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ABSTRACT
We develop a formalism for modelling the impact of dark matter subhaloes on cold thin streams.
Our formalism models the formation of a gap in a stream in angle-frequency space and is able
to handle general stream and impact geometry. We analyse an N-body simulation of a cold
stream formed from a progenitor on an eccentric orbit in an axisymmetric potential, which
is perturbed by a direct impact from a 108 M� subhalo, and produce a complete generative
model of the perturbed stream that matches the simulation well at a range of times. We show
how the results in angle-frequency space can be related to physical properties of the gaps and
that previous results for more constrained simulations are recovered. We demonstrate how our
results are dependent upon the mass of the subhalo and the location of the impact along the
stream. We find that gaps formed far downstream grow more rapidly than those closer to the
progenitor due to the more ordered nature of the stream members far from the progenitor.
Additionally, we show that the minimum gap density plateaus in time at a value that decreases
with increasing subhalo mass.

Key words: Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure –
cosmology: theory – dark matter.

1 IN T RO D U C T I O N

One of the key predictions of the currently favoured �cold dark
matter (CDM) cosmology is hierarchical structure formation. Early
in the Universe dark matter overdensities formed, began accumulat-
ing baryons, and conglomerated into ever larger dark matter haloes.
The result of this process is that at the current time there are many
smaller dark matter haloes that are orbiting within a large dark mat-
ter halo such as that of the Milky Way. Current dark-matter-only
simulations (e.g. Diemand et al. 2008; Springel et al. 2008) make
predictions for the slope of the mass spectrum of these subhaloes,
although the exact structure of the subhalo mass spectrum in �CDM
is still an ongoing area of research (e.g. Giocoli et al. 2010; Gao
et al. 2011). Warm dark matter models predict quite different sub-
halo mass spectra (Lovell et al. 2014) such that the presence and
number of these low-mass subhaloes is a crucial test for the �CDM
cosmology.

From an observational point of view the nature of dark matter has
remained aloof as dark matter has not yet been directly detected al-
though the direct detection experiments are ruling out possible dark
matter candidates (Bertone, Hooper & Silk 2005; Feng 2010). The
other crucial line of attack is probing the gravitational effects of dark
matter on both visible matter and photons on astrophysical scales.
The large-scale smooth dark matter halo is being mapped out with
dynamical models of both the assumed phase-mixed components of
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the Galaxy e.g. the disc (e.g. Bovy & Rix 2013; Piffl et al. 2014), and
those components of the Galaxy that are yet to fully phase mix, e.g.
tidal streams (e.g. Koposov, Rix & Hogg 2010; Gibbons, Belokurov
& Evans 2014; Bowden, Belokurov & Evans 2015; Küpper et al.
2015). Tidal streams are filaments of material stripped from satel-
lites of a host galaxy and are naturally a result of the hierarchical
structure formation picture. Some streams (e.g. GD-1, Palomar 5)
are observed to be very kinematically cold such that, in addition to
being probes of the large-scale dark matter structure, they are very
sensitive probes of interactions with the dark matter subhaloes. In-
teractions between streams and dark matter haloes produce gaps
in the streams that grow over time. A conclusive detection of one
such gap induced by a low-mass subhalo would be very powerful
confirmation of �CDM cosmology, whilst the ultimate goal might
be to measure the dark-matter halo mass spectrum from a whole
series of observed gaps.

To achieve this ambitious goal we need a concerted modelling
effort to understand the structure of a gap in a stream. The goal
is doubly ambitious due to the difficulties that modelling unper-
turbed streams has presented. The modelling of streams has re-
ceived considerable attention in the literature and there have been
many proposed methodologies for measuring the Galactic potential
using streams. However, there have been relatively few successful
applications to the data (e.g. Koposov et al. 2010; Law & Majewski
2010; Gibbons et al. 2014; Bowden et al. 2015; Küpper et al. 2015)
and we have not yet reached a point where modelling a stream is
simple. One very powerful method is to construct models of streams
in angle-frequency space as proposed by Bovy (2014) and Sanders
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(2014). This space simplifies the stream dynamics (Helmi & White
1999; Tremaine 1999) and allows rapid generation of general stream
models.

In recent years, there has been much progress made in under-
standing the structure of stream gaps through the analysis of nu-
merical simulations (Ibata et al. 2002; Johnston, Spergel & Haydn
2002; Siegal-Gaskins & Valluri 2008; Carlberg 2009, 2012; Yoon,
Johnston & Hogg 2011) as well as through analytic approaches
(Carlberg 2013; Erkal & Belokurov 2015a,b). Erkal & Belokurov
(2015a) extended the treatment introduced in Carlberg (2013) and
developed a simple picture of how gaps form in streams on circular
orbits due to changes in the orbital frequency induced by a sub-
halo’s passage. The analytic results of that work were then used in
Erkal & Belokurov (2015b) to demonstrate that subhalo properties
can be reliably inferred from observations of streams with realistic
observational errors. While this simple picture of gap formation has
provided useful insight, it relies on the ease with which nearly circu-
lar orbits can be handled and cannot be easily extended to realistic
streams which are on eccentric orbits.

Motivated by these analytic results, we will build on the angle-
frequency stream formalism and argue that it provides a clear basis
on which to incorporate perturbations due to subhalo fly-bys. We
show that many of the insights from circular orbits in Erkal &
Belokurov (2015a) can be extended to general, eccentric orbits. We
work from the point-of-view that we know the underlying unper-
turbed stream distribution and the Galactic potential well and we
are trying to characterize substructure in the stream.

We will show how one can compute the kicks in velocity, angles
and frequencies for general subhaloes and general impact geome-
tries. With the aid of an N-body simulation of a cold stream on an
eccentric orbit in a flattened axisymmetric logarithmic potential we
demonstrate how a perturbed stream model can be generated and
we inspect the resultant distributions in action, angle and frequency
space. We show that a gap forms in angle, frequency and action
space and that the gap size in the parallel angle space (the angle
along the stream) grows like the spatial gap size. We simulate a
series of halo fly-bys of differing masses and geometry. We find in
all cases the minimum density in the gap plateaus in time and that
the gap size grows fastest for fly-bys far from the stream progenitor
where the particles are well ordered by energy. Finally, we show
that we are able to produce a fully generative model of a perturbed
stream that matches the N-body simulation well in Galactocentric
coordinates.

The paper is arranged as followed. We begin in Section 2 with the
framework for computing the velocity perturbations of a stream due
to a general subhalo fly-by. We compute the velocity perturbations
using methods of increasing complexity, and show the difference
between velocity kicks computed for a range of subhalo profiles. In
Section 3 we translate these velocity perturbations into angle and
frequency perturbations and present the formalism for perturbing
an angle-frequency stream model. In Section 4 we detail an N-body
simulation of a 108 M� dark matter impact on a cold stream formed
from a progenitor on an eccentric orbit. We project the simulation
into action, angle and frequency coordinates and by applying the
framework of Section 2 we perturb an unperturbed simulation snap-
shot and compare to the perturbed simulation snapshot. We show the
angle and frequency kicks that result from a subhalo fly-by and de-
velop an analytic approximation that well reproduces the frequency
kicks. To close the section we compute the gap size in angle space as
a function of time and by projecting the models back into real space
show how the gap size in angle space correlates with the spatial gap
in the stream. In Section 5 we consider fly-bys of varying subhalo

masses and varying impact geometry. In Section 6 we demonstrate
how a fully generative perturbed stream model can be created and
show the model density as well as the configuration space distribu-
tions well match the simulation. We present improvements to the
unperturbed stream model that are necessary to reproduce the under-
lying stream density. We discuss the applicability of our formalism
and present our conclusions in Section 7.

2 V E L O C I T Y P E RT U R BAT I O N S

In this section we give expressions for the velocity changes of stream
particles under the influence of a subhalo fly-by. Following Yoon
et al. (2011), Carlberg (2013) and Erkal & Belokurov (2015a) we
work under the impulse approximation, i.e. the integrated accelera-
tion is assumed to act instantaneously at some impact time such that
the velocity of the stream particles changes instantly. The change
in velocity is given by

δvg =
∫ ∞

−∞
dt a(x(t)), (1)

where a is the acceleration resulting from the force exerted by the
subhalo which depends on the location x of the particle at time t.1

The fly-by is described by the impact parameter b, the velocity of
the subhalo w and the time of the impact t = −tg. To simplify the
expressions in this section, we set tg = 0.

Erkal & Belokurov (2015a) gave expressions for the velocity
kicks due to a Plummer subhalo on a straight stream segment mov-
ing at a fixed relative velocity to the subhalo. If we consider the
example of GD-1 and take the model of Koposov et al. (2010)
we find that the observed segment of the stream has a radius of
curvature of ∼24 kpc. Erkal & Belokurov (2015a) show that for a
108 M� Plummer subhalo with scale radius rs = 625 pc the kicks
are important on scales of ∼10rs ≈ 6 kpc such that the radius of
curvature is comparable to the region over which the kick is im-
portant. Similarly, from Erkal & Belokurov (2015a) we know that
the typical distance a stream particle moves during the interaction
is ∼10|v|rs/|w − v| ≈ 10rs/

√
2 ≈ 4 kpc (where w is the velocity

of the subhalo) such that the curvature of the orbit of an individual
particle is also important over the interaction. Here we will give
more general formulae for the velocity kicks that account for the
curved extent of the stream.

