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Abstract

New Perspectives on Operator Deformations and T-duality in String
Theory

Hasan Mahmood

The moduli space of string theories has been the subject of intense research efforts for
many years now. Much of these efforts are focused on string compactifications, and
in particular worldsheet conformal field theories (CFTs) embedded in toroidal target
spaces. The CFTs defined at each point in this moduli space consist of an algebra of
operators which define the content of the theory. In this thesis, we will investigate
methods of traversing this moduli space, and we will attempt to elucidate the relations
and symmetries that exist between different points in this space.

Specifically, we study the deformation of operators in string compactifications, as
well as T-duality from the worldsheet CFT perspective. We review, and bring into a
contemporary context, a construction based on universal coordinates that can be used
to define operators at one point in moduli space in terms of the operators at some
reference point. We also review how this construction can be used to perform T-duality
algebraically, thus providing an alternative perspective to the Buscher construction.

Using the language of connections and parallel transport on the space of backgrounds,
we discuss how to deform general operators in a given space of theories, including
quantum field theories (QFTs) lacking conformal symmetry. We find that, for a general
operator, there are two sources of deformation. The first is the usual deformation
operator derived from the worldsheet sigma model. The second, less familiar part is a
deformation directly induced as a result of the change in the background, which depends
on the tensor structure of the operator of interest. In particular, scalar operators are
invariant under this deformation. In the literature, since it is usually scalar operators
such as the stress tensor that are of interest, this part of the deformation has not
previously been addressed to our knowledge.

Throughout, we apply our formalisms to well-known torus bundle examples such
as the nilfold, the T 3 with H-flux and the T-fold, and we also employ the doubled
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geometry construction. Initially, we utilise an ‘adiabatic’ approximation, where we
neglect the worldsheet interactions arising from the coordinate dependence of the
background. We investigate how the gauge algebra of the torus bundle with doubled
fibres, pulled back to the worldsheet, compares with the algebra of the zero modes.
Surprisingly, we find that the algebra of the worldsheet theory reproduces the doubled
twisted torus algebra, i.e. the algebra where the base is also doubled.

We also consider worldsheet sigma models corresponding to these torus bundles
in their entirety, away from the adiabatic limit, and derive operator deformations in
this context. We discuss T-duality between these backgrounds and we explain how our
formalism could be used to construct T-dual backgrounds in more general settings. We
also consider how the formalism applies to the N = 1 superstring in the NS-NS sector.
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Chapter 1

Introduction

String theory has been the most promising candidate for a theory of quantum gravity
for some decades now. Over the past half-century or so, there have been great strides
made in our understanding of the theory, and at every turn it has revealed itself to
be richer and deeper than we previously thought. As is well-known, the Standard
Model is the best theory we have for describing almost all known interactions in nature,
and it has been the gold standard in physics for many years. However, the problems
with the Standard Model highlight the need for a theory such as string theory. In
particular, its incompatibility with gravity is its most glaring problem. There are
also other issues though, such as the apparent arbitrariness of its construction. Why
the particular gauge group SU(3) × SU(2) × U(1)? Why the specific parameters of
the theory? Such questions naturally lead us to consider a theory which has a more
‘natural’ construction and more easily incorporates all of the interactions we observe in
nature. Over the years, string theory has maintained its status as the foremost theory
potentially capable of filling this role. From a simple construction of a worldsheet
embedded in spacetime, we get many appealing properties that often appear to arise
very naturally. For example, string theory has no free parameters, so it does not have
the arbitrariness of the standard model. It also naturally incorporates gravity and
has no issues with UV divergences. Furthermore, not only does string theory admit
a supersymmetric description, but supersymmetry is required for consistency of the
theory. Additionally, and perhaps surprisingly, there have been many connections
made with rich areas of mathematics which have broadened our understanding of
the interplay between mathematics and physics, such as mirror symmetry between
Calabi-Yau manifolds [3, 4]. Such unexpected connections are ubiquitous in string
theory, and as such it is clear that there are many deep implications of the theory that
are yet to be understood.



2 Introduction

It is apparent, therefore, that string theory is worth studying. Though it has been
the subject of intense focus for many years, there are still numerous open questions
and our understanding of the theory is far from complete. It is generally thought that
string theories are 2d conformal field theories embedded in a spacetime (‘target space’)
of 26 (bosonic case) or 10 (supersymmetric case) dimensions. Understanding this space
of theories better, and in particular constructing tools that allow us to traverse this
space, is one of the key goals of string theory. This will largely be the focus of this
thesis. More specifically, we will be interested in how operators in the CFT at one
string theory can be deformed to another string theory, i.e. another point in the moduli
space of theories. We will also be interested in the symmetries on this space and we will
pay particular attention to the phenomenon of T-duality [5–7]. In short, the aim of the
research undertaken and presented in this thesis is to elucidate the matter of operator
deformations and to better understand the symmetries existing between operators and
the theories to which they belong.

T-duality is a symmetry on the moduli space which relates two apparently different
sigma models by constructing a relation between the background tensors which define
the theories. These relations are usually known as the Buscher rules [7], and this
has been the established understanding of T-duality for some time. The Buscher
construction is often the most useful way of proving that two apparently different
theories are really just different T-dual descriptions of the same theory, and is the
isometry gauging procedure originally introduced in [7] and further refined in [8, 9].
The validity of the Buscher procedure rests on the existence of a compact abelian
isometry of the target space which can be used to generate a rigid symmetry of the
worldsheet theory. This symmetry can then be gauged in the sigma model and the
gauge fields integrated out to give a dual description of the gauged theory. If one can
then show that the gauged theory is equivalent to the ungauged theory, then one has
a pair of worldsheet theories that describe the same physics. There are many cases
where the required symmetry of the target space does not exist (or may exist only
locally), but there is still evidence that a dual description of the theory exists and
there is a sense that the relationship between these two descriptions should still be
thought of as a form of T-duality. Examples include the SYZ description of mirror
symmetry [10] that involves torus bundles where the fibres can degenerate, as well as
T-folds [11], whose non-geometric nature can be traced to an obstruction to extending
a local circle isometry globally in the geometric dual [12].

Progress has been made in casting the Buscher construction in more general (and
exotic) settings [13], but we always fall back to the same restrictions when attempting
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to prove the duality rigorously, at the level of the worldsheet theory. This stands
in contrast to the remarkable progress that has taken place in incorporating duality
symmetries directly into supergravity-inspired field theory constructions1. In this thesis,
instead of attempting to generalise the Buscher construction, we revisit the perspective
of T-duality as an automorphism of the operator algebra. Using ideas discussed in
[15] and with a view to moving beyond the isometric torus bundle paradigm, whilst
remaining within the context of a symmetry that is recognisable as T-duality, we
reconsider the operator algebra approach in a contemporary context. One of the main
questions concerning T-duality is whether there is a valid way to extend its applicability
to non-isometric cases. We will not settle the issue of non-isometric T-duality in this
thesis, but we hope that the constructions presented and the observations made will
help to indicate a possible alternative approach, one which we feel has not yet been fully
explored. In particular, we hope to frame T-duality in a more fundamental perspective.
For a general CFT, it is the operator algebra which is the defining content of the theory,
not the spacetime. Indeed, there may not even be a proper spacetime interpretation
of a given theory, but we will always have an operator algebra, and so we are of the
opinion that the algebraic approach better gets to the heart of T-duality and is more
fundamental than the Buscher procedure. In general, there has been renewed interest
in understanding QFT from the operator algebra perspective [16, 17]. This thesis takes
a similar view to the primacy of the the worldsheet operator algebra in string theory
as a bundle over the space of backgrounds.

As indicated, our approach in this thesis will be very much from an operator
perspective, and our primary tools will be the algebra on the worldsheet CFT. As well
as T-duality, our main focus will be on how these operators are deformed as we move
through moduli space. One of our aims will be to describe how the use of a connection
on the space of backgrounds can be used to define a parallel transport that allows
one to write the operators of a theory in one background in terms of the operators
in another background (at least perturbatively). Ultimately, one of the aims of this
endeavour is to gain a more background independent view of string theory, or at least
a given family of string backgrounds. In relating operators at different backgrounds to
each other, we hope to obtain a broader picture of these backgrounds which perhaps
makes it easier to study more general background independent properties.

Much attention has been given to deformations of the holomorphic worldsheet stress
tensor T (z) under a change of background. This is of course a spacetime scalar, but
there has not been much attention given to the deformation of non-scalar operators.

1See [14] for a nice review of some of the more recent advances.
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Thus, a key aim of this thesis is to develop a formalism that correctly treats operators,
such as ∂Xµ(z), which are not target space scalars.

A rough outline of the framework is as follows (details will be given in the text).
We start with a family of sigma models, characterised by a metric, B-field and any
other fields in the target space. We assume that, near a theory of interest, this data
defines a space of backgrounds M. Over M there is a bundle E → M whose fibres are
operators of the worldsheet theory defined at the point in M. We will really only be
interested in a subset of these operators relevant to the deformation we are considering.

The starting point is a string theory at a point of enhanced symmetry p0 ∈ M,
where this symmetry acts as an automorphism on the operator algebra

A0 → U−1A0U, (1.1)

for any operator A0 in the fibre at p0, where U is an element of the symmetry group.
We then define a connection Γ on E and use it to parallel transport to a background of
interest p ∈ M. This allows us to describe the theory at p in terms of the operators of
the theory at p0. The advantage of this is that, if we know the action of the symmetry
group on operators at p0, we can use this to deduce the action on operators at p. In
general, the enhanced symmetry is spontaneously broken in the new background, but
a subgroup may remain. As we will show, T-duality is one of these residual gauge
symmetries and the group of all such symmetries forms a discrete subgroup of the
space of backgrounds which we quotient by to obtain the physical moduli space.

We will initially consider toroidal backgrounds which are exact CFTs, where we
will show that our formalism reproduces the known deformation results obtained in
[15, 18] to all orders. However, one of the benefits of this approach is that, even
if the background we start at is a CFT, we can deform the theory ‘off-shell’ to a
background which is not a CFT, so it can be used for a large class of backgrounds,
including a number of toy models. When we come to the nilfold and T 3 with H-flux
in chapter 6, we will see that this is useful for investigating the T-duality between
these backgrounds. Initially, we will study such backgrounds in the context of an
‘adiabatic approximation’[19], which essentially allows us to regard these backgrounds
as CFTs, and later we will move away from this approximation and see how the parallel
transport formalism can be applied in more general cases. Although these toy models
are not string theories on their own, we still take an interest in them because they
are used as components in the construction of legitimate string theories. It is also
interesting to see how the case with conformal symmetry differs from the more general
case. In particular, we will review an idea from string field theory known as ‘universal
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coordinates’ [20], which makes the CFT case particularly simple. This is essentially the
statement that the string embedding field X(σ, τ) is independent of the background (at
least for fixed τ), and we will see that such a construction is unique to the CFT case.

Although we find the conceptual framework is compelling, there are several draw-
backs to this approach: the main issue is that the calculations are hard. This is, in
part, reflective of the fact that the worldsheet quantum field theory is at the heart of
this formalism and calculations in interacting quantum field theories are hard. The
challenges of doing explicit calculations are a reflection of this fact. There is a sense in
which this is not the whole story. Even the free theory calculations in this formalism
can be involved and there are examples of dualities between toy models that may be
done straightforwardly in the Buscher construction [7, 8], but are technically challeng-
ing in the formalism presented here. We also avoid issues of topology change and
degenerations in the background and we generally lift to a covering space to perform
the parallel transport.

What is to be gained from this formalism is a way to clearly understand how
individual operators in a CFT or QFT may be deformed, as opposed to correlators,
which is usually the focus in the literature. The formalism we describe is widely
applicable to many theories and is a step forward in being able to traverse the space of
string theories and QFTs more generally.

Additionally, we gain a different perspective on T-duality, one that is potentially
applicable to a wider class of examples than the Buscher construction. For example,
the challenges with non-isometric duality are particularly clear from this perspective
and no longer seem insurmountable.

1.1 Outline

The outline of this thesis is as follows. Chapters 2, 3, 4 and 5 will largely be review
material of topics of relevance for later chapters. In chapter 2, we briefly review toroidal
compactifications in string theory and the conventional understanding of T-duality.
We also look more closely at symmetries in the space of string backgrounds and we
explain how T-duality can be understood in this context.

In chapter 3, we explore an idea that will be important in many of our discussions,
namely doubled geometry [21, 11]. We will start by reviewing the setup of the
formalism and then we will show how it can be applied to twisted torus bundles.
These backgrounds, the T 3 with constant H-flux, the nilfold and the T-fold, will be
introduced here and in particular we will explore the T-dualities between them. We
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will also show how these dualities fit naturally in the doubled formalism, and we will
end by reviewing the sigma model of the doubled torus bundle.

In chapter 4, we introduce the notion of algebraic T-duality as an alternative to the
Buscher procedure. First, we review the notion of automorphisms of CFTs in general,
from the perspective of the worldsheet operator algebra. We then explain how T-duality
can be constructed as such an automorphism, and we explore this transformation in
some detail. We introduce the idea of universal coordinates and we apply the algebraic
T-duality construction to simple toroidal cases.

In chapter 5, we review the connection story of [22], first in the more general context
of [23, 24], and then specifically for the CFT case. We show how connections on the
space of backgrounds are constructed and how these can be used to define a notion of
parallel transport of operators. We briefly review the QCD example of [23] and then
discuss the stress tensor deformation.

In chapter 6, we apply the ideas of the previous two chapters in particular and
discuss how universal coordinates can be viewed from the connection perspective.
We then apply the universal coordinate construction to the twisted torus bundles
discussed in chapter 3, where we employ the adiabatic limit to justify this application
to backgrounds which are not strictly CFTs. We look at the T-duality between these
backgrounds from the algebraic perspective. A significant amount of attention is paid to
how the algebra defining the backgrounds of chapter 3 looks from the worldsheet CFT
perspective. In some sense, this is the pullback of the algebra to the worldsheet. What
we find is that the algebra on the worldsheet is a central extension of the full doubled
twisted torus algebra from [12] which is classically obtained by doubling both the fibres
and the base. Given that we only double the base, this result is highly intriguing.
We briefly explore how one might tackle non-isometric T-duality in this formalism
and we show how, though the problems in the Buscher procedure are still present
here, it seems less insurmountable and that progress on non-isometric T-duality could
possibly be made in this algebraic perspective. We end the chapter by exploring some
generalisations of twisted torus bundles to target spaces which are still constructed
from the same structure constants, but may not be torus bundles. We derive the
relevant algebras here and discuss associativity. We make some brief comments on the
R-flux case.

In chapter 7, we discuss a formalism which allows us to extend our analysis thus far
to more general theories and operators. In particular, our construction will be valid for
generic connections on theory space and takes into account the tensor structure of the
operator of interest. We will apply the formalism to the flat torus case first, where we
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recover the results derived earlier. Here, for the case when we have a non-zero B-field,
we will see that we need to use the doubled formalism to recover the results derived
earlier, and we will discuss in detail why this is. We will also explore the relationship
between universal coordinates and doubled geometry.

In chapter 8, we continue directly from the previous chapter and apply our formalism
to the torus bundle backgrounds considered earlier, but this time without making any
simplifying assumptions. We show that this results in the deformations being more
complicated and we derive these extra terms to first order. We also briefly explore a
covariant construction, based on methods described, for example, in [25].

In chapter 9, we look at the T-duality between the torus bundles once again, but
this time with the extra corrections from the previous chapter taken into account. Our
approach is essentially a generalisation of [15] where we use the stress tensor to derive
the duality, and we show that we recover the expected duality. We also explain how
this method would be used more generally to construct T-dual backgrounds.

In chapter 10, we look at how the formalism discussed in the previous few chapters
applies to the N = 1 supersymmetric case in the NS-NS sector. We derive the
deformation for a fermion field both in the flat torus case and in more general cases.
We briefly discuss universal coordinates for fermions and why such a construction is
not readily available. We once again derive the T-duality between the T 3 with H-flux
and the nilfold, but this time with the fermionic deformations taken into account, and
we find that the expected duality does indeed hold. We also make some interesting
observations regarding picture changing and how this fits in with our formalism.

Finally, in chapter 11, we make some concluding remarks and we discuss some
questions that would be very interesting to explore, but unfortunately we did not have
time for during the research period.





Chapter 2

String Theory on a Flat Torus

We begin by reviewing string compactifications on the flat torus. In particular, we
will be interested in the symmetries of these theories and we will review the T-duality
construction of [7, 8], as well as the gauge symmetry discussions of [26]. We also lay
out much of the conventions that we will use throughout this thesis.

2.1 Toroidal compactifications in string theory

Much of this thesis will be focused on target spaces containing some compactified
toroidal space T d with a flat metric gµν and constant antisymmetric B-field Bµν . In
particular, we will be interested in the conformal field theory on such spaces (we will
not pay any attention to the uncompactified dimensions in this thesis and our focus
will be entirely on string compactifications). The space of such backgrounds, modulo
symmetries, is

M = O(d) ×O(d)\O(d, d)/O(d, d;Z), (2.1)

where d is the dimension of the torus. The discrete group O(d, d;Z) is of particular
interest to us and we will discuss its presence in more detail in section 2.4. The
worldsheet sigma model embedded in the torus, with worldsheet coordinates (σ, τ), is
given by the action

S = − 1
4π

∫ 2π

0
dσ
∫
dτ
(√

γγαβ∂αX
µ∂βX

νgµν + ϵαβ∂αX
µ∂βX

νBµν

)
, (2.2)

where the metric signature is (+,−), ϵτσ = −1 and we have chosen conventions such
that the α′ factors have all been absorbed into the fields. This ensures that all fields
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appearing here are dimensionless. At some points it will be useful to reintroduce the
α′ dependence, and we will make it clear whenever we do so.

It is convenient to work in conformal gauge, where the action becomes

S = 1
π

∫
d2σEµν∂X

µ∂̄Xν , (2.3)

where Eµν := gµν + Bµν specifies the background1 and we have defined ∂ := 1
2(∂τ −

∂σ), ∂̄ := 1
2(∂τ + ∂σ). The equation of motion is then

□X = 0, (2.4)

where □ ≡ ∂∂̄. X then has the mode expansion

Xµ(σ, τ) = xµ+ωµσ+τgµν(pν −Bνρω
ρ)+ i√

2
∑
n̸=0

1
n

(
αµ

ne
−in(τ−σ) + ᾱµ

ne
−in(τ+σ)

)
, (2.5)

and the conjugate momentum Pµ = 1
2π

(gµνẊ
ν +BµνX

′ν), where Ẋ ≡ ∂τX,X
′ ≡ ∂σX,

has the mode expansion

Πµ(σ, τ) ≡ 2πPµ(σ, τ) = pµ + 1√
2
∑
n̸=0

(
ET

µνα
ν
ne

−in(τ−σ) + Eµνᾱ
ν
ne

−in(τ+σ)
)
. (2.6)

At fixed τ , these fields obey the equal time commutation relations

[Xµ(σ, τ),Πν(σ′, τ)] = 2πiδ(σ − σ′)δµ
ν . (2.7)

We can normally take τ = 0 wlog because, if τ takes some fixed non-zero value, we can
simple redefine

αµ
n → αµ

ne
inτ . (2.8)

We also have the mode commutation relations

[αµ
n, α

ν
m] = ngµνδn+m, (2.9)

which can be verified using the mode expansion, or equivalently the inverse relation

αµ
n(τ) =

√
2

2π

∮
dσ ∂Xµ(σ, τ) e−inσ, (2.10)

1Eµν can be seen as a parameterisation of the moduli space (2.1).
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where αn(τ) = αne
−inτ . It will also be useful to split X into left and right-moving

parts as

Xµ
L(σ−) = xµ

L + 1√
2
αµ

0σ
− + i√

2
∑
n̸=0

1
n
αµ

ne
−inσ−

, (2.11)

Xµ
R(σ+) = xµ

R + 1√
2
ᾱµ

0σ
+ + i√

2
∑
n̸=0

1
n
ᾱµ

ne
−inσ+

, (2.12)

where σ± = τ ± σ and

gµνα
ν
0 = 1√

2

(
pµ − Eµνω

ν
)
, gµνᾱ

ν
0 = 1√

2

(
pµ + ET

µνω
ν
)
. (2.13)

As we will discuss in chapter 4, for these flat toroidal backgrounds, we will think of
X ′µ,Πµ as being universal coordinates [20], in the sense that they are independent of
E.

We will very often be interested in the weight (1, 0) and (0, 1) fields ∂Xµ(σ−), ∂̄X(σ+)
respectively, where σ± = τ ± σ. These can be expressed in terms of X ′,Π as

∂Xµ(σ−) = 1
2

(
Πµ(σ, τ)−EµνX

′ν(σ, τ)
)
, ∂̄Xµ(σ+) = 1

2

(
Πµ(σ, τ)+ET

µνX
′ν(σ, τ)

)
.

(2.14)
Often, we will prefer to work on the plane as opposed to the cylinder, i.e. on the
Euclidean worldsheet Σ. To go to Euclidean signature, we must do the Wick rotation
τ → −iτ and define complex worldsheet coordinates z = eτ−iσ. If we define the
Euclidean action as SE = iS, then, dropping the subscript E, we get

S =
∫
Σ

d2zEµν∂X
µ(z)∂̄Xν(z̄), (2.15)

where now

∂Plane := ∂z = − i

z
∂Cylinder, ∂̄Plane := ∂z̄ = − i

z̄
∂̄Cylinder, (2.16)

and our conventions are such that d2z = dz ∧ dz̄/2πi. In this signature, the mode
expansions are now

Xµ(z, z̄) = xµ − i√
2

(
αµ

0 log(z) + ᾱµ
0 log(z̄)

)
+ i√

2
∑
n ̸=0

1
n

(
αµ

nz
−n + ᾱµ

nz̄
−n
)
, (2.17)

Πµ(z, z̄) ≡ 2πPµ(z, z̄) = pµ + 1√
2
∑
n ̸=0

(
ET

µνα
ν
nz

−n + Eµνᾱ
ν
nz̄

−n
)
. (2.18)
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Instead of commutation relations, we now have the OPEs

: Xµ(z) :: Xν(w) :=: Xµ(z)Xν(w) : −1
2g

µν log |z − w|2, (2.19)

and

z∂Xµ(z) = − i

2 (Πµ(z, z̄) − EµνX
′ν(z, z̄)) , z̄∂̄Xµ(z̄) = − i

2
(
Πµ(z, z̄) + ET

µνX
′ν(z, z̄)

)
,

(2.20)
with mode expansions

∂Xµ(z) = − i√
2

∞∑
n=−∞

gµνα
ν
nz

−n−1, (2.21)

∂̄Xµ(z̄) = − i√
2

∞∑
n=−∞

gµνᾱ
ν
nz̄

−n−1. (2.22)

Let us now look more closely at the d = 1 case, i.e. where the compact target space
is simply a circle. We will illustrate the phenomenon of T-duality and then we will
generalise this to the T d case.

2.2 String theory on a circle & T-duality

Consider string theory on a circle of radius R, where we have the identification

X ∼ X + 2πR. (2.23)

In addition to compactifying the momentum to take integer values, we also have
winding sectors defined by

X(σ + 2π) = X(σ) + 2πRw. (2.24)

The mode expansions are as given in (2.17) with E = g = R2, and in Minkowski
signature the action on the circle is

S[X] = − 1
4π

∫
d2σR2(−Ẋ2 +X ′2). (2.25)

On the plane, we have action

S =
∫

Σ
d2zR2∂zX(z)∂z̄X(z̄). (2.26)
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To discuss T-duality for string theory on a circle, an illuminating approach is to look at
the physical state (or mass-shell) conditions, derived from the Virasoro modes L0, L̄0.
These can be written as

m2 = p2

R2 + w2R2 + 2(N + N̄ − 2), (2.27)

0 = pw +N − N̄ , (2.28)

where N, N̄ are the level number operators given by

N =
∞∑

n=1
α−n · αn, N̄ =

∞∑
n=1

ᾱ−n · ᾱn, (2.29)

where the contraction of the modes includes all directions, including any external
(non-compact) directions. The mass-shell conditions can be used to compute the
physical states, e.g. if m2 = 0, we get the usual metric, B-field and dilaton states
corresponding to the symmetric, anti-symmetric and trace parts of a general rank 2
tensor respectively. Now, under the transformation

R → 1
R
, p ↔ w, (2.30)

we see that these physical state conditions are invariant, i.e. this transformation is a
symmetry of the theory. However, it is not a symmetry of the action and therefore it
takes us to a different, but physically equivalent, sigma model. Thus, we think of this
symmetry as a kind of ‘duality’ between different string backgrounds, and this is what
we call T-duality. Note that, when R = 1, this is a special case where the duality is in
fact a symmetry of the sigma model. This is called the ‘self-dual radius’, and will be
extremely important throughout this thesis. Let us discuss this point in more detail.

2.2.1 The self-dual radius

At generic R, the theory has a U(1)2 gauge symmetry (i.e. U(1)L × U(1)R) which is
exhibited by the fact that there is just a single (1, 0) current, the massless gauge boson
J3 = i∂X, and a single (0, 1) current J̄3 = i∂̄X.

However, at R = 1, (2.27) has an enlarged set of solutions since the momentum and
winding terms can now combine. In particular, there are additional massless gauge
bosons, and it can be shown that the states at each mass-level now form multiplets of
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SU(2). Thus, there is a symmetry enhancement

U(1)L × U(1)R → SU(2)L × SU(2)R. (2.31)

The (left-moving) SU(2) is generated by the currents

J1(z) = cos(2XL(G)(z)),
J2(z) = sin(2XL(G)(z)),
J3(z) = i∂X(G)(z), (2.32)

where the background E = G is the self-dual radius point, and we have labelled it
explicitly here for clarity. Note that, throughout this thesis, we will use E = G to refer
to the background with metric g = G ≡ 1 and B = 0, and lowercase g will always refer
to a general metric. The currents (2.32) can be shown to form a level 1 SU(2) affine
lie algebra

J i(z)J j(w) ∼ δij

2(z − w)2 + i
ϵijk

z − w
Jk(w). (2.33)

In fact, it was shown in [27] that, at the self-dual radius, string theory on a circle is
equivalent to the level 1 SU(2) WZW model. Furthermore, the Z2 T-duality symmetry
group is a subgroup of this SU(2), i.e. we can think of T-duality as originating from
a symmetry group of the R = 1 theory that is broken away from this point. We will
discuss this idea in more detail in section 2.4.

The fact that we can view string theory at the self-dual radius (SDR) as either
a string on a circle or an embedding into an SU(2) group manifold, a 3-dimensional
geometry, shows that strings see geometry very differently to point particles, and such
equivalences come up frequently in string theory. Let us now discuss how these ideas
generalise to higher dimensions.

2.3 T-duality on a flat torus: the Buscher rules

Consider the case where the compactified spacetime (or at least part of it) is a torus of
some dimensions d ≥ 1. Instead of using the above approach of looking at the physical
state conditions, we will instead use the Buscher procedure [7, 8] to derive the T-duality
transformation for a general background. As we briefly mentioned in chapter 1, this is
a procedure by which we gauge a global, compact isometry in the target space. As we
will see, the gauged action can be reduced to either the original action or a new action,
the latter defining the dual theory.
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It is useful to see the α′ dependence explicitly here, so we will put it back in. Start
with the action

S = − 1
4πα′

∫
Σ

[gµνdX
µ ∧ ⋆dXν − iBµνdX

µ ∧ dXν + α′Rϕ ∗ 1] , (2.34)

where ϕ is the dilaton. Note that the dilaton only appears at O(α′0), whereas the
metric and B-field are at O(α′−1). We suppose that this is the action on some compact
target space manifold Σ embedded in some larger spacetime. The requirement of
compactness is crucial to the validity of this procedure. The basis of the Buscher
procedure, aside from compactness, is the existence of globally defined continuous
isometries, i.e. we suppose that there is some symmetry

δϵX
µ = ϵkµ(X), (2.35)

which is a symmetry of the action as long as

Lkg = 0, LkB = dv, Lkϕ = 0, (2.36)

where v is some globally defined one-form on Σ. We now gauge this symmetry, i.e. we
allow ϵ to depend on the worldsheet coordinates, by introducing the gauge field A. For
the metric term, we simply make the replacement dXµ → dXµ + kµA. For the B-field,
due to the one-form v we must also introduce an extra scalar field χ which will in fact
play an important role when we deduce the dual action. The gauged action is then

Ŝ = − 1
2πα′

∫
Σ

[1
2gµν(dXµ + kµA) ∧ ⋆(dXν + kνA) − i

2BµνdX
µ ∧ dXν

− i(v − ιkB + dχ) ∧ A
]
, (2.37)

where we have dropped the dilaton term since it plays no role in this gauging procedure
(we will come back to it at the end). This gauged action is indeed invariant under the
local symmetry transformations

δ̂ϵX
µ = ϵkµ, δ̂ϵA = −dϵ, δ̂ϵ = −ϵιkv. (2.38)

Now, before deriving the duality, we make some simplifying assumptions. Specifically,
we assume we are using coordinates where kµ = (1, 0, ..., 0)T , and that we are in a
B-field gauge where v = 0. Overall, these assumptions reduce our initial conditions on
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the background fields to
∂1g = ∂1B = 0, (2.39)

i.e. the metric and B-field are independent of the coordinate X1. Now, to deduce the
T-duality, there are two things we must do: firstly, we must be able to return to our
original, ungauged action. Secondly, we should be able to arrive at some sort of dual
action which has the same form as the original action, but with a different metric and
B-field.

Returning to the ungauged action

To return to the ungauged action, we must be able to set A = 0 via a gauge transfor-
mation. To do this, A must be pure gauge. We will show that this is the case under
the equations of motion of χ, i.e. χ ensures that no additional degrees of freedom are
introduced during the gauging procedure. To show this, we first introduce a basis of
harmonic one-forms on the worldsheet,

ωm ∈ H1(Σ,R), m = 1, ..., 2g, (2.40)

where g denotes the genus of Σ. This group of harmonic one-forms is isomorphic to the
first de Rham cohomology group H1(Σ,R), and if we let the basis of the corresponding
first homology group be γm ∈ H1(Σ,Z), we have∫

γm

ωn = δ n
m . (2.41)

Now, using the Hodge decomposition theorem, we can express the closed one-form dχ

as
dχ = dχ(0) + χ(m)ω

m, (2.42)

and substituting this into the gauged action and varying it wrt χ(0) gives the equation
of motion

F = dA = 0. (2.43)

Thus, in general, we have
A = da(0) + a(m)ω

m. (2.44)

In order to be able to set A = 0, we need A to be pure gauge, i.e. we need the a(m) to
vanish. The a(m) correspond to possible Wilson loops Wγ = exp(2πi

∮
γ A) of A around

one-cycles γ
∫
H1(Σ,Z). If we now vary the gauged action wrt χ(m), we indeed find
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that a(m) = 0 and that A is pure gauge. Thus, we can set A = 0 and we recover the
ungauged action, as required.

The dual action

To obtain the dual action, we now integrate out A by varying wrt χ. Since χ only
appears as a lagrange multiplier, we simply obtain an algebraic expression for A which
we can substitute back into the gauged action. Doing so, we obtain

S̃ = − 1
2πα′

∫
Σ

[
1
2

(
gµν − gµ1gν1 −Bµ1Bν1

g11

)
dXµ ∧ ⋆dXν + 1

2
α′2

g11
dX̃1 ∧ dX̃1

+ α′Bµ1

g11
dX̃1 ∧ ⋆dXν − i

2

(
Bµν − Bµ1gν1 − gµ1Bν1

g11

)
dXµ ∧ dXν

−iα′ gµ1

g11
dXµ ∧ dX̃1 − iα′dX1 ∧ dX̃1

]
, (2.45)

where we have defined
dX̃1 = 1

α′dχ. (2.46)

From this, we can read off the dual background as

g̃11 = α′2

g11
,

g̃µ1 = α′Bµ1

g11
, B̃µ1 = α′ gµ1

g11
,

g̃µν = gµν − gµ1gν1 −Bµ1Bν1

g11
, B̃µν = Bµν − Bµ1gν1 − gµ1Bν1

g11
.

(2.47)

These are called the Buscher rules and we can see that, in the d = 1 case, they simply
reduce to R̃ = α′

R
, i.e. we recover the results we derived previously for the circle. Note

that we could have done this for the circle case, but it is enlightening to see how
T-duality works from the perspective of the state space since the physics is clearer.

Finally, we note that everything we have done here has been at the level of the
supergravity, i.e. lowest order in α′. At this order, there is no change to the dilaton.
However, if we look at higher loop calculations, we find that there are corrections to
the dilaton. For example, at one-loop, we find that [28]

ϕ̃ = ϕ− 1
4

det g
det g̃ , (2.48)
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and further corrections can be obtained from higher loop order calculations. We only
include the dilaton here for completeness, and it will not concern us in what follows.

2.4 Discrete symmetries and gauge transformations
of toroidal backgrounds

We now discuss symmetries in toroidal compactifications in more detail. Earlier, we
described the symmetry enhancement of the d = 1 circle compactification at the
so-called self-dual radius R = 1 from U(1) to SU(2). Furthermore, we described how,
at this point, there are extra gauge bosons and the states at each mass level form
multiplets of SU(2). We also mentioned how it was shown [27] that, at this point, the
theory is equivalent to a level 1 SU(2) WZW model.

This structure can be generalised and put in a more geometrical setting. Here we
review this construction, based largely on [26] and references therein. We will not
directly make use of everything presented here, but it is useful to know in order to
understand the general picture.

In chapter 2, we described T-duality as a discrete symmetry between points in the
moduli space of toroidal compactifications. In fact, note that, in (2.1), we quotient by
the discrete symmetry group O(d, d;Z), not just T-duality. T-duality is actually just a
subgroup of this larger group, and there are other discrete symmetries that together
form O(d, d;Z) (this group is sometimes called the ‘generalised T-duality group’, but
we will usually refrain from such terminology to avoid confusion). In this section, we
will use the notation G ≡ O(d, d;Z). What we will show is that T-duality is part of a
special subgroup of G which can be interpreted as gauge transformations on the moduli
space (2.1).

