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SUMMARY

We propose a novel model for hierarchical time-to-event data, for example, healthcare data in which
patients are grouped by their healthcare provider. The most common model for this kind of data is the
Cox proportional hazard model, with frailties that are common to patients in the same group and given a
parametric distribution. We relax the parametric frailty assumption in this class of models by using a non-
parametric discrete distribution. This improves the flexibility of the model by allowing very general frailty
distributions and enables the data to be clustered into groups of healthcare providers with a similar frailty.A
tailored Expectation–Maximization algorithm is proposed for estimating the model parameters, methods
of model selection are compared, and the code is assessed in simulation studies. This model is particularly
useful for administrative data in which there are a limited number of covariates available to explain the
heterogeneity associated with the risk of the event. We apply the model to a clinical administrative database
recording times to hospital readmission, and related covariates, for patients previously admitted once to
hospital for heart failure, and we explore latent clustering structures among healthcare providers.

Keywords: Discrete frailty; Expectation–Maximization algorithm; Finite mixture model; Multilevel survival data;
Time-to-event data.

1. INTRODUCTION

Time-to-event methods are used extensively in medical statistics, with the Cox proportional hazards model
providing both flexibility and tractability, and requiring only that the proportional hazards assumption is
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2 F. GASPERONI AND OTHERS

valid (Cox, 1972). Extensions to this model to allow for the common situation of clustering of individ-
uals (or shared frailty), for example due to repeated assessments of patients within the same healthcare
provider, have been developed (Hougaard, 2000). Published examples include survival of patients grouped
in hospitals (Austin, 2017) and time to udder infection in cows, with the four mammary glands making up
the udder grouped as individuals (Geerdens and others, 2013). These examples rely on a parametric form
for the frailty distribution, such as the Gamma or log-Normal. However, a non-parametric alternative is
desirable, due to potential misspecification of the parametric form and as a method for detecting clusters
of groups with similar frailties, which is the goal of this work.

This work is motivated by the analysis of times to the second admission to a healthcare provider (such as
hospital, research center, or nursing home) for heart failure (HF) patients in the Lombardia region of Italy.
Specifically, we wanted to undertake an exploratory analysis for detecting and investigating clusters of
healthcare providers, adjusting for patient-specific covariates. To the best of our knowledge, most literature
regarding profiling of healthcare providers does not exploit time-to-event data but is typically based on
multilevel logistic regression of binary outcomes on patient-level and structure-level covariates (Grieco
and others, 2011).

A review of models for multilevel time-to-event data was done by Duchateau and Janssen (2007) and
Hougaard (2000), including both subject-specific and group-specific (shared) parametric frailty models.
The most common distributions for the frailty term are Gamma and Log-Normal, probably due their
analytical tractability and software availability [see package coxph in survival by Therneau and
Grambsch (2000) and Therneau (2014)]. Positive stable and power variance distributions have also become
accessible through the package frailtyEM (Balan and Putter, 2017). All the mentioned packages are
developed in R (R Development Core Team, 2016).

Only a few publications have considered discrete frailties, and we are not aware of any general software
for fitting discrete frailty models. Several authors describe discrete frailty models in a frequentist frame-
work, though typically with a parametric baseline survival function or subject-specific frailties. Caroni and
others (2010) used a Weibull baseline and a subject-specific frailty with a parametric (Geometric, Poisson,
or Negative Binomial) distribution. dos Santos and others (1995) used a subject-specific non-parametric
frailty, while Guo and Rodriguez (1992) used a piecewise constant baseline and a shared non-parametric
frailty. Li and others (1998) used a Cox proportional hazard model with a discrete distributed frailty with
a two-points support (one fixed at 1 and the other to be estimated).

Discrete frailty models have also been investigated in a Bayesian framework and few authors used
Bayesian non-parametric approaches, such as a Polya tree prior for the frailty term (Walker and Mallick,
1997), or a Dirichlet Process prior (Naskar, 2008; Manda, 2011). Among these, only Naskar (2008) used
a non-parametric prior form for the baseline.

