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Abstract

The discovery of RNA in 1868 by Friedrich Miescher was meant to be the prologue to an
exciting new era in Biology full of scientific breakthroughs and accomplishments. Since
then, RNAs have been proven to play an indispensable role in biological processes such as
coding, decoding, regulation and expression of genes. In particular, the discovery of small
non-coding RNAs and especially miRNAs, in C. elegans first and thereafter to almost all an-
imals and plants, started to fill in the puzzle of a complex gene regulatory network present
within cells. The aim of this thesis is to shed more light on the features and functional-
ity of small RNAs. In particular, we will focus on the function and biogenesis of miRNAs
and piRNAs, across multiple species, by employing advanced computational methods and
machine learning.

We first introduce a novel method (Chimira) for the identification of miRNAs from sets
of animal and plant hairpin precursors along with post-transcriptional terminal modifica-
tions that are not encoded by the genome. This method allows the characterisation of the
prevalence of miRNA isoforms within different cell types and/or conditions. We have ap-
plied Chimira within a larger study that examines the effect of terminal uridylation in RNA
degradation in oocytes and cells in either embryonic or adult stage. This study showed that
uridylation is the predominant transcriptional regulation mechanism in oocytes while it
does not retain the same functionality on mRNAs and miRNAs, both in embryonic and
adult cells.

We then move on to a large-scale analysis of small RNA-Seq datasets in order to iden-
tify potential modification signatures across specific conditions and cell types or tissues
in Human and Mouse. We extracted the full modification profiles across 461 samples,
unveiling the high prevalence of modification signatures of mainly 1 to 4 nucleotides. Ad-
ditionally, samples of the same cell type and/or condition tend to cluster together based
on their miRNA modification profiles while miRNA gene precursors with close genomic
proximity showed a significant degree of co-expression. Finally, we elucidate the determi-
nant factors in strand selection during miRNA biogenesis as well as update the miRBase

annotation with corrected miRNA isoform sequences.



Next, we introduce a novel computational method (mirnovo) for miRNA prediction
from RNA-Seq data with or without a reference genome using machine learning. We
demonstrate its efficiency by applying it to multiple datasets, including single cells and
RNaselll deficient samples, supporting previous studies for the existence of non-canonical
miRNA biogenesis pathways. Following this, we explore and justify a novel piRNA biogen-
esis pathway in Mouse which is independent of the MILI enzyme. Finally, we explore the
efficiency of CRISPR/Casg induced editing of miRNA targets based on the computationally
predicted accessibility of the targeted regions in the genome.

We have publicly released two web-based novel computational methods and one on-
line resource with results regarding miRNA biogenesis and function. All findings pre-
sented in this study comprise another step forward within the journey of elucidation of

RNA functionality and we believe they will be of benefit to the scientific community.
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Chapter 1

Introduction

In 1868, Johannes Friedrich Miescher, a Swiss physician and biologist, was the first scien-
tist to isolate nucleic acid and particularly Ribonucleic acid (RNA) molecules (Dahm, 2005;
Miescher and Schmiedeberg, 1896). It wasn’t until 1939 though when RNA was formally
shown to be playing a role in protein synthesis (Caspersson and Schultz, 1939). In 1956,
the first structure of an RNA crystal was determined via X-ray crystallography (Rich and
Davies, 1956) and a few years later, in 1965, the first transfer RNA (tRNA) sequence (77
nucleotides in length) from yeast was characterised (Holley et al., 1965). The discovery
of retroviruses and reverse transcriptase in the early 1970s revealed the potential of tran-
scribing RNA back to DNA sequences (Baltimore, 1964; Mizutani and Temin, 1970). Around
1990, the discovery of RNA interference (Fire et al., 1998; Napoli et al., 1990) through small
interference RNAs (siRNAs) as an innate gene silencing mechanism was meant to estab-
lish the foundation for deciphering the complex regulatory network within cells. About a
decade later, in 2001, the identification of 22 nt long RNAs or microRNAs (miRNAs), first
in C. elegans and shortly after in other animals as well as plants (Baulcombe, 2002; Lagos-
Quintana et al., 2002; Pasquinelli et al., 2000; Reinhart et al., 2000, 2002; Tuschl et al., 1999),
defined in a more solid way the landscape of gene regulation via small RNA molecules.
Since then, small RNAs and in particular miRNAs have been found to play an indispens-
able role in RNA silencing and post-transcriptional regulation of gene expression (Ambros,
2004; Bartel, 2004) while some of them can act as disease response biomarkers (Wu and

Mo, 2009) or even as tumour antagonists (Liu et al., 2014a).

1.1  MicroRNAs

Non-coding regulators such as miRNAs have been a significant avenue of research since

their discovery and the realisation that they are both widespread in animals and plants and



2 Introduction

also often highly conserved (Altuvia et al., 2005; Lee et al., 2007; Zhang et al., 2006). The
main mode of regulation by miRNAs in animals is translational repression and degradation
of target transcripts (Baulcombe, 2004; Kai and Pasquinelli, 2010; Lim et al., 2005; Pratt and
MacRae, 2009). This regulation involves the binding of a mature 19-22nt miRNA to a target
transcript through direct formation of a double stranded duplex driven by complementarity
between the miRNA and the target site (Lewis et al., 2003). This binding event is initiated
through the so-called seed region (Lewis et al., 2005, 2003) of the miRNA (nucleotides 2-8),

which requires for the most part perfect complementarity.

miRNA gene or intron Nucleus . Cytoplasm

SN RNA Pol IT / III \L Transcription ,
. )
\ A\ /
\
/ pri-miRNA “

/
Drosha DOCRS l/ Cleavage L
4
1
3 I
5 \ |
\ |
¥ 1
re-miRNA
P )/ GTP
e
e D
-
L7 Nuclear export
P 7z
4 - -0
J S\ pre-miRNA
1
3
Dicer TRBP $ Cleavage
5’\ 3
3 . 5
miRNA duplex passenger strand
Ago RISC formation \L Degradation

5 3 i LW

mature miRNA ol

. N,

translational repression  mRNA target cleavage ~ mRNA deadenylation

Fig. 1.1 A schematic representation of the miRNA processing pathway in animals, leading to miRNA mat-
uration. miRNA primary transcripts are transcribed by RNA Pol II into pri-miRNAs which incorporate a
hairpin loop. The hairpin precursor is processed by the Drosha and DGCRS proteins into pre-miRNAs and
then exported from the nucleus to the cytoplasm by Exportin-5 (XPOs5). Subsequently, the loop is processed
(excised) by Dicer, followed by the separation of the mature and the passenger (star) strand. The mature
miRNA then binds to the AGO proteins forming the RISC complex, which is able to induce mRNA target
cleavage, de-adenylation and/or translational repression.
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1.1.1 Biogenesis of miRNAs in animals

The biogenesis of miRNAs in animals (Figure 1.1) is now relatively well characterised
(Krol et al.,, 2010). They are encoded by long non-coding transcripts or as passengers in
the introns and UTRs of protein-coding transcripts. They are formed as 70-120nt stem-
loop structures on the host molecule and are recognised and excised by enzymes including
Drosha and DGCRS. The resulting cleaved hairpin molecule is referred to as a miRNA pre-
cursor and these pre-miRNAs are exported from the nucleus to the cytoplasm by Exportin
5 (XPOs5) where they enter the RNA silencing machinery. The enzyme Dicer with cofac-
tors excises a double-stranded duplex from the pre-miRNA which is unwound. In general,
one of the strands is degraded (the passenger strand) and the other strand becomes a ma-
ture miRNA capable to load onto the RNA induced silencing complex (RISC) which can

subsequently induce silencing of target transcripts.

1.1.2 Biogenesis of miRNAs in plants

miRNA biogenesis in plants differs from animal biogenesis mainly in the steps of nuclear
processing and export (Ha and Kim, 2014). Plant primary miRNAs (pri-miRNAs) are mainly
transcribed by RNA polymerase II and their length is highly variable (Axtell et al., 2011;
Chang et al., 2012; Voinnet, 2009). However, homologues of Drosha and DGCR8 are not
found in plants and unlike in animals, plant miRNA processing is completed in the nucleus.
Plants are equipped with a Dicer-Like1 (DCL1) enzyme which processes most pri-miRNAs
by sequential cleavage. The RNA-binding protein Dawdle (DDL) interacts with DCL1 and
stabilizes pri-miRNAs in nuclear foci called dicing bodies (D-bodies). The double-stranded
RNA-binding protein Hyponastic-Leaves1 (HYL1), DCL1, the zinc-finger protein Serrate
(SE) and the nuclear cap-binding complex form a complex and process pri-miRNAs (Fig-
ure 1.2). Following processing, the miRNA-miRNA* duplex is 2’-O-methylated at the 3’
end by Hua-Enhancer1 (HEN1), which blocks uridylation and decay of miRNAs. Then,
pre-miRNAs or mature miRNAs are exported to the cytoplasm by Hasty (HST), the plant
homologue of exportin 5 (XPOs). In the cytoplasm, miRNAs are loaded onto cytoplasmic
Argonaute (AGO) proteins, with AGO1 playing the most important role in the miRNA
pathway.
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Nucleus
miRNA gene
5 Pol II l/ Transcription
\ A
/ | pri-miRNA
GTP
3
DCL1 HYL1 \L Cleavage
s
\
{ pre-miRNA
GTP El
DCL1 HYL1 Processing
N ¥ miRNA / miRNA*
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HEN1 methylation
’ 2'-O-methylated
S\ = miRNA / miRNA*
L5 s duplex
HST nuclear export
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RISC complex

[

translational repression ~ mRNA degradation

Fig. 1.2 Schematic representation of miRNA biogenesis pathway in plants. Plant miRNAs are processed by
a Dicer homologue, called Dicer-Like1 (DCL1) which is expressed only in the nucleus of plant cells. miRNA
cleavage takes place exclusively inside the nucleus. Then, the 3’ overhangs of the miRNA-miRNA* duplex
are 2’-O-methylated by an RNA methyl-transferase protein called Hua-Enhancer1 (HEN1) and subsequently
exported to the cytoplasm by a protein called Hasty (HST). There, they disassemble and the mature miRNA
is loaded onto cytoplasmic Argonaute proteins (Ago1), able to target mRNA transcripts.

1.1.3 miRNA function

miRNAs are essential for most cellular functions in animals and plants (Ambros, 2004;
Ameres and Zamore, 2013; Chen, 2005; Wienholds and Plasterk, 2005), while their dysreg-
ulation has been associated with multiple diseases (Ardekani and Naeini, 2010; Korpal et al.,

2011; Mendell and Olson, 2012; Mraz and Pospisilova, 2012). We are going to present here
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the main functionality of miRNAs in normal cells as well as their implication in diseases,
such as cancer and heart disease.

The main function of miRNAs is directly associated with gene regulation. miRNAs are
capable of binding to complementary parts of one or more messenger RNAs (mRNAs) and
leading them to degradation or suppressing translation. In animals, miRNAs are almost al-
ways complementary to a site in the 3° UTR while in plants they are usually complementary
to coding regions of mRNAs (Wang et al., 2004). In plants, miRNAs bind to mRNA target
sites via perfect or near perfect complementarity, promoting cleavage of the RNA. In ani-
mals, miRNAs recognise their targets with partial complementarity. More specifically, the
part of the miRNA that needs to be perfectly complementary to the mRNA target region is
called the seed region (usually nucleotides 2 to 8). The mode of action of miRNAs is mainly
inhibiting translation of the target mRNA into protein (Williams, 2008). Additionally, they
may speed up de-adenylation of mRNAs that contributes to their degradation (Eulalio et al.,
2009).

The way translational repression is accomplished is not fully understood yet. There
has been a lot of debate around whether mRNA degradation, translational inhibition or
a combination of both are responsible for suppressing translation of mRNA transcripts.
Some studies in Zebrafish (Bazzini et al., 2012) and D. melanogaster (Djuranovic et al., 2012)
have shown though that translational repression is predominantly caused by the disruption
of translation initiation and is not related to mRNA de-adenylation.

Furthermore, miRNA functionality can be distinguished based on different kinetic sig-
natures of the mechanisms they are involved in (Morozova et al., 2012). Specifically, there

are nine mechanisms of miRNA action based on their kinetics (Morozova et al., 2012):
+ 60S Ribosomal unit joining inhibition
« Cap-40S initiation inhibition
« Co-translational nascent protein degradation
« Elongation inhibition
« mRNA cleavage
« mRNA decay (destabilisation)
« Ribosome drop-off (premature termination)

« Sequestration in P-bodies
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« Transcriptional inhibition through microRNA-mediated chromatin reorganization fol-

lowed by gene silencing.

Animal miRNAs may target diverse genes (Enright et al., 2003; Lewis et al., 2003; Stark
et al., 2003). However, genes involved in fundamental functions of cells, such as gene ex-
pression, seem to be under selection since they have relatively fewer miRNA target sites in
their sequence (Stark et al., 2005). In addition to the aforementioned modes of action, miR-
NAs have also been implicated in developmental processes, such as embryogenesis, differ-
entiation, organogenesis and growth control (Alvarez-Garcia and Miska, 2005). Moreover,

their dysregulation is associated with multiple diseases.

1.1.4 miRNA activity in human disease

There have been efforts in the past to manually catalogue all known relationships between
miRNA malfunction and human disease (Jiang et al., 2008). Among those, miRNAs are
believed to function in tumour suppression or as oncogenes, although their role in this
derangement mechanism in cells has yet to be determined.

Early studies identified that several miRNA genes are located in cancer-associated ge-
nomic regions and their relationship with oncogenesis is very variable, depending on the
type of cancer (Blenkiron and Miska, 2007; Croce and Calin, 2005; Kumar et al., 2007; La-
gana et al, 2010; Lamy et al., 2006; Shah and Calin, 2014). Other studies showed that
the miRNA expression profile is disrupted in cancer (Lan et al., 2015) while miRNA over-
expression due to the disruption may lead to the development of tumours (He et al., 2015).
Moreover, single-nucleotide polymorphisms (SNPs) in miRNA genes and/or their targets
may be either enhancing suppression of tumour development or inducing oncogenic ac-
tivity (Mishra et al., 2008).

Several types of epigenetic alterations have long been associated with many types of
cancer (Camps et al., 2008; Gee et al., 2010; lacobuzio-Donahue, 2009; Jansson and Lund,
2012; Korpal et al., 2011). Hypermethylation has been observed to induce silencing of
miRNA genes in breast cancer and colorectal cancer (Lehmann et al., 2008; Toyota et al.,
2008) while DNA hypomethylation in ovarian cancer enhanced the expression of onco-
genic miRNAs (lorio et al., 2007). Furthermore, it has been shown that miRNA silencing
induced by methylation of miRNA promoter regions is directly related with breast can-
cer development and metastasis (Wee et al.,, 2012). Apart from DNA methylation, other
types of epigenetic modifications such as histone acetylation have been associated with

the reduction of antioncogenic miRNA expression in breast cancer cells (Scott et al., 2006).
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More recent studies on various types of cancer including oesophageal squamous cell
cancer (Song et al., 2014), cervical cancer (Juan et al., 2014) and urothelial bladder can-
cer (Network et al., 2014) have revealed notably different miRNA expression profiles in
normal vs. tumour samples from the same cell or tissue. These studies have actually de-
fined specific miRNAs as potential biomarkers for cancer diagnosis. This led to the develop-
ment of numerous preclinical models, mainly in mouse xenografts and primates (Kriitzfeldt
et al., 2005; Lanford et al., 2010), aiming to study the inhibition of oncogenic miRNAs (on-
comiRs) that are over-expressed in various cancer types. These approaches rely on using
chemically modified antisense miRNAs in order to target oncomiRs and silence their ac-
tivity. However, there are still many obstacles in this approach related to overcoming the
cellular barriers and ensuring targeted delivery of the therapeutic agent.

miRNAs have also been identified to play an essential role during the development of
the heart (Chen et al., 2008; Zhao et al.,, 2007). Changes in expression levels of specific
miRNAs in diseased human hearts imply their involvement with cardiomyopathies (Tat-
suguchi et al., 2007; Thum et al., 2007; Van Rooij et al., 2006). Additionally, several specific
miRNAs have been identified to play a fundamental role in regulating key factors of car-
diogenesis, cardiac conductance and the hypertrophic growth response (Care et al., 2007;
van Rooij et al., 2007; Xiao et al., 2007; Yang et al., 2007; Zhao et al., 2005).

Furthermore, miRNAs seem to be involved with the development and function of the
nervous system (Maes et al., 2009). More particularly, the activity of neural miRNAs (such
as miR-124, miR-132 and miR-134) has been associated with various stages of synaptic de-
velopment, including dendritogenesis, synapse formation (Amin et al., 2015) and synapse
maturation (Schratt, 2009). Additionally, some studies have identified altered miRNA ex-
pression in psychiatric disorders such as schizophrenia and bipolar disorder as well as
major depression and anxiety disorders (Beveridge et al., 2010; Feng et al., 2009; Hommers
et al, 2015). Another intriguing example is the involvement of miR-96 in progressive hear-
ing loss in mice (Lewis et al., 2016, 2009). A single base change in the seed region of miR-96
leads to a drastic alteration of the mRNA repertoire targeted by it thus leading to either
upregulation or downregulation of target genes. This perturbation induces progressive
hair cell degeneration and eventually hearing loss (Lewis et al., 2009).

Finally, among the numerous areas of function miRNAs are involved in, it has been
discovered that cellular miRNAs may play a role in the mammalian virus-host interactions
by limiting virus replication (Lecellier et al., 2005). On the other hand, viruses such as
the Epstein-Barr virus (EBV) can infect cells and generate their own viral miRNAs (Pf-

effer et al,, 2005). These may be used by the virus to manipulate both cellular and viral
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gene expression, as a defence mechanism to the attacks of the host’s miRNAs and/or as an
enhancement factor of their replication potential (Skalsky and Cullen, 2010).

Taking into account all the above, it is evident without a doubt that miRNAs have an
ubiquitous activity not only in normal cell function but also in human related diseases. That
makes the effort for complete elucidation of their function (or malfunction respectively)

even more imperative.

1.1.5 miRNA modifications

The expression of miRNA genes undergoes several stages until complete maturation. A
large part of this process is defined by the genome-encoded sequence. However, research
in recent years has revealed that the addition of non-templated sequences to the 3’ ends
of miRNAs plays a significant role in multiple functions including miRNA stability and
function (Song et al., 2015). We are going to present here some of the most frequent mod-
ifications found in animal and plant miRNAs along with the enzymes they are mostly as-
sociated with. This section will serve as a reference for the miRNA modification analyses

that will be presented later (Chapters 3 & 4).

GLD-2 (implicated in adenylation)

Germ Line Development 2 or GLD-2 is a cytoplasmic poly-A polymerase which adds suc-
cessive adenosine monoposphate (AMP) monomers to the 3’ end of specific RNAs, forming

a poly-A tail. This process is known as poly-adenylation.

TUTases (implicated in uridylation)

Transferases are a class of enzymes that induce the transfer of specific functional groups,
such as methyl or ketone groups, from one molecule to another. Terminal uridylyltrans-
ferases or TUTases, as their common name is, are associated with 3° RNA uridylation in
plants, animals and fungi. Their function has been associated with several processes such
as biogenesis of miRNAs, regulation of gene expression and cell proliferation (Hagan et al.,

2009; Heo et al., 2012; Lim et al., 2014).

Adenylation

Adenylation is one of the most prevalent miRNA modifications. It has been found both in
plant and animal miRNAs and its presence is implicated in functions like RNA stability or

degradation. For instance, a study in Populus trichocarpa (Lu et al., 2009) has shown that a



1.1 MicroRNAs 9

significant portion of plant miRNAs are adenylated and consequently get degraded slower
than other non-adenylated miRNAs. In this case adenylation contributes to miRNA sta-
bilisation thus altering the relative proportions of miRNAs and target transcripts with im-
plications in overall gene expression. Similarly, a study in human hepatocytes and mouse
livers has shown that 3’ terminal adenylation of miR-122, which is highly abundant in this
tissue, by GLD-2 leads to stabilisation of this miRNA in liver (Figure 1.3).

On the other hand, it has been shown that 3’-adenylation of miR-21, a miRNA well
known for its crucial role in cancer and other diseases, by the non-canonical poly(A) poly-
merase PAPDj5 leads to its degradation (Boele et al., 2014). In fact, the pathway of miR-21
degradation via adenylation is a general feature of tumours across a wide range of tis-
sues as well as of other proliferative diseases like psoriasis (Boele et al., 2014). Finally,
another published work suggests that 3’ adenylation of animal miRNAs may be modulat-
ing miRNA targeting effectiveness, potentially through interference during loading of the
modified miRNA onto the RNA-induced silencing complex (RISC) (Burroughs et al., 2010).

Uridylation

Uridylation of miRNAs is ubiquitous and conserved across many species including
Droshopila Melanogaster (Berezikov et al., 2011), vertebrates (Burroughs et al., 2010; Kim
et al,, 2010) and plants (Yu et al., 2005). 3" uridylation of mature small RNAs was first found
in plants (Yang et al., 2006; Yu et al., 2005). Arabidopsis miRNAs are 2’-O-methylated on
the 3" end by the methyltransferase HUA ENHANCER 1 or HEN1 (Figure 1.3). The HEN1
mutants then undergo 3’ truncation and uridylation that negatively affects their abun-
dance. Since then, the addition of 3’ non-templated uridine residues in small RNAs like
miRNAs and piRNAs has been demonstrated in many more species like C. elegans (Billi
et al., 2012; Kamminga et al.,, 2012), zebrafish (Kamminga et al., 2010), Chlamydomonas
reinhardtii (Ibrahim et al., 2010), mouse (Jones et al., 2012; Kirino and Mourelatos, 2007a)
and human cells (Thornton et al., 2014).

Uridylation affects not only mature miRNAs but also their precursors. The let-7 pre-
cursors were the first ever discovered precursors to undergo uridylation (Heo et al., 2008).
In human embryonic stem cells, TUTy4, which is a tutase, in conjunction with the RNA-
binding protein Lin28 induce uridylation on the pre-let-7 transcript. The generated tailing
deters Dicer from processing the pre-miRNA duplex and thus may facilitate its decay (Heo
et al., 2008, 2009). Thanks to high throughput sequencing, it has been revealed that 3’
uridylation is not an exclusive property of the pre-let-7 miRNAs but also expands to sev-

eral other pre-miRNAs (Heo et al.,, 2009; Kim et al.,, 2015; Liu et al., 2014b; Newman et al.,
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2011), with its function impacting either pre-miRNA degradation or enhancing the efficient
processing of miRNAs.

In differentiated cells, uridylation of let-7 is a key factor for the biogenesis of a certain
class of miRNAs. Specifically, pre-miRNAs belonging to the Group II of miRNAs (Heo et al.,
2012) acquire a shorter (1nt) 3’ overhang after Drosha processing instead of a 2nt overhang
which is encountered in the most prevalent class of miRNAs (Group I). Thus, these pre-
miRNAs require an extra nucleotide prior to Dicer processing. This is accomplished via
TUTases, TUTy4, TU7 and TUT2 which act redundantly and make the pre-miRNA suscep-

tible to Dicer processing via mono-uridylation.

a
_—> —>» T _
TUT4 exoRNase —
uuuuuu pre-miRNA
pre-let-7 degradation
b N NNNN Sequence motif-dependent
U= stabilisation/destabilisation
GLD-2 (other PAPS) ————» 11111 111} @ 3"-end adenylation and stabilisation

TUT4 (other non canonical > MI—IU—IM@ 3’ -end uridylation and destabilisation
PAPs or PUPs) or stabilisation

HEN1 —> 3’-end 2-O-methylation and stabilisation

Fig. 1.3 3’ terminal miRNA modifications act as stability regulators: the post-transcriptional addition of non-
genome-encoded nucleotides to the 3" end of pre-miRNAs or mature miRNAs affects their stability or abun-
dance. a) The RNA-binding protein LIN-28 promotes uridylation of pre-let-7 in C. elegans and mammalian
cells by recruiting TUT4, which adds multiple uracil resides to the 3" end of RNA molecules. Poly-uridylation
of pre-let-7 prevents Dicer processing and induces precursor degradation. b) 3’ terminal modifications (in
particular adenylation and uridylation) are affecting RNA stability: miRNAs are marked either for degrada-
tion or are protected against exonucleolytic activity. This largely depends on the specific miRNAs and the
tissue. For instance, in liver cells, a single adenine added to the 3" end of miR-122 prevents trimming and
protects the miRNA against degradation (Katoh et al., 2009). miRNA methylation at the 3" end by a methyl-
transferase (HEN1) prevents uridylation and degradation in plants (Li et al., 2005). In D. melanogaster, miR-
NAs that are loaded onto Argonaute 2 instead of Argonaute 1 are methylated at the 3’ end (Czech et al., 2009;
Ghildiyal et al., 2010; Okamura et al., 2009), a modification that is likely to increase their stability. Figure
adapted from: (Krol et al., 2010).
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ADAR edits

Adenosine deaminases acting on RNA (ADAR) are enzymes that can bind to double
stranded RNA (dsRNA) and convert adenosine (A) to inosine (I) by deamination (Samuel,
2011). ADAR protein is a RNA-binding protein, which functions in RNA-editing via post-
transcriptional modification of mRNA transcripts. The conversion from A to I in the RNA
disrupts the normal A:U pairing which destabilises the RNA. Inosine is structurally similar
to that of guanine (G) thus I is binding to cytosine (C). In RNA, I functions the same as
G in both translation and replication. Most editing sites are found in non-coding regions
of RNA such as untranslated regions (UTRs), Alu elements and long interspersed nuclear

element (LINEs), a class of transposable elements.

1.1.6 Identification of miRNA targets

miRNAs have been recognised as key factors in gene regulation for various biological path-
ways. They way this is accomplished is via targeting mRNA transcripts. In animals, the
mature miRNA guides the RNA induced silencing complex (RISC) to the target site and
binds to it. The binding site is located in most of the cases at the 3> UTR of the target tran-
scripts (Figure 1.4) and binding specificity is defined by sequence complementarity of the
seed region (nucleotides 2 to 8) of the miRNA with the target site (Lewis et al., 2005). In
other cases, where there is imperfect complementarity of the seed region with the target,
further complementarity of a region close to the 3’ end of miRNAs may compensate for
successful binding (Bartel and Chen, 2004). While the majority of miRNA-target binding
occurs at the 3° UTR of transcripts, there have been studies revealing target sites located
within the exons of protein coding genes (Lewis et al., 2005; Tay et al., 2008) and even in 5°
UTRs (Lee et al., 2009b). However, these cases are not so common and it is also thought that
the effect of miRNA driven regulation in these occasions is moderated due to ribosomes
competing with the RISC complex on the same regions. (Bartel, 2009).

The binding of miRNAs to their target messenger RNAs (mRNAs) negatively affects
their translation or causes degradation of the mRNA transcript. Specifically, the translation
of the target transcript may be inhibited by completely blocking ribosome assembly and
the initiation process itself or by promoting ribosomal drop-off and degradation of the
nascent peptide. Additionally, the target mRNA can be de-adenylated and de-capped thus
leading to degradation (Fabian et al., 2010; Giraldez et al., 2006).

Several computational methods have been developed to predict miRNA target candi-
dates. The majority of these methods are searching for sequence complementarity between
mature miRNAs and the 3° UTRs of mRNA transcripts. The set of features used by each
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tool to classify candidate target sites is very similar, although each method may follow a
different weighing scheme for each factor. The most important features taken into account
are complementarity between the seed region of the miRNA and the mRNA target site and
free energy of the miRNA-target duplex, potentially also taking into account regions sur-
rounding the target site. Finally, some methods may explore for target site conservation
in order to improve accuracy.

Two of the most popular algorithms, which were also among the first to be intro-
duced in the field of miRNA target prediction, are miRanda (Enright et al., 2003) and Tar-
getScan (Agarwal et al., 2015; Chiang et al., 2010; Friedman et al., 2009; Fromm et al., 2015;

Garcia et al., 2011; Grimson et al., 2007; Lewis et al., 2005).

a Arabidopsis thaliana SCL6-1lI

5'UTR Coding \ 3'UTR
SCL6-llexon ' GGAUAUUGGCGCGGCUCAAUCAC 3 d Human Raptor
miR171 3 CUAUAACCGCGCCGAGUUAGU 5/ 5'UTR [ Coding ] 3UTR
b Caenorhabditis elegans lin-14 Raptor 3'UTR > CCAUGGGCACCGCGUGCCGCC3
5'UTR [ Coding FUTR miR124 - accUanCICC e A gy,
lin-143'UTR  °'UUC UAC  CUCAGGGAAS3' e Mus musculus Oct4
lin-4miRNA 3, AG,GUG,  BAGUCCCU, 5'UTR Coding 3'UTR
A C [T —
' G. .G c 3
Oct4exon  AACUC CC AG =~ AGUCC AGGA
¢ Caenorhabditis elegans lin-41 miR-470 3,UGAGUGG UCA GUCAGGUUCUUE‘,
5'UTR Coding \ 3'UTR cG

’

5
lin-41 3'UTR UUUUAUACAACCGUUCUACACUCA?"
-7 mi GAUAUGUUGG GAUG GAGU,
let-7 miRNA 3 UU AU 5

Fig. 1.4 Examples of functional miRNA target sites in animals and plant based on different degrees of base
pairing along the miRNA-target duplex: a) In plants, miRNAs usually pair nearly perfectly with target sites.
For example, in A. thaliana, miR171 regulates SCL6-II mRNA through a fully complementary site in its
coding region (Llave et al., 2002). b) In animals, partial pairing between miRNAs and their target sites is the
most common case. Perfect pairing between the seed region (nucleotides 2—8) of the miRNA and a target in
the 3’ untranslated region (UTR) is the most frequent motif (Beitzinger et al., 2007; Wightman et al., 1993).
Additional bars under the targeted transcript indicate other target sites, which may not necessarily exhibit
perfect seed complementarity c) In some cases, extensive pairing of the 3" end of the miRNA to the target
sequence may compensate for the absence of perfect seed pairing (Reinhart et al., 2000; Slack et al., 2000). d)
In other cases, where there is not essentially any seed pairing, sequences from the main body of the miRNA
and closer to the 3’ end may regulate binding to target sites via base complementarity (Shin et al., 2010). €)
Finally, there have been found cases where the target site overlaps an exon junction thus inducing regulation
through the coding region (Tay et al., 2008). Figure adapted from: (Pasquinelli, 2012).
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1.2 Sequencing technologies & miRNA analysis tools

Sequencing refers to the process of determining the exact order of nucleotides within a
DNA or RNA molecule. All sequence-based technologies are taking advantage of the prop-
erties of nucleic acids as efficient information carriers (Church et al., 2012). More specif-
ically, DNA and RNA molecules can transfer information from one strand to the comple-
mentary one via the rules of base pairing (Adenine with Thymine or Uracil and Guanine
with Cytosine). In addition, double strands of DNA are able to separate and re-hybridise
under high-low temperature cycles or enzymatic treatment and this enables efficient am-
plification of information contained within a single DNA molecule. These properties com-
bined with various chemically modified nucleotides and protein catalysts still remain the
basis for the majority of methods for sequence identification and quantification (Morozova
and Marra, 2008).

One of the first methods in sequencing was the Sanger sequencing, which was based on
the selective incorporation of chain-terminating dideoxynucleotides by DNA polymerase
during in vitro DNA replication (Sanger and Coulson, 1975; Sanger et al., 1977). This
method was developed in 1977 by Frederick Sanger and his colleagues and was estab-
lished as the state-of-the-art method in sequencing for around 30 years. The advent of
Next-Generation Sequencing methods though in the early 2000s, progressively replaced
previous methods due to its high accuracy, speed and cost-effectiveness, thus enabling a

rapid acceleration in biological and medical research.

1.2.1  Next-Generation Sequencing (NGS)
Next-generation sequencing (NGS), also known as high-throughput sequencing, is a term
describing a number of different modern sequencing technologies including:

« Illumina (former Solexa) sequencing
+ Jon torrent: Proton / PGM sequencing
» SOLiD sequencing

« Roche 454 sequencing

These technologies allow us to sequence DNA and RNA molecules much more quickly
and cheaply than the previously used Sanger sequencing, and as such have revolutionised
the study of genomics and molecular biology. We will present briefly in the next section
the methodology behind Illumina Sequencing, which is currently the most widely used

and is also the primary sequencing technique used for the datasets analysed in this thesis.
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1.2.2 Illumina Sequencing

In NGS, a huge amount of short reads can be sequenced at once via massive parallel se-
quencing. This can be achieved by cleaving, first of all, the input sample into short sections.
The length of these sections varies and primarily depends on the sequencing machine used.
In llumina sequencing in particular, 100-150bp reads are prepared.