2.1 Plummer subhalo kicks on curved stream

We expand on the formalism of Erkal & Belokurov (2015a) by
explicitly considering the spatial distribution of the stream. We
retain the simplification that each particle moves at a fixed relative
velocity to the subhalo during the fly-by. We define the phase-space
coordinates of the stream particles as (xi , vi) and the stream point
of closest approach as (x0, v0). The geometry of the interaction is
shown in Fig. 1. The vector of closest approach is given by

b0 = b
w × v0

|w × v0| . (2)

Note the sign of b is important in defining the curvature of the
stream relative to the subhalo. We define

bi = b0 + xi − x0 (3)

1 Throughout this paper we use δ to denote changes in quantities for indi-
vidual particles in time e.g. from the subhalo fly-bys, and � for differences
between particles.
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Dynamics of stream–subhalo interactions 3819

Figure 1. Stream–subhalo interaction geometry at the point of closest ap-
proach: the right panel is a zoom-in of the region inside the grey dashed
square in the left panel. The stream track is a circular orbit of radius 10 kpc
and circular velocity 220 km s−1 shown by the grey line. The red vector w

shows the projection of the sub-halo velocity. The black position vectors
x0 and xi show the positions of the stream closest to the subhalo and an
arbitrary stream point, respectively. The black velocity vectors v0 and vi

give the velocities of these two stream points. The blue vectors b0 and bi

are the closest-approach displacement vector and the displacement vector
between the subhalo and the arbitrary stream point, respectively. The dotted
blue lines show the angles at which the projection of the velocity vector of
the subhalo intersects the stream.

as the displacement vector between stream particle i and the subhalo
at the impact time, and

wi = w − vi (4)

as the corresponding relative velocity. The expression for the veloc-
ity kicks for the ith stream particle is given by

δv
g
i =

∫ ∞

−∞
dt a(xi(t)),

xi(t) = bi + wi t . (5)

For general subhalo acceleration fields this integral must be cal-
culated numerically via a coordinate transformation to make the
limits finite. However, for a Plummer subhalo the velocity kicks
may be computed analytically. The potential of a Plummer sphere
is given by

�P(r) = − GM√
r2 + r2

s

, (6)

where M is the mass and rs the scale radius. The velocity kicks are
given by

δv
g
i,P = −2GM

|wi |
bi − ŵi(bi · ŵi)

(B2 + r2
s )

, (7)

where

B2 = |bi |2 − |bi · ŵi |2. (8)

2.2 Comparison of methods for computing the velocity kicks

In Fig. 2, we show a comparison between the kicks calculated
using approaches of increasing complexity. We compute the kicks
calculated assuming the stream is a straight-line segment as in Erkal
& Belokurov (2015a), the kicks calculated using the curvature of
the stream track as in equation (7), the kicks calculated using the full
orbital path of each stream particle but assuming the subhalo moves
in a straight line, and finally the kicks calculated using the full orbit
of the stream particles and the subhalo. The last of these is computed
by first integrating each particle and the subhalo backwards in time
for some time T in the galactic potential, integrating the particles
forward in the combined galactic and subhalo potentials for a time
2T and finally integrating the particles backwards for a time T and
computing the difference between the initial and final velocities.

The particles are evolved in a flattened logarithmic potential of
the form

�L(R, z) = V 2
c

2
log

(
R2 + z2

q2

)
, (9)

Figure 2. A comparison of the velocity kicks calculated with varying levels of complexity for the interaction between a Plummer sphere and a circular
stream track as described in Section 2.2. The black lines show the kicks calculated using equation (7) (i.e. fixed relative velocity during fly-by), whilst the
red short-dashed lines show the kicks computed assuming the stream is a straight line segment along the y-axis, the blue medium-dashed lines show the kicks
computed using the full path of each particle during the fly-by and the green long-dashed lines show the kicks computed by integrating each particle in the
combined galactic and orbiting Plummer potential. The dotted blue lines show the angles at which the projection of the velocity vector of the subhalo intersects
the stream. Each panel shows two lines corresponding to two different subhalo mass impacts of 108 M� and 107 M�. Panels (a), (b) and (c): the first, second
and third plots show the Cartesian velocity kicks as a function of the azimuthal angle from the centre of the galaxy. Panel (d): the rightmost panel shows
v · δvg with the small inset showing the relative difference between the lines. The black lines show the difference between the full computation and the kicks
computed with equation (7), the red short-dashed lines show the difference between the full computation and the kicks computed assuming the stream is a
straight line, and the blue long-dashed lines show the difference between the full computation and that including the acceleration of each particle during the
fly-by. The thicker lines correspond to the 108 M� subhalo.
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with Vc = 220 km s−1 and q = 0.9 (Koposov et al. 2010), and the
stream here is modelled simply as a circular orbit at 10 kpc with
a circular velocity of 220 km s−1 impacted by a Plummer sphere
with velocity w = (0, 132, 352) km s−1. The choice of velocity is
motivated by the work of Piffl, Penoyre & Binney (2015) who
constrained the smooth dark matter distribution to have a velocity
dispersion at the solar position of σ i ≈ 150 km s−1 and we assume
that the dark matter subhalo distribution function is similar to the
smooth dark matter distribution. Additionally, the velocity was cho-
sen such that the subhalo only interacts with the stream once over the
progenitor’s orbital period. The impact parameter is b = −625 pc
where the minus sign denotes that the subhalo passes inside the
circular orbit of the progenitor. The distance along the stream in the
straight-line approximation is calculated as �φ × 10 kpc.

We show two kicks: one due to a subhalo of mass 108 M� and
scale radius rs = 625 pc and one due to a subhalo of mass 107 M�
and scale radius rs = 250 pc. The parameters were chosen such
that the subhaloes lie within the maximum circular velocity against
tidal mass (approximating the tidal mass as the total mass) relation
from the Via Lactea II catalogue of Diemand et al. (2008). The
maximum velocity kick from a direct Plummer subhalo impact is
proportional to the maximum circular velocity (Erkal & Belokurov
2015a) so matching the maximum circular velocity gives realistic
velocity kicks. Our chosen subhalo parameters lie above the average
relation from Diemand et al. (2008) as they are more concentrated.
However, the considered impacts are physically plausible as the
subhaloes still lie within the scatter of the Via Lactea II distributions.

The differences between the different methods are small. One
very noticeable difference is the amplitude of the δvg

x kicks com-
puted using the orbital path of the stream particles, but with the
subhalo moving in a straight line, is significantly smaller than for
the other three cases. This is because the stream particles curve to-
wards the subhalo track and so experience an increased perturbation.
This picture is confirmed by moving the subhalo fly-by to outside
the stream track which produces an under-estimate for |δvg

x |. Ad-
ditionally, the δvg

z kicks for the full stream and subhalo integration
are smaller at large distances from the closest approach. We also
show v · δvg which is very similar for the four cases. This quantity
is the change in energy δH and is related by a constant scaling to
�E/�Echar plotted in fig. 4 of Yoon et al. (2011). For many poten-
tials the orbital frequencies are strongly dependent on the energy and
only weakly dependent on the other integrals of motion (Binney &
Tremaine 2008). Therefore, it is this quantity which has the largest
effect on the future structure of the stream. Additionally, Erkal &
Belokurov (2015a) argued that for the near-circular orbit case the
azimuthal velocity kicks and hence v · δvg ≈ vφδv

g
φ produced the

most significant effects on the gap evolution. In the bottom inset
panel we show the relative difference in v · δvg between the three
approximate methods and the full orbit integration method. For both
subhaloes the straight line approximation produces a similar relative
difference with the 108 M� case being slightly more accurate. For
the other two cases (‘curved’ and ‘with acc.’) the 107 M� case pro-
duces a smaller relative difference (approximately 5 per cent smaller
for |φ| � 0.6 rad). It seems that if we account for the curvature of
the stream track the 107 M� interaction is better approximated as
impulsive.

In conclusion we find that all the absolute differences between
the velocity kicks using different methods are very small, particu-
larly for the 107 M� impact, and probably much smaller than the
precision with which line-of-sight velocities will be measured for a
number of years. Therefore, we conclude that the straight-line ap-
proximation is sufficient. However, the curved approximation has

the same computational cost, whilst capturing an additional phys-
ical effect, so for our calculations in Section 4 we will use equa-
tion (7) to calculate all kicks. We note, however, that we have not ex-
plored different impact and stream geometries but rather inspected
what we see as a representative case so there may be special cases
where the more computationally expensive methods are required.

2.3 Different subhalo profiles

We now compare the kicks produced by a Plummer profile with
those due to other astrophysically interesting profiles for which
we compute the kicks numerically. We consider kicks due to Hern-
quist profiles (Hernquist 1990) and truncated Navarro–Frenk–White
(NFW; Navarro, Frenk & White 1996) profiles. The density profile
for the truncated NFW halo is given by

ρNFW(r) = M

4πr3
s

(
r

rs

)−1(
1 + r

rs

)−2

sech

(
r

rt

)
. (10)

rt is the truncation radius. For non-zero rt the forces and potential
must be computed numerically and clearly for rt → ∞ the form
reduces to the well-known NFW profile. Hayashi et al. (2003) find
that tidally stripped dark-matter haloes have a polynomial truncation
of ρ ∝ r−6 at large radii so the exponential truncation should be
treated as the most extreme truncation and more realistic NFW
haloes will lie somewhere between our truncated and non-truncated
lines.

In Fig. 3 we show the kicks computed for a Plummer subhalo, a
Hernquist subhalo, an NFW subhalo and truncated NFW subhalo.
We also show v · δvg which is the quantity that controls the future
structure of the stream. We have modelled the stream as a straight-
line segment moving along the y-axis at velocity vy. The Plummer
subhalo has a scale-radius rs and satisfies 4GM = rsv

2
y . The other

two finite-mass haloes have the same total mass as the Plummer
sphere, with the NFW halo mass parameter chosen to be equal to the
total mass of the Plummer sphere. All haloes have scale radii chosen
such that the mass contained within rs is identical to the enclosed
mass for the Plummer subhalo. This results in scale radii given
by rs, Hernquist = 1.36rs, rs, NFW = 1.21rs, rs, NFWtrunc = 1.76rs. The
truncated NFW profile has a truncation radius of rt = 2rs, NFWtrunc.
We also show, for reference, the kicks from a point-mass, or Kepler
potential, with mass equal to the mass enclosed by the Plummer
sphere at rs. The subhaloes have velocity w = (0.3, 0.6, 0)vy and
impact parameter b = √

3/2rs.
Of the spatially extended haloes, the Plummer sphere produces

the smallest kicks at all radii as it has the least mass at small radii.
The Hernquist sphere produces the second smallest kicks as the
mass enclosed for rs < r < 10rs is smallest for the Hernquist sphere.
The NFW and truncated NFW profiles produce similar amplitude
kicks at small distances but the truncated NFW kicks fall off faster
at larger distances. The NFW profile is the most spatially extended
so it produces the largest kicks at large distances. However, such
a dark matter subhalo is unphysical so we only include it here for
completeness. The three finite-mass spatially extended subhaloes
produce kicks that tend towards each other at large distances. The
Kepler potential produces smaller kicks than the spatially extended
haloes due to its lower total mass.