First, let us discuss gauge transformations in toroidal compactifications in more
generality [26]. In the moduli space (2.1), there are points at which the gauge symmetry
is enhanced to some gL ×gR, and we say such points have maximally extended symmetry
if gL = gR = g, where g is a semi-simple group of rank d. For example, in d = 1 we
have the enhanced symmetry point where g = SU(2). In what follows we will often
use d = 2 as an illustrative example that is simple enough to work with explicitly, but
still manages to capture many of the complications that may arise in the general case.
In this case, in addition to the gL = gR = SU(2)2 point with metric G = 1 and B-field
B = 0, there is also a point where we have g = SU(3) (corresponding to A2 in the
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ADE classification), with background

E(SU3) =
1 1

0 1

 . (2.49)

In fact, at a given point with maximally extended symmetry, the metric (i.e. the
symmetric part of E) is (one half of) the Cartan matrix of the lie algebra corresponding
to the symmetry group g. Furthermore, this point in moduli space can always be
described by a level 1 WZW model with group manifold g, or as a theory of d free bosons
with background E. Throughout this thesis, we will often be considering deformations
of operators starting from the SU(2) point of enhanced symmetry. Such deformations
can be considered as deformations of the action SE at the point of enhanced symmetry
with background E. In general, a deformation of the theory at the point of enhanced
symmetry with background E looks like

S(E, ε) = SE + ∆S, ∆S = εijJ
iJ̄ j, (2.50)

where the J i are the (1, 0) currents, i = 1, ...dim(g), and J̄ i are the (0, 1) currents.
However, not all of these deformations are independent, and in fact it turns out that
the moduli space in the neighbourhood of E is spanned by the currents which are
elements of the Cartan subalgebra of g, so

∆S = εabH
aH̄b, (2.51)

a = 1, ..., d (since rank(g) = d), where Ha are the Cartan subalgebra elements of
gL, and H̄a those for gR. For example, recall from the d = 1 case that the moduli
space is spanned by deformations of the radius of the circle, which are generated by
J3 = i∂X(G). If we have two deformations S(E, ε), S(E, ε′) such that ε, ε′ are related
by a gauge transformation, such a transformation is a residual symmetry of the gauge
group at the point E (e.g. T-duality is a residual gauge symmetry of SU(2)). Such
gauge symmetries are then symmetries of the entire moduli space, and, as we will
explain, the product of such symmetries form a subgroup of G.

First, we must review the structure of G. Recall that these are the matrices which
leave

J =
0 1

1 0

 (2.52)
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invariant under conjugation. The generators of the group are as follows. We have Pab,
which is a permutation of the coordinates a and b. In d = 2, this is

P12 =
p 0

0 p

 , p =
0 1

1 0

 . (2.53)

We also have Bab, which has the matrix Θ =
0 1

1 0

 in the (a, b) position, e.g. for

d = 2,

B12 =
1 Θ

0 1

 . (2.54)

We also have

T12 =
t 0

0 t−T

 , t =
1 1

0 1

 . (2.55)

For general d, we can get any Tab and any Bab by conjugating with the appropriate
P ′s. We also have reflections, such as

R1 =
r 0

0 r

 , r =
−1 0

0 1

 , (2.56)

which is a reflection in the first coordinate. For d = 2, S12 = RP12 and T12 are
generators of SL(2,Z). The final generators are given by

Da =
1 − ea ea

ea 1 − ea

 , (2.57)

where ea has 1 in the aa component and 0 everywhere else. These Da are the T-duality
transformations, e.g. in d = 1 we just have a single Da, namely

D1 =
0 1

1 0

 , (2.58)

which induces the R → 1/R duality (this can be viewed as swapping the embedding
coordinate X with its dual).

These are the generators of G, and now we discuss how they relate to gauge
transformations on the moduli space. Let Λ be such that T d = Rd/Λ is the torus
lattice at a point of enhanced symmetry with background E. Then, [26] proved the
following statements:
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S1: For every pair of Weyl transformations w, w̄ of Λ, there is a corresponding
element g(w, w̄, E) ∈ G.

In [26], g(w, w̄, E) was constructed explicitly. If we have Weyl reflections w, w̄,
these act on the Cartan elements as

H → wTH, H̄ → w̄T H̄, (2.59)

and this is a symmetry of the deformed action S(E, ε) = SE +HT εH̄ because SE is
invariant under Weyl reflections. Furthermore, this can be written as a transformation
of ε,

ε → wεw̄T ≡ ε′. (2.60)

Thus, g(w, w̄, E) should be such that g(E + ε) = E + ε′, and indeed it was found that

g(w, w̄, E) = A(E)
w̄−T 0

0 w

A−1(E), (2.61)

where

A(E) =
 1

2E −ET (sym(E))−1

1/2 (sym(E))−1

 , A−1(E) =
(sym(E))−1 (sym(E))−1ET

−1/2 1
2E

 ,
(2.62)

where sym(E) is the metric at the point E, and we have written it like this to avoid
any confusion, since we are using g here for groups and elements of G.

S2: If g ∈ G, then
g =

∏
a

g(wa, w̄a, Ea), (2.63)

for enhanced symmetry points Ea, with wa, w̄a Weyl transformations of Λ satisfying

wa(sym(E))wT
a = w̄a(sym(E))w̄T

a = sym(E). (2.64)

The proof of this was given by construction for d = 2. In general, this can be proven
by explicitly writing the generators in the form (2.63), and for d = 2 we have

D1 = g(r, 1,1), R = g(r, r,1), P = g(p, p,1),
B = g(p, p, E(SU3)), T = RPDB−1g(p, 1, E(SU3))PR, (2.65)

where D = D1D2 is the transformation that does E → E−1.
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S3: The residual symmetries of the broken gauge groups (i.e. the symmetries which
remain after we deform away from a point of enhanced symmetry, such as T-duality)
are precisely the elements

T =
{∏

a

g(wa, w̄a, Ea)
}

⊂ G. (2.66)

Furthermore, these are the elements of G which contain even numbers of the generators
B,P and T . This can be proven for d = 2 using (2.65).

S4: The Ea appearing in S3 can be chosen to correspond to the root lattice of the
same group. Furthermore, elements of T can be written in terms of any semi-simple
simply laced group of rank d (recall that simply laced groups have root vectors all of
the same length and that the ADE groups are all simply laced). It was argued in [26]
that T is generated solely by g ∈ G corresponding to Weyl reflections at the points
with SU(2)d enhanced symmetry.

The transformation P is not itself a gauge transformation as it is an outer auto-
morphism of SU(2)2, and so, overall, we have that G = T × Z2, where Z2 is the outer
automorphism generated by P . Thus, we can relate elements of O(d, d;Z) to residual
gauge transformations from the points of enhanced symmetry.

2.4.1 Example: the space of compact c = 1 CFTs

The space of compact c = 1 CFTs (i.e. a single compact boson) is simple enough to
describe in its entirety, and can also be easily visualised. The c = 1 CFTs are essentially
of two types: toroidal CFTs and orbifold CFTs. Before describing this in detail, let us
briefly review orbifold CFTs.

Orbifold CFTs

We know that string compactifications can be obtained by considering a periodic
identification of the string embedding. In a similar way, we can identify the embedding
under reflections,

X ∼ −X. (2.67)

If we are considering a non-compact worldsheet, then we could have X ∈ R, in which
case the identification (2.67) would effectively reduce the worldsheet to the half-line
R≥0. Of particular interest for us are the compact c = 1 CFTs. Thus, we combine
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this reflection with the periodic identification X ∼ X + 2πRw, so that we obtain the
worldsheet S1/Z2. This space is known as an orbifold, and in general dimensions we
would have T d/Z2, though we could also have other orbifolds in higher dimensions
depending on the lattice symmetry of the torus.

As we will see, the effect that this extra identification has on the theory is that
it projects more states out and it also introduces a new sector. This can be seen by
considering what happens on the cylinder as we move around the periodic direction.
Since we have (2.67), we do not need the string to come back to itself up to winding,
but rather we can also have

X(σ + 2π) = −X(σ), (2.68)

i.e. we only need to come back up to a reflection. This sector is known as the twisted
sector. In this sector, the mode expansion of X changes to reflect the antisymmetry,
and we now have

X(z, z̄) = i√
2
∑

n

1
n+ 1

2

(
αn+1/2z

−n−1/2 + ᾱn+1/2z̄
−n−1/2

)
. (2.69)

Note that there are no zero modes here because such terms would not be consistent
with the antiperiodicity. Note also that, in general, we have such twisted sectors
wherever we have fixed points of the twist action. In this case, we have fixed points at
X = 0 and X = 2πR, so there will be another twisted sector at 2πR with a similar
mode expansion, but with a constant 2πR term.

More generally, constructions such as the orbifolding described here are examples of
twisting. This is where we have an underlying CFT, such as the circle CFT in the case
considered above, and we quotient by some symmetry of the CFT, H. The resulting
theory will have multiple sectors. First, we have the states of the underlying theory.
These will be projected onto the space of states which are invariant under the action
of H. Additionally, we have the twisted sectors defined by

X(σ + 2π) = hX(σ), (2.70)

where h ∈ H. Starting from this, we would find the physical states as usual and then
project onto H-invariant states. Not all elements of H give unique twisted sectors, and
in fact the independent twisted sectors are determined by the conjugacy classes of H.
For c = 1 CFTs, the two main types of twisting are periodic identification, giving us
toroidal backgrounds, and reflection, giving us orbifolds. As we will see, there are also
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three other isolated types of compact c = 1 CFTs, which utilise the extra symmetry
attained at the self-dual radius.

There is much more to be said about orbifolds and twisted sectors in string theory
more generally, and there is much discussion of such backgrounds in the literature (see,
for example, [26, 29]). Such backgrounds are central to string compactifications in
superstring theories, such as Calabi-Yau constructions [30]. In this thesis however, we
will not be particularly interested in orbifolds, though there are certainly interesting
questions one can ask given the results we will present. For now, let us describe the
space of compact CFTs with central charge c = 1.

Compact c = 1 CFTs

As we saw, we have two families of compact c = 1 CFTs, toroidal target spaces and
orbifold target spaces. In both cases, due to T-duality, the radius of the circle is in the
range R ∈ [1,∞]. Let us see how the two families are related. Starting from the circle
at the self-dual radius, we can scale the radius by twisting by the action

r : X → X + π. (2.71)

This effectively halves the radius of the circle, which gives radius R = 1/2, but this is
T-dual to R = 2, so we have ultimately doubled the radius. Now, consider the action
of r on the SU(2) currents (2.32). r flips the signs of J1,2 and leaves J3 invariant, so,
thinking of the SDR theory as a WZW model on the 3-sphere (the group manifold of
SU(2)), this action is a rotation by π around the 3-axis. Consider also the orbifold
action

s : X → −X. (2.72)

This flips the signs of J2,3 and leaves J1 invariant, so is a rotation by π around the
1-axis. However, r and s must be equivalent due to the symmetry of the 3-sphere, so
taking the quotient of the theory at the SDR by these actions must give the same
result. As we saw, the action of r induces the R = 2 toroidal theory, and the action of
s induces the R = 1 orbifold theory. Thus, these two theories are equal, as can also be
checked explicitly using the partition functions. This is the only point at which the
two families coincide, which can be seen from the fact that, at generic radius, since the
toroidal theory has only U(1)2 gauge symmetry and the orbifold does not have any
gauge symmetry, there is no way to relate the two families. Note that the orbifolding
does not remove the J3J̄3 modulus, so at any radius of either family we are able to
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deform the radius of the circle. Thus, we should think of this space as two semi-infinite
(semi because of T-duality) lines meeting at the point described above.

There are in fact three other special CFTs with c = 1, but these are isolated points.
They are obtained by quotienting the theory at the SDR by the tetrahedral, octahedral
or icosahedral groups. Note that these symmetries are only available at the SDR,
so when we quotient by them we lose the modulus which allows us to deform the
radius (in fact, the only scalar which survives is the dilaton). Thus, starting from
any of these three theories, we cannot deform to any other theory, so they are iso-
lated points in the moduli space. This completes the description of compact c = 1 CFTs.

Much of the above O(d, d) discussion can be better understood when viewed from
an explicitly O(d, d) covariant formalism. We now turn to such a formalism: doubled
geometry.





Chapter 3

Doubled Geometry & Torus
Bundles

The doubled geometry was constructed as a way of making the O(d, d;Z) symmetry
of toroidal compactifications explicit. The formalism was originally developed in
[21, 11] and applied to toroidal flux compactifications in [12, 31–33]. As we will see,
the T-duality becomes particularly simple in this formalism because it is manifestly
covariant under O(d, d;Z) transformations, so T-dualities amount to simple linear
transformations.

3.1 General description

Here, we describe the doubled geometry for toroidal backgrounds fibred over a circle.
The basic construction involves doubling the fibres (i.e. the torus), but, as explained
below, this can be seen as a special case of the more general ‘twisted torus’ background
where all coordinates are doubled.

First, we will look at the doubled torus without the fibration over the base. This
is a torus T 2d with O(d, d)-covariant coordinates XI = (zµ, z̃µ), where z̃µ are usually
referred to as the dual coordinates.

An O(d, d)-invariant metric on the doubled space, LIJ , is given by [12]

ds2 = 1
2LIJdXIdXJ = dzµdz̃µ, (3.1)

where µ = 1, ..., d. This is the metric that is used to raise/lower indices.
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For a given constant background Eµν = gµν +Bµν , we have the doubled metric

HIJ =
gµν −Bµρg

ρλBλν Bµρg
ρν

−gµρBρν gµν

 . (3.2)

This combines the metric and B-field into a single O(d, d)-covariant tensor.
Let us now look at the fibration of this doubled torus over a circle. There are two

cases here: the first is where we simply take the T 2d as above and fibre over a circle,
and the second is where we also double the base, so that all coordinates are doubled.
We start with the doubled torus bundle with fibre T 2d and a base with coordinate
x ∼ x+ 2π. The doubled torus bundle over a circle

T 2d ↪→ T → S1, (3.3)

with monodromy eN ∈ O(d, d), may be thought of as a 2d + 1 dimensional twisted
torus [11, 34, 35]. That is, a manifold that is locally a group G2d+1, but is globally of
the form T = G2d+1/Γ2d+1, where Γ2d+1 ⊂ G2d+1 is a discrete (cocompact) group acting
from the left such that T is compact. T is parallelisable and as such has globally
defined, left-invariant one forms

P x = dx, PI = (eNx)I
JdXJ . (3.4)

The fact that they are left-invariant under the action of Γ2d+1 means that they are
well-defined on the quotient T and not just the manifold G2d+1. As we will see when
we look at the nilfold, we can also construct right-invariant one-forms and vector fields
which are locally, but not necessarily globally, defined on T .

A metric on T is
ds2 = dx⊗ dx+ HIJ(x)dXI ⊗ dXJ , (3.5)

where HIJ(x) = (eNx)I
KGKL(eNT x)L

J and GIJ is the metric on the untwisted torus
fibre. The isometries of T are generated by the vector fields

Zx = ∂

∂x
, TI = (e−Nx)I

J ∂

∂XJ
, (3.6)

and close to give the algebra

[TI , TJ ] = 0, [Zx, TI ] = −NI
JTJ . (3.7)
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If we compactify supergravity on T , the consistent truncation has gauge algebra which
includes

[TI , TJ ] = NIJX
x, [Zx, TI ] = −NI

JTJ . (3.8)

We see that (3.7) is a contraction of (3.8), where the missing generator is Xx = ∂/∂x̃

and is associated with B-field transformations with gauge parameter lying along the
base circle [12].

The algebra (3.8) may be realised as the isometry algebra of the twisted torus
G2d+2/Γ2d+2, where G2d+2 is a 2d + 2 dimensional group and Γ2d+2 is a cocompact
subgroup of G2d+2 which acts from the left. The left-invariant one forms on G2d+2/Γ2d+2

are
P x = dx, Qx = dx̃+ 1

2NIJXIdXJ , PI = (eNx)I
JdXJ , (3.9)

and a natural metric on G2d+2/Γ2d+2 is given by

ds2 = dx⊗ dx+ HIJ(x)dXI ⊗ dXJ +Qx ⊗Qx. (3.10)

We see that the metric depends on all of the coordinates of T (the XI in addition
to the base circle) except x̃. In particular, Qx may depend on all of the zµ and z̃µ

coordinates. The isometry group of the 2d+ 2 dimensional twisted torus is generated
by the vector fields dual to these one-forms,

Zx = ∂

∂x
, Xx = ∂

∂x̃
, TI = (e−Nx)I

J

(
∂

∂XJ
− 1

2NJKXK ∂

∂x̃

)
. (3.11)

A gauge transformation1 brings the vector fields to the convenient form

Zx = ∂

∂x
+N I

JXJ ∂

∂XI
, Xx = ∂

∂x̃
, TI = ∂

∂XI
− 1

2NIJXJ ∂

∂x̃
. (3.12)

In some sense, the 2d+ 1 dimensional twisted torus is less fundamental than the 2d+ 2
dimensional construction, as the former arises, from the perspective of the underlying
Lie algebra, as a contraction of the latter. However, the route from the physical space to
T is intuitively very clear - the physical space, in any polarisation, is a torus bundle with
a given monodromy and the T encodes that monodromy geometrically. By contrast,
G2d+2/Γ2d+2 does not follow in an obvious way from the physical construction, making
it difficult to generalise to non-parallelisable cases. Specifically, when considering the
original construction - a T 2 bundle over S1 with monodromy eN - it is far from obvious

1XI → (eNx)I
JXJ .
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a priori that the metric on G2d+2/Γ2d+2 will depend explicitly on the XI , whereas the
metric on T depends only on x and is determined by the monodromy.

In chapter 6, we will show that, when we consider the algebra of the pullback of
the Zx, TI of (3.6) to the worldsheet, we actually recover the full doubled algebra (3.8)
even though (3.6) themselves only generate the contracted algebra of T , (3.7).

3.2 A chain of T-dualities: H-flux, nilfold, T-fold

Here, we briefly describe some twisted torus backgrounds and recover a familiar chain
of T-dualities [12]. We will pause our discussion of doubled geometry here briefly, but
in section 3.3 we will see how these backgrounds, and the dualities between them,
are realised in the explicit doubled construction. We will see that the T-duality in
particular is much easier to understand in the doubled formalism.

It is easiest, geometrically, to start with the nilfold. This is a T 2 fibred over a circle
with some monodromy twist in the fibration, where the monodromy is an element of
SL(2,Z), i.e. the mapping class group of the T 2 fibre. We will describe two ways of
constructing this background explicitly. The first way involves considering a general
matrix in the lie algebra sl(2) which generates the monodromy, fµ

ν , where

fµ
ν =

0 −m
0 0

 , (
ef
)µ

ν
=
1 −m

0 1

 . (3.13)

Note that this monodromy is in the fibre coordinates (y, z). Thus, we have a globally
defined basis of one-forms given by

P x = dx, P y = dy −mxdz, P z = dz. (3.14)

From this, we can construct a metric on the bundle, g = P µP νδµν , which gives the
nilfold metric

ds2 = dx2 + (dy −mxdz)2 + dz2, (3.15)

and we have the global coordinate identifications

(x, y, z) ∼ (x+2π, y+mz, z), (x, y, z) ∼ (x, y+2π, z), (x, y, z) ∼ (z, y, z+2π).
(3.16)

Now, there is a second way we can construct this background. Namely, via a twisted
torus construction similar to that described for the doubled formalism above. In the
case of the nilfold, we may construct it using the Heisenberg group G. The generators
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of the Heisenberg group satisfy

[tx, tz] = mty, [ty, tz] = 0, [tx, ty] = 0, (3.17)

i.e. tx,y,z span the Lie algebra, and a general element of the Heisenberg group can be
written as extx+yty+ztz for (x, y, z) ∈ R3. The nilfold is a compact group though, so we
also need to quotient G by a discrete subgroup Γ, where we choose Γ ⊂ G such that

Γ = {extx+yty+ztz ∈ G : x, y, z ∈ Z}. (3.18)

A general matrix representation of an element g ∈ G can be taken to be

g =


1 mx y

0 0 z

0 0 1

 . (3.19)

From this, we can construct left-invariant one forms P = gdg−1. Note that, under the
left action g → g′g, for g′ ∈ G, P is indeed invariant. The above matrix representation
reproduces the one-forms of (3.14). The left-invariant vector fields dual to these
one-forms are

Zx = ∂

∂x
, Zy = ∂

∂y
, Zz = ∂

∂z
+mx

∂

∂y
, (3.20)

and these generate the right action GR of the Heisenberg group on G. Similarly, we
can construct the right-invariant one-forms P̃ = dgg−1 (which can easily be seen to be
invariant under g → gg′), and the right-invariant vector fields

Z̃x = ∂

∂x
+mz

∂

∂y
, Z̃y = ∂

∂y
, Z̃z = ∂

∂z
. (3.21)

Note that the vector fields Zy, Z̃z generate symmetries of the nilfold metric (3.15),
which means they are potential candidates for generators of T-duality transformations,
as discussed in the Buscher construction. Starting with Zy, we can apply the Buscher
rules in the y-direction to obtain the T 3 with H-flux, with metric and B-field given by

ds2 = dx2 + dy2 + dz2, B = mxdy ∧ dz. (3.22)

Note that the general construction of the T 3 with H-flux is

ds2 = dx2 + dy2 + dz2, H = mdx ∧ dy ∧ dz, (3.23)
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but we automatically have a specific B-field gauge due to the choice of matrix repre-
sentation for the nilfold from which we constructed the left-invariant one-forms.

Note also that these background do not constitute string theories on their own,
but we usually imagine them to be embedded in larger backgrounds which overall are
string theories.

Now, going back to the nilfold, we see that we also have an isometry generated
by Z̃z (i.e. constant shifts in z), but since Z̃z is only right-invariant, it is not globally
defined on the quotient G/Γ, since this is defined by the left action of Γ. In fact, under
a shift in the base x → x+ 2π, we find that Z̃z → Z̃z −mZ̃y. Thus, technically, the
conditions under which we may apply the Buscher procedure are not met because we
need a globally defined compact isometry. However, we usually get around this problem
by arguing that we go to a covering space where the isometry is globally defined. In
this case, this amounts to decompactifying the x-coordinate so that the space now
has topology T 2 × R. Now Z̃z is globally defined and we can apply the Buscher rules,
which gives what we refer to as the T-fold, with background

ds2 = dx2 + 1
1 + (mx)2 (dy2 + dz2), B = − mx

1 + (mx)2 (dy ∧ dz). (3.24)

Since we are trying to compute the T-dual to the nilfold, we suppose that we should
recompactify x after this duality. However, notice that neither the metric nor the B-field
for the T-fold are periodic under x → x+ 2π, so this is not a smooth geometry in the
usual sense. However, this is a well-defined geometry modulo T-duality transformations,
i.e. if we allowed for T-duality transformations in the transition functions, then we can
patch together local coordinates without issue (hence the name ‘T-fold’). Thus, we
describe this as a ‘non-geometric background’ in that it is not a manifold in the usual
geometric sense. From the perspective of a string moving on this background, if we
consider T-duality to be a symmetry of string theory, then the string does not ‘see’ this
background any differently from the geometric backgrounds since T-dual backgrounds
are equivalent. This is an example of how strings see geometry differently to point
particles.

3.2.1 R-flux

The chain of dualities described here (H-flux → nilfold → T-fold) is suggestive of a
third T-duality; namely, that of a T-duality in the base coordinate x. Of course, there
is a problem here in that these backgrounds have explicit x-dependence, and as such
we do not have an isometry in the base. However, the structure that emerges here, and
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which is particularly apparent in doubled geometry, suggests that such a duality still
exists, even if it is unattainable via the Buscher procedure. If we try to handle this
x-dependence by saying that we simply replace x with the dual coordinate x̃, we can
imagine the duality as replacing the base circle with a dual base with coordinate x̃,
and the gauge algebra would then become

[TI , TJ ] = NIJZx, [Xx, TI ] = −NI
JTJ , (3.25)

i.e. Xx ↔ Zx, giving the so-called R-flux algebra. This may seem promising, but
when we discuss polarisations below, we will see that it is a non-trivial matter of going
from a doubled gauge algebra to a valid, undoubled background. In any case, since
the starting point lacks any theoretical justification, i.e. since we cannot apply the
Buscher procedure and we have no other way of justifying the duality, any discussion
around the R-flux is necessarily speculative. We will revisit the idea of non-isometric
T-duality more generally in sections 6.9 and 9.1.3, though we will not settle the issue
in this thesis.

Let us now view these backgrounds from the perspective of doubled geometry. Here,
we will see that, when we double the T 2 fibres, the T-fold background can be described
in a fully geometric sense.

3.3 Torus bundles in doubled geometry

It is illuminating to consider the above backgrounds from the perspective of doubled
geometry. The monondromy matrix N defining the fibration of a T 2d over an S1 can
be decomposed as

NI
J =

 fµ
ν Kµν

Qµν −fν
µ

 , (3.26)

where NIJ = −NJI , Q
µν = −Qνµ, Kµν = −Kνµ, and we have fibre indices µ = 1, .., d.

We refer to f,K,Q respectively as geometric flux, H-flux and non-geometric flux. f
can be thought of as the monodromy of a T d fibration over a circle, and K should be
thought of as the H-flux for such a torus bundle. If we only have these two fluxes, then
this background is a geometric background in the sense that we can describe it with
a well-defined geometry [12]. If the matrices (3.26) generate O(d, d), then matrices
with Q = 0 are said to be in the geometric subgroup of O(d, d). Matrices with Q ≠ 0
are not equivalent to any kind of twisted torus bundle. Instead, they are equivalent
to non-geometric backgrounds where the transition functions defining the background
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include O(d, d;Z) transformations (generalised T-duality transformations). As seen
above, such backgrounds are referred to as T-folds. Turning to the T 2 fibrations
considered above, when we double the fibres to a T 4, note that all O(2, 2;Z) actions
have a geometric action on the fibres now since O(2, 2;Z) ⊂ GL(4;Z). Starting from
the nilfold again, we have torus coordinates XI = (y, z, ỹ, z̃), where the monodromy
now acts as

(x, y, z, ỹ, z̃) → (x+ 2π, y +mz, z, ỹ, z̃ −mỹ). (3.27)

Note that the monodromy does not mix the ‘original’ and ‘dual’ coordinates, which
means that the action can be projected onto a T 2 submanifold, as we already know.
This can also be seen from the fact that the doubled metric (3.2) in this case is simply

H =
g 0

0 g

 , (3.28)

where g is the nilfold metric given by (3.15). So far, this is all a straightforward
doubling of the usual nilfold construction. However, we can instead construct the
nilfold as a quotient T = G/Γ, for some group manifold G and discrete subgroup Γ.
As we did for the undoubled case, we can construct a matrix representation for G and
define a Γ such that the global identifications are those of (3.27). Once again, we can
then construct left and right invariant one-forms and vector fields. The left-invariant
one forms are

P x = dx, P y = dy −mxdz, P z = dz,

Qy = dỹ, Qz = dz̃ +mxdỹ. (3.29)

Note that there is no Qx since we have not doubled the base. The dual vector fields are

Zx = ∂

∂x
, Zy = ∂

∂y
, Zz = ∂

∂z
+mx

∂

∂y
,

Xy = ∂

∂ỹ
−mx

∂

∂z̃
, (3.30)

which obey the commutation relations

[Zx, Zz] = mZy, [Zx, X
y] = mXz, (3.31)

which is indeed of the form (3.7).
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Now, we would like to obtain the H-flux and T-fold backgrounds from this via
T-duality. Looking at T , we find that we can recover the standard nilfold background
by taking the quotient T /G̃L, where G̃L is generated by the right-invariant vector
fields X̃y, X̃z. Since T-duality in the doubled formalism simply amounts to a geomet-
ric O(d, d;Z) transformation, we can in fact obtain the T 3 with H-flux and T-fold
backgrounds from T as well, through different choices of polarisation, which we now
demonstrate.

We define the polarisation as follows. On the doubled T 4, we have coordinates
XI . To project out a T 2 from this, we must construct two ‘physical’ coordinates (y, z)
which are linear combinations of the XI . We would then choose (ỹ, z̃) to be different
linear combinations for the dual torus. Denoting these polarisations by Πµ

I , Π̃µI , we
have full polarisation

ΘÎ
I =

(
Πµ

I , Π̃µI

)
, (3.32)

and the coordinates for the T 2 are then given by

XI = ΘÎ
IXI =


y

z

ỹ

z̃

 . (3.33)

It can be shown that a T-duality transformation O ∈ O(2, 2;Z) transforms the
polarisation as

Θ → ΘO, (3.34)

and the generalised metric H transforms as

HIJ → (OT ) K
I HKLOL

J , (3.35)

and thus we can read off the new background using this transformation. This is
essentially the Buscher rules written in an O(d, d) covariant manner.

For the nilfold, from our starting point, the polarisation is simply the identity,
Θ = 1, so that we have

(y, z, ỹ, z̃) = (X1,X2,X3,X4). (3.36)

As we saw, we can read off the nilfold metric from the subsequent doubled metric H.
For the H-flux, since this is obtained by T-duality in the y-direction, the O(2, 2;Z)
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element that we need is

O =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (3.37)

This gives the polarisation

Θ =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , (3.38)

i.e. the same as O (since we started with the identity matrix), which gives the
coordinates

(y, z, ỹ, z̃) = (X3,X2,X1,X4). (3.39)

We can also read off the new generalised metric as

H =


1 + (mx)2 0 0 mx

0 1 + (mx)2 −mx 0
0 −mx 1 0
mx 0 0 1

 . (3.40)

From this, we can read off the metric and B-field from the general form of (3.2), and
we do indeed recover the H-flux background (3.22). If instead we T-dualise the nilfold
in the z-direction, we have

O = Θ =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , (3.41)

with coordinates
(y, z, ỹ, z̃) = (X1,X4,X3,X2), (3.42)

and generalised metric

H =


1 0 0 −mx
0 1 mx 0
0 mx 1 + (mx)2 0

−mx 0 0 1 + (mx)2

 . (3.43)
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Once again, we can read off the background and we find that we recover the T-fold
(3.24). The monodromy matrix for the T-fold can also be read off as

Qµν =
 0 m

−m 0

 . (3.44)

Of course, this is not in the geometric subgroup of O(d, d;Z) and, as stated earlier,
the monodromy includes a T-duality transformation. This is exemplified by the global
structure

(x, y, z, ỹ, z̃) ∼ (x+ 2π, y +mz̃, z −mỹ, ỹ, z̃), (3.45)

i.e. the (y, z) and (ỹ, z̃) mix. Thus, even though locally we may identify coordinates
(y, z) for the ‘physical’ T 2, globally these cannot be separated from the dual coordinates
(ỹ, z̃). However, notice that, in its doubled form, the T-fold background is periodic in
x and is on exactly the same footing as the nilfold and H-flux. This is because, as
stated above, the full O(d, d;Z) has a geometric action on the T 4, and so the mixing
of the coordinates is no different, from the doubled perspective, from the nilfold, say.
When we read off the metric and B-field, we are essentially projecting out the dual
coordinates, and the non-geometric nature of the T-fold is equivalent to saying that we
cannot consistently define such a projection globally. For the R-flux, if we attempted a
similar construction, we would find that such a projection cannot even be made locally
[12].

3.4 Sigma model formulation for twisted tori

It is possible to frame all of the above starting from a worldsheet sigma model [12].
We will start with the undoubled case, i.e. we will see how to embed the worldsheet
sigma model in torus bundle target spaces. Then, we will see how this generalises to
the doubled case and how we can recover the undoubled torus bundles from this.

3.4.1 The undoubled torus bundle sigma model

In general, suppose we have some torus bundle N which is a T d fibred over some
k-dimensional base M . We introduce local coordinates on M xu, u = 1, ..., k, and, as
usual, we have coordinates zµ on the T d. We write the metric on N as

Kαβ =
guv + gµνA

µ
uA

ν
v gµρA

ρ
v

gνρA
ρ
u gµν

 , (3.46)
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where α, β are coordinates on N , with xα = (xu, zµ), α = 1, ..., k + d. Here, the
one-forms Aµ = Aµ

udx
u can be viewed as U(1)d connections of the T d fibration.

Then, the sigma model on N is given by2

SN = 1
2

∫
Σ

Kuvdx
u ∧ ∗dxv + 1

2

∫
Σ

gµνdz
µ ∧ ∗dzν +

∫
Σ

dzµ ∧ ∗Jµ, (3.47)

where Kuv = guv + gµνA
µ

uA
ν

v and Jµ = gµνA
ν

udx
u, and all objects are pulled back to

the worldsheet as appropriate. In the case when the base is a circle and we have some
geometric monodromy ef (we are only dealing with geometric monondromy for the
undoubled case), we have the K-invariant one-forms

P µ = (efx)µ
νdz

ν , P x = dx, (3.48)

where x is the circle coordinate. These one-forms satisfy the Maurer-Cartan equations

dP x = 0, dP µ − fµ
ν P

x ∧ P ν = 0, (3.49)

and we can write the action as

SN = 1
2

∫
Σ

KP x ∧ ∗P x + 1
2

∫
Σ

hµνP
µ ∧ ∗P ν +

∫
Σ

P µ ∧ ∗Jµ, (3.50)

where K = 1 + hµνA
µ

xA
ν

x and gµν(x) = (efx) ρ
µ hρσ(efx)σ

ν , i.e. h is the x-independent
metric obtained when we factor out the twists. Let us now see how this works in the
doubled formalism.

3.4.2 The doubled torus bundle sigma model

We now have a target space T with doubled torus fibres T 2d, and the setup is similar
to the above. We have metric

K =
guv + 1

2HKLAK
uAL

v
1
2HIKAK

v
1
2HJKAK

u
1
2HIJ

 , (3.51)

where H is the usual doubled metric on the doubled torus fibres and the doubled
connection AI = (Aµ, Bµ), where B is the B-field, i.e. the B-field is now incorporated
into the geometry, as we would expect for the doubled formalism, though this is only

2Where ∗dz = −dz, ∗dz̄ = d̄z.
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for the B-field in the toroidal directions, since the base remains undoubled. The
presence of the B-field means we now have a Wess-Zumino term, and we also have a
topological term which is necessary for the quantum theory, so overall the action is
ST = SK + Swz + SΩ, i.e.

ST = 1
2

∫
Σ

Kuvdx
u ∧ ∗dxv + 1

4

∫
Σ

HIJdXI ∧ ∗dXJ − 1
2

∫
Σ

dXI ∧ ∗JI + 1
4

∫
Σ

ΩIJdXI ∧ dXJ ,

(3.52)
where JI = HIJAJ − LIJ ∗ AJ . We have the self-duality constraints

dXI = LIJ
(
HJK ∗ dXK + ∗JJ

)
, (3.53)

which are needed to ensure the correct number of degrees on freedom (i.e. we need the
same number of degrees of freedom as the undoubled case).

Once again focusing on the circle case, we have one-forms

P x = dx, PI = (eNx)I
JdXJ , (3.54)

where we now have a general twist N , and these once again obey the Maurer-Cartan
equations

dP x = 0, dPI −N I
J P

x ∧ PJ = 0. (3.55)

The action in this case becomes

ST = 1
2

∫
Σ

KP x∧∗P x+1
4

∫
Σ

MIJP
I∧∗P J+1

2

∫
Σ

LIJPI∧∗JJ+1
4

∫
Σ

ΩIJdXI∧dXJ , (3.56)

where HIJ(x) = (eNx) K
I MKL(eNx)L

J defines the x-independent doubled metric M.
In order to recover an undoubled background from this, we need to select a

polarisation. As discussed earlier, if the background is geometric, we can specify
coordinates zµ for the ‘physical’ torus and z̃µ for the dual (or ‘auxiliary’) torus, and
such a choice can be globally defined. If we have a non-geometric background, such a
choice can only be made locally at best.

Recall that T = G/Γ, and that we have an isometry group G̃L ⊂ G generated by
the X̃a, which themselves are chosen by a polarisation X̃a = ΠaAT̃A. The undoubled
action corresponding to this polarisation choice is recovered by gauging this subgroup
G̃L. We will not give the details here, but they can be found, for example, in [12].
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Finally, we will mention that it is indeed possible to also double the base to have a
fully doubled target space, and the generalisation is mostly as one would expect from
the doubled fibre case.