The general methodology of Illumina sequencing follows three main steps: amplifica-
tion, sequencing and analysis (Figure 1.5). First, DNA is purified and chopped into frag-
ments. These fragments are ligated with adapters, indices and/or other types of molecular
modifications so that they can be uniquely identifiable through the different stages of the
procedure. Then, DNA molecules are loaded onto a specialised chip and a phase called
"cluster generation’ begins. Each chip is equipped with thousands of oligos (short syn-
thetic DNA sequences) that are able to attach to free DNA fragments via complementarity.
This step produces eventually around a thousand copies for each DNA fragment. At that
stage, the chip is provided with primers and modified nucleotides which force the primers
to add only one nucleotide at a time along with fluorescent tags. At each round a new nu-
cleotide from the original DNA fragments is synthesised and a picture of the chip is taken
with a camera. This image is analysed computationally and a base is detected based on the
wavelength of the fluorescent tag. After each round, the 3’ terminal blocking groups and
the fluorescent substance are removed so that they don’t contaminate the next round of
synthesis. This process continues until the whole DNA molecule is sequenced.

NGS has four main advantages over classical Sanger sequencing:
. accuracy

« speed

» cost

. sample size

Sequence duplicates are intrinsic to NGS methods, as each read is amplified before
sequencing. Since NGS is so much quicker and cheaper, it is possible to retrieve more
duplicates via Polymerase chain reaction (PCR) than with Sanger sequencing. This allows
to obtain greater coverage, which means higher accuracy and reliability of sequencing,
even if individual reads were less accurate for NGS. On the other hand, Sanger sequencing
has the advantage of being able to produce much longer sequence reads. However, the
parallel nature of NGS allows to compensate for this 'defect’ by constructing longer reads

from many contiguous short reads.
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Fig. 1.5 Illustration of Illumina Sequencing methodology. Input reads of 100-150bp are prepared and am-
plified with Polymerase Chain Reaction (PCR), thus creating many copies of the same read. They are then
split into single strands to be sequenced, based on the following procedure: a) a flow cell is flooded with
nucleotides and DNA polymerase. These nucleotides are fluorescently tagged, with a distinct colour corre-
sponding to each base. They also have a terminating sequence to make sure that only one base is added at a
time, b) an image is taken of the flow cell and a fluorescent signal at each location detects the base that has
been added. Both the terminating sequences and the fluorescent substance are removed allowing the next
base to be added and preventing contamination of the image of the next base from the current fluorescent
signal, c) the same process is repeated for every incoming nucleotide, one at a time, and taking images of the
fluorescent signal, d) as soon as imaging is complete for all bases, each image is analysed at each site through
computational image analysis allowing the detection of the sequenced bases and eventually leading to the
re-construction of sequences of the same length. Illustration adapted from: https://www.ebi.ac.uk/training.

Detection of miRNAs using NGS

Large-scale cloning and sequencing of small RNAs using capillary sequencing allowed the
initial detection of large sets of animal miRNAs (Landgraf et al., 2007). However, the

advent of next-generation sequencing (NGS) allowed these molecules to be rapidly de-
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tected in different tissues and organisms. The primary repository for miRNAs is the miR-
Base database (Griffiths-Jones et al., 2008). Initially, miRNAs were usually confirmed by
northern blot or similar assay prior to their inclusion in miRBase. However, the advent of
large-scale NGS studies has meant that it is impractical to confirm every single sequence
detected via targeted amplification. Given that the genome is replete with putative stem-
loop structures and that small RNA sequencing detects many short molecules and degra-
dation products, there are many putative miRNA sequences in miRBase which may in fact
not be canonical miRNAs but instead may be other functional ncRNAs or the degradation
products of longer molecules. We are going to address this issue later in Chapter 3, by
suggesting lists of mis-annotated miRNA sequences in miRBase based on their coverage

profiles obtained from Next Generation Sequencing data.

1.2.3 Small RNA-Seq analysis tools

The vast amount of data generated by NGS techniques requires novel and efficient methods
for their analysis. There have been several tools published in previous studies for perform-
ing small RNA-Seq analysis, each providing a different set of features. Some of these tools
are web based while others offer stand-alone versions, requiring though many dependen-
cies in some cases. The features they provide vary from mere miRNA quantification to
Gene Ontology/pathway analysis and identification of terminal or internal modifications.
Later in Chapter 2, we are going to present Chimira, our novel method for identification of
miRNA modifications (5’-, 3°-terminal, ADAR edits and Single Nucleotide Polymorphisms
or SNPs). Thus, we will present here, as a reference, several representative small RNA-Seq
analysis tools that are either offering a diversified set of features, have integrated some
kind of functionality for modifications identification or have been developed as web-server

applications.

« CAP-miRSeq (Sun et al., 2014)
Supported genomes: need to be installed manually by the end-user.

Although it requires the installation of a virtual machine software package and the
import of the developed Linux virtual environment, the whole setup is easy and
straightforward. However, applying any of the provided tools involves an extra
overhead of downloading the genome and/or annotation files and creating manu-
ally the configuration files. Besides, with regards to the modifications identification,
CAP-miRSeq only allows the detection of single nucleotide variants (SNV) and does
not support 3°/5’ modifications or ADAR edits detection.
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« CPSS (Zhang et al., 2012)

Supported genomes: H. sapiens, M. musculus, R. norvegicus, P. troglodytes, G. gallus,

B. taurus, C. lupus familiaris, P. abelii, S. scrofa, D. rerio.

The CPSS web server allows miRNA isoforms detection, supporting 3’°, 5° modifica-
tions and SNPs. However, the extracted results do not directly provide the modifi-
cations information in a fully quantitative format. Specifically, all detected isoforms
are displayed just as an aligned stack of sequences and a summary table is provided
only for the total number of modifications in either of the 3’ or 5° ends with no extra
information about their content or exact positions. Besides, no ADAR edits detection
is supported. Apart from that, CPSS’s interface allows upload of only one file at a
time. File upload is very slow (e.g. uploading 50MB requires over 4omin on average)
and even though a script is provided for pre-trimming/cleaning of the input files the
post-processed files’ size is not significantly reduced. Thus, the web server is not

practically usable even for small sample files.

« MAGI (Kim et al., 2014)
Supported genomes: H. sapiens.

MAGI web server allows alignment against only the human genome. Although it
uses web workers for downsizing the input files before upload, total upload time is
not decreased significantly compared to other methods (see Chapter 2 - Time Bench-
marking). In addition, input files need to follow a specific naming scheme (with
group annotation) and have to be de-compressed before upload, which is very im-
practical for large datasets in terms of local disk space requirements. In this case
again, no modifications information is extracted and the user cannot query the re-

sults interactively.

« OASIS (Capece et al., 2015)
Supported genomes: H. sapiens, M. musculus, D. melanogaster, D. Rerio, C. elegans.

OASIS does not offer any tools for modifications identification. The tools provided by
this platform are not integrated in a very coherent manner since for a single dataset
a new job has to be launched in order to perform either sRNA detection, differential
expression or classification analysis. Moreover, no information is provided about
the progress of each task apart from an e-mail upon initiation or completion of a job.
Output results cannot be visualized in a queryable manner and only five genomes

are supported.
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+ seqBuster (Pantano et al., 2009)
Supported genomes: H. sapiens.

seqBuster is a stand-alone tool that is able to infer miRNA modifications and it also
offers basic 3’ adapter removal. However, it is no longer supported in its original
form as a web-server. Its current stand-alone version requires a lot of dependencies
and installation is not sufficiently documented. We were not able to test this tool

due to lack of straightforward documentation.

« UEA sRNA workbench (Stocks et al., 2012)
Supported genomes: all miRBase annotated species.

UEA sRNA workbench is a suite of tools for small RNA-Seq data analysis in ani-
mals and plants. It provides tools for quality checking, normalisation and differ-
ential expression of small RNA-Seq samples. Additionally, it can predict miRNAs
from high-throughput sequencing data as well as miRNA targets. Based on our ex-
perience while testing this method, there is a small overhead of installing the appli-
cation, compared to any web-server application. Moreover, analysis is not always
straightforward since it requires setting up a local working directory tree and man-
ually installing the dependencies for each of the available tools. Finally, UEA sRNA
workbench does not support identification of microRNA modifications. However,
it certainly consists a robust platform with a rich set of features for the analysis of
small RNA data.

1.2.4 Methods for novel miRNA prediction

Apart for mere identification of known miRNAs, the discovery and annotation of novel
miRNAs has been a challenge for many years. Several tools have been developed in the
past that perform novel miRNA prediction. Traditionally, these tools attempt to asso-
ciate mature miRNAs with their hairpin precursors and define features on them based on
their computationally predicted secondary folding. All these methods require a reference
genome for mapping the small RNA sequences and extracting the precursor sequence of
each miRNA and potentially extra flanking genomic sequence for the folding analysis. We
also found three methods that do not require a reference genome but none of them is sup-
ported or functional (see also Chapter 4). Later in this thesis, we are going to introduce
mirnovo, a novel method that we have developed and which is able to predict miRNAs
with or without a reference genome from small RNA-Seq and single-cell data using ma-

chine learning methods. As a reference, we cite in Table 1.1 the main features of some of
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the most popular tools that have been previously published in the field of novel miRNA
prediction in comparison with the novel method (mirnovo) that we are going to introduce
in the fourth Chapter of this thesis.

Table 1.1 Comparison of novel miRNA prediction tools based on features availability. Cells with a checkmark
indicate a supported feature while cells with a dash denote the lack of the feature. Web-server applications
that are no longer available are denoted as ’offline’. Stand-alone tools that fail to be installed or throw an
exception during runtime are flagged with the ’crashes’ property.

Method Web- Stand- Animals Plants Genomic Prediction without
server alone features genome

miRDeep2 - 4 4 - v -
miRanalyzer offline v v - v -
miRTRAP offline - v - 4 -
mirTools v - 4 v v -
miRDeep-P offline 4 - v v -
MIReNA offline - v v 4 -
miReader - crashes v v - v
MirPlex - crashes 4 v - v
mirnovo v 4 4 v v v

1.3 Machine learning

Around two centuries ago, western human civilisation and society started changing dra-
matically thanks to a revolution of machines, the so called “Industrial Revolution”. The
emergence of steam engine allowed us to overcome the limitations of muscle power, both
human and animal, and generate massive amounts of useful energy (Brynjolfsson and
McAfee, 2014). Similarly, in our times, we may be witnessing the beginning of a second
revolution of machines, only in that case the setting under which they are acting is cogni-
tive rather than physical (Brynjolfsson and McAfee, 2014). This revolution is no other than
the recent explosion of machines that are able to "learn’ and imitate human-like cognitive

tasks, thanks to the rapid (re-)emergence and expansion of the field of machine learning.
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The idea of machine learning, which is essentially making “computers able to
learn without being explicitly programmed” was already introduced in 1959 by Arthur
Samuel (Samuel, 1959). The field started off by focusing initially on pattern recognition
problems but eventually evolved into entailing any algorithm that can learn from data and
make predictions based on them. Common machine learning applications include spam e-
mail filtering, optical character recognition (OCR) and object identification with computer
vision. Advances in computational power and resources in recent years led eventually to
an aggressive expansion of machine learning in even more applications, either scientific or
commercial. In fact, 2016 was marked by the grand hype surrounding machine learning,
especially via the emergence of deep learning.

The field of deep learning is actually based on a method already known since 1943,
the artificial neural networks or ANNs (McCulloch and Pitts, 1943). ANNs have been
inspired by biological neural networks and are essentially a collection of interconnected
units with weighted activation signals, able to transmit information from one layer of
nodes or ‘neurons’ to another. The novelty introduced by deep learning had to do with
the introduction of multiple hidden layers in the learning network (Bengio, 2012; Hinton
et al., 2006), thus its characterisation as ’deep learning’.

Along with deep learning methods, machine learning entails several other algorithms
that have been successfully tested and used over various applications. Such methods,
among others, include Logistic Regression, Support Vector Machines, Gradient Boosting,
Bayesian Networks and Random Forests. The applications of these algorithms have been
interspersed across a multitude of fields, from finance and linguistics to speech recognition
and game playing. Bioinformatics is also among the most prominent fields where machine
learning is being applied. The vast amount of information aggregated in the last one or
two decades with regards to biological sequences, processes and systems resembles a gold
mine that seeks for competent researchers to find its hidden secrets and invaluable trea-
sures. We are going to present shortly in one of the next sections some machine learning
successes in the area of Bioinformatics. Moreover, in the fourth chapter we are going to
introduce a novel method that is aiming to boost research in the field of novel miRNA
prediction, with the aid of machine learning.

All this rapid expansion of machine learning applications demonstrates that an ’in-
tellectual” revolution of machines may be taking place in our era, aiming towards the
ultimate goal of artificial intelligence (Brynjolfsson and McAfee, 2014). Aside from the
multiple ethical or philosophical questions that may arise due to fast evolution of machine
learning, humanity could benefit a great deal from this evolution, subject to worldwide

collaboration and sensible reasoning. What exactly is machine learning though? We will
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go through some theoretical basics, methods and applications of machine learning, specif-

ically in Bioinformatics, within the next few sections.

1.3.1 Approaches

Machine learning methods are classified into three main categories, based on the type of

data that is available to the learning system. These are:

« Supervised learning: where available data are labelled, i.e they include both exam-
ple inputs and known outputs aiming to find the optimal mapping from inputs to

outputs,

« Unsupervised learning: where the aim is to find hidden patterns or structure from
unlabelled data, and

+ Reinforcement learning: where the computer program is constantly improving its
performance via feedback received by a dynamic environment which interacts with
it.

Alternatively, we can categorise machine learning methods based on the desired type
of output the system is aiming for. Specifically, we can distinguish four main categories in

that case:

« Classification: where input data points need to be divided into two or more classes

(supervised learning),

+ Regression: which estimates the relationships among variables and returns a contin-

uous output rather than a discrete one (also supervised learning),

« Clustering: where inputs need to be divided into groups but in this case data is not

labelled (thus unsupervised learning), and finally

« Dimensionality reduction: which tries to simplify input data by representing them

with a reduced number of dimensions (e.g. PCA).

We employ unsupervised learning in the form of "clustering’ in various analyses within
this work. However, we are going to focus mainly in supervised learning (Figure 1.6) since
this is the predominant approach adopted in Chapter 4, yielding the high success rate in
the predictions of our novel method.

With regards to supervised methods, a typical learning task involves four distinct

stages:
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1. Collect labelled data, i.e. a data set that you know the answer to each data point.
2. Train the machine learning algorithm on that data set (training set).
3. Collect data that you want to make predictions or inferences for (test set).

4. Make predictions on the test set using the algorithm which has been pre-trained on

labels
Training Data

the training set.

|

Machine learning

algorithm

l

Predictive Model == Predictions

new Data

v

Fig. 1.6 Simplistic representation of a supervised learning task. A set of labelled input data is required for
the training of the algorithm. The learning algorithm analyses the training data and infers a prediction
model that can be used for classifying new examples into one of the classes defined by the input labels. The
performance of a learning algorithm is assessed by its ability to generalise from the training data and allow
accurate prediction of the class for unseen instances.

The repertoire of available machine learning techniques is very rich and diverse. We

are going to present briefly here some of the most popular approaches in machine learning.

Support Vector Machines

Support Vector Machines (SVMs) are a class of supervised learning models that can be used
for classification and regression analysis. The fundamental idea behind an SVM model is
that input examples are represented as points in n-dimensional space (n = 1,2,3,...) and
a clear gap as wide as possible has to be found in order to divide optimally the examples
of different classes represented in the input data. After the model has been built, new
examples can be mapped into the same space and assigned to a class based on which side
of the gap they fall into.

The SVM algorithm was originally invented by Vladimir N. Vapnik and Alexey Ya.
Chervonenkis in 1963. In 1992, it was Vladimir N. Vapnik again, along with Bernhard
E. Boser, Isabelle M. Guyon, who suggested the design of non-linear classifiers by apply-

ing the kernel trick to maximum-margin hyperplanes (Boser et al., 1992), which implicitly
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maps input data points into high-dimensional feature spaces. The current standard incar-
nation (soft margin) was proposed by Corinna Cortes and Vapnik in 1993 and published in
1995 (Cortes and Vapnik, 1995).

SVMs belong to a family of generalized linear classifiers and can be interpreted as an
extension of the perceptron algorithm (Meyer et al., 2003). Data points are viewed as p-
dimensional vectors and the SVM algorithm is searching for a p—1-dimensional hyperplane
that represents the largest separation, or margin, between the two classes that need to be
distinguished. In this case, SVM acts as a linear classifier on data points defined in a finite
dimensional space.

However, in many cases the sets to discriminate are not linearly separable in a space
with finite number of dimensions. It was proposed then that the original finite-dimensional
space be mapped into a much higher- or infinite-dimensional space that could make the
separation easier (Boser et al.,, 1992). This could be achieved by replacing the dot product
of the linear SVM classifier by a non-linear kernel function. This allows the SVM algorithm
to fit the maximum-margin hyperplane in a transformed feature space and classify non-

linearly separable data points.

Artificial Neural Networks

An artificial neural network (ANN) is a learning algorithm that is inspired by the struc-
ture of biological neural networks. An ANN is based on a collection of interconnected
units called artificial neurons that can transmit signals to each other via their connecting
edges (analogous to synapses in a biological brain). Neurons are organised into layers that
may perform distinct kinds of transformations on their input signals. Typically, a neural
network is comprised of three layers (Figure 1.7a): i) the input layer, which includes the
nodes that receive the input signals, ii) the hidden layer, which applies some kind of trans-
formation in the input signals and iii) the output layer, which extracts the output signals.
However, neural networks are not restricted to only one hidden layer but they may include
multiple layers that impose various transformations on the input signals. These networks
belong to a sub-domain of ANNs called Deep Learning.

Deep Learning

Advances in hardware and particularly the broad expansion of multi-core graphics pro-
cessing units (GPUs) along with the exponential growth and availability of big data in
recent years has ignited the emergence of a special field of machine learning, which is

called deep learning. GPUs are well-suited for the matrix/vector multiplication calcula-
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tions which are vastly employed by machine learning algorithms (Chellapilla et al., 2006;
Oh and Jung, 2004). The speed-up in algorithm training using modern GPUs can be mea-
sured by orders of magnitude, reducing running times from weeks to days (Ciresan et al.,
2010; Raina et al,, 2009). At the same time, a large amount of data is constantly being
generated by humans (e.g. in social media), sensors (e.g. aeroplanes and cars) and more
specialised machines (e.g. X-ray devices) in a digital format that makes them an invaluable
resource from various kinds of machine learning applications.

Deep learning specifically studies deep neural networks, which are essentially neural
networks with more than one hidden layers (Figure 1.7b) and usually over ten layers or
even orders of magnitude more than that. Deep neural networks scale efficiently by ab-
sorbing huge amounts of data and creating even more accurate models as training data in-
creases, in contrast with all other machine learning methods whose performance plateaus
after a certain input size (Ng, 2016). A fundamental role in the emergence of this field
played mainly three eminent Computer Science Professors: Yann LeCun, Yoshua Benzio
and Geoffrey Hinton (LeCun et al., 2015). Deep learning has already found exceptionally
successful applications in fields like computer vision, image recognition and speech recog-
nition (Lee et al., 2009a) while it is also constantly expanding into Computational Biology

as well (Angermueller et al., 2016).

Deep Artificial Neural Network
Artificial Neural Network
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Fig. 1.7 Graphical representation of neural networks. a) A classical neural network: there is one input
layer for the incoming signals, one output layer for the outcoming signals and another one in between (the
hidden layer) that is transforming the inputs into output signals. b) A deep learning network: instead of
having just one hidden layer, a deep network is equipped with multiple hidden layers that impose a series
of transformations to the input signals in order to extract the output features.
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Decision Trees

Another popular machine learning method used for either classification or regression tasks
is the decision tree. It is one of the most widely used and efficient methods for inductive
inference, i.e. the process of deducing a general conclusion from specific examples. More
specifically, learning with decision trees involves a top-down induction process, where
input data start at the root of a tree and are recursively examined at each node of the tree
until a leaf node is found.

Checks at each node of the tree are rule-based comparisons of the input data point
features with values derived from the trained model. During training, the variable that
ensures the “best split” at each node is selected as the criterion for splitting the test data
later on for this particular node. The metrics for measuring the "best split” generally assess
the homogeneity of the target variable within the subsets. Some of the most well-known
metric for measuring the quality of a split are gini impurity, information gain and variance
reduction. For instance, gini impurity (which we will employ in Chapter 4 for the training
of a Random Forest classifier) is the degree of misclassification of input data at the child
nodes of any given node.

Eventually, the output of the tree is an output class (for classification tasks) or a con-
tinuous number (for regression analyses). Using multiple decision trees during training
leads to the construction of Random Forests, a popular machine learning algorithm that

we are going to present in the next section.

1.3.2 Random Forests

Random forests are an ensemble learning method that employ multiple decision trees at
training time and are used for classification and regression, among other tasks (Figure 1.8).
The randomness in the name of the method refers to the fact that each tree is analysing a
random subset of the entire dataset and that features at each node that are used for rule-
based splits are also selected randomly. Additionally, the multitude of trees used during
training form a forest, thus justifying the full name of the method.

Each of the trees is independently trained and at each node the feature variable that
assures the largest split of data, over a smaller random set of all features, is assessed. In the
end, each tree extracts an output class or continuous numerical value. The final result of
the Random Forests is the mode of the classes for classification tasks (i.e. the most frequent
output class among all decision trees) or the mean numerical value across all predictions
of individual trees, for regression analyses. In this way, random forests resolve the issue

of overfitting, which is commonly found in decision trees, since they are trained using the
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average output of multiple training processes and as such can be more efficiently applied

to independent datasets as well.

tree

tree tree tree
o &% | | &% o
O CQ eQ 00 eQ 00 00 00
sooooo DUUoDD ] afmlonl ] DUUoDD

tree

0%

00 G0
oEgoooe

Fig. 1.8 lllustration of a Random Forests learner. Random Forests are constructed by combining multiple in-
dividual tree learners, thus they are characterised as an ensemble method. Each tree is trained independently
over a sub-sample of the entire dataset. At each node of a tree, a small subset of features is selected at random
and the split of the next level is driven by the variable which optimises this split. In the end, outputs from
all trees are weighted and averaged in order to build the overall Random Forests classifier. Figure adapted
from: http://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics.

1.3.3 Applications in Bioinformatics

Machine learning has numerous applications emerging in the field of Bioinformatics. The
vast amount of biological data accumulated in recent years require highly sophisticated
methods to be analysed. Traditional methods that are based on explicit programming of a
set of commands cannot be implemented in practice in order to decipher the information
hidden in the huge pile of biological data. Instead, machine learning offers the possibility
of automatic (or semi-automatic) learning from the data that enables researchers to ad-

vance rapidly in various sub-domains of Bioinformatics. Some of the most representative
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areas in Bioinformatics that employ machine learning for data processing and analysis are:

genomics, proteomics, systems biology and text mining (Inza et al., 2010).

Genomics

Genomics is the field of molecular biology that focuses on the assembly and analysis of
the function and structure of entire genomes. This is accomplished through the adoption
of high throughput DNA sequencing techniques and bioinformatics methods, including
machine learning. One of the first applications of machine learning in genomes was gene
prediction, i.e. the determination of the location of protein-coding genes within a given
DNA sequence (Mathé et al., 2002). Typically, gene prediction is performed by aligning an
input DNA sequence to large databases of sequences whose genes have been previously
discovered and annotated. However, in order to accelerate the biological interpretation of
the perpetually and exponentially increasing raw data, machine learning methods need to
be used. Features can be defined based on known genes in order to train a learning algo-
rithm that can then predict novel genes from unseen sequences (Mathé et al., 2002). Addi-
tionally, machine learning has been used for the problem of multiple sequence alignment
(alignment of multiple DNA or amino acid sequences) in order to trace shared evolutionary

history among similar sequences (Larranaga et al., 2006).

Proteomics

Proteomics refers to the large-scale study of proteins (long strings of amino acids) and their
functions (Anderson and Anderson, 1998; Blackstock and Weir, 1999). The functionality of
proteins is determined by protein folding in which they conform into a three-dimensional
structure. Protein folding undergoes four stages of transition: primary structure (a flat
string of amino acids), secondary structure (alpha helices and beta sheets), tertiary and
quartenary structure. The main focus in this sub-field is the secondary structure due to its
primary role to determining the subsequent tertiary and quartenary structures and eventu-
ally the overall functionality of the protein. Prior to machine learning, researchers needed
to predict protein structure by manual analysis of amino acid sequences (Larranaga et al.,
2006; Yang et al., 2016). The first work in this field came from Pauling and Corey when they
predicted the hydrogen bond configurations of a protein from a polypeptide chain (Pauling
et al., 1951). However, predicting the true structure of a protein manually is not only an
extremely expensive and time-intensive process but also practically infeasible given the
amount of data available. That made the adoption of machine learning techniques for au-

tomatic feature learning and prediction imperative. Today, the state-of-the-art models are
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able to predict protein secondary structure with an accuracy of 82-84%, very close to the
theoretical limit of 88-90% (Wang et al., 2016; Yang et al., 2016). These methods are based
on Deep Convolutional Neural Fields (DeepCNF), a type of artificial neural network used

for Deep Learning.

Systems Biology

Systems Biology studies complex interactions of simpler biological components, such as
DNA, RNA, proteins and metabolites, within a system in order to infer emergent be-
haviours. In this regard, machine learning has been applied in order to identify tran-
scription factor binding sites using Markov chain optimisation (Larranaga et al., 2006).
Moreover, probabilistic graphic models, a machine learning technique for inferring the
relationship between different variables, has been widely used in complex interaction sys-
tems, such as metabolic pathways and signal transduction networks (Larranaga et al.,
2006). Finally, genetic and regulatory networks have been extensively studied with the
use of another class of machine learning methods, the genetic algorithms, which mimic

biological evolution by applying some kind of natural selection process to the data.

Text mining

The exponential rate of sequencing data harvesting and the subsequent increase of biolog-
ical publications have made it practically impossible to track all the information generated
in the last few years. Employing new methods to extract information from all accumulated
publications and databases, a task known as knowledge extraction, has become imperative.
Machine learning contributes to this direction mainly through Natural Language Process-
ing techniques. The learning algorithm is fed with a set of input data, such as published
manuscripts, aiming to generate new biological knowledge. For instance, drug develop-
ment requires first of all exhaustive examination of information available in biological
databases and scientific journals. However, there is rarely a unique resource integrating
all available information for an entity, e.g. a protein. Text-mining makes it possible to parse
large sets of scientific texts in order to complete the annotations extracted from databases
for all required entities (such as sub-cellular localisation of a protein and large-scale protein

interaction analysis), thus enabling development of advanced therapeutic methods.
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1.4 Aims of the thesis

In this thesis we wanted to elucidate some unexplored parts of the powerful world of small
non-coding RNAs and in particular of miRNAs and piRNAs. The first aim of this work
was to build a novel computational method that is able to capture post-transcriptional
modifications in miRNAs, either 5’-, 3’-terminal or internal (such as ADAR-edits). The
development of such a tool was essential due to the lack of other tools providing the same
type of information. Additionally, we have already seen the importance of some types of
modifications for miRNA stabilisation and maturation (Heo et al., 2012; Katoh et al., 2009).
Thus, we wanted to perform for the first time a large-scale analysis of small RNA datasets
in order to extract the global landscape of miRNA modifications.

That consists the second main aim of the thesis, which is finding potential distinct
modification patterns across specific conditions as well as their prevalence and features
in different cell types and/or tissues. Moreover, by aggregating large amounts of data we
wanted to explore other important features of miRNAs such as their co-expression, de-
pending on their genomic location or cell type, regulation of miRNA clusters by common
sets of transcription factors and also determine the specifics of the strand selection mech-
anism during miRNA maturation.

Considering the growth of high-throughput sequencing and the emergence of single-
cell biology, discovery and annotation of novel miRNAs was another intriguing challenge
we wanted to address. There have been some tools implemented in the past perform-
ing novel miRNA prediction with three of them claiming to support genome-free predic-
tion (Jha and Shankar, 2013; Kuenne et al., 2014; Mapleson et al., 2013). However, with
regards to the latter ones, they are either no longer supported, only identify known miR-
NAs or utilise very stringent criteria for miRNA prediction which are not typical for miR-
NAs (e.g. requirement for the detection of miRNA products from both strands). Thus, we
wanted to explore the potential of developing a novel method for miRNA prediction that
would be able to function either with or without a reference genome. Additionally, we
wanted to apply this method to interesting datasets such as single-cell data to discover
novel miRNA candidates, as well as to datasets examining non-canonical miRNA biogen-
esis pathways, dependent on different sets of enzymes (e.g. Drosha, Dicer or both).

Finally, this thesis also includes the computational analysis that was conducted as part
of three collaborative projects. The aim of the first of these projects was to determine
the role of uridylation or other modifications in the regulation of transcript expression in
mouse oocytes and in adult cells or embryonic stem cells. The second collaborative project

involved exploring the biogenesis landscape of piRNAs in mice. Specifically, the aim was to
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explore the existence of alternative piRNA biogenesis pathways that are not dependent on
both MIWI2 and MILI proteins, which is the prevalent case. The last collaboration includes
the preliminary analysis of the profile of all targets of a single miRNA in D. Melanogaster,
after mutagenesis induced by CRISPR/Casg. We also wanted to correlate editing efficiency
with the accessibility profile of each of those sites as part of this project.

The results of the work presented in this thesis have been published in six papers so
far (one currently under review). We hope that the outcome of this endeavour will high-
light additional features in miRNA and piRNA biogenesis and function and will push the

boundaries of small RNA research even further.



Chapter 2

Analysis of small RNA sequencing

data and microRNA modifications

The results from this chapter have been published in the following papers:

1. "Chimira: analysis of small RNA sequencing data and microRNA modifications”
DM Vitsios and AJ Enright.

Bioinformatics, Volume 31, p.3365-3367, doi: 10.1093/bioinformatics/btv38o (2015).

2. "mRNA 3’ uridylation and poly(A) tail length sculpt the mammalian maternal
transcriptome.”

M Morgan®, C Much*, M DiGiacomo, C Azzi, I Ivanova, DM Vitsios, J Pistolic, P Collier, P
Moreira, V Benes, AJ] Enright and D O’Carroll.

Nature, Volume 548, p.347-351, doi: 10.1038/nature23318 (2017).

2.1 Chimira

2.1.1 Introduction

Small RNA sequencing data are among the most straightforward types of Next Generation
Sequencing (NGS) data to analyse. However, many laboratories that generate such data
still struggle to develop or apply efficient computational pipelines for the analysis and
interpretation of these data. Additionally, in recent years it has been reported that many
miRNAs go through post-transcriptional alterations that modify their 3” end, mainly via
mono/poly-Uridylation (Heo et al., 2012, 2009) or poly-Adenylation (Lu et al., 2009). Such
modifications are believed to impart significant functional changes to miRNAs. Indeed,

other modifications and/or editing events have also been observed to occur in several other
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studies (Burroughs et al., 2010; Li et al., 2012; Yu and Chen, 2010). These findings from
previous studies are a strong indication that the functional roles of small RNAs in different
conditions may be greatly influenced by such modifications. Hence, we wanted to explore
the full profile of all modifications and/or edits that can be identified in small RNA-Seq
data, starting with the development of a novel method.

A method for identifying miRNA modifications could be implemented by aligning small
RNA sequences first against their hairpin precursors. The alignment region spanning each
miRNA can then be analysed to detect bases in the miRNA sequence that could not possibly
have derived from the precursor it aligns to. These unalignable nucleotides are likely either:
i) base-calling errors, ii) single nucleotide polymorphisms, iii) ADAR edits or iv) other post-
transcriptional miRNA modifications (e.g. via TUTases). Base-calling errors are pseudo-
random depending on the platform used and usually more likely to occur towards the 3’
end of sequences (Vitsios et al., 2017).

In order to study this diverse pool of possible miRNA post-transcriptional modifica-
tions, we eventually developed Chimira (Vitsios and Enright, 2015). This is a cohesive
web-based platform for the processing and analysis of small RNA NGS data allowing si-
multaneous detection of 3, 5° and internal miRNA modifications. The web-server version

of Chimira can be found here: http://wwwdev.ebi.ac.uk/enright-dev/chimira.