This article is the first we are aware of that presents a survival model for hierarchical time-to-event
data with both a non-parametric discrete shared frailty, and a non-parametric baseline, in a frequentist
framework. The method extends the shared frailty Cox model to include a frailty that has a discrete
distribution with an unknown number of elements in its support. Thus no prior structure is imposed
on either the clustering or the baseline survival. This leads to both a very flexible model, and a prob-
abilistic clustering technique, which we apply to explore heterogeneity between groups of healthcare
providers. This is particularly useful in routinely collected datasets which report data for large numbers
of individuals, rather than detailed and accurate records for large numbers of covariates. The methods
can identify groups with similar characteristics, motivating further investigation of the reasons for their
similarity.

We develop a novel EM algorithm for parameter estimation, viewing frailty models as an incomplete
data problem, where the observable data are the times-to-event or the censoring times, and the frailty
values are the unobservable data. Methods of Louis (1982) and others for computing the information
matrix are compared. Identifiability is an issue that can be solved by constraining the mean of the frailty
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Non-parametric frailty Cox models for hierarchical time-to-event data 3

or the cumulative hazard, as discussed by Heckman and Singer (1984). By using a profile likelihood
technique as part of this algorithm, we ensure the frailties are identifiable. Selection of the number of
clusters is based on Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and the
approach of Laird (1978) in which clusters are removed when no individuals are classified to them. We
also develop an R package to implement our model, available from https://github.com/fgaspe04/discfrail.

In Section 2, we present the mathematical model; the proposed Expectation–Maximization algorithm
is described in Section 3; a simulation study provides insights into the scope and limitations of the model
in Section 4; while in Section 5 the model is applied to the regional clinical administrative database.
Section 6 provides discussion of the results and the future perspectives.

2. SEMI-PARAMETRIC COX MODEL WITH A NON-PARAMETRIC FRAILTY

Consider a random sample with a hierarchical structure, i.e. where each statistical unit belongs to one
group. Define T ∗

ij as the survival time and Cij as the censoring time of subject i, i = 1, . . . , nj, in the jth
group, j = 1, . . . , J . Let X ij = (Xij1, . . . , Xijp)

T be the vector of covariates, assumed constant over time,
for subject i in group j. Then, we define Tij = min(T ∗

ij , Cij), tij its realization and δij = 1(T∗
ij ≤Cij ). Let w̃ be

the vector of shared random effects, and w, w = exp w̃, be the vector of shared frailties. In this work, we
introduce a non-parametric frailty term, which can be modeled through a random variable with discrete
distribution, with an unknown number of points in the support. In particular, we assume that each group
j can belong to one latent population k , k = 1, . . . , K , with probability πk . In this case, w1, . . . , wK are
the points in the support of w, K is the support’s cardinality and P{w = wk} = πk . In order to build the
model, we introduce an auxiliary indicator random variable zjk which is equal to 1 if the jth group belongs

to the kth population, so, considering k as a fixed term, zjk
i.i.d∼ Bern(πk). The requirement

∑K
k=1 zjk = 1,

for each j, is equivalent to the assumption that each group belongs to only one population. The vector zj

is distributed as a multinomial. Note that there are two levels of clustering: the first one is known (i.e.,
healthcare providers as clusters of patients), and we refer to these clusters as groups, while the second level
is the unknown clustering of healthcare providers that we want to detect, and we refer to these clusters as
latent populations.

The hazard function for individual i in group j conditional on wk and on zjk is:

λ(t; X ij, wk , zjk) =
K∏

k=1

[
λ0(t)wk exp(X T

ij β)
]zjk , (2.1)

where λ0(t) represents the baseline hazard, β is the vector of regression coefficients, and wk is the frailty
term shared among groups of the same latent population k . Both the frailty and the baseline hazard
are assumed to be non-parametric, which makes model (2.1) an extension of a proportional hazard Cox
model. The observable data Y are made up of the set of Y ij = {Tij, δij, X ij} over all i, j. We define this as
the “incomplete” data, while the “complete” data are the realizations of the vector {Tij, δij, X ij, wk , zjk}. We
also assume that censoring is non-informative, thus that T ∗

ij and Cij are conditionally independent, given
X ij, wk and zjk .