3 A N G L E - F R E QU E N C Y P E RT U R BAT I O N S

Erkal & Belokurov (2015a) developed a simple model for gap for-
mation and gave analytic results for the structure of a gap as a
function of time for streams on circular orbits. Such an approach is
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Dynamics of stream–subhalo interactions 3821

Figure 3. A comparison of the velocity kicks from a Plummer (black solid), a Hernquist (green long-dashed), a NFW (red medium-dashed) and a truncated
NFW subhalo (blue short-dashed). Panel (a): the left panel shows the density (top) and mass (bottom) profiles of the four haloes. The three finite mass haloes
have the same total mass and the NFW profile has the same mass parameter. The Hernquist, NFW and truncated NFW scale radii are chosen such that at
the Plummer scale radius (rs) the same mass is enclosed by the profiles. The truncated NFW halo has a truncation radius equal to twice its scale radius.
Panels (b), (c) and (d): the second, third and fourth panels show the velocity kicks as a function of the distance along the stream. Panel (e): the rightmost
panel shows v · δvg . The stream is a particle train along the y-axis with velocity vy. The subhaloes have 4GM = rsv

2
y , rs, Hernquist = 1.36rs, rs, NFW = 1.21rs,

rs, NFWtrunc = 1.76rs, impact parameter b = √
3/2rs and velocity w = (0.3, 0.6, 0)vy . In the second through fifth panel we show in long-dashed purple the

kicks from a point-mass (or Kepler potential) with mass equal to the enclosed mass of the Plummer halo at the scale radius.

fruitful for developing an understanding of the gap formation but
when modelling realistic streams we require a formalism that is
appropriate for eccentric orbits.

Dynamical systems are often simplified through the use of angle-
actions coordinates ( J, θ) (see Binney & Tremaine 2008). These
canonical coordinates possess the properties that the actions are
integrals of motion whilst the angles increase linearly with time at a
constant rate �, which are the frequencies. The equations of motion
for the angle-action coordinates are

J = constant,

θ = ∂H

∂ J
t + θ(0) = �t + θ(0), (11)

where t is the time and θ(0) is the angle at t = 0. In axisymmetric
potentials2 the three actions are given by J = (JR, Jφ, Jz). JR is
the radial action describing the extent of the radial oscillations, Jz

is the vertical action describing the extent of the vertical oscilla-
tions and Jφ is the z-component of the angular momentum. The
frequencies � = (
R, 
φ, 
z) are the corresponding rates of the
oscillations with the angles θ = (θR, θφ, θz) describing the phase of
the oscillation.

The meaning of the angle-action coordinates can be demonstrated
by considering circular orbits. In this case the angle θφ is the az-
imuthal angle φ around the orbit and the frequency 
φ is the circular
frequency. For near-circular orbits, the epicyclic oscillations about
the circular orbit are described by the two frequencies 
R and 
z.
The angle θz describes the oscillation phase perpendicular to the
orbital plane, whilst θR and θφ − φ are dependent and describe
the circulation about the guiding centre (Binney & Tremaine 2008,
equation 3.265). Erkal & Belokurov (2015a) considered the case
of near-circular orbits when analysing the structure of a gap and
we will see that many of the results for more general orbits can be
related back to the near-circular orbit case, so it is useful to keep

2 In this paper we will only work with axisymmetric potentials but the
formalism is simply extended to more general potentials.

in mind the meaning of the angle and frequency variables for the
near-circular case.

To compute the actions, angles and frequencies in this paper we
use the method detailed by both Sanders & Binney (2014) and Bovy
(2014).3 This method uses a generating function to transform from
a set of toy angle-action variables (computed in an isochrone po-
tential) to the target set. The coefficients of the generating function
(Fourier components Sn and their derivatives) are found from a
least-squares fit to a series of phase-space samples from an orbit
integration. Note that this method is not limited to axisymmetric
potentials and can be used for more general static potentials e.g.
triaxial potentials (see Sanders & Binney 2014). For the orbit of the
stream progenitor considered in this paper the actions are computed
with a relative accuracy of 3 × 10−6, the frequencies to a relative
accuracy of 3 × 10−5 and the θ i/π are computed to an absolute
accuracy of 1 × 10−4 (these quantities are computed by measuring
the standard deviation of the action and frequency estimates, and
the standard deviation of the angle estimates about a straight line,
for a series of samples from a 300 Gyr orbital segment.).

The angle-action coordinates simplify the description of the evo-
lution of a tidal stream, as once stripped the stream members move
essentially as free particles in the galactic potential. Helmi & White
(1999) and Tremaine (1999) both discussed the evolution of a stream
as a small action clump in angle-actions, which was further built on
by the work of Eyre & Binney (2011). Sanders & Binney (2013b)
presented the idea that the angle-frequency distribution could be
used as a probe of the galactic potential. These ideas were extended
by both Bovy (2014) and Sanders (2014) who developed generative
models for streams in angle-frequency space. This framework is
ideal for the introduction of velocity perturbations due to a subhalo.

Each particle in a stream obeys the equation

�θ = θ − θ0 = (� − �0)ts + �θ init = ��initts + �θ init, (12)

3 The two cited methods differ in the action computation as Bovy (2014)
averages the toy actions over the toy angles whilst Sanders & Binney (2014)
solve for the Fourier coefficients.
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where the subscript 0 denotes the coordinates of the progenitor, �

denotes separation between the progenitor and a stream particle and
the subscript ‘init’ denotes the separation between progenitor and
particle at release and ts is the time since the particle was stripped.
This means �� is the separation in frequencies between a stream
particle and the progenitor, which is constant after the particle has
been stripped, and �θ is the separation in angles between a stream
particle and the progenitor which grows linearly in time at a rate
��.

A long thin stream is characterized by a vector n along which the
particles lie in both angle and frequency space. Under the assump-
tion of an isotropic action distribution this vector is the principal
eigenvector of the Hessian matrix Dij = ∂2H/∂Ji∂Jj . Note that if
the frequencies are functions solely of the Hamiltonian (as in the
Kepler case) n is aligned with the stream particle frequency vectors
and the stream is well approximated by an orbit. We will return to
this point later in Section 4.4.

Bovy (2014) and Sanders (2014) introduced a model for each
tail of the stream (leading or trailing) in angle-frequency space
that was an elongated Gaussian in the frequency offset from the
progenitor and an isotropic Gaussian in initial angle offset from
the progenitor. By estimating some stripping rate p(t) the angle-
frequency distribution could be calculated at all times. Through the
introduction of a linear transformation from position–velocity space
to angle-frequency space in the neighbourhood of the stream, Bovy
(2014) demonstrated that the stream track in configuration space
can be computed quickly and the model could be rapidly sampled
at any time.

The angle-frequency model of a stream can be simply extended
to include the effects of a subhalo impact. Under the assumption
that the subhalo imparts an instantaneous velocity kick to the stream
particles, we can calculate the change to the angles and frequencies
for small velocity kicks as

δ�g ≈ ∂�

∂v

∣∣∣∣
x

· δvg,

δθg ≈ ∂θ

∂v

∣∣∣∣
x

· δvg. (13)

This is a good approximation as the transformation between (x, v)
and (�, θ ) is close to linear for the small velocity kicks from sub-
haloes.

The stream stretches along the direction n and in each tail the fre-
quency distribution is very narrow such that, at a fixed time, the loca-
tions of the particles in the stream are well approximated by a single
angle coordinate θ|| = θ · n. We assume that the kicks are functions
of this single variable. Similarly, the frequency distribution can be
described by the single frequency coordinate 
|| = � · n. This as-
sumption is equivalent to assuming the stream is very cold as we
are ignoring any spatial extent of the stream perpendicular to the
streaming direction. The distribution perpendicular to these narrow
distributions is described using the angle and frequency coordi-
nates

�θ⊥ = �θ − �θ||n

��⊥ = �� − �
||n. (14)

If the kick occurred a time tg ago the angles and frequencies of a
stream particle are given by

�θ = �θ init + ��init(ts − tg) + δθg + (��init + δ�g)tg,

= �θ init + ��initts + δθg + δ�gtg,

�� = ��init + δ�g. (15)

Table 1. Parameters used for the N-body simulation described in Section 4.
The parameters in the top half of the table (marked ‘Stream’) refer to the
stream progenitor system whilst those in the bottom half (marked ‘Subhalo’)
refer to the dark-matter subhalo. The progenitor of the stream follows a King
profile, whilst the subhalo follows a Plummer profile.

Stream Mass 105 M�
Core radius 13 pc
W0 5
Particle number 106

Smoothing length 1 pc
Initial position (30, 0, 0) kpc
Initial velocity (0, 105.75, 105.75) km s−1

Subhalo Mass 107 M�, 108 M�
Scale radius 250 pc, 625 pc
Impact parameter 0
Velocity at impact 200 km s−1 ⊥ to stream velocity
Impact time 10 Gyr after stream progenitor released
Insertion time 100 Myr before impact
Removal time 100 Myr after impact

Note that these kicks are only valid if ts > tg, i.e. the particle
was in the stream at the kick time, otherwise the applied kicks
to the angles and frequencies are zero. The particle moves with
its initial frequency separation until the kick at which point the
particle continues to move at the initial frequency separation plus
the frequency kicks.

The matrices ∂θ
∂v

|x and ∂�
∂v

|x must be calculated numerically.
However, we will demonstrate that there are several approximate
analytic relations that hold well for the inspected simulation.