2.1.2 Input

Our method, Chimira, accepts FASTQ or FASTA files as an input, containing adapter and/or
barcode stripped small RNA-Seq data (Figure 2.1). The user is provided with a simple sys-
tem for uploading each sample and replicates and selects among available run options. Ad-
ditionally, Chimira provides a limited 3’ adapter cleaning functionality using reaper (Davis
et al., 2013) supporting different adapters for each input sample. Finally, the system pro-
vides a simple interface for computationally determining likely 3’ sequencing adapters in
case the user does not have this information available.

Chimira supports mapping of small RNA-Seq data against 209 species specific sets of
precursors overall, which are already registered in miRBase (Griffiths-Jones et al., 2008).
In order to optimise and speed-up the analysis, tally (Davis et al., 2013) is used for de-
duplicating the uploaded sequence fragments. Tally dramatically reduces the size of input
sequence files by collapsing identical sequences into a single entry while storing the total
read depth.
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Generate data for ‘stacked barplot’
visualisation of the overall and per file
modification profiles.

v

- Barplots (D3.js) with read depth per file and expression depth of most highly expressed miRNAs
- Stacked barplots (D3.js) with modification profiles across all samples and per sample
- QC plots (nucleotide composition, length distribution, samples clustering)

Output.
- Plain counts (per file & overall, raw / DESeq2-normalised)
- Modification counts table (modification type, pattern, position, depth)

- Differential expression visualisation between groups of samples
via interactive tool provided in results page
- Extraction of modification profile for individual miRNAs
via interactive tool provided in results page

Fig. 2.1 Chimira pipeline workflow.
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Upon a successful file upload and species selection, a new job is submitted to a high-
performance computing cluster and the user can follow its progress via a real-time analysis

console. In the next section, we will go through the methodological details behind Chimira.

N
o
|
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Sample(s) A
f 1

0 2 4 6 8 10 12 14 16 18

Fig. 2.2 Differential expression analysis tool: interactive scatterplot of the differential expression of miRNAs
between a heart and a liver tissue sample. A single miRNA is highlighted showing its identifier (hsa-miR-
122-5p) and the log2 normalised counts in the two samples. As expected, hsa-miR-122-5p expression is
significantly skewed towards the liver sample.

2.1.3 Methodology

Chimira provides two types of miRNA quantification: “plain counts” and “modifications”.
The “plain counts” mode refers to the quantification of miRNA molecules that are expressed
in any form (either template or modified) in each of the input samples. Input sequences
are first mapped against miRBase using BLASTn (Boratyn et al., 2013) allowing up to two
mismatches for each sequence. BLASTn output is then filtered so that antisense matches
are discarded. The extracted counts are normalised across all samples using DESeq2 (Love
et al., 2014). In cases where a small RNA sequence identically matches to more than one
precursor sequences (i.e. miRNA paralogues) the user can choose between using only the
first optimal alignment or assigning counts fractionally with equal weights between the
identified paralogues.
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Furthermore, Chimira integrates basic functionality for comparative analysis of input
samples based on their expression profiles. Specifically, differential expression of plain
counts (either raw or normalised) between two samples or sets of samples can be visualised
through an interactive scatterplot that allows the user to view the miRNA identifier and
the different expression levels at each point of the plot (an example is shown in Figure 2.2).
Moreover, the user can compare the expression levels of the top-10, 20 or 50 most highly
expressed miRNAs in two samples (or sets of samples).

The second and arguably most important functionality of Chimira is the identification
of base modifications with miRNAs. This mode quantifies those sequence segments that
are found within an input sequence read but which cannot be explained by the underlying
reference genome sequence. More specifically, the types of modifications being identified

by Chimira include:

+ 3’-modifications: any non-templated sequence in a window that starts at the 5th nt
upstream of the 3" end of each miRNA and ends at the 6th nt downstream of the 3°

end.

« 5’-modifications: any non-templated sequence in a window that starts at the 8th nt
upstream of the 5’ end of each miRNA and ends at the 5th nt downstream of the the
5’ end.

« Internal modifications: SNPs, ADAR edits and any other non-templated sequence.
In order for a modification to be classified as a SNP, an arbitrary 70% value is used

as a threshold for the ratio of the modified counts to the overall counts.

We should note here that SNPs reported by Chimira are reflecting the inherent genomic
variance of the input samples and are not the effect of enzymes altering the content of miR-
NAs at the post-transcriptional stage. Specifically, SNP detection is based on the idea that
miRBase annotated miRNAs represent the predominant consensus sequence as identified
across several samples and conditions. Thus, the identification of single-nucleotide vari-
ances in input miRNA sequences by Chimira is the direct effect of an underlying genomic
variance that is already present in the sequenced individuals/animals.

In the example shown (Figure 2.3), uridylation and adenylation are the most prevalent
modification types in the 1st nucleotide after the 3’ end of the miRNAs, while C mod-
ifications are highly enriched exactly at the 3° end. ADAR editing is the predominant
modification type amongst the internal modifications followed by a moderately expressed

C-SNP, 11nt upstream of the 3’ end (index position: 11).
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Fig. 2.3 Aggregated modification profile from 12 Heart, Liver and Brain tissue samples in H. sapiens, as
detected by Chimira: a. Global profile b. 5’-Modifications c¢. 3’-Modifications d. Internal modifications
(ADAR edits and SNPs) e. Internal modifications (SNPs). The x-axis corresponds to the index positions
across a miRNA molecule. They y-axis corresponds to the raw counts of the identified modification patterns.
The start of a miRNA on the x-axis is at index ‘8’ (5" end) while its end is at index ‘30’ (3’ end).

It is worth noting that the window lengths being used for identification of 3’ and 5’
modifications include nucleotide positions also within the original miRNA sequence to
better distinguish all possible modifications from multiple miRNA variants originating
from the same precursor but with different length mature products. Modification types
are inferred from BLAST alignments of input sequences aligned to their hairpin precur-
sors by examining the content of alignment mismatches returned. In order to decipher the

correct modification position a reference database has been built initially for all supported
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genomes, containing canonical alignments between mature miRNAs and their hairpin pre-
cursors. Based on these data each of the identified modification patterns is assigned a posi-
tion index (Table 2.1) in order to build the full depth-wise modification profile. Chimira also
allows the display of the modification profiles across all the samples supplied by the user
for a specific selected miRNA. Finally, all counts (plain and modifications) can be down-
loaded for further analysis as separate files as soon as the processing of a set of samples is

complete.

Table 2.1 Index positions of all modifications relative to the 5°/3’ ends of the miRNAs. The directionality of
all modification patterns is always considered to be from the 5’ to the 3’ end.

Modification type Modification Description
position
3’ ) Modification pattern starts from the 3’ end of the miRNA
3’ +k / -k Modification pattern starts k nucleotides downstream /

upstream of the 3’ end of the miRNA

5 ) Modification pattern starts from the 5’ end of the miRNA
5 +k / -k Modification pattern starts k nucleotides upstream /

downstream of the 5’ end of the miRNA

Internal 0 Modification pattern is precisely at the 5° end of the
miRNA
Internal +k Modification pattern is k nucleotides downstream of the 5’
end of the miRNA

2.1.4 Validating Chimira against previously published work

In order to validate Chimira’s performance we applied it into several example datasets
from previously published studies, which explored miRNA modifications. Here, I provide
two examples: i) ADAR edits [Adenosine-to-Inosine or A-to-I modification, (Vesely et al.,

2014)] and ii) uridylation changes upon TUT4/7 knockout (Liu et al., 2014b).
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Table 2.2 Top five most abundant miRNAs, as identified by Chimira and in a previous study (Vesely et al.,
2014).

Chimira top miRNAs  (Vesely et al., 2014) top miRNAs

mmu-miR-378a-3p mmu-miR-378a-3p
mmu-miR-9-5p mmu-miR-9-5p
mmu-miR-127-3p mmu-miR-127-3p
mmu-miR-183-5p mmu-miR-182-5p
mmu-miR-182-5p mmu-miR-183-5p

miRNA expression and ADAR editing validation

We initially present a comparison of Chimira’s results with those obtained by a published
study regarding ADAR editing events (Vesely et al., 2014). The aim of this validation test
is to examine Chimira’s efficiency in adequately and accurately quantifying miRNAs and
identifying ADAR edits within miRNA sequences. This study specifically examined the
effect of ADAR2 enzyme knockout on A-to-I editing and miRNA expression in the mouse
brain. First of all, mmu-miR-378a was reported as the most abundant miRNA. Additionally,
no significant change was observed in the expression of the five most abundant miRNAs,
which also made up 48% of all identified miRNAs. Chimira’s respective results (presented
in Tables 2.2, 2.3 and Figure 2.4) are comparable or exactly the same as the results of the

examined study.

5 most abundant miRNAs .

WT sample
read counts (log2)

-
8
R

ADAR2 - knockout sample
read counts (log2)

Fig. 2.4 Differential expression of all miRNAs between wild-type and ADAR2-knockout samples, as returned
by Chimira. The expression of the 5 most abundant miRNAs doesn’t change significantly between the two
conditions.
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Table 2.3 Comparison of the top five most abundant miRNAs depth ratios.

Chimira (Vesely et al., 2014)

Total depth 126208757 -
5 most abundant miRNAs depth 57220251 -
5 most abundant miRNAs ratio 45.3% 48%
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Fig. 2.5 Visualisation of overall dropout of ADAR editing events in the ADAR knockout samples (b) compared
to the wild-type ones (a). The SRR™* accession numbers correspond to Run IDs of replicates from NIH’s
Sequence Read Archive (SRA).

With regards to identification of modifications, the study reported an overall decrease
in ADAR editing events in the ADAR2 enzyme knockout samples, as expected. Chimira is
also capturing this global ADAR editing dropout as seen in the global modifications profiles
across all samples (Figure 2.5). Additionally, Chimira is successfully identifying ADAR edit
events for individual miRNAs as we can see in the comparison of the results returned by
the study (Vesely et al., 2014) and Chimira for a representative list of 5 miRNAs (Table
2.4). It is worth noting that for one particular miRNA (mmu-let-7e-5p) ADAR editing levels
seem to be higher in the knockout samples, based on both the original analysis (Vesely

et al., 2014) and the analysis performed by Chimira (both referring to the exact same data).
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Table 2.4 Comparison of significant editing events in a list of 5 miRNAs (detected in all three replicates).

Chimira (Vesely et al., 2014)
miRNA Position % editing (WT) % editing (KO)  Position % editing (WT) % editing (KO)
mmu-mir-378a-3p 16 6.08 0.12 16 6.3 0.2
mmu-mir-379-5p 5 44.5 10.8 5 46.4 11.7
mmu-let-7e-5p 19 28.3 41.2 19 29.1 42.7
mmu-mir-3099-3p 7 87 80.7 7 79.8 66.1
mmu-mir-421-3p 14 14.3 3.6 14 10.9 3.3

However, mmu-let-7e-5p expression represents only 0.02% of the total read depth in the
analysed samples, thus this signal can be attributed to noise due to low expression levels
and not to an emerging biological effect in the absence of ADAR enzymes. Overall, we can
confirm for this dataset a high consistency between Chimira’s results and the published
findings, thus justifying the validity of our method in terms of accurately extracting both

miRNA expression counts and modifications.

TUT4/7 knockout validation

As a second validation for Chimira we present its performance in detecting the drop of
uridylation levels in TUT4/7 enzyme knockout samples. For this type of validation, we
have used a dataset with one wild-type and one TUT4/7 knockout sample (Liu et al., 2014b).
We first plotted the global profile of 3’ terminal uridylation (Figure 2.6) in the two condi-
tions. We can observe dramatic depletion (10-fold decrease) of uridylation at all positions
around the 3’ ends of miRNAs in the TUTase knockout samples.

M U - modifications Wild Type TUT4/7 Knockout
(ERR566664) (ERR566665)

800000

600000+

read counts

400000+

200000+

J -l

17 18 19 20 21 3p +1 +2 +3 +4 +5 +6 17 18 19 20 21 3p +1 +2 +3 +4 +5 +6
end end
modification position index modification position index

Fig. 2.6 Uridylation levels in the WT and TUT4/7 samples (Liu et al., 2014b) - accession number: PRJEB6759,
as extracted by Chimira (both plots are on the same scale and counts have been normalised across the two
samples).
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Moreover, after processing Chimira’s modification counts across all detected miRNA
isoforms, we plotted the change in uridylation levels between the wild-type and knockout
samples for each miRNA individually (Figure 2.7). We can observe again that uridylation
levels are highly skewed towards the wild-type sample, as previously shown in the global

3’ uridylation profile.

Uridylated miRNAs

log2 of normalised counts
(TUT4/7 Knockout)

log2 of normalised counts
(Wild-type)

Fig. 2.7 miRNA uridylation levels across the WT and TUT4/7 Knockout samples (log2 of DESeq2 normalised
counts). Normalisation has been performed based on read counts of all miRNAs, either templated or modi-

fied.

Following these successful validations, we are going to present in detail the main modes
of function provided by Chimira. In the second half of this chapter (section 2.2) we are go-
ing to apply Chimira into a larger study that explores the impact of 3’ terminal uridylation

on the Mouse transcriptome.

2.1.5 Plain counts analysis

Chimira’s first mode of function is called plain counts quantification. The plain counts anal-
ysis is run by default in either ‘Run’ or ‘Run & Clean’ mode. The latter requires trimming
of the input files before miRNAs quantification. This is achieved using the reaper utility
(Davis et al., 2013) and the adapter sequence or sequences file provided by the user. As
soon as an input file is clean from the adapter sequences, its reads are uniquified with tally
(Davis et al., 2013) and a FASTA file is created recording only one entry for each distinct
sequence, accompanied with the respective depth count. This format conversion reduces

dramatically the size of the input files and consequently the complexity of the alignment
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process that follows. The input content is also analysed in order to extract various QC plots
(read lengths distribution, nucleotide distribution at each read position and GC content).
Input files are then aligned against all miRBase hairpin precursors for the species that has
been selected by the user. Alignment, allowing up to two mismatches, is performed using
the Standard Nucleotide Blast (BLASTn, v2.2.24+) and output is being filtered to discard
any anti-sense hits. If the user has selected to split the multi-mapped read counts to their
paralogues, the output from BLASTn is processed in order to identify all paralogues and
assign fractionally to them the correct read count values from the multi-mapped hits, us-
ing equal weights. If the user has not enabled this option, then only the first BLAST hit is
used to assign depth. Finally, the extracted counts are post-processed so that they can be
visualised and queried in D3.js and C3.js enabled charts (see e.g. Section 2.1.7), providing

also the option to the users to download them in raw format .

2.1.6 Modification analysis

Chimira’s second and most important feature is the calling of miRNA modifications. Mod-
ification analysis is also a default component of the ‘Run’ and ‘Run & Clean’ modes. This
step is performed after the BLAST alignment has been complete. BLAST’s output is parsed
to identify all the mismatches of each hit with the associated subject hairpin precursor. The
subject/query start and end indexes are retained and are used to infer the position of the
detected mismatches. In order to locate the position of every mismatch across the canon-
ical hairpin precursor sequence, relative to the mature miRNAs, a database has been built
for all 209 supported species containing the canonical alignments of all mature miRNAs
with their respective hairpin precursors, including information concerning the indexes of
the alignment for each case. Based on this information and the depths for each of the de-
tected mismatches, modifications are assigned a specific modification type and position.
Thus, a collection of modifications is assembled eventually containing all identified 3’, 5°
and internal modifications. SNPs are identified in cases where the respective mismatch is
found in at least 70% of the associated reads. ADAR edits are called from all A to G transi-
tions provided they occur in at least 90% of all associated sequences. Finally, the extracted
modification counts are being post-processed for visualisation purposes and are bundled

in more user-friendly raw formatted files, downloadable by the user.

2.1.7 Quality-Control (QC) visualisation

Chimira generates basic QC plots regarding the read length and nucleotide distribution

of input sequences (Figures 2.8, 2.9 & 2.10). In addition, plots with the total miRNA
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counts per sample and the top-10 most highly expressed miRNAs across all samples are

also provided.
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Fig. 2.8 QC plot generated by Chimira: read lengths distribution after trimming.
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Fig. 2.9 QC plot generated by Chimira: nucleotide distribution at each position.
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Fig. 2.10 QC plot generated by Chimira: GC content ratios at each position.

2.1.8 3’ adapter detection feature

In case the 3’ adapter associated with a FASTQ file is not known, Chimira is able to sug-
gest possible adapter candidates through the ‘Other tools’ section. This feature is based on
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the tool minion (Davis et al., 2013) which uses De Bruijn graphs in order to infer potential
adapter sequences based on two criteria: a) frequency of occurrence b) attachment to mul-
tiple different prefixes. After alist of potential adapters has been created, it is being aligned
with swan (Davis et al., 2013) against a list of known adapters that we have compiled from
various popular sequencing machines and protocols. The best candidate for each input file
is selected based on the alignment score of a potential adapter with a known adapter, its
length and the end indexes of the alignment.

After an optimised selection process is performed based on the aforementioned criteria
a single adapter sequence is suggested for each input file, with a ‘Degree of Alignment’
score denoting its alignment score with a known adapter sequence. In almost all cases, a
suggested adapter with a ‘Degree of Alignment’ of 100% can be safely used as the correct
adapter. This can still be true also for cases where the score is 95% or even less, since the
suggested adapter may just be a subsequence of a known adapter.

In case none of the adapter candidates aligns with any of the verified adapters over
a certain threshold ratio (85% by default), a sequence inferred by minion may still be sug-
gested as the adapter of the input samples. However, the Degree of Confidence in that case
is 0% and the suggested adapter should be cross-checked manually. This cross-validation
might also be needed in case the score is 100% but the length of the suggested adapter
is less than 15nt or the score is e.g. less than 90%. In any case, the trimming efficiency
from the use of a particular adapter can be evaluated by inspection of Chimira’s stacked

modifications profiles and QC plots after a run has been complete.

2.1.9 Methods

Chimira back-end

All input files are uploaded and stored on a server using one of the fastest academic net-
works in Europe. The file content is validated and an error message is displayed on the
user’s browser window if it does not comply with the allowed input specifications. In any
other case, its size is further estimated and based on performance evaluation data acquired
form previous training datasets the required resources for submission to a cluster are allo-
cated. After this quality control and pre-processing step, Chimira submits a new queued
job to the EMBL-EBI High Performance Computing Cluster. The progress of the process
can be viewed at all times from an analysis console window that is available on Chimira’s
progress page, displayed right after a job has been launched. The pipeline Chimira uses for
the core analysis is based on Perl (v5.16.0) and R (v3.1.2). A separate thread provided by
the Perl API handles each file. Moreover, multiple other threads are launched during the
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process to initiate cascaded parallel processes for quality control, statistical analysis and
merging of various output results, among other tasks. Thread synchronisation and data
integrity is coordinated and assured during the run. Upon the completion of each job the
user is redirected to the results page where he can browse through the output, download
all the extracted data (e.g. counts, modifications, etc.) and query the results using the

interactive tools provided.

Time benchmarking

We are providing here the benchmarking results from the comparison of Chimira with
other already published web servers (Oasis - Capece et al.,, 2015 and MAGI - Kim et al.,
2014). We tested two different aspects from each application: a) upload time and b) execu-

tion time, using three different datasets of increasing input size (Figure 2.11).

Dependencies

Chimira has been developed as a web-application with a core pipeline based in Perl and
R. The full list of library/tool dependencies of Chimira along with their recommended ver-
sions is shown in Table 2.5.

Chimira is supported by all popular web browsers (e.g. Chrome, Safari, Firefox) that
run on personal computers and is also accessible by any JavaScript enabled browser on

mobile devices.

Method
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Fig. 2.11 Scatterplots for: a) total run times and b) upload times of Chimira, MAGI and OASIS methods for
three different input datasets of small, medium and large size. Y-axis in sub-figure (a) has been normalised
to alogio scale.
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Table 2.5 Chimira dependencies and recommended versions

Library / Tool Version
miRBase Release 21
BLASTn 2.2.24+
Reaper 15-065
Minion 15-065
R 3.1.2
Perl 5.16.0
Perl CGI 3.59
PHP 5.3.3
JavaScript >= 1.7
Fine-uploader (JavaScript plugin) 5.1.3
jQuery 1.10.2
jQuery UI 1.11.4
Ds.js 3.5.0
Cs.js 0.4.8
DataTables (jQuery plugin) 1.10.0

2.2 3’ terminal uridylation impact on the Mouse tran-

scriptome

2.2.1  Background

It is already known that in the early stages of female zygotic development in mammals
there is complete lack of transcription at all stages of the growth of oocytes (Tadros
and Lipshitz, 2009). Growing oocytes undergo maturation through sequential stages of
growth (Svoboda et al., 2015): primary, secondary, early antral or late antral and increas-
ing cell size (Figure 2.12). At the end of the maturation process, mature oocytes upon ovu-
lation are capable of supporting fertilisation as well as development (Eppig and Schroeder,
1989). This competence of mature oocytes is largely driven by the maternal mRNAs which
are directly deposited into the oocytes. So, despite the inherent lack of any transcriptional
activity, gene expression in oocytes is already active and specifically instructed by the
maternally-derived transcriptome (Ma et al., 2013; Pan et al., 2005). Additionally, maternal
mRNAs at all stages of the growing oocytes have a high degree of stability (Brower et al.,
1981; De Leon et al., 1983) but what’s even more striking is that each stage of maturation is
associated with a distinct transcriptome (Pan et al., 2005). Thus, growing oocytes not only
have the ability to retrieve mRNAs from the maternal transcriptome but they can also reg-

ulate the expression of the derived transcripts using a selective degradation mechanism.
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The mechanism oocytes employ to drive transcripts degradation is not known. In the next

section we try to address this problem.

Folliculogenesis Ovulation

Primordial  Primary Secondary Early antral Late antral Preovulatory

Fig. 2.12 Sequential stages of oocyte maturation from folliculogenesis to ovulation.

2.2.2 Results

In an effort to elucidate the transcriptional regulation machinery in oocytes we collabo-
rated with the O’Carroll Lab. The results of this work with regards to mRNA modifications
and gene expression have been conducted and extracted by members of the O’Carroll Lab
and Dr. Anton J Enright. My work towards this project has focused on extracting the mod-
ification profiles for miRNAs using Chimira and trying to identify the degree to which a
modification is affecting the expression of miRNA molecules across somatic or embryonic
cells.

To begin with, it has already been discovered that poly-A tail length and 3’ terminal
uridylation of mRNAs are playing a predominant role for mRNA turnover and degrada-
tion (Lim et al., 2014; Mullen and Marzluff, 2008; Rissland and Norbury, 2009). Specifically,
for transcripts with a poly-A tail below 25 nucleotides, there has been observed desta-
bilisation of Poly(A)-binding protein (PABP) binding (Baer and Kornberg, 1983; Eliseeva
et al., 2013) which in turn allows binding of the terminal uridylyl transferases 4 (TUT4)
and TUT7 (TUT4/7) and subsequent uridylation of mRNAs. This mechanism is present in
around one fifth of transcripts in human cells lines, and it has been proved that the addi-
tion by TUT4/7 enzymes of extra nucleotides at the 3” end of transcripts with shorter than
normal poly-A tails aids notably to their decay (Chang et al., 2014; Lim et al., 2014).

In order to examine the respective modification profile in oocytes, which is dependent
on TUTy4/7 enzymes, the collaborators prepared samples from the late antral/preovulatory
stage oocytes (GV oocytes) and confirmed that TUT4 and TUT7 are expressed at each

stage of maturation. Meanwhile, three libraries from somatic tissues (bone marrow, liver
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and mouse embryonic fibroblasts or MEFs) and another one from embryonic stem cells
(ESCs) were prepared in order to compare the 3’ terminal profiles in all these cells to those
from oocytes. For all samples, the poly-A tail length and 3’ terminal uridylation of mRNAs
were identified using TAIL-seq (Chang et al.,, 2014). Terminal uridylation levels varied
across the samples however the poly-A tail length with the highest frequency was shorter
in GV oocytes than in all other cases (around 68 nucleotides instead of 78). Moreover, GV
oocytes had the highest relative ratio of oligo- to mono-uridylation among all examined
cell types. These findings indicate that uridylation, in the form of short fragments, is more
prevalent in oocytes than in somatic cells and thus may have a distinguishing functional
role.

This hypothesis was tested by examining the effect of TUT4/7 double knockout in GV
oocytes. What was observed was a complete incompetence of oocytes to support early
embryonic development in the absence of the TUTase enzymes. This may be explained
by either failure of oocytes to complete meiosis I or the incapability of supporting fertili-
sation upon successful completion of the meiosis I stage. So, we can safely presume that
TUTy4/7’s role is indispensable for oocyte growth and specifically for successful transition
from the meiosis I to meiosis II phase of cell division. In addition, gene expression changes
were studied between the TUT4/7 wild-type and knockout conditions. Many genes were
observed to be deregulated and specifically the large majority of them where upregulated.
This is expected, since the loss of an essential component of RNA degradation mechanism,
such as uridylation via TUT4/7, stabilises transcripts and allows them to avoid decay. So,
it was shown in this way that the maternal transcriptome in oocytes is largely regulated
and defined by the TUT4/7 enzymes, via the addition of oligo-uridine fragments at the 3’
ends of transcripts.

We have seen so far that 3’ uridylation induced by TUTases is a prevalent mechanism
within the RNA degradation pathway in oocytes. A possible assumption could be that
this mechanism is so fundamental that it may be ubiquitous in other cell types and tis-
sues. Thus, the collaborators sought to examine if uridylation has the same functionality
in other cell types, as that seen in oocytes, and more specifically in embryonic stem cells
(ESCs), mouse embryonic fibroblasts (MEFs), liver cells and bone marrow (BM) cells. They
prepared wild-type and TUT4/7 knockout samples for each cell type. In all knockout sam-
ples, there was observed a dramatic decrease or complete depletion of uridylation levels
(both oligo- and mono-uridylation). However, they observed that the loss of TUT4/7 did
not have any effect in ESC differentiation/pluripotency or in proliferation of ESCs and
MEFs. Moreover, TUT4/7 deletion in somatic cells (liver and bone marrow cells) did not

have any phenotypic effect, since mice appeared to be healthy up to several months after
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knockout induction. So, in all cases, the loss of TUT4/7 did not have any detrimental effect

in any of the embryonic or somatic cells.

Uridylation effects on miRnome

The next step of this analysis was to investigate whether uridylation or its loss has any
appreciable effects on miRNA expression. It is already known that miRNA expression is
completely suppressed in oocytes (Ma et al., 2010; Suh et al.,, 2010). Thus, we focused on
examining the effect of TUT4/7 knockout in embryonic and somatic cells (ESCs, MEFs,
liver cells and bone marrow cells). For this type of analysis, small RNA libraries for each
cell type where prepared by the collaborators from the O’Carroll Lab.

We first extracted plain miRNA counts from the small RNA-seq samples using
Chimira (Vitsios and Enright, 2015). Chimira cleans input sequences from their 3’ adapters
and maps them against all mouse hairpin precursors (miRBase Relase 21, Griffiths-Jones
et al. (2008)), allowing up to two mismatches. Counts of multi-mapped reads were assigned
only to the first optimal alignment call returned by BLASTn. In all cases, control and ex-
perimental (TUTase knockout) samples were normalised using the DESeq2 package (Love
et al., 2014). Furthermore, we also extracted miRNA modification counts using Chimira.
Modification analysis was then restricted to pure modification events, i.e. mono-nt or poly-
nt, where nt can be any of the U, A, C or G (poly-nt modifications refer to sequences of two
or more identical nucleotides). We also collapsed counts from all other miRNA variants
with their respective unmodified miRNA counts.

The first part of our analysis was to confirm the TUT4/7 knockout effect by exam-
ining the uridylation profiles between the wild-type and knockout conditions across the
selected cell types. We noticed clearly in all cases that the expression of a large propor-
tion of uridylated miRNAs is skewed towards the wild-type condition (Figure 2.13). These
miRNAs (highlighted in green) show statistically significant differential expression (fold-
change > 2 and P-value < 0.05) between the two conditions and demonstrate the depletion
of uridylation levels in the absence of TUTase enzymes.

Meanwhile, we wanted to assess any implications of TUT4/7 knockout in other modi-
fication events including adenylation, cytidylation and guanylation to assess the extent of
perturbations in transcriptional machinery of TUT4/7-deficient cells. Following a similar
approach, we extracted the profiles for these modification patterns (mono- or poly- nu-
cleotide modifications of type A, C or G) and assessed the significance for each differential
expression profile, using a negative binomial Wald test. Based on these profiles we ob-
served that TUTy4/7 knockout has a significant impact only in miRNA terminal uridylation

(Figure 2.14) and specifically leads to decrease in uridylation levels. On the other hand,
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adenylation seems to follow a pattern of modest increase in the TUT4/7 knockout samples.
This could be a slight indication that the adenylation mechanism is not obstructed by the
TUT4/7 enzymes in the knockout samples thus allowing for higher terminal adenylation
of miRNA transcripts. However, this signal is not statistically significant in any of the
examined cell types, thus no conclusion can be made about its validity or real biological
functionality. All other modification types (cytidylation and guanylation) remain either
stable or their change is not statistically significant in the event of TUT4/7 knockout and

also their presence could mostly be attributed to sequencing biases (Vitsios et al., 2017).

Uridylated miRNAs
Liver MEFs BM ESCs

TUT4/7 KO
(log2 of normalised counts)

TUT4/7 WT TUT4/7 WT TUT4/7 WT TUT4/7 WT
(log2 of normalised counts) (log2 of normalised counts) (log2 of normalised counts) (log2 of normalised counts)

® : miRNAs with statistically significant differential expression ( fold-change > 2 & P-value < 0.05)

Fig. 2.13 Expression of uridylated miRNAs in TUT4/7 wild-type (WT) and knockout (KO) samples across
liver cells, mouse embyronic fibroblasts (MEFs), bone marrow (BM) cells and embryonic stem cells (ESCs).
MicroRNAs with statistically significant differential expression between the WT and KO conditions are
coloured in green. Two to four biological replicates have been used for each cell type.

We now wanted to determine if those changes in uridylation levels in the absence
of TUT4/7 have any effect in miRNA degradation and overall expression. We observed
that there was a very modest impact on overall miRNA expression levels in the four cell
types examined (Figure 2.15). Specifically, there were only few cases of miRNAs that
demonstrated statistically significant differential expression levels in the two conditions,
including mainly miRNAs of the let-7 family. Another feature observed in these results is
that in embryonic stem cells there was a mild increase of the expression of let-7 miRNAs
in the absence of TUT4/7 while in the other three somatic cell types (liver, bone marrow
and MEFs) the opposite effect was seen. This result can be attributed to the expression
of LIN28a protein-coding gene in ESCs, which acts as an inhibitor of pre-let-7 processing
via TUT4/7-mediated oligo-uridylation (Ali et al., 2012; Hagan et al., 2009; Heo et al., 2008;

Viswanathan et al., 2008). On the other hand, in liver, bone marrow and MEFs, where LIN28
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is not expressed, TUT4/7 normally acts as an enhancing factor for pre-let-7 processing into

mature miRNAs thus justifying the mild drop in let-7 expression in the absence of TUTases.
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Fig. 2.14 TUTy4/7 knockout has a significant impact only in miRNA terminal uridylation. 3’ terminal (a)
uridylation, (b) adenylation, (c) cytidylation and (d) guanylation levels for all miRNAs and let-7 family mem-
bers in Tutg/7 wild-type and knockout samples from liver, bone marrow (BM), mouse embryonic fibroblasts
(MEFs) and embryonic stem cells (ESCs). Data points (circles) represent distinct replicates, with vertical
lines indicating the range of observed values. The average value in all cases is denoted by the height of each
bar. The fold changes in modification frequency between the wild-type and TUT4/7 knockout conditions is
shown as well as their significance scores using a (negative binomial) Wald test, from the DESeqz2 statistical
package (*: P-value < 0.05, **: P-value < 0.01, ***: P-value < 0.001).
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Fig. 2.15 Differential expression of miRNAs in TUT4/7 wild-type (WT) and knockout (KO) samples across
liver cells, mouse embyronic fibroblasts (MEFs), bone marrow (BM) cells and embryonic stem cells (ESCs).
MicroRNAs with statistically significant differential expression between the WT and KO conditions are
coloured in red (for the let-7 family miRNAs) and blue for the rest of miRNAs. Two to four biological repli-
cates have been used for each cell type.

Finally, we wanted to examine the extent of uridylation occurring in the 3’ ends of miR-
NAs based on which strand (5 or 3’) of the precursor duplex they originate from. Thus, we
profiled uridylyl-modifications across all miRNAs in liver, bone marrow, MEFs and ESCs
both in the wild-type and knockout conditions. Both 5° and 3° miRNAs show a drop in
uridylation levels in the absence of TUT4/7. However, we noticed that uridylation levels

in the wild-type condition are higher (around 2-fold) in the 3° miRNAs compared to the 5
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miRNAs. This result may indicate that since 3° miRNAs have their 3’ ends exposed right af-
ter Drosha processing (while for 57 miRNAs this only happens after Dicer processing), they
may be modified in multiple stages, thus yielding higher levels of overall modifications.

Liver BM MEFs ESCs
no-edits TUT4/7 KO WT TUT4/7 KO TUT4/7 KO TUT4/7 KO

lam e GG @G
G GG GG GG
G GG GG GG

poly(A)
C
mG

Fig. 2.16 miRNA modifications based on the precursor strand of origin during maturation. Distribution of
modification events (U/poly-U, A/poly-A, C and G) across 5’-strand miRNAs, 3’-strand miRNAs and all miR-
NAs in wild-type and TUT4/7 knockout samples from liver, bone marrow (BM), mouse embryonic fibroblasts
(MEFs) and embryonic stem cells (ESCs). 3° miRNAs are more extensively modified than 5° miRNAs in all
cell types, potentially due to the fact that their 3’ ends are exposed already for processing at an earlier stage
during maturation than the 3’ ends of 5° miRNAs.

3" miRNAs 5" miRNAs

all miRNAs

2.3 Conclusion

We have developed a novel method, Chimira, for accurate identification of modification
events and their positions across the entire miRNA length (3’/5° ends and main body).
The web-server version of Chimira is available here: http://wwwdev.ebi.ac.uk/enright-
dev/chimira. After validation of Chimira, we applied it for a larger analysis exploring the
effect of uridylation in oocytes and somatic cells in Mouse. In summary, we can conclude
that the loss of TUT4/7 leads to a consequent reduction of terminal mRNA and miRNA
uridylation without affecting any other types of modification. However, these changes
in terminal modifications brought only modest alterations to the repertoire of expressed
miRNAs and similarly did not have a notable impact on gene expression in any of the cell
types or tissues analysed. Thus, in somatic cells, uridylation via TUT4/7 is not essential as
a degradation mechanism, in contrast to oocytes where we demonstrated its indispensable
role in mRNA transcripts regulation.

Chimira is provided publicly as a web-application with an intuitive interface (Appendix
A) and its efficiency and speed have been demonstrated. The traffic recorded on Chimira’s
website has reached around 1,000 unique users since its initial release in June 2015. More

than 2,500 sessions of analyses have been performed with Chimira, with a variable number
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of runs submitted in each session. Chimira has also been cited in 21 papers (November

2017) and we expect it to be of benefit to the small RNA community for the years to come.



Chapter 3

Large-scale study on miRNA
biogenesis, function and

epi-transcriptomic features

The results from this chapter have been published in the following paper:

“Large-scale analysis of microRNA expression, epi-transcriptomic features and biogene-
sis”

DM Vitsios, MP Davis, S van Dongen, AJ Enright.

Nucleic Acids Research, Volume 45, p.1079-1090, doi: 10.1093/nar/gkw1031 (2017).

3.1 Introduction

Chimira has proven to be a great asset in the identification of miRNA modifications, as
described in the previous Chapter. Subsequently, we wanted to explore the prevalence
of miRNA modifications on a larger scale. Thus, in this chapter, we aim to extract the
miRNA modification profiles from a wide range of datasets. This will allow us to infer the
most prevalent patterns in epi-transcriptomic modifications of miRNAs as well as other
characteristics associated with their biogenesis, giving indications as to the features that
may drive these attributes.

The advent of Next-Generation Sequencing (NGS) technologies has made it a relatively
straightforward task to detect these molecules and their relative expression via sequenc-
ing. However, even though NGS has greatly increased our power to detect and catalogue
miRNA expression, these data are usually complex and are processed differently from lab-

oratory to laboratory. Hence, while there are currently over 850 deposited small RNA
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sequencing datasets in ENA (Leinonen et al., 2010) and GEO (Barrett et al., 2013), there is
not a comprehensive database or catalogue of where and when these miRNAs have been
detected. Additionally, as each experiment has been processed with different criteria and
filters the results may be difficult or impractical to compare directly. We sought to address
these issues by building a comprehensive catalogue of miRNA expression from large num-
bers of previously published small RNA sequencing datasets for both Human and Mouse,
for which raw FASTQ data are available.

In this analysis, we focus on Human and Mouse for which the majority of data are
available. We reanalyse sequencing data from 461 samples into a coordinated catalogue of
microRNA expression. We use this to perform large-scale analyses of miRNA function and
biogenesis in order to further expand our understanding of miRNA function in animals.
These analyses include global expression comparison, co-expression of miRNA clusters
and the prediction of miRNA strand-specificity and underlying constraints. Additionally,
we report for the first time a global analysis of miRNA epi-transcriptomic modifications
and assess their prevalence across tissues, samples and families. Finally, we report a list of
potentially mis-annotated miRNAs in miRBase based on their coverage profiles.

For each dataset we have performed automated barcode demultiplexing, 5°/3 adapter
detection using de Bruijn graph analysis followed by adapter excision and computational
size selection (15-32nts). Additionally, some samples require the removal of poly-A or
poly-C tracts. This data pre-processing step has been performed by a pipeline which was
based on the already published pipelines Kraken (Davis et al., 2013) and Chimira (Vitsios
and Enright, 2015). Each dataset has been mapped to known miRNA precursor sequences
using a single computational pipeline (Chimira). This pipeline not only represents a co-
hesive platform for the collation and analysis of small RNA NGS data but also allows the
detection of events such as 5°/3” modification of miRNAs via enzymes such as terminal
uridylyl transferases [TUTases, (Heo et al., 2009)] or adenosine deaminase RNA (ADAR)
editing (Blow et al., 2006). The raw count data obtained was normalised and annotated
according to each experiment, providing a comprehensive catalogue of miRNA expression
in Human and Mouse together with a variety of complementary data that can assist us in
the analysis of miRNA function and biogenesis.

Finally, the results have been collated into a comprehensive online repository of miRNA
expression and features such as modifications and RNA editing events, which is avail-
able at: http://wwwdev.ebi.ac.uk/enright-dev/miratlas. This resource is also accompanied
with tools for advanced queries to extract miRNA modification and/or expression patterns

across multiple conditions.
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3.2 Results

A total of 52 NGS datasets were obtained from both ENA and GEO covering in total 461
biological samples including biological replicates (Table 3.1). For each dataset, FASTQ
raw data were downloaded and annotation information was manually curated according
to tissue, cell type, disease state or cell line. More specifically, dataset annotation was
generated manually based on the information that is available in the original databases
for each dataset. The curated annotation classes may refer to either a cell line/type/tissue
(e.g. liver) or a condition/disease (e.g. cancer). In case both a cell line/type/tissue and
a condition/disease are provided for a dataset, only the condition/disease information is
used for the annotation of that dataset. Additional information is provided in the miratlas
repository as well as links to the original resources.

These raw data served as the foundation for all subsequent analyses described below.
Of particular note in the case of small RNA datasets is that the molecule being sequenced
is usually shorter than the sequence read obtained from an NGS experiment. This means
that most captured sequences contain both small RNA sequence and some amount of the 3’
sequencing adapter. In general, input datasets used for this analysis have been prepared by
different experimental protocols using a variety of barcodes, 3’ adapters and/or 5° adapters.
Thus, it was imperative first of all to infer the read geometry of each input dataset in or-
der to later clean the sequences from barcodes/adapters and further process the samples.
Thus, we developed a pipeline (Figure 3.1) that is deciphering firstly the presence or not
of a barcode sequence in the input samples by looking for enrichment of any sequence of
3-6nt long at the 5° end of the first 2 million sequences of an input sample file. Inference
of the 3’ adapter was accomplished through the command-line version of the 3’ adapter
detection feature of Chimira (Vitsios and Enright, 2015), which integrates minion and swan
(Davis et al., 2013) and is based on 3’ de Bruijn graph assembly. In that case though, the
position of the suggested adapter relative to the input sequences is also defined and thus
the inferred adapter may either be a 5° or 3’ adapter. In case the suggested adapter se-
quence did not match at least 9o% with a known Illumina adapter sequence (without any
mismatches), input files were also manually checked in order to identify any potential se-
quences that were attached to already known highly expressed miRNAs, such as the let-7
miRNAs. Datasets from ENA/GEO that were detected with ambiguous adapter sequences
or barcode annotation were excluded from the analysis. Eventually, we compiled a set of
52 datasets with a well characterised read geometry that we used for our analysis.

Following successful inference of the 3° adapter sequence across 52 datasets we re-

move the adapter sequences using reaper (Davis et al., 2013). Finally, these adapter purged
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sequences (representing small RNAs and contaminants) were de-duplicated, using tally,
such that each sequence was only represented once in the final input FASTA file accompa-
nied with its respective coverage depth. These cleaned and de-duplicated sequences were
the primary input into the miRNA analysis pipeline (Chimira). This pipeline automati-
cally scans each sequence against all known miRBase precursor sequences from a selected
species and detects the likely miRNA, which arm of the precursor it originated from (5°/3’)
and searches for non-canonical nucleotides which may be the result of editing and/or mod-
ification by enzymes such as Tutases. All miRNA counts, annotations and features detected

are stored in a MySQL database for further analysis.
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Fig. 3.1 Flowchart for the detection of barcodes, 5° and/or 3’ adapters from small RNA-Seq samples with
complex read geometry.
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Table 3.1 Comprehensive table of all examined datasets accompanied with annotation about the data source,
genome, number of samples and tissue/cell type of origin or condition.

NGS Dataset ID Source Genome Num of samples Tissue / Cell type
E-GEOD-15229  ArrayExpress Homo sapiens 31 B cells
E-GEOD-16579 ArrayExpress  Homo sapiens 12 Cancer
E-GEOD-18381  ArrayExpress Homo sapiens 12 Cancer
E-GEOD-20664  ArrayExpress Homo sapiens 3 Leukemia
E-GEOD-21191  ArrayExpress Homo sapiens Germ cells
E-GEOD-21279  ArrayExpress Homo sapiens 15 Liver
E-GEOD-23090  ArrayExpress Homo sapiens 6 B cells
E-GEOD-30286  ArrayExpress Mus musculus 19 Brain
E-GEOD-31069 ArrayExpress Homo sapiens 4 MCF-7
E-GEOD-31225  ArrayExpress Mus musculus 8 Fibroblast
E-GEOD-31667  ArrayExpress Mus musculus Fibroblast
E-GEOD-32055 ArrayExpress  Mus musculus 12 Brain
E-GEOD-32109 ~ ArrayExpress Homo sapiens Lymphoma
E-GEOD-32253 ArrayExpress  Homo sapiens 4 Breast milk
E-GEOD-33584  ArrayExpress Homo sapiens 4 Fibroblast
E-GEOD-33665  ArrayExpress Homo sapiens 30 Cancer
E-GEOD-34494 ArrayExpress Homo sapiens 3 Fibroblast
E-GEOD-36236  ArrayExpress Homo sapiens 31 Cancer
E-GEOD-37616  ArrayExpress Homo sapiens 35 Cancer
E-GEOD-37686  ArrayExpress Homo sapiens 10 ESCs
E-GEOD-37710 ArrayExpress Homo sapiens 3 Cancer
E-GEOD-38916 ArrayExpress  Homo sapiens 4 HEK293
E-GEOD-39086  ArrayExpress Homo sapiens 4 HEK293
E-GEOD-39162  ArrayExpress Homo sapiens 15 Cancer
E-GEOD-39841 ArrayExpress Homo sapiens 34 Cancer
E-GEOD-40819  ArrayExpress Homo sapiens 14 Placenta
E-GEOD-44568 ArrayExpress Homo sapiens 6 HEK293

PRJDB2583 ENA Homo sapiens 10 Cancer
PRJDB2585 ENA Homo sapiens 3 Saliva
PRJDB2675 ENA Homo sapiens 6 Multiple
PRJDB2807 ENA Mus musculus 8 Liver
PRJDB745 ENA Homo sapiens 2 Cancer
PRJEB6759 ENA Mus musculus 2 MEFs
PRJNA176037 ENA Mus musculus 3 Liver
PRJINA177892 ENA Homo sapiens 3 Cancer
PRJNA178259 ENA Homo sapiens 2 Cancer
PRJNA 190003 ENA Mus musculus 1 Brain
PRJNA193184 ENA Mus musculus 5 Germ cells
PRJNA198453 ENA Mus musculus 3 MSCs
PRJNA200090 ENA Mus musculus 3 Bone
PRINA210360 ENA Homo sapiens 2 Blood
PRJNA218007 ENA Homo sapiens 10 Lymphoma
PRJNA218834 ENA Homo sapiens 2 Tuberculosis
PRJNA219216 ENA Mus musculus Liver
PRJNA219428 ENA Homo sapiens 13 Plasma
PRJNA219492 ENA Homo sapiens 1 Liver
PRJNA222704 ENA Mus musculus 4 Cancer
PRJNA232648 ENA Mus musculus 8 Brain
PRJNA258408 ENA Mus musculus 12 Serum
PRJNA262814 ENA Mus musculus 5 Serum
PRINA267543 ENA Mus musculus 1 Soleus muscle
PRJNAS8o0147 ENA Mus musculus 18 Multiple
Total 461
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3.2.1 Global analysis of microRNA expression

In order to validate the initial results and to evaluate how well the automated small RNA
analysis performs we normalise the count data using DESeqz (Love et al., 2014), pro-
viding each dataset as a distinct condition at the design formula of the DESeq2 normal-
isation method. We then perform sample-to-sample unsupervised clustering based on
co-expression correlation analysis. This allows us to explore both the sample to sample
variation of miRNAs and to identify clusters of miRNAs which are significantly overrep-
resented in certain datasets. Additionally, it allows us to identify groups of samples with
very similar miRNA profiles. Our aim is hence to explore miRNA expression across this
heterogeneous pool of data and to characterise patterns among datasets of similar or dif-
ferent conditions. This analysis (Figures 3.2 and 3.3) clearly demonstrates clustering of
both miRNAs and samples across the datasets.

For miRNAs, the data clearly show a disparity between highly tissue specific and ubiq-
uitously expressed miRNAs (Figure 3.4A). For example, the let-7 family of miRNAs are
among the most abundant and widespread detected miRNAs as expected, together with
miR-21, miR-191 and miR-92a. Some highly expressed miRNA clusters also show distinct
expression, including the miR-106b-25 cluster and the miR-17-92 cluster. Two miRNAs,
hsa-miR-147a and hsa-miR-518a-5p, were expressed only in placenta tissue samples, which
may imply that their functionality is exclusively influencing embryonic development in
humans. Moreover, six miRNAs (hsa-miR-3689b-3p, hsa-miR-5707, hsa-miR-4534,
hsa-miR-5583-5p, hsa-miR-3529-3p, hsa-miR-603) are expressed only in a particular
dataset from lymphoma cell lines. The miR-302 cluster, thought to be important for
pluripotency and cell-cycle regulation was among the most specifically expressed clusters,
being predominantly expressed only in ESCs and in brain cancer. Overall, however these
data are complex and it is convenient to instead perform pairwise clustering of miRNAs
and samples separately to better detect significant commonalities and differences between
miRNAs in one analysis and samples in the second analysis. This functionality is available

in the web-based interface of miratlas.
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For sample to sample correlations (Figures 3.2, 3.3) we observe specific groups of
tissues and conditions clustering together for example cancer cell lines, B-cells and other
similar tissues. For some tissues and cell types multiple experiments from different sources
are available. These would ideally have extremely correlated results with differences being
explained by differing NGS platforms or experimental strategies. We observe on average
0.79 Pearson correlation of miRNA counts across 7 human datasets where the same tissue
or cell type has been profiled (0.82 respectively across 11 samples in Mus Musculus). In
contrast, taking random comparisons of different tissues resulted in an average correla-
tion of (0.68 in human and 0.69 in mouse). Clearly, although RNA extraction protocols,
sequencing platform and sample treatment account for variation between samples from
the same tissue, the correlations remain highly significant (P < 0.018 for human and P <
0.005 for mouse).

Three sample types show much lower expression than others (Saliva, Spermatozoa and
Serum from pulmonary tuberculosis). These samples do not cluster effectively as they
are difficult to normalise due to low sequence counts. In these cases it is likely that the
correlation observed is spurious and primarily due to low-counts and/or contamination
with RNA degradation products. However, the spermatozoa sample likely has low counts
due to the previously observed paucity of small RNAs detectable in sperm (Krawetz et al.,
2011; Suh et al.,, 2010). Clearly, one of the most defined features of the miRNA expression
level correlation within Human and Mouse is due to the fact that many miRNAs are co-
expressed from the same host transcript. We next sought to explore the expression of
miRNAs while taking into consideration their genomic context and likely transcriptional

unit.

3.2.2 microRNA Clusters derived from genomic proximity

It is well known that many groups of miRNAs are encoded by a single transcript (coding or
non-coding). These miRNA clusters are usually predicted by virtue of their close proximity
on the genome. Previous computational studies have suggested that miRNA hairpins lying
within 10kb (Saini et al., 2007) are likely to be co-transcribed. We sought to update these
findings from earlier studies, based on EST and cDNA data, with the data described here.
Additionally we use both the genomic location and also miRNA co-expression analysis to
re-evaluate these predictions and to generate novel miRNA clusterings. For this analysis
we assess the accuracy of genomic clusters of miRNAs predicted using different genomic

distance thresholds and miRNA co-expression as a measure of their co-regulation.
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We first define all possible miRNA genomic clusters using a custom window of size
W. Genomic clusters are defined as follows (Figure 3.4B.a): let mir,, mir, and mir; be
three miRNA genes in neighbouring locations on the genome without any other miRNA
genes interfering at the genomic space between mir, and mir,. Then, mir,, mir, belong
to the same genomic cluster (GC)) if and only if: d\, < W. mir; also belongs to GC, if
and only if d,; < W (d,; may be greater than W but it will be less than or equal to 2W).
Thus, a genomic cluster may contain pairs of miRNAs whose distance is greater than W
but for each miRNA there is at least another miRNA in that cluster that is closer to it
less than W base pairs. The W parameter has been selected as large as possible while still
retaining the number of clusters with negative intrinsic correlation at a relatively low level
(Figure 3.4B.b,c). Based on these criteria and the relevant literature (Griffiths-Jones et al.,
2008; Saini et al., 2007), we assign 10k bp as our window size for further analysis. This
value produces a total of 153 genomic clusters in human and 92 clusters in mouse.

After the genomic clusters have been constructed, we calculate the average correla-
tion of miRNA co-expression within each genomic cluster (Figure 3.4B.d,e). The number
of clusters with positive intrinsic correlation compared to those with negative correlation
is statistically significant (P < 107°), based on a model that is constructed as the aver-
age consensus of 10 runs with random genomic cluster assignments to the miRNAs of
our study. We additionally observe that 33.3% of all genomic clusters in human datasets
demonstrate a significant average intra-cluster correlation of > 0.7 (P < 2.7 x 107%). In-
terestingly, there are 18 clusters in the human datasets and 12 in the mouse datasets that
have non-significant negative correlation values (—0.3 to 0.0). In these instances the small
RNAs detected likely are transcribed from separate transcriptional units, products of al-
ternative splicing, possibly mis-annotated RNA degradation products or under some other
form of complex regulation. One interesting example with poor expression correlation is
the cluster containing hsa-miR-1306 and hsa-miR-3618. These miRNAs are products of the
DGCRS transcript with the miR-3618 hairpin present in the 5° UTR being processed by the
microprocessor complex as part of DGCR8’s complex transcriptional control mechanism

(Triboulet et al., 2009).

3.2.3 Clusters derived from miRNA co-expression

Another way to explore the clustering of miRNAs is to look for functional clustering of
miRNAs based solely on their co-expression. The assumption here is that miRNAs with
high expression correlation are likely to be involved in similar biological systems. We
expect that clusters defined in this manner should show considerable overlap with clusters

derived from the genomic proximity analysis above. However, we may also be able to
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identify groups of miRNAs encoded by transcripts at different genomic loci that still exhibit
correlated expression of their host transcripts and may well be functionally linked. In
order to generate all miRNA functional clusters, we first got miRNA expression counts
with loci-specific information at the genomic level using Sequencelmp (Davis et al., 2013).
We then created a correlation matrix with the co-expression of all miRNAs detected in this
study. This matrix defines a weighted graph and weights of its edges correspond to the
correlation of expression between pairs of miRNAs. We then clustered this graph using
MCL (van Dongen and Abreu-Goodger, 2012), setting the value of the Pearson filtering

threshold to 0.8 and the inflation parameter to 1.4.
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Fig. 3.5 Associations of functional miRNA clusters with the respective genomic clusters. (a): Human sam-
ples, (b) Human samples, highlighting two clusters of co-expressed miRNAs with distant genomic origins,
(c): Mouse samples. Each functional cluster is denoted by a black coloured arc with a numeric id. The length
of the arc is proportional to the size of the cluster it represents. MicroRNAs that don’t have any genomic
cluster assignment have been omitted from this analysis for the sake of clarity of the figure. Genomic clus-
ters correspond to the arcs of fixed length, coloured with a non-black hue, and they are sorted in a clockwise
order based on their proximity at the genome.
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As expected, results show (Figure 3.5) significant overlap between clusters derived from
proximity and those derived by expression correlation. However, we also observe a subset
of functional links between groups of miRNAs expressed at different genomic loci with
significant expression correlation. For example transcriptional cluster 3 (Figure 3.5a) is
comprised of a number of genomic clusters including those on chrX, 19 and 13. Close
inspection of these transcriptionally linked clusters (Figure 3.6) indeed indicates a prepon-
derance of EGR1 transcription factor motifs, coupled with SP1 and NRF1. These results
indicate that the high degree of transcriptional correlation observed between these three
genomic clusters is a result of their being driven by the same transcriptional inputs. The
high majority of the rest of transcriptional clusters with divergent genomic origin content

contain either miRNA paralogues or let-7 family miRNAs, in both human and mouse.

3.2.4 Calling and analysis of the prevalence of microRNA modifi-

cations

In the past few years it has been widely demonstrated that miRNAs go through post-
transcriptional alterations that can modify their 3’ ends, mainly via mono- or poly-
uridylation (Heo et al., 2012, 2009). Such epi-transcriptomic alterations can have tremen-
dous regulatory impact including how the small RNA machinery in the cell processes these
molecules or whether or not they are degraded. In this study, we present for the first
time a global profile of miRNA modifications occurring at both 3’ and 5’ ends. In order
to identify the modifications in both ends of each miRNA we have employed additional
analysis steps where all primary miRNA sequences are mapped against miRNA precur-
sors using Chimira (Vitsios and Enright, 2015). Chimira scans the aligned regions in order
to detect bases in the miRNA sequence that are not encoded in the genomic sequence.
All extracted modification patterns are associated with the exact location of the modifi-
cation relative to the original sequence. These unalignable nucleotides can be any of the
following classes: i) base-calling errors, ii) single nucleotide polymorphisms or iii) post-
transcriptional miRNA modifications (e.g. via tutases). Base-calling errors are pseudo-
random, platform-dependent and are more likely to occur at the 3’ end of a sequencing
read, although at relatively low frequencies. SNPs are easier to detect as they will be
present in a significant fraction of all reads observed. Finally, modifications such as uridy-
lation or ADAR editing can be detected due to their being highly skewed towards particular
modifications (e.g. mono-U, poly-U or A —G).
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Overall, we find that 3° modifications are far more prevalent than detected 5’ modifi-
cations (Figures 3.2, 3.3). In total, 95 human (4.4%) and 142 mouse (7.8%) miRNAs showed
on average significant levels of 3’ modification (i.e. more than 25%). Similarly, 23 hu-
man (1.1%) and 24 mouse (1.3%) miRNAs showed on average significant levels (i.e. more
than 25%) of 5° modification. Mono and dinucleotide additions are the most common mod-
ifications, although longer modifications were observed too, albeit at lower frequencies
(Figure 3.7a,b). In both Human and Mouse we observe a preponderance of Adenosine and
Uracil modifications (Figures 3.2, 3.3) suggesting that both adenylation and uridylation
by TUTases are likely the primary modifications made to miRNAs at least in animal sys-
tems. Both cytoplasmic adenylation by GLD-2 (Katoh et al., 2009) and terminal uridylation
by Tut4/Tut7 have been reported before as important for miRNA stability and degrada-
tion (Heo et al., 2012). However, in this study we performed the first large scale detection
and analysis of these events across animal tissues.

In order to investigate the significance of the presence of 3° Guanine and Cytosine
modifications, we performed an analysis in 12 human samples from mRNA-Sequencing
experiments that were derived from Illumina Sequencing instruments to identify whether
these G:C modifications may result from known sequencing biases present in the instru-
ment. To evaluate this we assume that G:C sequencing biases for mRNA samples will be
largely similar to those obtained from small RNA sequencing. However, we would not
expect any terminal modifications to occur within sequencing reads derived from exonic
mRNA sequence, any non-genomic nucleotides observed are more likely to be sequencing
errors. In order to extract potential sequencing bias profiles, we filtered the reads from 12
human samples sequenced by Illumina, retaining only those that were at least 1ont shorter
than the maximum length among all the reads, which is the length that occurs more fre-
quently among the reads of the sample. This filtering process allows us to retain only the
reads that may correspond to 3’ exons of actual mRNA transcripts. The filtered reads were
then aligned against the 3’ human exons of the reference database we had constructed
allowing the identification of sequence artefacts that are appended to the 3’ end of the

transcripts and probably represent sequencing artefacts.
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The derived profile of sequencing biases is very rich in Gs and Cs (Figure 3.7e) and
greater than 65% of all observed errors for mono and dinucleotide errors. With regards
to the datasets that have been used in our large-scale miRNA analysis, some of them are
derived from Illumina Sequencing instruments, while others are derived from different
types of instruments and another significant percentage among them do not provide in
their annotation any information about the sequencing instruments that have been used
during the experiment. The lack of annotation makes it difficult to computationally model
and filter these likely G:C biases, however the data suggest that for the most part they are
largely sequencing artefacts. Besides, this strongly suggests that the observed A:U enrich-
ments are highly unlikely to be due to such sequencing artefacts and instead represent
valid biological effects.

The prevalence of 5° modifications is far lower than that observed for 3’ changes. Al-
though some tRNAs are known to have 5° modifications, we are not aware of any reported
biochemical experiments of 5’ modification of small RNAs. For both human and mouse
however a preponderance of 5° A and U modifications are observed but are extremely rare
as compared to 3° modifications. It has already been reported that the 5° ends of miRNAs
are generally post-processing stable in contrast with the 3" ends (Hibio et al., 2012). Ad-
ditionally, addition of 5° nucleotides would dramatically alter the targeting of a miRNA
loaded into the RISC complex. This may explain the lower count numbers and also the
lower variability of the 5° modifications in comparison with the 3’ modifications.

However, certain datasets, among those from spermatozoa, monocytic leukemia and
saliva samples (Figure 3.7f-h) as well as two cancer datasets (E-GEOD-39841: brain cancer
and E-GEOD-36236: skin cancer; profiles available in miratlas) exhibit a high ratio of 5’
modifications, especially at the first nt upstream to the 5° end. These modifications are
capable of redefining the seed region patterns of the modified miRNAs and consequently
change the repertoire of the mRNAs that are being targeted by them. This may be affect-
ing the functionality of some or all of these tissues by causing irregularities related with
disease conditions. These initial observations though need further investigation in order
to truly validate their biological effect. More specifically, it would be imperative to first
predict miRNA targets [e.g. via Sylamer (van Dongen and Abreu-Goodger, 2012)] in the
datasets with high 5° modification levels. This search should include both the canonical
mature miRNA sequences and the 5’-modified ones, since each of them is associated with a
different set of mRNA targets, let them be canonical-targets and modified-targets, respectively.
Then, if 5’-modifications were biologically active, we would expect that canonical-targets’s
expression is increased while expression of modified-targets is decreased, both at a statis-

tically significant level. Thus, we propose as future research the extraction of both small
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RNA-Seq and RNA-Seq data from the identified datasets (Figure 3.7f-h), predict all relevant

miRNA targets, extract mRNA expression data and finally assess the enrichment/depletion

levels of mRNAs that are being targeted by the canonical or 5°’-modified miRNAs.
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Fig. 3.8 Overall extent of modification events and most dominant patterns. (a),(d): Modification ratios cover-
age across all human and mouse datasets. (b), (e): Prevalence of top-20 most frequent modifications patterns
at the 5” end of miRNAs in human and mouse. (c),(f): Prevalence of of top-20 most frequent modifications

patterns at the 3’ end of miRNAs in human and mouse.
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In the majority of cases, modifications affect less than or around 20% of the total ex-
pression depth while there are very few cases that they reach 30% or 40% of the total depth
(Figure 3.8a,d). Moreover, the prevalence of 3’ modifications is significantly higher than 5’
modifications (Figure 3.8). A strong enrichment for 3’ A and U modifications is observed in
both human and mouse which is in agreement with previous studies implicating tutase en-
zymes. For 5” modifications a smaller enrichment is observed for 5 Adenylation, however
this enrichment is only observed to be significant in Human samples and a corresponding
shift is not observed in mouse. The mild enrichment for 5° Adenosine is puzzling and pos-
sibly reflects the presence of 5’Methyl adenosine sites known to be important for primary
miRNA processing.

We then explored the distribution of adenylated and uridylated variants across all
datasets (Figures 3.9 and 3.10). We focused on the expression of the let-7 family miR-
NAs and we observed a high resemblance of their modification profiles for these particular
variants. Only mir-98 has a markedly different profile, potentially due its lower expression
compared to other members of the let-7 family. We also projected the modification distri-
bution of a set of highly expressed miRNAs. Some of these profiles show high similarity
with the respective let-7 profiles while others demonstrate a relatively low modification
depth (Figures 3.9 and 3.10). This finding suggests that the frequency of modification
events is not always associated with miRNA abundance but may be driven by other fac-
tors related to a particular condition, cell type or tissue. Several dataset types also tend
to cluster together based on the overall expression of different types of variants in both
species (Figures 3.9 and 3.10) or the modification frequencies of the most highly modi-
fied miRNAs (Figure 3.11). However, although overall expression of let-7 miRNAs is very
similar across samples of the same cell type or condition, the expression of individual let-
7 variants (e.g. adenlyated, guanylated) seems to deviate even for samples of the same
annotation class.

For ADAR editing events, we observe an enrichment for brain in both Human and
Mouse (Figure 3.11), in correspondence with previous studies (Blow et al., 2006). Addi-
tionally, we observed an enrichment in serum and some cancer samples of non neuronal
origin (data available in miratlas). The rate of ADAR editing observed in brain samples is
2% and it occurs most predominantly in the seed region of miRNAs, also in line with previ-
ous studies. We also observed that two cancer samples from human and mouse have very
similar profiles and that is also the case for another pair of serum samples from the two
species (data available in miratlas). This may imply that ADAR edits for those particular

conditions are preserved across these two species.
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Finally, we have built the global maps of modification expression for all distinct types
of modification and for aggregate variants (Figure 3.12, Figure 3.13). We confirm again that
adenylation and uridylation are the most predominant modification types and they tend to

occur significantly more frequently at the 3’ end of miRNAs , both in human and mouse.

3.2.5 MicroRNA strand-specificity analysis and characterisation

The dataset we obtained is extremely useful for exploring other aspects of miRNA biogen-
esis. In particular, because we obtain sequencing counts for both the 5" and 3’ strands from
a miRNA precursor we can use these data to globally explore mature strand selection of
miRNAs. During the miRNA maturation process in general only one strand of the miRNA
duplex is assembled into RNA-induced silencing complex (RISC) while the complementary
strand is degraded. This phenomenon has been studied in the past and the prevailing the-
ory is that the asymmetry in the selection of the dominant miRNA strand may be explained
by the difference in the stability of the bonds of the miRNA duplex at 5’ ends of each strand.
This hypothesis has been proved experimentally for a small number of miRNAs (Schwarz
et al., 2003). However, there is no global analysis so far that evaluates and models strand
selection for miRNAs. We sought to both test these hypotheses and extract a global model
of strand-selection for miRNAs based on the Gibbs free energies (AG) of the bonds present
in the double stranded pre-miRNA.

During the formation of a double stranded RNA molecule, low AG values indicate that
the reaction can occur spontaneously and lead to a stable form. Conversely, high AG
values, calculated with reference to a ds-RNA segment, indicate high likelihood for that
segment to unwind without the intervention of an external energy source.

For all miRNAs, we calculated the AG free energies (in kcal/mol) for short double
stranded segments of their hairpin structures around the 5’ end of the miRNA from each
strand. We tested a variety of definitions for these segments. In each case, the window
used for the definition of the segments focuses on a ds-RNA region of the hairpin, starting
upstream, downstream or right at the 5° end of each mature miRNA and extending for N
(N=>1) nt overall towards the 3° end of the miRNA. Specifically, we calculated the AG for
each segment starting at the 5’ end of the 5° mature product (AG1) and at the 5’ end of the
3’ mature product (AGz2) and set their difference as AAG = AG2 - AG1 (Figure 3.14a.i).

Based on expression data from this analysis, all let-7 family miRNAs turn out to be
very highly 5°-strand specific. Looking closely at the secondary structure of the let-7 family
hairpin precursors, let us assume that the 5° end regions of the 5" miRNA products are more
unstable than the corresponding ends of the 3’-miRNA products (e.g. due to prevalence of

A:U bonds, gaps or wobbles). So, based on the conventions for the calculated free energies
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we used before, we would expect that AG1 > AGz2, since AG1 refers to a more unstable
structure. As a result, we would expect that AAG < o for the 5’-strand specific miRNAs,
AAG > o for the highly 3p-strand specific miRNAs and AAG = o for the non strand specific
miRNAs.

In order to test our hypothesis, we classified all miRNAs based on their strand
specificity. For this analysis, only miRNAs with two mature products, one for each strand
of the hairpin precursor, have been taken into account. We first calculated the expression

ratio of each miRNA strand product using the following formula:

COUNLS (47

expresszon_ratzo(arm) = COUNLS (1) FCOUNLS (compt arm)

where:
e (arm, compl_arm) = (3p, 5p) or (5p, 3p)

« counts,,, : is the total normalised depth of the arm mature miRNA product across

all datasets and

* COUNTS(omp army - 18 the total normalised depth of the compl_arm mature miRNA prod-

uct, at all possible loci of the genome.

Based on the expression_ratio scores calculated using the formula above, we grouped all
miRNA precursors into three groups:

1. Highly 5’-strand specific: a < expression_ratios, < b
2. Highly 3’-strand specific: a < expression_ratio;, < b
3. Non strand specific: 0.4 < (expression_ratios, || expression_ratios,) < 0.6

for different sets of increasing strand specificity thresholds:
(a,b) = { (0.7, 0.85), (0.85, 0.93), (0.93,0.97), (0.97, 1) }

We then test our hypothesis by calculating the AAG values for all three types of strand
specific groups with reference to a different segment of the ds-RNA hairpin structure each
time. We have used increasing strand specificity thresholds for the highly 5’ and 3’ strand
specific groups in order to examine if there is any shift in the AAG values as the strand
specificity criteria become more stringent. Moreover, we checked if the AAG values from
each strand specific group were distinguishable for the other groups implying that free

energies calculated for a specific window of a ds-RNA hairpin segment are correlated with
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the strand selection process. Gibbs free energies have also been calculated for an additional
group of 1000 ‘random’ miRNAs. This group of ‘random’ miRNAs is formed by selecting
randomly 10 non-strand specific miRNAs identified in our study and generating for each of
them 100 permutations of their hairpin precursor sequences, permitting only permutations

that fold into hairpin-like structures in the end.
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Fig. 3.14 Separation of strand specificity classes based on free energies difference. (a): Optimal classes
segregation based on free energy calculations at the 5’ ends of the two potential strand products. (a.i):
Window used for the free energy calculations that leads to a clear separation of the strand specificity classes
based on the energy difference: AAG = AG2 - AG1. The start of the window is set to the first nucleotide of
the 5’ end of both strands and the window extends for an extra nucleotide towards the rest of each miRNA
strand. (b): Free energy calculations at a 3nt long ds-RNA segment adjacent to the optimal window. (b.i):
3-nt long window starting with the 2-nt overhang at the 3’ end of each strand used for the AG calculations
in the hairpin sequences. The start of the window is set to the first nucleotide of the 2-nt overhang at the
3’ end of each strand and the window extends for another two nucleotides towards the 3’ end of the whole
hairpin in both cases. (a),(b).ii-v: AAGs densities for the groups of the highly 5’-strand specific, highly 3’-
strand specific, non-strand specific miRNAs and random miRNAs, by progressively setting stricter criteria
of strand specificity, based on the expression_ratios,, values (Eq. 1). (ii): 0.7 < expression_ratios,;, <
0.85, (iii): 0.85 < expression_ratios,;, < 0.93, (iv): 0.93 < expression_ratios,;, < 0.97, (v): 0.97 <
expression_ratios,;, < 1.

After rigorous testing, we identified that there is a strong separation between the highly
5’-strand specific, highly 3’-strand specific and the non strand specifics groups of miRNAs

only when the AAG is calculated using a window that contains the first N=2 nucleotides
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of each strand (Figure 3.14a.i). In this case, the AAG distribution complies remarkably well
with the assumption we have made earlier with regards to the expected AAG values for
different types of miRNAs in terms of their strand specificity (Figure 3.14a.ii-v). Addi-
tionally, the group of random miRNAs, that is used as a control to examine the variance
of AAG across a large number of hypothetical hairpins, follows quite precisely the AAG
profile of the non-strand specific miRNAs that originate from real hairpins. Hence, these
results indicate that, in general, the stability of the first 2nt at the 5° end of each strand
plays the most crucial role for mature miRNA strand selection.

Furthermore, we made another observation that refers to the AAG calculations for a
window of 3nt, starting at the 3’ end of each miRNA strand and extending for an extra nt
in both sides (Figure 3.14b.i). This window contains nucleotides that are not present in the
ds-RNA that is extracted to the cytoplasm but exist only in the hairpin precursor. How-
ever, we can notice again that there is a quite clear, although milder than in the previous
case, separation of the miRNAs based on the strand specificity of their mature products
(Figure 3.14b.ii-v). In this case though, AAG distribution for the highly 5’-strand and 3’-
strand specific is reversed compared to the previous distribution. That may indicate that
the unstable 2nt long ds-RNA segment at the 5° end of each strand is reinforced by the
adjacent 3nt long ds-RNA segment that contains the 2nt overhang at the 3’ end of the
complementary strand. So, the asymmetry of miRNA duplexes in their 5’ ends is balanced
by an opposite asymmetry in their 3’ ends which contributes to the preservation of the

hairpin structure energy equilibrium.

3.2.6 Detection of mis-annotated miRNAs

The data obtained clearly shows that miRNAs have distinct patterns of expression, mod-
ification, strand-selection and genomic localisation. The many hundreds of thousands of
miRNA to precursor alignments obtained from NGS data also allow us to detect miRNAs
which do not appear to illustrate the hallmarks of well characterised miRNAs. Previous
reports have described many such molecules present in the miRBase database and suggest
they represent mis-annotated sequences likely derived from other non-coding RNAs or

degradation products of longer molecules (e.g. tRNAs).
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We used the alignment data obtained to automatically scan for miRNAs whose align-
ments and modification profiles did not fit those of well characterised miRNAs. More
specifically, from the entire set of miRNAs for each species, we retained only those that
were expressed in at least 5% of all datasets of that species. We then parsed all coverage
profiles and highlighted those that had 4 or more nucleotide positions with a mismatch
ratio >70%. The filtered list of modification profiles was then compared manually to the
profiles of the control miRNAs in order to retain only the miRNAs with a non-canonical
modification profile.

We identified 22 Human and 21 Mouse miRNAs whose profiles clearly differ from miR-
NAs such as let-7 (Figure 3.15 & Figure 3.16). Scanning this set of miRNAs against miRBase
shows that 11 of 43 identified miRNAs show similarity to annotated non miRNA molecules
in the Rfam database (Nawrocki et al., 2014). These miRNAs together with a comparison
of miRNAs whose provenance is well established, e.g. via northern blot (Figure 3.17), is

also available in miratlas.

Canonical miRNAs (control)

. Templated sequences
Mus Musculus

Homo Sapiens [l Mismatches

miRNA: hsa-let-7f-5p
Total depth: 99124429
Sample hits: 307

miRNA: hsa-mir-21-5p
Total depth: 91015501
Sample hits: 308

miRNA: hsa-mir-92a-3p

Total depth: 29585834

Sample hits: 296 ||
LT

miRNA: mmu-let-7f-5p
Total depth: 24287183
N Sample hits: 105

CAGAGUGAGGUAGUAGAUUGUAUAGUUGUG

RNA: mmu-mir-22-3p

mi
Total depth: 15332486
Sample hits: 103

bR |||||||||||||||||||

miRNA: hsa-mir-30a-5p

Total depth: 26496203
| ||| Sample hits: 288
| (—

Sample hits: 288

miRNA: mmu-mir-92a-3p
Total depth: 3507336
Sample hits: 86

Total depth: 6337838

r-423-5p
Total depth 11554279

Sample hits: 105
-16-5p
Total depth 2126403
| | Sample hits: 96

Fig. 3.17 Coverage profiles of miRNAs that are highly expressed in: (a) all 34 human datasets and (b) all
18 mouse datasets of this study and have validation via northern blot in miRBase. These profiles serve as
the control reference for the detection of potential miRNA artefacts from the analysis of miRNA coverage
profiles.
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Finally, we wanted to examine if the prevalent form of miRNAs expressed in the mi-
ratlas datasets is equivalent with the miRBase canonical annotation. Specifically, we are
interested in miRNAs whose predominant form detected in our data was longer or shorter
than the annotated version. Thus, we reanalysed all human and mouse miratlas registered
samples and extracted the average length of the expressed template miRNA sequences
across them, normalised by their overall expression depth. We then calculated the differ-
ence in length between each expressed miRNA and its corresponding annotated sequence
in miRBase (Figure 3.19). We detected that for both Human and Mouse the prevalent form
of expressed miRNAs is on average 1nt shorter than the accepted canonical sequence in
miRBase. We also detect a small number of miRNAs which appear to be longer than their

annotated mature sequence. Examples of both are shown (Figure 3.18).

Longer isoforms Shifted / Shorter isoforms
miRNA: hsa-mir-30d-5p shifted) miRNA: hsa-mir-320a
Total depth: 18265742 ;dfa' flieﬁ!:".235317155 I
| sample hits: 201 ample hits: [N .
GUUGUUGUAAAGAUCCCC GACU AR G ACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC Revised consensus sequence: "AAAGCUGGGUUGAGAGGGCGAA (1nt shifted)

Revised consensus sequence: UGUAAACAUCCCCGACUGGAAGCU

miRNA: hsa-mir-339-3p

Total depth: 247282
Sample hits: 246 |
I IIl-;.,
miRNA: hsa-mir-25-5p Revised consensus sequence: UGAGCGCCUCGACGACAGAGCC ~ (1nt shorter)
Total depth: 150589
|| Sample hits: 195
miRNA: hsa-mir-503-5p

GGCCAGUGL AAUUGCUGGACGCU CAUU UUGUCUCGGUCU! Total depth: 40967
Revised consensus sequence: AGGCGGAGACUUGGGCAAUUGCU |II Sample hits: 29
GGAACAGUUCUG II.’

Revised consensus sequence: UAGCAGCGGGAACAGUUCU (4nt shorter)

Revised consensus sequence: AGGGACGGGACGCGGUGCAGUGUU Revised consensus sequence: UCAGUGCAUGACAGAAC (4nt shorter)
a. b.

miRNA: hsa-mir-92b-5p

Total depth: 38719 miRNA: hsa-mir-152-3p
Sample hits: 138 Total depth: 265234
I||-- Sample hits: 33

JGUUGUUUUUL cL uC)

UGCAUG/

Fig. 3.18 Mature miRNAs with revised consensus sequences. (a): miRNAs with prevalent isoforms 2nt longer
than the miRBAse annotated ones. (b): miRNAs with shifted or shorter prevalent isoforms compared to the
miRBAse annotated ones.
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Fig. 3.19 Length difference (in nt) between expressed miRNAs vs. miRBase annotated miRNA sequences.
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3.3 Conclusion

In this chapter, we presented a comprehensive analysis of miRNA expression across mul-
tiple tissues and cell lines in Human and Mouse. These data are derived from high-
throughput sequencing experiments from public resources. We have used these data to
build a comprehensive miRNA expression dataset for Human and Mouse that takes into
account both expression levels and detected modifications to miRNAs (e.g. 3’ uridylation
or ADAR editing). This combined data resource allowed us to explore the complex features
of miRNA transcription across tissues and to group miRNAs into clusters based on their ex-
pression correlation. Additionally, we used these data to explore the likely transcriptional
coupling of miRNAs in co-expressed clusters. We explored in detail, for the first time, the
prevalence of both 5’ and 3’ nucleotide modifications to miRNAs and showed that mono
and dinucleotide 3’ terminal modifications are the primary modifications observed in both
human and mouse, with ADAR editing mostly restricted to brain and cancer cell types.

We have also used these data to build a thermodynamic model for how the mature
strand of a miRNA precursor is selected by exploring structural constraints around the
ends of miRNA precursors derived from large-scale NGS data. Finally, we have suggested
updated miRNA annotations based on the most prevalent isoforms derived from our ex-
pression data and we highlighted some inconsistencies in miRBase, the official miRNA
repository.

Since we are able to detect mis-annotated miRNAs from high-throughput sequencing
data we were intrigued to explore the possibility of predicting novel miRNAs by solely
inspecting their sequencing profiles. This idea motivated us to the next project, presented
in the following Chapter, which addresses the problem of novel miRNA prediction from
small RNA-Seq data.



Chapter 4

Genome free discovery of miRNAs
from small RNA-Seq with machine

learning

The results from this chapter have been published in the following paper:

“Genome-free prediction of microRNAs from small RNA sequencing data and single-cells
using decision forests”

DM Vitsios, E Kentepozidou, L Quintais, E Benito-Gutiérrez, S van Dongen, MP Davis &
AJ Enright.

Nucleic Acids Research, Volume 45, p.e177, doi: 10.1093/nar/gkx836 (2017).

4.1 Introduction

The identification and annotation of novel miRNAs from various species, either animals or
plants, has been a challenge in the field of small non-coding RNAs for many years. This
remains an open problem, particularly given the growth of high-throughput sequencing,
cell sorting and single cell biology. While a large number of miRNAs have already been
annotated, there may well be large numbers of miRNAs that are expressed in very particu-
lar cell types and remain elusive. Sequencing allows us to quickly and accurately identify
the expression of known miRNAs from small RNA-Seq data. Traditionally, novel miRNA
prediction was based on the identification of short sequences, mapping such sequences to
the genome, and searching for those loci that may produce the characteristic hairpin struc-

ture of a pre-miRNA via analysis of derived structural features. However, we sought to
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explore the possibility of predicting novel miRNAs with high accuracy without requiring
a reference genome in the process.

Our initial hypothesis is that features of microRNA (miRNA) sequences, derived from
their biogenesis may be sufficient to predict miRNAs de novo, i.e. without using a reference
genome. These ‘biogenesis’ features (Figure 4.1) are clearly evident when one interrogates
large numbers of miRNA sequencing datasets from multiple species. In brief, miRNAs
usually have a well-defined 5’ end and a more flexible 3° end with the possibility of 3’
tailing events, such as uridylation.

In order to perform genome-free feature analysis of miRNA sequences, one needs to
take an input set of small RNA sequences and globally group them into clusters of related
sequence. These clusters may then be aligned and filtered. This alignment allows a con-
sensus sequence to be constructed and biogenesis features to be assessed. The advantages
of de novo discovery of miRNAs purely from sequencing data are readily apparent: i) it does
not require a reference genome, ii) removing the genomic mapping and RNA secondary
structural analysis allows for faster computation and iii) it will produce a smaller set of
novel candidate sequences, should one want to do genomic feature analysis later.

To this end, we have developed a new method, mirnovo, which allows for predic-
tion of novel miRNAs in animals and plants, with or without a reference genome. This
method performs comparably to existing tools, however is simpler to use with reduced
run time. Its performance and accuracy has been tested on multiple datasets, including
species with poorly assembled genomes, RNaselll (Drosha and/or Dicer) deficient sam-
ples and single cells (at both embryonic and adult stage). This method is available as both
a web-application (http://wwwdev.ebi.ac.uk/enright-dev/mirnovo) and a stand-alone tool

(https://github.com/dvitsios/mirnovo).

4.2 Main methodology

The main methodology behind mirnovo, either with or without a reference genome, lies
in graph-based clustering of read-read similarities from raw FASTQ files (Figure 4.2). Al-
though there have been reported three tools in the past for “genome-free” discovery of
microRNAs (Kang and Friedldnder, 2015), they are either not supported anymore (Jha and
Shankar, 2013), not predicting novel miRNAs (Kuenne et al., 2014) and/or using extremely
restrictive approach for novel miRNA prediction, e.g. requirement for detection of both
strands (Mapleson et al., 2013), which is not common for miRNAs. Our approach to the
discovery of miRNAs is novel in the sense of combining large-scale RNA-Seq with machine

learning methods using fine-grained feature engineering.


http://wwwdev.ebi.ac.uk/enright-dev/mirnovo
https://github.com/dvitsios/mirnovo

91

4.2 Main methodology

"soouanbas Terwurs Jo 193SN[O Yoea J0J UOTHIULSP SaInjes] (sisauadorq) aferano) ¥ -G

CEmmm e e - - U1bus| 90UaNbIS BBRIDAR 1= = = = = = - - - m = = = > JUSW|dWOD 3SIBARI 'SA
Ayuapi yuswubije
€ Jaye g muspiy 1
1U21U0D Y obeiaAe e
Apoq utew uj uoibal pass ul
Apoq urew 9 1USU0D HD) abelane mmsu“mEm_E _ Apoq urew
191je sdeb ! X m:ouao_ sdeb
1 1
® . . oo
— 0
-v0 Q)
€ 1aye .G 9210jq <
91eJ buyjeos el mc__mum B
Q
(< Ic
[}
- 90 o
=
(@)
— 80
sdeb _H_
v O
I I
o> [l i ! Lol
! Apoq utew, !
> [ " "
! Kpoq utew ui !
n _H_ € saydlewsiw yibus| Apoq urew yidap peas |e30} o
1 1
v Il (€ o L




92 Genome free discovery of miRNAs from small RNA-Seq with machine learning

Input files for mirnovo are one gzipped (.gz) FASTQ file for each run from either bulk
or single-cell small RNA-Sequencing data. Input sequences may have already been pre-
cleaned from their 3’ adapters otherwise a 3’ adapter sequence needs to be provided by
the user. In the latter case, the 3" adapter from input data is removed with reaper and the
cleaned sequences are de-duplicated with tally (Davis et al., 2013).

Following de-duplication, sequences are clustered together into groups based on their
similarity using vsearch (Rognes et al., 2016). Subsequently, clusters are filtered based on
the minimum number of isoform variants they contain and their overall depth. After a
consensus sequence has been calculated for each cluster, all clusters are aligned against
Rfam (Nawrocki et al., 2014) and aligned hits are retained to be reported separately as
potential tRNAs or rRNAs. Due to inconsistencies in the initial clustering by vsearch, an
extra refinement step has been introduced in order to merge clusters with highly similar
consensus sequences. This refinement step is performed using cd-hit (Fu et al., 2012), based
on 7-mer searches and an 0.85 alignment identity threshold.

Next, mirnovo performs multiple-sequence alighment within each cluster using mus-
cle (Edgar, 2004), it assesses the new consensus sequences of the merged clusters and maps
them against miRBase (Griffiths-Jones et al., 2008) in order to identify known miRNAs
(if the input species has annotated miRNAs in miRBase). At this step of the workflow,
mirnovo is calculating a set of features for each of the refined clusters. Then, a Random
Forests-based model predicts known and novel miRNAs. After this step, the consensus se-
quences of all identified known and/or novel miRNAs are mapped again against the refer-
ence genome. The most stable hairpins, in terms of AG free energy, around these sequences
are selected and genomic features are calculated for each hairpin candidate. Eventually,
up to 5 hairpins are reported as paralog precursors for each mature miRNA in case the cal-
culated free energies of these secondary structures are below a certain empirically defined
threshold.
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4.2.1 Features definition

In order to characterise each of the small RNA clusters generated at the first step of the
mirnovo process, we compiled a set of 33 features, grouped into three categories: 12 coverage
profile features, a set of 12 sequence complexity features and finally 9 genomic features. The

full set of features used for classification and prediction is described as follows:

« 12 coverage profile features: total read depth, main body length, mismatches in main
body, scaling rate before 5’, scaling rate after 3’, gaps before main body, mismatches
in seed region, average GC content in main body, gaps after main body, average AU
content after 3°, alignment identity against the potential reverse complement and

average sequence length.

« 12 sequence complexity features: A+T skew (ats), C+G skew (gcs), CpG skew (cpg),
complexity (cwf) by Wootton & Federhen (Wootton and Federhen, 1993), entropy
(ce), complexity as compression ratio using gzip (cz), complexity as Markov model
size of N € {2,3} (cm2, cm3), Trifonov’s complexity (Trifonov, 1990) with order N €

{2,3} (ct2, ct3) and linguistic complexity with order N € {2,3} (cl2, cl3).

+ 9 genomic features (hairpin folding retrieved using RNAfold from the Vienna pack-
age (Lorenz et al,, 2011)): hairpin size estimate, mature miRNA distance from stem
loop, loop size estimate, number of loops in hairpin, minimum free energy of sec-
ondary structure, ‘majority’ brackets in the entire folding (prevalent of the two dis-
tinguishing bracket directions, i.e. most frequent between ’(’ and ’)’ ), miRNA bracket
discrepancy (K/N, where N is the total number of brackets in the miRNA and K is
the number of ‘majority’ brackets), miRNA bracket fraction (K/N, where N is the
miRNA length and K is the number of ‘majority’ brackets) and number of unmatched

nucleotides from the mature miRNA sequence.

Calculation of genomic features is enabled only when the input species genome is inte-
grated in mirnovo. Based on these features, mirnovo makes predictions for known and novel
mature miRNAs using a pre-trained classifier. Predicted sequences are aligned against the

genome to detect possible paralogs and results are prepared for visualisation and down-

load.

4.2.2 Machine learning model selection & training

In order to predict performance of various machine learning models we have used a la-
belled set of feature instances derived from 65 mouse samples and applied 10-fold cross-

validation on it. This allowed us to assess the bias-free predictability of each prediction
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model which demonstrates how well the model will perform in general given an inde-
pendent dataset. The models whose performance was tested included Support Vector Ma-
chines, Gradient Boosting Method and Random Forests (Figure 4.3). The most efficient ap-
proach in terms of discriminative power (based on the Area Under Curve -AUC- scores),
with or without using the genomic features, turned out to be Random Decision Forests
(or Random Forests). Hence, we selected this method to be integrated into mirnovo as the
primary prediction algorithm.

The Random Forests implementation we used was the one provided by the randomForest
R package. In order to fine-tune our model we tested its performance independently for
various numbers of randomly selected predictors (mtry) and numbers of trees (ntrees). Op-
timal performance was obtained for mtry = 6 and ntrees = 2000 and thus these parameters
were selected for the training of each classifier (Figure 4.3). Samples used for training of
the animal and plant species models were downloaded from ENA (Leinonen et al., 2010).
Overall, we have trained models for 8 animal and 7 plant species using 2-66 samples with
labelled data in each case and 433 samples overall (Tables 4.1 & 4.2).

More specifically, we have trained individual models for 8 animal species (Apis mellifera,
Bos taurus, Caenorhabditis elegans, Canis familiaris, Danio rerio, Drosophila melanogaster, Homo
sapiens, Mus musculus) and 7 plant species (Arabidopsis thaliana, Chlamydomonas reinhardtii,
Glycine max, Hordeum vulgare, Medicago truncatula, Oryza sativa japonica, Solanum lycopersicum).
These models are offered for optimised results when the input files originate from one
of those species. Additionally, we have created two universal models, for animals and
plants respectively, that can be used generically for any species belonging to one of the
two kingdoms. These models have been created by sampling data-points from the entire
dataset of small RNA clusters from the aforementioned animal and plant species.

The 10-fold cross-validation demonstrated accuracy measures of 84.4-96.5% without
a reference genome using a model built from animal species (Figure 4.5). Interestingly,
miRNA predictions on plant sequences still managed accuracy between 70.7-82.9%, de-
spite their differences in biogenesis compared to animals (Chen, 2005). We also extracted
the importance score for each feature used during the 10-fold cross-validation. Inspection
of the feature importance scores for the accuracy of predictions (Figure 4.4) yields some of
the coverage features (read depth, average sequence length of mature sequence, average
GC content and average AT content after 3° end) as the most critical ones for correct classi-
fication, in both animals and plants. This strongly suggests that miRNA identification can
be largely driven solely by inspection of their biogenesis features, without requiring extra
information from the secondary structure of their precursors. Moreover, we can observe

that genomic features play a more predominant role in animals than in plants, most likely
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because of the high variability of secondary structures of miRNA precursors in plants. This
variability in plant miRNAs can be seen in the high variance of their feature importance
scores, in contrast with the lower variance of the respective animal features.

These initial results confirmed that without integrating any information from the
genome it is still possible to reliably identify both known and novel miRNAs directly from
sequencing data. Addition of 9 extra genomic features does improve accuracy, but not by
as much as expected. There was a 1.65% (+1.53%) and 0.7% (* 2.79%) improvement of predic-
tion accuracy for animals and plants respectively (absolute scores: 85.9-97.9%, 71.4-88.7%
respectively). We also built a universal-animal and a universal-plant model by sampling
data points (refined sequence clusters) from each respective pool of species such that they
can be uniformly used by any species originating from these kingdoms (Figure 4.6). Ob-
tained accuracy for these universal models was 89.7 or 92% for animals, and 71.4 or 71.8%

for plants, without and with a reference genome, respectively.
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Table 4.1 Number of samples (from ENA) used for training of each of the animal species training models.

Animal Species Number of Samples
Apis mellifera (ame) 13
Bos taurus (bta) 62
Caenorhabditis elegans (cel) 35
Canis familiaris (cfa) 21
Drosophila melanogaster (dme) 23
Danio rerio (dre) 20
Homo sapiens (hsa) 66
Mus musculus (mmu) 65
universal-animals 306

Table 4.2 Number of samples (from ENA) used for training of each of the plant species training models.

Plant Species Number of Samples
Arabidopsis thaliana (ath) 18
Chlamydomonas reinhardtii (cre) 3
Glycine max (gma) 59
Hordeum vulgare (hvu) 6
Medicago truncatula (mtr) 2
Oryza sativa japonica (osa) 26
Solanum lycopersicum (sly) 13
universal-plants 127

In general, mirnovo can analyse datasets from any species, without requiring a reference
genome or miRBase annotated miRNAs. The option '~ Not Available —" should be used in
this case in the place of the Input species input parameter. However, even higher accuracy
can be achieved by integrating the genomic features into prediction. Thus, mirnovo has
integrated genomic support for 67 species. This means that for those species, the full set of
coverage profile, sequence complexity and genomic features can be compiled in order to
identify known miRNAs and predict novel ones. Additionally, mirnovo supports miRNA
identification and prediction for another 160 species with miRBase annotated miRNAs,
but lacking genomic feature support. The command-line version of our method though
allows the user to build and integrate into the identification process any custom reference

genome.
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4.2.3 Parameter specification and output

MicroRNA prediction is performed by default using all 24 biogenesis features and the 9
genomic features (in case the reference genome is available). However, it is also possible
to completely disable genomic features, by checking the ‘Disable genomic features’ option,
or use exclusively the genomic features for prediction, by checking the ‘Use only genomic
features for prediction’ option. Furthermore, mirnovo offers a set of mainly three parame-
ters in order to facilitate sequence clustering and boost correct classification of predicted
miRNAs. Specifically, when analysing samples with high read depth and high sequence
complexity (i.e. high number of generated clusters at the initial sequence clustering of
input data with vsearch), we noticed that in some cases predictions contain an unexpect-
edly high number of novel miRNAs, sometimes even higher than the number of predicted
known miRNAs (Figure 4.7). In order to resolve this issue we introduced, first of all, the
‘Reduce input sequence complexity’ option which allows the user to filter out unique sequences
from the input file with a total read depth below a certain threshold. For instance, by using
a tally-threshold of x3, all unique sequences from the tallied file with a maximum number
of 3 reads will be discarded from the rest of the analysis. Following the initial sequence
clustering, additional filtering is possible by retaining only those clusters that have a total
depth at least equal to the min-read-depth value and a number of isoforms at least equal to
the min-variants parameter value.

With regards to mirnovo’s output, the results from each job contain first of all FASTA
files for the predicted known and novel miRNAs (both for the mature products and their
respective hairpin precursors), and for any tRNA and/or rRNA identified hits. Additionally,
BED files with genomic coordinates of predicted hairpins are provided along with coverage
profiles for each mature miRNA and also the secondary structures of each identified hairpin
paralog. Furthermore, each job is associated with a table of performance measures with

regards to the machine learning predictions.
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The reported measures are:

TP

Precision = —————,
TP+ FP

Sensitivity = % and

Specificity = M, where:
N
« TP: is the number of predicted known miRNAs,
« FP: is the number of predicted novel miRNAs,

« P: is the number of all known miRNAs contained in the input data (based on the

miRBase annotation),
« TN: is the number of (correctly) predicted non-miRNA sequences and

+ N: is the number of all non-miRNA sequences contained in the input data (based on

the miRBase annotation).

Additionally, predictions are accompanied with a Receiver Operating Characteristic
(ROC) and Precision-Recall (PR) curve, which demonstrate the performance of the ma-
chine learning method with regards to correctly identifying known and novel miRNAs,
respectively. Finally, the distribution of all feature values (coverage, sequence complexity
and genomic) for each class of predicted miRNA/non-miRNA sequences is visualised and
made available as post-prediction QC box-plots.

In the next sections we are going to present the results from applying mirnovo into
large scale datasets, Drosha/Dicer-dependent samples and single cells in order to showcase
its performance in all these cases as well as highlight the findings and new insights into

miRNA biogenesis retrieved from each one of them.

4.3 Large-scale benchmarking & mirnovo applications

4.3.1 miRNA prediction from the GEUVADIS dataset

We first applied mirnovo into a large-scale benchmarking test using all human samples of
the GEUVADIS dataset (Lappalainen et al., 2013). The majority of datasets were run us-
ing the default mirnovo parameters (length filter: 16-28nt, min-read-depth: 5, min-variants: 1,

vsearch-id: 0.9). The ‘Reduce input sequence complexity’ option with a tally-threshold of x3 was
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used only for 2% of all datasets in order to reduce sequence complexity within the samples
and thus optimise the initial sequence clustering with vsearch. The initial run was per-
formed without using the human reference genome (Figure 4.8). The obtained accuracy
reached an average score of 92.14% while sensitivity and novel prediction rate were at
69.07% and 34.62%, respectively. After introducing the reference genome and correspond-
ing genomic features (Figure 4.9), performance gets notable improvement since accuracy
and sensitivity rise to 95.51% and 78.8% while the novel prediction rate falls to 18.63%. This
implies that the use of genomic features is boosting the clarification in prediction of real
miRNAs while at the same time keeping the number of false positive hits among the novel

miRNAs at a relatively low level.
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Fig. 4.8 Machine learning prediction performance of mirnovo for the GEUVADIS Dataset (without a refer-
ence genome).
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Fig. 4.9 Machine learning prediction performance of mirnovo for the GEUVADIS Dataset (with a reference
genome).

Moreover, we wanted to evaluate mirnovo’s performance in comparison with miRD-
eep2 (Friedlander et al., 2012), one of the most widely used methods for miRNA prediction.
We ran miRDeep2 by always providing the human reference genome, all known human
hairpins and mature miRNAs as well as a list of other known miRNAs from another two
species. Mirnovo was tested both with and without the reference genome in separate runs
(Figure 4.10, 4.11). We observed that mirnovo outperforms miRDeep2 in 92% of the cases
for known mature miRNAs identification and in all cases for novel miRNAs prediction,
when using a reference genome. In the absence of a reference genome, mirnovo performs
equivalently with miRDeepz2 in terms of predicting known miRNAs, however we also no-
tice a rise in novel prediction rate, which probably includes more false positive hits. In
general, we observed that the addition of genomic features in the prediction algorithm im-
proves only slightly the sensitivity of the final results but has however a notable impact
in improving precision, thus reducing the number of falsely predicted novel miRNAs (Fig-
ure 4.12). The final outcome included 2,414 predicted novel mature miRNAs originating
from 3,173 hairpin precursors, including any detected paralogs (Appendix C: Supplemen-
tary Data S1). Expression of novel miRNAs was fairly balanced across all samples, and
quite similar with known miRNAs expression, while the lengths of the high majority of

predicted novel miRNAs were within the range of 20-23nt (Figure 4.13).
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Fig. 4.12 ROC and Precision-Recall (PR) curves for mirnovo’s prediction performance across all samples
from the GEUVADIS dataset, with or without using a reference genome.
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We also ran mirnovo and miRDeep2 across 8 animal species (Figure 4.14) and again ob-
served that mirnovo performs better than miRDeepz2 in the majority of cases for predicting
both known and novel miRNAs. In terms of execution time, based on the benchmarking
run using the GEUVADIS dataset, mirnovo was on average x2.5 faster than miRDeep2 and
the mean execution time across all samples was around 43min, as compared to 1thr 49min

for miRDeep2 (Figure 4.15).
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Fig. 4.14 mirnovo vs miRDeep2 prediction performance in samples from 7 model organisms.
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Fig. 4.15 mirnovo vs miRDeep2 ‘time’ benchmarking across the GEUVADIS dataset.
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4.3.2 Prediction performance in species with incomplete genome

assemblies

Mirnovo provides for the first time the ability to predict miRNAs from species without a
reference genome or with poorly assembled genomes with very high accuracy. We as-
sessed mirnovo’s performance on 7 samples from 5 different moth species without fully
assembled genomes (Quah et al., 2015), 2 of which do not have any miRBase annotation
(Table 4.3). Mirnovo was able to retrieve known miRNAs from all species with miRBase
annotation (B. mori, H. melpomene melpomene, H. melpomene rosina) along with hundreds of
novel miRNAs (Appendix C: Supplementary Data S2-S6) . Additionally, mirnovo predicted
119 and 192 miRNAs from the C. ohridella and P. aegeria samples, respectively, which do not
have any miRBase annotated miRNAs (Appendix C: Supplementary Data S7, S8). Among
all predicted novel miRNAs, C. ohridella and P. aegeria were the species with the highest
majority of miRNAs aligning with paralogs from other species registered in miRBase. This
is expected since the other 3 moth species have been studied more extensively in the past
and already have miRNA entries in miRBase. A small proportion of novel miRNAs were
predicted without any genomic evidence, based solely on features derived from their cov-
erage profiles. That demonstrates another mirnovo’s strength to infer miRNAs in species
without a reference genome, enabling research on non-coding RNAs for an amplitude of
non-model organisms.

In order to retrieve these results, we first identified the 3” adapter sequence for each
sample using minion (Davis et al., 2013) and where possible confirmed it with the relevant
manuscript or database methods. Each sample was analysed using mirnovo with either

default or custom set of parameters. The sample ids that were analysed are:

» SRRo035544 & SRR035546 (GSE17965, PMID: 20199675),

SRR062599 (GSE23292, PMID: 200023292),

« SRR062600 (GSE23292, PMID: 21266089),

SRR1663190 & SRR1663191 (GSE63644, PMID: 25576364) and

SRRo35545 (GSE17965, PMID: 200017965).

A relevant genome was used for each sample (Bombyx mori: GCA-000151625.1, Helico-
nius melpomene: Hmel2 v2-o Release-20151013, Cameraria ohridella: k51, Pararge aegeria: k51)
and a Drosophila Melanogaster (dme) training model for miRNA predictions. To find the or-
thologues, novel mature miRNA sequences were compared to all miRBase sequences (v21)

using swan (v17-096) requiring at least a 9o% identity match (-key-value parameter).
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Table 4.3 Mirnovo predictions for known and novel hairpins and mature miRNAs across 7 samples from
moth and butterfly species.

Sample known known novel novel novel paralogs
hairpins mature hairpins mature from other species
miRNAs miRNAs in miRBase
Bombyx mori (Whole 89 75 64 59 2
body)
Bombyx mori (Anterior 78 72 91 80 0
silkgland)
Bombyx mori (Posterior 55 51 60 40 0
silkgland)
Heliconius melpomene 41 40 114 118 12
melpomene
Heliconius melpomene 44 43 89 98 8
rosina
Cameraria ohridella - - 119 120 32
Pararge aegeria - - 192 191 29

4.3.3 MicroRNA prediction in RNase III-deficient cells

Novel miRNAs are predicted based on features consistent with their processing by the
small RNA biogenesis machinery. Hence, if they are real miRNAs, one would expect to
observe their dysregulation when key miRNA biogenesis enzymes are missing or are mu-
tated. We tested this hypothesis using published experimental data from Drosha, XPOs5
and Dicer knockout samples (Kim et al., 2016). These enzymes are responsible for cleav-
age of miRNA primary transcripts, their nuclear export and processing into functional
mature miRNAs respectively. Samples were normalised using the same strategy that was
suggested in the original manuscript. Specifically, we normalised the wild-type, Drosha
and XPOs5 knockout samples based on the read counts of miR-320a-3p across all replicates,
since its expression is independent of Drosha. The Dicer knockout samples were respec-
tively normalised based on the combined tRNA and rRNA levels of the WT samples, which
should remain unaffected in the knockout samples as well.

We first predicted known and novel human hairpins from the wildtype (WT) samples.
Then, we aligned all the WT and Knockout (KO) samples with Chimira (Vitsios and Enright,
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2015) against the predicted known hairpins that were predicted by mirnovo (Figures 4.16a,b
and 4.17a,b). In fact, in order to get expression data from all samples with reference to
the hairpins that were predicted by mirnovo, we expanded the already published method
Chimira. That was necessary because inherent sequence clustering steps (initial and re-
fined) of the mirnovo pipeline may be imperfect in some cases and thus affect, even at a
low level, the yielded expression data. The additional feature of Chimira allows alignment
against a custom reference species that can be uploaded as a set of FASTA files by the user
(e.g. FASTA files with known and/or novel hairpins predicted by mirnovo). All uploaded
files are merged and sequences with an alignment identity over o.9o are collapsed. As an
additional functionality, Chimira is able to generate coverage profiles of each identified ma-
ture miRNA and the secondary structure of the corresponding hairpin reference hit, using
the Vienna package (Lorenz et al., 2011).

Our data verified the observed minor effect of XPO5 knockout in miRNA expression,
since miRNAs are still being expressed, just in lower levels in some cases. The Dicer knock-
out, as expected, leads to notable decrease in miRNA expression. The absence of Drosha is
verified to be the most critical one since it results in extensive depletion of the majority of

miRNAs, in accordance with the results reported in the original paper (Kim et al., 2016).
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Fig. 4.16 Expression data across wild-type and Drosha/Dicer/XPOs5 knockout conditions after alignment
against different sets of hairpins predicted by mirnovo (pairwise plots): a) all known human hairpins, b)
known human hairpins predicted by mirnovo and c) novel human hairpins predicted by mirnovo.
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For our novel miRNA predictions, we aligned all samples against the list of predicted
novel hairpins (Figures 4.16c and 4.17c). We then assessed which miRNAs where differ-
entially expressed (fold-change > 2 and P < 0.05) between the WT and KO conditions
and found three sets of novel miRNAs, dependent on different types of enzymes each of
them (Figure 4.18 and Appendix C: Supplementary Data Sg). Overall, we have found 40
novel miRNAs that were significantly differentially expressed both in Drosha and Dicer
knockout samples ( Appendix C: Supplementary Data S10, S11). This implies that this set
of novel miRNAs is dependent on the two most important enzymes for miRNA biogenesis
(Drosha and Dicer) and thus they should be following the canonical biogenesis pathway.
Moreover, we noticed that 25 novel miRNAs were dependent only by Dicer and 33 were
Drosha-only dependent (Appendix C: Supplementary Data S12). This finding comes in
accordance with previous studies (Cheloufi et al., 2010; Cifuentes et al., 2010; Kim et al.,
2016; Ruby et al., 2007) that some miRNAs may be dependent on only one type of enzyme
(either Drosha or Dicer) and/or originate from other structured non-coding RNAs (Kim
et al., 2016). These results, again, provide validation that mirnovo is predicting molecules
likely to be processed by the canonical biogenesis machinery yet can also identify those

miRNAs which are independent of one or more of the key enzymes.
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4.3.4 MicroRNA prediction from single-cell RNA-Seq data

Recently, single-cell RNA sequencing has become both tractable and an extremely active
topic of research. Given that some miRNAs have been shown to be extremely cell-type
specific, such datasets represent an important area for novel miRNA discovery. Hence,
we wished to assess the performance of mirnovo in analysis of single-cell small RNA-Seq.
We initially attempted prediction using all sets of features (coverage, sequence complexity
and genomic) but the extracted coverage profiles and sequence complexity scores were
distorting predictions due to high noise of input data. We then tried making our predictions
using only the genomic features and observed a clear improvement in accuracy scores, thus
we followed this approach for the analysis of single-cell data. This proves to be another
useful feature of mirnovo, since the user is always able to switch off certain sets of features
in order to make their predictions based on the specific requirements, quality or noise of
input data.

We re-analysed 204 scRNA-Seq (single-cell) samples overall from HEK cells, naive hu-
man embryonic stem cells (hESCs) and primed hESCs (Faridani et al., 2016). Embryonic
stem cells are referred to as naive in pre-implantation embryos and they turn into primed
cells during post-implantation development (Nichols and Smith, 2009). Mirnovo predicted
4,747 novel hairpins overall from these samples, 356 of which had also been predicted from
the GEUVADIS dataset on human lymphoblastoid cell lines. We then aligned all samples
against the predicted set of hairpins using Chimira (Vitsios and Enright, 2015), and obtained
mature miRNA expression data for each cell sample. Novel miRNA expression is quite bal-
anced between the two types of ESCs, with a small group of miRNAs being down-regulated
during the transition from naive to primed ESCs (Figure 4.19). On the other hand, both
types of embryonic stem cells show notable differentiation in expression compared to an
adult cell type, which is the HEK cells. Interestingly, highly similar expression patterns
can be observed with regards to known miRNA expression across these cell types (Figures
4.19 and 4.20).

We observed that novel miRNA expression varies across different states of pluripotency
and/or development in Homo Sapiens, with a more significant difference observed between
embryonic stem cells versus fully differentiated cell types. We performed hierarchical clus-
tering for all cells based on their novel miRNAs expression. We identified 5 major groups
of cells with similar novel miRNA signature (Figure 4.20b). Two of those groups were ex-
clusively comprised of HEK cells and two groups were primarily populated by ESC naive
and ESC primed cells, respectively. Finally, the last group consisted of cells from all 3 cell
types. Hierarchical clustering of these cells based on known miRNA expression also yield

similar grouping of the samples based on their cell type (Figure 4.20a).



Genome free discovery of miRNAs from small RNA-Seq with machine learning

116

'sjo1d astmared ur suoryrpuod sydures 921y} a1y} ssoIdoe eIty Aq payryuenb pue osowrrur £q
pa3o1pard ‘SN UMOUy Jo uotssaidxa pasiewtioN (q ‘sjord astmired ur suorrpuod sydures 921y 9y} sS0I0. ‘BITWIY)) Aq payriuenb pue osowrru Aq pajorpard
‘SYNYTW [2A0U JO uolssaidxs pasifeurIoN (8 "suornorpaid oAouIr uo paseq (S[[0 MAH ‘sOSH pawiid ‘s)SH aATeU) S[[29 o[Suls Ul uolssardxa YN 61°% "1

M3IH (pownd) 0S3
cw mA_ p_ S ﬁm mA— cAv S 0
)
‘ =
3
m m
» (03 =
O O > q
—_ For ==
2 E] 3
s s}
o 3 W =
. >
s st w0
- 02
M3IH M3H (powind) 0S3
D.m m.f c.v S 0 c.m m._ c._ S [ o.m m.— o.v S )
0 0
S 3 S
294 =
- m
3 | 8 2
o o =7 ‘e
o : 3
) = =S
N < . 3 =
@D [0]
= < =2 W
St " : EL Sk
02 02 02



4.3 Large-scale benchmarking & mirnovo applications

117

<
b
C oc 39.£SC (naive)
o = (pownid) D3 1¢ 26 ESC (naive)
E (pauid) 053 99 (anreu) 083 5
* G — 60 ESC (naive)
%) v
] 3
—
o €
<
(%]
[ge] T
O L]
SS
28
(@)} B
=
] -s3% 3 3%
+— BEE, £,&8
N 58583 S§838 Pees
oot oo FFFsle >
_ NI $ &
O RUREREBZ LS00 by, S8a,  a
—_ [ReyS FEE0 & 0 s
V¥ o009 S & LD
= ARV TOTONCI NN
(W] Pyl @@OQ‘QQ\\\ &
~ R AN IR
W 400 @ (o
c ST RN
ARG
] ROCZ N
—_ 20500 @ (e
3‘231%@500& R
© NN
— o620 Tr® o)
3] €20 i)
%50 0 o
c— A€ 390 ™ e
< oA
X ;0%52 t&\r‘“emd;m
— S N ed)
[7] 5 AEGESSOCKTP(E?:&
\ 33 5 (0™ hed)
kIJ 2 (/"’Argu/?ssjog \ 5 ESE%C (F';Tni )
o104 293 89 / 7250 (i)
(o, 053 0, 25 rime
2 =z faj/p‘;’g;‘ﬂes Z%EESS%((%”'”G‘Q
(@)} o (o) ST 9 y i E8C (prime?)
—_ e0) 53 o6 35 ESC [p”mad)v
(onew) g5 | 22 ESC (prime
E 1S (on0) 593 o0 zESC (prrmfwd)
(ono) 057 16 8 ESC (prime
%2 IS (onow) 9530 (pouic) 053 27
; 66 £5C (nav) ?DDSWZ)) 05394
77 ESC (naive)
S i ‘\ ,
62 ESC (primed) \
< rethimd
2 naive
64£5C (o
Jim
65 E50 L e
5¢ na
52650 (11ed)
£50 Prfmed)
64 E5c 0" \med?ﬂ
63 E75G (P imes
o1 E56 0 nedly
0o
o FesC Sl
9255 8 (@)
61 50 oo (@
) S
80761 e e \*dl
—_ PRI
S ©oRCer
? [P N
X
£ S
(7] £ B ey
Q = 1L
foRl ] P X
a &3 RN
&2 B LAY
ol o= AT
IS} » 3 RS Ly
w = VSIS r e
<< RN I b T A e
zZ Voo STTIHESSS8TE
T TRoxeg SSEESE
3} gagsut
@ NEaQ e
SRRR®
3
3

©

immira.

Fig. 4.20 Hierarchical clustering of primed, naive human ESCs and HEK cells based on a) known and b) novel miRNA expression, inferred by mirnovo and
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This finding illustrates that individual cells may expose a unique novel miRNA signa-
ture that is characteristic of the cell type of origin while other cells may show a lower
degree of differentiation and thus retain a more generic miRNA expression profile, regard-

less of their cell type.

4.4 Methods

4.4.1 Implementation and availability

Mirnovo’s jobs are submitted to the EMBL-EBI high performance computing cluster. Each
job process is extensively parallelised with multiple threads taking over calculations and
processing over different subsets of the entire data and over different subtasks of the en-
tire process. The job’s progress is visualised in real-time through a console window at
mirnovo’s progress page in the browser.

Mirnovo is available as a stand-alone package besides the web-server version (Ap-
pendix B). The downloadable bundle contains all necessary scripts and binaries for exe-
cution of mirnovo, providing separate versions for either Mac OSX or Linux platforms.
The only required dependencies for the local machine are: Perl (v5.24.1), Python (v2.7.10)

and R (v3.2.2), with the recommended versions in parentheses.

4.4.2 Alignment against a reference genome

When the reference genome is available, following the miRNA prediction step, the con-
sensus sequences of all identified known and/or novel miRNAs are mapped against the
genome using bowtiez (Langmead and Salzberg, 2012). The selected parameters for the

bowtiez call are as follows: -k 1, -D 20, -R 3, -N 1, -L 20, -i S,1,0.50 —rdg 1,1 -rfg 1,1.

4-4.3 Refined mature miRNA quantification with Chimira

Mirnovo is able to extract both hairpins and mature miRNAs in the output along with
count data for the latter case. Due to inherent imperfection of sequence clustering steps
during the mirnovo run, in some cases incorrect groupings of miRNAs may affect, even at
a low level, the yielded expression data. In order to resolve this issue we have expanded
Chimira, a method that we previously published in our lab. In this case, Chimira serves
as a mirnovo extension, allowing the user to upload a custom set of hairpin sequences,
e.g. known and/or novel hairpins predicted by mirnovo. All uploaded files are merged

and sequences with an alignment identity over o.9o are collapsed. Chimira then aligns
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the input files against the merged reference sequences set to extract the mature miRNA
expression counts. Additionally, Chimira is able to generate coverage profiles for each of
the identified mature miRNAs and the secondary structures of the corresponding hairpin

precursors (Lorenz et al., 2011).

4.4.4 mirnovo vs miRDeep2 benchmarking

miRDeep2 was always provided with the human reference genome, all known human hair-
pins, all known human mature miRNA sequences and also all mature miRNAs from two
extra species (D. melanogaster and C. briggsae) for additional diversity. Mirnovo was tested
both with and without the reference genome. With regards to the time benchmarking,
mirnovo is a highly-parallelised multi-threaded method while miRDeep2 is serially pro-
cessed. Thus, we wanted for the benchmarking to reflect the run time experienced by the
end user. Both methods ran on HPC clusters consisting of 32-processor nodes equipped
with the Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz CPU model. Mirnovo was run us-
ing the default number of hosts that is selected for each job (-n=3) while miRDeep2 was
run using -n=1 (assigning -n=3 hosts to miRDeep2 proved to be slightly slower -data not
shown- most likely due to synchronisation latency among the hosts, and thus one host
was eventually assigned for benchmarking of the miRDeep2 runs). Both methods were

provided with 8GB of memory (-M 8192).

4-4.5 Analysis of single-cell RNA-Seq data

Processing of single-cell RNA-Seq data follows the same core pipeline as regular small
RNA-Seq data processing. The only exception is that due to high innate noise of single-
cell data, coverage and sequence complexity features are not taken into consideration at
the final classification step, and thus predictions are inferred by models that have been
pre-trained solely based on the genomic features. Thus, in order to make predictions from

single-cell data the option ‘Use only genomic features for prediction’ needs to be enabled.

4.5 Conclusion

We have demonstrated that machine learning based, genome-free discovery of miRNAs is
possible from small RNA sequencing in animal and plant species. Our approach has sim-
ilar levels of accuracy to the most widely used previously published tool, which utilises
genomic information (miRDeep2). Additionally, our approach exceeds miRDeep2’s perfor-

mance when genome information is available and does so at a significantly lower compu-
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tational cost. This approach has been extensively validated using multiple species, training
sets and 10-fold cross validation. Our method has been validated using large-scale datasets
and miRNA biogenesis mutant datasets that elucidate potential novel miRNA biogenesis
pathways, based on their dependency on different types of RNaselll enzymes. We have
also demonstrated the possibility of discovering novel miRNA candidates from single-cell
data, despite their inherent noise, and thus further enable the discovery of novel miRNA
molecules associated with very particular cell types and/or conditions.

Moreover, we observed a higher degree of consistency in predicting novel miRNAs in
animals than in plants, in terms of the features with the most discriminative power, which
complies with the presence of more diverse miRNA biogenesis mechanisms in plants.
However, miRNA predictions in plants still managed high levels of accuracy and thus
mirnovo can serve additionally as a formidable and easy-to-use resource for researchers
of the plants community.

Finally, mirnovo, is simple to install as a command-line tool and may also be used as
a user-friendly web-based method. Given the quality of results obtained without genome
data, we believe this method could have an important role for miRNA discovery in non-
model organisms. We believe that mirnovo represents a significant new contribution to

the miRNA field and in particular to the prediction of novel miRNAs.
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MILI-independent piRNA biogenesis

The results from this chapter have been published in the following paper:

”A MILI-independent piRNA biogenesis pathway empowers partial germline reprogram-
ming”

L Vasiliauskaité, DM Vitsios, RV Berrens, C Carrieri, W Reik, AJ Enright & D O’Carroll.
Nature Structural & Molecular Biology, Vol. 24, p.604-606, doi: 10.1038/nsmb.3413 (2017).

5.1 Introduction

5.1.1 Transposable Elements

In the late 1940s, the world was still reeling amidst the turbulences and remaining debris in
the aftermath of World War II. Meanwhile, at the same time, Barbara McClintock, a promi-
nent American geneticist, was quietly discovering one of the most fundamental elements
in Genetics, the Transposable Elements (McClintock, 1950). Transposable Elements (TEs)
or 'jumping genes’ as they are often called, are sequences of DNA that can change their
location (jump) in the genome. The importance of TEs was largely dismissed for decades
thereafter, since many scientists believed that these elements had no function at all in the
genome and thus were referred to as ’junk DNA’. However, around 1965, Prof McClintock
was again among the leading scientists suggesting that TEs were actually playing a regu-
latory role, defining the repertoire of active genes by turning on/off respective areas in the
genome. Since then, TEs have been extensively studied although their function has yet
to be defined definitively. Some studies report that TEs have a positive impact in genome
evolution (Brandt et al., 2005) while others underline their role as mutagens and inducers

of genomic instability via insertional mutagenesis (Deininger et al., 2003).
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There are two classes of transposable elements, retrotransposons or Class I TEs and
DNA transposons or Class II TEs. Class I TEs employ a ”copy-and-paste” mechanism where
they are initially transcribed into RNA, then reverse transcribed into cDNA sequences
and finally inserted into the genome at various target sites. On the other hand, Class II
TEs follow a "cut-and-paste” mechanism which does not involve an RNA intermediate but
are rather catalysed by several transposase enzymes that allow them to translocate in the
genome. Retrotransposons are highly abundant in eukaryotes. For instance, in maize, as a
representative example of the plants kingdom, they comprise 49-78% of the genome (San-
miguel and Bennetzen, 1998). In mammals, almost half of the genome (45-48%) is trans-
posable elements and in human around 42% of the genome consists of retrotransposons
while DNA transposons comprise only 2-3% of the entire genome (Kazazian Jr and Moran,

1998). The three major categories of Class I TEs are:

« TEs with long terminal repeats (LTRs, e.g. IAP family elements): which encode

reverse transcriptase

 Long interspersed nuclear elements (LINEs, LINE-1s, or Lis): which also encode

reverse transcriptase and are transcribed by RNA polymerase II

« Short interspersed nuclear elements; theses do not encode reverse transcriptase and

are transcribed by RNA polymerase III.

The versatile nature of TEs enables them to relocate randomly in the genome and inflict
similarly unexpected changes in gene expression. Thus, many organisms have developed
various defence mechanisms against TEs in order to limit or more rationally regulate their
activity. Some prokaryotic organisms, like bacteria, have developed defence mechanisms
against TEs based on short repeats interspersed throughout their genome. These repeats
are complementary to previously encountered viruses or mobile genetic elements and thus
are able to target them and limit their replication. This natural mechanism, which is called
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), has been adapted
into an artificial technique for targeted genome editing, CRISPR/Casg (Jansen et al., 2002).
Another almost ubiquitous defence system found in organisms from unicellular organisms
and prokaryotes to plants and animals involves the RNA interference (RNAi) pathway
aided by AGO proteins (Aravin et al., 2003; Djikeng et al., 2001; Hamilton and Baulcombe,
1999; Makarova et al., 2009). DNA methylation has also been an important factor for regu-
lating transposable elements expression in some species of plants (Mosher et al., 2008) and
animals (Aravin et al., 2008; Brandt et al., 2005) since it affects the chromatin structure

and subsequently drives gene activation based on chromatin region accessibility.
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In Animals, the main defence mechanism against transposable elements employs a
class of small non-coding RNAs called piwi-interacting RNAs (piRNAs). This class of small
RNAs is the most highly expressed one found in animal cells (Seto et al., 2007). However,
their expression is restricted to germ-line cells and in mammals they seem to be indis-
pensable exclusively to males (Siomi et al., 2011). piRNAs interact with other proteins to
form RNA-protein complexes that are able to target complementary TEs and silence their
expression. This mechanism is of great importance in germ-cells since it helps protect the
genetic information that is going to be passed onto the offspring. We are going to elaborate

more on the biogenesis features and functionality of piRNAs in the next three sections.

5.1.2 Piwi-interacting RNAs (piRNAs)

It was only a decade ago that piRNAs emerged as a novel class of small non coding
RNAs. Multiple studies simultaneously confirmed the existence of piRNAs in mouse and
rat cells (Aravin et al., 2006; Girard et al., 2006; Grivna et al., 2006; Lau et al., 2006; Watan-
abe et al., 2006). piRNAs are distinct from other non-coding RNA classes such as miR-
NAs and siRNAs in that their length is 26-31 nt and their production is independent of
Dicer proteins (Vagin et al., 2006). Moreover, piRNA sequences demonstrate strong bias
for a 5°-Uridine which indicates the involvement of RNAse III enzymes in their process-
ing (Aravin et al., 2003). Like other small non-coding RNAs, while their 5” end contains a
monophosphate group, their 3’ end exhibits a distinct 2’-O-methylation (Kirino and Moure-
latos, 2007b). piRNAs are organised into clusters throughout the genome. Cluster size may
vary from 1kb to 100kb and the number of piRNAs located within ranges from just a dozen
to several thousands of piRNAs (O’Donnell and Boeke, 2007). Though their sequences do
not show any degree of conservation, they are highly syntenic and piRNA cluster positions
are particularly conserved across species (Girard et al., 2006; Malone and Hannon, 2009).
In mammals, piRNAs have been found in both testes (Aravin et al., 2006) and ovaries (Tam
et al., 2008) although their role is fairly dispensable in females (Siomi et al., 2011). In-
triguingly, piRNAs can be found in both the nucleus and the cytoplasm, suggesting their

potential involvement in various and diverse functional pathways.

5.1.3 PpiRNA biogenesis in mammals and associated PIWI proteins

The current model of piRNA biogenesis in mammals includes two main pathways (Fig-
ure 5.1). In the primary biogenesis pathway, long transposon transcripts are exported from
the nucleus into the cytoplasm and cleaved into fragments by the endonuclease Zucchini.

This is believed to generate the 5” ends of primary piRNAs (Aravin et al., 2006; Ipsaro et al.,
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2012; Nishimasu et al., 2012). The primary piRNAs bind to Mili protein molecules forming
an RNA-protein complex that can target transposons or other primary transcripts (Aravin
et al., 2007). This is the first step of the secondary biogenesis pathway and is also referred
to as the 'ping-pong’ cycle. The resulting anti-sense transcript has a 5’ terminal Adenine
following cleavage 1ont downstream from the 5°-Uridine end of the sense transcript. This
is due to the so-called ping-pong signature, a 10ont overlap between the 5° ends of piRNAs
associated with Mili and Miwi2 in mouse testes, which was first observed in Drosophila
Melanogaster (Brennecke et al., 2007; Gunawardane et al., 2007). The antisense transcripts
are then loaded onto Miwi2 and trimmed into secondary piRNAs. This allows the Miwiz-
secondary piRNA complex to target sense transposons that are later loaded onto Mili and
processed into transposon derived piRNAs. Thus, piRNAs follow a closed pathway of am-
plification that justifies the ”ping-pong” annotation of this biogenesis cycle.

This biogenesis model comes with some limitations though. First of all, adult testes
lack the ping-pong mechanism for piRNA biogenesis (Beyret et al., 2012). Furthermore,
Mili and Miwi2 are not physically compartmentalised in the same granules (Aravin et al.,
2009). Finally, Miwiz proteins are no longer present in the adult stages of spermatogenesis,
where pachytene piRNAs have already been formed (Carmell et al., 2007; Girard et al., 2006;
Kuramochi-Miyagawa et al., 2008).

Another biogenesis mechanism which has been discovered only in D. melanogaster is
called 'phasing’ (Han et al., 2015; Mohn et al., 2015). This pathway comprises the nuclear
branch of piRNA biogenesis in Drosophila since it only occurs in the nucleus of cells. Based
on this pathway, piRNAs are generated at periodic intervals of approximately 27 nt from
longer transcripts of the genome, so they have a ’phased’ coverage profile. There is cur-

rently no evidence of phasing occurring in other organisms.
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Fig. 5.1 piRNA biogenesis model in mammals. Primary precursors are transcribed from piRNA clusters by
an unidentified RNA polymerase and exported to the cytoplasm. These long precursors are excised by the
endonuclease Zucchini into shorter fragments (around 26-31nt). This part represents the primary processing
pathway of piRNA biogenesis. Subsequently, primary piRNAs bind to MILI ribo-nucleoproteins (RNPs) and
target antisense transposons or primary transcripts. Eventually, a secondary piRNA is generated by cleavage
of the antisense transcript, 1ont away from the 5’ end of the primary piRNA. The generated secondary piRNA
is then bound by MIWI2 RNP. This targets sense transposons and eventually creates a transposon derived
RNA that can bind to MILI RNPs and thus ignite the same procedure from the beginning. This cycle of piRNA
amplification represents the secondary piRNA processing pathway and is usually referred to as *ping-pong”
cycle.

5.2 Results

5.2.1 Overview

In mice, piRNAs are bound to the cytoplasmic RNA endonuclease MILI, which plays an
integral part for the amplification of secondary piRNAs, effectively inducing transposon
repression (De Fazio et al., 2011). Subsequently, secondary piRNAs guide the activity of
the PIWI protein MIWI2 through sequence complementarity. This induces de novo DNA

methylation and silencing of certain classes of Transposable Elements, specifically LINE1
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and IAP elements (Aravin et al., 2008, 2007; Carmell et al., 2007; De Fazio et al,, 2011;
Kuramochi-Miyagawa et al., 2008). Previous studies of MILI or MIWI2 deficiency in mice
have shown inefficient DNA methylation and depression of LINE1s and IAPs, leading even-
tually to meiotic arrest (Aravin et al., 2007; Carmell et al., 2007; Kuramochi-Miyagawa et al.,
2004). Furthermore, Miwiz deficiency causes gradual loss of germ cells in mice and leads
to full aspermatogenesis by 9 months after MIWI2 knockout (Carmell et al., 2007; De Fazio
et al., 2011). However, when Mili deficiency was tested in mice by the O’Carroll lab, it
showed that around 50% of tubules still remain spermatogenic even 1 year after birth. This
observation motivated an effort to investigate whether MIWI2 can still play a role in germ
cell reprogramming in the complete absence of MILI protein. The experimental work for
this project was carried out at the O’Carroll Lab while I was responsible for the piRNA

bioinformatic analysis in the Enright Lab.

5.2.2 DNA methylation subject to piRNA pathway

For the purpose of this study, the Mili-/Miwiz-knockout mouse samples that were used for
the analysis had been previously produced in the O’Carroll Lab (De Fazio et al., 2011; Di Gi-
acomo et al.,, 2013). The collaborators first performed whole-genome bisulfite sequencing
on undifferentiated spermatogonia to determine the methylation patterns in the absence
of Mili and Miwi2 proteins. It is already known that both MILI and MIWI2 disruption af-
fect significantly LINE1 and IAP elements (Aravin et al., 2007; Kuramochi-Miyagawa et al.,
2008; Molaro et al., 2014). Preliminary analysis of those samples yielded different degrees
of impact from MILI or MIWI2 disruption in DNA remethylation. Specifically, MIWI2 de-
ficiency had a more significant impact in genome remethylation than MILI. Overall, the
collaborators identified 1,704 and 258 loci in the mouse genome, whose methylation is
dependent on MIWI2 and MILI function, respectively.

Using this dataset of loci as a starting point, we moved on to investigate whether piR-
NAs are associated with their methylation. If there is a connection, piRNAs should induce
silencing of these loci via methylation, by guiding ribo-nucleoproteins (RNPs) to these tar-
gets through sequence complementarity. With a fully functional piRNA pathway, i.e. in
the presence of MIWI2 and MILI, we would expect that piRNAs are complementary to the
genomic sequences defined by these loci. We sought to address this at the beginning of

our analysis in the subsequent section.
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5.2.3 PpiRNA bioinformatics analysis

In order to assess the degree of complementarity between piRNAs and the previous loci,
we mapped the sequences from our mouse allele samples against these sets of loci, by
quantifying the normalised number of aligned fragments within each region. Alignment
results demonstrated that indeed piRNAs from both RNPs were complementary to the
respective sets of loci (Figure 5.2). We only profiled the uniquely mapping reads, to exclude
transposon-associated piRNAs, and we found that complementarity of remaining piRNAs
against these regions is still intact. These results confirm our hypothesis that methylation
of the two sets of loci is in fact directed by the piRNA pathway. Moreover, since MIWI2
affects a notably larger number of genomic regions with regards to their methylation, its
presence seems to be of greater significance than MILI’s in the canonical piRNA pathway.

Since MILI is less important than MIWI2 in piRNA biogenesis, we can hypothesise that
even in the absence of MILI, there may still be a functional piRNA biogenesis pathway
which is dependent exclusively on MIWI2. In order to test this hypothesis, small RNA
samples from wild-type and Mili-knockout fetal testes were produced by the O’Carroll
Lab. An initial assessment of the length distribution of expressed transcripts in the two
conditions showed that 16% of all piRNAs (sequences of 25-32nt) remained expressed in
the Mili-knockout samples (Figure 5.3a,b). When we examined the differential expression
between all unique piRNA sequences expressed in WT and Mili-knockout samples, we
noticed that no novel transcripts were generated in the absence of Mili, compared to the
wild-type condition (Figure 5.3c). This observation implies that the loss of the Mili enzyme
is not causing extensive perturbation in the transcriptional machinery but rather preserves

the main piRNA biogenesis pathway intact, albeit at a lower level of production.
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Fig. 5.2 (a) All piRNAs and (b) uniquely mapping piRNAs from MIWI2 and MILI RNPs mapped to loci whose
methylation is dependent upon MIWI2 and MILI, respectively. Positive (red) and negative (blue) values indi-
cate sense and antisense piRNAs, respectively. Normalised counts refer to the number of aligned fragments
within each region, divided by the size of the region per kb. Graphs have been generated by averaging values
obtained from two sample replicates.

We then wanted to examine the degree of alignment of all piRNAs to the MIWI2 and
MILI-dependent loci, in the wild-type and Mili-knockout conditions. We observed that
piRNAs originating from the 1,704 MIWI2-dependent loci are still present in the Mili-
knockout sample, though at lower levels (Figures.4). By quantifying the densities per kilo-
base for the piRNAs that are cognate to this set of 1,704 loci we noticed a 2-fold (P-value <
0.05) and 3-fold (non-significant) reduction in multiply or uniquely mapping piRNAs, re-
spectively (Figures.5). On the other hand, piRNAs cognate to the 258 MILI-dependent loci
showed a much higher statistically significant (P-value < 0.005) reduction especially in the
case of unique mappers. Specifically, we observed a dramatic 18-fold decrease in piRNA
expression of uniquely mapping piRNAs in the Mili-knockout samples as opposed to the
wild-type condition. This result confirms that the loss of MILI protein extensively disrupts
piRNA production from the loci whose methylation is dependent upon MILI, while there
is a much milder effect in piRNAs which are dependent only on MIWI2.
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Fig. 5.3 Length distribution of (a) small RNAs and (b) piRNAs only in wild-type (WT) and Mili-knockout
fetal testes samples. (b) Differential piRNA expression in WT and Mili-knockout fetal testes samples. Blue
dots represent read counts from individual (unique) piRNA sequences in log2 scale.

Next, we analysed the effect of Mili-knockout in the expression of the well-studied
IAP and LINE1 transposable element families, where piRNAs can also originate from (Ar-
avin et al,, 2007; Carmell et al., 2007; Kuramochi-Miyagawa et al., 2004). We noticed a
notably high drop in expression of those elements in the absence of the MILI protein (Fig-
ures.6a,b,d). Moreover, we sought to identify evidence for the existence of the secondary
piRNA biogenesis pathway. Thus, we examined the prevalence of the 1U-10A pattern
and 1ont overlaps (ping-pong signature) across piRNA transcripts in both the wild-type
and Mili-knockout samples. We noticed that the 1U-10A pattern is significantly decreased
(P-value < 0.0005) and additionally the ping-pong signature is no longer present in the
Mili-knockout samples (Figures.6c, €). As a result, we may assume that piRNA biogenesis
in the absence of MILI is not directed at all by the ping-pong amplification cycle but may
rather be dependent on the primary biogenesis pathway. Instead, there may be an alter-
native biogenesis pathway, including the phasing mechanism. We are going to look into
this hypothesis in our next step of our analysis, in order to decipher any hidden piRNA
biogenesis mechanisms in mice.
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Fig. 5.4 (a) All piRNAs and (b) uniquely mapping piRNAs from WT and Mili-knockout fetal testes samples
mapped to loci whose methylation is dependent upon MIWI2 and MILI, respectively. Positive (red) and neg-
ative (blue) values indicate sense and antisense piRNAs, respectively. All graphs in a,b have been generated
after averaging of the values across two replicates.
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Fig. 5.5 Quantification of all or uniquely mapping piRNA densities per kb across 1,704 MIWI2- and 258 MILI-
dependent loci. Significance was assessed using the BootstRatio algorithm (Cléries et al.,, 2012). * indicates
a P-value of < 0.05, ** indicates a P-value of < 0.005, *** indicates a P-value of < 0.0005.
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Fig. 5.6 (a) Quantification of LINE1 and IAP associated piRNAs in wild-type (WT) and Mili-knockout fetal
testes. Individual data points represent values from two biological replicates. (b) Distribution of non-coding
transcripts expression across the WT and Mili-knockout samples. (c) Percentage of LINE1 and IAP associated
piRNAs in WT and Mili-knockout fetal testes with a U at the first position (1U) without an A at the position 10
and an A at position 10 (10A) without a U at position 1 is shown. Individual data points again represent values
from two biological replicates. (d) piRNAs from WT and Mili-knockout fetal testes mapped to LINE1 and
IAP consensus sequences allowing up to three mismatches. Positive (red) and negative (blue) values indicate
sense and antisense piRNAs, respectively. An averaged value from biological duplicates is shown. (e) Ping-
pong analysis of LINE1 and IAP associated piRNAs in WT and Mili-knockout fetal testes. The frequency of
the distance between 5° ends of complementary piRNAs from LINE1 (right) and IAP (left) elements is shown
(averaging across two replicates). Significance in (c) was assessed using BootstRatio algorithm (Cleéries et al.,
2012). * indicates a P-value of < 0.05, ** indicates a P-value of < 0.005, *** indicates a P-value of < 0.0005.

In this last section, we are going to look into the potential presence of phasing, as
an alternative biogenesis mechanism for piRNAs in mice. Phasing, as a piRNA biogene-
sis pathway, has so far been discovered only in Drosophila melanogaster (Han et al., 2015;
Mohn et al.,, 2015). piRNA complementary targets are first cleaved into long transcripts.
These transcripts are then further processed into sequential fragments which are generated
from splicing of the longer transcript at periodic intervals of approximately 27 nucleotides.
We sought to determine if we could find such periodicity in the piRNA clusters that are
cognates of the MIWI2 or MILI-dependent loci. Specifically, we wanted to look for en-
richment of any nucleotide distance between consecutive piRNA clusters in the mouse

genome. Thus, we aggregated the distances of consecutive piRNA clusters, weighted ei-
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ther uniformly, as an average score or as a product value (Figures.7), in order to see if there

is any prevalent distance peak among the entire set of recorded neighbouring distances.
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Fig. 5.7 Phasing calculations approach across all piRNA clusters. For each pair of consecutive peaks the
distance is first calculated. A weight w is then multiplied with the calculated distance. The types of weights
used are either: (a) product of depths (w = depth, * depth,), (b) average value of depths (w = depth tdepthy
or (c) uniform (w = 1). All weighted unique distances are then aggregated in order to be used later for peak
enrichment profiling analysis.

At first, we noticed a large peak at the 36-nt distance but only in one wild-type replicate
and for the MIWI2-dependent loci (Figures.8). Further investigation of this peak revealed
that it actually corresponds to a single pair (outlier) of over-expressed consecutive piRNA
clusters. Apart from that, we observed a distance enrichment at or around 38 nucleotides
(Figures.8), in both replicates of the MIWI2-dependent loci and for one replicate of the
MILI-dependent loci (only in the Mili-knockout condition in both cases). This finding may
not present strong evidence for the existence of phasing in mice. However, it does repre-

sent support for the existence of this pathway at periodic intervals of around 38nt. Addi-
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tionally, this pattern is more prevalent in the MIWI2-dependent loci, since it is observed
in both replicates even though not at the exact same distance peaks. Thus it may be pos-
sible that an innate phasing pathway in mice is responsible for the biogenesis of piRNAs
identified in the samples analysed in this study, despite the loss of the MILI protein.
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Fig. 5.8 Calculations over the 1,704 MIWI2 and 258 MILI-dependent loci for phasing detection as a potential
piRNA biogenesis mechanism. Blue graphs depict weighted distance enrichment across the wild-type repli-
cates while red graphs correspond to the Mili-knockout replicates. The enrichment of unique distance values
between piRNA clusters has been calculated using three different sets of weights: (a) w = depth, * depth,,
(b) w:M and (c) w = 1.

5.3 Conclusion

Experimental data from Bisulfite sequencing of mouse allele samples produced by the
O’Carroll Lab (De Fazio et al., 2011; Di Giacomo et al., 2013) revealed the presence of
novel loci of piRNA clusters, which are either MIWI2 or MILI-dependent. We investi-
gated the effect of MILI knockout on piRNA expression, with reference to these loci and
other known transposable elements (IAPs and LINE1s). We observed a 84% drop in piRNA
expression (24-32nt long sequences). This included potentially both the LTR and IAP ele-
ments and the new sets of piRNA clusters, whose expression was verified in the first step

of our analysis. However, the remaining 16% of piRNAs that were still expressed in the
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Mili-knockout samples indicates that piRNA biogenesis may not be dependent at all on
the Mili enzyme in some cases. Indeed, we showed that some piRNA clusters from the
1,704 MIWI2-dependent loci were still expressed in the absence of Mili. This suggests the
existence of a non-canonical piRNA biogenesis pathway. Moreover, when looking at the
differential expression between the wild-type and Mili-knockout samples we did not no-
tice any novel transcripts exclusively present in the knockout condition. This indicates
that the loss of the MILI enzyme is not inducing extensive perturbation in transcriptional
machinery. Finally, we attempted to explain MILI-independent piRNA biogenesis via a
Drosophila-like phasing mechanism. We did not find a strong enrichment signal for any
unique nucleotide distance. However, a distance enrichment of around 38nt may explain
the origin of piRNAs in the absence of Mili, especially of those originating from the MIWI2-

dependent loci.

5.4 Methods

5.4.1 Data pre-processing and cleaning

All samples were initially aligned against Rfam (Nawrocki et al., 2014) in order to filter out
tRNA sequences (tRNA hits with an alignment identity score > 90% were excluded from the
rest of the analysis). Analysis of the filtered samples was then performed using Sequen-
celmp (Davis et al., 2013). Input reads were first trimmed from the 3’ adapter with reaper
(using default configuration for read geometry without barcode) and de-duplicated with
tally, which are both part of the Kraken suite of tools (Davis et al., 2013). The length distri-
bution of all cleaned reads of between 18 and 32 nucleotides was recorded in order to check

for depletion of piRNA sequences between the wild type and Mili-knockout conditions.

5.4.2 Normalisation across samples

In all cases, normalisation was performed based on the total number of reads of transcripts
that remained unchanged between the two conditions(Figures.9). Specifically, the types
of transcripts that were used for normalisation (based on the official Ensembl genebuild
annotation) were: miRNAs, rRNAs, snRNAs, snoRNAs, processed_transcripts, aa_tRNAs,
Mt_tRNAs, other_tRNAs, miscRNAs and RNA_repeats. Significance was assessed using
the BootstRatio algorithm (Cleries et al., 2012).
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Fig. 5.9 (a) Replicates from both the wildtype and Mili-knockout conditions show strong resemblance within
each condition type allowing for efficient evaluation of statistical significance of the results. (b) Classes of
transcripts that retained unchanged expression between the wildtype and Mili-knockout conditions have
been selected as a reference for the normalisation of expression of all transcripts in both conditions.

5.4.3 Length filtering and piRNA quantification

Cleaned reads were later filtered by length (retaining only 24-32 nucleotide long sequences)
and aligned against the Mouse genome (Ensembl release 66) allowing up to 2 mismatches
and reporting up to 20 hits per sequence, when analysing for all mappers. In the case of
uniquely mapped sequences, the bowtie call from the Sequencelmp pipeline was adjusted us-
ing the parameter —m = 1 (parameter —k was set to 1 for both the unique and all mappers
cases). BAM output files from the alignment step were intersected with BED files con-
taining the coordinates of 1,704 and 258 loci, whose methylation is dependent on MIWI2
and MILI, respectively. piRNA counts within each locus were calculated as the average
number of fragments aligning against the locus, divided by the size of the locus region in
1 kb units. Expression densities were restricted to the interval (-100, 100) in order to filter
out outliers from 3 overexpressed loci and thus increase densities resolution for all loci.
With regards to the piRNA differential expression analysis, a custom database of all 26-
31 nucleotide long unique sequences found across all wild type and Mili-knockout repli-
cates was initially built. Each sample replicate was then aligned against this database and
expression levels of all matching sequences were quantified between the two conditions.
As for the quantification of LINE1 and IAP repeats, the analysis was performed using the

‘features’ step of Sequencelmp for repeat elements, allowing up to 3 mismatches and cor-
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recting the read counts to the number of genome mapping reads. The ping-pong signatures
and 1U-10A content of the LINE1 and IAP elements were also calculated as part of this step

using the same method.



Chapter 6

Insights from miRNA targets editing
in D. Melanogaster with CRISPR/Casg

Results from this chapter have been published in the following paper:

“In situ functional dissection of RNA cis-regulatory elements by multiplex CRISPR/Casg
genome engineering”

Q Wu*, Q Ferry*, Y Michaels, TA Baeumler, DM Vitsios, O Habib, R Arnold, X Jiang, S Maio,
BR Steinkraus, M Tapia, P Piazza, N Xu, GA Holldnder, TA Milne, JS Kim, AJ Enright, AR
Bassett, Fulga T.

Nature Communications, Volume 8, p.2109, doi: 10.1038/541467-017-00686-2 (2017).

6.1 Introduction

Clustered regularly interspaced short palindromic repeats (CRISPR) are short, partially
palindromic repeated DNA sequences found in the genomes of prokaryotic organisms.
In bacteria and archaea, CRIPSR is an endogenous adaptive immunity mechanism which
protects them against viruses and plasmids. This defence mechanism has three steps of
action. First, a segment of the invading nucleic acid is cleaved by a Cas protein complex and
integrated into the CRISPR locus as a novel spacer sequence. Then, the modified CRISPR
locus is transcribed into crRNAs (CRISPR RNAs) with the aid of another Cas protein and
tracrRNAs. Finally, mature crRNAs are incorporated into a third Cas complex that can
target the foreign nucleic acid. Specifically, the crRNA guides the complex to the invading
nucleic acid due to its complementarity with part of it and then the Cas proteins cleave

and eventually degrade it.
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The CRISPR mechanism was first described in 1987 (Ishino et al., 1987). Research
on that field grew gradually for the next several years and it was only shown in 2012
that CRISPR could be used for genome editing in human cell cultures (Jinek et al.,, 2013).
Since then, CRISPR has been established as the most accurate, cheap and efficient genome
engineering/editing tool and it has been used in a wide range of organisms including
mice (Wang et al., 2013), monkeys (Guo and Li, 2015), zebrafish (Hwang et al., 2013), fruit
flies (Gratz et al., 2013) and yeast (DiCarlo et al., 2013; Liu et al., 2016; Zhang et al., 2014)

and recently even in human (Cyranoski, 2016).

6.2 Overview

In this study, we briefly collaborated with Dr. Fulga’s Lab from the University of Oxford in
order to extract any patterns of regulation related with CRISPR/Casg induced gene editing.
Our collaborators had first applied CRISPR/Casg in order to edit genes in the Drosophila
Melanogaster genome, using S2R+ cell lines. The targeted genes were all coding and non-
coding mir-184 targets (88 overall, Appendix D) that were computationally predicted by
miRanda (Enright et al., 2003) and TargetScan (Agarwal et al., 2015) or experimentally
verified in the lab (Hong et al., 2009; Kertesz et al., 2007). These targets will be referred as
MREs (microRNA Response Elements) for the rest of this work.

Custom single guide RNAs (sgRNAs) were designed to target the defined MREs and
cause cleavage at the respective areas of the genome. CRISPR-MIT (http://crispr.mit.edu/)
was used for the design of a distinct sgRNA for each of the targeted MREs, taking into
account both NGG and NAG protospacer adjacent motifs (PAMs). DNA cleavage induced
by CRISPR/Casg eventually causes various types of gene disruptions including deletions
and/or insertions at or around the target sites, through the normally occurring DNA repair
mechanisms. This means that by applying the CRISPR/Casg method at the same target
sequence in multiple sites we could retrieve in the end a pool of sequences that correspond
to either wild type reads or to one or multiple types of mutants created by CRISPR/Casg
(Figure 6.1). DNA and RNA was then extracted from the S2R+ cells and gDNA and cDNA
libraries were prepared (2 replicates for each).These libraries were processed in order to
contain only 150 nt long amplicons around each of the MRE sites. In the end, all amplicons
were PCR amplified, polled together and sequenced.

The aim of this study is to analyse the diverse pool of MRE mutants in order to elu-
cidate the extent and structure of CRISPR/Casg effect in a range of 88 different targets.

This analysis will also incorporate a correlation study of the CRISPR efficacy with genome
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accessibility based on computational prediction of the secondary structure of genomic se-

quence segments.
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Fig. 6.1 Experimental design for the deletion of all mir-184 targets in S2R+ cells using CRISPR/Casg and
sequencing of the constructed gDNA and cDNA libraries.
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6.3 Results

We retrieved four samples overall from Next Generation Sequencing: two sample repli-
cates (A, B) for the gDNA MRE amplicons and another two replicates (C, D) for the cDNA
amplicons. Each sample contains sequences (either wild type or modified) from all 88
MREs. Another 48 barcoded calibration sequences had also been added in order to verify
the dilution of the samples along the experimental process. These sequences served only
as experimental validation for the collaborators’ work and were not included in the rest of
the computational analysis.

Due to the complexity of experimental design we first needed to efficiently de-multiplex
all sequences from input samples and assign them to the right MRE class or calibration
sequence. In the next section, we are going to go through the methodology we followed
for efficient sequence de-multiplexing. Following this, we will continue with the analysis
of the CRISPR/Casg induced edited miRNA targets.

6.3.1 Demultiplexing and reads classification

In order to demultiplex each of the libraries we have applied the following steps:

1. Align library reads against all 136 sequences of interest (88 MRE amplicons +
48 calibration reads) using the Needleman-Wunsch algorithm. The Needleman-
Wunsch (Needleman, 1970) algorithm was the ideal option since, as a global align-
ment technique, it can capture alignments having potentially big gaps (which we
expect to have due to CRISPR/Casg activity).

2. Following alignment, each read is either assigned to a specific MRE bin or is classified

as calibration read.

3. The barcode of each calibration read is checked (4 or 3 nt long) and the read is as-

signed to a specific calibration bin.

4. For each MRE/calibration, reads with a number of mismatches over 10 nt are dis-

carded since they actually correspond to unsuccessful alignments.

5. All filtered reads of each bin are aligned with BLAST (McGinnis and Madden, 2004)
against the respective wild type sequence of the bin in order to discard any remaining

sequencing artefacts.
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We observed that a proportion of reads in some of the MREs after initial classification
was actually mis-classified, most likely due to sequencing artefacts. That is why we intro-
duced Step 5 in the demultiplexing process, which is to make sure that the highest majority
of mis-classified reads from Step 1 are discarded from the rest of the analysis (Figure 6.2a).
Following that step, we computed the read depth for each MRE, normalised by read depth

across all libraries (Figure 6.2b), to assess the quality of our input data.
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Fig. 6.2 a) Quality check for final binning after de-multiplexing of all library replicates, b) Normalised (log2)
read depth for all MREs and library replicates after refined de-multiplexing.

Following assignment of all reads into a read class (either MRE or calibration read) we
analysed the distribution of variant types for all MREs across the gDNA and cDNA repli-
cates. First, reads were classified into four categories: wild-type and another three types of
variants (full seed deletion, partial seed deletion or insertion/deletion outside seed region)
based on the position of the insertions/deletions caused by CRISPR/Casg relative to the
seed region (Figure 6.3). We observe that the variant classes with CRISPR/Casg deletions
in the seed region or outside (and close to) it are comparable in size. Moreover, there is a
higher ratio of mutant reads in the cDNA replicates compared to the gDNA library (Fig-
ure 6.3). However, if we look at the individual per MRE mutant read ratios in the gDNA

and cDNA libraries (Figures 6.4 and 6.5) we can see that ratios in the two libraries vary
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for each MRE. This is a strong evidence that although CRISPR/Casg is targeting the same
seed sequence in all these MREs, the effect it induces is quite variable. Thus, we can make
the hypothesis that CRISPR’s efficiency may be regulated by other factors, for instance ac-
cessibility of the target. Finally, if we consider as mutant reads only those with at least one
deletion or insertion inside the seed region, after comparing the edits in gDNA and cDNA
libraries we observed a clear shift of mutants towards the cDNA library (and respectively
wild-type reads towards the gDNA library). This confirms that, overall, the majority of
MREs have been effectively targeted by CRISPR/Casg and are actively transcribed after

the induced mutation events (Figure 6.6).

Average WT / Mutant read ratios across all MREs

gDNA cDNA

57.3% Wild-type (WT)

| Mutants (MT)

Average WT / Distinct Mutant Types ratios across all MREs

gDNA cDNA
3.4% 5.6%

14.0%.
16.6%
WT
44.4% In/del outside seed region
57.3%

25.2% . Partial seed deletion
33.4% . Full seed deletion

Fig. 6.3 Summarised ratios of WT and MT reads per MRE, based on the relative CRISPR effect position to
the seed region.
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Fig. 6.6 Shift of cumulative distribution functions for the numbers of WT and MT reads in the gDNA and
cDNA libraries. ECDF: empirical cumulative distribution function.

6.3.2 Deletion profiles across read regions

Our analysis showed an overall enrichment of mutant reads in the cDNA library and at the
same time a variance in the mutant ratio change across all MREs. Next, we attempted to
study the CRISPR/Casg edit effect across distinct regions of the amplicons. It is worth not-
ing here that all the analysis has been performed using the cDNA amplicons directionality.
This means that orientation depicted in all deletion profiles in this chapter is the reverse
of the MREs orientation at the genome. So, e.g. the MRE 3p binding region at the genome
(i.e. the genomic region downstream to the MRE) is located upstream to the seed region
in all plots. However, for the rest of the analysis the regions upstream and downstream to
seed region are based on the cDNA amplicons directionality. Using this convention, reads

are segregated into six distinct segments (Figure 6.7)a:

« Distal Upstream region (DU): up to 50 nt long, upstream to the Proximal Upstream

region

« Proximal Upstream Region (PU): up to 15nt long, upstream to the Seed region (the MRE
3p binding region at the genome)

« Seed Region (SD): the seed (6 to 15nt long, depending on MRE target length)

« Proximal Downstream Region (PD): 14 nt long, downstream to Seed region - referring to

the rest of the mature miRNA sequence

 Medium Downstream Region (MD): 15nt long, downstream to PD region
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« Distal Downstream Region (DD): up to 50 nt long, downstream to MD.

Overall deletion ratios have been calculated for each MRE and for each of the defined
regions. These ratios represent the number of mutant sequences of an MRE divided by
all identified sequences of this MRE. Insertions were not taken into consideration for the
rest of the analysis due to low representation across all recorded insertion/deletion events
(Figure 6.4). We can observe a strong enrichment of deletions at the seed region in the
cDNA library (Figure 6.7). Additionally, the regions that are most highly enriched in dele-
tions after the seed region are the Proximal Downstream (PD), the Medium Downstream (MD)
and Proximal Upstream (PU or genomic MRE 3p binding region). This is expected since
CRISPR/Casg induces a cut at a strand it extends this cut towards one direction or the
other (Wu et al., 2014). So, there are some MREs where the directionality of the cut is from
5" to 3’ and in this case if the cut is made on the seed region it is possible to extend to the
PD or even to the MD Region.

Similarly, when the directionality of the cut is inverse (3’ to 5°) then the PU Region is also
likely to contain many deletions. This can also be verified if we calculate the correlations
of deletion ratio fold changes across all regions from the gDNA to the cDNA libraries and
for each MRE (Figure 6.8). We can see that the Seed Region is strongly correlated with both
the Proximal Downstream and the Medium Downstream regions. There is also a less strong
correlation of the Seed Region with the Proximal Upstream Region implying that CRISPR/Casg
favours more the 5’ to 3’ cut directionality (¢(DNA coordinates) in this set of targets. If we
convert these regions into genomic coordinates then we observe that regions upstream to
the seed region are the ones that have the higher deletion ratios after the Seed Region while
the MRE 3p biding region is less affected by CRISPR/Caso.
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Fig. 6.7 a) Definition of regions across the amplicons with reference to the seed region. Average deletion
ratios in read regions of the gDNA (b) and cDNA (c) libraries. Differential change (cDNA-gDNA) of deletion
ratios across all MREs (d). The directionality of each MRE amplicon corresponds to cDNA sequences, so it is
the reverse of the genomic directionality.

Furthermore, deletion ratios shift towards the cDNA library for all regions but to a
different extent (Figure 6.9). The Seed Region, Proximal Upstream and Proximal Downstream
regions show the most evident shift. Similarly, if we segregate the reads only into seed,
upstream and downstream regions, the seed has the most predominant shift among all

regions followed by the Downstream Region.
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Fig. 6.9 Deletion ratio densities from all MREs across (a) 5 (b) and 3 distinct regions. The Upstream and
Downstream annotations of the regions refer to the cDNA amplicons directionality.

We have observed, so far, quite high variability in the deletion ratio changes between
the gDNA and cDNA library. We may also confirm this variance by looking at individual
coverage profiles of targeted MREs (Figure 6.10). These profiles depict the normalised cov-

erage obtained from all reads of each MRE. In order to study the enrichment of deletions
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towards the cDNA library we introduced an enrichment score for each MRE, which we
refer to as MRE score, based on the depths of WT and MT reads in the gDNA and cDNA

libraries:
¢DNA(MT)

— §DNAMT)
score — cDNAGWT) (Func' 1)

gDNAWT)

MRE

MT (mutant) reads are considered that have at least one insertion or deletion in the seed
region. Based on the value of the MRE score an MRE is considered as active or inactive.
More specifically:

« if MRE,,,, > 1 = the MRE is active (actively transcribed)

score

« if MRE,,,, < 1 = the MRE is inactive (not extensively transcribed).

score

Using these MRE scores we can clearly distinguish the MREs where CRISPR induced
insertions/deletions have been integrated effectively into the genome and are being tran-
scribed at a higher level (i.e. higher MRE scores) or expressed at lower levels (i.e. lower MRE
scores). MRE score calculations have shown that the majority of MREs are active (MRE score
> 1) (Figure 6.11a). However, the MRE scores distribution seems very similar both for the
coding and non-coding MREs (Figure 6.11b).

Finally, in order to confirm the validity of our results, we assessed the quality of our
replicates. MRE scores calculated from any pair of replicates have a Pearson correlation
of at least 0.99 and a P-value < 0.001 (Figure 6.12), thus confirming the consistency of all

library replicates.
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Fig. 6.10 Example coverage profiles of individual MREs support the assumption of high variability in deletion
ratio change between the gDNA and cDNA library.



6.3 Results 149

cize
15 15 -
G2e
Bi®
i
E11 e
o 8
$ 107 ER- 10 -
8 ® w
H o
i s
= Bo@B11
C38B2
E12 @
57 57 HiQF4
! $
04 g 0
£ | |
6 25 50 7‘5 coding non-coding
Class
coding | IO DN 00D O DONOVONOR YOO DNROROOR 10 00 AR
non-coding | |l o
MREs
a. b.

Fig. 6.11 a) Ranking of all MRE scores associated with their MRE class, b) MRE scores distribution across
MRE classes (coding and non-coding).

o 5 10 15 o 5 10 15
C/A i
*kk *kk *kk o
D/B 0.99 1.00 0.99 :
“
°
Pearson 2+ D/A
o Correlation ok *kk
o
§_ .. 1.000 ~ 0.99 1.00
Lowe
g 0.997 g °
o o
= 0.995 £ E .
g S 4 c/B 2
o D/A 0.992 E i .
0.99
Lo
Lo
CIA - s . D/B
° @
@ o
C/A D/A C‘/ B D/B o sman 5
o s 10 1 o s 10 1

Replicates pair - 1

Replicates pair - 1

Fig. 6.12 Pearson correlation between MRE scores, calculated for each pair of library replicates (left) along
with the P-values of each correlation score (right). ***: P-value < 0.001.



150 Insights from miRNA targets editing in D. Melanogaster with CRISPR/Casg

6.3.3 Single-nucleotide resolution deletion profiles

As a further step for studying the deletions induced by CRISPR/Casg we calculated the dele-
tion ratios at each nucleotide position of every MRE amplicon (Figure 6.13), thus attaining
the highest possible resolution. These profiles allow the inference of the directionality of
the cut by visual inspection. We can see that for most MREs there is a deletion ’band’
that starts from either the 5° or 3" end of the MRE target and extends to the 3’ or 5° end,
respectively. Deletion ratios are higher (more intense colour) at the start of the deletion

band and attenuate towards the end of these deletion *bands’.
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Fig. 6.13 Deletion ratios at each nucleotide position of the gDNA (a) and cDNA (b) libraries, (c): Differential
change (cDNA-gDNA) of deletion ratios at each nucleotides position across all MREs.

Subsequently, we calculated the average sum of deletion ratios at each position and
we noticed two peaks downstream to the start of the seed region (Figure 6.14). The first
peak is very close to the start of the seed region and the second peak is positioned at
index 6, which is the end of the large majority of MRE seeds in this study, having 7nt long
seeds. Thus, deletion ratios are higher at or close to the ends of the MRE seeds. Moreover,
we can see that deletion profiles differ slightly between the coding and non-coding MRE
classes. Non-coding MREs show a higher restriction of deletions inside or close the seed

region while coding MREs demonstrate a decreasing deletion trace that extends upstream



6.3 Results 151

(less) and downstream (more) to the seed region. Besides, non-coding MREs show higher
deletion enrichment in genomic DNA than coding MREs (greater average negative sum).
Finally, we can observe that deletion ratios are higher upstream to the genomic MRE and

lower downstream to it.
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Fig. 6.14 Average sum of deletion ratios between the cDNA and gDNA MRE read depths, at each nucleotide
position of a 10ont window, centered at the start of the Seed Region (index: o).

Single-nucleotide resolution deletion profiles allow us to study in depth all mutation
types that occur across the examined amplicons. As a first step, we used this data in order
to define two additional custom types of MRE scores. The first type of MRE score (Type I) is
defined as the log2 fold-change between gDNA in cDNA libraries of the reads that have a
single deletion at each position of the amplicon (Figure 6.15). We notice that Type I MRE
scores are enriched at the seed region and diminish gradually as we move away from the
seed. We also need to mention that there is a slight drop in MRE scores at index 6 of the
Seed Region. This is just due to the fact that some of the examined MRE targets are 6 nt

long and their sequence corresponds to the o to 5 indexes of the seed.
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Fig. 6.15 Custom (Type I) MRE scores distribution for single deletions at each position of the Upstream (a),
Seed (b), Downstream (c) regions and the whole amplicon (d).

The second additional type of MRE score (Type II) attempts to capture the length vari-
ance of the mutation types induced by CRISPR/Casg. These MRE scores are calculated as
the log2 fold-change of reads that have a certain (exact) number of deleted base-pairs any-
where at a region of interest (Figure 6.16). We can observe at these profiles that mutation
types with 6 or 7 deletions are the most predominant mutation type for the Seed region.
However, the other mutation types follow with comparable scores. This means that the
full length of each target hasn’t been deleted by CRISPR in all cases. Furthermore, we
notice a low variance of MRE-Type II scores in the Upstream region, which implies that muta-
tion types of variant lengths (from 1 to 50 nt) change with similar frequency between the
gDNA and cDNA libraries. Finally, the downstream region shows an enrichment of MRE
Type II scores for mutation types of length > 26 nt. This means that the genomic region that
is upstream to the MRE targets is also extensively deleted by CRISPR/Casg, along with the

seed regions.
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Fig. 6.16 Custom (Type II) MRE scores distribution for different (exact) numbers of deletions occurring
anywhere within the Upstream (a), Seed (b), Downstream (c) regions and the whole amplicon (d).