Starting from the hazard rate, we can write down the full likelihood of our model for the complete data
explicitly:

Lfull(θ ; Y |z) =
K∏

k=1

J∏
j=1

π
zjk
k · Ljk

full(θ ; Y j|z), (2.2)
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4 F. GASPERONI AND OTHERS

where

Ljk
full(θ ; Y j|z) =

nj∏
i=1

{[λ0(tij)wk exp(X T
ij β)]δij · exp

[−�0(tij)wk exp(X T
ij β)

]}zjk , (2.3)

and θ = (π , w, λ0(t), β) is the vector of parameters, z := {zjk}k=1:K
j=1:J is the matrix of random vectors {zj}j=1:J

indicating membership of groups j in populations k , and �0(t) = ∫ t
0 λ0(s)ds is the cumulative baseline

hazard function.
This model can be interpreted as a shared frailty Cox model where the frailties are shared among

groups of the same latent population, and also as a mixture model, where each component is a survival
distribution, π is the vector of mixing proportions, and w is the vector of component-specific frailties.
Finally, the number of latent populations, K , can be considered as an unknown parameter, and the relative
hazard between two individuals with the same covariate values but from different latent populations k and
k ′ can be described by the frailty ratio wk/wk ′ . We note that the model as written is over-parameterized,
since the same likelihood would result from multiplying λ0(t) by a constant c while dividing all the wk by
c, but identifiability is ensured within the estimation algorithm (Section 3.1).

3. COMPUTATION

3.1. A tailored expectation maximization algorithm

We propose a novel Expectation–Maximization (EM) algorithm (Dempster and others, 1977) to estimate
θ for a given K . The algorithm iterates between two steps, Expectation and Maximization and, under
regularity conditions, the algorithm is guaranteed to converge to a stationary point (Dempster and others,
1977).

E-step: The full log-likelihood (2.2)–(2.3) can be decomposed into two parts, the first (3.1) depending
on π and the second (3.2) depending on λ0(t), β, w.

lfull,1(π ; Y |z) =
K∑

k=1

J∑
j=1

zjk · log(πk). (3.1)

lfull,2(λ0(t), β, w; Y |z) =
K∑

k=1

J∑
j=1

zjk

{
·

nj∑
i=1

δij[log(λ0(tij)) + log(wk) + X T
ij β] − �0(tij)wk exp(X T

ij β)

}
.

(3.2)

The Expectation step consists of computing:

Q(θ) = Ez|θ̂ [lfull(θ ; Y |z)] = Ez|θ̂ [lfull,1(θ ; Y |z)] + Ez|θ̂ [lfull,2(θ ; Y |z)],

which is the expectation over z, given the current values of parameters θ̂ = (π̂ , λ̂0(t), β̂, ŵ), of the full
log-likelihood for the observed data Y . This reduces to the computation of E[zjk |Y , θ̂ ], which we then
include in (3.1) and (3.2). E[zjk |Y , θ̂ ] can be derived in closed form using Bayes’ theorem:

E[zjk |Y , θ̂ ] =
πk exp

{∑nj
i=1 δij · log(wk) − �0(tij)wkeX T

ij β
}

K∑
r=1

πr exp
{∑nj

i=1 δij log(wr) − �0(tij)wre
X T

ij β
} .
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Non-parametric frailty Cox models for hierarchical time-to-event data 5

For simplicity, we write αjk := E[zjk |Y , θ̂ ], which represents the probability that group j belongs to latent
population k . Furthermore, we note that this step is similar to the posterior probability computation in
general mixture models.

M-step: The Maximization step consists of maximizing Q(θ) with respect to θ . Q(θ) can be partitioned
so that we can maximize Q1(π) := Ez|θ̂ [lfull,1|Y , θ̂ ] with respect to π and Q2(λ0, β, w) := Ez|θ̂ [lfull,2|Y , θ̂ ]
with respect to λ0, β, w separately. The maximization of Q1(π) is a constrained optimization problem,
since

∑K
k=1 πk is equal to 1, and we can solve it by applying the Lagrange multipliers technique:

π̂k = 1

J

J∑
j=1

αjk .

The optimization of Q2(λ0, β, w) is not trivial, since we adopt a non-parametric baseline hazard. We note
that Q2(λ0, β, w) is a weighted version of the log-likelihood in a Cox regression model with known offset.
Following Johansen (1983) we adapt a profile log-likelihood approach for the estimation of the shared
parametric frailty Cox model. Initially, we estimate the w fixing λ0, β, giving:

ŵk =

J∑
j=1

αjk

nj∑
i=1

δij

J∑
j=1

αjk

nj∑
i=1

{
�0(tij) · exp(X T

ij β)
} .

By substituting these estimates in Q2, we obtain:

Q2(λ0, β, ŵ) =
K∑

k=1

J∑
j=1

αjk ·
{ nj∑

i=1

δij[log(λ0(tij)) + log(ŵk) + X T
ij β] − �0(tij)ŵk exp(X T

ij β)

}
. (3.3)

We can rewrite Q2 in the following form, recalling that
∑K

k=1 αjk = 1,

Q2(λ0, β, ŵ) =
J∑

j=1

nj∑
i=1

δij log(λ0(tij)) + δij

(
K∑

k=1

αjk log(ŵk)

)

+ δij{X T
ij β} − �0(tij)

(
K∑

k=1

αjk ŵk

)
exp(X T

ij β).

This is similar to the form of the log-likelihood in a Cox regression model with known offset

log
(∑K

k=1 αjk ŵk

)
. With arguments similar to Johansen (1983), it is possible to show that the estimate

of the cumulative baseline that maximizes (3.3) is the following:

�̂0(tij) =
∑

(fg):tfg≤tij

dfg∑
rs∈R(tfg )

(∑K
k=1 αsk ŵk

)
exp(X T

rsβ)
, (3.4)

where dfg is the total number of events happening at time tfg and R(tfg) represents the set of patients who
are at risk at time tfg , which is the event time of patient f in cluster g.
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6 F. GASPERONI AND OTHERS

Including (3.4) in Q2(λ0, β, ŵ), we obtain the profile log-likelihood as a function of only β:

lprofile(β) =
J∑

j=1

nj∑
i=1

δij

[
X T

ij β − log
∑

rs∈R(tij )

(
K∑

k=1

αsk ŵk

)
exp(X T

rsβ)

⎤
⎦. (3.5)

Since (3.5) is of the form of the usual partial log-likelihood in the Cox model with known offsets, standard
software can be used to obtain the maximum β̂.

The profile likelihood method also ensures identifiability between λ0(t) and the wk , since at each step
of the algorithm, one is estimated conditionally on the current value of the other. We observed better
convergence from leaving the wk unconstrained, compared to applying a constraint such as w1 = 1 in the
EM algorithm. However, for interpretability, we divide each estimate of the wk by the lowest value of wk ,
obtaining the hazard ratio (HR) for an individual in the kth latent population, compared to an individual
with the same characteristics in the lowest-risk latent population. We also investigated order constraints
on the wk , though obtained theoretically identical estimates.

To conclude, it is known that when assuming proportional hazards conditionally on a gamma dis-
tributed frailty, the ratio of marginal hazards converges monotonely towards one, while it has been proven
by Hougaard (1991) that marginal HR for binary mixture of frailties has the same value at time 0 and at
infinity, because the frailty mean is the same across groups at these times. Consequently, the marginal HR
evolves non-monotonely in time.

3.2. Estimation of the standard errors

In the case of the Cox model with shared frailty terms, the variance–covariance matrix can be derived
from the observed information matrix I(θ)−1 Klein (1992), and this has been shown to be a consistent
estimator (Parner, 1998). The observed information matrix can be written as:

I(θ) = −∂2l(θ)

∂θ 2 ,

where l(θ) is the observable log-likelihood:

l(θ) =
J∑

j=1

nj∑
i=1

δij log(λ0(tij) exp(X T
ij β)) + log(

K∑
k=1

πkw
Dj
k · exp

nj∑
i=1

[−�0(tij)wk exp(X T
ij β)

]
),

where Dj is the total number of events in group j, Dj = ∑nj
i=1 δij. Note that this is obtained by integrating the

full likelihood over the random variable z. For further information about the derivation of the observable
log-likelihood and the elements of the observed information matrix, see Appendix A of supplementary
material available at Biostatistics Online.