4 SI M U L AT I O N

To investigate the formation of stream gaps in actions, angles and
frequencies we ran two N-body simulations. The simulations were
run using GADGET-3 which is an improved version of GADGET-2
(Springel 2005). The parameters of the simulation are summarized
in Table 1. We first generated a stream by disrupting a King profile
with W0 = 5, a mass of 105 M� and a core radius of rc = 13 pc.
The cluster was modelled with 106 particles and a smoothing length
of 1 pc. The galactic potential was chosen to be a logarithmic halo
of the form in equation (9) with Vc = 220 km s−1 and q = 0.9. The
cluster was placed on an eccentric orbit with a pericentre of 15 kpc
and an apocentre of 30 kpc. It was released around apocentre at
a position of (30, 0, 0) kpc with an initial velocity of (0, 105.75,
105.75) km s−1 such that the orbital period of the progenitor was
∼650 Myr. The simulation was run for 10 Gyr after which a long
cold stream of total length ∼300◦ was generated. This stream was
then used in two simulations where it was impacted by two different
Plummer subhaloes: a large subhalo with a mass of 108 M� and
a scale radius of rs = 625 pc, and a small subhalo with a mass of
107 M� and rs = 250 pc. The impact point was in the trailing arm
of the stream when it was near pericentre with an impact parame-
ter of b = 0 and a velocity which was perpendicular to the stream
plane at the point of impact with a magnitude of 200 km s−1. The
subhalo was inserted into the simulation 100 Myr before impact and
removed 100 Myr after impact to remove the possibility of multiple
interactions with the stream. The stream–subhalo interaction time
is of the order of rs/|w − v| where v is the velocity of the gap cen-
tre at impact. For the considered interaction, this expression gives
∼1.5 Myr which is significantly smaller than the time the subhalo
is in the simulation. Each simulation was then evolved for a further
5 Gyr. In Fig. 4 we show the full stream in the (x, y) plane and
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Dynamics of stream–subhalo interactions 3823

Figure 4. Real-space distribution of stream and gap zoom-in for the
108 M� subhalo fly-by 880 Myr after impact.

a zoom-in of the gap centre at 880 Myr after impact for the large
subhalo. It is this simulation that we inspect throughout the paper
and we have used the smaller subhalo simulation for validation.

This section is split into several subsections. In Section 4.1 we
project the N-body simulation of the perturbed stream into action,
angle and frequency coordinates. We then compute the angle and
frequency kicks from Section 3 and compare to the perturbed and
unperturbed simulations in Section 4.2. In Section 4.3 we perturb
the unperturbed snapshot using the numerically computed kicks and
compare with the simulation. We develop an analytic expression for
the frequency kicks in Section 4.4. In Section 4.5 we discuss the
stages of stream growth in angle space. In Section 4.6 we show how
the angle kicks are related to the gap size in angle space and finally
in Section 4.7 show how the angle gap size is related to the spatial
gap size.

4.1 Angle and frequency structure

Here, we investigate the angle and frequency structure of the stream.
We take the snapshot of the stream at 880 Myr after impact and com-
pute the angles and frequencies for particles in the trailing stream
tail (defined by an ∼180◦-long segment in azimuthal angle). We
also perform the same calculation for the stream evolved without
a subhalo fly-by. In Fig. 5 we show histograms of the difference
in the density in angle and frequency between the perturbed and
unperturbed simulations. We plot all quantities with respect to the
coordinates of the gap centre which is defined by taking the unper-
turbed stream at the time of impact, computing the median velocity
of the stream particles within 10 pc of the impact point, and then
integrating the orbit starting at the impact point with this velocity. In
the angle and frequency distributions, there is a clear under-density

Figure 5. Difference histograms between the unperturbed and perturbed streams at t = 0.88 Gyr after impact: the top row shows the distribution in angles
and bottom row the frequencies. The right panels show the distributions in the parallel-perpendicular space where ‘parallel’ is the distance along the stream
direction and ‘perpendicular’ is the Euclidean distance from the stream direction vector. Zero-points correspond to the gap centre as described in Section 4.1.
The bin size for the angles is 0.03 rad (0.0012 rad for the perpendicular direction) and 0.015 Gyr−1 for the frequencies (7.5 × 10−4 Gyr−1 for the perpendicular
direction).

MNRAS 457, 3817–3835 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/457/4/3817/2589025 by U
niversity of C

am
bridge user on 16 D

ecem
ber 2019



3824 J. L. Sanders, J. Bovy and D. Erkal

Figure 6. Frequency-angle distributions for unperturbed (black) and per-
turbed (red) trailing tail at three different times after the subhalo impact.
The three rows show the frequency and angle distributions with respect to
the centre of the gap at three different times which are written in the right
column. The three columns from left to right show the radial angle against
radial frequency, the azimuthal angle against azimuthal frequency and ver-
tical angle against vertical frequency. In the top right panel we show a blue
line that lies along one of the ‘spurs’ in the unperturbed model. In the bottom
middle panel we highlight those kicked particles that are now overtaking
other stream particles.

along the stream direction, and we observe that the spreads in |θ⊥|
and |�⊥| are significantly smaller than θ || and 
||, justifying our
modelling assumption. In Appendix A we plot similar distributions
in action space which exhibit very similar features.

In Fig. 6 we plot the angles and frequencies for the unperturbed
and perturbed trailing stream distributions. The unperturbed simula-
tion consists of a spur (marked in blue in Fig. 6) due to each stripping
event. The material stripped in each event forms an approximately
vertical line in this space before gradually twisting clockwise as the
differential frequency effects take hold. The material on the far left

was stripped earliest. We see that the subhalo produces the expected
S-shape which also twists clockwise in time due to the differential
frequency effects. At the impact time (t = 0) there is a clear gap in
frequency but only a relatively modest gap in angle. However, the
twisting naturally produces a larger gap in the angles. The twisting
also causes some perturbed material to overtake the unperturbed
material (highlighted by the blue box in Fig. 6).

4.2 Angle and frequency kicks

In Section 3 we described how the angle and frequency kicks due
to a subhalo can be computed under a linear approximation from
the velocity kicks. Here, we use the expressions and compare the
resulting kicks with those measured from the N-body simulation.

We begin by taking the snapshot of the unperturbed stream at the
impact time and form a stream track in angle-frequency space by
fitting a spline to the stream particles. We then compute the vector
n from this track and at each point along the stream track compute
θ|| = θ · n as well as δ�g(θ||) and δθg(θ||) from equation (13) by
finite differencing in velocity at fixed position. We show the resultant
kicks in Fig. 7. We also show the velocity, angle and frequency kicks
computed from the simulation. The perturbed velocities at impact
are found by integrating the simulation backwards from 880 Myr
after impact. In the case of the frequency kicks we simply difference
the perturbed and unperturbed simulations. In the case of the angles
we calculate the angles and frequencies of the perturbed simulation
snapshot at 880 Myr after impact and rewind to the impact point
before differencing with the unperturbed snapshot.

The fact the velocity kicks match well demonstrates that the as-
sumptions made to derive the formulae in Section 2 are valid whilst
the use of the impulse approximation and the linear approximation
from equation (13) is validated by the match of the frequency kicks.
Interestingly, the amplitude of the velocity kicks found from the
numerical calculation overpredicts that in the simulation far from
the impact centre. This corresponds to the difference observed in
Fig. 2 between computing the kicks using the full stream track and
subhalo orbit (‘full’, green dashed line) and assuming the relative
velocity between each stream particle and subhalo is fixed during
the fly-by (‘curved’, black).

Figure 7. Angle and frequency kicks: the blue points are a random sample of 1000 particles from the stream and show the kicks found from the simulations
whilst the black lines show those calculated under the impulse approximation. The functional form for the kicks in both the angles and frequencies are very
similar to that in velocities. Also, the angle and frequency kicks computed from the simulation match the numerical results well.
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Figure 8. Frequency distributions for the perturbed and unperturbed streams model. The red histograms show the unperturbed stream, the green show the
perturbed stream and the blue show the unperturbed stream kicked in frequencies using equations (13). The left three panels show the distributions in the
orbital frequencies with respect to the gap centre. The fourth panel shows the frequency distribution along the stream direction n̂ whilst the fifth panel shows
the distribution perpendicular to this.

The angle kicks are perhaps a less satisfying match than the ve-
locity and frequency kicks. This may be due to the assumption of
the impulse approximation or the neglected stream dispersion. We
performed several checks of the accuracy of the angle computation:
we measured the fluctuations in the angles about a straight line us-
ing a series of samples from a 300 Gyr segment of the progenitor’s
orbit. If computed exactly, the angles should lie along a straight line
so deviations about this are due to numerical error. We also com-
pared a snapshot evolved in angle-frequency space (i.e. using equa-
tion 11) with a later simulation snapshot projected into angle-
frequency space. These tests show that the angles are computed to
an accuracy of ∼5 × 10−4 rad such that the discrepancy observed
here cannot be due to errors in the computation.

4.3 Model-simulation comparison

With the angle and frequency kicks satisfactorily calculated we
proceed to take the unperturbed simulation, apply the kicks and
compare with the perturbed simulation at later times.

In Fig. 8 we show the frequency distributions of the unperturbed
simulation, the perturbed simulation and our model constructed by
perturbing the frequencies of the unperturbed simulation. The match
is very good and there is a clear gap in all the components of the
frequencies. We also show the parallel frequency distribution which
exhibits a clear gap and the perpendicular frequency distribution
which is slightly broader in the perturbed case than the unperturbed
case reflecting the increase in velocity dispersion of the stream due
to the subhalo.

In Fig. 9 we plot the unperturbed and perturbed stream in angle
space at four different times (0 Gyr, 0.88 Gyr, 3 Gyr and 5 Gyr after
impact) along with the model constructed by perturbing the unper-
turbed stream with the impulse approximation using equation (13).
Additionally, we show the difference between the perturbed and
unperturbed angle distributions. We see at all times there is a gap
in θz and θR with an overdensity at 0 Gyr after impact in θφ . The
gap grows in time in all angles, and our model matches the distri-
butions well at all times, despite the fact that the angle kicks do
not match the simulation particularly well (see Fig. 7). This must
be because the angle distributions are a combination of the fre-
quency and angle kicks and the frequency kicks dominate at late
times.

4.4 Analytic approximations

We have seen that the angle distributions formed from kicking the
unperturbed simulation match the perturbed simulation well at late
times suggesting that the angle kicks are insignificant and domi-
nated by the frequency kicks. To understand this, we now develop
some understanding of the relative magnitude of the angle and fre-
quency kicks by inspecting some cases where we can calculate
these quantities analytically. In Appendix A we also present some
approximate analytic results for the action kicks due to a subhalo
fly-by.

For scale-free potentials of the form � ∝ rα Williams, Evans &
Bowden (2014) demonstrated that the Hamiltonian in action-space
is well approximated by

H ( J) ∝ (JR + BL)β, (16)

where β = 2α/(2 + α), B is a constant and L is the angular mo-
mentum. They also suggest that in scale-free flattened axisymmetric
potentials of the form � ∝ (R2 + (z/q)2)α/2 the Hamiltonian is well
approximated by

H ( J) ∝ (JR + BJφ + CJz)
β, (17)

where B and C are constants. In these potentials the frequencies de-
pend on the actions solely through the Hamiltonian as 
i ∝ H(β − 1)/β

so we find that
δ
g

i


i
= β − 1

β

δH

H
. (18)

Note in the case of the harmonic oscillator β = 1 and the right-
hand side vanishes as the frequencies are independent of energy.
This equation can also be derived when considering the change
in the energy and hence azimuthal frequency of a circular orbit.
The analogous approximate expression for the Hamiltonian in the
scale-free logarithmic potential is

H ( J) = V 2
c log(JR + BJφ + CJz)), (19)

such that
δ
g

i


i
= − δH

V 2
c

. (20)

In the case of a subhalo fly-by δHg = v · δvg . We plot this approx-
imation for the simulated stream in Fig. 10. The match is very good
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Figure 9. Unperturbed, perturbed and model stream angle distributions:
the red histograms show the unperturbed stream, the green show the per-
turbed stream and the blue show the unperturbed stream kicked in angle and
frequency space and evolved. The purple lines show the difference between
the perturbed and unperturbed streams offset by some arbitrary amount. The
four rows show 0, 0.88, 3 and 5 Gyr after impact.

Figure 10. Analytic frequency kick approximation. The lines show the
analytic relationship for the flattened logarithmic potential from equa-
tion (20) and the symbols show the numerical calculation.

which suggests that the approximate Hamiltonian of equation (19)
is a very close approximation of the true Hamiltonian for the region
of action space we are exploring here.

From our investigations there do not appear to be any particularly
neat or understandable analytic expressions we can derive for the
changes to the angle coordinates. What follows are some loose
arguments to get a handle on the amplitude of the angle kicks relative
to the frequency kicks. We inspect the harmonic oscillator (which
is also appropriate for small oscillations about a circular orbit and
perpendicular to the plane). In this case, the angle coordinate θ i is
given by

tan θi = 
ixi

vi

, (21)

where xi is the position coordinate relative to the minimum, vi is
the velocity coordinate. For the angle kicks we find that

δθ
g
i ≈ tan θi

1 + tan2 θi

(
δ


g
i


i
− δvi

vi

)
. (22)

For a true harmonic oscillator the change in frequency is identically
zero such that this expression can be reduced to

δθ
g
i ≈ − δvi√

E
sin θi = −1

2

δvi

vi

sin 2θi, (23)

where E is the energy of the oscillation. We see that near a turning
point (vi ≈ 0) the angle kicks are largest and of order δvi/

√
E and

near the mid-points (xi ≈ 0) the angle kicks are approximately zero.
As expected the magnitude of the angle kicks is phase-dependent.
Using equation (20) we see that

δθ
g
i

δ

g
i

≈ 
−1
i

(
Vc

|vi |
)2

sin 2θi, (24)

where we have neglected geometric factors. The final two terms are
of the order of unity such that these rather loose arguments convince
us that this ratio is approximately the period of the oscillation in
dimension i. From the inspection of Fig. 7 we see that the ratio
of the angle to frequency kicks is of the order of 0.1 Gyr which
corresponds approximately to 1/
 as 
i ≈ 10 Gyr−1. From the in-
spection of the simulation it appears |δθg

i | ≈ δ

g
i /
i within factors

of 3 for |�θ||| < 1 rad. Therefore, we have ascertained that the an-
gle kicks are dominated by the frequency kicks after approximately
one period.

The study of Erkal & Belokurov (2015a) showed that gaps only
begin to form in the stream after ∼ one radial period so an observed
gap is always in the regime where the frequency kicks are dom-
inating and when modelling we can essentially neglect the angle
kicks.

4.5 Stages of stream growth

Erkal & Belokurov (2015a) discussed the three phases of stream
gap formation in the limit that the stream itself is on a circular orbit.
They found that on short time-scales (less than a radial period) an
overdensity formed as the particles were scattered on to epicyclic
orbits that brought them towards the gap centre. This was dubbed the
compression phase. After approximately a radial period, the stream
enters an expansion phase where the gap begins growing until the
more strongly perturbed material starts to overtake the more weakly
perturbed material and caustics form. During the expansion phase
the stream gap grows linearly in time whilst during the caustic
phase the growth rate slows to t1/2. In this section we investigate
and discuss how this picture relates to the formalism presented here.
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Figure 11. Gap size in parallel angle as a function of time. The zero-point
in time is the subhalo impact time. The black line shows the gap measured
from the simulation and the dashed red line shows the best-fitting power-law
line for t < 5 Gyr. We also mark on the three phases of the gap growth from
Erkal & Belokurov (2015a).

In Fig. 11 we plot the size of the gap in parallel angle as a function
of time for the simulated stream. This is defined as the difference
between the parallel angles of the points where the perturbed and
unperturbed densities are equal. We produce a smooth difference
histogram using a Gaussian kernel density estimation with a band-
width of � = 0.04 rad Gyr−1t + 0.01 rad for t < 1 Gyr and 0.05 rad
otherwise and then fit a spline to the resulting distribution. With
this choice of kernel, there are ∼1000 particles within one kernel
standard deviation at the gap minimum and ∼5000 at the maxima.
We also show a best-fitting power-law line (�θ || ∝ t0.58) for the seg-
ment t < 5 Gyr as well as the time-scales for the different stages of
gap growth. The compression phase lasts for approximately a radial
period. The time-scale on which the caustic becomes important is
computed from equation (26) of Erkal & Belokurov (2015a). In this
example the expansion phase only lasts for ∼200 Myr but lowering
the subhalo mass to 107 M� increases its length to ∼600 Myr. We
note that there is a gap in parallel angle at the impact time (t = 0).
This does not correspond to a spatial gap but is due to the angle
kicks from the subhalo that have shifted the stars to slightly different
orbital phases.

The initial angle kick appears to dominate on a time-scale of
∼400 Myr after which the best-fitting power law is a much better
match. This also appears to correlate with the end of the compression
phase. Therefore, it seems that the compression phase is associated
with the initial angle kicks. We can understand this by considering
a simple example of a stream on a radial orbit. Here the parallel
angle is purely the radial angle. The shape of the angle kicks will
be qualitatively similar to those in Fig. 7 with the particles in front
of the gap given a positive kick and those behind given a negative
kick. At a fixed position increasing the radial angle means we are
now closer to apocentre so the apocentre has moved inwards and
the particle must move more slowly. Likewise, decreasing the radial
angle moves apocentre further out and the particle must move faster.
Therefore, the particles behind the gap move faster than those in
front and an overdensity forms.

We use the formulae from Erkal & Belokurov (2015a) to calculate
the time-scale on which the caustic begins to form. In this case the
expansion phase is very short and so the subsequent evolution should
go with the square-root of time. We see, however, that this is only
approximately true up to ∼4 Gyr (the best-fitting power law is t0.58)

Figure 12. Derivatives of the parallel angle kicks: the top panel shows the
expression from equation (26) in dashed red alongside the density contrast
(the perturbed density in parallel angle space divided by the unperturbed
density minus 1) in solid red. The grey lines show the zero line and the
approximate location of the peak density contrast. The bottom panel shows
the second derivative of the parallel angle kicks with respect to the parallel
angle.

after which the growth rate is faster than this. We will return to this
point later in Section 5 and only mention here that it is due to the
gap forming on an already growing underlying stream.

4.6 Amplitude of the angle kicks

It is intriguing that the size of the initial gap in parallel angles
(∼0.2 rad) is significantly larger than the peak of the angle kicks
(∼0.02 rad) shown in Fig. 7. However, one must consider the collec-
tive effects of a series of particles being kicked in order to compute
the gap size. For instance, if the unperturbed parallel angle distribu-
tion N0(θ ||) were a uniform distribution the perturbed distribution
N(θ ||) would be given by

N (θ||) =
∫

dθ ′
|| N0(θ ′

||)δ(θ|| − θ ′
|| − δθ

g
|| (θ

′
||)) ∝

(
1 + ∂δθ

g
||

∂θ||

)−1

.

(25)

The gap size is then related to the zeros of ∂δθ
g
|| /∂θ|| and the peaks

in the perturbed distribution are at the zeros of the second derivative
∂2δθ

g
|| /∂θ2

|| . In Fig. 12 we show the second derivative computed for
our example as well as the quantity(

1 + ∂δθ
g
||

∂θ||

)−1

− 1. (26)

The second derivative is zero around δθ|| ≈ 0.14 rad and equa-
tion (26) crosses zero around δθ|| ≈ 0.1 rad. These correspond well
to the observed initial amplitude of the parallel-angle gap size
(∼0.2 rad). In Fig. 12 we also show the density contrast computed
from the simulations which correlates well with equation (26).

We can now understand why the initial gap size in parallel angle
is much greater than the magnitude of the kicks in parallel angle.
Fig. 7 shows how the angle kicks depend upon �θ || and we see
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that the kicks peak at small |�θ ||| with a long tail at larger |�θ |||.
Additionally, the range of �θ || over which the kicks are important
is larger than the magnitude of angle kicks. When considering the
gap that forms we have to consider the collective effects of many
particles over a large range in |�θ ||| being kicked a small amount
and the gap that forms is larger than perhaps expected. If the angle
kicks were large compared to the range in �θ || over which the kicks
are important the gap size would be approximately the amplitude of
the angle kicks. Therefore, we conclude that there is not a one-to-
one correspondence between the amplitude of the angle kicks and
the initial parallel angle gap size, and the latter can be significantly
greater than the former.

4.7 Physical and parallel angle gap size

Our discussion so far has focused on the size of the gap in parallel
angle. Whilst this is an appropriate space for understanding general
stream morphology it is awkward to see the relationship with the
observed stream properties. We briefly investigate this by projecting
the model back into configuration space. For this purpose we use
the publicly available torus code from Binney & McMillan (2016)
(https://github.com/PaulMcMillan-Astro/Torus). We require a dif-
ferent numerical algorithm to map from angle-action space back
into configuration space as the algorithm from Sanders & Binney
(2014) transforms from configuration space to angle-action space.