Chapter 4

Algebraic T-duality

The Buscher procedure discussed in chapter 2 can be thought of as the ‘traditional’
approach to T-duality and is certainly the most established. Here, we discuss a different
approach to T-duality; namely, a worldsheet CFT approach. To do so, we will also
discuss ideas such as universal coordinates. First, we will introduce the ideas developed
in [26] that explain how we can use automorphisms of the CFT algebra to construct
symmetry deformations of the CFT fields such as the stress tensor. Then, we will
discuss algebraic T-duality in detail. Our discussions regarding ∂Xµ deformations and
T-duality in this chapter will be largely based on [15], though much of the discussion
surrounding the T-duality charge and nuances such as gauge equivalence of different
charges is original work done in collaboration in [1].

4.1 Symmetries and automorphisms

A given worldsheet CFT is defined by the stress tensor and its commutation relations
with the primary fields of the CFT. Thus, given two CFT algebras A1,A2, and an
isomorphism between them ι : A1 → A2 which maps stress tensor to stress tensor,
the two CFTs corresponding to the algebras A1,A2 are isomorphic. Additionally, we
require that equal time commutation relations are preserved, i.e.

ι([A,B]) = [ι(A), ι(B)], (4.1)

for any A,B ∈ A1.
We will be interested in constructing new CFTs from some starting point, and in

particular we will be interested in deformations which can be described as deformations
of the fields in the CFT. Given a CFT with algebra of operators A, if we define the
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map
ι(A) = A+ i[Q,A], (4.2)

for any fixed, infinitesimal operator Q, then this is a valid CFT isomorphism and
so such transformations generate CFT deformations (this can be verified using the
Jacobi identity). In particular, given a stress tensor TΦ, the CFT with stress tensor
TΦ + i[Q, TΦ] is isomorphic to the original theory. Furthermore, if we can find a Q such
that

TΦ + i[Q, TΦ] = TΦ+δΦ, (4.3)

then the field deformation
Φ → Φ + δΦ (4.4)

is a symmetry transformation of the spacetime fields which make up the CFT. We
therefore would like to find such operators Q which correspond to spacetime field
deformations.

As is well-known, the addition of a (1, 1) primary field (i.e. a vertex operator) V to
the stress tensor, T → T + V , is induced by turning on a deformation in the action
corresponding to the vertex operator V , and this deformation can be described by a
deformation in the fields. Such deformations are called canonical deformations. Thus,
if we have a canonical deformation which also happens to be of the form (4.3), then
we have a symmetry of the theory given by field deformations. Such a deformation is
found by defining Q such that

Q =
∮
J, (4.5)

where J is some (1, 0) primary field. In this case, [Q, T ] is a (1, 1) primary field and
therefore Q induces a canonical deformation that can be interpreted as a deformation
of the spacetime fields and is a symmetry of the theory.

Such observations have been used extensively in the literature. For example, [36]
used this to demonstrate a Higgs mechanism for string theory. Specifically, they showed
how the SU(2) gauge symmetry is dynamically broken by turning on a massless scalar
deformation at the self-dual radius, and they showed how massless fields at the SDR
gain mass via Goldstone bosons. They used integrated deformations of the form (4.5)
to determine how the stress tensor was deformed under such symmetry breaking.

The above discussion regarding Q was for infinitesimal deformations, but this can
easily be extended to finite deformations by considering the exponential eiQ acting on
operators as

A → eiQAe−iQ, (4.6)
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where A is an operator in the worldsheet theory.
Any valid operator Q will generate a symmetry, but the interesting cases are when

the automorphism admits an alternative description of the physics. We will specifically
be interested in describing T-duality via such an (inner) automorphism. For us, the
starting point is the key observation of [27] that T-duality on a circle may be understood
as a residual discrete symmetry that endures after the breaking of a larger enhanced
gauge symmetry. The larger symmetry is only manifest for special backgrounds and it
is in this sense that T-duality should be thought of as a gauge symmetry of the target
space. If the operator A is the stress tensor of a string theory and Q is such that the
automorphism maps it to a stress tensor of an apparently different string theory, then
the symmetry can be thought of as a string-string duality.

The automorphism (4.6) is a symmetry of the theory and so any infinitesimal
deformation of the form

δA = i[Q,A] (4.7)

gives a symmetry of the theory. This can be contrasted with general transformations,
generated by vertex operators, that correspond to genuine physical deformations of
the theory. This description of gauge symmetry is elegantly encoded in the BRST
framework of String Field Theory, wherein symmetries of the target space are generated
by BRST transformations of the string field1

δ|Ψ⟩ = QB|Λ⟩ + ..., (4.8)

where +... denotes non-linear terms. As mentioned, we will be interested in conserved
charges of the form

Q =
∮
dz Λ J(z), (4.9)

where J(z) is a weight (1, 0) holomorphic worldsheet current, or the obvious antiholomor-
phic counterpart, or combinations of both. Examples include B-field transformations
and diffeomorphisms of the target space, where the appropriate conserved currents
are J = ξi∂X

i(z) + ζi∂̄X
i(z̄). Questions of conservation (commutation with the world-

sheet Hamiltonian) and the fact that the natural symmetries from the target space
perspective can be simply understood in terms of the combinations X i

R(z̄) ± X i
L(z),

rather than X i
R(z̄) and X i

L(z) separately, indicate that the most natural language in
which to discuss these symmetries is the canonical one in which the worldsheet has a
Lorentzian metric.

1See [37] for details.
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As discussed above, at special points in the moduli space of string backgrounds we
see an enhancement of the target space symmetry as additional states become massless
and form multiplets of non-abelian gauge symmetries. In particular, we studied the
classic example of the Halpern-Frenkel-Kac-Segal (HFKS) mechanism [38–40] in which
the d commuting currents H i = i∂X i

L(z), where i = 1, ..d, are joined by the currents
E±α =: e±iαiX

i
L(z) :, which are weight (1, 0) at this enhancement point in the moduli

space. The αi are the root vectors of the enhanced group, which has rank d. One
perspective on this [20] is that the enhanced symmetry is a gauge symmetry of the
background independent theory that is generically broken by a choice of background.

4.2 T-duality as a gauge symmetry

Throughout this thesis, we will often refer to the self-dual point as a kind of reference
background with respect to which we consider operators of other backgrounds. As
such, it will be useful to distinguish this background, so we define

∂ϕµ := ∂Xµ(E = G), ∂̄ϕµ := ∂̄Xµ(E = G), (4.10)

ϕµ
L := Xµ

L(E = G), ϕµ
R := Xµ

R(E = G), (4.11)

where we recall that the background E = G refers to the enhanced symmetry point
G = 1, B = 0. At this point, it may be confusing to the reader why we do not simply
say that ϕµ := Xµ(E = G). As we will see shortly, and as alluded to earlier, we
will be working in a regime where we consider the coordinates Xµ to be universal,
i.e. background independent. It is therefore more appropriate to state the definitions
(4.10), (4.11), since the objects that appear here are not universal. Note that in the
d = 1 case, we will simply write ∂ϕ, etc. rather than ∂ϕx, etc. for ease of notation.

Let us consider the d = 1 case where, at the SDR, the U(1)L × U(1)R symmetry
is enhanced to SU(2)L × SU(2)R, generated by currents ∂ϕ, e±i2ϕL for SU(2)L and
similarly for SU(2)R. As discussed, away from the SDR, the gauge symmetry breaks
to the Cartan U(1) ×U(1) with a residual discrete Z2 gauge symmetry which could be
identified with T-Duality in the circle. [15] showed that the charge responsible for the
action of the Z2 ⊂ SU(2)L is

Q = 1
2

∮
dσ sin (2ϕL(σ)) . (4.12)
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Furthermore, it was shown that this could still be used to generate the T-duality
transformation away from the self-dual radius, even though the current sin(2ϕL(σ)) is
generally not conserved2. The key was to write the fields of the theory at radius R in
terms of the fields defined at the self-dual radius. This then ensured that the action of
the charge Q could be computed on fields defined away from the self-dual radius. Thus
the effect of an automorphism, by this charge, on the operator algebra of the theory at
generic radius could be computed. It was shown in [15] that this procedure correctly
reproduces the Buscher rules. In fact, all discrete O(d, d;Z) transformations can be
expressed as worldsheet operator algebra automorphisms, and this was demonstrated
explicitly for d = 2 in [41]3. Importantly, if

QΛ = Λ
∮
dσ sin(2ϕL(σ)), (4.13)

the current is not of weight (1, 0) and this charge will not be conserved for general
values of Λ. Surprisingly, the automorphism still makes sense away from the self-dual
radius if Λ = 1

2 . We shall discuss why this is the case in section 4.3.
The main result of [15] stems from the fact that, at the self-dual radius,

eiQ∂ϕ(σ)e−iQ = −∂ϕ(σ), eiQ∂̄ϕ(σ)e−iQ = ∂̄ϕ(σ). (4.14)

Away from the self-dual radius, the transformation is more complicated. If one knows
how to write the fields of the theory at a particular background, e.g. at R = 1, in
terms of the Hilbert space of another background, then (4.14) can be used to deduce
the duality transformations. We can define a basis for the operators at a given point.
Most of our considerations will involve the operators constructed from combinations
of ∂ϕ and ∂̄ϕ. The natural way to do this is to define a connection on the space of
backgrounds and then to parallel transport, with respect to that connection, the basis
of states or operators at a point of enhanced symmetry to the background of interest.
This may sound like a tall order, but some progress has been made on this general issue
[42, 20, 22, 43, 44] and, as we shall see later, this issue simplifies greatly in a certain
class of backgrounds. We will discuss this in more detail in chapter 5, but for now we

2Since the coordinates are dimensionless in our conventions, the charge looks different to that
given in [15].

3Note that, whilst the T-duality automorphism involves the currents J2,3, the automorphisms
corresponding to other generators of O(d, d;Z) only include the currents J1, J̄1. Thus, even within the
O(d, d;Z) gauge symmetries, T-duality is still special in that it is inherently a stringy symmetry since
it originates from the SU(2) symmetry enhancement, whereas the other symmetries are abelian [41].
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will recover the results of [15] for the flat torus. Later, we will show how we can apply
these results to the backgrounds considered above, i.e. the nilfold, H-flux and T-fold.

4.3 An algebraic approach to T-duality

Most work on T-duality has focused on the Buscher construction, which gives central
importance to the existence of compact abelian isometries [7]. The observation of [27],
that T-duality may be thought of as a residual discrete gauge symmetry, provides a
framework in which to think about T-duality without reference to isometries of the
target space.

In this section we review the approach to realising T-duality as a Z2 automorphism
of the operator algebra of the worldsheet theory. For illustrative purposes we focus
on the simplest case where the target space is a circle at the self-dual radius R = 1.
In this special case, the Z2 is a discrete subgroup of the larger SU(2)L × SU(2)R

automorphism that appears at the self-dual radius. We shall discuss more general cases
in the following section.

4.3.1 Universal coordinates

Recall from chapter 2 that for the string embedding in a flat torus, we have the
equal-time commutation relations

[Xµ(σ),Πν(σ′)] = iδ(σ − σ′)δµ
ν , (4.15)

where we take τ = 0. Given that this relation is independent of the background
Eµν , we say that, for fixed τ , the fields X(σ),Π(σ) are universal, i.e. independent of
background [20].4 This idea is an old one and is discussed for example in [20], and it
allows us to compare objects constructed out of these universal coordinates at different
backgrounds.

The requirement that Xµ(σ) and Πµ(σ) remain the same as we change the back-
ground Eµν means that the oscillator modes must be background dependent. Identifying
Xµ(σ) and Πµ(σ) on different backgrounds, Eµν and E ′

µν , requires that the modes are
4We are really only requiring that these fields are universal in a local region of the space of

backgrounds that we are interested in.
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related by5

2g′
µνα

ν
n(E ′) =

(
ET

µν + E ′
µν

)
αν

n(E) +
(
Eµν − E ′

µν

)
ᾱν

−n(E), (4.16)

2g′
µνᾱ

ν
n(E ′) =

(
ET

µν − E ′T
µν

)
αν

−n(E) +
(
Eµν + E ′T

µν

)
ᾱν

n(E), (4.17)

where αµ
n(E), ᾱµ

n(E) are the oscillator modes of the string embedding into the back-
ground specified by Eµν . The momenta and winding pµ and ωµ do not change (they
are defined as background independent in our conventions). We can see that the αµ

0

and ᾱµ
0 transform in line with (4.16), (4.17) from their definitions

gµνα
ν
0 = 1√

2

(
pµ − Eµνω

ν
)
, gµνᾱ

ν
0 = 1√

2

(
pµ + ET

µνω
ν
)
. (4.18)

This notion of universal coordinates is useful in understanding how the Z2 ⊂ SU(2) ×
SU(2) gauge symmetry at the self-dual radius generalises to other backgrounds.

4.3.2 The T-duality charge

We shall look for a charge Q that generates an automorphism A → eiQAe−iQ which
has the required Z2 effect6: eiQ∂ϕe−iQ = −∂ϕ and eiQ∂̄ϕe−iQ = ∂̄ϕ. The fields ϕL(σ)
and ϕR(σ) do not have to produce a nice operator algebra independently, but the
combinations ϕR(σ) ± ϕL(σ) do. The Z2 automorphism simply exchanges these two
linear combinations, giving a sigma model description in both cases.

Working in d = 1 for now, we define

QΛ = Λ
∮
dσ cos(2ϕL(σ)), (4.19)

5This quantisation at τ = 0 is related to a quantisation at generic τ by the usual relations αn(τ) =
e−iτL0αn(0)eiτL0 = e−inταn(0), where the second equality follows from standard commutation
relations. We notice that X(σ, 0) → X(σ, τ) if we also change x → xµ + τgµν(pν −Bνρw

ρ) ≡ xµ(τ),
which has a clear interpretation as a translation arising from a unitary time evolution, i.e. Xµ(σ, τ)
takes the same algebraic form as Xµ(σ), but with the replacements of xµ(τ) and αµ

n(τ) for xµ and
αµ

n. Thus, universal coordinates defined for generic fixed τ have the same algebraic form as the τ = 0
case, so the notion of a universal coordinate does not depend on the choice of τ (but a choice must be
made).

6Note that we could equivalently choose the duality to act as ∂̄ϕ → −∂̄ϕ and leave ∂ϕ invariant.
This is equivalent to swapping X ′ and Π with an extra minus sign inserted, which also preserves the
canonical commutation relations.
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which we note is invariant under the periodicity ϕL → ϕL + π. The action of QΛ on
∂ϕ(σ) may be written as

eiQΛ∂ϕ(σ)e−iQΛ = ∂ϕ(σ) + i[QΛ, ∂ϕ(σ)] + i2

2! [QΛ, [QΛ, ∂ϕ(σ)]] + ..., (4.20)

with the ellipsis denoting nested commutators at higher order in Λ. Since we are in
one dimension and at the self-dual radius, we do not need to worry about indices being
raised or lowered (we take the relevant component of the metric to be normalised to
unity). Computing the leading contributions gives7:

[QΛ, ∂ϕ(σ)] =Λ
∮
dσ′[cos(2ϕL(σ′)),−ϕL

′(σ)]

= − Λ
∮
dσ′

[
1 − 22

2! (ϕL
′)2(σ′) + ..., ϕL

′(σ)
]

= − 2πΛi sin(2ϕL(σ)), (4.22)

and

[QΛ, [QΛ, ∂ϕ(σ)]] = − 2πΛ2i
∮
dσ′ [cos(2ϕL(σ)), sin(2ϕL(σ′))]

=(2πΛ)2
∮
dσ′ δ(σ − σ′)∂ϕ(σ′)

=(2πΛ)2∂ϕ(σ). (4.23)

It is clear that the next term [QΛ, [QΛ, [QΛ, ∂ϕ(σ)]]] is proportional to sin(2ϕL(σ)).
Continuing in this fashion, we see that successive nested commutators will alternately
give terms proportional to sin(2ϕL) and ∂ϕ with coefficients that are straightforward
to determine. Putting this all together gives [15]

eiQΛ∂ϕ(σ)e−iQΛ

=
(

1 + (2πΛi)2

2! + (2πΛi)4

4! + ...

)
∂ϕ(σ) − i

(
2πΛi+ (2πΛi)3

3! + (2πΛi)5

5! + ...

)
sin(2ϕL(σ))

= cos(2πΛ)∂ϕ(σ) + sin(2πΛ) sin(2ϕL(σ)). (4.24)
7Note also that

∂ϕ = 1
2(Π −X ′) = 1

2(−ϕL
′ + ϕR

′ − ϕL
′ − ϕR

′) = −ϕL
′. (4.21)
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In our conventions, the choice Λ = 1/2 gives the required transformation and so if we
define Q ≡ Q1/2, we have

eiQ∂ϕ(σ)e−iQ = −∂ϕ(σ). (4.25)

Thus, Q is a suitable T-duality charge. Of course, at the self-dual radius, any choice of
Λ generates a symmetry of the theory as QΛ is built from a (1, 0) current. What is
interesting is that, even away from the self-dual radius, the charge Q defined above still
gives a symmetry of the theory, as we discuss below. Note that we can equivalently
use the charge

Q = 1
2

∮
dσ sin(2ϕL(σ)). (4.26)

We get exactly the same transformation either way. We shall discuss the relationships
between these charges in section 4.3.5.

For general dimensions, if we wish to compute the T-duality in the direction xµ,
the corresponding charge would be

Q = 1
2

∮
dσ cos(2ϕµ

L(σ)), (4.27)

or with sin instead of cos.

4.3.3 Automorphisms away from the self-dual radius

Given that the Z2 duality described above is, at the self-dual radius, a subgroup of an
exact gauge symmetry group of the target space theory, it is hardly surprising that the
duality is a symmetry of the theory. What is more surprising is that the Z2 continues
to hold as an exact symmetry of the theory for any radius. In this section we review
the arguments that lead to this conclusion, but from the algebraic perspective rather
than the usual Buscher construction.

From the derivatives (2.20), we have

∂ϕµ = 1
2(Πµ −GµνX

′ν). (4.28)

We can relate ∂Xµ(E) and ∂̄Xµ(E) at different backgrounds using their expressions in
terms of the background independent fields given above. Rearranging to get

Πµ−BµνX
′j = 1

2

(
∂Xµ(E)+∂̄Xµ(E)

)
, gµνX

′ν = −1
2

(
∂Xµ(E)−∂̄Xµ(E)

)
, (4.29)
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we find that, for τ = 0,

∂Xµ(E) = 1
2g

′νρ
(

(Eµν + E ′T
µν)∂Xρ(E ′) + (−Eµν + E ′

µν)∂̄Xρ(E ′)
)
, (4.30)

∂̄Xµ(E) = 1
2g

′νρ
(

(−ET
µν + E ′T

µν)∂Xρ(E ′) + (ET
µν + E ′

µν)∂̄Xρ(E ′)
)
. (4.31)

These expressions allow us to determine how composite operators defined in terms of
∂Xµ(E ′) and ∂̄Xµ(E ′) transform under the automorphism generated by charge Q if
we know how the operators ∂Xµ(E) and ∂̄Xµ(E) transform. So, for example, if d = 1,

∂X(E) = 1
2G

−1
(

(g +G)∂ϕ+ (G− g)∂̄ϕ
)
, (4.32)

where we use ϕ without index in the d = 1 case. From this, we deduce

eiQ∂X(E)e−iQ = 1
2G

−1
(

− (g +G)∂ϕ+ (G− g)∂̄ϕ
)
. (4.33)

More generally, if we know how an operator F(E) defined at a background E transforms
under T-duality, then, if we know the relationship between F(E ′) and F(E), we can
use the definition of the charge Q in the background E to determine how the symmetry
acts on F defined at the background E ′. For example, the chiral stress tensor

T (σ) = gµν∂Xµ(E)∂Xν(E) (4.34)

is clearly invariant at the self-dual point E = G, but transforms in a more complicated
manner at other points of Md. It was shown in [15] that the charge of the kind (4.19)
maps a stress tensor to a stress tensor, for generic radius, only for the value of the
parameter Λ = 1/2 (in our conventions). Thus, for this value of the parameter, the
automorphism is not only a symmetry of the conformal field theory, but relates one
stress tensor to an apparently different one, yielding a duality between string theories.

Furthermore, it was also shown in [15] that this mapping of stress tensors under
T-duality can be used to reproduce the Buscher rules. Given some generic background
E with an isometry in a given direction, we can use the relations (4.30), (4.31) to write
the stress tensor in terms of objects at the point of enhanced symmetry. This gives us
a general form from which we can read off components of the metric and B-field. If we
perform T-duality in the direction in which we have an isometry and then read off the
metric and B-field of our new stress tensor, we find that we precisely reproduce the
Buscher rules (2.47).



4.3 An algebraic approach to T-duality 51

4.3.4 Symplectomorphisms and charge conservation

All automorphisms of the operator algebra are symmetries of the theory, but those
that preserve the Hamiltonian play a special role. As such, we would like to know
under what conditions the charge Q(Λ) = eiΛh is conserved. This is important as, if
the notion of universal coordinates and canonical commutation relations8 is to survive
the automorphism, it must make sense at each fixed value of τ . The time evolution of
Q(Λ) is given by the Hamiltonian

Qτ (Λ) = e−iHτQ0(Λ)eiHτ , (4.35)

or eiQτ = e−iHτeiQ0eiHτ . For the charge to be conserved, we require Qτ (Λ) = Q0(Λ),
i.e.

eiΛh = e−iHτeiΛheiHτ . (4.36)

We can rewrite this as
eiHτ = e−iΛheiHτeiΛh, (4.37)

which says that the automorphism preserves the Hamiltonian. This can happen in two
ways. The most obvious way is if [H, h] = 0, i.e. the functional h is constant in time.
This will be true if we can write h as

h =
∮
dσJ(σ), (4.38)

where J(σ) is a weight (1, 0) or (0, 1) current. In that case, [H, J(σ)] = 0 and the
current is conserved. This is the case when J(σ) generates a continuous symmetry of
the theory, such as B-field gauge transformations, spacetime diffeomorphisms, or the
SU(2)×SU(2) gauge symmetry at the self-dual radius. As the symmetry is continuous,
Λ can take any value in the parameter space of the corresponding Lie group.

This is not the only way to preserve the Hamiltonian. Consider a theory with
action (2.2), taking the worldsheet metric to be γαβ = diag(1,−1). The Hamiltonian
may be written as

H =
∮
dσ ST HS, (4.39)

8The requirement that the automorphism preserves the commutation relations is already a sign
that it must be a symplectomorphism.
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where SI = (Πµ, X
′µ), where Πµ is the canonical momentum and

HIJ =
 gµν gµρBρν

Bνρg
ρν gµν +Bµρg

ρσBσν

 . (4.40)

Indices are raised and lowered by the invariant of O(d, d); SI = LIJSJ = (X ′µ,Πµ),
where

LIJ =
0 1

1 0

 . (4.41)

The Hamiltonian is invariant under the transformations

S → OS, H → OHO−1, (4.42)

where O ∈ O(d, d;Z) (the discreteness is required to preserve integer-valuedness of the
zero modes). Thus, an automorphism that generates an O(d, d;Z) transformation,

e−iQSIe
iQ = OI

JSJ , (4.43)

will also preserve the Hamiltonian (provided HIJ is also transformed). The requirement
that O ∈ O(d, d;Z) means that Λ may only take certain discrete values. Thus,
we see that the condition for charge conservation is that the charge generates a
symplectomorphism.

4.3.5 Gauge equivalence of T-duality charges

In this section, it will be more convenient to use OPEs instead of commutation relations.
Therefore, working in d = 1 for convenience, the charge is now9,10

Qc = π
∮
dz cos(2ϕL(z)). (4.44)

9The superscript in Qc refers to the cosine function that is used to define the charge. It is included
here to distinguish it from a similar construction using the sine function.

10We define the contour integral so that the 2πi factor is absorbed into the integral, so that∮
|z|=const.

dz

z
= −

∮
|z|=const.

dz̄

z̄
= 1.
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We also use conventions where the XX OPE is given by

X(z, z̄)X(w, w̄) ∼ −1
2 log |z − w|2 (4.45)

at the self-dual radius, which is the only radius we will be interested in for this section.
To show gauge equivalence of the charges, we need to show that the transformations
they induce are the same up to a U(1)L ×U(1)R gauge transformation. It is sufficient to
look at general derivatives of X and general exponentials of X11. The transformation
of higher derivatives of X under an automorphism follows straightforwardly once the
transformation of ∂ϕ is known,

eiQ∂nϕe−iQ = ∂n−1eiQ∂ϕe−iQ = −∂nϕ, (4.47)

and this is the same for both charges. However, the transformation of exponentials
einϕL is more difficult. In [15] the transformation of such exponentials is found using a
point-splitting argument, but we present a slightly different approach, via induction,
and the details are presented in appendix A. The result of the automorphsim is

einϕL(z) →

ie−inϕL(z), n odd,
e−inϕL(z), n even.

(4.48)

We see that, in the n odd case, there is an extra factor of i compared to expectations.
This technical detail is discussed in appendix A.

Thus far, we have made use of the Z2 symmetry generated by the charge (4.19)
with Λ = 1/2; however, as mentioned earlier, we could have equally well used the
charge

Qs = 1
2

∮
dz sin(2ϕL(z)). (4.49)

Indeed, it was this charge that was used in [15]. Both charges give rise to the same
action ∂ϕ → −∂ϕ, but they do not act in the same way on exponentials. This may
seem strange at first, but it is not hard to see that these charges are related by a
U(1)L × U(1)R ⊂ SU(2)L × SU(2)R gauge transformation generated by the currents
∂ϕ(z) and ∂̄ϕ(z̄). Moving away from the self-dual radius, this symmetry is preserved,
so this equivalence of the charges holds throughout moduli space. If we use the sine

11This follows from the fact that

eiQABe−iQ = eiQAe−iQeiQBe−iQ (4.46)

for any operators A,B, where we rely on the associativity of the OPE.



54 Algebraic T-duality

charge, via a similar process to the above, we find that

einXL →

iein(−ϕL+π/2), n odd,
ein(−ϕL+π/2), n even,

(4.50)

where it is instructive to write an n-dependent phase on the right hand side as a shift
in ϕL. Written in this way, it seems that the effects of the two charges on einϕL are
related by a U(1)L × U(1)R transformation that gives the required shift in ϕL. To see
this, consider the automorphism generated by the charge

Q3
Λ ≡ Λ

∮
dz∂ϕ(z), (4.51)

where the 3 superscript indicates that it is the charge corresponding to the current J3.
By a simple OPE calculation, we can show that

eiQ3
ΛeinϕLe−iQ3

Λ = e−inπΛeinϕL , (4.52)

or simply eiQ3
ΛϕLe

−iQ3
Λ = ϕL − πΛ. Now, denote the T-duality cosine and sine charges

by Qc, Qs respectively.
If we set Λ = −1/2 in Q3

Λ, we find that einϕL → (−1)n
2 einϕL . Thus, we have

einϕL
Qs

−→

iein(−ϕL+π/2)

ein(−ϕL+π/2)

Q3
− 1

2−−−→

 ie−inϕL , n odd,
e−inϕL , n even.

(4.53)

The right-hand side is the same as the Qc transformation, and thus we have shown that
the effects of the two charges are related by U(1)L gauge transformations. The difference
between the cases for n odd or even can be traced to the way in which the highest weight
states in the modules L[1,0] and L[0,1] transform under the automorphisms generated by
Qc,s (see the discussion in appendix A). It is not hard to show that the charges Qc and
Qs themselves are directly related by a similar U(1) gauge transformation, generated
by Q3

Λ with parameter Λ = −1/4, i.e. UQcU−1 = Qs, where U = exp
(
−1

4
∮
dz J3(z)

)
.

A note on charge conservation on orbifolds

As mentioned, orbifold backgrounds are highly important in string theory for a variety
of reasons, and the T-duality of such backgrounds is well-established in many cases,
e.g. Zn orbifolds of toroidal backgrounds. Indeed, [29] explicitly construct the duality
between the state spaces of toroidal orbifolds, including the twisted sectors. There
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is a question of whether the charges discussed in this chapter are preserved under
such dualities and whether this matters with regards to the T-duality. For a simple
Z2 orbifold, for example, the sine charge Qs is clearly not preserved under the action
X → −X, but the cosine charge Qc is. Thus, we might say that this orbifolding
removes the ambiguity associated with the choice of charge and forces us to choose Qc.
However, if we consider a Z3 orbifold of the T 2 say, here we clearly see that neither
charge is well-defined, but we know that the T-duality is still well-defined. If we were
to use the T-duality charges naively regardless of whether or not they were globally
defined on the orbifold, we would of course get the correct duality transformations, so
it is unclear whether the action of the orbifold on the charges matters.

Indeed, it is possible to reconstruct the nilfold with elliptic monodromy as an
orbifold [29], and given that the charge is well-defined on the nilfold it must also be
well-defined on the orbifold formulation.

We will not be focusing on orbifolds in this thesis, but this would be interesting to
clarify.





Chapter 5

Connections and Deformations on
the Space of Backgrounds

In the previous chapter, we illustrated how, using knowledge of how the operator
algebra defined at a point of enhanced symmetry transforms under the automorphism
generated by Q, one can determine the effect of the automorphism at a general radius.

[15, 45, 46] also consider torus backgrounds with constant B-field. These are exact
string backgrounds and have an explicit description in terms of a worldsheet CFT.
However, the realisation of the approach to T-duality proposed in [15] is contingent
on being able to describe the Hilbert space of the CFT corresponding to a particular
background in terms of the Hilbert space of the theory at the self-dual point.

We are interested in finding the appropriate framework to discuss and generalise
the construction outlined in section 4.3.3. We shall argue that the identification of a
connection on the space of backgrounds with which parallel transport may be performed
(from a point of enhanced symmetry to a background of interest) provides a natural
generalization of the technique of section 4.3.3. Initially we will focus on the general
QFT case, where we will work with correlation functions and describe how we can
describe their deformations in theory space - indeed, this was the case that was first
dealt with by Sonoda [23]. Then, in section 5.2, we will see how this formalism has
been adapted to spaces of CFT backgrounds as well. It is important to do this for a
couple of reasons. Firstly, in the CFT case we can make use of surface states, and it is
useful to see how the formalism can be constructed using these instead of correlation
functions. Secondly, in the initial formulation of correlator deformations on a space of
QFTs [23], the construction was discussed in the context of the RG equations, although
they are not central to the discussion and will not be particularly relevant for us.
Therefore, it is not immediately obvious that it can be extended to the CFT case, but
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we will show that this indeed possible, based on the construction of [22]. One of the
key differences between the QFT and CFT cases is that, for CFTs, we will primarily
work with the connection corresponding to universal coordinates, which as we will
see is termed the Γ̂ connection, whereas we will keep the connection more general for
QFTs. When we have conformal symmetry, the Γ̂ connection is very convenient, but
for a general QFT it is at the very least unnatural and it is not clear whether it is
even a valid connection at all orders. In chapter 6, we will show how these ideas relate
to the universal coordinate construction considered earlier, and we will apply these
ideas to the twisted torus backgrounds considered in chapter 3. Let us first discuss the
general case.

5.1 Connections on the space of QFT backgrounds

We assume the existence of a space of backgrounds M, each point of which corresponds
to a nonlinear sigma model. The data that defines the sigma model - its coupling
constants, in the form a metric, B-field, etc. - define a point p ∈ M. We can define
a fibre bundle with base M and fibre given by the Hilbert space of states Hp of the
theory at p [22]. Here, we choose to work with the bundle E → M with fibres given by
the operators1 of the theory.

The space of backgrounds we consider is that of renormalized theories parameterised
by mα(p), with α indexing the dimensions of the theory space. These parameters are
taken as local coordinates on theory space, with mα = 0 ∀α corresponding to the UV
fixed point. The parameters obey the RG equations

d

dl
mα = βα(m), (5.1)

where the βα(m) are the beta functions of the parameters and are vector fields on the
theory space, i.e. they span the fibres of the tangent space TM.

The fibres of the tangent space TM are spanned by the beta-functions of the theory.
Similarly, and in a sense made precise in [47, 23], the fibres of the dual space T ∗M are
spanned by the deformation operators Oα. These operators are conjugate to the local
coordinates mα(p) in the neighbourhood of a point p ∈ M. We shall be interested in
studying connections on E and the associated deformations of the sigma models given
by parallel transport in E [23, 24, 47, 48].

1We have in mind here some generating set of operators {Oα} that are, at the least, rich enough
to construct the deformation operators in the cotangent bundle T ∗M.
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In particular, we will be studying correlation functions of operators at a point in
theory space and how they change as we move through theory space. We can define
such movement in a covariant manner as follows. At a given point p in the theory
space, we have a countably infinite set of linearly independent composite operators
{Φa}p which form a basis of all operators of the theory at p. Such a basis is not unique
and can be changed by an invertible linear transformation

Φa → Sa
bΦb. (5.2)

Thus, a correlation function
〈
Φ1(z1)...Φn(zn)

〉
p

is a rank-n tensor on theory space, and
as such we would like to construct a deformation of this tensor that is covariant under
basis transformations of the form (5.2) [47].