This asymptotic estimate of the covariance matrix can be computed once the parameters are estimated
from the EM algorithm. A more computationally convenient approximation that exploits the EM frame-
work was proposed by Louis (1982) together with a method to accelerate the algorithm, and a proof of
quadratic convergence near the maximum likelihood estimate. Louis (1982) states that the jth component
of the observed information matrix I can be written as:

Ij = E[Bj] − E[SjS
T
j ] + S


j S
T
j ,
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Table 1. Estimates of Cox model with a non-parametric frailty term and a classical Cox model. Std.Err:
standard errors

Cox with Cox model Cox model with
non-parametric frailty gamma frailty

Parameters Estimates Std. Err. Estimates Std. Err. Estimates Std. Err.
Louis Exact Numerical

π1 0.47 0.0592 0.0592 0.0593 — — — —
π2 0.53 — — — — — — —
w2/w1 1.40 0.0343 0.0343 0.0343 — — — —
Variance (frailty gamma) — — — — — — 0.04 —
Log-hazard ratios
10 years of age 0.171 8.57 10−4 8.57 10−4 8.57 10−4 0.169 8.57 10−4 0.172 8.61 10−4

Male 0.223 0.0181 0.0181 0.0181 0.229 0.0180 0.221 0.0181
≥3 comorbidities 0.279 0.0176 0.0176 0.0176 0.279 0.0174 0.277 0.0177
Number of procedures −0.091 0.0126 0.0126 0.0126 −0.089 0.0125 −0.089 0.0127
Log-lik −137,186.3 −137,364.7 −137,255.9

where S and S
 are the gradient vectors of the full log-likelihood and the observable log-likelihood
respectively, while B is the negative second derivative matrix of the full log-likelihood (see Appendix A
of supplementary material available at Biostatistics Online for element-wise computation).

In this work, we implement both methods and we compare the obtained results (see Table 1 in Section 5).
We provide also a third estimate for the observed information matrix, by using numerical methods to obtain
the first and second derivatives of the full log-likelihood (Gilbert and Varadhan, 2016).

In this work, we estimate the frailties separately; however, because we are interested in the ratios of
frailties, we estimate the standard errors related to the ratios through the following formula:

Var(ŵk/ŵ1) =
(

μŵk

μŵ1

)2

·
[

σ 2
ŵ1

μ2
ŵ1

+ σ 2
ŵk

μ2
ŵk

− 2Cov(ŵ1, ŵk)

μŵ1μŵk

]
,

which can be derived by using the first and second order Taylor expansions.

3.3. Selection of the number of latent populations

Since it is not possible to estimate K using a log-likelihood maximization argument (Figueiredo and Jain,
2002) we estimate θ for each potential K , and compute a model selection criterion such as AIC, BIC, or
search for the optimal K using the approach proposed by Laird (1978). At the end of the analysis, each
provider j is assigned to that latent population k for which, k = argmax

k=1:K
αjk . For all the computations,

we used the R software (R Development Core Team, 2016) developing an R package available from
https://github.com/fgaspe04/discfrail.

4. SIMULATION STUDY

A simulation study was conducted to evaluate the performance of the estimators obtained with the algorithm
described in Section 3. We simulated 1000 datasets, each with J = 100 groups (e.g., healthcare providers),
and nj = 50 statistical units (e.g., patients) per group, giving a total of 5000 records in each dataset. For
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8 F. GASPERONI AND OTHERS

all simulations, we set the covariate-related log HR β = 0.4, and define the baseline cumulative hazard so
that �0(t) = (100 · t)1/1.9 (�−1

0 (t) = 0.01 · t1.9) in order to mimic the dataset that motivated this work. The
aim of the simulation was to estimate how well the algorithm estimates the true frailty ratios w/w1, mixing
proportions π and number of latent populations K for various values of these parameters of interest.

(i) Firstly we focus on π , by setting K = 2 and w2/w1 = 1.55, and run 9 scenarios with π1 ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The results are shown in Appendix B of supplementary
materialAvailable at Biostatistics Online. In general, we observe estimates closer to the true values
when the mixing proportion, π1, is closer to 0.5, i.e., when there is a relatively large amount of
data in both mixture components.

(ii) To assess the effect of a smaller sample of units, we repeat the scenario in (i) with nj = 35
statistical units per group, giving a total of 3500 records in each dataset. The results are shown in
Appendix C of supplementary material Available at Biostatistic Online and are close to the ones
obtained in Appendix B of supplementary material Available at Biostatistic Online. This proves
a certain robustness of the proposed method with respect to groups’ size.

(iii) We focus on w2/w1, by setting K = 2, π = [0.3, 0.7] and run 7 scenarios, with w2/w1 ∈
{1.14, 1.29, 1.43, 1.57, 1.71, 2, 3}. We assume that frailty ratios smaller than 1.1 are not of practical
interest. Conversely, we assume that for frailty ratios bigger than about 3, the presence of two latent
populations can be identified easily by exploratory analysis, e.g., plotting a set of survival curves
by group. The results are shown inAppendix D of supplementary materialAvailable at Biostatistic
Online. The estimates of all parameters become more accurate as the frailty ratio increases, thus
the contrast between latent populations becomes larger. In particular, the true number of latent
populations K = 2 is detected for values of w2/w1 of around 1.6 and higher.

(iv) We focus on K , which leads to a complex pattern of simulations since varying K changes the
length of the vectors π and of w/w1. We tested K ∈ {1, 2, 3, 4}, π ∈ {1, (0.4, 0.6), (0.2, 0.3, 0.5),
(0.15, 0.25, 0.3, 0.3)} and w/w1 ∈ {1, (1.5), (1.5, 2.5), (1.5, 2.5, 4)}, respectively. In our applica-
tion, Section 5, we did not detect more than four populations with either BIC or AIC. The results
are shown in Appendix E of supplementary material Available at Biostatistic Online. The frailty
ratios and mixing proportions are estimated accurately for all values of K . However, the three
model selection methods produce different estimates of K , with BIC recovering the true values
more often, and AIC and the method of Laird (1978) tending to estimate higher values.

AIC theoretically favors more complex models than BIC; however, they produced the same estimate for
the number of latent populations in the majority of the scenarios. As discussed by Burnham and Anderson
(2003), BIC would be preferred if we believe there is a low-dimensional “true” clustering structure which
would not change with the amount of data, whereas AIC is preferred if we expect more latent populations
(with more weakly contrasting frailties) to be revealed as the dataset becomes bigger. We are unaware of
any formal comparison between AIC (or BIC) and the method proposed by Laird (1978).

Overall, the algorithm performs well, especially when there is a moderately large contrast between the
frailty in different latent populations, and there is sufficient information in all latent populations. Thus,
more clearly defined latent population structures are revealed more easily.

5. AN APPLICATION TO HEALTHCARE STRUCTURES ADMISSION FOR PATIENTS WITH HEART FAILURE

The non-parametric frailty Cox model was applied to administrative data from patients with HF treated
in the Lombardia Region, Italy. HF is a chronic disease that is the most common cause of hospitalization
in Western countries for people more than 65 years old, with a 5-year risk of death similar or worse than
that observed after a diagnosis of cancer (Frigerio and others, 2017).
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Fig. 1. 138 structure-specific Nelson–Aalen curves drawn according to the membership of two latent populations
from the frailty model for time to readmission. The gray curves are related to latent population 1, while the black
dashed curves are related to latent population 2.

While the full history of hospital admission and death due to HF has been investigated using multi-state
models (Gasperoni and others, 2017), an event of particular interest is the first readmission, as a marker of
success of the initial treatment and possible future health care use. The time to readmission is thought to be
particularly related to healthcare provider policies, infrastructure, extent or expertise of staff, efficiency or
case mix. These unobserved covariates may cause over-dispersion. By assuming a shared frailty between
patients admitted to the same healthcare provider, we investigate how the time to first readmission is
associated with the healthcare provider. Furthermore, we use the non-parametric frailty distribution to
detect clusters of healthcare providers with similar outcomes.

In our first analysis we included the 121 994 patients who had a first admission for HF between 2005
and 2010. The outcome was defined as the time between the first discharge and the second admission.
We consider those patients who died in this interval as censored, which ignores the fact that death and
readmission are competing events, but leads to lower bias than if we were to exclude patients who died in
this interval. Moreover, we included only healthcare providers with more than 20 patients.