6.3.4 Accessibility Analysis of MRE targets

From the previous analysis so far, we have observed a high variability of the CRISPR effect
across all MREs. This variability may be explained by various factors, including accessibil-
ity of the target sequence. In this section we will try to correlate CRISPR efficiency, as it is
captured by MRE enrichment scores, with target accessibility predicted computationally
using the Vienna package (Lorenz et al., 2011). In order to do so, we first folded each cDNA
amplicon (200 nt long, centered at the seed region) using the RNAplfold tool from the Vienna
package. We have used three window sizes for assembling the secondary structure of each
amplicon sequence: 50, 100 and 150 nt. Accessibility for each nucleotide is assessed as
the likelihood that this nucleotide and its neighbouring 6 nts are unpaired, based on the
structure that has been predicted using each window size. As a control for the accessibility

assessment, for each MRE amplicon we have used 10,000 shuffles of the original amplicon
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and calculated the average and standard deviation of accessibility at each nucleotide (Fig-
ure 6.17a). The final accessibility score is the Z score accessibility (Figure 6.17b), which is
the distance of the accessibility of the original sequence from the average accessibility of
the shuffled sequences at each nucleotide, in units of standard deviation of the shuffled

sequences accessibilities.
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Fig. 6.17 a) Example results from probability assessment of the accessibility at each nucleotide position of
the original MRE sequence and the avg. of 10000 shuffled sequences. b) Z score of accessibility probability
at each nucleotide position in reference to the mean and standard deviation of accessibilities of the shuffled
sequences.

We have tested our method to known examples, such as the let-7 precursor, and the re-
trieved accessibility scores, calculated within a 20ont long sequence around the precursor,
capture with very good precision the structure of the precursor and specifically the stems

and the loop parts (Figure 6.18).
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Fig. 6.18 a) Probability of accessibility of each nucleotide calculated for a 200nt sequence around the let-7
precursor and 10,000 shuffled control sequences. b) Z-score accessibility: distance of the accessibility of the
original sequence from the average accessibility of the shuffled sequences at each nt, in units of standard
deviation of the shuffled sequences accessibilities. ¢) Computational prediction of structure and accessibility
of a 200nt long sequence window around the let-7 precursor.

6.3.5 Association of accessibility profiles with classes of enriched
MRE:s

We have applied our accessibility assessment method to all MRE amplicons with canoni-
cal targets (59 overall), in order to assure a fixed centre seed region for all amplicons, and
calculated the Z score accessibilities at each nucleotide position. We then clustered (hier-
archical clustering) the accessibility profiles for different sub-regions of each amplicon and
correlated the overall accessibility profile with the MRE enrichment scores. MRE scores

have been classified into 4 classes based on their values:

. High, if: MRE,,,, >4

score

o Medium, if:t MRE >2

score

« Low, if: MRE > 1

score



156 Insights from miRNA targets editing in D. Melanogaster with CRISPR/Casg

« Reversed, if: M RE <1

score

and the regions that correlation analysis has been performed involved the following

sub-regions of each amplicon:

Whole Amplicon length

 Seed region

« Extended Seed (Seed region * 6 nt)

e Downstream

o Upstream

« Downstream section (25nt downstream to the seed)
« Upstream section (25 nt upstream to the seed)

« Seed & Downstream (seed region & 25nt downstream to the seed)

Upstream & Seed (25 nt upstream to the seed & seed region)

Apart from the hierarchical clustering we also performed a Principal Component Anal-
ysis for each case in order to see if MRE score classes can be separated adequately based on
their respective accessibilities Figure 6.19. By inspecting each of the retrieved heatmaps
and PCA plots for all window sizes (50, 100 and 150 nt), we have observed that the only
region that demonstrates a pattern of correlation between accessibility and MRE scores
is the Upstream section (25 nt upstream to the seed). Of course, separation is not accurate
for all members of each class. However, we can get a fairly clear separation between the
Reversed MRE score class and the non-Reversed ones, which imply a segregation between
CRISPR deletions enrichment either at gDNA or cDNA.

This region (Upstream section) corresponds to the MRE 3p binding region at the genome.
Based on the previous analyses (Figure 6.8, 6.9, 6.14), we observed that deletion ratios are
more predominant downstream to the cDNA amplicon seed region (Downstream section). So,
we could potentially assume that the region that is critical for CRISPR’s cutting efficiency
is the MRE 3p biding region. High accessibility in this area leads to MRE scores enrichment
in most cases and it is also very likely that deletions starting at the seed region also expand
upstream to the seed region (in genomic coordinates), thus explaining the high deletion

ratios in that area as well.
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Z score: calculated at each nucleotide position
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Fig. 6.19 Hierarchical clustering (left) and Principal Component Analysis (right) of the canonical MREs based
on their accessibility profiles, in association with their MRE score class for different window sizes used for
the computational prediction of accessibility: a) 50 nt, b) 100 nt, ¢) 150 nt. Accessibility profiles contain the
Z score at each nucleotide position.

Based on the original accessibility analysis, we computed a smoothed version of acces-
sibility profiles. In order to do that, we have collapsed every 5 columns from the original
profiles into a single one and assigned as a Z score for the new column either the median
or the sum of the collapsed Z scores. We noticed again (Figure 6.20, 6.21) that the highest
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correlation of accessibility with MRE scores enrichment is achieved at the Upstream sec-
tion region, with the Seed included in some cases. In conclusion, we suggest that the Seed
Region cutting efficiency may be regulated by the MRE 3p binding region’s -and potential
Seed’s too- accessibility.

Z score: median of Z-scores within a sliding 5nt long window
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Fig. 6.20 Hierarchical clustering (left) and Principal Component Analysis (right) of the canonical MREs based
on their accessibility profiles, in association with their MRE score class for different window sizes used for
the computational prediction of accessibility: a) 50 nt, b) 100 nt, ¢) 150 nt. Accessibility profiles contain the
median of Z scores from every 5 columns of the original profiles.
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Z score: sum of Z-scores within a sliding 5nt long window

ITHEI N I =l IINEEIm

b
i
i
-
|
c
(]
!
|

Upstream section

Upstream & Seed

!

Upstream & Seed

N
e —
_—

MRE score Classes

! M High
I Mid
Low
Reversed PCA
|
,
< - |
! .
|
P
h
~ * o
— T ® e
g e
N .,
o %, P . ®
§ ol tem T @ mRes
o KGR
. MY
L 1
|
|
:
i T t T T T
-2 [ 2 4 6
Dim 1 (40.19%)
PCA
o 4 ‘
|
i .
|
|
. |
,
- |
g 3
§ e t
& |
E (]
a (]
P I -_..,:’_':'J _______ e ..
& --%
A
O B
o 1 L
. L]
s © e o e
h
|
-4 -2 0 2 4 6
Dim 1 (30.77%)
PCA
|
o |
|
1 L]
|
|
|
- A 1
|
o |
] ° ':
8 o I
o
& Y
*L.P
o d---= L
°! .
o0 o0
e o @ . )
' !
-2 0 2 4 6

Dim 1 (27.73%)

Fig. 6.21 Hierarchical clustering (left) and Principal Component Analysis (right) of the canonical MREs based
on their accessibility profiles, in association with their MRE score class for different window sizes used for
the computational prediction of accessibility: a) 50 nt, b) 100 nt, ¢) 150 nt. Accessibility profiles contain the
sum of Z scores from every 5 columns of the original profiles.

6.4 Conclusion

Based on the results presented in this chapter we concluded that CRISPR/Casg introduces

deletions predominantly in the seed region of the target, along with regions immediately
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upstream or downstream to it. Thus, its function may not always target exclusively the
desired regions but may affect other parts of the genome as well. Moreover, we observed
a high variability in CRISPR/Casg efficiency even though the sequence of the targeted re-
gions are the same. This implies that there may be other factors that affect CRISPR/Casg
functionality with regards to editing a region. Thus, we assessed the correlation of compu-
tationally predicted accessibility with target (MRE) enrichment scores and we noticed that
the MRE 3’ binding region may be playing the most prevalent role in the accessibility of
the target by the CRISPR/Casg mechanism. As a future work, we could suggest integrating
more accessibility data in our study, derived from ATAC-Seq, Chip-Seq and SHAPE-Seq
(for single-nt resolution accessibility assessment) experiments using the same cell lines of
D. melanogaster. Additionally, we could take into account the variability of the designed
sgRNAs for each target.



Chapter 7

Discussion

7.1 Conclusions

The advent of Next-Generation Sequencing and the rapid development of bioinformatic
analysis tools in recent years has enabled the acceleration of progress in biological re-
search. A significant part of recent discoveries has been devoted to small non-coding
RNAs, such as miRNAs and piRNAs. The discovery that these classes of small RNAs take
part into fundamental processes of animal and/or plant cells, such as differentiation, em-
bryogenesis and gene regulation, has ignited a notable scientific endeavour in order to
decipher the secrets of the world of small RNAs. In this thesis, we shed more light into
novel pathways and features of miRNA and piRNA biogenesis as well as introduced two
novel methods for the analysis and prediction of miRNAs.

First, we presented Chimira, a novel method for miRNA quantification and identifica-
tion of 5’-,3’-terminal and internal modifications (including ADAR-edits and SNPs). This
work was inspired by previous studies that have shown the important role of modifica-
tions, such as uridylation and adenylation, in miRNA biogenesis and stabilisation (Heo
et al., 2012; Katoh et al.,, 2009). The method that we developed is provided publicly as a
web-application with a user-friendly interface and its efficiency and speed were demon-
strated.

Next, we applied Chimira into a large study investigating the impact of 3’ terminal
uridylation on the Mouse transcriptome. The outcome of this collaborative work was that
the transcriptome in oocytes is regulated by extensive uridylation of the maternally de-
posited transcripts. On the other hand, changes in uridylation levels did not have a sig-
nificant impact in either mRNA or miRNA levels in adult somatic cells or embryonic stem

cells.
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In chapter three, we presented a large-scale analysis of deposited small RNA datasets
in order to elucidate hidden miRNA biogenesis features as well as explore the landscape
of miRNA post-transcriptional modifications. We saw that datasets from similar cell types
or tissues tend to cluster together based on miRNA expression and also based on their
modification profile in several cases. With regards to miRNA expression, it was shown
for the first time in such a large scale that miRNAs located in proximal regions within the
genome are expressed simultaneously. In cases of observed co-expression with no genomic
proximity, it was also shown that miRNAs belonging to distant genomic locations are in
fact regulated by the same sets of transcription factors.

Furthermore, we found a high variability in the modification profiles across different
datasets. 3’ terminal modifications are the most predominant modification type with a high
prevalence of patterns with 1 to 4 nucleotides. We also discovered, though at a reduced
level, the presence of various 5’ modification patterns that may be affecting the miRNA
targets repertoire by changing the seed region of the modified miRNAs. The large amount
of miRNA expression data we retrieved from the analysed datasets allowed us to explore
the rules that regulate strand selection during miRNA maturation. We confirmed that
the 5° ends of both the mature and the star miRNA products are responsible for defining
the strand to be selected. Moreover, we discovered that it is actually only the first two
nucleotides at the 5° end of each strand that play the most predominant role in strand
selection. Finally, we extracted coverage profiles for numerous miRNAs and suggested
several mis-annotated miRNAs from miRBase that appear to have non-canonical coverage
profiles and thus may not be real miRNAs.

This last part of the third chapter was the leading idea for the next project, analysed
in Chapter 4. By inspecting multiple miRNA coverage profiles, we observed that a typi-
cal miRNA has a well-processed 5’ end, some 3’ tailing and very few modifications/SNPs
inside the main body of the mature sequence and especially not in the seed region. This
motivated us to explore the possibility of identifying miRNAs based only on features de-
rived from the coverage profile, thus not requiring a reference genome. To this end, we
developed mirnovo, a novel machine learning based method that is able to predict known
and novel miRNAs with or without a reference genome with very high accuracy. Its per-
formance exceeded the performance of miRDeep2, which is currently the state-of-the-art
tool. Additionally, we applied mirnovo to various large scale analyses and retrieved in-
teresting insights about Drosha and/or Dicer independent miRNA biogenesis as well as
discovered novel miRNAs from single-cell small RNA-Seq data.

In the last two chapters of this thesis, we presented the work that was done as part of

two collaborative projects. Specifically, in Chapter 5, we explored alternative biogenesis
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pathways for piRNAs in mice. We confirmed first that MIWI2 plays a more important
role in piRNA biogenesis than the MILI protein. Additionally, we discovered that in the
absence of MILI piRNAs are still expressed, though at lower levels. This MILI-independent
biogenesis pathway for piRNAs in mice might be explained with a Drosophila-like phasing
mechanism. We did not find a very strong confirmation for the existence of phasing from
our data, however we extracted a distance enrichment of 38nt between piRNA clusters that
may explain piRNA expression despite the loss of MILL

In the sixth and final chapter we presented an exploratory analysis of multiple tar-
get sites of a single miRNA in D. melanogaster, which had been edited by CRISPR/Casg.
We observed a high variability of CRISPR/Casg editing effect across the targets examined,
despite their common sequence. Thus, we attempted to associate editing efficiency with
computationally predicted accessibility of the targets in the genome. Eventually, we found
a correlation, though not very strong, between the computationally predicted accessibility

of the targets and efficient integration of edited sites in the genome.

7.2 Future research

The work conducted as part of this thesis yielded several insights into small RNA biogenesis
and function. However, it also provides the ground to extend and build upon in order to
perform further and/or improved analyses.

One of the first future analyses that we are suggesting would entail the analysis of
miRNA modifications in very specific dataset conditions, e.g. cancer data from a certain
cell type/tissue. In chapter 3 we explored the extent of modifications across several datasets
derived from various conditions. This allowed us to get a macroscopic overview of mod-
ification events and establish some general rules that apply to the high majority of cases,
such as prevalence of adenylation, uridylation and patterns of up to 4 nucleotides long.
However, we believe that focusing on an ’isolated’ dataset of control (healthy) and exper-
imental (cancer or other disease) samples would allow us to assess the extent to which
miRNA modifications regulate or contribute to perturbation of normal cell function, as
has been shown in previous studies for specific cases (Boele et al., 2014; Li et al.,, 2012).
To this end, we also believe that it is worth providing a stand-alone version of Chimira as
well, in order to facilitate labs willing to perform very large-scale analyses across various
conditions and/or organisms.

Furthermore, it would be very interesting to associate miRNA post-transcriptional
modifications with other factors. A very interesting approach would be to examine if and

to what extent DNA methylation may be affecting the abundance and motif repertoire of
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modifications. Additionally, a very crucial analysis would be to analyse miRNA modifica-
tions in relation to mRNA expression. The regulation network that should be studied in
that case may be extremely complex. However, we could focus on the most prevalent mod-
ification patterns (mono-adenylation and mono-uridylation) and build upon there trying
to detect any correlation with changes in mRNA expression or vice-versa.

Our novel miRNA prediction method, mirnovo, exhibited notably high accuracy levels
either with or without using a genome. One improvement that we can suggest is to intro-
duce an extra de-noising/filtering step either prior to or after prediction when analysing
for single-cell data. This will probably reduce the overhead of validating too many novel
miRNA candidates from this type of data, which are already characterised with signifi-
cantly high noise compared to bulk small RNA-Seq data.

Moreover, it is thought that miRNAs can be grouped into six groups based on their dis-
tinct biogenesis characteristics (Kim et al., 2016). Some miRNAs require both Drosha and
Dicer during maturation and others need to be mono-uridylated prior to Dicer processing.
In addition, other miRNAs may be dependent only on Drosha or Dicer while others may
originate from spliced-out introns or from other structured non-coding RNAs. Processing
of each miRNA from a different biogenesis pathway leads to a certain degree of variability
when it comes to the coverage profiles retrieved from sequencing. For instance, Drosha
independent miRNAs usually exhibit some 5’ tailing which is not found in canonical miR-
NAs, whose 5° end is well-processed instead. In this regard, we could extend our method
so that it integrates different training models for different types of miRNAs based on their
biogenesis in order to eliminate incorrect classification of predicted miRNAs as much as
possible.

The current Random Forest classifier employed by mirnovo has proven to be highly
efficient, achieving levels of accuracy over 95% and sensitivity/precision of at least 80%.
One improvement for the model would be to seek for a minimum set of features and an
optimal tree depth for the algorithm to converge, assuming that the new model attains
at least an equivalent performance with the current model. This would allow for faster
training of the Random Forests, faster prediction calling in unseen data and reduced file
size of the trained classifiers per species. Additionally, in Chapter 3 we demonstrated
the importance of the first 2nt in mature miRNA selection from the miRNA precursor
duplex. Thus, it would also be very interesting to import into the set of features used
by mirnovo the difference of free energies (AAG) of the 2nt-long duplexes at the 5’ ends
of each strand product of the duplex. Introducing this feature could potentially enhance

mirnovo’s predictive performance even further.
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With regards to improving the classification step of mirnovo, we also exam-
ined the performance of a few deep learning networks using the hzo.ai framework
(https://www.h20.ai). The achieved accuracy was 5-10% lower than the respective accuracy
of the Random Forest classifier. However, the broad and diverse repertoire of networks
available for deep learning definitely offers a lot of space for exploration of numerous net-
work structures of increasing complexity that may even outperform the current Random
Forest classifier.

Finally, the emergence and progressive growth of Nanopore Sequencing in recent years
offers an abundance of new opportunities for designing and executing efficiently large-
scale experiments without requiring massive equipment or budget. Of course, there is still
a long way to cover until Nanopore Sequencing reaches the extremely high accuracy re-
turned by Illumina Sequencing, which is the state-of-the-art sequencing technique. How-
ever, this is an ongoing endeavour and at the same time an opportunity for future work in
order to design and develop new and more accurate classifiers for Nanopore Sequencing
data. Additionally, classifiers could be trained to detect directly post-transcirptional mod-
ifications in miRNAs or other RNA molecules and even some types of DNA modifications,
such as methylation. This would allow us to design and conduct computational experi-
ments of really high complexity that could elucidate even further the complex regulatory

mechanisms within cells.


https://www.h2o.ai
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Appendix A

Chimira: user interface and

functionality

Chimira is an online tool for analysing large amounts of small RNA-Seq data and acquir-
ing their modifications profiles. It allows the mapping of input sequences to miRBase in
order to decipher miRNA expression content and modifications related with the input se-
quences (3’/5’-modifications, ADAR edits and SNPs). This functionality is provided by a
user-friendly interface in a web-app (Figure A.1).

chimira

Chimira allows you to upload compressed FASTA/FASTQ files containing adapter/barcode stripped or raw small RNA-

Seq data.

All sequences will be mapped against miRBase hairpin sequences and assigned a match (allowing up to two

m mismatches).

Any modifications (3!, 5! internal) in the input sequences will be identified.

You can upload your FASTA/FASTQ files by dragging them here, or clicking on the upload button.

Run Clean&Run  Other tools
Identify miRNA counts & modifications from adapter/barcode trimmed data.

Upload files

Options Load example files

1. Select species:  Homo sapiens (hsa)
2. Split counts from paralogs: (?)

3. Send results to (e-mail)

» Advanced analysis - mirnovo extension

Fig. A.1 Chimira’s homepage. Three modes of operation are provided: Run, for adapter-trimmed files, Clean
& Run, for raw files (non adapter-trimmed), and Other tools, for 3’ adapter inference.
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Chimira offers 3 main modes of operation:

1. Run mode: Chimira expects as an input FASTQ or FASTA files containing adapter
and/or barcode trimmed small RNA-Seq data. It is important that the input file se-
quences have been cleaned properly from any adapters/barcodes that were used dur-
ing sequencing, so that the extracted modification profiles are free from sequencing

noise of this type and results are reliable.

2. Clean & Run mode: this mode should be used when input files contain 3’ adapters
(barcodes should have already been removed). Input files may all have the same 3°
adapter (in that case a common adapter sequence should be provided). However,
different adapters for each file are supported, in which case a file containing the

adapter sequences for each file should be provided.

3. Other tools mode: the user can upload raw FASTQ/FASRA files and search for the
3’ adapter in their sequences. This process is making use of minion and swan (Davis
etal., 2013) and provides in the end a suggested adapter for each of the input samples,

along with its alignment score against a database of verified adapters.

Chimira provides two types of miRNAs identification: Plain Counts and Modifications.
Plain Counts refers to the quantification of the miRNA molecules that are expressed in any
form in each of the input samples. Modifications, on the other hand, refers to the quantifica-
tion of any sequence segments that are part of the input sequences and cannot be justified
by the genomic sequence of reference.

The output from each type of analysis contains interactive visualisations based on D3.js
that summarise the results along with query-able tables (based on jQuery DataTables) with
the raw output data (Figures A.2, A.3).

Apart from the initial mapping of input sequences to miRNAs and the identification
of modification patterns and counts, Chimira provides a set of tools for further analysis of

the results. More specifically, the web-server version of Chimira provides:

« an interactive interface for the differential expression visualisation between two spe-

cific samples or sets of samples,

« the identification of the most highly expressed miRNAs within two samples (or sets

of samples) and

« the projection of the modifications profile for specific miRNAs across all samples.
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Plain Counts - Overall Analysis

Show:

RawData  DESeq2 Normalised Data

Raw Data
D Name Size
1 sample-1.fq.gz 20.19KB
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[
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I Bdownload now
I
| stou(s 2Jenies search
| MIRNA COUNTS. o
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top-10 miRNAs expression across samples

350000 -f

300000 - - |
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Fig. A.2 Chimira’s snapshot with the overall results from the Plain Counts analysis of 3 samples.
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Appendix B
mirnovo: standalone version tutorial

Source code from the mirnovo standalone package is

available on GitHub:
https://github.com/dvitsios/mirnovo

B.1 Installation

. Download mirnovo_pkg (.tar.gz file) from either Linux or MACOSX folder (depend-
ing on the Operating System on your machine).

2. Untar pkg: tar xvzf mirnovo_pkg_[linux | macosx].tar.gz

3. ¢d mirnovo_pkg_[linux | macosx]

Dependencies

« Python (tested with v2.7.10)

« Perl (tested with v5.24.1)

« R (tested with v3.2.2) required libraries: png, ROCR, randomForest

« Unix utilities: wget, gunzip, tar, convert (pre-installed in most distributions).

B.2 Configuration

[Important Note]: mirnovo comes with no pre-installed training models and/or genomes.

You need to download at least one training model (and optionally a genome) prior to run.


https://github.com/dvitsios/mirnovo
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B.3 Run

[Important Note]: you need to call mirnovo.pl from inside the bin/ directory.
Output is stored under the tmp/ directory. A custom output sub-dir name may be defined

using the -o option.

+ Basic example run:

cd bin
./mirnovo.pl -i ../example_file.tallied.gz -g hsa -t hsa -o example_run

« Example run without a reference genome (-g NA option):

./mirnovo.pl -i ../example_file.tallied.gz -g NA -t hsa -o example_run

« Example run without generating pdf files with coverage profiles and hair-
pins (-disable-pdf option):
(allows for faster execution time, especially for large files)

./mirnovo.pl -i ../example_file.tallied.gz -g hsa -t hsa -o example_run --disable-pdf

B.4 Download / Install reference genome

cd bin
./download_genome.pl [genome_id]

e.g.: ./download_genome.pl dme

For more info see:
http://wwwdev.ebi.ac.uk/enright-dev/mirnovo-standalone-pkg/Genome-Annotation-1.0
(see README file).

B.5; Download Training models

cd bin
./download_training_model.pl [model_id]

e.g.: ./download_training_model.pl universal_animals

All trained models are available here:

http://wwwdev.ebi.ac.uk/enright-dev/mirnovo-standalone-pkg/Training-Models-1.0


http://wwwdev.ebi.ac.uk/enright-dev/mirnovo-standalone-pkg/Genome-Annotation-1.0
http://wwwdev.ebi.ac.uk/enright-dev/mirnovo-standalone-pkg/Training-Models-1.0
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B.6 Quantification of known and novel miRNAs with
Chimira

Mirnovo is able to predict both hairpins and mature miRNAs, providing count data in the

latter case.

However, inherent sequence clustering steps (initial and refined) of the mirnovo
pipeline may be imperfect in some cases and thus affect, even at a low level, the yielded

expression data.

Thus, in order to extract even more accurate expression data we have expanded

Chimira, a method that was previously published in our lab (Vitsios and Enright, 2015).

In that case, Chimira serves as a mirnovo extension, allowing the user to upload a
custom set of hairpin sequences (e.g. known and/or novel hairpins predicted by mirnovo)
and then align their input files against this reference set to get mature miRNA expression

counts.

All uploaded reference files are merged and sequences with an alignment identity
over o.9o are collapsed. As an additional functionality, Chimira is able to generate
coverage profiles of each identified mature miRNA and the secondary structure of the

corresponding hairpin reference hit.

Precomplied binaries are provided with the tool, specifically for the MAC OS X and
Linux platforms: wvsearch, muscle, blastn, blastall, fasta_formatter, cdhit, bowtiez, twoBitToFa,
twoBitInfo, faToTwoBit, RNAfold, RNAplot.


http://wwwdev.ebi.ac.uk/enright-dev/mirnovo
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Repository links with predicted

miRNAs by mirnovo

+ Supplementary Data S1: predicted novel miRNAs in GEUVADIS (Lappalainen
et al, 2013).

Link:

https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S1.xlsx

+ Supplementary Data S2-S6: predicted novel miRNAs in Moth species (with cov-
erage profiles and secondary structures) - (part 1).

Bombyx mori (Whole body):
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S2.pdf

Bombyx mori (Anterior silkgland):
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S3.pdf

Bombyx mori (Posterior silkgland):
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S4.pdf

Heliconius melpomene melpomene:

https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S5.pdf

Heliconius melpomene rosina:

https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S6.pdf


https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S1.xlsx
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S2.pdf
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S3.pdf
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S4.pdf
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S5.pdf
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S6.pdf
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« Supplementary Data S7, S8: predicted novel miRNAs in Moth species (with cov-

erage profiles and secondary structures) - (part 2).

Cameraria ohridella:

https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S7.pdf

Pararge aegeria:

https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S8.pdf

Supplementary Data So: predicted novel miRNAs in Human, dependent on either
Drosha, Dicer or XPOs,

Link:
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S9.xIsx

Supplementary Data S10-S12: lists of predicted novel miRNAs in Human (with
coverage profiles and secondary structures), dependent on either Drosha, Dicer or
both.

Drosha & Dicer dependent:
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S1o0.pdf

Dicer-only dependent:
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S11.pdf

Drosha-only dependent:
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S12.pdf


https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S7.pdf
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S8.pdf
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S9.xlsx
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S10.pdf
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S11.pdf
https://github.com/dvitsios/mirnovo-predicted-miRNAs/raw/master/Supplementary_Data_S12.pdf

Appendix D

List of MREs in D. melanogaster, edited
by CRISPR/Casg

Table D.1 Complete list of miRNA Responsive Elements (MREs) that were edited by CRISPR/Casg in D.

melanogaster S2R+ cell lines. The targeted genes are all coding and non-coding mir-184 targets.

Sample name Gene name Amplicon Chromosome  Startindex  End index
size

A1 Sinu (MRE1) 179 3L 5553583 5553762
A2 Sinu (MRE2) 185 3L 5552688 5552872
As Mgaz2 188 3R 25841614 25841801
Aq CGu11os 186 3R 2890119 2890304
As CG1332 190 3L 4223355 4223544
A6 CG31195 (MRE1) 192 3R 16584236 16584427
A7 CG31195 (MRE2) 188 3R 16583078 16583265
A8 CG8121 181 3R 5162712 5162892
Ag Mecr 180 2L 8074699 8074884
A1o Tsf2 180 3L 12523643 12523822
A11 cals 183 4 1135886 1136068
A12 emp 171 2R 20864066 20864236
B1 Iqfr (epsin-like) 181 3R 18244429 18244609
B2 PtpgooA 198 3R 25310745 25310942
B3 Sema-1b 194 2R 13560745 13560938
B4 CG1o217 174 3R 19586478 19586651
Bs CG14059 170 3L 17022973 17023142
Bé6 CG4q313 180 X 1948946 1949125

B7 - (no amplicons) CG6533 197 2L 12171486 12171680
B8 CG7713 170 3R 13621764 13621933
Bog Pck 187 X 1365986 1366172
Bio CG1298 179 2R 1560073 1560251
B11 CG17218 180 2L 12173779 12173958
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Table D.1 Continued from previous page

Sample name Gene name Amplicon Chromosome  Startindex  End index
size
Bi2 CG2813 182 2L, 575216 575397
C1 CG13088 182 2L 8490302 8490483
C2 CG1084 182 3R 212546 212727
Cs CG6965 181 3R 7709684 7709864
Cq CG8o10 180 X 19160736 19160915
Cs CG3446 184 X 6243435 6243618
Cé6 CGi515¢4 182 2L 18139584 18139765
Cy Atet 180 2L 4344915 4345094
Cs8 Betalnt-nu 193 2L 21057312 21057504
Co Bves 182 X 20948104 20948285
Cio Cadg6Cb 200 3R 21049878 21050077
Ci11 Cahz 182 3L 12176184 12176365
Ci12 CG12880 198 3R 23517836 23518033
D1 CG14785 182 X 1349278 1349459
D2 CG31495 180 3R 9664108 9664287
D3 CGy542 (MRE1) 185 X 6717054 6717238
Dy CG4542 (MRE2) 170 X 6717199 6717368
Dsg CG6038 177 3L 11703607 11703783
D6 CG6905 176 3L 358050 358225
D7 CG8776 176 2R 8547656 8547831
D8 Dok 199 X 7222337 7222535
Do drd 176 X 15030878 15031053
Dio fy 220 2L 8401476 8401695
D11 1(2)35Bg 185 2L 15037140 15037324
Di2 1(2)gl 194 2L 10637 10830
E1 Oseg1 189 3L 8400337 8400524
E2 Pka-R2 186 2R 5884633 5884818
E3 Ppcs 170 3R 14966053 14966222
Eq RecQs5 177 3L 14623330 14623506
Es Sbr 180 X 10727188 10727367
E6 SPoCk 196 3L 22779195 22779390
E7 ttk 180 3R 27560302 27560481
E8 yrt 192 3R 9255295 9255486
Eg Gli 200 2L 15756083 15756282
E1o Nrx-IV 180 3L 12149551 12149730
E11 Lac 180 2R 8352674 8352853
E12 CG12789 200 2L 7445489 7445688
F1 XLOC_o035581 180 4 668555 668734
F2 XLOC_o03055 199 2L 21799331 21799529
F3 XLOC_oo1425 182 2L, 9973580 9973761
Fq XLOC_030523 173 3R 886117 886289
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Sample name Gene name Amplicon Chromosome  Startindex  End index
size
Fs5 XLOC_030181 187 3R 26541912 26542098
Fo XLOC_o030521 192 3R 882972 883163
(MRE1)
F7 XLOC_o030521 192 3R 882972 883163
(MRE2)

F8 XLOC_000338 180 2L 1989625 1989804
Fg XLOC_022242 198 3L 8995929 8996126
Fio XLOC_022396 200 3L 10405100 10405299
F11 XLOC_023568 180 3L 19415111 19415290
Fi2 XLOC_031931 180 3R 11379049 11379228
G1 XLOC_o019797 180 3L 19548116 19548295
G2 XLOC_oo05141 180 2L 11958578 11958757
G3 XLOC_001669 (del1) 234 2L 12024216 12024449
G4 XLOC_001669 (del2) 234 2L 12024216 12024449
Gs XLOC_o01669 304 2L 12024352 12024653

(MREs)
Go6 CRy44786-RA 191 2L 21821339 21821529
G7 Ctr1B 192 3R 4144590 4144781
G8 CGog22 192 2R 2580385 2580576
Gog CGs5850 187 2L 9960878 9961064
G1o comm 185 3L 15715296 15715480
G11 CG11594 196 3L 4025155 4025350
G12 - (no amplicons) Atgy No primer designed
Hi CR44033 182 3R 17360424 17360605
H2 Kaz-m1 181 3R 21841477 21841657
Hs CGy4705 220 2L 11091442 11091661
Hy MRE23 181 3R 24414696 24414876
Hs Dp1 100 2R 14302334 14302433

He Ubci12 196 3L 8190762 8190957
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