To make the above discussion precise, we can think of the correlation function〈
Φ1(z1)...Φn(zn)

〉
p

as a formal Taylor expansion about a reference point p = p0,

〈
Φ1(z1)...Φn(zn)

〉
p

=
〈
Φ1(z1)...Φn(zn)

〉
p0

+ δmα ∂

∂mα

〈
Φ1(z1)...Φn(zn)

〉
p0

+ .... (5.3)

Given the above discussion, the naive guess would be to associate the derivative with
an insertion of the conjugate deformation operator

Oα =
∫
d2z Oα(z, z̄). (5.4)

It has been proposed that the derivative should be more properly understood to mean2

− ∂

∂mα

〈
Φa1(z1)...Φan(zn)

〉
p

= lim
ϵ→0

 ∫
Σ−
⋃

i
Dϵ

i

d2z
〈
Oα(z)Φa1(z1)...Φan(zn)

〉
p

+
n∑

i=1

Γα,ai

b(p) −
∫

D1
i −Dϵ

i

d2zCα,ai

b(z, p)
〈Φa1(z1)...Φb(zi)...Φan(zn)

〉
p

 ,
(5.5)

where Dϵ
i is a disk of radius ϵ around zi, and D1

i is the unit disk [23, 24, 22]. The
insertion of the conjugate operator Oα is expected. What of the other terms? The
divergences caused by the short-distance singularities are removed by extracting the
OPE contribution on a finite disc. The covariance of the expression under field

2The variational formula (5.5) was proposed in [23], but has not has not been derived from first
principles as far as we are aware. A similar formula was suggested in [49].
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transformations (5.2) is ensured by introducing the counter-terms Γα(p). These terms
also compensate for the arbitrariness of how we subtract the potential divergences.
Indeed, the Cα are not unique. There are different ways in which one may remove
divergences in (5.5) and different prescriptions correspond to different choices of
connection in E . These are independent of z and transform as connections on the space
of backgrounds,

Φa → Sa
b(p)Φb, Γαa

b(p) → Sa
c(p)

(
Γαc

d(p) + δd
c∂α

)
(S−1)d

b(p). (5.6)

Defining the covariant derivative Dα = ∂α + Γα, this can be written in a manifestly
covariant manner as

−Dα

〈
Φa1(z1)...Φan(zn)

〉
p

= lim
ϵ→0

 ∫
Σ−
⋃

i
Dϵ

i

d2z
〈
Oα(z)Φa1(z1)...Φan(zn)

〉
p

−
n∑

i=1

∫
D1

i −Dϵ
i

d2z Cα,ai

b(z, p)
〈
Φa1(z1)...Φb(zi)...Φan(zn)

〉
p

 .
(5.7)

The choice of connection is, in part, given by a choice of how we deal with the
divergences. One may also combine this transformation with an automorphism of the
operator algebra (a symmetry of the theory at a given point) and write

Dα

〈
Φa1(z1)...Φan(zn)

〉
p

= lim
ϵ→0

−
∫

Σ−
⋃

i
Dϵ

i

d2z
〈
Oα(z)Φa1(z1)...Φan(zn)

〉
p

+
n∑

i=1
Ωα,ai

b(p)
〈
Φa1(z1)...Φb(zi)...Φan(zn)

〉
p

]
, (5.8)

where
Ωα,ai

b(p) =
∫

D1
i −Dϵ

i

d2z Cα,ai

b(z, p) + ωα,ai

b(p). (5.9)

ω generates the symmetry around each puncture. For CFTs, one can relate one value
of ϵ to another by a dilation and so there is no need to take the ϵ → 0 limit. Indeed,
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different choices of ϵ may be compensated by including an appropriate conformal
transformation in Ω.3

This construction is related to renormalization of the sigma model and renormal-
ization flow defines a trajectory on M. The relationship between this construction
and renormalization group flow was explored in [23, 24]4 (see also [47]). In particular,
compatibility of the renormalization flow of the operator O with the variational formula
(5.5) places constraints on the coefficients Cα,ai

b(z, p), which are detailed in [23, 24].
This relationship with renormalization is central. The deformation operator O relates
one theory to a theory of a similar kind, with a different value of the background fields
- the theory is qualitatively the same, but quantitatively different. This quality of
self-similarity, familiar from renormalization, is the feature that defines a particular
path between two points in M.

5.1.1 Choices of connection

In [22], three connections were highlighted; denoted by Γ̂, c and c̄. Here we will focus
mainly on the Γ̂ connection and the c connection (which is the connection originally
used in [50] to computing the deformation of the stress tensor for string theory on
a circle and is the natural choice for a general QFT). Each of these connections is
described by the pair (D,Ω), where Ω is as described above, and D = ⋃

i Di is the
region around the punctures that we remove to regulate the divergences. We briefly
describe these connections here.

3The general form of the correlation function for a theory in D dimensions is

Dα

〈 n∏
i=1

Φai(ri)
〉

p
= lim

ϵ→0

[
−

∫
Σ−
⋃

i
Dϵ

i

dDr
〈
Ôα(r)

n∏
i=1

Φai(ri)
〉

p

+
n∑

i=1

∫
D1

i
−Dϵ

i

dDr

Vol(SD−1)
Cα,ai

b
〈

Φa1(r1)...Φb(ri)...Φan
(rn)

〉
p

]
. (5.10)

There are some differences in higher dimensions, such as the appearance of Ôα(r) = Oα(r) − ⟨Oα(r)⟩
in the correlation function and the smearing over angular directions. For details, we encourage the
reader to consult [23, 24, 47]. The limit given here reflects the fact that the connection was defined in
terms of balls of radius ϵ whose size was taken to zero. The prescription chosen to absorb divergences
in the integral as ϵ → 0 into Cαi

k is part of what specifies a choice of connection. The prescription of
[20] excised unit discs D1 from the worldsheet and hence exhibits no divergences in the correlation
function corresponding to the limit ϵ → 0. As such, Ωα may be taken to vanish, although one could
choose Ωα to include a finite transformation as discussed above.

4In fact, the requirement that the connection was compatible (in a way made precise in [23, 24])
with renormalization group flow was one of the main considerations in constructing it.
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The Γ̂ connection is defined by the pair (⋃i D1
i , 0), i.e. we remove a disk of radius 1

around each puncture zi. The radius 1 is arbitrary and is conformally equivalent to
any other radius. In this case, there are no divergences to subtract since we are not
shrinking the discs to zero, so Ω = 0. Note that this is only possible for a CFT since,
due to the conformal symmetry, any calculation will be independent of the radii of
the disks, so these radii may be freely chosen. It was pointed out in [22] that, using
uniformising coordinates on Σ, this connection preserves the metric5 Gαβ on the space
of CFTs. Indeed, as observed in [44], string field theory seems to favour this connection.
Note that we have not yet shown that the above construction is valid for CFTs, but we
will show in section 5.2 that it is. Although the formulae will look quantitatively the
same, the interpretation will of course be different as there is no RG flow in this case.

The connection c is defined to subtract away any divergences as we approach the
punctures. Therefore, the disk around each puncture has radius ϵ → 0, and for a given
puncture zi, Ωα,ai

b is the coefficient of Φb in the OPE between the deformation operator
Oα and the operator at zi which diverges as z → zi. This divergent part is computed
in an annulus ϵ < |z − zi| < 1 (1 chosen here to match up with Γ̂), and therefore we
can also think of the c connection as follows: we always integrate up to the disk of
radius 1 around a given puncture. Then, operators in the OPE which diverge as we
take z → zi are not integrated any further, and operators which do not diverge are
integrated fully within the annulus. Practically, the way we would use this connection
is that we would work with disks of radius ϵ removed around each puncture, and at
the end of the calculation we try to take the limit ϵ → 0. If this limit exists, we take
it, and if not, we set ϵ = 1. This is done for each operator appearing in the OPE.

The c̄ connection is a kind of ‘minimal subtraction’ variation on the c connection.
We get this by noticing that not all terms in the divergent part of the OPE between the
deformation operator and an operator insertion need be divergent in the limit ϵ → 0.
We therefore define Ω such that we subtract only the parts of the OPE which diverge
in the limit. In [22], it is explained that this is essentially just the diagonal part of the
c connection, which is itself the upper triangular part of the Γ̂ connection. We will
not be particularly interested in the c̄ connection in this thesis. The focus will be on
the deformation of the sigma model and, in general, a specific choice of connection
(regularisation of divergences) will not be made, but we will state explicitly if we ever
do so.

5The metric is given by Gαβ(p) = ⟨ΦαΦβ⟩p, where {Φα} is a basis describing the theory, p ∈ M
and Σ is a sphere.
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5.1.2 Parallel transport

Given a suitable path in M and a covariant derivative of a correlation function in
terms of some deformation operator O, one can parallel transport operators from one
theory to another. In other words, we can describe an operator at one point in M in
terms of a basis of operators at another. We saw an example of this in the form of
universal coordinates earlier, but the discussion here is more general. We recall the
salient points of the discussion in [22] for completeness.

Suppose we have a path in moduli space mα(s′), where s′ ∈ [0, s] parameterises the
path and the mα can be thought of as local coordinates in M. We are interested in
expressing operators Φ(s) in terms of operators Φ(0) via parallel transport. This is
defined by the vanishing of the covariant derivative D

Ds′ Φ(s′), which can be written in
terms of the connection as

D

Ds′ Φ(s′) = ∂

∂s
Φ(s′) + dmα(s′)

ds′ Γα(s′)Φ(s′) = 0, (5.11)

where the connection Γ can be written in terms of (D,Ω). [22] showed that the solution
to this is given by

Φ(s) = Φ(0)P exp
−

s∫
0

ds′dm
α(s′)
ds′ Γα(s′)


= Φ(0)

(
1 − s

dmα

ds
Γα(0) − s2

2

(
d2mα

ds2 Γα(0) + dmα

ds

dmβ

ds

(
∂αΓβ − ΓαΓβ

)
(0)
)

+ ...

)
,

(5.12)

where P denotes path ordering and mα,Γα and their derivatives are all evaluated at
s = 0 on the right hand side. For our purposes, mα will essentially be the background
tensor Eµν and our connection will be defined by the deformation operator O and
a choice of regularisation prescription. Note that this path ordered exponential is
invariant under reparameterisations of s′, so that the parallel transport of Φ(0) is in
fact independent of the parameterisation we choose, as we would expect. In chapter 7,
we will see this explicitly, in particular for the circle deformation, where we can either
choose to work with δg, the full metric variation, or δR, the deformation of the radius
of the circle, and both choices give the same results.

Alternatively, suppose we locally have a section of E , given by a choice of some
Φ(m) in some subset of M. Take some path through moduli space m(s′), s′ ∈ [0, s],
and a connection Γα(s′), as before. Unless Φ(m) was generated by parallel transport
using this connection, it is not covariantly constant along this path. However, it is
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possible to define a tensor along this path, Φ̃(s′), such that Φ̃ is covariantly constant,
given by [22]

Φ̃(s) = P exp
−

s∫
0

ds′dm
α(s′)
ds′ Dα

Φ(s). (5.13)

It can be easily checked that DΦ̃/Ds = 0. It is also easily seen that, in the case where
DΦ/Ds = 0, i.e. Φ is already covariantly constant along the path m(s′), the above
equation reduces to Φ̃(s) = Φ(s), as we would expect. (5.13) can be used to relate
parallel transport by different connections. Given two distinct connections Γ1, Γ2, use
Γ1 to compute the deformation of some operator Φ0 along some path between points in
M defined by parameters s′ = 0 and s′ = s. Call this parallel transport Φ1(s′), so that
Φ1(0) = Φ0. This deformation is defined by parallel transport with respect to Γ1, but
it is not defined by parallel transport with respect to Γ2. However, using (5.13), we
can define a new deformation of Φ0, Φ2(s′), which is covariantly constant wrt Γ2, and
in this way we can relate deformations defined by different connections. If we write
D2 = ∂ + Γ2 = D1 + Γ2 − Γ1, then (5.13) becomes

Φ2(s) = P exp
−

s∫
0

ds′dm
α(s′)
ds′

(
Γ2 − Γ1

)
α

Φ1(s), (5.14)

so the difference between the two is given by the difference between connections. In
general, the difference between connections will include differences in regularisation
and any local automorphisms. We will not take these to be physically significant and
so take Φ1(p) ∼ Φ2(p).

A point that should be made clear here is that there is a difference between the
choice of connection and the choice of deformation operator O. Given two points
p1, p2 ∈ M, the first choice to be made is the path between the points. This essentially
defines the deformation operator O. Then, given the path, we then need to define a
connection on that path, and, as discussed above, there are many different choices of
connection one can make.

Chapters 6 and 8 will discuss the specific case of a flat background6 with constant
H-flux. There, the gauge transformations of the B-field play an important role. It
is important to bear in mind that these gauge transformations are different to the
redundancies discussed here that arise from different connection choices. This is
because, if we have two B-fields that differ by a large gauge transformation, B1 ∼ B2,

6We will have in mind a T 3, but we will work with R3 and impose identifications on the coordinates
after the deformation.
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these correspond to different points p1 ̸= p2 ∈ M, unless we impose appropriate
identifications in M. Therefore, this choice of B-field gauge is made before any
connection considerations. Another example is the physical equivalence of two sigma
models under a diffeomorphism that is not isometric, which would be described by
different points in M unless an appropriate identification is imposed.

In general, there are two types of symmetry here. On the one hand, there are
symmetries which preserve a given sigma model, i.e. which do not change the point
in M. (5.14) is an example of this, since Φ1,2 must be physically equivalent, so the
relation between them can be described as a symmetry. Since this symmetry is induced
by a change of connection on the same path m(s′), the point in M, m(s), is unchanged.
On the other hand, there are symmetries between distinct points on M. Physically,
sigma models related by such symmetries are the same, but this is not apparent on the
worldsheet.

We shall be interested in the case where the starting point for the parallel transport
is a free theory, with the destination the theory with non-trivial interaction. In chapter
6, we will initially overlook these interactions by making use of the so-called adiabatic
limit [19]. Later on, in chapter 8, we will pay particular attention to such interactions
and the role they play in the parallel transport of operators of the theory. In either
case, the OPE coefficients which appear in (5.9), and play a key role in the connection7

Γ, are those of the free theory.

5.1.3 Example: QCD

As a concrete example of the above setup, let us look at one of the original examples
demonstrating this method of correlator deformations, that of QCD given in [23]. This
theory is characterised by parameters g1,m and gE. g1 is an additive constant to the
lagrangian density with scaling dimension 4, m is the quark mass parameter with
scaling dimension 1, and gE is the strong fine structure constant with scaling dimension
zero. For each of these parameters, we have a conjugate operator, so-called because
the variation of a correlation function wrt a given parameter is given by the formula
(5.5) with O corresponding to the conjugate operator. For g1, the conjugate operator
is the identity operator 1. For the mass parameter m it is the mass density operator
Om = ψ̄ψ, where ψ is the quark field, and the operator conjugate to gE is OE = FµνFµν ,
the energy density operator.

7The connection coefficients are determined by the OPE coefficients, the regularisation procedure
used and any additional symmetries that are included. Specific examples are derived in [22].
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Since g1 has conjugate operator equal to the identity operator, it does not play a
role in correlator deformations, so we will mostly focus on the other two operators.
Since these conjugate operators are scalars, we can apply the formula (5.5), which gives

− ∂

∂m

〈
Φa1(r1)...Φan(rn)

〉
p

= lim
ϵ→0

 ∫
Σ−
⋃

i
Dϵ

i

d4r
〈
Om(r)Φa1(r1)...Φan(rn)

〉
p

+
n∑

i=1

Γm ai

b(p) −
∫

D1
i −Dϵ

i

d2zCm ai

b(r, p)
〈Φa1(r1)...Φb(ri)...Φan(rn)

〉
p

 ,
(5.15)

− ∂

∂gE

〈
Φa1(r1)...Φan(rn)

〉
p

= lim
ϵ→0

 ∫
Σ−
⋃

i
Dϵ

i

d4r
〈
OE(r)Φa1(r1)...Φan(rn)

〉
p

+
n∑

i=1

ΓE ai

b(p) −
∫

D1
i −Dϵ

i

d2zCE ai

b(r, p)
〈Φa1(r1)...Φb(ri)...Φan(rn)

〉
p

 .
(5.16)

The Cm, CE are the OPE coefficients which are at least as singular as 1/r4, given by

Om(r)Φ(0) = Cm(r, p)Φ(0) + o
( 1
r4

)
,

OE(r)Φ(0) = CE(r, p)Φ(0) + o
( 1
r4

)
, (5.17)

where the o(1/r4) terms are less singular that 1/r4 and do not contribute to the
deformation in the limit ϵ → 0. Note that we have averaged over the radial direction
here so that the operators appearing in the OPE expansions are scalar operators only.
The coefficients Cm, CE can be written as an infinite sum in powers of gE, which can
be shown using the RG equations given below. The details can be found in [23].
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As mentioned, although these formulae are not derived from scratch, it is shown
that they are consistent with the RG equations. Specifically, these are [23]

d

dl
g1 = 4g1 + m4

4! β1(gE),
d

dl
m = (1 + βm(gE))m,

d

dl
gE = βE(gE), (5.18)

where the beta functions can be expanded in powers of gE near gE = 0. The conjugate
operators Om, OE have the RG equations

d

dl
Om = (3 − βm(gE)) Om − m3

3! β1(gE)1,

d

dl
OE = (4 − β′

E(gE)) OE −mβ′
m(gE)Om − m4

4! β
′
1(gE)1. (5.19)

If Oi is a basis of gauge invariant scalar operators, where Oi has scaling dimension xi,
we also have the RG equations

d

dl
Oi = xiOi +

∑
j

γi,jOj, (5.20)

where γi,j are the anomalous dimensions. Using these equations, if we substitute (5.18),
(5.19), (5.20) into the LHS and RHS of (5.15),(5.16), we find that we obtain consistency
conditions analogous to the relation between the anomalous dimensions and the 1/ϵ
poles in dimensional regularization with minimal subtraction [23]. What is also found
in [23] is that (5.15), (5.16) can be iterated to produce consistency conditions at higher
orders. For example, at second order we get consistency conditions involving the
curvature. Thus, as discussed at the beginning of section 5.1, the deformation formulae
can be shown to be consistent with the RG equations, at least to second order.

5.2 Connections on the space of CFT backgrounds

We now consider the case where we are specifically dealing with on-shell deformations
of CFT correlators. As mentioned above, the Γ̂ connection is the natural choice here,
though many other connections are valid. The main difference with the above will be
that we can now work with surface states instead of correlation functions, which are
more subtle objects.
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5.2.1 CFT connections and surface states

The choice of which connection to use depends on what we want to preserve under
parallel transport. Given that a string background (in the perhaps limited sense of
satisfying the string equations) is equivalent to the existence of an associated worldsheet
CFT, natural things to preserve under parallel transport are gluing properties of CFTs
[22]. In this way, the parallel transport of the state space of a CFT will yield another
CFT and in principle could be used to explore the CFT moduli space.

A perturbative string theory defined on a certain background, in the form of a
string field theory, may be described by the BRST charge QB and the collection of
surface states ⟨Σn|. As such, a simple way to understand the effect of a connection
on a CFT is to see how the stress tensor and surface states transform under parallel
transport. Let Σn,g be an n-pointed Riemann surface of genus g. A surface state ⟨Σn,g|
may be defined as follows. Given the states |Φi⟩ in the string Hilbert space at the i’th
puncture, the correlation functions ⟨Φi(z1)...Φn(zn)⟩ are given by8

⟨Φi(z1)...Φn(zn)⟩ = ⟨Σn,g||Φ1⟩...|Φn⟩, (5.22)

where |Φi⟩ is the state corresponding to the operator Φi inserted at the puncture
located at (zi, z̄i).

If we have a CFT, the general framework for constructing connections on the
space of backgrounds has been mapped out [42] (see also [22]) in terms of the surface
state

∣∣∣Σ, zi

〉
. Such connections give a manifestly conformally-invariant way of moving

between backgrounds. As we saw for the QFT case, moving from the point p(mα)
to p′(mα + δmα) with marginal operator Oα, conjugate to the deformation, can be
described in terms of a covariant derivative. However, here the covariant derivative
acts on the surface states as

∣∣∣Σn,g

〉
p′

=
∣∣∣Σn,g

〉
p

+ δmαDα

∣∣∣Σn,g

〉
p

+ ..., (5.23)

8The surface state for the matter sector may be written as

〈
Σn,g

∣∣ =
〈⃗
0
∣∣ exp

1
2

N∑
a,b=1

∑
m,p≥0

Nmp(za, zb)α(a)
m · α(b)

p + a.h.

 , (5.21)

where Nmp(za, zb) are Neumann coefficients (see, for example [51]) and
〈⃗
0
∣∣ =

⟨01|...⟨0n|(2π)DδD (
∑

a pa) , and similarly for the right-moving sector. Ghost parts have been
neglected but may be straightforwardly incorporated.
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where
Dα|Σn,g

〉
p

= −
∫

Σ−∪iDi

d2z⟨Oα|Σn+1,g; z⟩p −
n∑

i=1
Ωα,ai

|Σn,g⟩p, (5.24)

where |Σn+1,g; z⟩ is a surface state with an extra puncture at the point z where the
marginal operator Oα is inserted. Covariance here is defined in exactly the same
way, i.e. with respect to the basis transformations of the form (5.2) 9. For the QFT
case, the requirement of covariance came from the fact that we wanted the correlation
functions to transform in a covariant way with respect to basis redefinitions. Here, the
same is true, but we also demand covariance because a deformation defined by the
above covariant derivative will always generate a CFT definition, in the sense that the
deformed surface states will satisfy the necessary CFT sewing relations, as shown in
[22]. When written in terms of correlation functions, the deformation equations look
exactly the same for both QFTs and CFTs, with only the space of backgrounds and
the interpretation being different. Thus, in practice, there is not much to distinguish
between the two, and we will generally not be interested in these differences in this
thesis. Instead, we will be interested in how this correlator deformation formalism can
be used to extract information about the deformation of specific operators defined in a
particular space of theories, whether that be a space of CFTs or renormalized QFTs.

The effect of parallel transport by different connections on the surface states provides
a useful language in which to frame the issue of background independence in string
field theory [44]. However, it is difficult to find suitably explicit, yet interesting, string
solutions which are non-trivial torus fibrations and for which the explicit CFT is known.
One can learn a lot by studying explicit toy models which, though not CFT descriptions
of complete string backgrounds, may play an interesting role as building blocks for
such backgrounds. Well studied examples include T 2 bundles with monodromies in the
SL(2;Z) modular group of the fibre and T 3 backgrounds with constant volume-filling
NS flux, like the backgrounds considered in chapter 3. Such examples have been
recently studied [52] and do play a role in what are thought to be string solutions. We

9In this framework, one can see how the stress tensor transforms in such a way as to preserve
conformal invariance [42]. For the stress tensor, we can get the Virasoro generators from the two-
punctured sphere

Ln = d

dϵn

〈
Σ; z′, 1/z′∣∣

ϵn=0, (5.25)

where z′ = z +
∑

n ϵnz
n. The change in the modes of the stress tensor under a change in background

may be extracted by
ϵδLn =

∫
D′−D

d2zOzz̄, (5.26)

where the discs D′ and D are related by a conformal transformation generated by the stress tensor
and O is a marginal operator relating the two backgrounds under consideration.
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will study such examples both in the adiabatic limit, where they can be viewed as
having approximate conformal symmetry, and with all worldsheet interactions taken
into account. When these interactions are taken into account, such luxuries as universal
coordinates are no longer available to us. We will study this in detail in chapter 8.
These backgrounds also play a role in the well-known NS5-brane and Kaluza-Klein
monopole backgrounds [53–56].

5.2.2 A connection from universal coordinates

Which connection we choose depends on what aspects of the model we care about. It
was shown in [44] that String Field Theory selects, as a natural connection, that found
in [20], i.e. the Γ̂ connection. In this case, the connection arises not from the principle of
gluing being a CFT operation, but from the requirement that the universal coordinates
(Πµ(σ), Xµ(σ)) are preserved on backgrounds of the form MD × T d. Put another
way, at each point on the space of backgrounds there exists a canonical set of fields
(Πµ(σ), Xµ(σ)). This connection transports the (Πµ(σ), Xµ(σ)) at one background to
the corresponding (Πµ(σ), Xµ(σ)) at another background, where they are identified
(up to possible symmetry transformations at that point). This is the Γ̂ connection
studied in section 5.1 [22] and is the simplest choice of connection intuitively from the
perspective of string field theory. However, there are technical challenges to integrating
infinitesimal deformations up to finite changes of background.

It was shown in [43] that this CFT connection is equivalent to a connection proposed
in [20] when considering string field theory on toroidal backgrounds. The virtue of the
derivation of this connection given in [20] is that it does not rely on CFT concepts and
so generalises to sigma models that are not exact CFTs. In this sense, it is a connection
that can allow us to study backgrounds that are, from a string field theory perspective,
off-shell, opening up the possibility of connecting a very wide class of sigma models to
one another by parallel transport of this connection.

Let us briefly see how this connection relates to the universal coordinate results we
reviewed in 4 for CFTs. The basic idea is to consider an object, such as the surface
state defined at a point p, and then to consider how it changes under a change of
background. To first order, this gives the connection

|Σn⟩p′ − |Σn⟩p = δmαΓα|Σn⟩ + .... (5.27)
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As discussed in section 4.3, ∂Xµ(E) defined at the background Eµν is related to that
defined at the background with metric Gµν and zero B-field by

∂Xµ(E) = 1
2(∂ϕµ + ∂̄ϕµ) + 1

2EµνG
νρ(∂ϕρ − ∂̄ϕρ). (5.28)

Given that the metric and B-field are constant, the associated mode transformation is
given by (4.16). In terms of the circle at radius R = 1 + δR, this latter result gives

δαn = δR
(
αn + ᾱ−n

)
, (5.29)

to leading order in δR, as found in [20]. The surface state |Σn⟩ depends explicitly on
these modes and so might be expected to transform under the change of background.
The Neumann coefficients do not change, but the αn do, and with the transformation
(5.29) comes a corresponding transformation in the worldsheet vacuum. The vacuum
is defined by αn|0⟩ = 0 = ᾱn|0⟩ for n ≥ 0, and so a change in background also changes
the vacuum,

|0⟩ → e∆|0⟩, ∆ =
∑
n̸=0

1
2nα

µ
nδEµνᾱ

ν
n. (5.30)

Using these results, it follows [20, 44] that the Ω-independent part of this connection
can be seen to preserve the surface states (for n > 2). This can be understood from
the perspective of the CFT connection as that connection which takes {Di} to be unit
discs in terms of projective coordinates on Σn,g. The sewing relation w = 1/z then
tells us that the domain of integration Σ − ∪iDi in (5.24) is empty and the connection
is of the form

Γα|Σn,g

〉
p

=
n∑

i=1
Ωα,ai

|Σn,g⟩p, (5.31)

i.e. just a point-wise automorphism on the Hilbert space.
As we have seen, the difference between using correlation functions and deforming

surface states is really just a difference in approach, rather than principle.
Thus, a connection such as that defined by universal coordinates gives a way

to clearly describe the transport of a Hilbert space from one point on the space
of backgrounds to another. Note that the Buscher procedure does not require the
worldsheet theory to be a CFT and so this allows us to make contact with the predictions
of T-duality applied to more general non-linear sigma models. This observation will
form the basis of the application of the procedure of [15] to various toy models based
on backgrounds such as the nilfold, T 3 with constant H-flux and their non-geometric
relatives, amongst others.
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5.3 Example: stress tensor deformation

Let us look at a relatively simple CFT example. We start with a worldsheet embedding
into S1. In [50], the deformation of the stress tensor of the free boson CFT to first
order under an infinitesimal deformation of the background was derived10. Here, we
briefly recap this derivation as it will be important for much of our later discussions.
We start by considering the addition of the term to the action

O = λ
∫
Σ

d2z O(z, z̄), (5.32)

where O is some (1, 1) primary field and λ is a constant. The correlation function in
the deformed background, denoted by a prime, is

〈
Φ1(z1, z̄1)...ΦN(zN , z̄N)

〉′
=
〈
Φ1(z1, z̄1)...ΦN(zN , z̄N)

〉
+ λ

∫
Σϵ

d2z
〈
O(z, z̄)Φ1(z1, z̄1)...ΦN(zN , z̄N)

〉
, (5.33)

where we have defined the shorthand

Σϵ = Σ −
⋃
i

Dϵ
i . (5.34)

Note that we are not taking the limit ϵ → 0 here since we are dealing with a CFT. Of
course, we may still choose to take the limit if we wish, but we have the freedom to
leave ϵ as it is for now. However, if we insert our operator of interest at some point
z = w, we will always choose our connection such that the radius of the disk around
z = w goes to zero, and we will assume that this is understood throughout the thesis.
Thus, given the correlator11

〈
T (w)

N∏
i=1

Φi(zi, z̄i)
〉

=
N∑

i=1

∑
n≥−1

(w − zi)−n−2
〈∏

j ̸=i

Φj(zj, z̄j)LnΦi(zi, z̄i)
〉
, (5.35)

10See also [18, 57] for further discussion on the deformation of the stress tensor.
11We have used

(w − z)−2 =
∑
n≥0

n(w − zi)−n−1(z − zi)n−1.
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we insert the marginal operator O and compute the OPEs of T with O and with the
Φi (see [50] for the full details). We find that

〈
T (w)

N∏
i=1

Φi(zi, z̄i)
〉′

=
N∑

i=1

∑
n≥−1

(w − zi)−n−2
〈∏

j ̸=i

Φj(zj, z̄j)LnΦi(zi, z̄i)
〉′

− λ
∮

Cϵ

dz̄
1

w − z

〈
O(z, z̄)Φ1(z1, z̄1)...ΦN(zN , z̄N)

〉
, (5.36)

where Cϵ denotes the collection of anticlockwise contours of radius ϵ around each of the
points (with ϵ → 0 for the contour around w). Noting then that the RHS contains no
singularities at z = w and therefore that the integral around w vanishes in the ϵ → 0
limit, we are finally left with

〈
T (w)

N∏
i=1

Φi(zi, z̄i)
〉′

=
N∑

i=1

∑
n≥−1

(w − zi)−n−2
〈∏

j ̸=i

Φj(zj, z̄j)
(
LnΦi(zi, z̄i)

− λ
∮

Cϵ
i

dz̄(z − zi)n+1O(z, z̄)Φi(zi, z̄i)
)〉′

,

(5.37)

where Cϵ
i is the contour around the point zi of radius ϵ, from which we compare

coefficients of (w − zi)−n−2 and read off the shift in the Virasoro modes as12

Ln → Ln − λ
∮

Cϵ
0

dz̄zn+1O(z, z̄), (5.38)

where Cϵ
0 is the contour of radius ϵ around z = 0. Beyond first order, the prescription

must be more carefully defined since we have multiple O insertions. We must ensure
that we define these insertions in such a way that we are able to deal with potential
singularities when different O insertions coincide. The details of our prescription for
this are given in appendix E, and we show that this does indeed give the expected
deformation for ∂X.13

12Naively, it looks as though this will lead to non-trivial commutation relations between Ln and L̄n

in the deformed CFT. It was shown in [42] that this is not the case.
13Note that the formalism discussed in appendix E is that of chapter 7. This is necessary since in

the appendix we take a general approach where we are not simply using universal coordinates, as
we do in chapter 6, and we are considering a general connection on the space of backgrounds. This
is similar to how we computed the stress tensor deformation above, but, since ∂X is not a scalar
operator, its deformation is more complicated than that of the stress tensor. We will discuss this in
more detail in chapter 7.
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We note that the natural objects with which to describe the deformation in M are,
as anticipated, non-local objects - the modes - rather than local fields on Σ.



Chapter 6

Connections and Torus Bundles

Having gained an understanding of how to construct deformations on the space of
theories via parallel transport, we now apply this formalism to some concrete examples.
In particular, we study the torus bundle examples introduced in chapter 3, but
from the perspective of parallel transport on the space of theories containing these
backgrounds. We consider the role CFT connections and their generalizations can
play in understanding a special class of torus bundle backgrounds. Note that the
backgrounds considered in this chapter are in an ‘adiabatic limit’ where we neglect
worldsheet interactions arising from the base of the torus bundle. We will explain
this in more detail in section 6.4. This limit essentially allows us to use the universal
coordinate formalism discussed in chapter 4 without having to worry about the specifics
of the parallel transport construction of the previous chapter. In section 6.1, we will
explain our general philosophy for this chapter in more detail.

Towards the end of this chapter we consider how the formalism discussed extends
to backgrounds which are not torus bundles, but can still be described as flux com-
pactifications. We also consider a further generalisation where the flux components
are non-constant. The content of this chapter is based on original work published in
collaboration in [1].

6.1 Twisting as a relationship between backgrounds

Consider string theory on a T 2 background with constant metric gµν and B-field Bµν .
The space of such backgrounds is the orbifold

M = O(2, 2;Z)\O(2, 2)/O(2) ×O(2) (6.1)
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with local coordinates mα. As we saw in chapter 5, we can parallel transport elements
of the Hilbert space along curves in (6.1) using a connection, as given by (5.12). We
would like to make this more specific to the twisted torus backgrounds we considered
earlier. Consider a path γ parameterised by s ∈ [s1, s2] such that any two points
on γ are related by an action of a particular generator of O(2, 2). For simplicity, we
take the parameterisation to be aligned with one of the local coordinates m on M

and also (s1, s2) = (0,m). The mode operators (αn, ᾱn) provide illustrative examples
of operators we might transport from one point to another. Alternatively, we could
consider the case where the operators in (5.12) consist of the worldsheet currents ∂Xµ

and ∂̄Xµ. Suppose we start at E = G, the point of enhanced symmetry. In general,
the transformation of a basis of operators given by such a parallel transport will mix
the fields together. Matters are simpler for the deformations that move us around
the space of torus compactifications. The transformation of the modes is given by
(4.16), where we note that the zero modes transform amongst themselves and so the
transformations of the fields ∂Xµ and ∂̄Xµ tell us exactly how the target space changes
under the transformation and we shall focus on those fields. For different deformations
of the theory, different subsets of fields may be of interest1. The relationship (5.12)
can be written as

ÂI =
(
e−Γ(m)

)
I

JAJ , (6.2)

where we have written AI = (∂Xµ, ∂̄Xµ), and ÂI = (∂X̂µ, ∂̄X̂µ) are the objects at
another background. In particular,

∂Xµ = 1
2

(
δν

µ + EµρG
ρν
)
∂ϕν + 1

2

(
δν

µ − ET
µρG

ρν
)
∂̄ϕν , (6.3)

where ∂ϕµ, ∂̄ϕµ are defined according to (4.10). For example, we could take ∂ϕµ =
(∂ϕy, ∂ϕz) and the deformation to generate a constant B-field

B = mdϕy ∧ dϕz, (6.4)

giving
∂Y = ∂ϕy + m

4 (∂ϕz − ∂̄ϕz), ∂Z = ∂ϕz − m

4 (∂ϕy − ∂̄ϕy). (6.5)

Such a deformation can be written as an automorphism

ÂI = exp
(

− ΓI
J
)

AJ = U−1AIU, (6.6)

1This would be the case if, for example, some additional fields became massless along the path.
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where
U = exp

(
m

4

∮
dσ
(
Y (σ)Z ′(σ) − Y ′(σ)Z(σ)

))
. (6.7)

Since ÂI can be written in this way, such a deformation is pure gauge, provided m is
appropriately quantised2.

A second example is the deformation

U = exp
(

−m

2

∮
dσ
(
Z(σ)Πy(σ)

))
. (6.8)

This too is a gauge transformation and may be understood as follows. In terms of the
action of Γ along γ, we might consider the element of the parabolic conjugacy class of
SL(2)

Πµ →
(
e−Γ

)
µ

νΠν , Xµ′ →
(
e−ΓT

)µ

νX
ν ′, Γ =

 0 m

0 0

 , m ∈ R, (6.9)

where ΓT denotes the transpose of Γ and eΓ ∈ SL(2). Thus, the algebra of operators
of the theory at the background at one point on γ is related to that at another point
by an SL(2) transformation. In other words, as we move along the curve γ we change
the complex structure of the torus. In this way, we can think of γ as a curve generated
by a particular element of the Lie algebra of SL(2). In particular, if we chose the
parameterisation such that the metric at m = 0 is given by gµν = Gµν , then the metric
at a point m ̸= 0 would be given by g(m) = e−ΓmGe−ΓT m. Alternatively, we can
describe this by a change in the complex structure,

τ(m) = i+m, (6.10)

on the T 2 fibre, and by a general element of the Mobius group for a γ generated by a
general element of SL(2). Any two backgrounds related by SL(2;Z) ⊂ O(2, 2;Z) are
identified in M and so are equivalent. This is just the action of the modular group
of the T 2 in this simple case and we can consider transporting around closed loops,
provided the monodromy is in O(2, 2;Z).

6.1.1 Twisted backgrounds

Where things become interesting is when the above discussion inspires constructions
of non-trivial backgrounds that may be part of exact string solutions. In this case,

2Setting m ∈ Z sets eΓ(m) ∈ O(2, 2;Z).
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we take the closed curve γ as a physical direction in spacetime with coordinate x and
fibre the T 2 over the line, varying the complex structure in the above way as we do so.
Moreover, x can be made periodic as long as the resulting monodromy is an element of
O(2, 2;Z).

Thus, we have a locally smooth geometry given by a T 2 fibred over a circle with
coordinate x. The monodromy of the bundle is an element of O(2, 2;Z) acting on the
fields ΠI := (Πµ, X

′µ) of the T 2 fibre, and here the monodromy along the base direction
x must be an element of O(2, 2;Z).

We can use the CFT connection to transport the theory in the fibres from one
point to another on the base and, if the fibres contain circles that are at the self-dual
radius at some point, then T-duality may be performed as outlined in section 4.3.3
following the procedure of [15]. Treating the CFT in the fibres separately from the base
gives a construction in which the duality is performed fibrewise. Such a construction
is useful, but may not always give the full story as the base coordinate may play an
important role. We will come to this in chapter 8, where we attempt to consider the
base coordinate dependence in its entirety, but for now we shall see how far we can go
without taking this into account.

The theory in the fibres is a CFT, but by including the base direction with non-
trivial monodromy, the background described by the bundle is not a CFT.3 However,
using the connection construction of chapter 5, we can still make use of the same
operator deformations as we had in section 6.1. We shall apply this general formalism
to the torus bundles described above. In what follows, we shall focus only on the
(∂Xµ, ∂̄Xµ) sector and ignore any possible mixing with other fields. The rationale for
this is that, unless modes become massless under parallel transport, such mixing is not
expected to play a central role in the description of the target space of the backgrounds
we consider to leading order. Neglecting such mixing is equivalent to considering the
duality to be performed fibrewise, which we can see more concretely by considering
the mode expansion of the base coordinate. Taking the base circle to have radius R
and re-introducing the R and α′ dependence explicitly, the field X in our expressions
is replaced by X/R, which may be written as

R−1X(z, z̄) = R−1x− iw ln(z/z̄) − iλ2p ln |z| + i√
2
λ
∑
n ̸=0

1
n

(
αnz

−n + α̃nz̄
−n
)
, (6.11)

where λ =
√
α′/R2 and p and w are momentum and winding numbers respectively.

The fibrewise construction, in which the field X is taken as a parameter x, is recovered
3Though it may be an important part of an exact string background[52].
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in the w = 0 sector by taking the λ → 0 limit. Thus, we see that the operator mixing
that signals a departure from the fibrewise construction enters, at least in the w = 0
sector, when the supergravity approximation (λ ≪ 1) can no longer be trusted. This
can also be understood from a physical perspective in terms of an ‘adiabatic’ argument
of the type considered in [19], and we shall refer to it as such. We shall assume that we
are working in this ‘adiabatic limit’ for the remainder of this chapter, but from chapter
7 we will move away from this limit and consider the full base coordinate dependence.
In section 6.4, before we consider torus bundle examples in detail, we will give a brief
overview of the adiabatic limit and how it applies here.

An example of such a construction is the nilfold, with monodromy given by (6.9).
In this case, the analogue of (6.3) is given by

∂X = ∂ϕx, ∂Y = ∂ϕy − 1
2mϕ

x(∂ϕz − ∂̄ϕz),

∂Z =
(

1 + 1
2(mϕx)2

)
∂ϕz − 1

2(mϕx)2∂̄ϕz − 1
2mϕ

x(∂ϕy − ∂̄ϕy),
(6.12)

and the corresponding expressions for ∂̄Xµ given in (6.40). One can show that it is
not possible to find a U such that this transformation can be produced by a similarity
transformation of the form (6.6) and so this can be thought of as a physical deformation,
rather than a gauge transformation. The key difference between the two cases is that
here the presence of X(σ) (or ϕx(σ)) multiplying m means that the exponent in U

would have to depend linearly on mX(σ); however, such a dependence is incompatible
with ∂X = ∂ϕx. By contrast, in the pure gauge case, m is a parameter - a real number
- and so its presence in the exponent of U does not affect the qualitative transformation
properties of the fields under automorphisms with U .

The above discussion is a rather tortuous way of thinking about familiar duality
twist backgrounds [29, 58]. What is gained by framing the construction in this way
is an interpretation of the monodromy as a map between different backgrounds. In
particular, we can think of the duality twist (6.9) as a map from a way of describing a
given background Eµν in terms of a reference background Gµν . If we take the reference
metric to be at a point of enhanced symmetry in M then we can use this relationship to
describe that background in terms of a Hilbert space of fields at the point of enhanced
symmetry. This seems reminiscent of [15] and indeed we can see that, for geometric
backgrounds, this is the same construction as found there. This construction gives a
framework in which to describe fibrewise T-duality in torus bundles, which we will
come to when we discuss the nilfold in section 6.6.
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6.2 Twisting the hamiltonian

The worldsheet Hamiltonian (density) of a theory related by a geometric duality twist
is

H(X) =
(

Π, X ′
) e−1 0

−Be−1 e

H0

 e−T e−TB

0 eT

 Π
X ′

 , (6.13)

where H0 is the Hamiltonian density at a point of enhanced symmetry, and the metric
g can be written in terms of a vielbein as gµν = e a

µ δabe
b
ν . Here, the twist is composed

as a product of an SL(d;Z) transformation and a B-field shift, which may be written
as  e−1 0

−Be−1 e

 =
 1 0

−B 1

 e−1 0
0 e

 . (6.14)

For example, for the SU(2) enhanced symmetry we set the radii of the circles to be 1
and the B-field to be zero. We may write this as

H0 =
 G 0

0 G−1

 . (6.15)

Then, H(X) = ZTG−1Z + X TGX , where

Za = ea
µ
(
Πµ −BµνX

′ν
)
, X a = ea

µX
′µ. (6.16)

We can think of (Za,X a) as twisted versions of (Πµ, X
′µ). Defining ∂Xa(E) and ∂̄Xa(E)

by
Za = ∂Xa(E) + ∂̄Xa(E), GabX b = −∂Xa(E) + ∂̄Xa(E), (6.17)

one can show that ∂Xµ = eµ
a∂Xa may be written as

∂Xµ(E) = 1
2
(
∂ϕµ + ∂̄ϕµ

)
+ 1

2EµνG
νρ
(
∂ϕρ − ∂̄ϕρ

)
. (6.18)

This is the same relationship between backgrounds as found in chapter 4. For non-
geometric backgrounds, where we can still write the Hamiltonian as a duality twist of
a reference background H = OH0OT , Za and X a may not take the form (6.16). This
will be relevant when we discuss the T-fold in section 6.8.



6.3 Degenerating fibres 81

6.3 Degenerating fibres

One might consider an example where the curve γ passes through a point in the moduli
space where the fibres degenerate. An example of this would be for the T 2 bundle
where the Deligne-Mumford compactification of the moduli space allows us to include
points on the boundary corresponding to a cycle in the T 2 fibre degenerating. The
transformation of the chiral fields is ∂X

∂̄X

 = 1
2

 1 + EG−1 1 − EG−1

1 − ETG−1 1 + ETG−1

 ∂ϕ

∂̄ϕ

 . (6.19)

We see that, if the fibres degenerate (E → 0), then the matrix appearing above has a
non-trivial kernel and we can no longer transport the chiral fields past this degeneration
(the transformation is no longer invertible).

A virtue of this framework is that the emphasis is placed upon the integrability of
the connection along a path connecting two backgrounds, rather than the existence of
globally defined compact isometries. The connection of [20], defined on M , is flat and
so we can connect all torus backgrounds by parallel transport.

An interesting example where such degenerations are important is the SU(2)n

WZW model, which can be formulated as a degenerating torus bundle over an interval
with metric [59]

ds2
S3 = 1

4(dψ1)2 + sin2
(
ψ1

2

)
(dξ2)2 + cos2

(
ψ1

2

)
(dξ3)2, (6.20)

where ψ1 ∈ [0, π], ξ2,3 ∈ [0, 2π]. The full conventions can be found in [59], but we can
see that the torus fibres of this metric degenerate at ψ1 = 0, π, where one of the circles
shrinks to zero. Although such examples would be interesting to understand better, in
this thesis we shall restrict ourselves to cases where this does not happen.

We now consider how the construction we have outlined would be applied to the
examples considered in chapter 5, i.e. the T 3 with H-flux, the nilfold and the T-fold.
As we know, these backgrounds are not CFTs on their own, and they contain explicit
x-dependence either in the metric or B-field (or both for the T-fold). As discussed,
we will ignore this coordinate dependence on the worldsheet for now using a so-called
adiabatic argument. Let us briefly explain the origins of this argument and how we
intend to apply it here.
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6.4 The adiabatic limit

Backgrounds such as the nilfold have explicit coordinate dependence in their back-
grounds, and, when pulled back to the worldsheet, these coordinates become operators
which in general have complicated interactions with the other fields in the theory.
When dealt with fully, these interactions are generally expected to play a significant
role in operator deformations. As mentioned above, we will deal with this background
coordinate dependence explicitly in chapter 7, but for now let us see what we can say
without doing so. This is useful because it allows us to maintain contact with the
literature where such backgrounds are considered from the perspective of supergravity
reductions [12], but, since we will be looking at these backgrounds from the worldsheet
CFT perspective, we will still be able to derive new insight.

The adiabatic argument initially came from [19], where it was proposed in the
context of finding dualities between Type II and Heterotic string orbifolds. The issue
there was that it was not clear that the string-string dualities were compatible with the
orbifolding. The resolution to the problem was to consider an observer on the target
space moving around an S1 in the space, e.g. the Type II theory on R5 ×S1 ×K3. From
the observer’s perspective, if the radius of the S1 is large, then locally the observer
cannot distinguish between the target space they are on and R6 ×K3. On this space,
one can perform the duality without issue, and so, repeating this argument locally
whilst moving around the S1, one can argue that the duality can be constructed on
the orbifold space.

We use a similar argument here, but in the context of operator deformations on
the space of CFTs (or more general spaces of QFTs). Suppose we have a target space
like the nilfold, where the metric has explicit dependence on the base coordinate
x. From the worldsheet perspective, the pullback of this metric will be an operator
involving X, and therefore will have non-trivial interactions with the fields we are
deforming. However, suppose we have an observer on the nilfold moving slowly around
the base. We can suppose that the effect of the twisting is smooth enough so that,
locally, the fibration can be treated as trivial and the X-dependence treated as constant
x-dependence, i.e. small deviations in x correspond to small deviations in the metric
on the fibre. Thus, we neglect interactions of X with the operators we are considering.

We could also describe this as the supergravity limit, since this is the limit where we
take α′ → 0, as discussed earlier. An issue with this is that we will discuss backgrounds,
such as the T 3 with constant H-flux, which do not actually solve the supergravity
equations of motion (i.e. the first order string equations of motion), so this is not
an entirely accurate description. Also, the adiabatic description is nice because it
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presents a more intuitive picture and comes from a physical perspective rather than a
mathematical one. Either way, we will assume in what follows that we are justified in
neglecting the coordinate dependence of the backgrounds we consider.

6.5 Setup for twisted torus bundles

We start with some definitions. Consider the T d bundle over S1 with monodromy
eN ∈ O(d, d;Z). X(σ) is the base coordinate and µ = 1, 2...d indexes the fibre
directions4. Recall that we can decompose the twist in the fibres as

NI
J =

 fµ
ν Kµν

Qµν −fν
µ

 . (6.21)

Note that, in general, the vielbein decomposition of a metric is written in terms of
objects with one frame index and one spacetime index, e a

µ . However, the matrix
(eNX)µ

ν has only spacetime indices. Therefore, technically, to use it as a vielbein we
would need to contract it with a trivial vielbein δ a

µ . We thus define objects such as

(eNX) a
µ := (eNX) ν

µ δ a
ν , (6.22)

and similarly for e−NX , etc.
The fields AA(σ) = (e−NX)A

IΠI(σ) are defined as AA(σ) = (Za(σ),X a(σ)), where

Za = (e−NX)a
µΠµ + (e−NX)aµX

′µ,

X a = (e−NX)aµΠµ + (e−NX)a
µX

′µ,
(6.23)

and ΠI = (Πµ, X
′µ). Note that the AA(σ) are well defined as X(σ) commutes with the

ΠI in the fibres. In the fibres we have (taking Bµν = 0)

Πµ = ∂ϕµ + ∂̄ϕµ, GµνX
′ν = −∂ϕµ + ∂̄ϕµ. (6.24)

It will be useful to define the twisted analogues of ∂ϕµ and ∂̄ϕµ as

Ja = 1
2
(
Za −GabX b

)
, J̄a = 1

2
(
Za +GabX b

)
. (6.25)

4Such constructions have received much attention as toy models to study duality and to address
issues of moduli stabilization in flux compactifications. See [60–63, 29, 33] for further details.
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Explicitly,

Ja = 1
2

(
(e−NX)a

µ −Gab(e−NX)bµ
) (

∂ϕµ + ∂̄ϕµ

)
+1

2

(
(e−NX)aµ −Gab(e−NX)b

ν

)
Gνµ

(
−∂ϕµ + ∂̄ϕµ

)
. (6.26)

There are similar expressions for J̄a, which are the natural twisted versions of the
∂̄ϕµ. In the given polarization, we write the Hamiltonian density H = HIJ(X)ΠIΠJ in
terms of a metric gµν and B-field Bµν in the fibres,

HIJ = (e−NT X)I
KG

KL(e−NX)L
J =

 gµν gµρBρν

Bµρg
ρν gµν +Bµρg

ρσBσν

 . (6.27)

An interesting object to consider is the chiral stress tensor

T (σ) = GabJaJb. (6.28)

From the results derived earlier, we also know that

∂ϕµ + ∂̄ϕµ = ET
µν∂X

ν + Eµν∂X
ν , (6.29)

∂ϕµ − ∂̄ϕµ = Gµν

(
∂Xµ − ∂̄Xν

)
. (6.30)

Using these, after a lot of tedious but straightforward algebra and using the fact that
e−NX ∈ O(d, d), one can show that T (σ) may also be written as

T (σ) = gµν∂Xµ(E)∂Xν(E), (6.31)

where we recall that ∂Xµ(E) is given by (5.28), Eµν = gµν + Bµν is the background
tensor and gµν and Bµν are defined by (6.27). This is true regardless of whether or not
the background admits a global geometric description. If the twist matrix e−NX may
be written in the same form as the vielbein for HIJ (as in (6.13)), then the background
will admit a geometric interpretation globally, otherwise it will not in general. We
see that T (σ) is the parallel transport of the untwisted chiral stress tensor to the
background with a duality twist. The examples we consider in the following sections
are toy models, but they do play a role in building honest string backgrounds, where
there is reason to believe a CFT description exists. In such cases the stress tensor
plays an important role in defining the CFT. Here we restrict our attention to toy
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models and consider5 T (σ) and, in particular, how it transforms under T-duality given
by the automorphism T (σ) → eiQT (σ)e−iQ.

Note that, in general, if we have a background where gµν = e a
µ δabe

b
ν and B = 0,

we can write
T = gµν∂X

µ∂Xν = e a
µ δabe

b
ν∂X

µ∂Xν = J aδabJ b, (6.32)

where J a = ∂Xµe a
µ , i.e. the J are simply the frame objects ∂Xa ≡ ∂Xµe a

µ . When
there is a non-trivial B-field, we must instead use the doubled formalism with the
doubled vielbein given in (6.14).

6.6 The nilfold

We once again study the duality sequence involving the nilfold that we reviewed
in chapter 3, but this time from the perspective of the worldsheet in the adiabatic
approximation. This has also been studied in [12]. The nilfold metric is a T 2 bundle
over S1 with monodromy e−f , where

fµ
ν =

 0 m

0 0

 (6.33)

and the pullback of the metric to the worldsheet is

gµν =


1 0 0
0 1 −mX
0 −mX 1 + (mX)2

 . (6.34)

Following (6.23), we introduce Za = (e−fX)a
µΠµ in the fibres,

Zx(σ) = Πx(σ), Zy(σ) = Πy(σ), Zz(σ) = Πz(σ) +mX(σ)Πy(σ), (6.35)

where Πµ are the momenta6. Note that [X(σ),Πy(σ)] = 0, so these objects are
well-defined. A rationale for introducing the Za is the O(d, d) covariant form of the
Hamiltonian,

H(σ) = SI(σ)HIJ(σ)SJ(σ) = AA(σ)GABAB(σ), (6.36)
5Similar sentiments hold also for T̄ (σ) = GabJ̄aJ̄b.
6These are also momenta of the untwisted backgrounds - they are conjugate to the coordinates

on the fibres. The universality of (Πµ(σ), X ′µ(σ)) means that we identify the two sets of momenta;
Πµ(σ)|E = Πµ(σ)|G.
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with AA = (eNX)A
ISI , where SI := (Πµ, X

′µ), and the monodromy has been included
explicitly and AA = (Za,X a). Here, GAB denotes (6.27) evaluated at the self-dual
background (with frame indices) and may be taken to be proportional to the identity.
The Za obey the Heisenberg-like (loop) algebra

[Zx(σ),Zz(σ′)] = −imδ(σ−σ′)Zy(σ′), [Zy(σ),Zz(σ′)] = 0, [Zy(σ),Zx(σ′)] = 0,
(6.37)

by virtue of the standard canonical commutation relations on the torus fibres. If we
use the relations (6.24), then the Za of (6.23) may be written in terms of the ∂ϕµ, ∂̄ϕµ

as

Zx(σ) = ∂ϕx + ∂̄ϕx, Zy(σ) = ∂ϕy + ∂̄ϕy, Zz(σ) = ∂ϕz + ∂̄ϕz +mϕx(∂ϕy + ∂̄ϕy),
(6.38)

where we reiterate that the base coordinate ϕx is still considered to be universal, so
we could just as well write X, but we write ϕx for clarity and since it ties in better
with the calculations of chapter 8 where we move away from the adiabatic limit and
therefore no longer have universal coordinates.

Using the relationship (5.28), the change in the fields in going from the background
with identity metric Gµν to the nilfold background is

∂X = ∂ϕx, ∂Y = ∂ϕy − 1
2mϕ

x(∂ϕz − ∂̄ϕz),

∂Z =
(

1 + 1
2(mϕx)2

)
∂ϕz − 1

2(mϕx)2∂̄ϕz − 1
2mϕ

x(∂ϕy − ∂̄ϕy).
(6.39)

The stress tensor is given by (6.31) with ∂Xµ(E) given by (6.39). Similarly,

∂̄X = ∂̄ϕx, ∂̄Y = ∂̄ϕy + 1
2mϕ

x(∂ϕz − ∂̄ϕz),

∂̄Z =
(

1 + 1
2(mϕx)2

)
∂̄ϕz − 1

2(mϕx)2∂ϕz + 1
2mϕ

x(∂ϕy − ∂̄ϕy).
(6.40)

Note that the change in background is a twisting of the torus, i.e. an SL(2) action on
the coordinates (Y, Z). Since the Ja are SL(2)-invariant, they take the same functional
form when written using the ∂ϕµ or the ∂Xµ. This may be checked explicitly.
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6.6.1 T-duality

The stress tensor may be written schematically as T (σ) = (∂X)Tg−1(∂X). The T-dual
expression is given by V −1TV , where V = e−iQ, and so, writing ∂X = U∂ϕ,

V −1TV = (V −1∂ϕTV )(V −1UTV )(V −1g−1V )(V −1UV )(V −1∂ϕV ). (6.41)

Assuming g does not contain any dependence on the coordinate we want to dualise
along, (V −1gV ) = g, and then all we need to understand is V −1UV . Equivalently, we
need to understand V −1ΓV , i.e. how ΓI

J(X) transforms under T-duality. We shall start
by studying T-duality along the Y and Z directions. Since ΓI

J = NI
JX(σ) depends

only on X(σ), T-duality along the Y and Z directions has no effect and V −1UV = U .
Thus, we need only consider the factor V −1∂ϕV which, as discussed at length in section
4.3, is well understood. We see that complications in understanding T-duality arise
when g and/or U have explicit dependence on the direction we are performing the
duality in. Taken together, the conditions that V −1UV = U and (V −1g−1V ) = g−1

are that the background is invariant under shifts along the direction in which we are
performing the T-duality. The requirement of such invariance is the key ingredient
from the Buscher perspective.

The stress tensor for the nilfold is given by T (σ) = gµν∂Xµ∂Xν ,

T (σ) = (∂X)2 + (∂Y )2 + (∂Z +mX∂Y )2

= (∂ϕx)2 +
(
∂ϕy − 1

2mϕ
x(∂ϕz − ∂̄ϕz)

)2
+
(
∂ϕz + 1

2mϕ
x(∂ϕy + ∂̄ϕy)

)2
.

(6.42)

The T-dual stress tensor is given by eiQT (σ)e−iQ, where we perform a T-duality along
the Y direction using the charge

Q = 1
2

∮
dσ cos(2ϕy

L(σ)). (6.43)

The effect of this automorphism on ∂ϕy(σ), ∂̄ϕy(σ) is eiQ∂ϕy(σ)e−iQ = −∂ϕy(σ) and
eiQ∂̄ϕy(σ)e−iQ = ∂̄ϕy(σ). The stress tensor of the dual theory is then

T (σ) = (∂ϕx)2 +
(
∂ϕy + 1

2mϕ
x(∂ϕz − ∂̄ϕz)

)2
+
(
∂ϕz − 1

2mϕ
x(∂ϕy − ∂̄ϕy)

)2
. (6.44)

It is not hard to check that the background is that of the T 3 with H-flux. Using
(6.24) and the expression (6.31), the stress tensor for the background with gµν = δµν ,
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B = mxdy ∧ dz is given by T (σ) = (∂X)2 + (∂Y )2 + (∂Z)2, where

∂X = ∂ϕx, ∂Y = ∂ϕy + 1
2mϕ

x(∂ϕz − ∂̄ϕz), ∂Z = ∂ϕz − 1
2mϕ

x(∂ϕy − ¯∂ϕy).

(6.45)

This is precisely the stress tensor found as the dual of the nilfold stress tensor, as
expected. It is more straightforward to construct the related currents Ja for the nilfold,
given by (6.26),

Jx = ∂ϕx, J̄x = ∂̄ϕx, (6.46)

Jy = ∂ϕy − 1
2mϕ

x(∂ϕz − ∂̄ϕz), J̄y = ∂̄ϕy + 1
2mϕ

x(∂ϕz − ∂̄ϕz), (6.47)

Jz = ∂ϕz + 1
2mϕ

x(∂ϕy + ∂̄ϕy), J̄z = ∂̄ϕz + 1
2mϕ

x(∂ϕy + ∂̄ϕy). (6.48)

The stress tensor of the nilfold may then be written as (6.28).

6.6.2 A doubled algebra

The twisted versions of the X ′µ are given by X a = (efT X)a
µX

′µ, where fT denotes the
transpose of (6.33),

X x(σ) = X ′(σ), X y(σ) = Y ′ −mX(σ)Z ′(σ), X z = Z ′(σ). (6.49)

The Za(σ) and X a(σ) close to form an algebra under commutation. The non-trivial
commutators are7

[Zx(σ),Zz(σ′)] = −imδ(σ − σ′)Zy(σ′), [Zx(σ),X y(σ′)] = imδ(σ − σ′)X z(σ′),

[Zz(σ),X y(σ′)] = −imδ(σ − σ′)X x(σ′), (6.50)

and the central extensions

[Za(σ),X b(σ′)] = iδ b
a δ

′(σ − σ′). (6.51)

This algebra is reminiscent of the Lie algebras (3.7), (3.8) that appear in flux compact-
ification of supergravity on the nilfold [33, 32] and also the description of the nilfold in
doubled geometry [12, 31]. We shall comment on this in section 6.10.

7Seen by using delta function manipulations and the fact that (X(σ) −X(σ′))δ(σ − σ′) = 0.
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The commutator algebra may be seen to be a centrally extended analogue of the
doubled algebra,

[Za(σ),Zb(σ′)] = −ifab
cZc(σ′),

[Za(σ),X b(σ′)] = iδ b
a δ

′(σ − σ′) − ifac
bX c(σ′),

[X a(σ),X b(σ′)] = 0, (6.52)

where fzx
y = −fxz

y = m. This may be written in an O(d, d;Z)-covariant way as

[AA(σ),AB(σ′)] = iLABδ
′(σ − σ′) − itAB

CAC(σ′)δ(σ − σ′), (6.53)

where AA = (Za,X a), txz
y = −m (and zero otherwise) and LAB is the invariant of

O(d+ 1, d+ 1).

6.7 T 3 with H-flux

We consider the case where the monodromy matrix is of the form (6.21) with fµ
ν =

0 = Qµν and Kyz = m ∈ Z. Note that the Ja = e µ
a ∂Xµ for this background are given

by (5.28) (with gµν = δµν and Byz = mϕx) or read off from the stress tensor (6.44)
found by dualising the nilfold,

Jx = ∂ϕx, J̄x = ∂̄ϕx,

Jy = ∂ϕy + 1
2mϕ

x(∂ϕz − ∂̄ϕz), J̄y = ∂̄ϕy − 1
2mϕ

x(∂ϕz − ∂̄ϕz),

Jz = ∂ϕz − 1
2mϕ

x(∂ϕy − ∂̄ϕy), J̄z = ∂̄ϕz − 1
2mϕ

x(∂ϕy − ∂̄ϕy), (6.54)

which gives the components of AA(σ) as

Zx = Πx, Zy = Πy +mXZ ′, Zz = Πz −mXY ′,

X x = X ′, X y = Y ′, X z = Z ′.
(6.55)
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The commutation relations are then8

[Za(σ),Zb(σ′)] = −imεabcX c(σ′)δ(σ − σ′), [Za(σ),X b(σ′)] = iδ b
a δ

′(σ − σ′),
[X a(σ),X b(σ′)] = 0, (6.58)

which, again, is of the form (6.53).

6.8 T-fold

Alternatively, T-duality of the nilfold along the Z-direction gives the T-fold. It will be
instructive to see how the background arises from the currents Ja. An automorphism
with the duality charge amounts to the exchange ∂ϕz → −∂ϕz, ∂̄ϕz → ∂̄ϕz. There is
no explicit Z-dependence, so we need not worry about how Z transforms. The resulting
currents are

Jx = ∂ϕx, J̄x = ∂̄ϕx,

Jy = ∂ϕy + 1
2mϕ

x(∂ϕz + ∂̄ϕz), J̄y = ∂̄ϕy − 1
2mϕ

x(∂ϕz + ∂̄ϕz),

Jz = ∂ϕz − 1
2mϕ

x(∂ϕy + ∂̄ϕy), J̄z = ∂̄ϕz + 1
2mϕ

x(∂ϕy + ∂̄ϕy), (6.59)

which gives the fields Za and X a as

Zx = Πx, Zy = Πy, Zz = Πz,

X x = X ′, X y = Y ′ −mXΠz, X z = Z ′ +mXΠy,
(6.60)

from which we see that NI
J is of the form (6.21) with all entries zero except Qyz = m.

The stress tensor is given by
T =

∑
i

JaJa. (6.61)

8Using

X(σ) d

dσ′ δ(σ − σ′) −X(σ′) d

dσ′ δ(σ − σ′) = d

dσ′

(
(X(σ) −X(σ′))δ(σ − σ′)

)
−X ′(σ′)δ(σ − σ′)

= −X ′(σ′)δ(σ − σ′), (6.56)

and also the fact that
d

dσ′ δ(σ − σ′) = − d

dσ
δ(σ − σ′), (6.57)

which can be easily seen from the Fourier series representation of the periodic delta function.
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The Hamiltonian may be constructed from Za and X a as in (6.36), and the metric and
B-field read off for this background,

ds2 = dx2 + 1
1 + (mx)2

(
dy2 + dz2

)
, B = − mx

1 + (mx)2dy ∧ dz. (6.62)

The non-trivial commutation relations for the algebra of the Za and X a are

[Zx(σ),X z(σ′)] = −imZy(σ′)δ(σ − σ′), [Zx(σ),X y(σ′)] = imZz(σ′)δ(σ − σ′),

[X y(σ),X z(σ′)] = imX x(σ′)δ(σ − σ′), (6.63)

and the central extension term

[Za(σ),X b(σ′)] = iδ b
a δ

′(σ − σ′). (6.64)

This is the central extension of an algebra with structure constant Q yz
x = m, as we

might expect for the T-fold. Again, this algebra is of the general form (6.53).

6.9 On non-isometric T-duality

In this section, we briefly consider a simple case where, in the language of section
6.6.1, (V −1UV ) ̸= U . This can occur when U depends explicitly on the direction
we are performing the duality in. Duality involving functions of ∂ϕµ and ∂̄ϕµ are
well understood. What if we have a more general function of X(σ)? The only such
functions that appear at the self-dual radius are of the form einϕx

L(σ), which we have
already studied and transform in a well-defined way. However, in considering the
obstacles one might need to overcome to apply the operator formalism to non-isometric
torus fibrations, it may be instructive to study how functions of X(σ) that are not
invariant under isometries transform. As a first step we compute eiQϕx

L(σ)e−iQ. In the
framework presented here, X(σ) is a universal coordinate. Thus, if we know how ϕx(σ)
transforms under T-duality at the self-dual radius, we can infer how it transforms in
backgrounds related to that one by parallel transport. It is not hard to show that

[ϕµ
L(σ), ϕν

L(σ′)] = iπΘ(σ − σ′)δµν , (6.65)



92 Connections and Torus Bundles

where9

Θ(σ − σ′) = 1
2π (σ − σ′) − i

∑
n ̸=0

1
n
ein(σ−σ′). (6.67)

The fact that Θ is not a periodic function and so is not well defined on the worldsheet will
be the source of the difficulty in making sense of applying the T-duality automorphism
to ϕx

L(σ). Using the charge

Q = 1
2

∮
dσ cos(2ϕx

L(σ)), (6.68)

with a little work one finds

[Q, ϕx
L(σ)] = −iπ

∮
dσ′Θ(σ′ − σ) sin(2ϕx

L(σ′)),

[Q(2), ϕx
L(σ)] = −π2

∮
dσ′Θ(σ′ − σ)ϕx

L
′(σ′),

where we use the notation

[Q(n), ϕx
L] ≡ [Q, [Q, ...[Q, ϕx

L]]...], (6.69)

where there are n nested commutators on the RHS. We might think that we can do this
integral by parts and get rid of the boundary term in the second expression. Assuming
this, you would end up with ϕx

L → −ϕx
L as the transformation. However, since ϕx

L and
Θ are not periodic, the boundary term does not vanish. The easiest way to compute
the integral is in fact to use the mode expansions and do the integrals directly. Doing
this, we have

[Q(2), ϕx
L(σ)] = −π2

(
−ϕx

L(σ) + 1
2 (ϕx

L(0) + ϕx
L(2π))

)
.

9Note that
d

dσ
Θ(σ − σ′) =

∑
n

ein(σ−σ′), (6.66)

which is the periodic delta-function.
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Since the charge acts in the same way regardless of the value of σ, we can now just
write down the successive commutators:

[Q(3), ϕx
L(σ)] =iπ3

∮
dσ′ sin(2ϕx

L(σ′))(−Θ(σ′ − σ) + 1
2Θ(σ′) + 1

2Θ(σ′ − 2π)), (6.70)

[Q(4), ϕxL(σ)] =π4
(
ϕx

L(σ) − 1
2(ϕx

L(0) + ϕx
L(2π))

)
,

... (6.71)

There is a repeating pattern and so the full transformation may be written down,

eiQϕx
L(σ)e−iQ =

(
−ϕx

L(σ) + 1
2 (ϕx

L(0) + ϕx
L(2π))

)(
π2

2! − π4

4! + ...

)

+
∮
dσ′ sin(2ϕx

L(σ′))
(

−Θ(σ′ − σ) + 1
2Θ(σ′) + 1

2Θ(σ′ − 2π)
)(

π3

3! − π5

5! + ...

)

+ ϕx
L(σ) + π

∮
dσ′ sin(2ϕx

L(σ′))Θ(σ′ − σ)

= − ϕx
L(σ) + ϕx

L(0) + ϕx
L(2π) + π

2

∮
dσ′ sin(2ϕx

L(σ′)) (Θ(σ′) + Θ(σ′ − 2π)) .

(6.72)

We can use Θ(σ′ − 2π) = Θ(σ′) − 1 and sgn(σ′) = 2Θ(σ′) − 1 to slightly simplify the
last term, so that

eiQϕx
L(σ)e−iQ = −ϕx

L(σ) + ϕx
L(0) + ϕx

L(2π) + π

2

∮
dσ′ sin(2ϕx

L(σ′))sgn(σ′).

Note that, if we use the sine charge instead, we arrive at a different result, namely

eiQϕx
L(σ)e−iQ = −ϕx

L(σ) + ϕx
L(0) + ϕx

L(2π) − π

2

∮
dσ′ cos(2ϕx

L(σ′))sgn(σ′).

Taking an optimistic view of this rather messy result, we note that it is of the form

eiQϕx
L(σ)e−iQ = −ϕx

L(σ) + C, (6.73)

where C is a constant operator. This operator depends on the charge one uses to
perform the duality and points to the fact that such a shift can be removed by a
U(1)L × U(1)R gauge transformation. Put another way, this result is suggestive of the
possibility of considering the correct action of the duality on ϕx

L(σ) as ϕx
L(σ) → −ϕx

L(σ)
(equivalently X(σ) → X̃(σ)), with the shift by C dropping out of all gauge-invariant
results. Such a proposal has received support from other quarters (see for example
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[53, 55, 29, 12]). Of course, in those cases the emphasis was on performing T-duality
in the absence of isometries in the target space. Here, we see that what is required
to be able to neglect C is the unbroken U(1)L symmetry acting on ϕx

L. This is a
particular linear combination of isometry and B-field transformation; the diagonal
U(1)L ⊂ U(1)Z × U(1)X , where the isometry is U(1)Z . An obvious argument against
this interpretation is that C is an operator and will not commute with other generators
in the SU(2) gauge symmetry. As such, it seems a poor candidate for a parameter of a
translation symmetry, though it would be interesting to investigate this further. The
transformations above may be written as

δZX = 2α, δZX̃ = 0, δZϕ
x
L = α = δZϕ

x
R (6.74)

for the T-duality and

δXX = 0, δX X̃ = 2α̃, δXϕ
x
L = −α̃ = δXϕ

x
R (6.75)

for the B-field transformation. We see that, if we choose α = 0 and α̃ = C, i.e. if
we couple the T-duality transformation with a B-field transformation, then we may
have ϕx

L(σ) transforming in the expected way, even if there is no isometry in X(σ),
provided there is B-field symmetry present. This is not a concrete prescription, but it
suggests that the formalism considered in this chapter may admit more general notions
of T-duality if generalised to more interesting backgrounds.

As an application, consider T-duality of the T-fold along the X-direction, neglecting
the presence of C. We are therefore, somewhat artificially, elevating the variable X(σ)
along the base circle from a parameter that characterises the bundle (in the spirit of
the construction outlined in section 6.1) to a full quantum field. This pushes us out
of the realm of toy models that should in principle be part of a bona fide CFT and
into somewhat uncertain territory. Nonetheless, we shall press on. An automorphism
with the duality charge amounts to the exchange ∂ϕx → −∂ϕx, ∂̄ϕx → ∂̄ϕx. From the
above, we shall assume that X → X̃ (i.e. ϕx

L → −ϕx
L).

The resulting currents are

Jx = ∂ϕx, J̄x = ∂̄ϕx,

Jy = ∂ϕy + 1
2mϕ̃

x(∂ϕz + ∂̄ϕz), J̄y = ∂̄ϕy − 1
2mϕ̃

x(∂ϕz + ∂̄ϕz),

Jz = ∂ϕz − 1
2mϕ̃

x(∂ϕy + ∂̄ϕy), J̄z = ∂̄ϕz + 1
2mϕ̃

x(∂ϕy + ∂̄ϕy), (6.76)



6.9 On non-isometric T-duality 95

where ϕ̃x = X̃, and so the fields Za and X a are

Zx = Πx, Zy = Πy, Zz = Πz,

X x = X ′, X y = Y ′ −mX̃Πz, X z = Z ′ +mX̃Πy.
(6.77)

These can be obtained by a T 2 bundle over the dual circle with AA(σ) = (e−NX̃)A
IΠI(σ),

where NI
J takes the same form as for the T-fold above. The key point is that X(σ) is

replaced by X̃(σ).
The non-trivial commutation relations are then

[X x(σ),X z(σ′)] = −2πimδ(σ − σ′)Zy(σ′),
[X x(σ),X y(σ′)] = 2πimδ(σ − σ′)Zz(σ′),
[X z(σ),X y(σ′)] = −2πimδ(σ − σ′)Zx(σ′), (6.78)

and the central extension is

[Za(σ),X b(σ′)] = 2πiδ b
a δ

′
σ′(σ − σ′). (6.79)

This is reminiscent of the expected R-flux algebra (3.25) [61, 12]. To be clear, the
above discussion does not in any way provide a proof that the R-flux background
is dual to the T-fold. It does, however, demonstrate that this formalism gives rise
to similar algebraic structures seen in the supergravity [33, 32, 29, 62] and doubled
geometry [12] discussions of such backgrounds, assuming X(σ) → X̃(σ). It also makes
clearer the assumptions that are required for such backgrounds to map into each other
under T-duality, defined as an automorphism of the operator algebra.

When we come to chapter 8, we will see that addressing the X-dependence fully
requires more care and makes the above transformations significantly more complicated.
We will focus more on the nilfold and H-flux cases there, but even in those cases the
situation is very different to the adiabatic limit. When we have a better understanding
of how to deal with more complicated worldsheet coordinate dependence, we will briefly
return to this non-isometric story in section 9.1.3, where we re-examine an idea of [15]
and apply it to a simple case.
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6.10 Relationship to the doubled formalism & the
doubled algebra

Here we discuss the relationship of the universal coordinate formalism presented above
to the doubled formalism [12], and we discover an interesting feature of the algebra of
worldsheet operators Za,X a.

Recall our setup of the doubled formalism from chapter 3. Here, we have doubled
embedding coordinates XM = (Xm, X̃m) in the fibres, with base X, i.e. Xµ = (X,Xm).

In the previous section we have seen that the natural objects that relate the
Hamiltonian of a given background to that of the background at an enhanced point
involve only the monodromy encoded in the Hamiltonian density

HIJ(X(σ))ΠI(σ)ΠJ(σ) = (Πx(σ))2 + (X ′(σ))2 + MMN(X(σ))ΠM(σ)ΠN(σ), (6.80)

where we have introduced

ΠM(σ) = 1√
2π

(
Πm(σ), X ′m(σ)

)
(6.81)

in the torus fibres and MMN (X) is the inverse of the metric in the fibres of T , which is
determined by the monodromy and depends only on the base coordinate. The ΠM(σ)
obey the commutation relations

[ΠM(σ),ΠN(σ′)] = iLMNδ
′(σ − σ′), (6.82)

by virtue of the canonical commutation relations. The natural action of O(d, d) on
the coordinates and momenta of the T d fibres suggests the natural O(d, d)-covariant
objects on the bundle10

AP (σ) = (e−NX(σ))P
MΠM(σ). (6.83)

The algebra of these objects is given by the commutator

[AP (σ),AQ(σ′)] = (e−NX(σ))P
M(e−NX(σ′))Q

N [ΠM(σ),ΠN(σ′)]
= i(e−NX(σ))P

MLMN(e−NX(σ′))Q
Nδ′(σ − σ′). (6.84)

10All products of operators are assumed normal ordered.
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Integrating by parts in σ and using the fact that LMN is invariant under the action of
e−NX(σ) gives

[AP (σ),AQ(σ′)] = iLP Qδ
′(σ − σ′) − iNP QX

′(σ)δ(σ − σ′), (6.85)

where NP Q = NP
RLRQ = −NQP . Following the previous section, it is useful to split

the fibre fields as AP (σ) = (Zp,X p) and similarly for the base circle. The only other
non-trivial commutator is [Πx(σ),AP (σ′)], which is easily evaluated to give the algebra

[AP (σ),AQ(σ′)] = iLP Qδ
′(σ − σ′) − iNP QX (σ′)δ(σ − σ′),

[Zx(σ),AP (σ′)] = iNP
QAQ(σ′)δ(σ − σ′), [X x(σ),AP (σ′)] = 0,

[X x(σ),Zx(σ′)] = iδ(σ − σ′). (6.86)

This may be written compactly as

[AA(σ),AB(σ′)] = iLABδ
′(σ − σ′) − itAB

CAC(σ′)δ(σ − σ′), (6.87)

where txP
Q = NP

Q. This is a central extension of the loop algebra based on the
Lie algebra (3.8). The interesting fact is that it arises in a very direct way from the
intuitive torus bundle geometry. This is an important and unexpected result since we
are able to derive (a central extension of) the full doubled algebra by just doubling the
torus fibres. At the level of the supergravity, when we doubled the base the algebra
generated by the vector fields dual to the left-invariant one-forms could only at most
generate the contraction (3.7), since the information of the B-field along the base was
not part of the geometric structure of the doubled torus bundle. Here, we find that we
are able to recover the full algebra (3.8) due to the relationship between the worldsheet
fields, encoded in the commutation relations.

We can see this explicitly by looking at the zero modes, which effectively projects
us down to the supergravity limit. The zero modes of the fibre fields are

X ′µ(σ) = ωµ + ..., Πµ(σ) = pµ + ..., (6.88)

where ωµ is the (dimensionless) winding and pµ is the (dimensionless) momentum
zero mode. The ellipsis denote terms with non-trivial σ-dependence. The coordinates
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conjugate to these zero modes are z̃µ and zµ respectively, and we can write

X ′µ(σ) = −i ∂
∂z̃µ

+ ..., Πµ(σ) = −i ∂
∂zµ

+ ..., (6.89)

and ΠI(σ) = −i∂I + .... Thus, the zero modes of the fields are given by

AA(σ) = −i(e−NX(σ))A
I ∂

∂XI
+ ..., Zx(σ) = −i ∂

∂x
+ ..., X x(σ) = −i ∂

∂x̃
+ ....

(6.90)
Truncating to the zero modes (neglecting the +... terms) gives a set of vector fields
that generate the isometry algebra (3.7) with an additional U(1) factor corresponding
to the isometry around the dual circle with coordinate x̃. This is a contraction of the
algebra (3.8).

Thus, we see that it is precisely the non-trivial σ-dependence that gives rise to the
full doubled algebra of the twisted doubled torus. Put another way, it is the extended
nature of the string that takes us from the algebra (3.7) that we might expect from
particle mechanics on the geometry T × S̃1 to the full doubled geometry corresponding
to the algebra (3.8). This suggests that the two doubled geometries are perhaps more
closely related than previously thought, and it would be interesting to investigate this
further, though we will not have anything more to say on the subject here.

6.11 Beyond torus bundles

Our focus in this section is on seeing how the framework described in previous sections
might generalise to backgrounds that are not necessarily torus bundles. The character
of this section will be formal and rather speculative and we do not consider explicit
examples, although it would be interesting to do so and there is a clear connection with
the flux compactifications of [62, 32]. We do not need to worry about normal ordering
issues and a more careful treatment may alter the general scheme outlined here. We
shall see that the general algebraic structure that mirrors that of doubled geometry
seems to emerge in very general cases. The absence of a detailed understanding of
worldsheet theories on such backgrounds makes this section necessarily schematic. In
particular, we do not consider normal ordering issues that might arise or potential α′

corrections which would alter the form of the Hamiltonian. We do find that algebraic
structures reminiscent of (parallelisable) flux compactifications of supergravity [32]
emerge in this approximation; however, unlike those cases, these constructions do
not seem to be limited by the requirement that the doubled geometry be locally a
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group manifold. They are perhaps more reminiscent of compactifications inspired by
generalised complex geometry [64, 65] and its generalisations [66, 67].

The starting point is the Hamiltonian at the point of enhanced symmetry, denoted
by H(p0),

H(p0) =
∮
dσ S(p0)H(p0)ST (p0), (6.91)

where the point p0 on the space of backgrounds M is an enhanced symmetry point. The
generalised metric may be written in terms of generalised vielbeins H(p0) = E(p0)ET (p0)
as in (6.13) and SI(p0;σ) = (Πµ(σ), X ′µ(σ))p0 .

The Hamiltonian density at a point p ∈ M could be given in terms of the generalised
metric

H(p) = U(p, p0)H(p0)UT (p, p0), (6.92)

where U(p, p0) = E(p)E−1(p0). The Hamiltonian for the theory at p may then be
written as

H(p) =
∮
dσ SU(p, p0)H(p0)UT (p, p0)ST

=
∮
dσA(p)H(p0)AT (p). (6.93)

Since SI is taken to be a universal coordinate, SI(p;σ) = SI(p0;σ), and so we can drop
the explicit p-dependence, and we have defined A(p) = S(p0)U(p, p0).

A polarization is a (maximally isotropic) choice of splitting S into Π and X ′.
Similarly, we define a polarization of AA(σ) as a splitting AA(σ) =

(
Za(σ),X a(σ)

)
.

6.11.1 Flux compactification on a twisted torus

To begin, we consider the example, familiar from many supergravity constructions,
of a constant H-flux on a parallelisable11 background. Consider a background that
is generated from the reference background by the action of a geometric subgroup of
O(d, d;Z), i.e.  e Be−T

0 e−T

 , (6.94)

11The background need only locally be a group. More generally it could be the quotient of a group
by a cocompact subgroup [33].
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where e ∈ SL(d). If the reference background is the identity, then the metric and
B-field for this background are

gµν = δabe
a

µe
b
ν , B = 1

2Bµνdx
µ ∧ dxν . (6.95)

The twisted torus with constant flux is a simple example of such a background. Let us
take, at the point p, the metric and H-field to be

ds2 = δabe
a ⊗ eb, H = 1

6Kabce
a ∧ eb ∧ ec, (6.96)

where ea = ea
µdx

µ is a left-invariant one-form for the group manifold G with structure
constants fab

c = −f c
ab , i.e.

dea + 1
2fbc

aeb ∧ ec = 0. (6.97)

The condition dH = 0 then requires K[ab|cf|de]
c = 0 [62].

The doubled algebra

With this polarization, we have

Za(σ) = (e−1)a
µ (Πµ(σ) −BµνX

′ν(σ)) , X a(σ) = ea
µX

′µ(σ), (6.98)

which we may think of as

Za(σ) = (e−1)a
µ

(
−i δ

δXµ(σ) −BµνX
′ν(σ)

)
, X a(σ) = ea

µX
′µ(σ). (6.99)

Using the canonical commutation relations, we have the algebra (details of the calcula-
tions in appendix C)

[Za(σ),Zb(σ′)] = −fab
cZc(σ′)2πiδ(σ − σ′) −KabcX c(σ′)2πiδ(σ − σ′),

[Za(σ),X b(σ′)] = fac
bX c(σ′)2πiδ(σ − σ′) + δb

a2πiδ′(σ − σ′),
[X a(σ),X b(σ′)] = 0, (6.100)

which is of the form (6.53).
We next verify here that the algebras that we work with are indeed associative. We

also discuss generalisations of the above to (non-constant) structure functions, and we
show that, at least for geometric flux compactifications, associativity is preserved.
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We compute (details in appendix C)

[Za(σ), [Zb(σ′),Zc(σ′′)]] = − 4π2δ(σ − σ′′)δ(σ′ − σ′′)
(
f d

bc f
e

ad Ze(σ′′) + f d
bc KadeX e(σ′′)

− f d
ae KbcdX e(σ′′)

)
+ 4π2δ′(σ − σ′′)δ(σ′ − σ′′)Kbcdδ

d
a.

(6.101)

Now we now sum over cyclic permutations. Care must be taken as we are also moving
around the σ, σ′, σ′′ dependence. In the first term, this does not matter since the
delta functions are only supported on σ = σ′ = σ′′, so we can just antisymmetrise on
the indices a, b, c without any issues. However, for the second term, since there is a
derivative of a delta function and the contributing terms do not appear on the same
footing, we have to be more careful. We get

1
3

(
[Za(σ), [Zb(σ′),Zc(σ′′)]] + cyclic

)
= 4π2δ(σ − σ′′)δ(σ′ − σ′′)

(
f e

d[a f d
bc] Ze(σ′′) − 2Kd[eaf

d
bc] X e(σ′′)

)
+ 4

3π
2Kabc (δ′(σ − σ′′)δ(σ′ − σ′′) + δ′(σ′ − σ)δ(σ′′ − σ) + δ′(σ′′ − σ′)δ(σ − σ′)) .

(6.102)

The last line here vanishes by delta function manipulations. In order to establish that
the other terms vanish, we compute the constraints that arise from d2ea = 0 and the
fact that dH = 0. Taking the exterior derivative of (6.97) gives f a

b[c f
b

de] = 0. Similarly,
dH = 0 gives Ka[bcf

a
de] = 0. Taken together, these two constraints tell us that the

right hand side of (6.102) vanishes.
Since the X a commute with each other, the only other case we have to consider is

[X a(σ), [Zb(σ′),Zc(σ′′)]] + cyclic. (6.103)

We find that, after a short calculation,

[Zb(σ′), [Zc(σ′′),X a(σ)]] = − 4π2δ(σ′ − σ)δ(σ′′ − σ)
(
f a

cd f d
be X e(σ)

)
− 4π2δ′(σ′ − σ)δ(σ′′ − σ)f a

cb . (6.104)

When we add the cyclic permutations, the first term will vanish by the Maurer-Cartan
equation constraint (6.97). The second term vanishes by delta function manipulations,
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as with the previous case. Thus, we find that

[X a(σ), [Zb(σ′),Zc(σ′′)]] + [Zb(σ′), [Zc(σ′′),X a(σ)]] + [Zc(σ′′), [X a(σ),Zb(σ′)]] = 0,
(6.105)

and so the algebra is indeed associative.

6.11.2 From structure constants to structure functions

We would like to see how far we can generalise this, and in particular we would like to
see if we can relax the condition that fab

c and Kabc are constant and allow them to be
functions

fab
c → fab

c(X), Kabc → Kabc(X). (6.106)

In particular, we take gµν and Bµν to be general (we assume the metric is torsion-free).
It is fairly easy to see that the algebra will still go through without any problems. This
is essentially because there are no derivatives of f or K in the derivation of the algebra.
However, where there might be problems is associativity. Since associators have nested
commutators, we do have derivatives of f and K appearing. However, we will find
that the algebra is in fact still associative. This is in contrast to the doubled geometry
construction, where the group structure plays a prominent role. However, we suspect a
formal generalisation of doubled geometry along similar lines is possible. Imposing the
self-duality constraint there might require gauging an algebroid structure along the
lines of [68] and we shall not comment on this further here.

Firstly, we should derive the modified constraints that now arise from the Maurer-
Cartan equation (6.97) and the flux condition dH = 0. Going through the same process
we find that

e µ
[a ∂µf

d
bc] − f d

e[ab f
e

bc] = 0, e µ
[a ∂µKbcd] − 3

2Ke[abf
e

cd] = 0. (6.107)

How does this alter the calculations checking associativity? Essentially, there are two
changes to consider: the explicit derivatives of f and K, and the changes to the δ′

terms (which are themselves a result of the σ dependence of f and K). For example,
we now have

[Za(σ), [Zb(σ′),Zc(σ′′)]] = − 4π2δ(σ − σ′′)δ(σ′ − σ′′)
{
f d

bc f
e

ad Ze(σ′′) + f d
bc KadeX e(σ′′)

−f d
ae KbcdX e(σ′′) + e µ

a ∂µf
d

bc Zd(σ′′) + e µ
a ∂µKbceX e(σ′′)

}
+ 4π2δ′(σ − σ′′)δ(σ′ − σ′′)Kbcd(σ′′)δd

a. (6.108)



6.11 Beyond torus bundles 103

The new terms are the last two terms in the braces. Now, when we antisymmetrise
this, the term we have to be extra careful with is the last one, i.e. the term outside of
the braces. This is because the K now has σ′′ dependence. We can write this term as

−δ′(σ − σ′′)δ(σ′ − σ′′)Kbcd(σ′′)δd
a =∂σ′′ (δ(σ − σ′′)Kabc(σ′′)) δ(σ′ − σ′′)

− δ(σ − σ′′)δ(σ′ − σ′′)K ′
abc(σ′′)

= − δ′(σ − σ′′)δ(σ′ − σ′′)Kabc(σ)
− δ(σ − σ′′)δ(σ′ − σ′′)X ′µ∂µKabc(σ′′). (6.109)

Thus, after antisymmetrising, the total contribution from the δ′ terms is

4
3π

2Kabc (δ′(σ − σ′′)δ(σ′ − σ′′) + δ′(σ′ − σ)δ(σ′′ − σ) + δ′(σ′′ − σ′)δ(σ − σ′))

+ 4π2δ(σ − σ′′)δ(σ′ − σ′′)1
6e

µ
e ∂µKabcX e(σ′′)

= 4π2δ(σ − σ′′)δ(σ′ − σ′′)1
3e

µ
e ∂µKabcX e(σ′′), (6.110)

the first term vanishing as in the constant case. We will see that the remaining term
contributes in such a way as to ensure associativity. The full expression can now be
written as

[Z[a(σ), [Zb(σ′),Zc](σ′′)]] =4π2δ(σ − σ′′)δ(σ′ − σ′′)
{
f d

e[a f e
bc] Zd(σ′′) − 2Kd[eaf

d
bc] X e(σ′′)

−e µ
[a ∂µf

d
bc] Zd(σ′′) − e µ

[a ∂µKbc]eX e(σ′′) + 1
3e

µ
e ∂µKabcX e(σ′′)

}
,

(6.111)

and we can write the last two terms in this expression as

− e µ
[a ∂µKbc]eX e(σ′′) + 1

3e
µ

e ∂µKabcX e(σ′′) = 4
3e

µ
[e ∂µKabc]X e. (6.112)

Thus, (6.111) becomes

[Z[a(σ), [Zb(σ′),Zc](σ′′)]] =4π2δ(σ − σ′′)δ(σ′ − σ′′)
{
f d

e[a f e
bc] Zd(σ′′) − 2Kd[eaf

d
bc] X e(σ′′)

− e µ
[a ∂µf

d
bc] Zd(σ′′) + 4

3e
µ

[e ∂µKabc]X e(σ′′)
}

= 0, (6.113)

where we notice that the expressions in the braces are precisely the constraints imposed
by the equations (6.107) and therefore vanish. The calculation of [Z, [Z,X ]] also works
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out in a similar, though slightly simpler, way. Thus, we conclude that the algebra is
still associative even if fab

c and Kabc are not constant.

A comment on associativity of the R-flux background

In this section we have focused only on geometric flux compactifications because this
is the simplest case to approach in the general setting which we have laid out. It
would be interesting to extended to include other, possibly non-geometric, backgrounds,
but we have not considered this here. For the specific case of the R-flux background
discussed earlier, it is straightforward to study the associativity of the algebra and
we find that the algebra is indeed associative. The details are similar to those given
in appendix C. There has been much discussion of the R-flux background giving rise
to a non-associative structure12, but we find no sign of any such structure in our
construction. It may be that such a structure emerges when we take the X-dependence
into account fully away from the adiabatic limit. Unfortunately, to look into this
properly would require an understanding of non-isometric T-duality.

12See, for example, [69–73].



Chapter 7

General Deformations and
Connections

Having gained a thorough understanding of twisted torus bundles in the universal
coordinate construction, we now attempt to generalise the discussion of the previous
chapter to more general connections. In particular, we will see how to construct a
formalism that allows one to take any operator at some starting point in moduli space
and deform it to a nearby point. We will mainly look at deformations of ∂Xµ, but the
formalism we present is one that can be applied to a wide class of operators and theories,
both with and without conformal invariance. As we discussed, the formalism of [22]
entailed the deformation of correlation functions of CFTs, based on the formalism of
[23, 24] for more general QFT deformations. In the previous chapter, we showed how
universal coordinates was tied to this connection story, and we applied this to the torus
bundles introduced in chapter 3, employing an adiabatic approximation to neglect
worldsheet interactions involving the coordinate dependence in the background.

Here, we will show how we can proceed without this approximation. We will start
by discussing the construction for flat toroidal backgrounds, where we demonstrate
how to recover (4.30). As we will see, this will involve taking the tensor structure of
the operator of interest into account. In chapter 8, we will then apply these ideas
to the H-flux and nilfold cases, where we will derive first order corrections to the
deformations derived in the adiabatic limit previously. Of course, the deformation
of the stress tensor was already derived in section 5.3, but the method used there
would not work for non-scalar operators since it would miss contributions arising from
the change in the background, as we explain below. In chapter 9, we will examine
the T-duality between these backgrounds once again, this time with the worldsheet
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interactions taken into account. The content of chapters 7, 8 and 9 is based on original
work written in collaboration in [2].

Let us explain our approach. We shall consider a family of sigma models {Eµν},
where Eµν = gµν + Bµν as usual, parameterised in some convenient way. Let E be
a bundle of operators A over this space, where an element A ∈ A may be written
schematically in terms of a local worldsheet operator as A =

∫
Φ. Then, the integrated

correlation functions will change as we move about this space, not simply because of
any direct metric dependence of the field, but also due to the change in the measure
eS[Φ] used to define the correlation function. If

〈
Φ1...Φn

〉
=
∫

DΦe−S[Φ] Φ1...Φn, (7.1)

where Φi is a local operator inserted at the point zi on a worldsheet Σ embedded in
the target space1, then to leading order,

δ
〈
Φ1...Φn

〉
=

n∑
i=1

∫
DΦe−S[Φ] Φ1...δEΦi...Φn −

∫
DΦe−S[Φ]δS[Φ] Φ1...Φn + ..., (7.2)

where δEΦ is a ‘classical’ change in Φ - a change in the background field that preserves
S[Φ]. Note that this was missing from the analysis of chapter 5 since there we were
only dealing with scalar operators. As we will discuss, the δE transformation is only
present for non-scalar operators.

If we want to understand how an individual operator, say Φi, changes we need a
more subtle tool. The above expressions suggest that this would be given schematically,
to first order, by

δΦi = −Oi[X](Φi) + δEΦi + ..., (7.3)

where the effect of the change in the action on the contribution Φi makes to the
correlation function is given by the insertion of a non-local operator Oi[X] that has
the same functional form as δS[X],

Oi[X] =
∫
Σϵ

i

: δL̂ :, (7.4)

1To compute the correlation functions, the locations of the operators would ultimately be integrated
over and it is probably more natural to think in terms of integrated operators

∫
Σ Φ when talking

about objects in the fibres of E . We will also not explicitly include the ghost contributions to such
correlation functions.
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where δL̂ is the integrand2 of δS[X], lifted to an operator expression and Σϵ
i ⊂ Σ has

holes of size ϵ > 0 cut out around the locations of the Φj ̸=i fields. We recover the
variation of the correlation function when all fields Φ are allowed to change. Here, we
will mainly be interested in cases where the starting point is a free theory. In this case,
we can use Wick’s theorem to evaluate the correlation function, and the action of O
that affects the field Φi directly is given by the contraction

δOΦi(zi) = Oi[X]Φi(zi). (7.5)

Sequential applications of O will be discussed in detail in chapter 7 and appendix E.
This construction extends simply to cases where the sigma model is specified by

other target space fields. We will flesh out what the terms in (7.5) mean in the following
sections. If Φ is a target space scalar, then this is the whole story. However, if Φ is a
vector or higher tensor, then there may be an additional contribution which preserves
the action and therefore is not included in the transformation generated by O. For
example, in a flat torus background, ∂Xµ = eµ

a∂X
a has an explicit dependence on the

background metric through the vielbein eµ
a. We now imagine changing the radius R of

one of the circles. With all of the R dependence in eµ
a, we think of ∂Xa as a universal

field for such backgrounds and the change in ∂Xµ may be written as

∂Xµ → ∂Xµ + δR(∂Re
µ

a)ea
ν∂X

ν + .... (7.6)

Such contributions are absent in the previously studied fields such as the worldsheet
stress tensor, but play an important role in recovering the correct transformation
properties of non-scalar fields. We denote such contributions to the variation by δE.3

It will be helpful to think of δE as the part of the deformation that leaves the action
invariant and O as that part which changes the action.

Let us now apply this formalism to the flat torus.

7.1 d = 1: circle deformations by parallel transport

We begin by discussing the space of CFTs on toroidal backgrounds (i.e. the space given
by (2.1) and parallel transport around this space generated by marginal deformations,
and in this section we will focus on the d = 1 case. Earlier, we argued that universal

2Oi is not local and the deformation need not be of Lagrangian type, but for simplicity we shall
assume it does take the form δS =

∫
Σ
δL.

3Schematically, δE may be thought of as being of the form δE ∼ δgµν
δ

δgµν
.
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coordinates could be seen as coming from the Γ̂ connection and we used this to recover
the results (4.30), (4.31). Here, we shall keep our procedure more general with a view
to applying it to QFTs without conformal symmetry. Looking at CFT cases first
provides a helpful toy example since we can compare with known results.

For convenience, we will recall here the universal coordinate results derived earlier.
We have, for the d = 1 case, on the contour |z| = 1,4

∂X(R + δR) = ∂X(R) + δR

R

(
∂X(R) − z̄

z
∂̄X(R)

)
+ 1

2

(
δR

R

)2 (
∂X(R) − z̄

z
∂̄X(R)

)
,

(7.7)

∂̄X(R + δR) = ∂̄X(R) + δR

R

(
∂̄X(R) − z

z̄
∂X(R)

)
+ 1

2

(
δR

R

)2 (
∂̄X(R) − z

z̄
∂X(R)

)
,

(7.8)

and using the mode expansion

∂X(R)(z) = −iR2
√

2
∑

n

αnz
−n−1, (7.9)

we obtain

αn(R+ δR) = αn(R) − δR

R
(αn(R) + ᾱ−n(R)) + 3

2

(
δR

R

)2

(αn(R) + ᾱ−n) + ..., (7.10)

ᾱn(R+ δR) = ᾱn(R) − δR

R
(ᾱn(R) + α−n(R)) + 3

2

(
δR

R

)2

(ᾱn(R) + α−n) + ..., (7.11)

where the ... indicates higher order terms arising from the expansion of the inverse
metric (R + δR)−2. In this relatively simple d = 1 case, we can easily obtain the finite
transformation as

αn(R + δR) = αn(R) − λ

2(1 + λ)(αn(R) + ᾱ−n(R)), (7.12)

where λ = g−1δg = (2RδR + δR2)/R2. Note that, in this finite case, δR need not be a
small deformation of R.

These results may be recovered using the connection formalism and the O and δE

operators written down previously, which we now do.
4We have removed the explicit z, z̄ dependence to keep these equations uncluttered.
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To compute the deformation, we first need to write down the action and in particular
the marginal operator.

7.1.1 The action & deformation

Under a shift Eµν → (E + δE)µν , we know from (2.15) that the marginal operator is

δEµν

∫
Σ
∂Xµ∂̄Xν . (7.13)

For the circle of radius R → R + δR, the marginal operator required is thus

O = 2δR
R3

∫
Σ

d2z∂X(z)∂̄X(z̄). (7.14)

Unlike the stress tensor deformation, this is not the full story and this is where the
spacetime tensor structure of the operator of interest is important. The full deformation
of the operator is given by the sum of two parts: a part coming from the marginal
operator (O) and a part coming from the deformation of the background, which for
the circle is given by

δE = δR
∂

∂R
. (7.15)

The full deformation operator is given by the path ordered exponential

P exp
 s∫

0

ds′dm

ds′
1
R4

∫
Σ

d2z∂X(z)∂̄X(z̄) +
s∫

0

ds′dm

ds′
1

2R
∂

∂R

 , (7.16)

where m is our parameterisation of moduli space. As discussed in section 5.1.2, we
are free to choose this parameterisation, but the one which we will use here is m = r2

for a circle of radius r, i.e. the metric. Thus, if our path is between the radii R and
R′ = R + δR, parameterised by s′ ∈ [0, R′ − R], so that s′ = r − R, where r is the
radius at s′, we have

s∫
0

ds1...

sn−1∫
0

dsn
dm

ds1
...
dm

dsn

= 1
n! (R

′2 −R2)n, (7.17)

so that our deformation operator is

P exp
(2RδR + δR2)

 1
R4

∫
Σ

d2z∂X(z)∂̄X(z̄) + 1
2R

∂

∂R

 . (7.18)
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We now compute the transformation of ∂X to first order in δR. The higher order case
will be discussed properly in section 7.1.3; there are subtleties about how we define
multiple O insertions due to potential divergences when different O coincide.

7.1.2 ∂X deformation using parallel transport in M

We now show how (7.7) can be recovered from the parallel transport construction
outlined in the previous section. We are interested in the correlator

〈
∂X(w)Φ(0)

〉
,

where Φ is a generic operator (inserted at z = 0 for convenience). We will use this
correlation function to deduce the deformation of ∂X(w). From the discussion that
led to (5.8), we have, to first order,

〈
∂X(w)Φ(0)

〉′
=
〈
∂X(w)Φ(0)

〉
+
〈
O∂X(w)Φ(0)

〉
+
〈
δE∂X(w)Φ(0)

〉
. (7.19)

First consider the action of O. We have
〈
∂X(w)Φ(0)

〉′

=
〈
∂X(w)Φ(0)

〉
+ 2δR

R3

∫
Σϵ

d2z
〈
∂X(z)∂̄X(z̄)∂X(w)Φ(0)

〉
+
〈
δE∂X(w)Φ(0)

〉

= −iR2
√

2

N∑
i=1

∑
n≥0

(w − zi)−n−1

〈αnΦ(0)
〉

+ 2δR
R3

〈
αnΦ(0)

∫
Σϵ

d2z∂X(z)∂̄X(z̄)
〉

− 2δR
R

∫
Σϵ

d2z
1

(w − z)2

〈
∂̄X(z̄)Φ(0)

〉
+
〈
δE∂X(w)Φ(0)

〉

= −iR2
√

2
∑
i,n

(w − zi)−n−1
〈
αnΦ(0)

〉′

+ δR

R

∫
Σϵ

d2z∂z

( 1
z − w

)〈
∂̄X(z̄)Φ(0)

〉
+
〈
(δE∂X(w))Φ(0)

〉
, (7.20)

where the action of δE on Φ has been absorbed into the first term in (7.20), and we
recall the definition of Σϵ from (5.34). Comparing this first term with the LHS, we see
that it is simply the zeroth order term, so we will focus on the second term. We can
write it as

δR

R

∫
Σϵ

d2z∂z

( 1
z − w

)〈
∂̄X(z̄)Φ(0)

〉
= −δR

R

∮
Cϵ

dz̄

z − w

〈
∂̄X(z̄)Φ(0)

〉
, (7.21)

where the contour Cϵ simply consists of circles around z = 0, w of radius ϵ. Around w
there is no contribution since there are no negative powers of z̄ − w̄.
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Around z = 0, we use

(w − z)−1 =
∑
n≥0

(w − zi)−n−1(z − zi)n (7.22)

with zi = 0 to expand the integrand around zero to get

δR

R

∑
i,n

w−n−1
∮

Cϵ
0

dz̄zn
〈
∂̄X(z̄)Φ(0)

〉
. (7.23)

Comparing this to what we have on the left hand side, as in [50], gives

〈
∂X(w)Φ(0)

〉′
=
∑
n≥0

w−n−1
(

−i√
2

(R2 + 2RδR)
)〈

α′
nΦ(0)

〉

=
∑
n≥0

w−n−1
〈(−iR2

√
2

)
αnΦ(0) + δR

R

∮
Cϵ

0

dz̄zn∂̄X(z̄)Φ(0)
〉

+
〈
(δE∂X(w))Φ(0)

〉

=
∑
n≥0

w−n−1
〈(−iR2

√
2

)
αn + δR

R

∮
Cϵ

0

dz̄zn∂̄X(z̄) + δR

R
∂X(w)

Φ(0)
〉
,

(7.24)

where δE∂X(R) = R−1δR ∂X(R) has been used. This can be seen by noting that δE

is a derivative with respect to the einbein which acts trivially on spacetime scalars. In
one dimension, the einbein is simply R. We can rearrange (7.24) to read off

δαn = −δR

R

(
αn + ᾱ−nϵ

2n
)
. (7.25)

Note that at this point we would usually make a specific choice of connection, for
example by taking the limit ϵ → 0 and dropping divergent terms, or setting ϵ = 1. In
this case, in order to make contact with the results of chapter 4, we set ϵ = 1 (the Γ̂
connection), which recovers their result. We would like to write this as a first order
shift of ∂X itself as opposed to just the modes of ∂X. To do this, we substitute the
above transformation into ∂X(R+ δR), working to first order. Initially we will leave ϵ
as it is, but we will see that it is necessary to choose |z| = ϵ for the deformation of
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∂X(z). We have

∂X(R + δR)(z) = − i√
2
∑

n

(R + δR)2 (αn + δαn) z−n−1

= − i√
2
∑

n

(
R2αn +R2δαn + 2RδRαn +O(R2)

)
z−n−1,

= − i√
2
∑

n

(R2 +RδR)αnz
−n−1 −RδRᾱ−nz̄

n−1 z̄

z

(
ϵ

η

)2n
 , (7.26)

where |z| = η. Thus, we see that, in order to be able to write the last term as a ∂̄X,
we need to set ϵ = η. As discussed earlier, the choice of ϵ = 1 for the Γ̂ connection
is arbitrary and for a CFT all choices are equivalent under the conformal symmetry.
Note also that the metric factor of (R + δR)2 gives us an extra αn contribution, so
overall, setting ϵ = |z| = 1, we have

∂X(R + δR)(z) = ∂X(R)(z) + δR

R

(
∂X(R)(z) − z̄

z
∂̄X(R)(z̄)

)
. (7.27)

Note that it is reassuring that the requirement that |z| = 1 (or |z| = const. more
generally) appears here, since it also appeared in the universal coordinate approach.
There, it came from having equal-time commutation relations, which translated to
constant |z| on the plane. Here we see the same requirement coming from the transition
from the mode transformation to the full local operator transformation. In section
7.1.4 we will come back to the relationship between universal coordinates and the Γ̂
connection in the context of the formalism presented in this chapter. We will show
that the existence of universal coordinates is indeed special to the Γ̂ connection and
that there does not seem to be an analogue for general connections. First, we extend
the analysis of [50] and recover the results of [15] to all orders in δR.

7.1.3 Higher orders

For ∂X, we can simply obtain the deformation to all orders in δR by replacing
2RδR → δg = 2RδR + δR2. If we then work to first order in δg instead of δR, we will
obtain the same results as above, but with 2RδR replaced by δg:

δ∂X(z) = 1
2δg

(
∂X(z) − z̄

z
∂̄X(z̄)

)
, (7.28)
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for a background deformation g → g + δg. This is in fact the full deformation, since
we already know that the finite transformation is given by (4.30), and indeed we see
that this is only first order in the metric deformation.

However, the story for the mode transformation is different because this transforma-
tion does not truncate at first order in δg (or second order in δR), but has corrections
to all orders, as may be seen by expanding the right hand side of (7.12) in powers of
λ. This is essentially because the mode deformation involves the inverse metric, the
deformation of which involves an infinite expansion in δg. Therefore, we need a way of
computing δO and δE transformations to all orders.

δE has a straightforward action as a local transformation, so there is no difficulty in
computing higher order variations (δE)n simply as repeated applications of δE. Higher
order O insertions require more care. In order to generalise the path integral derivation
of the first order stress tensor deformation in section 5.3 to higher orders, a prescription
is needed to specify how to treat the otherwise ambiguous insertions of higher powers
of O. Our prescription for computing higher order deformations is given by

On∂X(w) =
∫

Σn

d2zn...
∫

Σ1

d2z1O(zn, z̄n)...O(z1, z̄1)∂X(w), (7.29)

where
Σi = {zi ∈ C| |zi| ≥ ϵ, |zi − w| > 0, |zi − zj| ≥ ϵ ∀j > i}, (7.30)

where the order of the integral signs denotes the order in which the integrations are
done, i.e. we remove discs around all punctures corresponding to O(zj, z̄j) insertions
which have not yet been integrated out. For example, in the above integral we would
compute the z1 integral first, and therefore we would need to remove discs around
z2, ..., zn. For the z2 integral, since z1 has already been integrated out, we now only
need to remove discs around z3, ..., zn, and so on.

The evaluation of the resulting deformation is potentially complicated. However,
we claim5 that the only term that gives a finite contribution at order δgn is the one
where the contractions are taken by order of integration. Schematically, this is∫

Σn

...
∫

Σ1

[On[On−1[...[O2[O1, ∂X]]...]], (7.31)

i.e. we first contract ∂X with O1, then contract the result with O2, and so on until
On has been contracted. Here, we use commutator notation to avoid the confusing

5Further details and a justification of this prescription are given in appendix E.
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notation of multiple Wick contractions. Since a contraction of Oi with ∂X or ∂̄X leads
to a ∂̄X or ∂X respectively, this prescription is unambiguous. For other deformation
operators, such as those we shall consider in chapter 8, matters are more complicated.
This prescription is verified explicitly to second order in appendix E. In terms of the
modes, this gives a justification for being able to apply O sequentially to αn, which is
how we will compute the higher order corrections to δαn. With this justification, we
now come to the calculation itself.

Working with δg instead of δR, we have seen that

δO(R2αn) = i√
2
δgg−1

∮
Cϵ

0

dz̄zn∂̄X(z̄) = −1
2ϵ

2n(2RδR + δR2)ᾱ−n = −1
2ϵ

2nδgᾱ−n,

(7.32)
which we can simply divide by g = R2, since the metric is unaffected by O, to get

δOαn = −1
2ϵ

2nλᾱ−n, (7.33)

where we introduce λ := g−1δg. We note that δE g = δg and δEδg = 0, and so
δEλ = −λ2. Therefore, acting with δE on the mode gives

δE(R2αn) =
(
RδR + 1

2δR
2
)
αn = 1

2δgαn, (7.34)

which we rearrange to get
δEαn = −1

2λαn. (7.35)

Thus,
(δO + δE)αn = −1

2λ
(
αn + ϵ2nᾱ−n

)
. (7.36)

This first order result, coupled with the prescription described above, allows us to
systematise the calculation of higher order terms. We can thus iterate these results to
obtain the transformation to all orders. We will work with δg here because it is simpler
than working with δR, but it is easy to switch between the two (the two are related by
a reparameterisation of the path on M connecting the initial and final backgrounds).
The advantage of working with δg is that we can say O, δE are first order in δg, and
the nth order operator insertion is simply 1

n!(O + δE)n, as we can see from the path
ordered exponential (7.18).
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It is easy to show that6

1
m!

(
δO + δE

)m

αn = (−1)m 1
2λ

m(αn + ϵ2n ¯α−n). (7.39)

Summing over m recovers the all orders result (7.12) found using the universal coordi-
nate method. From (7.9), we can also recover the transformation of ∂X, evaluated on
the contour |z| = ϵ, to all orders,

∂X(R + δR)(z) = ∂X(R)(z) + δgg−1
(
∂X(R)(z) − z̄

z
∂̄X(R)(z̄)

)
, (7.40)

which indeed truncates at second order (since the transformation of R2αn truncates at
second order) and agrees with chapter 4.

7.1.4 Interlude: connections and universal coordinates

It is interesting to consider the relationship between universal coordinates and choice of
connection. As we shall see, X ′ and Π only remain universal under parallel transport
in M (given by (2.1)) with connection Γ̂. For a fixed background, we have X ′(z, z̄) =

i
R2 (z∂X(z) − z̄∂̄X(z̄)) and Π(z, z̄) = i(z∂X(z) + z̄∂̄X(z̄)). In terms of modes,

X ′(z, z̄) = 1√
2
∑

n

(αnz
−n − ᾱnz̄

−n), Π(z, z̄) = R2
√

2
∑

n

(αnz
−n + ᾱnz̄

−n), (7.41)

and so using the results of the previous section we can compute how X ′,Π change to
first order.

6This may be shown via induction:

1
(m+ 1)! (δO + δE)m+1αn = 1

m+ 1
(−1)m

2 λm(δO + δE)
(
αn + ϵ2nᾱ−n

)
. (7.37)

Then, using δE(g−1δg)m = m(g−1δg)m−1δE(g−1δg), we get to the desired result, i.e.

1
(m+ 1)! (δO + δE)m+1αn = (−1)(m+1) 1

2(g−1δg)m+1(αn + ϵ2n ¯α−n), (7.38)

as required. □
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The Γ̂ connection

For this connection, where ϵ = 1,

δX ′(z, z̄) = 1√
2
∑

n

(δαnz
−n − δᾱnz̄

−n) = 0, (7.42)

on the contour zz̄ = 1. The R2-dependence makes the calculation for Π only slightly
more involved,

Π(z, z̄) + δΠ(z, z̄) = (R + δR)2
√

2
∑

n

(
(αn + δαn)z−n + (ᾱn + δᾱn)z̄−n

)
. (7.43)

Substituting the transformations for the modes in, we find that δΠ = 0. Thus, we see
that X ′,Π are indeed universal for the Γ̂ connection. Given our earlier discussion in
section 5.2.2, this is as we would have expected. Although we expect this not to hold
in generality for the c, c̄ connections, it is interesting to see whether these operators in
particular retain their universal nature for other connections. If not, it is interesting to
see precisely where this fails. Let us look at the c, c̄ connections now.

The c connection

For the c connection, we integrate up to ϵ = 1 and then, for those operator coefficients
in the OPE for which the integral gives a finite result, we take the limit ϵ → 0. In
the case at hand, the only OPE which may have potential singularities that need
subtracting is the OPE between the marginal operator and ∂X(w), which gives

∮
C1

w−Cϵ
w

dz̄

z − w

(
∂̄X(w̄) + (z̄ − w̄)∂̄2X(w̄) + ...

)
, (7.44)

where C1
w and Cϵ

w are circles around z = w of radius 1 and ϵ respectively. Evaluating
(7.44) gives zero since there are no negative powers of (z̄ − w̄), so there are in fact no
divergences to subtract. This is also evident in the fact that (7.25) is finite in the limit
ϵ → 0, since we are only summing over n ≥ 0. We see in this limit that all of the terms
vanish apart from n = 0. Extending the result to n < 0, the transformation of the
modes for the c connection is given by

δαn = −δR

R
αn, δᾱn = −δR

R
ᾱn, n ̸= 0,
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δα0 = δᾱ0 = −δR

R
(α0 + ᾱ0). (7.45)

In this case, after some brief calculation, we find that

δX ′(z, z̄) = − δR

R
√

2
∑
n̸=0

(αnz
−n − ᾱnz̄

−n), δΠ(z, z̄) = RδR√
2
∑
n̸=0

(αnz
−n + ᾱnz̄

−n),

(7.46)
i.e. they are not universal with respect to the c connection. Note that the variation
of the zero modes still cancels out in both cases. In fact, what we notice is that the
transformation of α0, ᾱ0 is independent of the ϵ-dependent part of the connection. We
should perhaps have expected this since we recall that α0, ᾱ0 commute with L+

0 , the
generator of dilations. Since changes in the radii of the disks, ϵ, correspond to dilations,
we would expect α0, ᾱ0 to be independent of ϵ.

The c̄ connection

In this case, since there are no divergences to subtract, the c and c̄ connections are
actually the same, so X ′,Π are only universal for the Γ̂ connection, as suggested by
our calculations earlier. We shall see in chapter 8 that, for more general non-CFT
deformations, the Xµ will not be universal even for the Γ̂ connection. This is essentially
why things are so much more complicated when we move away from the adiabatic
limit. The existence of universal coordinates makes all of the calculations much simpler,
and when we do not have them we must use the more general parallel transport
construction.

We now look at the higher dimensional analogue of the previous section, i.e. when
we have a toroidal target space. In some ways things are clearer in this more general
case since the vielbein structure is more explicit and thus it is easier to see the contrast
between the O and δE transformations and why we need both of them to get the full
transformation.

7.2 d > 1: torus deformations by parallel transport

For d > 1, the above discussion generalises straightforwardly. The only new feature is
the possible presence of a constant B-field. Due to a subtlety in the δE transformation,
it will be helpful to distinguish between the B = 0 and B ̸= 0 cases.
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We recall the results from universal coordinates for convenience, which on the plane
are

∂Xµ(E ′)(z) = 1
2g

νρ
(

(E ′
µν + ET

µν)∂Xρ(E)(z) + (−E ′
µν + Eµν) z̄

z
∂̄Xρ(E)(z̄)

)
, (7.47)

∂̄Xµ(E ′)(z̄) = 1
2g

νρ
(

(−E ′T
µν + ET

µν)z
z̄
∂Xρ(E)(z) + (E ′T

µν + Eµν)∂̄Xρ(E)(z̄)
)
, (7.48)

and the mode transformations are

2g′
µνα

ν
n(E ′) =

(
ET

µν + E ′
µν

)
αν

n(E) +
(
Eµν − E ′

µν

)
ᾱν

−n(E), (7.49)

2g′
µνᾱ

ν
n(E ′) =

(
ET

µν − E ′T
µν

)
αν

−n(E) +
(
Eµν + E ′T

µν

)
ᾱν

n(E). (7.50)

As with the d = 1 case, we can choose a parameterisation of our path along which we
deform. We have deformation operator

P exp
 s∫

0

ds′dgµν(s′)
ds′

∫
Σ

d2z∂Xµ(z)∂̄Xν(z̄) + ∂

∂gµν

 , (7.51)

where g(s′) = g + s′

s
δg, so that

s∫
0

ds1...

sn−1∫
0

dsn
dgµν

ds1
...
dgρσ

dsn

= 1
n!δgµν ...δgρσ, (7.52)

giving deformation operator

P exp
δgµν

∫
Σ

d2z∂Xµ(z)∂̄Xν(z̄) + ∂

∂gµν

 . (7.53)

7.2.1 Metric deformations

We start with the simpler case where Bµν = 0 and the only change is due to the metric.
It is useful to introduce vielbeins e a

µ such that

gµν = e a
µ eaν . (7.54)

The generalisation of the δE transformation to higher dimensions is given by

δE = δgµν
∂

∂gµν

, (7.55)
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and we identify δEe
a

µ = δe a
µ , where δe is induced by δg (this could also be taken as a

definition of δE in this case). To compute this, we vary (7.54) and rearrange to get to

δe a
µ = δgµνe

νa − e b
µ δebνe

νa. (7.56)

Now, if we define U b
a = δeaνe

νb, then we see that the second term in the vielbein varia-
tion looks like a frame transformation except for the fact that U is not antisymmetric,
which is required to give a Lorentz transformation. Therefore, we will extract the
symmetric part from it and take the anti-symmetric part as the Lorentz transformation.
Doing so, we find that

U(ab) =δe(a|µe
µ

|b)

=e µ
a δgµνe

ν
b − V(ab), (7.57)

where V(ab) = e µ
(a| δeµ|b), i.e. we have

Us = δeT e−T + e−1δe, (7.58)
Vs = e−1δe+ δeT e−T , (7.59)

and so Us = Vs. Thus, rearranging the above equation gives

Uab = 1
2e

µ
a δgµνe

ν
b + Λab, (7.60)

where Λab = U[ab], and the variation of the vielbein can be written as

δe a
µ = 1

2δgµνe
νa − e b

µ Λ a
b , (7.61)

where Λab = U[ab] is a local frame transformation. The transpose can similarly be
written as

δea
µ = 1

2e
aνδgνµ + Λa

be
b
µ, (7.62)

where the sign change comes from the fact that Λ is antisymmetric. We can also invert
these to get

δeµ
a = −1

2g
µνδgνρe

ρ
a − eµ

bΛb
a, δe µ

a = −1
2e

ρ
a δgρνg

νµ + Λ b
a e

µ
b . (7.63)
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For ∂Xa, since this is a frame one-form, there should be a similar Lorentz transformation
for its variation as well, so we take

δE∂Xa = Λ b
a ∂Xb, (7.64)

and so overall we find that

δE∂Xµ(w) = 1
2δgµν∂X

ν(w), (7.65)

i.e. the Lorentz transformations cancel, as we would expect for objects without frame
indices. In general, we will usually ignore these Lorentz transformations and say, for
example, that δE∂Xa = 0, since, by construction, they should always cancel for the
spacetime operators we are interested in. A general frame object A c...d

a...b would be
expected to transform under δE as

δEA c...d
a...b = Λ e

a A c...d
e...b + Λ e

b A c...d
a...e − Λ c

e A e...d
a...b − Λ d

e A c...e
a...b . (7.66)

For the O insertion, the deformation operator is

O[X] = δgµν

∫
Σ
d2z∂Xµ(z)∂̄Xν(z̄), (7.67)

and taking the OPE with ∂Xµ(w) gives

O[X]∂Xµ(w) ∼ −1
2δgµν

∫
Σ′

d2z

(z − w)2 ∂̄X
ν(z̄)

= −1
2δgµν

∮
C′

dz̄

z − w
∂̄Xν(z̄). (7.68)

Thus, similarly to the d = 1 case, we find that

δ(gµνα
ν
n) = −1

2δgµν

(
αν

n + ϵ2nᾱν
−n

)
. (7.69)

If we are on the contour |z| = ϵ (see the discussion for the circle case for details), we
can also deduce the transformation for ∂Xµ(z) from this, which is

δ∂Xµ(z) = 1
2δgµν

(
∂Xν(z) − z̄

z
∂̄Xν(z̄)

)
, (7.70)

agreeing with (7.47).
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7.2.2 Deformations with a constant B-field

The doubled formalism [34, 11] provides an efficient way to generalise (7.61) in the
presence of non-vanishing constant B-field. This will shed light on how to understand
this in the ‘undoubled’ case, which we explain in detail in 7.2.3.

The embedding coordinate in the original (Xµ) and dual (X̃µ) descriptions are
related as [12, 11, 20]

∂X̃µ = −ET
µν∂X

ν , ∂̄X̃µ = Eµν ∂̄X
ν . (7.71)

In terms of the O(d, d)-covariant doubled coordinate XI = (Xµ, X̃µ), the O(d, d)-
invariant metric on the doubled space LIJ is given by [12]

ds2 = 1
2LIJdXIdXJ = dXµdX̃µ, (7.72)

where µ = 1, ..., d. This is the metric that is used to raise/lower indices. Additionally,
for a given background Eµν = gµν +Bµν , recall that we have the doubled metric

HIJ =
gµν −Bµρg

ρλBλν Bµρg
ρν

−gµρBρν gµν

 (7.73)

combining the metric and B-field into a single O(d, d)-covariant tensor. Thus, the case
with B-field may be found by applying the methodology of section 7.2.1 to the doubled
target space sigma-model

S = 1
4

∫
Σ

HIJdXI ∧ ∗dXJ + 1
2

∫
Σ

ΩIJdXI ∧ dXJ , (7.74)

where ΩIJ is the constant antisymmetric tensor we introduced in (3.52) and will play
no further role7. The relations (7.71) can be derived from the self-duality constraints
(3.53), which here simply become

dXI = LIJ(HJK ∗ dXK). (7.75)

A deformation of the target space HIJ → HIJ + δHIJ is given by the marginal operator

O = 1
2

∫
Σ

δHIJ∂XI ∂̄XJ . (7.76)

7See [11] and [12] for a more general discussion of such terms
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Note that LIJ does not change. Using the undoubled OPEs, it is straightforward to
verify that

∂XI(z)∂XJ(w) ∼ −1
2

HIJ − LIJ

(z − w)2 . (7.77)

As in the previous section, we can write the doubled metric in terms of doubled vielbeins
as

HIJ = V A
I δABVB

J , (7.78)

where δAB is the doubled frame metric (which does not raise/lower frame indices, just
as H does not raise/lower spacetime indices) and

V A
I =

eT Be−1

0 e−1,

 , VA
I =

 e 0
−e−TB e−T

 . (7.79)

We want δ∂XI = δ(V A
I ∂XA). Given some deformation of the doubled metric δHIJ , we

have the relations

δHIJ = −HIKδHKLHLJ = LIKδHKLL
LJ , (7.80)

and we can combine these two to obtain the often more useful identity HIJδHJK =
−δHIJHJK . Note also that we can safely define such objects as δH J

I = δHIKL
KJ ,

since δL = 0. We also have

δV A
I = 1

2δHIJVJ
B δ

BA − V B
I Λ A

B , (7.81)

analogous to the undoubled case. Thus, the ∂XI transformation is largely the same
as in the undoubled case, except for the fact that there are two metrics, each playing
a different role. We are interested in the OPE of O, given by (7.76), and ∂XI(w).
Evaluating the OPE using (7.77) and comparing coefficients as we did for the circle
deformation gives the doubled mode deformation as

δO(HIJaJ
n) = 1

4

(
δHIJ − HK

IδHKJ

)
ϵ2nāJ

−n, (7.82)

where we have introduced the mode expansion

∂XI(z) = i√
2
∑

n

HIJ aJ
n z

−n−1, (7.83)
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and aI
n = (αµ

n, α̃nµ) are the doubled oscillator modes. Using the above identities, we
can rewrite (7.82) as

δO(HIJaJ
n) = 1

2δHIJϵ
2nāJ

−n. (7.84)

For the Γ̂ connection with |z| = 1, we can then deduce the transformation of ∂XI as

δO∂XI(z) = 1
2
z̄

z
δHIJ ∂̄XJ(z̄). (7.85)

The δE∂XI calculation also has a subtlety,

δE∂XI = δV A
I ∂XA = 1

2δHIJVJ
B δ

BA∂XA. (7.86)

It is not the case that VJ
B δ

BA∂XA = ∂XJ , since δBA does not raise/lower indices, since
it is not the O(d, d)-invariant metric L. We have

VJ
B δ

BA∂XA =
 eν

b 0
Bνρe

ρ
b e b

ν

δba 0
0 δba

∂X̃a

∂Xa

 = −∂XJ , (7.87)

where we have used that ∂X̃ν = −ET
νρ∂X

ρ and ∂X̃a = −∂Xa (since the background
for the frame is just δab and this raises/lowers indices in the undoubled case). Thus,
overall, we find that

δ∂XI(z) = 1
2δHIJ

(
−∂XJ(z) + z̄

z
∂̄XJ(z̄)

)
, (7.88)

the components of which can be checked to recover the results of chapter 4.

7.2.3 The utility of the doubled formalism when B ̸= 0
Once the effects of a metric deformation are understood, the doubled formalism provides
an efficient way to generalise to include a B-field. In particular, the doubled formalism
provides a natural way to incorporate the B-field deformation into the δE part of the
transformation. In the undoubled case, we have

δE∂X
µ = δeµ

a∂X
a. (7.89)
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This clearly only gives the metric contribution and there does not seem to be any way
to introduce the B-field. However, we recall that

δeµ
a = −1

2g
µνδgνρe

ρ
a − eµ

bΛb
a, (7.90)

where, importantly, Λab is antisymmetric. If we now write this as

δeµ
a∂X

a = − 1
2g

µνδgνρe
ρ
a∂X

a + 1
2g

µνδBνρ∂X
ρ − 1

2g
µνδBνρ∂X

ρ − eµ
bΛb

a∂X
a

= − 1
2g

µνδgνρe
ρ
a∂X

a + 1
2g

µνδBνρ∂X
ρ − eµ

bΛ
′b

a∂X
a, (7.91)

where we have absorbed the −1
2g

µνδBνρ∂X
ρ term into the new frame transformation

Λ′, we see that we obtain the correct transformation. It is not obvious why we should
do this. However, in the doubled formalism, this is exactly what happens, except it
occurs naturally due to the O(d, d) structure. If we compute the first term of (7.81) in
components, we find that

1
2δHIJVJ

B δ
BA = 1

2

δgµνe
νa −Bµνg

νρδBρσe
σa δBµνe

ν
a −Bµνg

νρδgρσe
σ

a

−gµνδBνρe
ρa −gµνδgνρe

ρ
a

 . (7.92)

Since we want δ∂Xµ, it is the second row we are interested in (since ∂XI = (∂X̃µ, ∂X
µ)).

We see that the bottom left entry gives us the additional contribution of

1
2g

µνδBνρe
ρa∂Xa, (7.93)

using ∂X̃a = −∂Xa. This is precisely the contribution that we included arbitrarily
in (7.91), but now we see that it arises naturally in the doubled formalism. Thus, it
seems as though the O(d, d) structure is precisely the ‘extra information’ we need in
order to recover (7.47). This is somewhat unsatisfactory though, since we intuitively
expect that we can derive the correct results without having to resort to the doubled
formalism. We will see next that this is indeed possible precisely in the case of the Γ̂
connection, which is the context in which (7.47) is derived in [15], and that there is a
close connection with universal coordinates.

7.2.4 Universal coordinates and doubled geometry

Let us look at the universality of X ′ in the Γ̂ connection (we could also look at Π, but
X ′ is simpler). We have X ′(z, z̄) = −1

2g
−1(z∂X(z) − z∂̄X(z̄)). Now, let us assume
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that
δe a

µ = 1
2δgµνg

νρe a
ρ + γδBµνe

νa, (7.94)

for some c-number γ. As we saw earlier, there is the potential to have such a B-field
term since the B-field is antisymmetric. From the doubled treatment above, we saw
that the extra B-field contribution to the δE transformation did not seem to naturally
come from the vielbein transformation, but did arise naturally in the doubled formalism
as a requirement of the O(d, d)-covariance of the doubled formalism. If we require that
all (target space) scalar operators are killed by δE, this specifies the action of δE on
the operators. Thus, we have

δE∂Xµ = 1
2δgµν∂X

ν + γδBµν∂X
ν , δE ∂̄Xµ = 1

2δgµν ∂̄X
ν + γ̄δBµν ∂̄X

ν , (7.95)

where γ̄ is not the complex conjugate of γ. Then, substituting this into X ′, we have

δX ′µ(z, z̄) = 1
2g

µρgσνδgρσ(z∂Xν(z) − z̄∂̄Xν(z̄)) − 1
2g

µν
(1

2δgνρz∂X
ρ(z) + γδBνρz∂X

ρ(z)

−1
2δEνρz̄∂̄X

ρ(z̄) − 1
2δgνρz̄∂̄X

ρ(z̄) − γ̄δBνρz̄∂̄X
ρ(z̄) + 1

2δE
T
νρz∂X

ρ(z))
)

= 1
4g

µνδBνρ

(
z∂Xρ(z)(1 − 2γ) + z̄∂̄Xρ(z̄)(1 + 2γ̄)

)
, (7.96)

and so we require γ = −γ̄ = 1
2 for X ′ to be universal. Thus, we see that the condition

of universality is sufficient to give the correct B-field contributions to recover (7.47),
(7.48). These are also precisely the contributions that arose naturally in the doubled
geometry. This is as we would expect because universality and doubled geometry
both preserve the O(d, d) structure. With universality, this comes from the fact that
the canonical commutation relations are preserved under parallel transport, and with
doubled geometry the O(d, d) structure is explicit in its construction. Given that the
Γ̂ connection seems to precisely correspond to the existence of universal coordinates,
we thus conclude that the Γ̂ connection preserves the natural O(d, d)-covariance of the
embedding fields under parallel transport and gives the same deformation results as
the doubled geometry.

It is instructive to look at the general case where we have not yet chosen a connection,
i.e. we do not specify a regime for ϵ (such as keeping ϵ fixed and finite, or taking a
limit ϵ → 0 with some counter-terms). We find that

δαµ
n = −1

2g
µν
(

(δgνρ − 2γδBνρ)αρ
n + ϵ2nδEνρᾱ

ρ
−n

)
. (7.97)
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Now, we would like to compare this to the doubled geometry. In the doubled case, we
have doubled oscillator modes aI

n = (αµ
n, α̃nµ), and the self-duality constraints give us

α̃nµ = −ET
µνα

ν
n, ˜̄αnµ = Eµνᾱ

ν
n. (7.98)

From our earlier calculations, we have

δOaI
n = 1

2ϵ
2nδHI

J āJ
−n, δEaI

n = −1
2δH

I
JaJ

n, (7.99)

where we have used δVI
A ∼ −1

2HIJδHJKVK
A . Thus, by taking the appropriate

components and using the self-duality constraints, we get

δEα
µ
n = −1

2g
µν(δgνρ − δBνρ)αρ

n. (7.100)

Thus, we see that, for agreement with the doubled geometry, we need to set γ = 1
2 , and

this is independent of connection. Similarly, we would find that γ̄ = −1
2 by looking at

ᾱn.
Thus, in general we require γ = −γ̄ = 1

2 to preserve the O(d, d) structure, but it
is only for the Γ̂ connection that these values are required, and in particular it is the
existence of universal coordinates which fixes them. As discussed earlier, universal
coordinates are special to the Γ̂ connection and in general we do not have this additional
structure. For a general connection, there is some freedom to choose how the B-field
enters into the transformation, but if the O(d, d) structure is in place then the symmetry
between the metric and B-field removes this freedom.



Chapter 8

Nonlinear Sigma Models and
Off-shell Deformations

So far, our discussion of operator deformations using O and δE have been in the context
of genuine CFTs only and the calculations have all been fairly tractable. However, we
now once again look at the torus bundle examples of chapter 3, where we no longer
have conformal invariance, though these backgrounds can be used as building blocks
for honest string backgrounds1. The difficulty of working with toy models which are
not full string theory solutions is that we can no longer rely on worldsheet conformal
invariance and we are forced to consider off-shell correlation functions. The difference
between what we did in chapter 6 and what we will do now is that here we take the
x-dependence of the metrics into account when pulled back to the worldsheet, i.e. we
now move away from the adiabatic limit. This is something that has been largely
ignored in the literature, in part due to the computational difficulty of the problem.

The approach taken in String Field Theory will be our guide. The worldsheet theory
will be taken to be Weyl-invariant, allowing for the local decoupling of worldsheet
metric degrees of freedom, but at the cost of a loss in diffeomorphism invariance. The
ghost sector will not be changed under parallel transport and will not concern us
further. Instead of dealing with a complicated worldsheet metric, we imagine a local
coordinate system wi around each puncture. The coordinates around each puncture
are related to a reference coordinate system z, with respect to which any integration
may be done, by functions z = fi(wi). It is conventional to choose the locations of
the punctures as the origins of the local coordinate systems, so that zi := fi(0). The
details of the metric on the worldsheet Σ are then encoded in the set of functions fi.

1See [52] for a recent example.
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On-shell correlation functions are independent of the choice of fi and may be written
as the familiar integral over the moduli space of punctured Riemann surfaces Mg,n,

∫
Mg,n

µg,n

〈
Φ1(z1)...Φn(zn)

〉
, (8.1)

where µg,n is the usual measure on Mg,n built from ghosts and Beltrami differentials.
More generally, off-shell correlation functions will depend on the choice of fi. One way
to address this [37, 74] is to replace the usual integral over Mg,n with an integral over
Sg,n ⊂ Pg,n. Here Pg,n is the infinite-dimensional bundle with finite-dimensional base
Mg,n and infinite-dimensional fibres describing the possible choices of local coordinate
about each puncture. Sg,n is a section of Pg,n with the same dimension as Mg,n. If we
employ this construction for an on-shell correlation function, the choice of section Sg,n

does not matter and we recover the standard prescription.
In practice, we will only be interested in following the deformation of a small

number of insertions (typically one at the point z = w and another, a spectator field,
at the origin) and so the details of the maps z = fi(wi) and which section of Pg,n we
are working with will not be of immediate concern.

We will only be interested in deformations that preserve L−
0 = L0−L̄0, the generator

of rotations on the worldsheet2. This is true for CFT cases [22] and we have shown
in appendix F that this is true for the constant H-flux background we consider here3.
Even though we shall often discuss the transformation of operators that are not in
the kernel of L−

0 , such as ∂Xµ, ultimately one would be interested in operators which
would be taken to lie in the kernel of L−

0 , as they would have a more direct relevance
for physical states.

In these more general cases where we are considering non-CFT deformations, we
no longer necessarily have the luxury of universal coordinates. As before, it will prove
helpful in this context to be more explicit about the objects at the self-dual point. In
particular, we will denote embedding fields of the theory before deformation by ϕµ

(usually a free theory at some point of enhanced symmetry) and those of the deformed
theory by the more traditional Xµ. However, note that the theory with embedding
field ϕµ may not simply be the T d with background E = G, since, as we will shortly,
we will usually work on the cover where ϕx is decompactified, so the target space
will be R × T d−1. This is more of a technical point and will not have any effect on

2L−
0 = 0 need only be preserved modulo gauge.

3Neglecting the effect of terms not invariant under rotations was a property built in to the original
formalism of [23, 24]. Here it arises naturally from the vanishing of L−

0 .
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the calculations themselves, but, as we now explain, it means we can avoid issues of
topology change.

We will have in mind a worldsheet Σ of genus zero, but we expect our considerations
to generalise to higher genus.

A note on topology change

For much of this section, our starting point will be a T 3 with one or more circles tuned
to the self-dual radius R =

√
α′ and a free worldsheet CFT describing the embedding

into this background. The backgrounds of interest will include target spaces with
constant curvature or constant H-field, described by interacting worldsheet theories.
In principle, one would have to contend with a change in the topology of the spacetime
(or in the doubled space) when switching on such constant fluxes. We shall sidestep
this issue by working in a covering space (such as T 2 × R), where the deformation can
be smoothly turned on, and then an identification on the coordinates may be imposed
to recover the desired compact background4.

8.1 H-flux deformation

We start with the T 3 with constant H-field Hµνρ. This background may be thought
of as a T 2 bundle over S1 in which the B-field in the fibres undergoes a large gauge
transformation upon circumnavigating the base. In this case, we choose to work in the
cover T 2 × R where an identification on the base coordinate is taken to be imposed at
a later point. The action is

S[X] = 1
2

∫
Σ

d2z∂Xµ(z)∂̄Xµ(z̄) +
∫
V

H + ..., (8.2)

where ∂V = Σ and the ellipsis denotes ghosts and other terms that will not be relevant
to our discussion. The classical equation of motion is

∂∂̄Xµ(z, z̄) +Hµ
νλ∂X

ν(z, z̄)∂̄Xλ(z, z̄) = 0. (8.3)

Integrating gives

Xµ(z, z̄) = ϕµ(z, z̄) −Hµ
νλ

∫
Σ

d2wG(z, w)∂Xν(w)∂̄Xλ(w̄), (8.4)

4This is similar in spirit to the perspective often taken in discussions of the T-fold [12].
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where ϕµ(z, z̄) ∈ Ker(∂∂̄), i.e. is a solution on the torus with H = 0, and G(z, w) ∼
− ln |z − w|2 is the Green’s function for ∂∂̄ at genus 0. In the specific examples
below, we will introduce λ such that H = λ ∗ 13. From this classical consideration the
deformation of ∂ϕµ(z) at first order is

∂ϕµ(z) → ∂Xµ(z) = ∂ϕµ(z) + λϵµνλ

∫
Σ

d2w

z − w
∂ϕν(w)∂̄ϕλ(w̄) + .... (8.5)

If we put the α′ dependence back in, we find that this simply corresponds to α′ → α′λ2.
It is significant that α′ and λ2 appear together5 here and we will comment upon this
further in section 8.6. At higher order in λ, the full quantum calculation will include
higher order contractions not given by classical considerations, but at leading order,
where only single contractions contribute, we expect the classical considerations to be
reliable. We shall see that this is true.

If one takes the base coordinate X(z, z̄) = x + ..., as given by (2.17), and only
considers the constant piece x, the deformation operator may be written in the form

O = 1
3Hµνρx

ρ
∫

Σ
d2z∂ϕµ(z)∂̄ϕν(z̄) + ..., (8.6)

and we are in the adiabatic (free CFT) regime studied in chapter 6. Such deformations
fall into the class of toroidal deformations considered in chapter 7. We now turn to
determining the leading corrections to this adiabatic approximation.

8.1.1 Deformation at first order

As usual, we have a T 2 with coordinates (Y, Z) fibred over R with coordinate X and
an identification X ∼ X + 2π later imposed. For this background, the important
information appears as a large gauge transformation monodromy of the B-field in the
fibres as X → X + 2π.6 We usually choose the gauge such that

g = dx2 + dy2 + dz2, B = mxdy ∧ dz, (8.7)

where m ∈ Z, and the deformation operator, given by the pullback of the B-field to
the worldsheet, is

O[ϕx] = m
∫
Σ

d2z ϕx(z, z̄)F−
yz(z, z̄), (8.8)

5To see this one must redefine the fields as Xµ → λ−1Xµ.
6Note that, apart from the circle case, we will always use Xµ to refer to a general coordinate

component, so there should not be any confusion in calling the first component X.
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where we have introduced

F±
µν(z, z̄) ≡ ∂ϕµ(z)∂̄ϕν(z̄) ± ∂ϕν(z)∂̄ϕµ(z̄). (8.9)

Calculation of δE
For the H-flux, since we have a non-zero B-field, we must evaluate the δE transformation
using one of the approaches described earlier. Since we have already gone through the
doubled geometry derivation, it is easiest to just plug in the H-flux background into
the result we derived, which we recall is

δE∂XI = −1
2HIJ∂XJ . (8.10)

Doing so, we find that

δE∂ϕx = 0, δE∂ϕy = 1
2mϕ

x∂ϕz, δE∂ϕz = −1
2mϕ

x∂ϕy. (8.11)

We have the δE transformation, but if we want to compute the mode transformation
we would like to write this in integral form. The reason for this is that, in order to
read off the mode transformation δαy

n, we would like to have an expression of the form∑
m w

−m−1fm, where fm is some expression in terms of the modes, which can then be
read off as the deformation of αy

n, as we did for the stress tensor deformation (5.38).
Such expressions are most easily obtained from integral expressions like the ones we
have seen already (from expanding (z − w)−1 in powers of z). We can show (details in
appendix D) that

δEϕy(w) = 1
2m

∫
Σ′

d2z

z − w
∂̄ϕx(z̄)∂ϕz(z) − 1

2m
∮

C′
0

dz

z − w
ϕx(z, z̄)∂ϕz(z), (8.12)

where we define ∫
Σ′

= lim
ϵ→0

∫
Σϵ

,
∫

C′
0

= lim
ϵ→0

∫
Cϵ

0

(8.13)

A similar result follows for δE∂ϕz. We can then use this integral representation to
compute the mode deformation. The calculation is fairly involved and the details are
in appendix D.
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Calculation of δO

The deformation operator, that part of the transformation which changes the action, is
given by (8.8). Before proceeding, we need to think about whether this object makes
sense as it stands. If we require ϕx to be a compact direction, there will be a branch
point on the worldsheet whenever the string wraps the ϕx direction. This is manifest
in the periodicity condition

ϕx(z, z̄) ∼ ϕx
(
e2πiz, e−2πiz̄

)
= ϕx(z, z̄) + 2πω, (8.14)

where ω ∈ Z is the winding number around the ϕx direction. This leads to an ambiguity
O ∼ O + ∆O, where

∆O = 2πwm
∫
Σ

d2z F−
yz(z, z̄). (8.15)

There is no problem here though. ∆O generates a large gauge transformation of the B-
field and is a symmetry of the theory [45]. Thus, the ambiguity simply reflects the fact
that the B-field is only locally defined, as the presence of the non-trivial H field strength
indicates. We shall see a more general way to deal with such symmetries in section 8.5.
For now, we shall assume our definition of the connection is augmented to include an
appropriate gauge transformation to account for the branch point. Alternatively (and
in practice), we could work in the cover (where ϕx is not compact), deform our theory
and then impose the relevant identification on ϕx in the new background.

Contraction of O with ∂ϕy(w) gives

δO∂ϕy(w) = −1
2m

∫
Σ′

d2z
1

(z − w)2 ϕ
x(z, z̄)∂̄ϕz(z̄), (8.16)

which we can more conveniently write as

δO∂ϕy(w) = −1
2m

∫
Σ′

d2z

z − w
∂ϕx(z)∂̄ϕz(z̄) − 1

2m
∮

C′
0

dz̄

z − w
ϕx(z, z̄)∂̄ϕz(z̄), (8.17)

where we have dropped the C ′
w integral since this can be shown to vanish. The first

order change in the modes is then given by7

δOα
y
n = i√

2
m
∫
Σ′

d2z zn∂ϕx(z)∂̄ϕz(z̄) + i√
2
m
∮

C′
0

dz̄ znϕx(z, z̄)∂̄ϕz(z̄) + ..., (8.18)

7Using (z − w)−1 = −
∑

n≥0 w
−n−1zn when |z| < |w|.
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where the ellipsis denotes divergent terms, which are dealt with according to the choice
of connection. As with δE, the details of this mode calculation are given in appendix
D. Similar results also follow for δ∂ϕx and δ∂ϕz.

The first order deformation

Putting the O and δE parts together gives the first order changes (evaluated on a
contour |w|=constant)8

δ∂ϕx(w) = 1
2m

∫
Σ′

d2z

z − w
F−

yz(z, z̄), (8.19)

δ∂ϕy(w) = 1
2m

∫
Σ′

d2z

z − w
F−

zx(z, z̄) − 1
2m

∮
C′

0

ϕx(z, z̄)dϕz(z, z̄)
z − w

, (8.20)

δ∂ϕz(w) = 1
2m

∫
Σ′

d2z

z − w
F−

xy(z, z̄) + 1
2m

∮
C′

0

ϕx(z, z̄)dϕy(z, z̄)
z − w

, (8.21)

where we have written dϕz(z, z̄) = dz∂ϕz(z) + dz̄∂̄ϕz(z̄), dϕy(z, z̄) = dz∂ϕy(z) +
dz̄∂̄ϕy(z̄). In terms of modes, the first order deformation for αx

n is

δαx
n = −1

2m
∫
Σ′

d2z zn F−
yz(z, z̄), (8.22)

with the mode transformations of αy
n and αz

n taking a similar form. With a little work,
the integrals can be done and the ϵ dependence made explicit. This is done in detail in
appendix D, where it is shown that the deformation in the ∂ϕy modes may be written
as

δOα
y
n = xAnᾱ

z
−n +

∑
p

Bnpᾱ
z
pα

x
n+p +

∑
p

Cnpᾱ
z
pᾱ

x
−n−p, n ≥ 0, (8.23)

where A,B, C are ϵ-dependent constants. Only the first term contributes in the adiabatic
limit. These expressions give some insight into how turning on the H-field deforms the
free field algebra of operators.

8Note that we could explicitly extract the corrections of the adiabatic limit if we made the radius
of the base explicit, along the lines of the discussion around (6.11), though here we fix the base radius
to 1 for simplicity.
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8.1.2 Branch points and gauge-invariance

A few comments are in order. We claim that the second, branch-dependent, terms in
(8.20) and (8.21) are gauge-dependent. Note that, in this gauge, ∂ϕx is in the kernel of
δE. This would not necessarily be the case had we chosen to work in a different gauge
and is a reflection of the fact that δE preserves the classical action. Had we chosen to
work in the gauge where B = mydz ∧ dx, then ∂ϕy would have been in the kernel of δE.
The difference between these two gauges is the large gauge transformation B → B + Λ,
where Λ = 1

2md(xydz). In terms of the worldsheet, this is generated by

Λ[ϕx, ϕy] = 1
2m

∮
∂Σ

ϕxϕydϕz. (8.24)

Contracting Λ[ϕx, ϕy] with ∂ϕy(w) gives the second term in (8.20), suggesting this
term really is a gauge artifact.

There is further evidence for this if we look at the solution obtained from considering
the classical equation of motion (8.3), which for Y is

∂∂̄Y = −1
2m(∂X∂̄Z − ∂Z∂̄X). (8.25)

Given a solution ϕy to the flat equation of motion ∂∂̄ϕy = 0, this can be solved
iteratively. Doing so to first order gives

δ∂ϕy(w) = −1
2m

∫ d2z

z − w
F−

xz(z, z̄), (8.26)

where ∂Y = ∂ϕy + δ∂ϕy + O(m2). This can be seen, for example, by noting that
∂̄
(

1
z−w

)
= δ2(z − w). Thus, up to the branch-dependent terms, (δO + δE)∂ϕy is of the

same form as the classical result, which is what we would expect at first order, and
further suggests that the branch-dependent term is a gauge artifact. At higher order,
we expect our formalism to give the full quantum corrections and so the results will
differ from the classical case.

8.1.3 Absence of universal coordinates

Throughout, we have mentioned how the existence of universal coordinates is specific
to CFTs and is intimately related to the Γ̂ connection. The deformations we derived
above for the H-flux were in the c connection, so we do not expect there to be any
universal coordinate construction there anyway (see section 7.1.4). However, what
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about when we use the Γ̂ connection? As mentioned, the Γ̂ connection is only naturally
defined in a CFT context, since we can always dilate the discs around the punctures
to arbitrary radius. However, it is still worth seeing explicitly the lack of existence of
universal coordinates in off-shell cases. We will take the deformation of ∂ϕx, since this
is simplest and the form of the deformation is exactly the same in any connection, the
only difference being the integration domain. For the Γ̂ connection, we have

δ∂ϕx(w) = 1
2m

∫
Σ−(D1

0∪D1
w)

d2z

z − w
F−

yz(z, z̄). (8.27)

Note that, in the CFT case, we took the disc around w to have radius ϵ → 0, which
we had the freedom to do due to conformal symmetry. Here however, we do not have
this freedom and so we fix the radius of the disc around w to be 1. Now, recall that
we have

X ′µ(E) = −igµν
(
z∂Xν(E) − z̄∂̄Xν(E)

)
, (8.28)

and that this is universal for a CFT with the Γ̂ connection. Given (8.27) and the
corresponding transformation for ∂̄ϕx,9

δ∂̄ϕx(w̄) = 1
2m

∫
Σ−(D1

0∪D1
w)

d2z

z̄ − w̄
F−

yz(z, z̄), (8.29)

we have

δX ′(G)(w, w̄) = −i(w∂ϕx(w) − w̄δ∂̄ϕx(w̄))

= −im

2

∫
Σ−(D1

0∪D1
w)

d2zF−
yz(w, w̄)

(
w

z − w
+ w̄

z̄ − w̄

)
. (8.30)

Clearly, this does not vanish, and so X ′ is not universal. Similar calculations can be
done for Y ′ and Z ′, as well as Πµ. Thus, as claimed, we no longer have universal
coordinates for these off-shell deformations.

8.1.4 Higher order contributions

In the adiabatic approximation, the deformation of ∂ϕµ truncates at first order in
m, since the H-flux deformation δE is first order in m. However, if we are taking
the X-dependence in the B-field into account, we expect that there will be stringy

9We have used that, under complex conjugation, dz ∧ dz̄ → −dz ∧ dz̄.
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corrections at all orders in m. Therefore, it is of interest to find a way to calculate
these corrections. In the CFT case, i.e. when O has no ϕx-dependence, we described
a way to systematically generalise the first order procedure to all orders in section
7.1.3 and in more detail in appendix E. However, when there is ϕx-dependence in O,
this procedure would need significant modification. Nevertheless, this is still a starting
point to consider the challenges that arise at higher order. For example, at second
order, if we are looking at δ∂ϕy(w), we would be interested in the integral

O2O1∂ϕy(w) =
∫

Σ2

d2z2

∫
Σ1

d2z1O(z2, z̄2)O(z1, z̄1)∂ϕy(w), (8.31)

where
Oi = m

∫
Σi

d2zϕx(z, z̄)F−
yz(z, z̄), (8.32)

with Σi given by (7.30). Naively following the prescription used in the free field case, we
would first contract ∂ϕy(w) with O(z1, z̄1), and then contract the result with O(z2, z̄2),
i.e. we would have the sequential contractions

δO2

(
δO1

(
∂ϕy(w)

))
= −m2

2

∫
Σ2

d2z2

∫
Σ1

d2z1

(z1 − w)2ϕ
x(z2, z̄2)

(
∂ϕy(z2)∂̄ϕz(z̄2) − ∂ϕz(z2)∂̄ϕy(z̄2)

)
ϕx(z1, z̄1)∂̄ϕz(z̄1),

= m2

4

∫
Σ2

d2z2

∫
Σ1

d2z1

(z1 − w)2

(
F−

yz(z2, z̄2)∂̄ϕz(z̄1) log |z1 − z2|2

+ϕ
x(z2, z̄2)∂ϕy(z2)ϕx(z1, z̄1)

(z̄1 − z̄2)2 − 1
2

log |z1 − z2|2

(z̄1 − z̄2)2 ∂ϕy(z2)
)
.

(8.33)

We could then compute this integral to obtain the result. Note that here we have
included both the single and double contractions between the z1 and z2 fields, though
the double contraction term is most likely a divergent term that we would remove via
a regularisation procedure. In appendix E, we show that, as expected, the deformation
resulting from (O + δE)2 vanishes for ∂ϕµ when we have a constant background E.
However, in this case, since there is X-dependence in E, we expect in general that
the same cancellations will not occur and that there will be second (and higher) order
corrections. As we can see from the above integral, the ϕx-dependence is explicit and
makes the calculation significantly more complicated, and will undoubtedly introduce
new terms.
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If we looked at higher order contractions, what we would see is that, in addition
to the terms that we would ordinarily get without the ϕx-dependence, we also get
additional terms coming from the ϕx contractions. The contractions which do not
involve ϕx follow the expected pattern, e.g. at third order, we have the contractions

δO3 (δO2 (δO1 (∂ϕy(w)))) = m2

4

∫
Σ3

d2z3

∫
Σ2

d2z2

∫
Σ1

d2z1

(z1 − w)2


ϕx(z3, z̄3)∂ϕy(z3)∂̄ϕz(z̄3)∂ϕy(z2)∂̄ϕz(z̄2)∂̄ϕz(z̄1) log |z1 − z2|2

+
(
ϕx(z3, z̄3)∂ϕy(z3)∂̄ϕz(z̄3)∂ϕy(z2)∂̄ϕz(z̄2)∂̄ϕz(z̄1)

+ϕx(z3, z̄3)∂ϕz(z3)∂̄ϕy(z̄3)∂ϕz(z2)∂̄ϕy(z̄2)∂̄ϕz(z̄1)
)

log |z1 − z2|2

+ 1
(z̄1 − z̄2)2

(
ϕx(z3, z̄3)∂ϕy(z3)∂̄ϕz(z̄3)ϕx(z2, z̄2)∂ϕy(z2)ϕx(z1, z̄1)

+ϕx(z3, z̄3)∂ϕy(z3)∂̄ϕz(z̄3)ϕx(z2, z̄2)∂ϕy(z2)ϕx(z1, z̄1)
)

− log |z1 − z2|2

2(z̄1 − z̄2)2 ϕx(z3, z̄3)∂ϕy(z3)∂̄ϕz(z̄3)∂ϕy(z2)
, (8.34)

and the term that we would have in the flat torus case would be

ϕx(z3, z̄3)∂ϕy(z3)∂̄ϕz(z̄3)ϕx(z2, z̄2)∂ϕy(z2)ϕx(z1, z̄1) = − ∂̄ϕz(z̄3)ϕx(z3, z̄3)ϕx(z2, z̄2)ϕx(z1, z̄1)
2(z3 − z2)2 ,

(8.35)

whereas all other contractions would involve log terms from the ‘ϕxϕx’ contractions.
Of course, when it comes to doing the integration, the ϕx-dependence will have a
significant effect here as well, so even terms which would still be there in the constant
background case may give extra contributions.

These calculations make it clear that it is better to make a specific choice of
connection, one designed to reduce the complexity of the calculations from the start.
As discussed above, the presence of the branch points is symptomatic of winding modes
around the base, and either working in the cover or incorporating an appropriate large
gauge transformation in the definition of the connection should deal with such terms.
It is unlikely that the calculation can be systematised in the way achieved for the CFT
deformations, as O can no longer be thought of as a map that preserves the subspace
spanned by ∂ϕ and ∂̄ϕ. Instead, the O considered here mixes in other operators. It
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would be interesting to see if there is a relatively simple subspace that O preserves. It
is also clear that any candidate for a universal coordinate for this deformation would
need to be a more general vector within this subspace than that considered in [15].

8.2 Nilfold deformation

As a second example, we consider the T-dual of the H-flux, the nilfold. As above,
we shall take the base to be R and then impose an identification in the coordinates.
We shall see agreement at first order with the classical result here as well. We shall
investigate the T-duality between the H-flux and the nilfold in chapter 9 from our
parallel transport perspective.

The metric is
ds2 = dx2 + (dy −mxdz)2 + dz2. (8.36)

The nilfold is usually taken to be compact, with identifications on all coordinates.
For clarity, we lift to the cover (the three-dimensional Heisenberg group manifold
mentioned in chapter 3), perform the deformation, and then impose the appropriate
identifications on the coordinates.

The deformation operator is10

O[ϕx] = −m
∫
Σ

ϕxF+
yz +m2

∫
Σ

(ϕx)2∂ϕz∂̄ϕz. (8.37)

As before, we focus on one of the coordinates. We shall only consider the first order
deformation and so neglect the m2 term. The worldsheet equation of motion for ∂Y
for the nilfold is given by

∂∂̄Y = 1
2m(∂X∂̄Z + ∂Z∂̄X) +O(m2), (8.38)

and integrating out the ∂̄ gives

δ∂ϕy(w) = −mϕx(w, w̄)∂ϕz(w) + 1
2m

∫ d2z

z − w
F+

xz(z, z̄) = 1
2m

∫ d2z

z − w
F−

xz(z, z̄),

(8.39)

where we have used ϕx(w, w̄)∂ϕz(w) =
∫
d2z∂̄

(
1

z−w

)
ϕx(z, z̄)∂ϕz(z). We will reproduce

this up to contour integrals using our formalism. The calculations are qualitatively the
10Unlike the previous example, there is a quadratic part to O in which normal ordering of (ϕx)2 is

understood.
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same as for the H-flux, so we will not give much detail. We have:

δO∂ϕy(w) = 1
2m

∫
Σ′

d2z

z − w
∂ϕx(z, z̄)∂̄ϕz(z) + 1

2

∮
C′

0

dz̄

z − w
ϕx(z, z̄)∂̄ϕz(z̄), (8.40)

δE∂ϕy(w) = −1
2mϕ

x(w, w̄)∂ϕz(w)

= 1
2m

∮
C′

0

dz

z − w
ϕx(z, z̄)∂ϕz(z) − 1

2m
∫
Σ′

d2z

z − w
∂ϕz(z)∂̄ϕx(z̄), (8.41)

and so overall we have

(δO + δE)∂ϕy(w) = 1
2m

∫
Σ′

d2z

z − w
F−

xz(z, z̄) + 1
2m

∮
C′

0

ϕx(z, z̄)dϕz(z, z̄)
z − w

, (8.42)

which agrees with the classical result up to the branch-dependent terms. The calculation
follows similarly for ∂ϕx, ∂ϕz, and overall we have, to first order in m,

δ∂ϕx(w) = −1
2m

∫
Σ′

d2z

z − w
F+

yz(z, z̄), (8.43)

δ∂ϕy(w) = 1
2m

∫
Σ′

d2z

z − w
F−

xz(z, z̄) + 1
2m

∮
C′

0

ϕx(z, z̄)dϕz(z, z̄)
z − w

, (8.44)

δ∂ϕz(w) = 1
2m

∫
Σ′

d2z

z − w
F−

xy(z, z̄) + 1
2m

∮
C′

0

ϕx(z, z̄)dϕy(z, z̄)
z − w

. (8.45)

As in the previous example, we view the first terms in the above expressions - those
containing F±

µν(z, z̄) - as the physical deformations of the fields. The gauge ambiguity,
represented by the contour integral terms, correspond to target space diffeomorphisms
that are T-dual to the gauge transformations generated by (8.24).

8.3 T-fold deformation

For completeness, let us also look at the T-fold. Recall that this is a globally non-
geometric background in the sense that the metric and B-field are not well-defined
under the global base coordinate identifications. We will include the background here
again for convenience, which is

ds2 = dx2 + 1
1 + (mx)2 (dy2 + dz2), B = − mx

1 + (mx)2 (dy ∧ dz). (8.46)
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To first order, this is simply

ds2 = dx2 + dy2 + dz2 +O(m2), B = −mxdy ∧ dz +O(m2), (8.47)

i.e. the same as the T 3 with H-flux, but with an overall minus sign in the B-field.
Thus, the first order deformations are exactly the same as for the H-flux, but with
overall minus signs, i.e.

δ∂ϕx(w) = −1
2m

∫
Σ′

d2z

z − w
F−

yz(z, z̄), (8.48)

δ∂ϕy(w) = −1
2m

∫
Σ′

d2z

z − w
F−

zx(z, z̄) + 1
2m

∮
C′

0

ϕx(z, z̄)dϕz(z, z̄)
z − w

, (8.49)

δ∂ϕz(w) = −1
2m

∫
Σ′

d2z

z − w
F−

xy(z, z̄) − 1
2m

∮
C′

0

ϕx(z, z̄)dϕy(z, z̄)
z − w

. (8.50)

When we come to the T-duality of these backgrounds in this formalism in chapter 9,
we will show how these deformations are used to demonstrate the dualities.

8.4 Deformations of the algebra of twisted torus
bundles

Recall from chapter 3 that the twisted torus reductions had gauge algebra (3.7). These
were generated by the left-invariant one-forms (3.6). On the worldsheet, we found
that the analogous objects, Za,X a, generated a central extension of this algebra.
Additionally, we found that the algebra of the worldsheet operators Za,X a obtained
from doubling the torus fibres was in fact (a central extension of) the full doubled
algebra (3.8) and not just the contraction (3.7).

Given the deformations we have derived above with the worldsheet interactions
taken into account, there is a question of how this affects the algebra of the Za,X a.
Here, we briefly address this question. We will not explicitly derive the algebra in
full since it is not particularly enlightening, but we will go far enough to show that
there are extra terms, and it will be clear where these extra terms come from. The
fact that the O(d, d) covariant algebra no longer holds is as we would expect, since the
worldsheet interactions break the O(d, d) covariance of the deformations.

To derive the deformed algebra, we need the Za,X a. Recall that, in section 6.2,
we wrote down the Za,X a as twisted versions of Πµ, X

′µ. We then used universal
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coordinates to derive their algebra at various backgrounds. Here, since we no longer
have universal coordinates, we need to be more careful.

In the most general case, suppose that we have a background E with corresponding
doubled metric H and doubled vielbein V . We would define

AA = V I
A ΠI ≡ (Za,X a), (8.51)

where ΠI ≡ (Πµ, X
′µ). Now, when we have a non-zero B-field, we need this doubled

setup in order to get the correct Za,X a, much like how we needed the doubled geometry
to get the correct δE transformation in section 7.2. We will look specifically at the
nilfold case here, where there is no B-field deformation, to simplify things. In this case,
we simply have

Za = e µ
a Πµ. (8.52)

It will be useful to invert the equations (2.20) to get

X ′µ(z, z̄) = −igµν
(
z∂Xν(z) − z̄∂̄Xν(z̄)

)
, Πµ(z, z̄) = izET

µν∂X
ν(z)+iz̄Eµν ∂̄X

ν(z̄).
(8.53)

Note that these equations are always true at any given background and do not rely on
the existence of universal coordinates. For the nilfold, this gives11

Πx = i(∂X + ∂̄X), (8.54)
Πy = i(∂Y + ∂̄Y ) − imX(∂Z + ∂̄Z), (8.55)
Πz = i(∂Z + ∂̄Z) − imX(∂Y + ∂̄Y ). (8.56)

If we use vielbeins such that δe a
µ = 1

2δgµνe
νa, we have

Zx = Πx, (8.57)

Zy = Πy + 1
2mXΠz, (8.58)

Zz = Πz + 1
2mXΠy. (8.59)

We now substitute (8.54), (8.55), (8.56) into this and compute their OPEs. Up to now,
this is all as we would have in the adiabatic limit. However, the key point here is
that the Πµ are no longer universal, so we must replace the ∂Xµ, ∂̄Xµ terms in (8.54),
(8.55), (8.56) with the nilfold deformations (8.43), (8.44), (8.45) we derived earlier.

11We drop the z, z̄ factors here for brevity. They can be reintroduced via ∂Xµ(z) →
z∂Xµ(z), ∂̄Xµ(z̄) → z̄∂̄Xµ(z̄)
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Let us have a look at one of the relevant OPEs. Recall from (6.37) that we had the
commutator

[Zx(σ),Zz(σ′)] = −2πimδ(σ − σ′)Zy(σ′). (8.60)

Using all of the above, we can write Zx and Zz as

Zx(w) = i

∂ϕx(w) + ∂̄ϕx(w̄) − 1
2m

∫
Σ′

d2z

(
F+

yz(z, z̄)
z − w

+
F̄+

yz(z, z̄)
z̄ − w̄

) , (8.61)

Zz(w) = i

∂ϕz(w) + ∂̄ϕz(w̄) + 1
2m

∫
Σ′

d2z

(
F−

xy(z, z̄)
z − w

+
F̄−

xy(z, z̄)
z̄ − w̄

)

+ 1
2m

∮
ϕx(z, z̄)dϕy(z, z̄)

( 1
z − w

+ 1
z̄ − w̄

)
− 1

2mϕ
x(w, w̄)

(
∂ϕy(w) + ∂̄ϕy(w̄)

).
(8.62)

Taking a closer look at these expressions, we see that the non-integral terms are
essentially what we had in the adiabatic approximation (6.38). To first order in m, the
OPE of these terms gives

1
2m

(
∂ϕx(z) + ∂̄ϕx(z̄)

)
ϕx(w, w̄)

(
∂ϕy(w) + ∂̄ϕy(w̄)

)
∼ −1

4m
(
∂ϕy(w)
z − w

+ ∂̄ϕy(w̄)
z̄ − w̄

)
,

(8.63)

and, if we are on contours where |z| = |w| = 1, this is just Zy to first order in m.
The other terms in (8.61), (8.62) will therefore give us corrections which vanish in the
adiabatic limit, and thus we see that we will recover the algebra (6.37) in this limit.
We will not do the calculations explicitly here. The above was simply to demonstrate
that the algebra (3.7) is not preserved when worldsheet interactions are taken into
account, but it is recovered in the adiabatic limit, as we would hope.

8.5 The covariant construction

Our discussion of the H-flux (and subsequently its T-duals) is always in the context of
a particular gauge choice. A gauge-invariant construction of the H-flux deformation
(or covariant construction for the nilfold) may be obtained using the background field
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method12, which we describe briefly. The starting point is the Polyakov action13

SP [X] = 1
4πα′

∫
Σ

d2σ
√
γγab∂aX

µ∂bX
νgµν(X). (8.64)

The first step is to split the worldsheet embedding X into two parts; X = X0 + π,
where X0 obeys the classical equations of motion and π can be thought of as a quantum
fluctuation as the path integral over X reduces to a path integral over π. Working with
Riemann normal coordinates simplifies the problem and we define new coordinates for
the quantum fluctuations, ηµ, where

πµ = ηµ − 1
2Γµ

νρ(X0)ηνηρ + .... (8.65)

We consider the background field formulation which preserves the manifest covariance
of the theory. Substituting in the new coordinates X0, η, gives [25]

SP [X0 + η] = SP [X0] + 1
2πα′

∫
Σ

d2σ
√
γγabgµν(X0)∂aX

µ
0 ∇bη

ν

+ 1
4πα′

∫
Σ

d2σ
√
γγab

{
gµν(X0)∇aη

µ∇bη
ν +Rµλσν(X0)

(
∂aX

µ
0 ∂bX

ν
0 η

λησ

+4
3∂aX

µ
0 η

λησ∇bη
ν + 1

3η
λησ∇aη

µ∇bη
ν
)

+ ....
}
. (8.66)

Note that this is now explicitly gauge-covariant. Note that SP [X0] and the terms linear
in η can be discarded if we choose X0 to obey the classical equations of motion14. The
kinetic term is awkward in that it involves coupling with the background fields and so
a potentially complicated Greens function. One way around this is to work with frame
fields ηa = ea

µ(X0)ηµ. Instead, we expand the metric gµν(X0) around a flat reference
background

gµν(X0) = ηµν + hµν(X0). (8.67)

The covariant deformation operator, with respect to this background, is then

Og[X0, η] = 1
4πα′

∫
Σ

d2σ
√
γγab

{
hµν(X0)∇aη

µ∇bη
ν +Rµλσν(X0)

(
∂aX

µ
0 ∂bX

ν
0 η

λησ

+4
3∂aX

µ
0 η

λησ∇bη
ν + 1

3η
λησ∇aη

µ∇bη
ν
)

+ ....
}
. (8.68)

12For example, see [25].
13We reinsert the α′ factors in this section for clarity.
14If X0 is a classical instanton solution, then SP [X0] will still give a finite contribution.
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To make contact with the discussion in section 7.2, we allow the possibility of a
non-trivial B-field. Suppose we have an anti-symmetric part of the action given by

SAS[X] = 1
4πα′

∫
Σ

d2σϵab∂aX
µ∂bX

νBµν(X). (8.69)

As with SP [X], we can substitute in the background field expansion and obtain the
action in a covariant form. We will not write it down in full here, but the result is
given in [25]. The terms that are of relevance for us are

1
4πα′

∫
Σ

d2σϵabHµνρ(X0)∂aX
µ
0 ∇bη

νηρ + 1
12πα′

∫
Σ

d2σϵabHµνρ(X0)ηµ∇aη
ν∇bη

ρ. (8.70)

For a flat background with constant H, these are the only contributions to O.
The background fields gµν(X0), Hµνλ(X0) and their derivatives play the role of

the deformation parameters mα. The action is that of an interacting theory with
couplings specified by the covariant functions Hµνρ(X0), Rµνλρ(X0) and their covariant
derivatives. A natural construction would be to consider a natural basis of functions
fI(X0) on the reference spacetime and to then decompose the background metric
deformation and B-field in terms of this basis, i.e.

hµν(X0) =
∑

I

cI
µνfI(X0). (8.71)

The coefficients cI might then provide suitable local coordinates on M with which to
parameterise the deformation. In cases where the initial and final backgrounds have
different topology, it is natural to pass to the cover as discussed above15. Given a
path in M between two backgrounds, the classical solution X0 varies as the action
changes as we move along the path. As such, the basis fI will also change along the
path; however, the expression (5.12) only requires knowledge of the moduli and their
derivatives along the path evaluated at the start of the path (where the theory is free
in most cases).

A connection on the space of such backgrounds is given by the variational formula
(5.8), where the OPEs can in principle be computed in perturbation theory.16 The
construction given in [22] and outlined in chapter 5 then gives the connection associated

15There are of course well-known cases where one can smoothly change the topology in string theory
[75, 76, 9]. In such cases, a continuous path, without degenerations in the fibres, is expected to exist
between the two topologically distinct backgrounds.

16Or, by first finding the beta-functions, the OPE coefficients can be computed using the explicit
construction given in [23, 24].
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with deforming the theory by changing the value of the background metric and B-field.
Taking the reference background as the free theory, we only require knowledge of the
OPE of the free theory and we recover the previous construction of chapter 5, but now
in a manifestly covariant form.

By way of example, in the case of constant H-flux Hµνρ = λϵµνρ on a flat background
hµν(X0) = 0, the deformation operator is

OH [X0, η] = λ

4πα′

∫
Σ

d2σϵab
(
ϵµνρ∂aX

µ
0 ∂bη

νηρ + 1
3ϵµνρη

µ∂aη
ν∂bη

ρ
)
, (8.72)

where X0 is the classical solution at λ ̸= 017. This is manifestly gauge invariant. Thus,
we see that the choice of branch cut for the X dependence in the B-field does not
make any difference to the physics, since these choices of branch correspond to B-field
gauge transformations. The interaction terms then, order by order in λ, perturbatively
describe the deformation of the theory away from the λ = 0 point. Incorporating
non-perturbative effects, which will be inaccessible via these techniques, is briefly
discussed in the following section.

8.6 Non-perturbative effects

What can go wrong? As alluded to in chapter 5, there is a close relationship between
parallel transport and conventional interaction picture perturbation theory, with the
deformation O playing a role akin to an interaction Hamiltonian and the parallel
transport (5.12) akin to a Dyson series. It is well-known that not all physics is
accessible via perturbation theory and non-perturbative effects can play an important
role. The issue of convergence of the perturbative expansion has an obvious analogue
in attempting to parallel transport from one background to another. We can only
hope to access that part of the deformed theory that is analytic in the deformation
parameter λ.

In the H-flux case, one can show that, up to field redefinitions, λ and α′ always
appear together and so one can use α′ as a proxy for λ. Thus, non-perturbative effects
in α′ will also be non-perturbative effects in λ. The parallel transport will be blind
to phenomena like worldsheet instantons. This is not always the case and, in chapter
11, we briefly consider an example where non-perturbative effects in α′ are in fact
perturbative in λ.

17To relate this to the background field description of the free theory at λ = 0, one could write X0
explicitly in terms of λ and the classical solution at λ = 0 using (8.4).





Chapter 9

T-duality Revisited

We now have an understanding of how the ∂ϕµ operators are deformed in the twisted
torus bundle backgrounds we have been considering throughout. In this chapter, we
consider how T-duality appears in the construction of the previous chapter and how the
requirements evident in the Buscher construction [7, 8] emerge in this framework. As
demonstrated earlier, we can use this method of CFT deformation to do the T-duality
at any background by deforming to it from the point of enhanced symmetry. We
then use a charge to compute the T-duality by acting on the stress tensor via an
automorphism. In some sense, this is a rather trivial process since, provided the
automorphism has a well-defined action on the operator algebra of the theory, it will
obviously produce a new description of the same underlying physics. Where this is
interesting is when the new description is also a conventional string theory, but with a
different interpretation of the target space.

We will also revisit T-duality of the torus bundles of chapter 3, but this time
away from the adiabatic limit. What we will find is that, though the calculations to
verify the dualities are more involved, the basic principle carries thorough in the same
way. What we uncover is a method for constructing T-dual backgrounds for more
general non-linear sigma model (NLSM) deformations, which potentially has greater
applicability than the Buscher procedure. We also briefly return to non-isometric
T-duality, discussing an idea of [15].
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9.1 Conditions for the Buscher rules

Recall that the Buscher construction requires the existence of a globally-defined1,
compact isometry in the target space which preserves all non-trivial field strengths in
the background. Do we see such requirements in this formalism and in what capacity?
We discuss the existence and compactness of the isometry in turn.

9.1.1 Existence of a continuous isometry

The requirement of an isometry can be seen from the fact that the action of the
T-duality charge Q is not well-defined on X itself. In section 6.9, we saw that

eiQϕL(σ)e−iQ = −ϕL(σ) + C, (9.1)

where Q = 1
2
∮
dσ cos(2ϕL(σ)) and C was a constant operator that was dependent on

the T-duality charge used. Thus, when we have explicit X-dependence, we have to
deal with the troubling operator C and it is not clear how to proceed.2 In the Buscher
procedure, we cannot do anything without an isometry, whereas here the situation
is less clear. Subsequently, there is a question of whether we can make sense of the
non-isometric case regardless of the aforementioned difficulties. In section 9.1.3, we will
discuss how one might be able to make some progress on non-isometric T-duality using
a simple concrete example. Though the result is not conclusive, it is an interesting
approach to explore and it is clear that there is some mileage in this parallel transport
formalism with regards to non-isometric T-duality.

We can appreciate why the non-isometric case is much harder to understand if
we consider what is happening from the perspective of theory space. A point on the
space M is given by a choice of metric and B-field. Since an isometry will preserve
the sigma model, it is reasonable to identify different points on M if they correspond
to the same sigma model. Hence, an isometry will preserve the sigma model and
keep us at the same point. A more general diffeomorphism, which is not an isometry,
takes us to a different point on M representing a different sigma model. One would
need some non-local (from the sigma model perspective) deformation O to relate the
original fields with those after the diffeomorphism. This gauge transformation in the
target space is thus a non-trivial deformation (or parallel transport) in M. