CXCL11) that are strongly correlated with each
other. Re-examination of Figure 3.5 shows that there was no dominant cytokine grouping; in
the ‘purple’ hyper-inflammatory cluster there was consistent elevation of all the measured
protein biomarkers. Consideration of clusters determined by the relationships between
measured cytokines and not patient samples would have failed to identify the distinct subsets
of patients we have shown here.

Fig. 3.13 Heatmap showing the correlations between protein biomarkers in patients with
sepsis from the GAinS study. Protein biomarkers that are consistently correlated together
are grouped into hierarchical clusters using the Ward linkage method. Although this method
identifies groups of protein biomarkers that have consistent correlations it does not recognise
the heterogeneity between patients at a sample level. The colours of cells in this heatmap are
determined by the value of Pearson’s correlation coefficient (r).
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At this stage of the analysis, the clusters could have been named based on the predominant
cytokine signatures for each one as demonstrated in the heatmaps and scaled linear plots.
However, these labels would not have attributed any mechanisms as to why these patterns of
cytokine release were observed. Further mechanistic characterisation of clusters was required
before aligning clusters with clinical variables and patient outcomes. The gene expression
data from the microarray experiments was analysed to determine the important mechanisms
distinguishing each cluster.
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3.4 Analysis of microarray data

Clustering using protein biomarkers values in Section 3.2 demonstrated that there were
different immune profiles of acute illness in sepsis, severe influenza and possibly ARDS.
These immune profiles were further characterised using whole blood-derived gene expression
experiments. Given that the predominant cell types in the blood that are actively transcribing
genes are immune cells, data from these two domains might be expected to complement each
other.

Analysis of the relative expression of genes between patients with subtypes of their parent
syndromes may identify the immune processes or other mechanism responsible for each
subtype. Differential gene expression analysis could have been conducted using a variety
of methods. This section describes moderated t-statistic and co-expression network-based
methods to find groups of genes that had varying expression levels in these patients.

3.4.1 Quality control and pre-processing

The GAinS and MOSAIC researchers both used the same version of IlluminaTM microarray
(Illumina Inc., San Diego, CA, USA) to quantify gene expression levels. The gene probe
identifiers from each of the arrays were therefore consistently labelled, and no additional steps
were required to address discrepancies in gene labels. In the GAinS study, the investigators
measured gene expression using four microarray experiments. Of the 46,358 available
probes only 22,972 were consistent across all four of these arrays. The inconsistency of
available probes between different microarray chips served to highlight a limitation of
microarray experiments; even when the same chip manufacturer and product version is used,
there is considerable variation between each chip before the samples are subjected to any
experimental or environmental sources of variation. The MOSAIC study researchers carried
out the gene expression analysis on a single array experiment. Only the gene probe identifiers
common to the GAinS microarray probes were used to ensure that all results downstream
might be comparable.

After quantile and robust spline regression normalisation, probe intensities were plotted made
to ensure normalisation steps were adequate (Figure 3.14). Multi-dimensional scaling (MDS)
plots were used to assess the adequacy of batch-effect correction. MDS is another approach
to visualising high-dimensional data, similar to PCA, but it uses rotation and location, not
variance, to project points onto new axes. These plots showed that this method appeared
to adjust the results from each of the GAinS microarray experiments appropriately (Figure
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3.15). Pre-processing of the MOSAIC microarray results was conducted in the same way but
without the need for additional batch correction steps.
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Fig. 3.14 Boxplots showing the intensity variation for all probes across each sample and each
microarray experiment in the GAinS study. Although the intensities have been normalised
for all samples in a given microarray, there remained considerable intensity variation between
experiments which required adjustment with a batch correction method.
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Fig. 3.15 Multidimensional scaling scatter plots showing the first four dimensions of the data
from each of the GAinS microarray experiments. Each subplot is a pairwise comparison of
two projected dimensions from MDS. Each point represents a patient sample encompassing
all the values from 22,129 genes. Points are clearly grouped based on the microarray
experiment they belong to in the uncorrected subplots, but this was mitigated by using batch
effect correction as shown in the lower, batch corrected plot. Dim: MDS dimension
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3.4.2 Differential gene expression analysis provides few insights in pa-
tients with sepsis and ARDS

Clinical variable information associated with each sample (metadata) was used to identify
patients with features consistent with ARDS. The criteria for ARDS was based on sample
PaO2-FiO2 ratio , PEEP levels and chest radiograph appearances as per the Berlin ARDS
definition.4 Differential gene expression analysis between patients with and without sepsis-
associate ARDS was performed using the limma library.

Surprisingly, there were no differentially expressed genes with FDR < 0.05 between patients
with and without ARDS from the GAinS study. Although there were 462 genes that were
differentially expressed with p < 0.05, none of these p values remained significant after
multiple testing correction.

The volcano plot in Figure 3.16 shows the relative distribution of transcripts expression levels
between patients with and without ARDS, based on uncorrected p values and their relative
log2 fold change in expression. The twenty genes with the lowest p values are labelled in
red. The relative differential expression, with respect to fold change, is very modest. The
largest log2 fold change was -0.28 (transcript probe for HLA-DRB5, labelled in blue) which
represents a 53% reduction in expression levels. Although there were no genes that were
achieved statistical significant, the shape of this plot was satisfactory and not overtly skewed
in any one direction. This demonstrated that the upstream processing of the microarray data
and batch correction methods were adequate.
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Fig. 3.16 Volcano plot showing the distribution of unadjusted p values and log2 fold changes
for differentially expressed transcripts between patients with and without ARDS from the
GAinS study. Each point is a gene transcript, with the black points representing gene
transcripts with p < 0.05. The ten transcripts with with lowest p values are highlighted in red,
and transcript with largest magnitude in fold change is highlighted in blue.
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3.5 Weighted gene co-expression network analysis of mi-
croarray results

Differential gene expression analysis between patients with and without sepsis-associate
ARDS recruited to the GAinS study yielded no insights into the mechanisms underlying
ARDS. For these reasons, a weighted gene co-expression network-based (WGCNA) approach
was used to identify groups of co-expressed gene transcripts (gene modules). In order for
the results from MOSAIC and GAinS studies to be comparable the gene probes that were
common to all five microarray experiments (four from GAinS, one from MOSAIC), were
used. 22,972 gene probes were common across all five microarray experiments.

3.5.1 WGCNA identifies gene modules in the microarray results from
the GAinS and MOSAIC studies

The optimum soft power threshold values (β ) were calculated for each microarray experiment
individually and assessed graphically to identify the lowest value of beta that would achieve
a within cluster sum of squares R2 > 0.8. This threshold was consistent with a scale free
network. For the microarray results from the GAinS study this value was equal to seven. For
the microarray results from the MOSAIC study the optimum beta value was also equal to
seven.

Construction of a scaled network for gene expression data from multiple microarray ex-
periments required the use of the WGCNA BlockwiseModules function. This tool enabled
identification of consistent modules across all four GAinS microarray experiments, avoiding
the need to construct networks individually for each microarray experiment which would be
difficult to compare directly. A minimum module size of 30 and dynamic cut height of 0.25
were used for determination of gene modules for the microarray results from both the GAinS
and MOSAIC studies.

WGCNA produced a dendrogram which was organised into branches called gene modules.
Each module was represented by a module eigengene (ME) which was the first principle
component of each gene module. MEs were assigned numbers that were labelled as colours.
The result were viewed as a dendrogram plot showing the heights (dissimilarity) of each
module. A coloured bar beneath the plot showed the allocation of genes to different modules.
These results along with the the graphical determination of soft power thresholds are shown
in Figure 3.17.
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Fig. 3.17 (a) Full caption follows sub-figure (b)
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Fig. 3.17 (b) Full caption on following page
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Fig. 3.17 Soft power threshold curves (upper) and cluster dendrograms (lower) for
microarray results from the GAinS (a) and MOSAIC (b) studies. Dashed red lines represent
R2 thresholds of 0.9 and 0.8. A soft power threshold that has a scale free topology R2 value
greater than 0.8 is representative of a scale free network.

Cluster dendrograms show the distribution of gene modules assigned by using the
blockwiseModule functions in the WGCNA R package. Consensus modules were assigned
across all the GAinS microarray data using a soft power threshold equal to seven. Each
colour corresponds to a family of highly connected transcripts that are branches of the cluster
dendrogram. These have been isolated using a hybrid, dynamic cutting method developed by
the WGCNA authors.

The grey band represents genes not assigned to a module. Note that colours and
modules from each study do not correspond to the same gene modules between studies as
these networks have been determined independently.
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Genes that could not be assigned to a module were assigned to a ‘grey’ (ME0) module. This
group represents the group of nodes in the network that are poorly connected or are pruned
after application of the soft power threshold function.

The consensusBlockwiseModules function identified 26 modules in the GAinS microarray
results. The WGCNA BlockwiseModules function identified 25 modules in the MOSAIC
microarray results. Lists of genes from each module were submitted to the metascape tool
(metascape.org, version 3.5) for statistical over-representation to determine the biological
pathways represented by each gene module. These were cross checked by submitting
the same gene lists to the enrichR ontology database (https://maayanlab.cloud/Enrichr/,
accessed Novermber 2020) tool.131,132 The enrichment results for each module are presented
in Tables 3.6 and 3.7 for the microarray results from the GAinS and MOSAIC studies
respectively.
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Module name Size Principal gene ontology Reference
Hyper-geometric

p value

Turquoise 2820 Viral mRNA Translation R-HSA-192823 1.90E-41

Blue 2183
Toll receptor signalling
pathway GO:0002224 2.23E-03

Brown 1497 NIK/NF-kappaB signalling GO:0038061 1.93E-02
Yellow 1128 Nuclear mRNA surveillance GO:0071028 9.41E-03
Green 1082 ATP synthesis, proton transport GO:0042776 4.09E-02
Red 748 Maturation of LSU-rRNA GO:0000470 8.01E-03
Black 321 Neutrophil activation GO:0002283 7.90E-06
Pink 266 Thymic T cell selection GO:0045061 9.10E-07
Magenta 247 Mitotic spindle assembly GO:0051256 1.99E-02

Purple 245
Antigen presentation
via MHC Ib GO:0002476 3.37E-04

Green yellow 240 Stress-activated MAPK cascade GO:0051403 2.70E-02
Tan 217 Protoporphyrinogen IX process GO:0046501 3.11E-02
Salmon 217 Intracellular transport GO:0046907 4.57E-02
Cyan 209 SRP membrane targeting GO:0006614 2.00E-62
Midnight blue 205 Platelet aggregation GO:0070527 1.15E-02

Light cyan 144
Regulation of transcription
factors in hypoxia GO:0061419 4.53E-02

Grey60 141 Platelet degranulation GO:0002576 6.58E-03

Light green 105
Regulation of protein
phosphorylation GO:0001934 2.01E-03

Royal blue 104 No significant pathway - -

Light yellow 104
Neutrophil mediated
killing of bacterium GO:0070944 1.86E-02

Dark red 98 Cell adhesion GO:0045785 1.36E-02

Dark green 93
Regulation of organelle
assembly GO:1902115 1.05E-02

Dark turquoise 89
IRE-1 mediated protein
response GO:0036498 7.96E-03

Dark grey 77 Neutrophil degranulation GO:0043312 1.93E-08

Orange 63
Antigen processing and
presentation GO:0019882 1.26E-02

Dark orange 39 No significant pathway - -
White 32 No significant pathway - -
Grey 10258 Background genes - -

Table 3.6 Enrichment results for gene modules identified by WGCNA in the GAinS mi-
croarray results. Hyper-geometric p values were corrected using the Benjamini-Hochberg
method.
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Module colour Size Principal ontology / pathway Reference
Hyper-geometric

p value

Turquoise 6912 Translation R-HSA-72766 2.66E-55
Blue 3310 Neutrophil degranulation GO:0043312 1.56E-09

Brown 2008
RHO GTPases activate
WASPs and WAVEs R-HSA-5663213 1.04E-07

Yellow 971 Heme biosynthesis R-HSA-189451 1.68E-02
Green 576 No significant pathway - -

Red 497
Toll Like Receptor 4 (TLR4)
cascade R-HSA-166016 3.04E-02

Black 463 Neutrophil degranulation GO:0043312 2.58E-12

Pink 449
Cytoplasmic sequestering
of NF-kappaB GO:0007253 4.13E-02

Purple 418 Platelet degranulation GO:0002576 9.70E-13
Magenta 431 Interferon alpha/beta signalling R-HSA-909733 5.28E-27

Green yellow 314
L13a-mediated translational silencing
of Ceruloplasmin expression R-HSA-156827 5.19E-40

Salmon 280 No significant pathway - -
Cyan 252 G1/S-specific transcription R-HSA-69205 3.90E-19
Midnight blue 251 Antimicrobial humoral response GO:0019730 2.05E-09
Light cyan 197 Regulation of IL-2 production GO:0032663 2.23E-02

Grey60 165
IRE1-mediated unfolded
protein response GO:0036498 5.26E-09

Light yellow 159 Interferon Signaling R-HSA-913531 1.94E-05

Light green 159
Regulation of B-cell receptor
signalling pathway GO:0050855 2.77E-03

Royal blue 126
Regulation of expression of
SLITs and ROBOs R-HSA-9010553R 6.30E-04

Dark red 125 No significant pathway - -
Dark green 124 Cellular defense response GO:0006968 3.01E-07
Dark turquoise 110 No significant pathway - -
Dark grey 86 Neutrophil degranulation GO:0043312 2.19E-03
Orange 81 Eukaryotic translation elongation R-HSA-156842 1.20E-04
Dark orange 60 No significant pathway - -

White 43
Innate immune response
in mucosa GO:0002227 4.33E-03

Sky blue 37 No significant pathway - -
Grey 4028 Background genes - -

Table 3.7 Enrichment results for gene modules identified by WGCNA in the MOSAIC
microarray results. Hyper-geometric p values were corrected using the Benjamini-Hochberg
method.
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3.5.2 Module adjacency identifies closely related modules

The output from WGCNA included information that related each transcript to each module.
The relative adjacency between each module could then be calculated using the euclidean
distance metric and this was plotted on a dendrogram using agglomerative hierarchical
clustering with average linkage. The module adjacency dendrograms for the the GAinS and
MOSAIC studies are shown in Figure 3.18.
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Fig. 3.18 Hierarchical clustering dendrograms of the distance between gene modules identi-
fied by WGCNA from the GAinS and MOSAIC microarray results. Modules that are closer
together on this dendrogram are more similar even though each module contains different
transcripts. Note that the module labels (as colours here) are arbitrarily named and do not
imply concordance between networks derived from different data sources.
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3.5.3 There is no significant correlation between gene modules and
traits in patients recruited to the GAinS study

Pearson’s correlation coefficient was calculated for clinical variables and diagnostic labels
with gene modules. p values were adjusted using the Benjamini-Hochberg method and the
results were visualised using a heatmap. Figure 3.19 shows the correlation coefficients and
associated adjusted p values in each cell. This lack of correlation is consistent with the
heterogeneity of patients with sepsis, even amongst those admitted to intensive care. It also
serves to demonstrate how far removed biological processes are, at the gene expression level,
from clinical measurements and clinical features in these patients. Of additional importance
for this thesis, is the lack of any clear associations of gene modules with ARDS or any of the
features relevant to ARDS (FiO2, PaO2-FiO2 ratio, PaCO2, severity grade of ARDS).
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3.5.4 Correlation between clinical variables and gene modules identify
plausible biological processes in patients recruited to the MO-
SAIC study

Biological samples were temporally matched to patients’ clinical variable measurements.
The constituent components of the SOFA score were matched to these sampling times.
Scores consistent with major organ dysfunction (SOFA 3 or 4 for each organ system) were
dichotomised at this level instead of making comparisons at every ordinal level of the SOFA
scale. The central nervous system SOFA score was not correlated with gene modules as
this field was largely incomplete in the study database. Correlations between the clinical
variables and gene module eigenvalues (‘eigengenes’) were calculated along with p values.
p values were adjusted using the Benjamini-Hochberg method.

Figure 3.20 shows there are a number of gene modules that were significantly correlated
(negatively and positively) with different patient characteristics. Of note is the ‘midnight blue’
module which positively correlated with: poor respiratory and cardiovascular SOFA scores,
raised white cell and neutrophil counts and raised creatinine levels. Enrichment analysis of
the transcripts contained in this module found the principal pathway associated with this
module was ‘antimicrobial humoral response’ (GO:0019730, adjusted p = 2.1×10−9).

Other modules with strong positive correlations across multiple clinical features included
:

• ‘Dark red’ module: correlated with an increased risk of hospital mortality, higher
respiratory and cardiovascular SOFA scores. This module enriched for the term
‘organic substance catabolic process’ (GO:1901575, adjusted p = 9.75×10−3).

• ‘Black’ module: correlated with high respiratory, cardiovascular SOFA scores and
raised creatinine. this module enriched for the term ‘natural killer cell degranulation’
(GO:0043320, adjusted p = 0.023)

Several modules were negatively correlated with high cardiovascular and high respiratory
SOFA scores and to varying degrees, death, white cell and neutrophil counts:

• ‘Dark green’ module: ‘cellular defense response’ (GO:0006968, adjusted p= 3.01×10−7)

• ‘Pink’ module: ‘cytoplasmic sequestering of NF-kappaB’ (GO:0007254, adjusted
p = 0.04)

• ‘Orange’ module: ‘viral transcription’ (GO:0019083, adjusted p = 0.002)
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• ‘Dark orange’ module: which did not enrich for a pathway.

The ‘dark green’, ‘pink’ and ‘orange’ modules enrich for plausible pathways related to im-
mune function or viral infection. For example, in the pink module the process of cytoplasmic
sequestering of NF-kappaB refers to the transcription factor NFκB. This protein, if released
from its inhibitory protein Iκb, migrates to the nucleus where it stimulates transcription of
genes associated with the inflammatory response and other major cellular processes.146 Se-
questration of NFκb would therefore by associated with suppression of inflammation.