We construct eight tori on the corners of an action-space box that
encompasses the full perturbed distributions and interpolate the fre-
quencies to find the actions of the perturbed particles. As described
in Binney & McMillan (2016) we interpolate the Fourier coeffi-
cients of the tori in action-space to construct a torus of the required
actions for each particle and request the (x, v) corresponding to
the angles of the particle. Each torus is constructed with a relative
tolerance in the actions of 2 × 10−6 and recovers the positions and
velocities of the particles to an absolute accuracy of ∼0.01 kpc and
∼0.1 km s−1, respectively. This accuracy is sufficient for inspecting
the density and width of the gap which is of the order of a few kpc
after a Gyr.

We construct a plane that minimizes the perpendicular spread of
the stream and compute the size of the gap in the azimuthal angle in
the plane in the same way as in parallel angle space. We plot both
the azimuthal gap size and the parallel angle gap size as a function
of time in Fig. 13. As expected the azimuthal gap size oscillates but
it is well enveloped by the parallel angle gap size and it appears
that the average azimuthal gap size correlates well with the parallel
angle gap size. We note that the amplitude of the oscillations of the
azimuthal gap size can be estimated by considering conservation
of angular momentum. If two particles in the stream had identical
angular momentum their azimuthal separation �φ ∼ r−2 resulting
in a gap size which varies by a factor of (rmax/rmin)2 over the orbit.
For our simulation means the azimuthal separation fluctuates by a
factor of ∼4, which agrees well with Fig. 13.

We also plot the minimum and maximum density contrasts (de-
fined as perturbed divided by unperturbed density). The azimuthal
density contrast oscillates about the parallel angle density contrast,
and both plateau at late times (t > 4 Gyr). We can see the gap
forms immediately in parallel angle whilst in azimuthal angle there
is a small peak due to the compression phase. Erkal & Belokurov
(2015a) showed that the minimum density contrast falls as 1/t at
large times, and the maximum grows as t at small times and like
1/(1 − at) at large times with caustics forming at t = 1/a. These
properties are well reproduced by our simulation. Continuing the
approximate modelling of equation (25) and including the assump-

Figure 13. Gap properties in real and angle space as a function of time. The
zero-point of time is the subhalo impact time. In the top panel we show the
gap size in the azimuthal angle of a plane fitted through the stream in solid
black and the gap size in parallel angle in dashed red. In the bottom panel
we show the minimum and maximum density contrast in these two spaces.

tion that the particles all move at the same frequency, we find that
the density contrast at later times is proportional to(

1 + ∂δ

g
||

∂θ||
t

)−1

− 1. (27)

This expression is much like those derived by Erkal & Belokurov
(2015a) in the circular-orbit limit. For a uniform unperturbed angle
distribution the minimum density contrast occurs at �θ || = 0 and
so falls as 1/(1 + Ct) where C is a constant. The maximum density
occurs when |1 + (∂δ


g
||/∂θ||)t | is minimized. At early times this

expression is non-zero for all �θ || whilst at later times the expres-
sion is zero at some �θ || such that equation (27) diverges and the
caustic behaviour of Erkal & Belokurov (2015a) is recovered. We
note that in reality the minimum density contrast in Fig. 13 falls
more slowly than 1/t at large times and actually reaches a constant.

The discrepancy between our simulation and the picture of Erkal
& Belokurov (2015a) seems to be due to our stream having a non-
zero velocity dispersion. This means each stripping event produces
stream particles with a range of energies and upstream (i.e. closer
to the progenitor) particles with large energy differences from the
progenitor can pass through the stream and fill in a downstream (i.e.
further from the progenitor) gap. Inspection of Fig. 6 shows that if
the parallel frequency kicks are greater than the spread in frequen-
cies of the stream a clear gap will form and will not be significantly
filled in by upstream particles. This is essentially a condition on
the velocity kicks being greater than the velocity dispersion of the
stream. In this picture, the unperturbed stream density also plays an
important role as if there are many particles upstream from the gap
then the density contrast will be rapidly washed out. The stripping
rate in the simulation we are examining decreases with time (see
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Dynamics of stream–subhalo interactions 3829

Figure 14. Properties of the stream as a function of subhalo mass. The thick brown line corresponds to 108 M�, the medium red line 107.5 M� and the thin
orange line 107 M�. The left panel shows the difference between the perturbed and unperturbed simulations in parallel angle 880 Myr after impact, the middle
panel shows the gap size as a function of time and the right panel shows the minimum and maximum density contrast as a function of time.

Section 6) so the filling-in effect is less severe in our example than it
potentially could be. The models of Erkal & Belokurov (2015a) and
Erkal & Belokurov (2015b) allow for a non-uniform unperturbed
density distribution but with no stream velocity dispersion the stars
in their model cannot pass through the stream to affect a gap.

5 VA RY I N G T H E IM PAC T PRO P E RTI E S

We have demonstrated that we are able to adequately model the
impact of a subhalo on a stream and the subsequent evolution. With
this machinery in place we are able to rapidly simulate the effects
of any subhalo fly-by. In this section we will discuss the differences
in the subsequent stream structure as a function of the subhalo mass
and the subhalo impact location. We repeat the exercise performed
in Section 4 of simulating the subhalo fly-by on a simulated unper-
turbed stream and inspecting the subsequent evolution.

5.1 Varying the subhalo mass

First, we investigate the properties of the stream as a function of
subhalo mass. We adopt the scaling relation between the mass and
scale radius of the subhalo Plummer sphere of

M ∝ r2.5
s . (28)

This relation produces a series of subhaloes that fall within the
distribution of the maximum circular velocity against total (tidal)
mass for the haloes from the Via Lactea II simulations (Diemand
et al. 2008). There is an uncertainty in the power-law slope of ∼0.7.
Keeping all other properties of the subhalo fly-by the same we
simulate the effects of a 107 M� and 107.5 M� subhalo. In Fig. 14
we show the gap profile 880 Myr after impact, the gap size as a
function of time and the minimum and maximum density contrast
as a function of time. Again, we have used the smoothing kernel
mentioned in Section 4.5 with an additional factor in the bandwidth
depending on the subhalo mass M of 0.5 log10(M/106 M�). As
expected from the results of Erkal & Belokurov (2015a), the gap
size is deepest and grows fastest for the highest mass subhalo. In all
cases the minimum density contrast plateaus in time and the value to
which the density contrast plateaus decreases with increasing mass.
The ratio between the asymptotic values of the density contrast for
the 108 M� and the 107 M� case is observed to be ∼4.

Erkal & Belokurov (2015a) showed that, for stream particles on a
circular orbit, the central density contrast falls to zero like 1/t with

the constant of proportionality scaling as M/r2
s . For all subhalo

masses we observe that the density contrast plateaus in time and,
as discussed in the previous section, is due to a combination of
the stream density and the stream energy distribution. The time at
which the density contrast reaches its plateau value decreases with
decreasing mass.

5.2 Varying the impact geometry

Now we investigate how the stream changes as a function of where
along the stream the impact occurs. In addition to the inspected
geometry of Section 4 we simulate two other impacts at varying
distance from the progenitor as shown in the top left panel of Fig. 15.
The impact close to the progenitor occurs at ([x, y, z] = [−15.3,
−9.8, 9.3] kpc, [vx, vy, vz] = [41.9, −183.0, 152.2] km s−1) and
the one further from the progenitor at ([x, y, z] = [−1.2, 12.9,
−10.8] kpc, [vx, vy, vz] = [−239.8, −100.6, 87.0] km s−1). Again,
we fix all other parameters of the impact to those in the original
simulation, including the absolute velocity of the subhalo (note that
fixing the relative velocity between the subhalo and impact point
in the stream does not change the conclusions drawn here.). The
near impact is in the regime where the mean parallel frequency is
approximately constant with the parallel angle whilst the far impact
is in the regime where the mean frequency is increasing linearly with
the parallel angle. In this far regime the stream is well ordered in
energies, whilst in the near regime the stream particles have not had
sufficient time to order themselves by energy. We plot the difference
between the perturbed and unperturbed simulations in parallel angle
for two times. The density contrast at large negative parallel angle
for the far case is very large at late times as the number density in the
unperturbed simulation at these large separations is low. A similar
effect is seen at large positive parallel angle for the near case but
here it should be noted that we have not included the effect of more
stars entering the stream as they are stripped from the progenitor. In
the lower panels we show the gap size and the minimum/maximum
density contrast as a function of time. The gap size in all three cases
is very similar for t < 3 Gyr but they diverge at larger times as the
far impact gap size increases faster than the near impact. We can
understand this as in the far case the gap is forming on an already
growing stream as the underlying stream structure is well ordered.
However, in the near case the stream is mixed so the underlying
stream is growing more slowly. In all cases the minimum density
plateaus to a similar value. Note that we have shown two lines for
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3830 J. L. Sanders, J. Bovy and D. Erkal

Figure 15. Properties of the stream as a function of the location of the
impact point. Top row: the top left panel shows the stream in the (x, y)
plane along with three symbols showing the different impact points at the
impact time (the impact nearest the progenitor is marked with a blue circle,
the impact furthest from the progenitor is marked with a red square and
an impact between these two extremes is marked by a green diamond.).
The top right panel shows the location of these strikes in parallel angle
(the vertical lines are coloured and marked with the symbols from the top
left panel) as well as the distribution of the stream in parallel frequencies
and angles. Middle row: the middle two panels show the relative density
contrast dN/dθ || = ρperturbed/ρunperturbed − 1 in parallel angle space for
two separate times (880 Myr and 6 Gyr after impact). The ‘near’ impact
corresponds to the broadest line and the ‘far’ impact to the narrowest. Bottom
row: the bottom two panels show the gap size in parallel angle and the
minimum and maximum density contrast as a function of time with the
dashed lines showing the divergent peak at low unperturbed density. The
lines are coloured and marked to correspond with the top left panel.

the maximum density contrast for the two peaks on either side of
the gap. In both the far and near cases one of the peaks diverges
rapidly and correlates with the observations in the middle panels.

6 A F U L L G E N E R AT I V E P E RTU R B E D
S T R E A M M O D E L

Up until now we have used our N-body simulation as our unper-
turbed stream model to which we have applied the kicks. We now
produce a full model of the perturbed stream that starts from a model
for the unperturbed stream. For the latter, we use the model pre-

sented in both Bovy (2014) and Sanders (2014). This is a fully gen-
erative model that models the expected stream structure in angle–
frequency space and projects this structure into the space of ob-
servables. In angle–frequency space a model is expressed in full
generality as

p(�, θ, ts)

= p
(
�θinit = �θ − ��ts|�init, ts) p(��init = ��|ts) p(ts) .

(29)

See equation (12) which defines �θ. The stripping time ts is the
time since the particle was stripped from the progenitor. The specific
model investigated by Bovy (2014) and Sanders (2014) simplified
this to

p(�, θ, ts) = p(��init) p(�θinit) p(ts) , (30)

by assuming that the distribution of frequency offsets �init and angle
offsets θinit is independent of stripping time ts. In Section 6.1 we
discuss how this is not a good assumption for the simulated stream
considered in this paper and how we modify the model to account for
this. However, as discussed by Bovy (2014), the simple model above
is still useful, as it allows the location of the stream in frequency–
angle and configuration space to be efficiently calculated, both at
the present time and at the time of impact.

In the model of Bovy (2014) and Sanders (2014), p(��init) is a
bimodal distribution, because there are peaks at positive and neg-
ative ��init corresponding to the leading and trailing tails. Here,
we focus on modelling the trailing tail so we only consider nega-
tive ��init. The distribution p(��init) is chosen to be as in Bovy
(2014). This distribution is approximately Gaussian with axes that
approximately align with the eigenvalues of the Hessian matrix
Dij = ∂2H/∂Ji∂Jj (Binney & Tremaine 2008). Note that they do
not exactly align, because the anisotropic action distribution of the
tidal debris is taken into account. The angle distribution p(�θinit) is
a simple isotropic Gaussian. In the simplest model, the stripping rate
p(ts) is taken as a uniform distribution up to some maximum time
td – the disruption time – in Bovy (2014). For the uniform stripping
rate, the location of the mean stream track in frequency–angle space
can be computed analytically. To compute the transformation from
angles and frequencies to Galactocentric Cartesian coordinates we
interpolate the linear transformation computed for a series of points
along the stream track as described in Bovy (2014).

The model for the perturbed stream can be obtained from the
model of the unperturbed stream by computing the kicks at the time
of impact and applying these as in equation (15). To compute the
kicks we approximate the stream as being one dimensional along θ ||
with a point of closest approach θ ||, c, which is a model parameter.
We use the same method as discussed in section 4.2 of Bovy (2014)
to compute the mean stream track and the derivatives ∂�

∂v
and ∂θ

∂v

along the track. Then, we compute the velocity perturbation δvg(θ||)
due to the subhalo along the track and propagate it to the kicks in
δ�g and δθg as in equation (13). These frequency and angle kicks
then fully specify the subsequent evolution of the stream (see equa-
tion (15)).

From this model we can generate mock streams by sampling a
stripping time ts, an initial frequency separation ��init and an initial
angle separation �θinit from the unperturbed model. We then perturb
them with δ�g and δθg based on their θ || at the time of impact.
With these chosen, the current angles and frequencies are known
(see equation (15)) and hence the observables can be computed.

We set the velocity-dispersion parameter (σ v) of the model by
scaling that obtained in Bovy (2014) for a similar, but lower mass,
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Dynamics of stream–subhalo interactions 3831

Figure 16. Unperturbed stream model properties: the left panel shows the
parallel angle separations against parallel frequency separations for particles
from the simulation (in black) and samples of the generative model (in red).
The solid line shows the mean parallel frequency separation for bins in
parallel angle separation. The top right panel shows the parallel frequency
separation distributions and the bottom right panel shows the stripping time
distributions (where the colour-coding is the same as for the left panel).
Larger stripping times mean the particles were stripped longer ago.

stream. As shown in Sanders & Binney (2013a), for instance, the
properties of the stream in angles and frequencies scale with the
mass of the progenitor, M, as M1/3.

6.1 Modifications to model

We found that the simple model described above did not com-
pletely describe the simulation (in particular the density along the
stream near the gap) such that several modifications were neces-
sary. Fig. 16 shows the results of our modifications, and illustrates
the following discussion. First, the stream distribution in 
|| was
not well described by a Gaussian, but instead seemed better fitted
by two Gaussians. Inspection of the stream distribution in �
||
and �θ || showed the stream consisted of material stripped in two
separate ways: ∼72 per cent of the material is stripped around peri-
centric passage and this material forms a broad peak in �
|| that is
separated from the progenitor by μperi = 0.31 Gyr−1 with a width
of σ peri = 0.05 Gyr−1. The other ∼28 per cent is material that is
more continuously stripped, or that evaporates, from the progenitor.
This material forms a narrower peak in �
|| that is less separated
from the progenitor at μevap = 0.25 Gyr−1 with a width of σ evap =
0.023 Gyr−1.

Additionally, inspecting the distribution of �θ ||/�
|| ≈ ts

showed that the stripping rate (averaged over a time longer than
an orbital period of the progenitor) is not uniform, but instead de-
creases slowly over time (with decreasing stripping time), such that
a particle is more likely to have been stripped long ago. We mod-
elled this by making p(ts) ∝ ts for both the periodic stripping and for
the more steady evaporation. We found that this modification was
necessary to even approximately reproduce the density of the stream
near the gap. Compared to the simple model above, the distribution
p(�
||, ts) cannot be separated as p(�
||) p(ts) in this model and
the distribution of parallel frequency separation and stripping time
looks like

p(�
||, ts) ∝ (1 − w)tsN (�
|||μperi, σperi)

×
int([td−tR]/TR)∑

n

δ(ts − nTR − tR)

+ wtsN (�
|||μevap, σevap), (31)

Table 2. Generative model parameters: we list each parameter in the mod-
ified perturbed generative model from Section 6. The top section lists the
parameters for the simple unperturbed stream model. The middle section
lists the parameters added for the modified unperturbed model of Section 6.1.
The bottom section lists the parameters used to model the perturbation. Note
the parameters of the potential have not been listed.

(x, v) Progenitor position and velocity now
σ v Progenitor velocity-dispersion parameter
td Disruption time

w Evaporation-to-pericentric stripping weight
μperi Centre of material stripped at pericentre
σ peri Dispersion of material stripped at pericentre
μevap Centre of evaporated material
σ evap Dispersion of evaporated material

M Subhalo mass
rs Subhalo scale radius
w Subhalo velocity at impact
b Impact parameter
tg Impact time

where N (X|μ, σ ) is a Gaussian distribution with mean μ and width
σ . The parameter w = 0.28 is the weight, TR is the radial period,
tR is the time since last pericentric passage and δ(ts − nTR − tR)
is a delta function expressing stripping at each pericentre passage.
Fig. 16 shows the improvements made to the model such that it
matches the simulation well. The full set of parameters used in the
model is listed in Table 2.

We use this modified model to generate mock stream particles.
To compute the impact kicks in this model as a function of θ ||, we
use the stream track at the time of impact computed in the simple
model with the uniform distribution of stripping times discussed
in the previous section. This is because the mean track cannot be
computed easily for the non-separable p(�
||, ts) distribution, but
can be estimated using the uniform p(ts). This simplification should
give a good estimate of the mean track as p(ts) mainly affects the
density along the stream, but not its average location.

6.2 Comparison to the N-body simulation

We generate 100 000 mock stream particles from the modified
generative model for the M = 108 M� impact. The density along
the stream in the simulation and of the mock stream is displayed in
Fig. 17. The grey, filled histogram shows the stream density in the
unperturbed simulation for comparison. It is clear that the simple
generative model provides an excellent match to the density in and
near the gap in the simulation.

The simulated stream in configuration space near the gap is com-
pared to the mock stream in Fig. 18. The mock stream very closely
follows the simulated stream. All quantities are plotted as a func-
tion of the unperturbed x position. This exaggerates the size of the
perturbations. The perturbation as a function of the perturbed x
position is smaller and in this space the perturbed stream more
closely follows the unperturbed stream track. The bottom of each
panel shows the difference between the phase-space coordinates in
the perturbed and unperturbed simulation (black) and in the per-
turbed and unperturbed mock stream (red). These are computed
by comparing the present coordinates of the same simulated/mock
particles evolved with and without the perturbation. That is, the
perturbed and unperturbed simulations start from the same exact
initial conditions and we do the same for the mock stream. It is
clear from these bottom panels in Fig. 18 that the perturbation due
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3832 J. L. Sanders, J. Bovy and D. Erkal

Figure 17. Normalized number counts in a mock stream generated from
the generative model described in the text (red) compared to that in the
simulation (black) near the gap. The density of the unperturbed simulation
is displayed in grey. The density in the simulation is well matched in the
generative model.

to the subhalo impact is very well described by the generative model
described in this section.

7 C O N C L U S I O N S

We have presented a framework for modelling the formation of gaps
due to the perturbation of a dark matter halo on a cold thin stream
formed from progenitors on eccentric orbits. The formalism uses the
simple description of dynamics provided by the action, angle and
frequency coordinates. Stream particles obey simple equations of
motion in this space which can be altered to incorporate the effects
of a dark matter subhalo fly-by. An unperturbed stream is stretched
along a single direction, described by the parallel angle coordinate,
in which a gap forms when the stream is impacted by a subhalo.

We presented an N-body simulation of a cold stream formed
from a progenitor on an eccentric orbit in a scale-free flattened
axisymmetric logarithmic potential. The stream was impacted by a
108 M� dark-matter subhalo and a gap formed in the stream. We
analysed the formation of the gap in angle-frequency space and
showed how the stream at all future times could be modelled using
our framework. We found that generically the angle perturbation
due to a fly-by is only important on time-scales less than a radial
period. At later times the frequency perturbations are much more
important and are simply related to the velocity perturbations in
scale-free potentials such that the structure of the gap at late times
is controlled by v · δvg .

We computed how the gap forms in the parallel angle (the angle
along the stream) and showed that the distribution in this space
can be simply related to the real-space properties of the gap. The
evolution of the gap in angle-frequency space can be understood
in the framework presented by Erkal & Belokurov (2015a) and we
verify that almost all the intuition developed in the circular orbit
approach translates to results observed in the more realistic eccentric
orbit case. At times greater than approximately 10 orbital periods
of the progenitor orbit (∼6 Gyr) after the impact, we find several
exceptions to the Erkal & Belokurov (2015a) picture: the density
of the gap plateaus in time as stream material fills in the growing
gap and the stream gap growth rate depends on the position along
the stream at which the subhalo impact occurs, with gaps furthest

from the progenitor growing fastest. For times less than 10 orbital
periods of the progenitor orbit our results corroborate the Erkal &
Belokurov (2015a) picture.

We showed how the structure of the gap varies as a function of
the mass of the subhalo and as a function of the location along the
stream the impact occurs. We found that, as expected from the work
of Erkal & Belokurov (2015a), the parallel angle gap grows more
slowly in time for lower mass subhaloes. The density contrast of the
gap minimum plateaus to a constant value after a few Gyr for all
inspected subhalo masses but the depth of this plateau increases with
mass. The more interesting result is that the growth rate of the gap
depends on the location along the stream where the impact occurs.
We found that near the progenitor where the particles are mixed
in energy the gap grows more slowly than far from the progenitor
where the particles are well ordered in energy and so the gap forms
on an already growing stream.

We closed by presenting a fully generative model of a perturbed
stream in Galactocentric Cartesian coordinates based on the model
presented in Bovy (2014) and Sanders (2014), and showed that
the model matches the N-body simulation qualitatively very well.
We found it necessary to modify the simple model by making the
stripping rate increase in time, and including two populations of
stripped particles: one population is stripped around pericentre with
large energy shifts from the progenitor whilst the other population
evaporates from the cluster continuously with smaller energy shifts.

Throughout the paper we have used a single simulation of a
108 M� subhalo impact. We have also analysed the same simulation
with a 107 M� subhalo impact and as expected the amplitude of
the effects observed in this paper is decreased but qualitatively the
picture is very similar.

7.1 Comments and outlook

The formalism presented promises to be crucial for constraining the
properties of a subhalo fly-by on a cold stream. It is anticipated that
one would find potential gap candidates in star counts as has been
demonstrated by Carlberg, Grillmair & Hetherington (2012) and
Carlberg & Grillmair (2013) and then one would follow up with
more detailed observations of the kinematic structure of the gap.
Erkal & Belokurov (2015b) discussed what range of subhalo prop-
erties one could potentially constrain with a current and future obser-
vation quality. They found that the shape of the gap encodes the sub-
halo properties and showed that with ongoing surveys like the Dark
Energy Survey and Gaia, it will be possible to characterize dark
subhaloes down to 107 M�. This analysis was limited to streams
on near-circular orbits but it is anticipated that many of the insights
apply to more general stream geometries. We may yield stronger
constraints using stream progenitors on eccentric orbits but this re-
mains to be seen from future analysis. It is clear that the framework
presented here allows all of the parameters of a subhalo impact to be
varied efficiently for any stream, because all of the computationally
expensive steps can be pre-computed once the smooth stream model
is known.

Whilst an underdensity in a stream is indicative of a subhalo
fly-by, subhalo interactions are not the only cause of structure in a
stream. Küpper et al. (2010) have shown that overdensities naturally
form in an eccentric stream due to epicyclic oscillations and this
effect is seen most clearly near the progenitor. When expressing the
model in angle-frequency coordinates we naturally include all the
dynamics of the stream particles and the epicyclic overdensities are
formed from the mapping from angle-frequency coordinates back
to configuration space. We have shown in this paper that the effect
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Figure 18. Comparison of the simulated stream (black) and the mock stream from the generative model (red) in configuration space. The blue line shows
the unperturbed stream track. The bottom of each panel compares the difference in the phase-space position of each particle due to the subhalo perturbation
in the simulation and the mock stream. The phase-space positions and the differences are plotted as a function of unperturbed x position to exaggerate the
perturbations; as a function of perturbed x position, the stream closely follows the unperturbed track. The overall structure of the stream and in particular the
phase-space offsets due to the subhalo perturbation are successfully modelled in the mock stream.

of subhaloes significantly alters the structure in angle-frequency
space and so will produce a qualitatively different signature to the
epicyclic overdensities. Additionally, the rate at which the stream
stars are stripped from the progenitor affects the density structure
in the stream. Pericentric passage stripping events (which also oc-
cur when the stream progenitor is on an eccentric orbit) naturally
produce substructure in the stream nearest the progenitor where the
particles have yet to order in energy. In the models presented in Bovy
(2014) and Sanders (2014) the stripping rate was assumed constant
and here we have extended this approach to account for a variable
stripping rate. In our simulation the subhalo struck the stream far
from the progenitor where, even with a variable stripping rate, the
unperturbed density was very smooth. However, for impacts close
to the progenitor it may become more difficult to disentangle the
effects of variable stripping with a subhalo impact. Fortunately, for
a long stream that has gone through many stripping events the strip-
ping rate may be quantifiable due to its anticipated periodicity, but
for shorter streams there may be considerable degeneracy. Finally,

we comment that substructure in streams can be due to incorrect
modelling of the background or variable extinction but these are not
issues with the stream modelling, so do not concern us here.

In this paper we have analysed the effect of a single subhalo fly-
by. Yoon et al. (2011) have predicted that a stream such as Palomar-5
would only experience a few 107–108 M� subhalo impacts but that
there are many more much lower mass impacts. We have shown
that a clear gap forms for the high-mass impacts but it would be
interesting to investigate the properties of the stream that has expe-
rienced many small mass subhalo impacts. In this regime we begin
probing the mass spectrum of dark matter subhaloes. Carlberg &
Grillmair (2013), Ngan & Carlberg (2014) and Ngan et al. (2015)
have discussed the effects of many small impacts in simulations but
in order to constrain the mass spectrum we require full models of
perturbed streams.

The framework presented here is appropriate for when an in-
teraction between the stream and a subhalo is short compared to
the orbital time of the stream such that the impulse approxima-
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tion is appropriate. Instead of a full perturbative analysis we were
able to simply consider instantaneous changes to the stream prop-
erties. However, it is potentially a small starting step to developing
a scheme to handle more general perturbations to streams. The
assumption of a smooth analytic galaxy model is probably inappro-
priate, particularly over the time-scales on which streams evolve.
Bonaca et al. (2014) presented a study of analysing streams from
the Via Lactea simulation under assumptions on the smoothness and
evolution of the halo. They found that very massive subhalo encoun-
ters gave rise to minor overestimates in the halo mass whilst the time
evolution of the potential produced biases of the order of 20 per cent
in the halo mass. Additionally, recent results suggest that the mass of
the Large Magellanic Cloud is much larger than previously believed
(Kallivayalil et al. 2013; Peñarrubia et al. 2016) which suggests that
its potential must be included as a perturbation in the modelling of
the Galaxy. However, a counter to this is that many of the observed
streams are very simple cold structures suggesting that the approx-
imation of a smooth halo for the Milky Way is valid. Nonetheless,
it is inevitable that, as data quality increases, one has to include
perturbations on top of a smooth model to fit the known streams
in the Galaxy and the angle-action framework is ideal for such an
endeavour. We have demonstrated how a very simple perturbation
can be included on top of a smooth angle-action model. These vari-
ables were originally introduced to handle perturbative solutions
to the equations of the motion in the Solar system so seem highly
appropriate for handling perturbations on Galactic scales.

The results presented here made use of the GALPY package
(Bovy 2015): the various methods for computing the velocity
kicks outlined in Section 2 and the methods for producing a full
perturbed stream model as detailed in Section 6 are all imple-
mented in the package. Additionally, the code used to generate
all the figures in this paper is available in a GITHUB repository at
https://github.com/jobovy/streamgap-aa.

In coming years, the quality and quantity of data will provide
us with detailed observations of many tidal streams. We anticipate
that all of these streams have had a turbulent past full of impacts
from dark subhaloes. Our grand goal is to reveal the history of each
stream and extract the mass spectrum of dark matter subhaloes in
the Milky Way. The formalism we have presented is the first step
towards creating a very powerful tool for the job.
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APPENDI X A : A NA LY TI C A PPROX I MATIO N
F O R AC T I O N K I C K S

In Section 4.4 we found a very accurate analytic approximation for
the frequency kicks for scale-free potentials. In this Appendix we
attempt to find analogous expressions for the actions and angles.

We approximate the changes in the actions4 as

δJ
g
R ≈ δHg − 
φδLg


R
,

4 Note that our unperturbed stream model is a function of the angles and fre-
quencies such that the action kicks are unimportant for modelling purposes.
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Figure A1. Analytic action kick approximation. In the top panels the red shows the approximate analytic expressions from equation (A1) and the black is
computed from the simulation. In the bottom panels we overlay the action kick distributions on the difference histograms between the perturbed and unperturbed
streams. The bin spacing for the difference histograms is 0.7 kpc km s−1. As with the angle and frequency difference distributions there is a clear gap formed
at the impact centre. The analytic approximation explains the correlations observed in the simulation.

δJ
g
φ ≈ (r × δvg)z,

δJ g
z ≈ vzδv

g
z


z
, (A1)

where δL = L · δLg/|L| the change in the angular momentum.
The change in JR comes from the spherical approximation and the
change in Jz from the assumption that it is a harmonic oscillator in
the z direction. We show these analytic approximations in Fig. A1
along with the kick distributions overlaid on difference histograms
between the perturbed and unperturbed streams. As with the angle
and frequency distributions in Fig. 5 we observe an under-density
at the centre of the action distributions. The exact geometry of the
under- and overdensities is complex and clearly depends on the

nature of the stream track and subhalo properties. Inspection of
equation (A1) shows that the direction of the action kicks depends
on the arbitrary direction of the velocity kicks and the properties
of the stream at impact. The analytic approximations recover the
magnitude of the kicks within a factor of ∼1.5 but are not nearly
as impressive as the frequency kick analytic expressions. These
approximations work better for streams confined to the meridional
plane. However, we see from the lower panels of Fig. A1 that the
correlations between the action kicks are well recovered and explain
the observed structure in the action difference plots.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 457, 3817–3835 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/457/4/3817/2589025 by U
niversity of C

am
bridge user on 16 D

ecem
ber 2019