Our model identified three latent populations using the BIC for selection, four with AIC and six with
Laird’s criterion (Laird, 1978). This result is in line with the simulations, since BIC penalizes complex
models and Laird (1978) tended to overestimate the number of latent populations. In the case of three
latent populations, we estimate π = [0.19, 0.43, 0.38] and w/w1 = [1, 1.78, 2.26]. However, the number
of patients in this dataset meant that the standard errors could not be computed numerically, although the
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approximate and exact standard errors could be computed. Therefore, in order to show the results of the
proposed model and method in their entirety, we focused on a smaller dataset which included only patients
whose first discharge was recorded between 2006 and 2007. The reduced dataset included 40 337 patients
from 138 healthcare providers. This sample had an average age of 76 years (s.d. 11.7) and 49.7% were
male. 44.9% had three or more comorbidities, which include renal disease, tumors, and diabetes. 16.3% of
the patients underwent one or more (up to 5) procedures, including coronary artery bypass graft surgery,
percutaneous transluminal coronary angioplasty, or insertion of an implantable cardioverter-defibrillator.
We applied the non-parametric frailty Cox model, described in Section 2, with four individual-level
predictors: age, gender, presence of three or more comorbidities, and the total number of procedures. We
fitted models with values of K ranging from 1 to 7. The AIC and BIC were optimized by a model with
K = 2 latent populations, while the criterion of Laird (1978) suggested a greater number K = 6. Since
our simulations suggested that where the true K ≤ 4 and between-population frailty ratios are > 1.1, AIC
and BIC estimate K more accurately, we present the results for K = 2.

We plot 138 Nelson–Aalen curves (one for each provider) colored according to the K = 2 populations
identified (Figure 1). A total of 68 providers are assigned to the cluster with lowest risk (gray curves) and
π̂1 = 0.47. The black curves represent the π̂2 = 0.53% of healthcare providers in latent population 2 with
ŵ2 = 1.40 times the hazard of readmission relative to ŵ1. All estimates for this reduced cohort are reported
in Table 1, together with the estimates from a standard Cox model and a Cox model with a Gamma frailty,
fitted with frailtyEM (Balan and Putter, 2017). The discrete frailty model describes the data best, as
judged by the maximized likelihood values.

There is a small discrepancy between the population classification according to the criterion in
Section 3.3, (68 and 70 providers in latent population 1 and 2, respectively) and the result of π × J ,
through which we estimate 65 and 73 providers in latent populations 1 and 2. This is related to the few
providers whose probabilities of belonging to population 1 or 2 are close to 0.5 and these providers may
require further investigation.

We note that the discrete frailty model has higher log-likelihood than either the standard Cox model
or a model with a continuous Gamma frailty (see Table 1). However, patient-level covariate coefficient
estimates and standard errors are similar in these 3 models; older people have a higher risk of being
readmitted (HR, HR, e0.0171 = 1.02 per year of age), as do men (HR e0.223 = 1.25), people having three
or more comorbidities (HR e0.279 = 1.32), and people having fewer medical or surgical procedures (HR
e−0.091 = 0.91 per procedure). The relationship between fewer procedures and risk of readmission may
seem counter-intuitive, but it reflects the fact that people undergoing procedures are younger on average
(with mean age 70.3 (11.8), compared to 77.2 (11.4) for people who do not), and there may be some
collinearity between age and number of procedures. Moreover, the procedures may have successfully
treated the underlying heart disease, thereby reducing the need for readmission.

We then sought to describe the latent population structure, indicated by the model with K = 2, in
terms of characteristics of the healthcare providers that are recorded in the database. Healthcare providers
predicted to be in the population with higher risk of readmission, on average, had a higher number of
patients and a higher percentage of in-structure deaths per year, although the percentages of surgical and
complex cases were similar between the two latent populations, Table 2. Comparing the type of institution,
we found that hospitals belonged to the higher-frailty population more often, while nursing homes tended
to belong to the lower-frailty population, Figure 2.

We then extended the frailty model to include two structure-specific covariates, describing the type
of healthcare provider with three categories, as in Figure 2, and the percentage of admissions in which
the patient died. The optimal model according to AIC and BIC still has K = 2, with relative frailty
w2/w1 = 1.43 between the two populations, and an estimated probability of π2 = 0.64 that the healthcare
provider belongs to the group with the higher frailty. Thus these two covariates can characterize the two
latent populations only partially, and the remaining clustering pattern probably depends on unobserved
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Table 2. Profiling of healthcare providers assigned to the detected latent
populations. s.d.: standard deviation

Latent population 1 Latent population 2

Number of providers 68 70
Average number of patients (s.d.) 6581.1 (6 203.1) 12 147.4 (9989.3)
Average % of in-structure death (s.d.) 3.29 (3.08) 3.61 (1.81)
Average % of surgical cases (s.d.) 30.75 (21.40) 30.18 (12.44)
Average % of complex cases (s.d.) 14.03 (5.63) 14.52 (3.40)

Fig. 2. Healthcare providers structures in the two latent populations. Black bars are related to structures that are
assigned to the second latent population, while gray bars to the first one.

characteristics of the healthcare providers. The non-parametric frailty model therefore serves as a starting
point for further investigation of the effect of healthcare providers and their characteristics on patient
outcomes.

6. DISCUSSION

In this article, we propose a new model that deals with hierarchical time-to-event data and tackles two
issues: extending the classical Cox proportional hazard model and detecting a clustering structure among
groups by including a shared non-parametric frailty term. Classical approaches for hierarchical time-to-
event data use proportional hazard models with a parametric shared frailty; however, the most appropriate
parametric frailty distribution will not always be clear and the data may not fit any standard parametric
family (Austin, 2017). Having a discrete frailty distribution, together with an unspecified baseline hazard,
leads to a relatively novel and very flexible model for grouped survival data.
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Moreover, we are able to detect clustering at the second level of a hierarchy of time-to-event data.
Indeed, we can identify the existence and nature of a clustering structure, without defining a priori a set of
covariates that describe the investigators’ opinions about the performance of the healthcare providers. A
further strength is that it may be used to detect clusters of individuals, as well as clusters of groups, since
the frailties may be group-related or individual-related. Additionally, detecting more complex hierarchical
structures (e.g., patients grouped in structures grouped in regions) may be of interest. In this case, we
could consider an extension to nested frailty models, in a frequentist or Bayesian framework.

Usually, the software used to estimate the parameters of proportional hazard models with shared frailties
relies on some version of the EM algorithm. In this work, we proposed an EM algorithm that was designed
for our model. Other techniques have been explored for specific models: for example, the penalized partial
likelihood approach (Therneau and Grambsch, 2000, Section 6, Chapter 9) has been applied for Gamma-
distributed frailties (with the same results as the EM) or log-Normal-distributed frailties (with similar
results to the EM). Li and others (1998) proposed Monte Carlo EM, in which the expectation step is
computed through a Monte Carlo simulation. We note that care should be taken to ensure that a global
maximum is located when applying this procedure, both by exploring different initial values and by
inspection of profile likelihoods. Further extension of our work to investigate alternative implementation
methods that could speed up the procedure would be worthwhile. A step in this direction was made by
the choice of standard error matrix computation methods. Indeed, we started implementing the numerical
approximation of the full log-likelihood through numderiv package (Gilbert and Varadhan, 2016) and,
when it turned out to be too computationally heavy and inappropriate for big datasets, we decided to explore
two different methods: Louis (1982)’s approximate and exact methods. It is important to note that the
computational limitations of the numerical method did not cause a problem, since we are able to estimate
the standard errors with both the other two methods (see Section 5). However, several improvements in
computational efficiency can be investigated and they would have a significant effect on the analysis of very
large databases, such as the administrative clinical database that motivated this work. Such administrative
databases are emerging as powerful tools for addressing questions in epidemiology and other medical
research; the need for rigorously defined models and reliable methods of analysis is clear. The proposed
model, which makes few assumptions about the baseline hazard or frailty distribution, represents a step in
this direction. Further extension of this model to a realistic but more complex framework, such as multiple
events, would be a natural next step.

7. SOFTWARE

Software in the form of R package is available at https://github.com/fgaspe04/discfrail.git and simulations
are available on request from the corresponding author (francesca.gasperoni@polimi.it).

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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