The correlations shown in Figure 3.20 should be interpreted with some caution. There
is a lack concordance between some clinical features and gene modules: there should be
consistent correlations between gene modules with platelet count and coagulation SOFA
scores. Similarly, the systolic blood pressure and cardiovascular SOFA scores should
have consistent correlations with gene modules. Other observed correlations were more
consistent, for example the white cell and neutrophil count correlations with gene modules.
Inconsistencies may have arisen due to incomplete and inaccurate clinical data annotations
within the study database. The MOSAIC database attempted to record as many as 14,000
clinical variables on each patient, across multiple study sites. The MOSAIC study had a
broad remit and was not focused on measurements related to critical care alone.
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Fig. 3.20 Heatmap showing the correlations between gene modules identified by WGCNA
and clinical variables of patients enrolled in the MOSAIC study. The vertical axes labels are
the gene modules, named by colour, with the number of genes contained in each module
denoted in parentheses. Each cell contains the value of Pearson’s r and the adjusted p value
below in parentheses. The colour bar scale is for correlation coefficient values (r) used to
colour the cells.

There are a number of key correlations that are statistically significant: the ‘mid-
night blue’ gene module was significantly correlated with severe respiratory failure,
cardiovascular dysfunction, white cell and neutrophil counts. There are inconsistent
correlations here as well: the modules that bilirubin had significant correlations with were
not consistently correlated with the “liver SOFA = 3 or 4” category. The hepatic component
of the SOFA scores were determined by the bilirubin level. The same inconsistencies were
observed between the platelet count and ‘Coag SOFA = 3 or 4’ columns. These were likely
due to inconsistent database encoding of recorded clinical variables and missing data points
in the database. Access to raw case report forms and source data were unavailable to resolve
these inconsistencies. The death column implies hospital mortality.

SOFA: sequential organ failure score, CVS: cardiovascular system, Coag: coagula-
tion, BP: blood pressure, WCC: white cell count.
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3.6 Discussion of microarray and WGCNA results

The quality control and pre-processing steps demonstrated that the batch-effect variation in
the microarray results from the GAinS study could be adjusted by using the ComBat method.
However, these methods, in combination with the heterogeneity of patients with sepsis or
ARDS, may have suppressed the possibility of identifying any gene expression-based signal
associated with ARDS. There were no transcripts that were statistically different in expression
between septic patients with and without ARDS (Figure 3.16). This was consistent with the
hypothesis that direct comparisons between sepsis and ARDS are unlikely to be successful
due to the heterogeneity of patients with either of these syndromes.

Surprisingly, none of the gene modules identified by WGCNA in the GAinS cohort were
correlated with a diagnosis of ARDS or any other clinical feature (Figure 3.19). This was
unexpected as the gene set enrichment analysis of the gene modules identified by WGCNA
were related to plausible biological processes that might occur in patients with sepsis or
ARDS. The failure to demonstrate a difference is unlikely to be due to an inadequate sample
size as the GAinS study had 728 samples available for analysis which is larger than most
other studies of this kind. The failure to demonstrate any strong correlations, or differentially
expressed genes using the above methods suggests that a substantial source of heterogeneity
amongst these patients remains unaccounted for.

The results from the MOSAIC study were more encouraging with respect to identification
plausible biological mechanisms in patients with severe influenza infection. Dunning et al
(2019) had already shown, by using clustering analysis, that severe cases of pandemic in-
fluenza were more likely to be associated with neutrophil-related ontology modules and mild
cases were more associated with interferon-related ontology modules.110 Using WGCNA
to determine gene modules in the MOSAIC samples identified several modules that were
associated with patient features (Figure 3.20).

The ‘midnight blue’ module was significantly correlated with severe respiratory and cardiovas-
cular dysfunction, raised white cell and neutrophil counts. The genes in this module enriched
for the process ‘antimicrobial humoral response’ (GO:0019730, adjusted p = 2.1×10−9).
This result suggested that immune mechanisms related to bacterial infection in these patients
may have been activated. Secondary infection of patients with influenza pneumonia by
bacteria is regarded as an important contributor to the mortality and morbidity of these
patients. Due to the difficulties with obtaining samples from the lung in acutely unwell
patients and the processes required for successful bacterial culture, it is often difficult to
confirm the presence of secondary infection in patients clinically.
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The positive correlation of this module with the patients traits: multi-organ dysfunction,
raised white cells and neutrophil counts suggested that secondary infection may have been
responsible for the clinical picture in patients with these gene expression profiles. It would be
unwise to attribute the clinical features of these patients to bacterial infection based on this
result alone as ontology analysis only considers the highest rated pathway to the exclusion of
all others for a given set of genes. In addition, there may be overlap in immune responses to
bacterial and viral infection.

Other key modules that were identified by these methods were the ‘dark red’ and ‘black’
modules, which both significantly correlated with organ dysfunction. Enrichment analysis of
these modules attributed the genes contained within them to be associated ‘organic substance
catabolic process’ and ‘natural killer cell degranulation’. Natural killer (NK) cells are a
key immune cell involved in the innate immune response to viral infections and so their
association with organ dysfunction is plausible. The catabolic processes associated with
the ‘dark red’ module may be a reflection of the metabolic state during critical illness or
a loss of homeostasis with respect to metabolic functions. Both the GAinS and MARS
studies exploring the transcriptomic signatures in sepsis have reported the assciation of sepsis
endotypes with genes that enrich for aberrant metabolic pathways.96,97

Extending the integration of the gene expression and cytokine analysis might enable further
characterisation of and insights into the processes that underlie the immune responses in
ARDS and influenza infection which is the subject of the Chapter 4.





CHAPTER 4

Integration of protein biomarkers with
transcriptomics

Section 3.4 demonstrated how gene modules identified in the GAinS study correlated poorly
with clinical features. The same methods applied to the gene modules in the MOSAIC study
identified some plausible mechanisms but these were inconsistent.

Protein biomarker-based clustering had shown relevant and distinct immune profiles in
Section 3.2 and so it was a logical step to try to determine the gene expression signatures
between different clusters. This chapter describes the results of standard analytical and novel
methods to integrate gene expression with serum protein biomarkers.

4.1 Differential gene expression between clusters

4.1.1 Differential gene expression between protein biomarker-based
clusters of patients with ARDS in the GAinS study

The microarray data from the GAinS study were filtered for samples that belonged to a
cluster, determined by analysis of protein biomarker concentrations, and for patients with
ARDS. After these filtering steps 71 samples remained.

A linear model was fitted to compare the differences between each of the three clusters
using moderated t-tests with the empirical Bayes method described in the limma library.118

p values were adjusted using the Benjamini-Hochberg method. No genes in any of the
pairwise comparisons between samples in each cluster, were statistically significant after
correction of p values for multiple comparisons. Given the significant differences in protein
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biomarker concentrations between samples from each cluster this was a surprising finding.
Volcano plots for each comparison between clusters of patients who had sepsis and ARDS
are shown in Figure 4.1. The vertical axes for each plot are the negative log10 transform
of the unadjusted p values. The transcripts above the p < 0.05 dashed lines on these plots
were not significant after adjustment. These plots did, however, demonstrate that inter-cluster
comparisons generated results that were distributed correctly following a differential gene
expression analysis, and that the methods were satisfactory.

Upon review of the volcano plots in Figures 4.1b and 4.1c it was apparent that many of
the labelled genes were common to both plots. There were 589 differentially expressed
transcripts with p< 0.05 between the ‘green’ cluster (1) and ‘yellow’ cluster (3) (Figure 4.1b).
There were 798 differentially expressed transcripts between ‘purple’ cluster (2) and ‘yellow’
cluster (3) with p < 0.05 (Figure 4.1c). Of the combined 1,396 transcripts with p < 0.05,
241 (17.3%) were in common. This was an unusually high value and probably reflected
the low number of samples in the ‘yellow’ cluster (3) with ARDS (n = 10). Low samples
numbers may have increased the influence of outlying sample on the fitted models.

To assess whether there was excess variance in the linear model comparing the gene expres-
sion levels between clusters, the residual standard deviation was compared with the mean
average log expression. The SAplot function from the limma library identified no outlying
values, which was consistent with no evidence of excess variance in these data.
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(a)

(b)

Fig. 4.1 (Caption on following page.)
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(c)

Figure 4.1 Volcano plots of differentially expressed transcripts between patients with ARDS
in each cluster. None of these comparisons identified transcripts that were statistically
significant after multiple comparison correction. The dashed lines represent an unadjusted
p = 0.05. Points coloured black represent transcripts with unadjusted p < 0.05. Red labelled
points are the 20 transcripts with the lowest p values and the the blue labelled points are
transcripts with the highest fold change.
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4.1.2 Differential gene expression between protein biomarker-based
clusters of patients with severe respiratory failure in the MO-
SAIC study

The microarray results from the MOSAIC study were labelled and filtered for samples that
belonged to a cluster, determined by analysis of immune mediator concentrations, and for
patients with respiratory SOFA scores greater than two. After these filtering steps 100
samples remained.

A linear model was fitted to compare the differences between each of the three clusters
using moderated t-tests with the empirical Bayes method in the limma R package. p values
were adjusted using the Benjamini-Hochberg method. There were significant differences
in the expression levels between the ‘blue’ (1) and ‘grey’ (2) clusters , and between the
clusters‘grey’ (2) and ‘red’ (3) clusters (Figure 4.2a and c). However, for the comparison
between ‘blue’ (1) and ‘red’ (3) clusters only four transcripts were found to have an adjusted
p < 0.05 (Figure 4.2b).

Differential gene expression results are often presented as a comparison between an experi-
mental condition and control. The analysis may show that some genes may be up-regulated
(log2 fold change > 0) whilst other genes be down-regulated (log2 fold change < 0) compared
with control samples. Generally, all the differentially expressed genes, regardless of their
directional changes, are submitted for enrichment analysis to identify the biological processes
related to these genes. The purpose of this project was to delineate the differences between
endotypes of critical care syndromes, and so comparisons were made between difference
immunological states defined by the protein biomarker clusters.

Directional changes in gene expression were therefore considered as differentiating one
cluster from the other. For example, if gene A had a greater fold change in cluster X compared
with cluster Y, then gene A would be considered to have a higher relative expression in cluster
X samples compared with cluster Y samples. Gene A would therefore help to delineate the
processes taking place in that cluster X as it was relatively up-regulated in these samples
compared with cluster Y. For this analysis, significantly expressed genes with a log2 fold
change greater than zero were considered to be have increased relative expression in a given
cluster, whilst gene with log2 fold change lower than zero were considered to have increased
relative expression in the other comparative cluster.

Three transcripts in particular were found to be down-regulated with respect to MOSAIC
cluster 2 (grey): CD177, RETN and ZDHHC19 (Figure 4.2a and c). CD177 and RETN
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are associated with immunological roles. CD177 is expressed on neutrophil cell surfaces
and plays a role in activation and transmigration by interacting with β2 integrins and
platelet endothelial cell adhesion molecule 1 (PECAM1).147 The RETN gene codes for
the protein resistin which is associated with neutrophil degranulation and other immune
functions.148

Statistically significant genes with same directional change in expression (positive or negative
log2 fold change), were submitted for enrichment analysis to determine the biological
processes responsible for the differences between clusters. The number of transcripts that
belonged to a given process and their adjusted p values are shown in the bubble diagrams
below each volcano plot in Figure 4.2. The bubbles to the left of the zero −log10 FDR
line represent the enriched pathway for transcripts with log2 fold change below zero in
the volcano plot above it. Similarly the bubbles to the right of the zero −log10 FDR line
represent enrichment of transcripts with a positive log2 fold change in the associated volcano
plot.

The bubble plot in Figure 4.2a shows that the transcripts with log2 fold change less than zero
enriched for biological pathways associated with ‘lymphocyte activation’ (GO:0046649)
and ‘adaptive immune response’ (GO:0002250). This was consistent with their immune
mediator profiles as ‘grey’ cluster (2) was associated with raised levels of CCL5 (RANTES),
CC17 (TARC) and CCL22 (MDC) all of which are associated with lymphocyte activation
and recruitment (Figure 3.9).149 Similarly, the transcripts with log2 fold change greater than
zero were enriched for ‘neutrophil degranulation’ (GO:0043312). The higher concentrations
of TNF-α , IL-6 and IL-8 in ‘red’ cluster (3) samples, were consistent with these observed
associations (Figure 3.9).

Figure 4.2a suggested that the differences between samples in the ‘grey’ and ‘red’ clusters
might be explained by the relative lymphocyte and neutrophil counts in each cluster. In
which case gene expression would have been no better at distinguishing the clusters than a
routine full blood count test. Figure 4.3 shows that there were no differences in the relative
lymphocyte counts between clusters and that the ’blue’ MOSAIC cluster had significantly
higher neutrophil counts compared with the ’grey’ cluster. There were no differences in the
neutrophil counts between samples in the ’blue’ and ’red’ clusters.

Figure 4.2c shows that the transcripts with log2 fold change less than zero enriched for
mechanisms relating to ‘haemostasis’ (R-HSA-109582) and that this process was relatively
more important in the ‘grey’ MOSAIC cluster (2) compared with ‘blue’ MOSAIC cluster (1).
Differential gene expression analysis did not identify any pathways or processes associated
with up-regulated genes is samples from the ‘blue’ cluster (1).
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There were only 4 transcripts that were differentially expressed between the ‘blue’ (1) and
‘red’ (3) MOSAIC clusters (Figure 4.2b). This was unexpected and the shape of the volcano
plot suggested either there were no differences between the two clusters or that this method
was unable to determine any differences in gene expression between these two groups.
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(a)

(b)

Fig. 4.2 (Caption on following page.)
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(c)

Figure 4.2 Volcano plots of differentially expressed genes between patients with severe
respiratory failure (rSOFA ≥ 3) in each cluster from the MOSAIC study. The vertical axes are
for the adjusted p values. Red labelled points are the 20 transcripts with the lowest p values
and the the blue labelled points are transcripts with the largest fold change. The horizontal
dashed line is the adjusted p < 0.05 threshold. The vertical dashed lines are the log2 fold
change values of -1.5 and 1.5 respectively. Gene lists with significant adjusted p values from
each ‘half’ of the volcano plot were analysed using Metascape (http://metascape.org, version
3.5) and enrichR (https://maayanlab.cloud/Enrichr/).
The number of genes that enriched for a given biological process and their relative adjusted
p values (−log10 FDR) are shown below each volcano plot as a bubble chart. The size of
each bubble denotes the number of genes associated with a process. Note that the horizontal
axis on the bubble charts is positive in both directions. No enrichment diagram is presented
for (b) as the four transcripts with adjusted p < 0.05 did not enrich for a biological process.
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Fig. 4.3 Boxplots showing the relative levels of lymphocytes and neutrophils in samples from
each of the MOSAIC clusters using paired full blood count results at sampling times T1
and T2. There were no differences in cell counts for these two cell types between the ‘red’
and ‘blue’ clusters. There were significantly more neutrophils in the ‘blue’ MOSAIC cluster
compared with the ’grey’ cluster. Comparisons were made using ANOVA with Tukey’s post
hoc test. NS: not significant.
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4.2 Gene module correlation analysis

4.2.1 There are no gene modules identified in the GAinS study that
significantly correlated with protein biomarker clusters

The module eigengene values for each patient sample were correlated with membership of
each cluster using Pearson’s method. Figure 4.4 shows there were no significant correla-
tions.
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Fig. 4.4 Heatmap showing the correlations (using Pearson’s r) between gene modules
identified by WGCNA and the clusters determined by the serum cytokine concentrations for
patients in the GAinS study. The colour bar scale is for correlation coefficient values (r) used
to colour the cells. The calculated correlation coefficients between cluster and gene modules
were higher in magnitude compared with the correlations between clinical variable and gene
modules shown in Figure 3.19. None of the correlations shown in either heatmap achieved
statistical significance.
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4.2.2 Correlation between protein biomarkers clusters and gene mod-
ules identified important mechanisms in the ‘red’ MOSAIC clus-
ter

The correlation heatmap between cytokine clusters and gene modules is shown in Figure 4.5.
The ‘green yellow’ gene module showed a significant correlation. The ‘red’ cluster (3) was
positively correlated with this module (r = 0.37, adjusted p = 0.01). The same module was
negatively correlated with the ‘grey’ cluster (2) but this was not significant after correction
for multiple comparisons (r =−0.27, adjusted p = 0.25).
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Fig. 4.5 Heatmap showing the correlations (using Pearson’s r) between gene modules
identified by WGCNA and the clusters determined by the serum cytokine concentrations
for patients in the MOSAIC study. The colour bar scale is for correlation coefficient values
(r) used to colour the cells. There was a significant positive correlation between the “green
yellow” module and cluster 3 (red) (r = 0.36, adjusted p = 0.01). The same module was
negatively correlated with cluster 2 (grey) (r =−0.27, p = 0.006) but this was not significant
after adjustment (adjusted p = 0.25).
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Fig. 4.6 Cartoon of the gamma-interferon inhibition of translation (GAIT) mechanism, which
was positively correlated with the ’red’ MOSAIC cluster.

Taken, with permission, from Figure 2 of Rupak Mukhopadhyay, Jie Jia, Abul Arif,
Partho Sarothi Ray and Paul L. Fox.
The GAIT system: a gatekeeper of inflammatory gene expression.
Trends in Biochemical Sciences 2009 34(7):324-31.
doi: 10.1016/j.tibs.2009.03.004.
Copyright Elselvier Ltd. 2020
The licence for use of this figure is available in Appendix H

Enrichment of the genes from the ‘green yellow’ module showed that it was associated
with the process ‘L13a-mediated translational silencing of caeruloplasmin’ (R-HSA-156827,
p ≪ 0.0001). This process is also known as the gamma-interferon associated inhibition of
translation (GAIT) mechanism. The GAIT mechanism is a late response to IFN-γ signalling
which causes the arrest of translation of caeruloplasmin mRNA. Caeruloplasmin is a copper
ion binding protein that is released in the acute phase of the inflammatory response. The
mRNA for this protein has a particular 3-prime untranslated region (3’ UTR) that has a
circular structure that is called a GAIT motif. This motif can be recognised by a number of
GAIT associated proteins (LI3a, EPRS, GADPH) which together form a complex that bind
GAIT motifs and prevent ribosomal translation of these mRNA (Figure 4.6).150 In the context
of IFN-γ release this response is considered a ‘brake’ or negative feedback mechanism for
the acute inflammatory response.
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This result was unexpected because the patients in the ‘red’ MOSAIC cluster (3) had
significantly higher concentrations levels of IFN-γ than the other clusters (Figure 3.9 and 4.7).
‘Red’ cluster samples had high concentrations acute inflammatory response cytokines (TNF-
α , IL-6, IL-8), which suggested that this IFN-γ-mediated negative feedback mechanism was
failing in these patients.
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Fig. 4.7 Boxplot showing relative plasma levels of IFN-γ in each cluster from the MOSAIC
study. The Kruskall-Wallis and post hoc Dunn’s test were used to compare the differences
between clusters. Samples from the ‘red’ cluster (3) had significantly higher IFN-γ levels
than samples from both of the other clusters.
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The role of IFN-γ in the context of influenza is complex. IFN-γ is released by CD8+
lymphocytes and NK cells in response to stimulation by IL-15. IL-15 was found to be raised
in the patients with the ‘red’ MOSAIC cluster. Both NK and CD8+ T cells contribute to the
lung injury seen in murine models of H1N1 infection and this pathology can be mitigated by
stimulation with type 1 interferons.151

IFN-γ stimulation of cells via its receptor is also associated with activation of type 1 interferon
anti-viral mechanisms. This signal is transduced via the JAK-STAT pathway which leads
to activation of cyclin dependant kinase 5 (CDK5). CDK5 phosphorylates glutamyl-prolyl-
tRNA synthetase (EPRS) releasing is from the multi-synthetase complex (MSC) and allowing
it initiate the GAIT complex.152 In addition, free EPRS activates the mitochondrial anti-viral
system (MAVS) which leads to transcription of type 1 interferon related genes.153 This entire
pathway is considered to be part of an anti-RNA viral immune mechanism (Figure 4.8).

These mechanisms are of particular relevance here because the non-structural 1 (NS-1)
protein of influenza A virus degrades STAT signalling, preventing the activation of CDK5
and so inhibiting release of EPRS from MSC.154 This function of influenza A NS-1 protein
serves as a viral immune evasion mechanism preventing cells from responding to IFN-γ by
producing type 1 interferons. The implication here is that this function may precipitate
an unchecked acute phase response by preventing the regulatory GAIT mechanism from
acting.

In the microarray version used in the MOSAIC study there was no probe corresponding to
the EPRS transcript, measurement of which might have provided additional verification of
the role of this pathway in patients with severe influenza.
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Fig. 4.8 Schematic representation of the role of EPRS in anti-viral immune mechanisms.
Phosphorylation of EPRS at Ser990 releases it from MSC. EPRS with PCBP2 and
blocks PCBP2-mediated MAVS ubiquitination. MAVS stimulates transcription of type 1
interferons.155 Although the figure above states that viruses activate this mechanism, CDK-5,
under the influence of IFN-γ , can also phoshporylate EPRS to activate this pathway.152

Figure 3b taken from Anzheng Nie, Bao Sun, Zhihui Fu and Dongsheng Yu.
Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases
Cell Death Disease 10, 901 (2019).
https://doi.org/10.1038/s41419-019-2145-5

This figure is cited under under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
https://creativecommons.org/licenses/by/4.0/.



4.3 Linear discriminant analysis of integrated biological data 127

4.3 Linear discriminant analysis of integrated biological
data

4.3.1 Combining module eigengene and protein biomarker values pre-
serves the properties of clusters

Module eigengenes represent the first principal component of a gene module. The WGCNA
library calculates the explained variance from each sample with respect to the first principal
component of each gene module. This mathematical property, therefore, links every sample
to each gene module. This is a powerful method of down-sampling the expression levels of
several, or thousands, of highly correlated genes to a single value that can be managed like
any other feature of a sample.

The module eigengene values were centred and scaled and then combined with the log-
transformed, scaled protein biomarker values. The new data was projected into the principal
component space and a biplot showed that the scaled eigengene values were orthogonal to the
protein biomarker values. Figure 4.9 shows that the arrows labelled ‘ME’ are perpendicular
to the arrows associated with cytokine labels. This was important because it was safe to
presume that new data from module eigengenes was complementary and did not disrupt the
variance of the protein biomarker data.

A three-dimensional plot of the first three principal components of this data showed that the
relative locations of points in each cluster were relatively well preserved (Figure 4.10).
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Fig. 4.9 Principal component plots with loadings (biplots) of the combined cytokine and
eigengene values in both the GAinS and MOSAIC studies. The grey circles are individual
samples projected into the PC space. The red arrows show the relative loadings of each
contributory variable. Individual arrow labels have been omitted for clarity but can be seen in
the Appendix E. It both plots the arrows labelled as cytokines are pointing in perpendicular
directions to the module eigengene arrows (labelled ‘ME’). This implies that variance of the
data attributed to the eigengene values did not affect the variance of the protein biomarker
data to large extent. The variance of data is important for statistical testing.
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Fig. 4.10 Three dimensional projection of the first three principal components of the combined
protein biomarker and eigengene values for both the GAinS and MOSAIC data. Each point
is a patient sample and the colours represent the clusters determined by Ward linkage
clustering of the cytokine data. The segmentation of the data points is preserved despite the
augmentation of each sample with eigengene values.



130 Integration of protein biomarkers with transcriptomics

4.3.2 Linear discriminant analysis of ARDS samples between different
clusters from the GAinS study

The heatmaps of the cytokine levels and PCA plots of the combined cytokine and MEs from
the GAinS study showed that the ‘purple’ (cluster 2) and ‘green’ (cluster 3) samples were the
most divergent. The heatmaps also suggested that these two groups had global dysregulation
of cytokine release, but in opposing directions.

Linear discriminant models were fitted for the subset of patients who had ARDS in each
of these clusters. Linear discriminant analysis (LDA) is similar to PCA with respect to the
underlying mathematics. The key difference is that LDA maximises the variance between
classified data points.

Determination of whether this linear discriminant analysis (LDA) was suitable for this
classification problem was conducted in two ways:

1. Calculate model performance for binary discrimination between pairs of clusters.

2. Calculate model performance for multi-class discrimination of all three clusters simul-
taneously.

Method 1 had to be applied when fitting models to small sample sizes with subsets of the
data. Model performance was assessed using bootstrapped resampling to ensure robust
results.

Method 2 was applied when models were fitted to all three clusters as the sample sizes were
large. Class sizes were balanced and so leave-one-out cross-validation was used to ensure
adequate model performance.

There were 196 samples in the GAinS study with protein biomarker and eigengene values.
Of these, 71 were from patients with ARDS. 120 samples belonged to either the ‘purple’
or ‘green’ clusters. In the ‘purple’ and ‘green’ clusters, there were 38 samples in total with
ARDS. 28 of the ARDS samples were from the ‘purple’ cluster.

Due to the relatively small sample size, the suitability of LDA for this classification problem
had to be determined. An LDA model was first fitted to distinguish samples assigned to either
the ‘purple’ or ‘green’ groups regardless of ARDS status. Model fit was assessed using leave
one out cross-validation. In order to ensure that these results were robust, a bootstrapping
method was also used. Using a larger sample size, by including patients without ARDS, also
allowed for the data to be split into training and hold-out testing sets with a 75% splitting ratio.
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LDA models were then fitted and tested by using the hold-out data and average performance
was calculated using bootstrapped resampling with 1000 resamples.

The mean accuracy for this LDA model was equal to 0.94 (95% CI =0.80-0.99). Area
under the receiver operating curve characteristic statistic (AUROC) was equal to 0.95 (95%
CI = 0.88-1). These results implied the LDA method was an accurate classifier for these
data.

An additional attribute of LDA models is their use in multiple classification where there are
more than two predicted classes. An LDA model fitted to distinguish three classes would
produce two decision boundaries. Figure 2.10b in Chapter 2.5.1 demonstrated this concept.
For patients with ARDS in the GAinS study, an LDA model was fitted for to predict all
three clusters and the visual representation of three class model fit are shown in Figure 4.11.
The three clusters were seen to be linearly separable when transformed using the linear
discriminant coefficients. Fitting a three class LDA model using the module eigengene values
alone, without the protein biomarker values, did not demonstrate a clear separation between
clusters.

A 75% split of the data into training and testing samples was used with bootstrapped
resampling (1000 iterations) to assess the performance of a three class LDA predictor model.
The mean accuracy of the model was equal to 0.88 (95%CI 0.82-0.92), and multiple class
AUROC was equal to 0.92.i

iusing the multiclass.roc function from the pROC R package. This function did not produce confidence
intervals for multiple class AUROC statistics.
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Fig. 4.11 LDA projections and decision boundaries for clusters found in ARDS patients
recruited to the GAinS study. a.) shows an approximation of the decision boundaries that
distinguish clusters if the data is projected into the PC1-PC2 subspace. The real boundaries
are hyperplanes that cannot be easily visualised. b.) show the results of linear transformations
(X×LD1) and (X×LD2) of the data points (X), using matrix multiplication, by the LD1 (LD1)
and LD2 (LD2) coefficients. This linear transformation results in projection of these data
points to new co-ordinates which are shown here. Each cluster grouping is well separated.
(b.) is a more accurate representation of the LDA process compared with the approximations
shown in (a.).
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A more straightforward classification approach using logistic regression was unsuccessful;
either the function did not converge on stable solutions or there were no predictions in the
minority class. In contrast, the LDA models consistently predicted minority class instances.
Poor minority class prediction is a frequently encountered problem with classification mod-
els.

Improving model performance was not the objective of this analysis, which was to determine
the most important mechanisms that were defining ARDS in each of these clusters. In this
context, this method was adequate to address the question of which variables were the most
important discriminators between subtypes of ARDS.

4.3.3 Neutrophil activation is an important discriminator of ‘purple’
and ‘green’ GAinS clusters in ARDS samples

The same methods as above were used to fit and test an LDA model to classify membership
of the ‘purple’ and ‘green’ clusters in samples from ARDS patients (38 samples in total).
Accuracy for this fitted model was equal to 0.92 (95% CI: 0.62-1) and AUROC was equal to
0.94 (95% CI 0.84-1), which implied that this model performed well, even with small sample
sizes.

After establishing adequate model performance, the key discriminating features between
ARDS samples in the ‘purple’ and ‘green’ clusters were calculated. For this process, a full
model, with no split of the data for testing, was used. The discriminant coefficients from this
full model were then extracted and ranked. The coefficients of the linear discriminator were
the linear combinations of the contributing variables that described the decision boundary
between clusters. All the variables in the model contributed to this decision boundary but
each variable’s relative contribution was described by the magnitude of its linear discriminant
coefficient.

The ten highest discriminators, ranked by magnitude are shown in Figure 4.12. A plot
showing all of the ranked variables is shown in Appendix Figure F.1. CXCL9 (MIG) and
TNFR-2 were the highest ranking discriminant protein biomarker s. The highest ranking
gene modules were the ‘royal blue’ and ‘black’ modules containing 104 and 321 labelled
transcripts respectively. The ‘royal blue’ module did not enrich for any particular biological
pathway. Nor did the ‘dark orange’ module which had a coefficient of similar magnitude
to the ‘royal blue’ module. Enrichment of a combined list of transcripts from both of these
modules together did not identify a significant biological pathway either. Interestingly, the
‘dark orange’ module was adjacent to the ‘black’ module on the gene module dendrogram
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(Figure 3.18) suggesting these two modules may share related genes. The ‘black’ module,
consisting to 321 transcripts, enriched for the biological process ‘neutrophil activation
involved in immune response’ (GO:0002283, adjusted p= 7.9×10−6).

CXCL9 (MIG)

CCL3 (MIP-1α)

CCL26 (Eotaxin-3)

IL-17A

Neutrophil activation

IRE-1 mediated protein reponse

IL-10

Cell adhesion

No Significant Pathway

TNFR-2

-2 -1 0 1 2
LD1

Fig. 4.12 Top ten ranked discriminators for ARDS samples from the GAinS study between
‘purple’ and ‘green’ clusters. These discriminators were selected by their relative magnitude.
LDA is insensitive to directionality of the classifier labels. For example if the ‘purple’ and
‘green’ cluster labels were reversed (0 to 1, from 1 to 0) the discriminators still rank in the
same order with the same magnitude. The gene module labelled ‘no significant pathway’ was
coloured ‘royal blue’ and contained 104 labelled transcripts. The top ranking gene modules
that was associated with a biological process is highlighted in red (‘neutrophil activation’).
A line plot showing all of the ranked variables, ordered by effect size can be seen in Appendix
Figure F.1

In view of the large difference in protein biomarker concentrations between these two clusters,
enrichment for genes related to neutrophil activation was anticipated. This finding provided
some independent verification that the processes driving dysregulated cytokine release in
these patients involved neutrophil activation. Although, in the context of sepsis, neutrophil
activation was not an unexpected finding.

The ‘dark turquoise’ module which was ranked just below the black module, contained
89 transcripts and enriched for ‘IRE-1 mediated protein response’ (GO:0036498, adjusted
p = 0.008). Inositol-requiring enzyme 1α (IRE-1) is an endoribonuclease that is released in
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response to endoplasmic reticulum (ER) stress as part of the ‘unfolded protein response’.
Once activated it acts as a transcription factor that facilitates production of chaperone
proteins to ease ER stress.156 Its role here probably reflects cellular stress or failure of protein
homeostasis.

4.3.4 Ranked discriminators of the ‘yellow’ and ‘green’ GAinS clus-
ters in ARDS samples involve transcripts with important roles in
immune function

To determine the discriminators between the ‘yellow’ and ‘green’ clusters from the GAinS
study, the same methods as sections 4.3.2 and 4.3.3 were used to fit an LDA model. The
model accuracy was equal to 0.86 (95% CI 0.57 - 0.98) and AUROC was equal to 0.79 (95%
CI: 0.45-1). The total sample size was 43.

The ten discriminators with the largest coefficients, determined by fitting a model on the full,
non-split data, are shown in Figure 4.13. The highest ranked protein biomarkers were IL-17a
and IL-1β . The highest ranked gene module was the ‘light green’ module which consisted
of 105 transcripts and enriched for the process ‘regulation of protein phosphorylation’
(GO:0001934, adjusted p = 0.002).

Although this ontology label may have suggested little relevance to ARDS or sepsis, there
were only five transcripts which determined enrichment to this pathway:

• CSF1R

• CD74

• CD4

• ARRB1

• ENG

All of the proteins that are encoded by these transcripts have important immune-related
functions.

CSF1R is a receptor for colony stimulating factor (CSF1) which is a cytokine that is important
for macrophage differentiation.157 CD74 protein is a chaperone for the human leucocyte
antigen (HLA) class II histocompatibility protein. It therefore plays an important role
in antigen presentation but has additional roles in immunology and physiology. It acts a
receptor for macrophage inhibitory factor (MIF) and directly influences angiotensin II type 1
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Fig. 4.13 Top ten ranked discriminators for ARDS samples from the GAinS study between
‘yellow’ and ‘green’ clusters. These discriminators were selected by their relative magnitude.
The top ranking gene module that was associated with a biological process is highlighted in
red (‘regulation of protein phosphorylation’), which contained transcripts that play important
roles in immunity.
A line plot showing all of the ranked variables, ordered by effect size can be seen in Appendix
Figure F.2

receptors (AT1) by inhibiting trafficking to the cell surface, thus promoting degradation.158

ARRB1 codes for the protein β -arrestin 1 which is important in the regulation of activated
g-protein coupled receptors and is ubiquitously expressed. It plays an important role in
cell survival and immunological signalling pathways.159 Endoglin (ENG) is a glycoprotein
involved in vascular endothelial integrity. Endothelial integrity is often lost in sepsis resulting
in endothelial leak and circulating hypovolaemia. Mutations in this gene are associated
with the disease hereditary haemorrhagic telangiectasia (HHT) which is associated with
recurrent micro and macro-haemorrhage due to vascular dysplasia.160 Circulating endoglin
concentrations are higher in patients with septic shock than healthy controls and this is thought
to be due to shedding mediated by matrix metalloproteinases released from macrophages.161
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4.3.5 Ranked discriminators of the ‘yellow’ and ‘purple’ GAinS clus-
ters in ARDS samples do not identify a plausible mechanism to
account for their differences

The number of samples with ARDS in the ‘purple’ and ‘yellow’ clusters was 61. An LDA
model was fitted to discriminate these two clusters in the same manner as before. Model
performance was worse compared with the models fitted between the other clusters previously,
despite the relatively larger sample size. The mean accuracy was equal to 0.67 (95% CI: 0.38
- 0.88) and AUROC was equal to 0.66 (95% CI: 0.41-0.92).

A possible explanation might be the relative adjacency and overlap of these two clusters. If
the ‘yellow’ and ‘purple’ points in Figure 4.11 are projected solely onto the LD1 axis, one
‘yellow’ cluster sample would overlap a ‘purple’ cluster sample. From the LD2 perspective,
there may be as four overlapping samples between clusters. These overlapping samples
would introduce instability into the model, especially if they were repeatedly resampled.
Model instability might also explain why the discriminator coefficient values for this model,
between ‘purple’ and ‘yellow’ clusters, are of greater magnitude and range (-22 to 15)
compared with the ranges of the coefficients from the other fitted models (-3 to 3). This
can be observed by comparing the values of the horizontal axes in Figures 4.14, 4.12 and
4.13.

The ten discriminators with the largest coefficients, determined by fitting a model on the
full, non-split data, are show in Figure 4.14. The highest ranked cytokines were CXCL11
(I-TAC) and CXCL9 (MIG). The highest ranked gene module was the ‘turquoise’ module
which consisted of 2,820 transcripts and enriched for the process ‘viral mRNA translation’
(R-HSA-192823, adjusted p = 1.9×10−41). The ‘turquoise’ module transcripts enriching
for this process contained many ribosomal RNA coding genes. The high ranking ontology
labels for this ‘turquoise’ module all contained a common set of 13 transcripts (RPL4, RPL30,
RPL3, RPL32, RPL31, RPL34, RPLP1, RPLP0, RPL8, RPL10A, RPL9, RPL6, RPL7). The
ontologies with this set of 13 transcripts had general themes relating to mRNA translation.
Inferring viral infection from this module label of ‘viral mRNA translation’ would therefore
be questionable.

Of note was the presence of the ‘black’ module in this list of highest ranked variables. The
same module was important in the ‘purple’ and ‘green’ clusters (Figure 4.12) and enriched
for the term ‘neutrophil activation’ (GO:0002283, adjusted p = 9.8×10−6).
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In view of the instability of the predictor model the significance of these identified pathways
were uncertain although they might suggest a different inflammatory profile in the patients
that belonged to the ‘yellow’ cluster. There may have been a contribution of viral infection to
the gene expression profile in these samples but this would require verification with serology
or other biomarkers.

Viral Transcription

Antigen Processing / Presentation

Toll receptor signaling pathway
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CXCL9 (MIG)

Stress-activated MAPK cascade
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Regulation of organelle assembly
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Fig. 4.14 Top ten ranked discriminators for ARDS samples from the GAinS study between
‘purple’ and ‘yellow’ clusters. These discriminators were selected by their relative magnitude.
The top ranking gene module that was associated with a biological process is highlighted
in red (‘viral mRNA translation’). Of note was the recurrence of the ‘black’ gene module
which enriched for ‘neutrophil acitvation’ as this same module was discriminant between the
‘purple’ and ‘green’ clusters.
A line plot showing all of the ranked variables, ordered by effect size can be seen in Appendix
Figure F.3.
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4.3.6 Further enrichment of key modules that discriminated the GAinS
‘purple’ and ’green’ clusters identifies important sub-networks

The ‘black’ module which enriched for neutrophil activation was the most discriminant
gene module between the ‘purple’ and ‘green’ samples from patients ARDS in the GAinS
study (Figure 4.12). The eleventh highest ranking discriminator from this model was the
‘dark orange’ gene module which did not enrich for any given pathway or ontology at
statistically significant level. This module was however adjacent to the ‘black’ gene module
in the dendrogram of modules distances (Figure 3.18). In view of their high rank and
adjacency the transcripts from these two modules were combined and submitted for further
enrichment using a proprietary tool that was temporarily available to the project called
Metabase (Clarivate Analytics Limited).

This tool queried a network of curated resources for known literature-based interactions
between submitted genes. The threshold for this function was set to two publications so that
at least two independent references had to cite an interaction between genes for these to be
considered valid. Gene labels that satisfied this minimum screening and then checked for
additional interactions with the other genes in the submitted list. Groups of more than two
genes are referred to as sub-networks.

Sub-networks were pruned using an edge “betweenness” measure described in the Girvan-
Newman algorithm.162 Edge betweenness refers to identification of nodes that are the least
central in a community and the paths between them and other local communities in a network.
If communities are only connected to an adjacent community by a few short paths then
this path is referred to as having high edge betweenness. Pruning this edge will isolate the
two communities, leaving sub-networks. The splitting and merging of networks allows for
calculation of modularity based on the membership of the original network, prior to pruning.
Nodes with multiple edges linking them will be emphasised by this process.

Most of the identified interactions after pruning were simple pair-wise gene interactions. To
identify the large communities of genes, four member was set as a threshold for ongoing
analysis. Nine sub-networks were revealed then this tool and these processes were applied to
the transcripts in the ‘black’ and ‘dark orange’ modules from the GAinS transcriptomic data
(Figure 4.15).
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Fig. 4.15 (a) Metabase-identified sub-networks.
Full caption with sub-figure (c)
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4.15 (b) Metabase-identified sub-networks.
Full caption on following page.
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4.15 (c) Sub-networks identified by Metabase (Clarivate Analytics Limited) from the tran-
scripts contained in the ‘black’ and ‘dark orange’ gene modules from the GAinS study. The
tool used known annotations of interactions between genes and proteins in the submitted list
to build a network which was pruned to isolated sub-networks. Sub-networks of four or more
genes are shown here. Of particular note is (ix) which enriched for the pathway positive
regulation of regulated secretory pathway. This sub-network contained genes associated
the familial hemophagocytic lymphohistiocytosis (HLH) which is associated with severe
immune dysfunction and cytokine release which may result in multi-organ failure. It often
presents as a clinical syndrome which resembles severe septic shock.
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Of particular interest are sub-networks (v), (vi) and (ix). Sub-network (ix) enriched for
the process ‘positive regulation of regulated secretory pathway‘ (GO:1903307, adjusted
p = 0.02). Two genes in this pathway (MUNC18-2, Rab27a) are associated with the familial
forms of haemophagocytic lymphohistiocytosis (HLH). HLH is severe form of immune
dysfunction characterised by excessive macrophage activation, dysregulated cytokine release,
haematophagocytes in the bone marrow and multi-organ failure. Patients have pancytopenia,
high levels of serum ferritin, triglycerides and may develop a profound coagulopathy.163 If
patients require management in intensive care the reported hospital mortality ranges between
52% and 68%.164 This gene module was associated with the ‘purple’ cluster characterised
by globally raised cytokines. The association of this cluster with genes that may play a role
in dysregulated cytokine release in the context of sepsis is a possible mechanism that would
account for the protein biomarker profile observed in these patients.

HLH can be primary or secondary. Primary HLH occurs in children and is related to
inherited mutations. Secondary HLH occurs in adults and is usually caused by malignancy
(lymphoma), infection (EBV, CMV, HIV), connective tissue disorders or is idiopathic. HLH
is sometimes considered a ‘sepsis-mimic’ as it shares clinical features which may resemble
sepsis: fever, multi-organ dysfunction, pancytopaenia.

The pathogenesis of HLH relates to dysregulated NK cell and cytotoxic CD8+ T-cells, which
cause proliferation of lymphocytes and histiocytes (tissue macrophages). The gold-standard
test is the identification of haematophagocytes on bone marrow aspiration. Haematophago-
cytosis refers to macrophages engulfing erythrocytes, but frequently lymphocytes, platelets
and other precursor cells are seen to be engulfed. The diagnostic criteria for HLH, described
in 2004 by the Histiocyte Society, are shown in Table 4.1.165 The identification of genes
related to HLH in the context of severe cytokine dysregulation in patients with sepsis is
independent validation of this cytokine profile in these patients and suggest an explanatory
mechanism.

Sub-network (v) did not enrich for a pathway or process, however it contained two important
genes related to glucocorticoids (steroids). FKBP5 (FK506 binding protein 5) and SGK1
(serum and glucocorticoid-regulated kinase 1) are both important in glucocorticoid-related
biological pathways. FKBP5 modulates glucocorticoid-receptor activity, with higher levels
of this protein associated with reduced glucocorticoid transcription. FKBP5 transcription
is increased following activation of glucocorticoid receptors.166 SGK1 has a number of
intracellular roles. The transcription of this gene is under the control of glucocorticoids.
Glucocorticoids are frequently administered to patients with septic shock. If FKBP5 was up-
regulated in these patients, this might have been in response to glucocorticoid therapy.
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Sub-network (vi) contained RIPK3, an important protein in necroptosis. Necroptosis is a
form of programmed cellular necrosis that is different to apoptosis and passive necrosis.
Necroptosis may be triggered by death receptors in response to damage associated molecular
patterns (DAMPs) or interferons. It is increasingly recognised as playing a key role in
inflammatory disorders and the response to viral and bacterial infection. Activation of RIPK3
is the key step in necroptosis and so its presence in the context of sepsis and ARDS is of
interest.167

Parameter

1. Fever
2. Splenomegaly
3. Cytopaenia of at least two cell lines

- Hb < 90 g/L
- Plts < 100×109/L
- Neutrophils < 1×109/L

4. Raised triglycerides and/or low fibrinogen
- fasting triglycerides > 3.0 mmol/L
- fibrinogen < 1.5 g/L

5. Haematophagocytosis, demonstrated
in bone marrow, spleen or lymph nodes

6. Low or absent NK cell activity
7. Ferritin > 500 µg/L
8. Soluble CD25 (IL-2 receptor) > 2,400 iu/mL

Table 4.1 HLH diagnostic criteria as described by the Histiocyte Society (HLH-2004 protocol).
Five of the eight above criteria are required for a diagnosis of HLH.
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4.3.7 Linear discriminant analysis of samples between different clus-
ters from the MOSAIC study

The same approach as Section 4.3.2 was used for the MOSAIC data. Here there was no spe-
cific label for ARDS, so severe respiratory failure (respiratory SOFA ≥ 3) was used to ensure
the identified mechanisms were applicable to the most unwell patients. In contrast to the
GAinS study, the MOSAIC sample size for combined immune mediator and transcriptomic
results was smaller (100 samples). The clusters were also smaller and unbalanced (grey: 52,
blue: 23, red: 22). For the subset of samples with respiratory SOFA ≥ 3 the number in each
group were grey: 21, blue: 21, red: 20.

A multi-class LDA model, fitted with leave-one-out cross-validation, had an accuracy of
predicting membership of each of these classes equal to 0.80 (95% CI: 0.76-0.84), and
multi-class AUROC equal to 0.83. The projection of this model into the PCA 1/2 subspace on
to the LDA dimensions is shown in Figure 4.16. It can be seen from this figure that projection
using the first linear discriminant separates all three cluster effectively. The performance of
the multi-class LDA model might therefore have been expected to better than the results seen
here. This is probably due to the small number of samples (approximately 20 in each cluster).
For a multi-class classification model, where the expected probability of success for a given
prediction is the prior probability of the largest class (0.34), this performance was considered
to be satisfactory.
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Fig. 4.16 LDA projections and decision boundaries for clusters in samples from patients
with respiratory SOFA > 2 recruited to the MOSAIC study. a.) shows an approximation of
the decision boundaries that distinguish clusters if the data is projected into the PC1-PC2
subspace. The real boundaries are hyperplanes that cannot be easily visualised. b.) show the
results of linear transformations (X×LD1) and (X×LD2) of the data points (X), using matrix
multiplication, by the LD1 (LD1) and LD2 (LD2) coefficients. This linear transformation
results in projection of these data points to new co-ordinates which are shown here. Each
cluster grouping is well separated with respect to the first linear discriminant axis (LD1). (b.)
is a more accurate representation of the LDA process compared with the approximations
shown in (a.).
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4.3.8 Neutrophil degranulation discriminates the ‘grey’ and ‘red’ MO-
SAIC clusters

The same methods that were used to differentiate clusters found in the GAinS study were
used here for the clusters identified in the MOSAIC study: leave one out cross validation,
and boostrapped resampling to calculate confidence intervals.

An LDA model was fitted to differentiate ‘red’ and ‘grey’ MOSAIC clusters using samples
from patients that had a respiratory SOFA score ≥ 3. Mean accuracy for this fitted model
was equal to 0.94 (95% CI: 0.99-0.88). AUROC was equal to 0.83. Given there were
only approximately 20 samples in each of these clusters, performance of this model was
reassuring.

The discriminant coefficients from the fitted model were ranked by magnitude and these
results for the ten highest variable can be seen in Figure 4.17. A line plot showing the ranking
of all variables is shown in Appendix Figure G.3. The most discriminant cytokine for this
model was TNF-α . The highest ranked gene module was the ‘black’ module which enriched
for the ontology ‘neutrophil degranulation’ (GO:0043312, adjusted p = 2.5×10−12). The
‘red’ cluster had much higher levels of TNF-α and other cytokines associated with neutrophil
activation (Figure 3.9 and Figure 4.5) so this was considered a plausible finding.

The transcripts in the ‘black’ module also enriched for processes associated with glycolysis
and carbohydrate metabolism. Inappropriate activation of metabolic pathways has previously
been described in sepsis by the GAinS and MARS research groups.96,98 Other plausible
explanations include: metabolic insufficiency due to inadequate substrate availability in
critically unwell patients, and an epi-phenomenon of a large number of metabolically ac-
tive neutrophils circulating in these patients. Neutrophils have few mitochondria and are
recognised as predominantly glycolytic.168
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Fig. 4.17 Top ten ranked discriminators for samples with respiratory SOFA score > 2 from
the MOSAIC study between ‘grey’ and ‘red’ clusters. These discriminators were selected by
their relative magnitude. The top ranking gene module that was associated with a biological
process is highlighted in blue (‘neutrophil degranulation’).
A line plot showing all of the ranked variables, ordered by effect size can be seen in Appendix
Figure G.3.
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4.3.9 Regulation of SLITs and ROBOs discriminates the ‘red’ and ‘blue’
clusters from the MOSAIC study

An LDA model was fitted to differentiate the ‘blue’ and ‘red’ MOSAIC clusters using samples
from patients with respiratory SOFA score greater than 2. Mean accuracy for this fitted
model was equal to 0.93 (95% CI 0.99-0.88). AUROC was equal to 0.9. This result was
consistent with the model being a robust classifier.

The discriminant coefficients were ranked by magnitude and these results for the ten highest
ranking variables can be seen in Figure 4.18. The most discriminant cytokine for the model
was TNF-α . The highest ranked gene module was the ‘royal blue’ module which enriched for
the ontology ‘regulation of SLITs and ROBOs’ (R-HSA-9010553, adjusted p = 6.3×10−4).
SLIT-ROBO signalling is considered important in neuronal axon development and growth.
There are at least five human ROBO receptors.

Slit-2-ROBO-4 signalling has recently been implicated as playing an important role in pul-
monary endothelial leak in mice with sepsis and influenza infection.169 The same mechanism
has also been shown to mediate endothelial integrity using in vitro models. One model used
pulmonary derived vascular endothelial cells (PMVECs) infected with hantavirus and another
emulated transfusion-associated lung injury (TRALI) by treating PMVECs with anti-human
neutrophil antigen antibodies.170,171

Slit-2 binding to ROBO-4 receptors on pulmonary vascular endothelial cells preserves surface
VE-cadherin which maintains endothelial integrity inhibiting leak of inflammatory infiltrate
into the alveolar space (Figure 4.19). The implication here is that this mechanism plays a
role in influenza infection of humans that develop severe respiratory failure. This mechanism
has not previously been described in human influenza infection.

The other highly ranked discriminators here were consistent with the immune mediator
profiles of each cluster; the ‘red’ cluster had had high levels of TNF-α , procalcitonin and
CXCL10. Another highly ranked module in this model was the ‘midnight blue’ module
which enriched for ‘antimicrobial humoral response’ (GO:0019730, adjusted p= 2.1×10−9).
There were 10 genes from the module that were associated with this ontology that had
important roles in immunity that were strongly related to neutrophil activity (Figure 4.2). Of
these ten transcripts, two (LCN2 and BPI) have previously been identified by Kangelaris et
al (2015) as being up-regulated in patients with ARDS. In their study, the authors confirmed
that four of the fifteen genes that were up-regulated had increased expression using qPCR.
BPI and LCN2 were two of these four genes. This adds a degree of external validation to the
results shown here.
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Fig. 4.18 Top ten ranked discriminators for samples with respiratory SOFA score > 2 from
the MOSAIC study between ‘blue’ and ‘red’ clusters. These discriminators were selected by
their relative magnitude. The top ranking gene module that was associated with a biological
process is highlighted in blue (‘regulation of expression of SLITs and ROBOs’).
A line plot showing all of the ranked variables, ordered by effect size can be seen in Appendix
Figure G.2.
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Fig. 4.19 Cartoon demonstrating the effect of SLIT-2 ROBO-4 signalling on pulmonary
endothelial leak. Slit-2 binds ROBO-4 receptors which inhibit VE-cadherin internalisation,
maintaining the gap junctions between endothelial cells and preventing leak into the alveolar
space.
Figure taken, with permission, from London et al (2010)169

Targeting Robo4-Dependent Slit Signalling to Survive the Cytokine Storm in Sepsis
and Influenza
Nyall R. London, Weiquan Zhu, Fernando A. Bozza, Matthew C. P. Smith, Daniel M. Greif,
Lise K. Sorensen, Luming Chen, Yuuki Kaminoh, Aubrey C. Chan, Samuel F. Passi, Craig W.
Day, Dale L. Barnard, Guy A. Zimmerman, Mark A. Krasnow, Dean Y. Li
Publication: Science Translational Medicine
Publisher: The American Association for the Advancement of Science
Date: Mar 17, 2010
Copyright 2010, American Association for the Advancement of Science
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Gene Name Human Protein Function (UniProt database)
Reference identifier

(Pubmed ID)

DEFA4 Neutrophil defensin 4 Antimicrobial activity 15616305172

LCN2**
Neutrophil gelatinase-
associated lipocalin
(NGAL)

Limits bacterial proliferation by
sequestering iron bound
to microbial siderophores,
such as enterobactin

28214071173

CTSG Cathepsin G
Cleaves complement C3.
Has antibacterial activity
against Pseudomonas aeruginosa

1937776174

BPI**
Bactericidal permeability-
increasing protein Cytotoxic to Gram-negative bacteria 2722846175

PRTN3 Proteinase-3 (PR3)

Serine protease that degrades
extracellular protein.
Major component of neutrophil
azurophilic granules

22266279176

RNASE3
Eosinophil cationic
protein

Exhibits antibacterial activity,
including cytoplasmic
membrane depolarization of
preferentially Gram-negative,
but also Gram-positive strains.

2501794177

AZU1 Azurocidin
Neutrophil granule-derived
antibacterial glycoprotein 2312733178

PGLYRP1
Peptidoglycan recognition
protein 1

Pattern receptor that binds to
murein peptidoglycans (PGN)
of Gram-positive bacteria.

11461926179

ELANE Neutrophil elastase
Digests outer membrane protein A
in E.coli and K.pneumoniae 10947984180

LTF Lactotransferrin
Binds to the bacterial surface and is
crucial for the bactericidal functions
of other proteins

1599934181

Table 4.2 Transcripts from the midnight blue gene module that enriched for the pathway
‘antimicrobial humoral response. **BPI and LCN2 have previously been identified by Kan-
gelaris et al (2015) as having increased expression in patients ARDS, which they confirmed
by using qPCR.63
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4.3.10 Regulation of expression of SLITs and ROBOs discriminates
the ‘blue’ and ‘grey’ MOSAIC clusters

An LDA model was fitted to differentiate the ‘blue’ and ‘grey’ MOSAIC clusters using
samples from with respiratory SOFA score > 2. Mean accuracy for this fitted model was
equal to 0.80 (95% CI 0.88-0.72) and AUROC was equal to 0.75. This had a lower accuracy
compared with the fitted models for the other clusters. This suggested that the ‘grey’ and
‘blue’ clusters were more alike compared with the ‘red’ cluster as was apparent in Figure
4.16. This result was still consistent with the model being an accurate classifier given the
small number of samples used to fit the model.

The discriminant coefficients were ranked by magnitude and these results for the ten highest
ranking variable can be seen in Figure 4.20. The highest ranking immune mediator was IL-6.
IL-6 concentrtaions in the ‘blue’ cluster were significantly higher than the ‘grey’ cluster
(Figure 3.9 and Appendix Figure D.2).

The highest ranking gene module was again the ‘royal blue’ module which enriched for
the pathway ’regulation of SLITs and ROBOs’ (R-HSA-9010553, adjusted p = 6.3×10−4).
This strongly implicated the role of this pathway in the mechanisms responsible for the
‘blue’ cluster given it was also a strong discriminator between the ‘red’ and ‘blue’ MOSAIC
clusters.



154 Integration of protein biomarkers with transcriptomics

CC17 (TARC)

IL-2

RHO GTPases activate WASPs and WAVEs

IFN-β

Vitamin D

CCL3 (MIP-1α)

No significant pathway

CXCL11 (I-TAC)

IL-6

Regulation of expression of SLITs and ROBOs

-1 0 1 2
LD1

Fig. 4.20 Top ten ranked discriminators for samples with respiratory SOFA > 2 from the
MOSAIC study between ‘blue’ and ‘grey’ clusters. These discriminators were selected by
their relative magnitude. The top ranking gene module that was associated with a biological
process is highlighted in blue (‘regulation of expression of SLITs and ROBOs’).
A line plot showing all of the ranked variables, ordered by effect size can be seen in Appendix
Figure G.1.
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4.3.11 Linear discriminant analysis of HARP-2 clusters

The HARP-2 investigators did not collect samples for measurement of gene expression.
Clusters were, therefore, defined by the protein biomarker concentrations alone. A multi-
class LDA model was fitted to determine how separated these clusters were. Mean accuracy
for this model was equal to 0.81 (95% CI 0.73-0.88), multi-class AUROC was equal to 0.83.
The model performed well at predicting minority class instances (mean accuracy = 0.86).
The coefficients from this fitted LDA model were used to transform data points to project
them onto linear discriminant axes, as shown in Figure 4.21.

Using only six biomarkers, it was apparent that there was less linear separation between
the clusters when compared with LDA projection of protein biomarker values from patients
recruited to the MOSAIC and GAinS studies.

The values of the linear discriminant coefficients are presented in Table 4.3. IL-6 and MMP-8
strongly discriminated the ‘dark red’ cluster (1) from the ‘dark green’ cluster (3). sRAGE
and Ang-2 strongly discriminated the ‘dark yellow’ cluster (2) from the ‘dark green’ cluster
(3). Finally, sRAGE, SP-D and MMP-8 strongly discriminated the ‘dark yellow’ (2) and
‘dark red’ (1) clusters.

Dark green -
Dark red

Dark yellow -
Dark green

Dark yellow -
Dark red

SP-D -0.2198 0.1697 -0.5176
sTNFR-1 -0.3599 -0.1236 -0.0901
sRAGE -0.4682 -1.3647 1.1324
MMP-8 -0.5356 0.0881 -0.4987
IL-6 -0.7771 -0.3961 0.0280
Ang-2 -0.4609 -0.4256 0.2492

Table 4.3 Ranked linear discriminator coefficients for each pairwise endotype comparison.
The greater the magnitude (absolute value) of the discriminator the more important the
variable. For example, sRAGE strongly discriminated the ‘dark yellow’ endotype from the
other two endotypes.

By elimination and comparison of the protein biomarker concentrations in each cluster
(Figure 3.12 and Appendix Figure D.3) it was confirmed that the discriminant characteristics
of each of the three HARP-2 clusters could be termed dark red: MMP-8 driven , dark yellow:
sRAGE driven , dark green: hypo-inflammatory .
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Fig. 4.21 LDA projection of the protein biomarker data from the HARP-2 study. The three
clusters were defined using hierarchical clustering. The clusters shown here were less
separated than has been demonstrated in the other two studies (MOSAIC and GAinS). The
clusters here were determined using six protein biomarkers, four of which were not measured
in patients recruited to the GAinS or MOSAIC studies.
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4.4 Summary and discussion: integration of biological data

Integration of gene expression and other results from high throughput biological experiments
is challenging because the number of measured gene probes in a standard gene expression
experiment exceeds all other clinical or biomarker data many fold. In this section two different
approaches have been taken to integrate these data types: differential gene expression between
clusters and linear discriminant analysis using protein biomarkers and the explained variance
of gene modules.

4.4.1 Differential gene expression

Differential gene expression demonstrated directional changes in gene expression enriched
for plausible mechanisms between clusters found in the MOSAIC study (Figure 4.2). The
‘grey’ cluster was characterised by lymphocyte activation, adaptive immunity and haemosta-
sis. The transcripts that enriched for the haemostasis pathway related to recovery and
restorative processes. This cluster had lymphocyte counts that were no different to the other
clusters, so it was termed ‘adaptive’. IFN-α2a and CCL5 (RANTES) concentrations were
significantly higher in this cluster than the other two. This suggested an interferon and
activated lymphocyte-driven immune response which was consistent the enrichment of gene
expression results here.

The MOSAIC ‘red’ cluster was differentiated from the MOSAIC ‘grey’ cluster by transcripts
associated with neutrophil activation. The ‘red’ cluster had significantly higher concentrations
of TNF-α , IL-6 and IL-8 which was consistent with this expression profile.

The ‘blue’ cluster was differentiated from the ‘grey’ cluster by transcripts that were associated
with neutrophils (RETN and CD177), but they did not enrich for a known biological process
or pathway. Surprisingly there were no differentially expressed genes between the ‘red’ and
‘blue’ clusters (Figure 4.2). These two groups had quite different immune mediator profiles so
this was unexpected. Possible explanations for this could be related to the ‘blue’ cluster being
a less severe phenotype than the ‘red’ but with the same underlying processes. Alternatively,
the clustering method uncovered another layer of heterogeneity that was not captured by
the analysis of immune mediator concentrations in isolation. Differentiation of these two
clusters would therefore require additional variables of classification methods.

Of additional note was the finding that three transcripts differentiated both the ‘blue’ and
‘red’ clusters from the ‘grey’ cluster: RETN, ZDHCC19, CD177. RETN codes of resistin
which is associated with insulin resistance but also plays a role in neutrophil degranulation.
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CD177 is expressed on neutrophil cell membranes, binds PECAM-1 and may have a role
in the transmigration of neutrophils. CD177 has recently been implicated as a predictor of
poor outcomes in influenza patients.182 The authors of this study also used a WGNCA-based
approach to gene expression analysis in patients with influenza.

ZDHHC19 encodes a palmitoyltransferase enzyme which papalmitoylates protein residues
with the aspartate-histidine-histidine-cysteine motif (DHHC). Its function is poorly char-
acterised in the literature but it may play a role in modulating the function of STAT3, an
important signalling protein in inflammation and immunity. ZDHHC19 is one of six genes
that were identified by the GAinS group in predicting the SRS phenotype in faeculent
peritonitis.98

There was no significant differential gene expression for pairwise comparisons between the
three clusters found in the GAinS study. This was unexpected as there were pronounced
differences between the protein biomarker concentrations in each cluster. The profiles of
protein biomarkers in the GAinS clusters were more polarised compared with the clusters
identified in the MOSAIC study.

There are two possible explanations for these results. The most plausible explanation is
that there was additional heterogeneity between patients in each cluster which was not
accounted for by protein biomarker concentrations or gene expression. Additional informa-
tion would therefore be required to discriminate these data points and attribute biological
mechanisms.

Another possible explanation could be related to the pre-processing and batch correction
methods which may have suppressed the differences between clusters. The pre-processing
was conducted using the same commands as for the MOSAIC data. Batch correction modifies
probe intensity values and this may have caused excessive adjustment of gene probe variances.
The batch effect correction function used in this analysis (ComBat) is the same function
that was used by the GAinS research group in their publications and is widely used in the
literature.97,183

4.4.2 Correlation between WGCNA-derived gene modules and clus-
ters

There were no statistically significant correlations between gene modules and clusters from
the GAinS study. Nor did any clinical characteristics correlate with gene modules in these
patients. Two possible explanations include unaccounted heterogeneity between patients in
each cluster or that the conensusBlockwiseModules WGCNA function had over-suppressed
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the variances of transcript levels when constructing the coexpression network across four
different microarray experiments.

The second reason might have been addressed by the derivation of gene networks using
only one microarray experiment at a time. This approach would generate four sets of
gene modules. Correlations with cluster assignments and clinical characteristics could be
calculated. However each set of gene modules could not be compared directly and inferences
would be based on smaller samples sizes and increase the number of statistical comparisons.
Results may not be consistent across each of the four networks and so these findings would
be difficult to interpret.

The gene modules identified in the MOSAIC gene expression data showed strong correla-
tions between many clinically relevant features. This analysis identified a gene module that
enriched for the process ‘antimicrobial humoral response’ that was significantly correlated
with poor patient outcomes. Secondary bacterial infection of patients with influenza is a
recognised complication that is associated with morbidity and mortality in these patients.
Inferring bacterial infection using the highest-ranked enrichment process from an abstracted
gene expression network is contentious without objective evidence of infection. The relation-
ships between gene modules, clusters and clinical characteristics are explored in more detail
in Chapter 5.

The correlation coefficients between the MOSAIC clusters and gene modules found that
the ‘red’ module was positively correlated with a gene module that enriched for the GAIT
mechanism. The ‘grey’ module was negatively correlated with this pathway, but this was not
statistically significant after adjustment. This mechanism directly relates to IFN-γ modulation
of the acute phase of the immune response and to anti-RNA virus cellular mechanisms. The
GAIT mechanism is thought play an important role in monocytes.150 Identification of this
mechanism in this context led to further exploration of how IFN-γ plays an essential role
in the immune response to viral infection and how influenza may be able to subvert this
mechanism to avoid detection and cause harm to its host.

4.4.3 LDA of clusters

I used the downsampling and noise-reduction methods that WGCNA offered, to calculate
a mathematical relationship between each sample and modules of highly connected genes.
The explained variance values of each sample with gene modules enabled gene expression
information to be incorporated with the protein biomarker concentrations without excessive
expansion of the features for each sample.
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Augmentation of data risks disruption of the existing relationships between data points by
adding excessive noise to or changing the variance of the data. Examination of principal
component projections of the combined eigengene and protein biomarker values showed that
this augmentation was in an orthogonal direction to the protein biomarker values (Figure
4.9 and Figure 4.10). This meant that the explained variance attributed to protein biomarker
concentrations in each sample was preserved.

Use of linear discriminators showed how effective they were at projecting data with linear
transformations into easily separable groups (Figures 4.11 and 4.16). Decision boundaries
between clusters might have been calculated using other classification algorithms (random
forests, decision trees, support vector machines). These other classification methods are
designed for binary (two-group) classification. Furthermore, once these alternative methods
of classification are fitted, establishing the each contributing variable’s importance is not
always transparent and may involve removing variables and repeatedly refitting models. LDA
possibly offered poorer classification performance than other methods. However, application
of the LDA method was straightforward when making inferences about the data. In the
models that were fitted, LDA accuracy and AUROC statistics were generally robust despite
the relatively small sample sizes in each cluster.

Using the LDA model’s scaling factors as feature importance measures helped to determine
the key mechanisms in each cluster. The identified mechanisms were concordant with protein
biomarker concentrations and credible.

These methods identified two plausible pathways in the samples from the GAinS study.
The neutrophil activation pathway discriminated the ‘purple’ and ‘green’ clusters, which
was consistent with their protein biomarker profiles. Metabase sub-network analysis of the
combined ‘black’ and ‘dark orange’ modules showed that key genes involved in secretion
of cytokines, which are known to be implicated in familial HLH. The pattern of cytokine
dysregulation in the ‘purple’ cluster appeared to be extreme as concentrations of both pro-
and anti-inflammatory cytokines were raised. An HLH-like syndrome might have been the
cause of this phenotype. Enrichment of the sub-network that included RIPK3 was also of
interest. Involvement of the inflammasome and necroptosis processes in these samples could
be verified by measurement of serum IL-18 and DAMPs associated with necroptosis.184

Similarly, HLH might have been confirmed by measurement of ferritin, triglycerides and
soluble IL-2 receptor (CD25).163

A valid criticism of the approach taken here was the decision to combine the ‘black’ and
‘dark orange’ modules to arrive at these results. These two gene modules were closely related
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according to the gene module dendrogram (Figure 3.18), and both highly ranked in the LDA
model and so this step was considered reasonable.

‘Regulation of protein phosphorylation’ (GO:0001934) discriminated the ‘green’ and ‘yellow’
GAinS clusters. This pathway contained five transcripts that were all associated with immune
and vascular themes. These transcripts did not directly relate to neutrophils and suggested
that a different set of inflammatory processes characterised the immune response in these
clusters. The lack of directionality of LDA coefficients meant it could not be inferred which
cluster was associated with these transcripts. Corroborating information from other features
would also be required to determine the role of these genes.

Based on these results, the clusters from the GAinS study were termed as shown in Figure
4.22. These cluster labels are based on the protein biomarker profiles given the limited insight
into the explanatory mechanisms that might underlie the ‘green’ and ‘yellow’ clusters.

The approaches taken in this chapter demonstrated plausible mechanisms that delineated
each of the clusters in the samples from the MOSAIC study. This plausibility is based
on corroboration of identified mechanisms. For example, the differential gene expression
between the ‘red’ and ‘grey’ clusters identified transcripts that were up-regulated with respect
to the ‘red’ cluster. These up-regulated transcripts enriched for neutrophil degranulation
processes. LDA models confirmed that a neutrophil degranulation process discriminated
these two clusters.

Similarly, the ‘regulation of SLITs and ROBOs’ pathway discriminated ‘blue’-‘grey’ and
‘blue’-‘red’ clusters. This strongly implicated the role of this pathway in patients in the ‘blue’
MOSAIC cluster.

Comparison of the ‘grey’ and ‘red’ MOSAIC clusters identified up-regulated transcripts
in the ‘grey’ cluster that enriched for processes associated with lymphocyte activation and
adaptive immunity. These pathways were consistent with the immune mediator profiles of the
‘grey’ cluster samples. There were no significant differences in lymphocyte counts between
clusters (Figure 4.3) and so this cluster was termed ‘adaptive’.

A summary of the progress in delineating endotypes of ARDS and severe influenza based on
protein biomarker and transcriptomic analysis is shown in Figure 4.22.

Given the identification of plausible mechanisms for some of the clusters the term ‘endotype’
will now be used for greater clarity, as the focus of this thesis pivots from endotype discovery
to endotype characterisation.
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Fig. 4.22 Representation of endotypes based on cytokine clustering, differentially expressed
genes and ranked linear discriminators. This is a preliminary representation of the endotypes
as it does take into account clinical information, but serves as a summary of the progress in
delineating subtypes of ARDS and severe influenza.



CHAPTER 5

Endotype characterisation

Chapter 4 demonstrated how transcriptomic data could be used to describe the mechanisms
that might underlie different immune profiles of ARDS or severe influenza infection. This
chapter will seek to determine if clinical variables can further characterise these endotypes
and if they are associated with different patient outcomes. Where there were multiple
sampling times for protein biomarkers, endotype stability will also be explored.

The clusters identified in the HARP-2 study will be characterised based on protein biomarkers
and clinical features alone.

Statistical comparisons between groups were made using either ANOVA with Tukey’s post
hoc test for normally distributed variables or Kruskall-Wallis test with Dunn’s test for non-
normal variables. Ordinal variables, for example, the cardiovascular component of the SOFA
score, were compared using the Kruskal-Wallis test. Logistic regression was used for binary
variables.

5.1 GAinS endotypes

5.1.1 With the exception of PaO2-FiO2 ratio, there were no significant
differences in organ dysfunction between the endotypes in the
GAinS study

We compared the clinical features of patients in each endotype to determine clinical pheno-
types. There were 196 samples with protein biomarker and transcriptomic data from 144
individual patients. 71 samples were from 55 patients with ARDS. To characterise each
endotype comparisons were made irrespective of ARDS status in order to determine the
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broader clinical features associated with each endotype. Clinical variables from the subset of
patients with ARDS were also compared.

Neutrophil counts were not recorded in the GAinS study. The total white cell count was not
significantly different between the GAinS endotypes, irrespective of ARDS status (Table 5.1,
Figure 5.1 and Figure 5.2). Given the protein biomarker profile and gene module associations
of the hyper-inflammatory endotype, significant differences in total white cell count might
have been expected, especially between the hypo-inflammatory and hyper-inflammatory
endotypes. This was not shown to be the case. Total white cell count did not differentiate
clusters in the GAinS study.

The hyper-inflammatory endotype would have been expected to have had worse multi-organ
dysfunction compared with the other endotypes. Compared with the hypo-inflammatory clus-
ter the levels of creatinine, bicarbonate, requirement for high dose vasopressor support, renal
replacement therapy and platelet count all appear to be consistent with worse multi-organ
dysfunction (Table 5.1). These differences were statistically significant when considered
in isolation but not after adjustment. A larger sample size might have demonstrated these
differences better.

The intermediate endotype had a very similar clinical phenotype to the hyper-inflammatory
cluster, despite their very different protein biomarker profiles. One statistically significant
difference was the lower PaO2-FiO2 ratio for patients in the hyper-inflammatory endotype
compared with the patients in the intermediate endotype (Dunn’s test, Z = 3.05, adjusted
p = 0.007).

5.1.2 Patients in the GAinS study with the hypo-inflammatory endo-
type were more likely to have received steroid therapy

Patients with the hypo-inflammatory endotype were significantly more likely to have received
steroid therapy compared with the intermediate endotype (OR = 3.5, 95% CI 1.3-9.8, p =

0.02, Table 5.1). This might have been a plausible explanation for the globally suppressed
cytokine profile in the hypo-inflammatory patients, although no difference in steroid use
was apparent in the hyper-inflammatory endotype. This finding recapitulates the enriched
sub-networks identified in the combined ‘black’ and ‘dark orange’ gene modules using
the Metabase tool. Sub-network (v.) in Figure 4.15 contained two transcripts related to
gluccocorticoid receptors (FKBP5 and SGK1). These two gene modules were discriminant
between the hypo-inflammatory and hyper-inflammatory endotypes, not the intermediate
endotype. This does not quite fit with the relationship identified in the clinical data, although
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the globally depressed cytokine concentrations in these patients is consistent with steroid
therapy.
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Fig. 5.1 Boxplots comparing the differences in clinical variable measurements related to
organ dysfunction between patients, with or without ARDS, from each endotype identified
in the GAinS study. p values are corrected for multiple comparisons. The dashed lines on
the PaO2:FiO2 plot show the thresholds for mild (<40), moderate (<26.6) and severe (<13.3)
ARDS.
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Fig. 5.2 Boxplots comparing the differences in clinical variables measurements related to
organ dysfunction between patients with ARDS from each endotype identified in the GAinS
study. p values are corrected for multiple comparisons. The dashed lines on the PaO2:FiO2
plot show the thresholds for mild (<40), moderate (<26.6) and severe (<13.3) ARDS.
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5.1.3 Survival analysis showed no significant differences between pa-
tients with different endotypes in the GAinS study

There were no differences between endotypes for in-hospital mortality, 30-day mortality or
hospital length of stay, irrespective of ARDS status (Table 5.1). The Kalplan-Meier analysis
of 30 day mortality for each endotype in all patients, and the sub-group with ARDS is shown
in Figure 5.3.
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5.1.4 Endotypes identified in the GAinS study were not stable over
measured time points

Hierachichal clustering of protein biomarkers measured in the GAinS study was conducted
using the results from samples collected on study days 1, 3 and 5. This was to capture
all possible immunological states using the protein biomarker data. The relative stability
of endotypes and observation of their transitions was therefore observable. The Sankey
diagram in Figure 5.4 shows these transitions alongside patient outcomes at these sampling
times.

Fig. 5.4 Sankey diagram showing the transitions between endotypes on sampling days 1, 3
and day 5. Patient outcomes are also shown here. Although clusters were not particularly
stable the transitions observed were plausible. For example, there were no transitions from
one extreme endotype (hyper-inflammatory) to the other (hypo-inflammatory) and vice-versa.

The paucity of sampled biomarkers at later days 3 and 5 is apparent and limited the effective-
ness of this analysis. 28 patients had measured biomarkers at day 1 and day 3. Of these, 24
also had results for biomarkers sampling at day 5.

The adjusted Rand index was calculated to determine cluster concordance at different sam-
pling times as a measure of cluster stability. Between day 1 and day 3 it was equal to 0.28,
and between day 3 and day 5 it was equal to 0.34. Both of these values suggested that cluster
stability was low although this might be expected with small sample sizes.
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The endotype transitions shown in Figure 5.4 appeared to be plausible. No transitions from
a hyper-inflammatory to a hypo-inflammatory endotype (or the converse) were observed.
Five patients transitioned from the intermediate endotype to the hypo-inflammatory endotype
at day three. Of these three, two patients had received steroids. Three patients from the
intermediate endotype at day three transitioned to the hypo-inflammatory endotype at day
five. One of these patients received steroids. The relative incidence of steroid use in these
patients was insufficient to explain the mechanisms relating to this endotype based on this
information.

5.2 MOSAIC endotypes

5.2.1 Patients with the neutrophil driven endotype from the MOSAIC
study had significantly worse multi-organ dysfunction.

Clinical features of endotypes were compared to determine whether the underlying mech-
anisms translated into plausible clinical phenotypes. For the MOSAIC study, the depth
to which this analysis might have been possible was limited by missing data annotations
and discordance between clinical information and biological samples in the study database.
Low data integrity and poor completion of critical illness fields were more apparent in the
MOSAIC study than the GAinS and HARP-2 studies. This might have been due to the
study contexts being different; critical and non-critical in-patients (MOSAIC) compared with
critical care patients (GAinS, HARP-2). The variables that were least likely to be missing
were routine laboratory investigations (full blood count, biochemistry).

Table 5.2 shows that baseline demographics were no different between patients in each endo-
type. Patients with the neutrophil driven endotype were associated with lower platelet counts,
higher creatinine and bilirubin levels compared with the adaptive endotype (Figure 5.5).
Despite the polarised neutrophil and lymphocyte-like immune responses in the neutrophil
drive and adaptive endotypes, there were no differences in the neutrophil and lymphocyte
cell counts between these two groups of patients.
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Fig. 5.5 Boxplots comparing clinical variable measurements related to organ dysfunction
between patients, from each endotype identified in the MOSAIC study. p values were
corrected for multiple comparisons.
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Fig. 5.6 Boxplots comparing clinical variable measurements related to organ dysfunction
for patients with rSOFA ≥ 3 from each MOSAIC endotype. p values were corrected for
multiple comparisons.
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5.2.2 Low albumin concentration is associated with the SLIT-ROBO
endotype

Patients with the SLIT-ROBO endotype were indistinguishable from the neutrophil driven
endotype based on the clinical variables measured here. This was consistent with findings of
the differential gene expression analysis between these two endotypes. These patients had
significantly lower haemoglobin and albumin concentrations than patients with the adaptive
endotype. These significant differences in albumin concentrations persisted in the smaller
subset of patients with respiratory SOFA scores ≥ 3 (Figure 5.6).

Lower concentrations of both albumin and haemoglobin could be attributed to several causes:
reduced synthesis, redistribution or increased consumption. Redistribution is probably
the most likely cause in this context. Haemodilution from exogenous intravenous fluid
administration or impaired regulation of capillary homeostasis are common in acute illness.
In critical illness, loss of capillary homeostasis often manifests as apparent circulating
hypovolaemia due to the loss of endothelial integrity, causing increased capillary leak.185

Albumin and other plasma proteins leak into the tissues and measured circulating levels
fall. The relative concentrations of these proteins are further reduced by administration
of intravenous fluids, which are administered to restore intravascular volume. Given the
underlying mechanism identified in patients with this endotype related to SLIT-ROBO
signalling, which is implicated in endothelial integrity in animal models of sepsis and
influenza infection,169 this mechanism was considered a plausible cause of the low albumin
and haemoglobin concentrations in these patients. Based on these results, the SLIT-ROBO
endotype was termed Endothelial Leak.

5.2.3 MOSAIC endotypes are associated with different patient outcomes

Patients with the endothelial leak and neutrophil driven endotypes were more likely to be
admitted to ICU, receive mechanical ventilation, require cardiovascular support and have
a longer duration of hospital stay than patients with the adaptive endotype (Table 5.3).
Mortality was significantly worse for patients with the neutrophil driven endotype whose
unadjusted odds of hospital mortality compared with the adaptive endotype was equal to 11.1
(95% CI 2.8-44.6, p < 0.001). Identification of which patients received renal replacement
therapy (RRT) was not possible as these fields were poorly annotated in the MOSAIC study
database.

The critical care requirements for patients with the endothelial leak endotype were less but
similar to the neutrophil driven endotype (48.5% compared with 64.7% requiring mechanical
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ventilation). The 30-day mortality of patients in the endothelial leak endotype was however
markedly different (Figure 5.7). Despite a significant proportion of patients with the endothe-
lial leak endotype requiring treatment in critical care, their survival profile was similar to
patients with the adaptive endotype, and significantly better than patients with the neutrophil
driven endotype: 30-day mortality endothelial leak HR=0.79 (95% CI 0.118-5.72, p = 0.8)
and neutrophil driven HR=5.1 (95% CI 1.04-25.6, p=0.045). Until this point in the analysis it
had not been possible to distinguish between patients with the endothelial leak and neutrophil
driven endotypes.
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5.2.4 MOSAIC endotypes were stable after 48 hours

The MOSAIC study investigators conducted biological sampling of patients at three time
points: recruitment to the study (T1), two days afterwards (T2) and at least 7 days after
discharge from hospital (T3). For this analysis, only T1 and T2 samples were analysed as the
research question was to determine the endotypes of severe respiratory failure. T2 samples
were taken at a median interval of 2.2 days after T1 samples.

There were 53 patients who underwent serum cytokine sampling at both T1 and T2. Of these
only 5 patients (9.6%) transitioned from one endotype to another. The calculated adjusted
Rank index was equal to 0.72 which is consistent with stable cluster assignments between T1
and T2. The cluster transitions and final hospital outcomes for patients can be seen in Figure
5.8.

Three patients (two from neutrophil driven , one from endothelial leak ) transitioned to the
adaptive endotype at T2. There were no transitions to the neutrophil driven endotype from
the other two endotypes.
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Fig. 5.8 Sankey diagram showing cluster transitions and hospital outcomes for patients within
each endotype. The endotypes were generally stable at 48 hours. “Discharged (other)" refers
to discharge to another secondary care institution (for example teaching to district general
hospital).
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5.2.5 The role of secondary bacterial infection in MOSAIC endotypes
is uncertain

Secondary bacterial infection following influenza infection is widely recognised as a cause
of morbidity and mortality.186 Initial correlation analysis of gene modules with mortality
indicated that the ‘antimicrobial humoral response‘ module (Figure 3.20) was associated
with mortality, suggesting that activation of immune pathways related to bacterial infection
may be associated with worse outcomes.

The neutrophil driven endotype was associated with high levels of procalcitonin (Figure 3.12),
and repeatedly associated with neutrophil activation and degranulation (Figures 4.17 and 4.2a).
These associations suggested that secondary bacterial infection was a plausible explanation
for why these patients were more unwell than patients in the other endotypes.

The MOSAIC investigators sought to address the question of secondary bacterial infection
from the outset and carried out extensive sampling from recruited patients. Sampling methods
to detect bacterial infection included:

1. Culture of all respiratory samples (nasopharyngeal aspirates, bronchoalveolar lavage,
throat swabs, sputum).

2. Multiplex PCR quantification for Staphylococcus aureus, Chlamydia pneumoniae,
Haemophilus influenzae, Streptococcus pneumoniae, Pneumocystis pneumoniae, Le-
gionella sp., Klebsiella pneumoniae, Salmonella sp., Moraxella catarrhalis and Bor-
datella pertussis species in the above samples.

3. Quantification of bacterial 16S ribosomal RNA (rRNA) in all of the above respiratory
samples, which measured the bacterial load.

4. Pneumococcal urinary antigen detection.

5. Results from routine microbiological investigations performed part of their routine care
by treating medical teams. For example, blood, sputum, cerebrospinal fluid culture
and urinary antigen test results.

Each case of suspected bacterial infection was discussed by a clinical panel following a
review of all of the above results. The authors of the primary publication of the MOSAIC
concluded found that severe disease was associated with gene expression modules that related
to neutrophil activation, but they found no evidence of increased bacterial infection in these
patients.110
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The analysis here showed that incidence of detected bacterial infection, where adequate
sampling had taken place, was 83% in the neutrophil driven endotype. The criteria for
adequate sampling was at least four of the above domains for bacterial infection detection.
This value, although much higher than in the other endotypes, was not statistically significant
(OR=3.93, 95% CI 0.71-21.7; p = 0.54, Table 5.3). There was evidence of bacterial infection
in the other endotypes (adaptive = 56% samples, endothelial leak = 57% samples), so
secondary infection would not account for the features identified in the neutrophil driven
endotype on its own.

To determine whether gene modules were associated with bacterial infection, Pearson’s
correlation coefficient was calculated between infection status and gene module eigenvalues.
This was possible in 69 patients where sampling for bacterial infection was deemed to have
been adequate according to the study criteria. Only the ‘dark red’ module was significantly
associated with proven bacterial infection (r = 0.48, adjusted p = 0.0004). This module,
consisting of 125 transcripts, was not significantly associated with a known process or
pathway (Table 3.7).

The ‘midnight blue’ gene module, which was associated with worse clinical outcomes and
enriched for the process ‘antimicrobial humoral response’, had a correlation coefficient equal
to 0.1 (adjusted p = 1) for confirmed bacterial infection. The processes associated with this
gene module could not be used to infer secondary bacterial infection.
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5.3 HARP-2 endotypes

5.3.1 Clinical features of endotypes identified in the HARP-2 study

The HARP-2 study collected samples for biomarker analysis from 511 patients on the
recruitment day of the trial. The results from the measurement of six biomarkers were
available for this analysis. Hierarchical clustering with Ward linkage identified three clusters
(Figure 3.12). Two of these clusters were associated with high levels of IL-6 and Ang-
2, but were differentiated their relative levels of MMP-8 and sRAGE and were termed
‘MMP-8 dominant’ and ‘sRAGE dominant’ respectively. The third cluster showed depressed
concentrations in five of the six biomarkers and was termed ‘hypo-inflammatory’.

There were no differences in baseline characteristics (demographics, ARDS aetiology)
between patients in the three endotypes (Table 3.4). Patients with the MMP-8 and sRAGE
dominant endotypes were associated with worse organ dysfunction with respect to serum
creatinine and bilirubin levels, platelet counts and requirement of renal replacement therapy
(RRT) when compared with patients in the hypo-inflammatory endotype (Figure 5.9 and
Table 5.4). The sRAGE dominant endotype was associated with lower PaO2-FiO2 ratio
(p = 0.02) and higher APACHE-II scores (p = 0.005). The MMP-8 endotype was associated
with administration of higher vasopressor doses which was determined by a cardiovascular
SOFA score greater than two (OR 2.2, 95% CI 1.4-3.4).

Patients with the hypo-inflammatory endotype had significantly lower C-reactive protein
(CRP) levels than the other two endotypes which was consistent with its lower IL-6 levels
(Figure 5.9). CRP, a circulating marker of inflammation, was not used to derive these
endotypes. The MMP-8 dominant endotype had significantly higher CRP levels than the
sRAGE dominant endotype (p = 0.04) which was surprising given their relative levels of
IL-6 were similar. IL-6 stimulates release of CRP from the liver in the acute phase of the
inflammatory response187 and so a difference here was unexpected. This suggested that
other, unmeasured mediators, were stimulating CRP release in these patients.
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MMP-8 dominant sRAGE dominant Hypo-inflammatory

N (recruitment day samples) 160 89 262

Sex = Male (%) 87 (54%) 50 (56%) 152 (58%)
Age years, mean (sd) 56 (16.6) 51.6 (15.6) 53.4 (16.5)
BMI, mean (sd) 26.6 (5.6) 27.2 (6.8) 27.6 (7.5)

Randomised to simvastatin 71 (44.4%) 44 (49.4%) 132 (50.4%)

ARDS Aetiology
Pneumonia 82 (51.3%) 41 (46.1%) 157 (59.9%)
Sepsis 37 (23.1%) 21 (23.6%) 35 (13.4%)
Gastric aspiration 14 (8.8%) 8 (9.0%) 26 (9.9%)
Other 10 (6.3%) 8 (9.0%) 21 (8.0%)
Pancreatitis 10 (6.3%) 3 (3.4%) 3 (1.1%)
Thoracic trauma 6 (3.8%) 7 (7.9%) 16 (6.1%)
Non-thoracic trauma 1 (0.6%) 1 (1.1%) 4 (1.5%)

Clinical variables
Creatinine (umol/L) 95 [68-155] 85 [62-130] 69 [54-107]
Bilirubin (umol/L) 15 [9-26.5] 15 [17-35] 9 [6-17.3]
Platelet count (x109/L) 163 (114) 163 (110) 220 (118)
C-reactive protein (mg/L) 226 [152-295] 179 [114-258] 141 [79-222]

Organ Dysfunction
APACHE-II Score, median, [IQR] 19 [15-24] 21 [16-27] 17 [13-23]
PaO2-FiO2 ratio, median [IQR] 18.5 [12.9-23.6] 17.6 [12.1-22.3] 19.3 [13.9-26.2]

p = 0.02 Reference
Cardiovascular SOFA ≥ 3 124 (77.5%) 62 (69.7%) 160 (61.1%)

OR 2.2 [1.4-3.4] Reference
Renal replacement on Day 1 43 (26.9%) 20 (22.5%) 17 (6.5%)

OR 5.3 [2.9-9.7] OR 4.18 [2.08-8.41] Reference
Any renal replacement therapy 68 (42.5%) 32 (36%) 36 (13.7%)

OR 4.6 [2.9-7.4] OR 3.5 [2.0-6.16] Reference

Table 5.4 Characteristics of patients in each of the HARP-2 endotypes. The hypo-
inflammatory endotype was associated with less organ dysfunction and better outcomes
than the other two endotypes. ANOVA with Tukey’s post hoc test was used to compare
continuous variables. Categorical variables were compared using logistic regression. Length
of stay was compared using a log-linear model.



186 Endotype characterisation

ns

ns

0.0051

10

20

30

40

50

MMP−8
dominant

sRAGE
dominant

Hypo-
inflammatory

AP
AC

H
E−

2 
Sc

or
e

ns
ns

0.022

0

20

40

60

MMP−8
dominant

sRAGE
dominant

Hypo-
inflammatory

Pa
O

2
−

Fi
O

2 r
at

io
 (k

Pa
)

ns
2.1e−06

0.013

30

100

300

1000

MMP−8
dominant

sRAGE
dominant

Hypo-
inflammatory

C
re

at
in

in
e 

(u
m

ol
/L

)

ns
ns

0.015

10

100

1000

MMP−8
dominant

sRAGE
dominant

Hypo-
inflammatory

Bi
lir

ub
in

 (u
m

ol
/L

)

ns
5.9e−06

0.00023

1

10

100

1000

MMP−8
dominant

sRAGE
dominant

Hypo-
inflammatory

Pl
at

el
et

 c
ou

nt
 (x

10
9 /L

)

0.039
2.6e−10

0.01

0

200

400

600

MMP−8
dominant

sRAGE
dominant

Hypo-
inflammatory

C
−r

ea
ct

ive
 p

ro
te

in
 (m

g/
L)

Fig. 5.9 Boxplots of clinical variables related to organ dysfunction in patients from each
endotype identified in the HARP-2 study.
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5.3.2 HARP-2 endotypes are associated with different outcomes and
treatment response

Patients with the MMP-8 driven and sRAGE driven endotypes had worse outcomes than
patients with the hypo-inflammatory endotype (Table 5.5). All measures of mortality, even
with adjustment for organ dysfunction using the APACHE-II score and patient age, were
worse in patients with the MMP-8 driven and sRAGE driven endotypes.

Figure 5.10 depicts the 28-day survival curves for each endotype. Panel A shows that patients
with the MMP-8 driven and sRAGE driven endotypes followed a similar trajectory. Panel B
shows the survival of patients who were randomised to the placebo arm of the study. The
survival curves closely resembled the trajectories seen in panel A. Panel C shows that patients
with the MMP-8 driven endotype had a treatment response to simvastatin. The survival curve
of these patients resembled that of the hypo-inflammatory group treated with simvastatin.
The 28-day survival of patients with the sRAGE driven and hypo-inflammatory endotypes
was unchanged between the placebo and simvastatin arms, suggesting these patients did not
respond to treatment.

The effect of simvastatin treatment on patients with each endotype was quantified, using Cox
proportional hazards, in Table 5.5. The adjusted hazard ratio for patients with the MMP-8
driven endotype was equal to HR 0.35 (95% CI 0.18-0.71, p = 0.003), which implied a 65%
risk reduction of death at 28 days. Recruitment of patients with the other two endotypes,
who were treatment unresponsive, therefore masked the treatment response shown by these
patients and led to negative trial result. If treatment effects were uniform in all patients with
this endotype, then the expected 28-day mortality in the MMP-8 driven endotype might have
reduced from 31.9% to 11.2%. Caution must always be advised when conducting post hoc
sub-group analysis of randomised controlled trials, but even with this caveat, these results
are compelling.
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MMP-8 Dominant sRAGE dominant Hypo-inflammatory

N 160 89 262
Randomised to simvastatin 71 (44.4%) 44 (49.4%) 132 (50.4%)

Patient outcomes
Length of ICU stay§ 13 [8-21] 9 [6-16.8] 9 [5-16]
median days, [IQR] p <0.001 Reference
28 day mortality 51 (31.9%) 30 (33.7%) 43 (16.4%)
Unadjusted OR 2.38 [1.5-3.8] OR 2.6 [1.5-4.48] Reference
Adjusted OR 2.32 [1.38-3.9] OR 2.66 [1.44-4.92] Reference
ICU mortality 44 (27.5%) 34 (38.2%) 41 (15.6%)
Unadjusted OR 2.04 [1.26-3.31] OR .33 [1.93-5.7] Reference
Adjusted OR 1.93 [1.13-3.28] OR 3.39 [1.85-6.22] Reference
Hospital mortality 56 (35%) 35 (39.3%) 56 (21.3%)
Unadjusted OR 1.98 [1.28-3.07] OR 2.38 [1.42-4] Reference
Adjusted OR 1.70 [1.10-2.93] OR 2.41 [1.34-4.33] Reference

Treatment response to simavstatin

Unadjusted
HR 0.43 [0.24-0.79]

p = 0.007
HR 1.65 [0.80-3.42]

p = 0.18
HR 0.90 [0.49-1.64]

p = 0.72
Adjusted for APACHE-II
and Age

HR 0.35 [0.18-0.71]
p = 0.003

HR 1.42 [0.66-3.05]
p = 0.37

HR 0.84 [0.43-1.64]
p = 0.61

Table 5.5 Outcomes of patients in each of the HARP-2 endotypes. The hypo-inflammatory
endotype was associated with better patient outcomes across all measures. Treatment
response to simvastatin refers to the 28 day mortality of patients in each endotype who were
randomised to the simvastatin arm of the trial, compared with those, from the same endotype
who were randomised to placebo. Adjusted models included APACHE-II score and patient
age as covariates for fitting logistic regression (OR) or Cox proportional hazards models
(HR). The MMP-8 dominant endotype showed a significant treatment response to simvastatin.
§Length of stay in survivors.
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5.10 (c) Kaplan-Meier analysis of patients in each HARP-2 endotype. a shows that patients
with the hypo-inflammatory endotype had significantly better 28 day survival compared
with patients with the other two endotypes. The same was true for the patients randomised
to the placebo arm (b). c shows that the patients with the MMP-8 dominant endotype had
a significant therapeutic response to simvastatin, and their outcomes were comparable to
patients with the hypo-inflammatory endotype.
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5.4 Summary and discussion of endotype characterisation

Isolated biological processes, determined at a gene expression level, are generally considered
far removed from the organ dysfunction and loss of homeostasis required to cause abnormal
values in blood tests and organ failure requiring support on intensive care. Measurement of
gene expression and blood protein biomarkers provides a global assessment of circulating
immune cell function. Immune dysfunction plays a crucial role in sepsis, ARDS and
other critical care syndromes, and these mechanisms may contribute to the pathology and
organ dysfunction patients suffer. The analysis in Chapters 3.2 and 4 described some of
the processes that characterised endoypes. This chapter outlined the clinical features of
endotypes and determined whether these translated into clinical phenotypes and affected
patient outcomes.

5.4.1 GAinS

The only statistically significant difference between patients in each of the GAinS endotypes
was a lower PaO2-FiO2 ratio for those with the hyper-inflammatory endotype compared
with those with intermediate endotype (p = 0.007, Figure 5.1). Patients with the hyper-
inflammatory endotype had lower bicarbonate, platelet counts and higher creatinine than
those with the hypo-inflammatory endotype. These were not significant after adjustment for
multiple comparisons. The trends for these three variables between these two endotypes,
although not significant, were consistent with the polarised immune responses in these
patients. The hypo-inflammatory endotype consisted of only 27 patients (19%) and so a
failure to detect a difference between the hypo-inflammatory and the hyper-inflammatory
endotype may be due to under-powered statistical comparisons.

Patients with the hypo-inflammatory endotype were more likely to have received steroid
therapy (OR = 3.5, 95% CI 1.3-9.8, Table 5.1) than those with the intermediate endotype.
This was consistent with the globally suppressed cytokine response in these patients. Further
corroboration of the role of steroids in this endotype was provided by two important tran-
scripts related to glucocorticoid receptors being present in the gene module that differentiated
these patients from the hyper-inflammatory endotype: FKBP5, SGK1. The gene FKBP5
contains steroid responsive elements in its promoter regions and its expression is rapidly
increased following glucocorticoid receptor activation.188

The clinical data provided from the GAinS study did not discriminate between patients
who were receiving chronic steroid treatment from those who received supplemental steroid
therapy as part of their critical care management. Critical care patients with refractory
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shock are often administered intravenous hydrocortisone in the acute setting to improve
the efficacy of exogenous catecholamines for cardiovascular support. If patients with the
hyper-inflammatory endotype received steroid therapy in this context, these patients might
not have developed an immunosuppressed phenotype. Chronic steroid treatment might
have accounted for the biomarker profile in the hypo-inflammatory endotypes. However,
ambiguous recording of steroid treatment in patients recruited to the GAinS study may have
masked the relative effects of acute and chronic steroid administration.

5.4.2 MOSAIC

Patients with the neutrophil driven endotype in the MOSAIC study were more likely to have:
lower platelet counts, higher creatinine and bilirubin. These patients were also more likely
to require mechanical ventilation, vasopressor support and had worse outcomes than those
with the adaptive endotype (Tables 5.2 and 5.3). The low albumin levels in the endothelial
leak endotype was a feature that distinguished these patients. There had been very little
evidence to suggest that there were any differences between patients with the neutrophil
driven and endothelial leak endotypes based on the distribution of clinical variables and
differential gene expression. However, the Kaplan-Meier analysis showed the 30-day survival
of the patients with the endothelial leak endotype to be significantly higher than the hyper-
inflammatory endotype, and similar to those with the adaptive endotype. This was unexpected
because patients with the endothelial leak endotype were significantly more likely to require
ventilation (OR = 3.68, 95% CI 1.44-9.8) and require cardiovascular support (OR = 6.11,
95% CI 2.2-16.9) than patients with the the adaptive endotype. Confidence intervals of these
statistics were wide because of the small number of patients in each endotype.

The patients in the endothelial leak endotype might represent the ‘quick’ turnaround subset
of critical care patients who only require brief periods of organ support and do not develop
complications that prolong their stay on ICU. Endothelial leak might be offset by positive
end-expiratory pressure (PEEP) from invasive ventilation if this was the process that caused
their need for admission to critical care. In contrast, patients with neutrophil driven endotype
may represent the subset with the greater immune dysregulation who develop multi-organ
dysfunction and have worse outcomes. Whether the immune dysregulation caused or was
the result of worse multi-organ dysfunction cannot be determined without repeated temporal
sampling.

Another possible explanation for the difference between endotypes might be secondary
bacterial infection in patients with the neutrophil driven endotype. Diagnosis of bacterial
infection is challenging in critical care patients as it is difficult to sample the affected organs
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(usually the lung) and fastidious organisms may not grow in cultured samples because
patients are often receiving antibiotics. Patients with the neutrophil driven endotype had
higher levels of procalcitonin (PCT), a biomarker sensitive for bacterial infection. In the
context of severe pandemic H1N1 influenza PCT can be a poor discriminator for determining
bacterial super-infection in these patients, who may have PCT concentrations as high as
10 ng/mL without detectable secondary infection.189 The manufacturers of the PCT assay
consider >0.5 ng/mL as the threshold for clinical suspicion of bacterial infection.

Although the proportion of patients with bacterial infection was higher in the neutrophil
driven endotype, this was not statistically significant. Additionally, there was evidence
of bacterial infection in the other two endotypes. Bacterial infection, therefore, likely
contributed to the immune responses observed in the neutrophil driven endotype but did not
fully account for the outcomes and features associated with these patients.

This analysis successfully demonstrated stability and persistence of endotypes in these
patients at 48 hours. There is an opportunity to replicate these endotypes prospectively
in future studies, which might offer the opportunity to stratify patients to interventions in
clinical trials.

5.4.3 HARP-2

The endotypes identified in the HARP-2 study were demonstrated using biomarkers measured
at the time of recruitment to the study. Similar patterns emerged in this study as with the
other two: there were hyper-inflammatory and hypo-inflammatory endotypes, and the hypo-
inflammatory endotype was associated with less organ dysfunction and better outcomes
(Table 5.4 and 5.5).

Due to the large number of patients with biomarker measurements in the HARP-2 study
these results were based on larger groups and so the confidence intervals of the statistical
estimates are narrower, in contrast with the comparisons made between endotypes in other
two studies.

Derivation of endotypes in the HARP-2 study used biomarkers that were not measured in the
MOSAIC or GAinS studies (MMP-8, Ang-2, sRAGE, SP-D). These additional biomarkers
differentiated the patients with a hyper-inflammatory subtype into MMP-8 dominant and
sRAGE dominant endotypes. These two endotypes were similar with respect to organ
dysfunction measures and outcomes (Tables 5.4 and 5.5, Figure 5.9). The primary difference
between these two endotypes was their response to treatment with simvastatin. The MMP-8
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driven endotype showed a treatment benefit with simvastatin therapy that aligned their 28 day
survival curve with the survival curve of patients with the hypo-inflammatory endotype.

The MMP-8 driven and sRAGE driven endotypes were both associated with high levels of
IL-6, sTNFR-1s and Ang-2. Ang-2 is a marker of endothelial injury. The proposed mech-
anism by which simvastatin was expected to benefit patients with ARDS was to modulate
endothelial integrity and reduce inflammation.111 A possible explanation for why some
patients responded to simvastatin might be related to the high levels of sRAGE in the sRAGE
driven dominant endotype.

sRAGE is the soluble form of RAGE, a pattern recognition receptor which has a similar
structure to immunoglobulin. Levels of sRAGE are raised in a number of inflammatory
and non-inflammatory conditions including arthritis, Alzheimer’s disease, sepsis, COPD
and obesity.190 It is however principally found in lung tissue where it is expressed by type
1 alveolar cells. The high levels of sRAGE in patient with the sRAGE driven may reflect
worse disruption of the endothelium that is compromised to the extent that large amounts
of sRAGE enter the circulation. It could be hypothesised that this degree of endothelial
disruption was no longer amenable to modulation by simvastatin. sRAGE might therefore
be used as a biomarker of predicting treatment failure with simvastatin in the context of
this study. Similarly, if patients with the hypo-inflammatory endotype could be identified at
randomisation, these patients might be excluded from immunosuppressive therapies. These
patients have a relatively better outcome at 28 days and so are less likely to derive benefit
from interventions but may suffer adverse events.

Restriction of analysis of the HARP-2 results to recruitment day samples permits the findings
in this analysis to be applied to future randomised controlled trial design for intensive care
patients. This would require measurement of protein biomarkers as part of a predictive
enrichment strategy at the time of recruitment, prior to randomisation.



CHAPTER 6

General Discussion and Conclusions

6.1 Summary of endotypes

Figure 6.1 provides a summary of the clinical characteristics and outcomes of patients in
each endotype, alongside the biological mechanisms that they are associated with.

Three endotypes were identified in the GAinS study. These were termed: hyper-inflammatory,
intermediate and hypo-inflammatory. The hyper-inflammatory endotype was associated with
dysregulated cytokine release and gene networks implicated in HLH. The hypo-inflammatory
endotype was associated with global suppression of cytokine release and treatment with
glucocorticoids may explain the low cytokine concentrations in these patients.

Three endotypes were identified in the MOSAIC study. These were termed: endothelial
leak , adaptive and neutrophil driven . The endothelial leak endotype was associated with
SLIT-ROBO signalling, low albumin levels and a favourable 30-day survival despite the need
for organ support. The adaptive endotype was associated with lymphocyte and IFN-α2a
mediated immune responses and a lower requirement for organ support. The neutrophil driven
endotype was associated with multi-organ dysfunction and expression of genes associated
with neutrophil activation and degranulation. These endotypes were not fully explained by
the relative incidence of confirmed secondary bacterial infection.

Three endotypes were identified in the HARP-2 study: these were termed hypo-inflammatory,
MMP-8 driven and sRAGE driven. The hypo-inflammatory endotype was associated with
lower serum concentrations of IL-6 and sTNFR-1 and lower 28-day mortality. The MMP-8
driven endotype was associated with raised IL-6 and MMP-8 and demonstrated a favourable
treatment response to simvastatin. The sRAGE driven endotype was associated with raised IL-
6 and sRAGE concentrations. Patients with the MMP-8 driven and sRAGE driven endotypes
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has similar outcomes, but the sRAGE driven endotype did not demonstrate any treatment
response to simvastatin.

Fig. 6.1 Final endotype model from each contributing study
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There are several common themes here between all three studies:

• A three endotype model captures some of the heterogeneity in critically unwell patients.

• Hypo-inflammatory subsets of critical illness are apparent in all three studies. These
patients generally had less organ dysfunction and better outcomes.

• Hyper-inflammatory states can be sub-classified into plausible endotypes that have
different outcome profiles and responses to treatment on intensive care.

• Patients with critical illness syndromes can be separated into subgroups that are defined
by different biological process, by using unbiased approaches that do not depend on
clinical variables.

The favourable survival profiles of the relatively hypo-inflammatory HARP-2 and MOSAIC
endotypes is in contrast to the findings of other groups. For example, the SRS-1 phenotype,
derived from the same GAinS transcriptomic data, was associated with worse patient out-
comes. The authors determined this phenotype was related to T-cell exhaustion, depressed
immunity and described it as a hypo-inflammatory state.98

The findings of the MARS consortium sepsis study identified a favourable endotype associ-
ated with adaptive immunity and interferon signalling (MARS-3). This endotype bore some
resemblance to the SRS-2 endotype found by the GAinS consortium.96 These themes fit with
the MOSAIC adaptive endotype described here.

Patients with the hyper-inflammatory (Calfee et al., (2014)) or the hyper-reactive (Bos et al.,
(2017)) ARDS endotypes had worse outcomes in their respective studies.61,82 Calfee et al.’s
hyper-inflammatory endotype was responsive to treatment with simvastatin106 Both of these
are consistent with the neutrophil driven and hyper-inflammatory endotypes described in this
thesis.

One strength of this analysis is that even with relatively few biomarkers, novel endo-
types which have implications for patient management can be described. The hyper-
inflammatory endotypes observed may benefit from immunosuppressive therapy, whilst
the hypo-inflammatory endotypes might be excluded from immunosuppressant interventions.
Not least because their background survival is better than the other endotypes, but also
because they might be less likely to benefit and may suffer adverse reactions.

Inclusion of patients belonging to a non-responsive endotypes in a randomised controlled trial
may negate the positive effects in patients with treatment responsive endotypes, leading to
negative or equivocal trial outcomes. Critical care patients frequently suffer from the adverse
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effects of iatrogenic interventions: nosocomial infections, delirium, ventilator-induced lung
injury to name but a few. Recognition of which patients might come to additional harm from
therapeutic medications is as important as the identification of treatments which improve
outcomes.

In this analysis, attempts have been made to fully characterise the mechanisms underlying
each identified endotype, using a combination of differential gene expression and linear dis-
criminant analysis. Whilst other studies use the hyper-inflammatory and hypo-inflammatory
labels, I have shown that more nuance may need to be applied when using these terms.
For example, the ‘grey’ cluster from MOSAIC study might have been described as hypo-
inflammatory due to its relatively low concentrations of IL-6 and TNF-α . Differential gene
expression and LDA demonstrated that patients with the adaptive endotype were associated
with lymphocyte activation and adaptive immunity. Similarly, a three endotype model of
HARP-2 showed that there were two hyper-inflammatory endotypes which had different
responses to treatment with simvastatin.

Another strength of this analysis is temporal stability of endotypes identified in the MOSAIC
study. Stability implies that these immune states were present for at least two days. The
immune profiles observed are in the context of a heterogeneous population of influenza
patients who were recruited at different times during the course of their acute illness. The
immune profiles must therefore be persistent and lends to support to the hypothesis that
immune responses in critical illness are stereotyped.

This finding offers the opportunity to prospectively identify patients with these endotypes
at the time of recruitment to an interventional study. Predictive enrichment to an RCT by
stratification in this manner has the potential to maximise the utility of expensive trials
and novel treatments. Delucchi et al. (2018) have shown that latent class-based endotypes,
identified in patients with ARDS, were stable over three days.107 Kitsios et al. (2019) have
demonstrated endotype stability, using latent class analysis of a ten biomarker panel, for as
long as two weeks.191

The underlying mechanisms demonstrated here might be amenable to experimental verifica-
tion using laboratory-based techniques. The endothelial leak endotype might be observed
with in-vitro leak assays of pulmonary microvascular endothelial cells. Serum from patients
with different MOSAIC endotypes and healthy controls could be tested to see if they induce
endothelial leak and whether this effect could be abrogated by addition of Slit-2. These
experiments would be similar to those conducted by London et al. (2010) and Weng et al.
(2019).169,171 The HLH-like endotype identified in the GAinS study could be confirmed
by measuring soluble IL-2 receptor (CD25), triglycerides and ferritin. Measurement of
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caeruloplasmin in samples from the adaptive and neutrophil driven MOSAIC endotypes
might demonstrate whether the GAIT system is functioning in the context of raised IFN-γ
levels.

6.2 Limitations

The analysis I have undertaken is subject to several limitations that might preclude its external
validity.

There were no differentially expressed genes between patients with or without ARDS, nor
between clusters in the GAinS microarray results. This was surprising considering how
polarised the immune responses in these patients were. It is likely that there was additional
heterogeneity amongst patients with the protein biomarker-based endotypes that was not fully
captured by measurement of cytokines and chemokines. Other possible explanations might
include use of batch effect correction methods that may have suppressed probe variances.
The methods used here were no different to standard methods used in the literature and by
the GAinS research group in their publications.

Additional steps that might have been taken to improve the detection of differences in gene
expression include: restricting the number of probes used and removal of outlier samples.
Review of the MDS plots of the gene expression profiles identified approximately 15 samples
that might be considered outliers (Figure 3.15). This relatively small number of outliers is
unlikely to have suppressed genuine biological signals considering the number of samples in
each endotype were relatively large.

Another limitation is the assumption upon which co-expression network analysis relies: that
the network structure has scale-free properties. Although some biological networks may
be scale-free, it is increasingly recognised that this may not be the case.192 WGCNA is
however still widely used by researchers in the field of transcriptomic analysis.127,182,193

Alternative methods of network analysis tend to be supervised, based on previously described
annotations and protein-proteins interactions, or are still maturing in their development.194

These alternative methods may also have similar flaws due to the assumptions upon which
they are based.195

Linear discriminant analysis models demonstrated adequate performance in this analysis
because the protein biomarker and module eigengene data happened to be orthogonal when
combined and linearly separable. There is no guarantee this would be the case in other studies.
The variables, using which the LDA models were fitted, were log-transformed and centre
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scaled with zero mean. This zero mean was therefore derived from the study population, not
control samples.

This was not problematic for this analysis as the goal was to characterise the heterogeneity of
critically unwell patients in these three studies. However, if these results were to be translated
into use for in a clinical trial, the population means of each cytokine or biomarker would
have to be determined in the study population before stratification. The methods used for the
measurement of protein biomarkers are not currently licensed for use in patient diagnosis.
There are no standardised reporting methods for these biomarker assays. Standardisation
allows for calibration between laboratories using different quantification methods. For these
reasons, thresholds for concentrations of protein biomarkers that might predict endotype
membership were not calculated in this analysis.

The latent class analysis method used by the Calfee research group also uses scaled and
ordinal transformation of continuous variables to derive endotypes.61 Validation of these
unsupervised learning approaches will therefore require parsimony across multiple stud-
ies.

The fitted LDA models performed well in this analysis because classes were easily separable
using a linear transformation. Noisier data would have led to poor model performance, and
different methods might have been required to distinguish clusters in a more robust manner.
The application of LDA here offered transparency as to its method and straightforward
interpretation with regards to its outputs. The goal of this thesis was the discovery of
the important endotype features, not prospective prediction with repeated cycles of model
tuning.

Hierarchical clustering with Ward linkage of protein biomarker concentrations found spheri-
cal clusters and divided these data into subsets with relatively extreme values. This would
also explain why the LDA method was effective in discriminating these clusters. Complex
biological data does not always fit neatly into spherical groups, and so edge cases will be
misclassified by this method. On the other hand, alternative clustering methods (DBScani,
OPTICSii) which perform well with multi-dimensional data are optimised to identify gen-
uinely separate clustered groupings.103,196 The PCA representation of the cytokine data from
all three studies showed that the data points formed a fairly homogeneous sphere in the first
few visualised dimensions. There was little apparent separation into groups that might be
identified as distinct clusters by the DBScan or OPTICS methods.

iDensity-based spatial clustering of applications with noise
iiOrdering points to identify the clustering structure



6.2 Limitations 201

The Ward-linkage clustering method I used worked well by exposing the heterogeneity
in critically unwell patients’ immune profiles. This method of clustering is subject to
instability, as small perturbations in the data or removal of features may produce new
clustering assignments that are unrelated to the original clusters. To avoid this, large sample
sizes and many variables are required to ensure clusters are robust. Bootstrapped resampling
and measurements of the adjusted Rank index were used to quantify instability and ensure
clusters were robust.

An alternative approach to hierarchical clustering might have involved the projection into a
different coordinate system, using an embedding process. T-distributed stochastic neighbour
embedding (tSNE) or uniform manifold approximation and projection (UMAP) are examples
of alternative embedding methods. Clustering could then be applied to the new embedded
space. This approach is often used in the analysis of single-cell RNA sequencing and other
complex ’omics data. Embedding-based approaches were avoided in this thesis because
the embedding process cause the features of the data to become difficult to interpret once
transformed and projected in this way.

Enrichment analysis of gene modules from the MOSAIC and GAinS samples tended to
favour processes and pathways associated with neutrophil function and activation. This
was expected given that the patients from which these samples were taken had either sepsis
or severe influenza infection. However, these enrichment results may have simply been
a function of the relatively greater abundance of neutrophils circulating in these patients.
Therefore, this enrichment strategy might have been less likely to favour cells that are poorly
represented in the whole blood transcriptome.

The results from the MOSAIC study may have demonstrated this: patients in the ‘red’
(neutrophil driven) MOSAIC cluster had high levels of IL-15. This cytokine is associated
with NK cell activation and recruitment in influenza infection.144 Any influence that NK
cells may have had on the underlying mechanisms in these patients was over-shadowed by
the relative abundance of neutrophil related processes.

Adjustment of expression levels for neutrophil counts using a linear model might control
expression levels for the relative of individual cell types. This approach is not feasible if
applying WGCNA, unless all probe levels were adjusted for neutrophil count, in which
case the low abundance signatures from minor cell types will also be depressed. The ideal
approach would be to use concurrent immunophenotyping to adjust for all cell types. Single-
cell RNA sequencing may address some of these problems in the future as this technology
evolves.
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Prospective replication of these results may not be possible as the microarrays chip versions
used to quantify gene expression in the MOSAIC and GAinS studies are no longer avail-
able. Research exploring gene expression in human studies now uses bulk RNA sequencing
methods (RNAseq), which is a different technology that require separate analytical tools. A
broader problem with RNA-based technologies, in general, is the abundance of transcripts
may not be reflective of protein levels. Post-transcriptional, translational and other regulatory
steps in protein synthesis may affect protein production and function. Sequencing methods
cannot account for these additional biological processes. Integration of proteomic, transcrip-
tomic and clinical variables will be necessary to fully describe and characterise the processes
which define endotypes.

6.3 Validity of this approach in future studies

The goal of this thesis was to discover the most important biological mechanisms in critically
unwell patients. Disease labelling and stratification according to clinical features was avoided
at early stages of the analysis. Critical to the approach was not the method of clustering
or network analysis, but the recognition that labels and outcomes of patients are subject to
biases when used in supervised learning. This unbiased approach could be applied to other
heterogeneous diseases.

The results from the HARP-2 study demonstrated a treatment responsive group could be
replicated in other studies. Extended cytokine analysis is being conducted on the HARP-2
samples in order to improve the characterisation of each of the identified endotypes here and
determine whether similar endotypes to those found in the MOSAIC and GAinS studies can
be replicated in the HARP-2 study.

Building on this work requires prospective validation of these mechanisms before predictive
models can be fitted to stratify patients accurately. The clusters identified here were defined,
initially, by their different immune profiles after measurement of 25 or more mediators.
Although an enriched subset of cytokines might predict endotypes better, the differences
between them are subtle. There were only a relative handful of differentially expressed
genes between clusters with significant differences in cytokine levels and survival profiles.
Point of care stratification of critical care patient using protein biomarkers alone may befall
problems with heterogeneity and poor reproducibility unless the precise mechanisms are
better understood.
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6.4 Summary and conclusion

I have demonstrated that there are distinct biological profiles in critically unwell patients and
that by using an integrated approach, they can be defined by their underlying mechanisms.
I have been able to make high-level insights into the different pathological processes that
are likely to be contributing to critical illness syndromes in these patients. The mechanisms
described are plausible, as they are supported by clinical or biomarker data and are amenable
to experimental verification or prospective validation in patients. These endotypes are
clinically relevant as they are associated with the differing levels of organ dysfunction,
patient outcomes and treatment response.

In this thesis, I analysed transcriptomic data with network methods and used a novel approach
to integrate features from the down-sampled, enriched network of highly connected genes
with protein biomarkers. Therefore, unsupervised learning approaches may help to disentan-
gle the heterogeneity of critically unwell patients and characterise them based on biological
features. If verified in future studies, the insights gained might enable future clinical trials to
be prospectively enriched with these endotypes and allow for treatment stratification.
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Appendices

A Ethical approvals

GAinS

Ethics approval was granted nationally (REC Reference Number 05/MRE00/38 and 08/H0505/78)
and for individual participating centres. Written, informed consent was obtained from all
patients or a legal representative.

MOSAIC

Registered study number NCT00965354. NHS National Research Ethics Service, Outer West
London REC 09/H0709/52, 09/MRE00/67. Additional adult healthy control subjects were
recruited as part of a separate study and consented to their samples being used in additional
studies (Central London 3 Research Ethics Committee, 09/H0716/41)

HARP-2

Ethics approval was granted nationally (REC name HSC REC B, reference 10/NIR02/36,
date of approval 8 Sep 2010).

B Details of microarray experiments

GAINS

Samples were taken for gene expression profiling by rapidly isolating the total blood leucocyte
population from whole blood samples (about 10 mL) taken following admission to ICU
by use of the LeukoLOCK (Thermo Fisher Scientific, Waltham, MA, USA) depletion
filter technology. Total RNA was purified. Illumina Human-HT-12 version 4 Expression
BeadChips with 47 231 probes (Illumina, San Diego, CA, USA) was used for genome-wide
transcription profiling for the first available sample taken following ICU admission.

MOSAIC

At each time point, 3 mL of whole blood was collected into each of two Tempus tubes
(Applied Biosystems/Ambion) by trained research staff following a standard phlebotomy
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protocol. Blood was vigorously mixed immediately following collection and was stored
at –80◦C before RNA extraction. For each patient, the contents of one tube were used for
analysis, and the other tube was retained in case of assay failure.

RNA was isolated using 1.5 mL whole blood and the MagMAX-96 Blood RNA Isolation
Kit (Applied Biosystems/Ambion), as per the manufacturer’s instructions. 250 µg of iso-
lated total RNA was globin-reduced using the GLOBINclear 96-well format kit (Applied
Biosystems/Ambion) according to the manufacturer’s instructions.

Total and globin-reduced RNA integrity was assessed using an Agilent 2100 Bioanalyzer
(Agilent Technologies). RNA yield was assessed using a NanoDrop8000 spectrophotometer
(NanoDrop Products, Thermo Fisher Scientific). High-quality ( >6.5 RIN) whole blood
RNA was successfully obtained and processed by microarray in all cases. Biotinylated,
amplified antisense complementary RNA (cRNA) targets were prepared from 200–250 ng
of globin-reduced RNA using the Illumina CustomPrep RNA amplification kit (Applied
Biosystems/Ambion).

For each sample, 750 ng of labeled cRNA was hybridized overnight to Illumina Human HT12
V4 BeadChip arrays (Illumina), which contained greater than 47 000 probes. The arrays
were washed, blocked, stained and scanned on an Illumina iScan, as per the manufacturer’s
instructions. GenomeStudio was used to perform quality control and generate signal intensity
values.

C Methods for protein biomarker quantifications assays

MOSAIC

Samples were centrifuged at 1000 x g for ten minutes in a cooled centrifuge. A minimum
period of thirty minutes from time of phlebotomy had to have passed prior to centrifugation,
to ensure clot formation. Several 0.5 – 1.0 mL aliquots of serum supernatant were pipetted
into individual, labelled Cryovials and frozen immediately at -80°C. Samples were not
allowed to thaw until the day of analysis.

The following panels of mediators were measured using the Mesoscale Discovery (MSD)
platform:

• 7-plex: IFN-γIL-13, IL-15, IL-17, ITAC, MIG, MIP-1α

• 10-plex: GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, TNF-α
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• 9-plex: Eotaxin-1, Eotaxin-3, MIP-1β, TARC, IP-10, IL-8, MCP-1, MDC, MCP-4

• 2-plex: IFN-α2a, IFN-λ (IL-29)

• Single-plex: IFN-β

Inflammatory soluble immune mediator electrochemiluminescence assay analyzed on an
MSD SECTOR instrument. For each mediator, a coefficient variation cut-off of 10% was
used to set the lower limit of detection. Sample results below the GM-LLOD (geometric mean
lower limit of detection) were assigned half the value of the respective GM-LLOD. For each
mediator, the calibrator standard curve was plotted by inputting the concentration of each
standard in pg/mL into the MSD Discovery Workbench software. The curve was modelled
using least squares fitting algorithms, so that signals from samples could be converted into
concentrations.

GAinS

In the GAinS study the cytokines were measured using the ProcartaPlex™Luminex platform
(ThermoFischer Scientific, Waltham, MA, USA) following the manufacturer’s instructions.
In addition to the samples, each 96-well plate contained two blank wells and duplicates of
seven gradient dilutions of standards. Samples were randomised between plates to minimize
the potential influence of batch effect. Meanwhile serial samples from same patients were
kept together.

Only non-haemolytic plasma samples that had never been thawed were used. Samples were
prepared according to manufacturer’s instructions with no dilution of samples involved.
Capture beads were incubated overnight at 4◦C. Data was acquired on a Luminex 100 system
at the Kennedy Institute of Rheumatology, University of Oxford. Minimum counts triggering
a warning message was set to 100 bead reads per bead region.

To correct for background fluorescence, Median Fluorescence Intensity (MFI) was divided
by the average MFI of two blank wells on the specific plate. Absolute concentration levels
of measured cytokines were determined by mapping MFI back to the plate- and analyte-
specific standard curves with R package ‘nCal’.

HARP-2

Samples for interleukin 6 and soluble tumour necrosis factor receptor 1 (sTNFr1), Angiopoietin-
2, sRAGE, surfactant protein-D and MMP-8 measurement were taken before randomisation.
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Plasma from these samples was stored at -80◦C. Biomarkers were measured in duplicate
with commercially available ELISAs (R&D Systems, Minneapolis, MN, USA).
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D Boxplots of protein biomarker concentrations in each
cluster
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Fig. D.1 Boxplots showing distribution of cytokine and chemokine concentrations in each
of the GAinS clusters. The horizontal axes labels and boxplot colours denote the clusters.
All comparisons were made using Dunn’s test with FDR correction of p-values. ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001
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Fig. D.2 Boxplots showing distributions of cytokine and chemokine concentrations in each
of the MOSAIC clusters. The horizontal axes labels and boxplot colours denote the clusters.
All comparisons were made using Dunn’s test with FDR correction of p-values. ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001, ns non-significant
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Fig. D.3 Boxplots showing distributions of protein biomarkers concentrations in patients
from each of the HARP-2 clusters. The horizontal axes labels and boxplot colours denote
the clusters. All comparisons were made using Dunn’s test with FDR correction of p-values.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001, ns non-significant
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Fig. E.1 Biplot showing the directional loadings of individual module eigengenes (MEs) and
cytokines following integration of these two data types. Red arrows indicate the direction of
loadings for each variable.
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F Ranked linear discriminators between clusters from the
GAinS study
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G Ranked linear discriminators between clusters from the
MOSAIC study
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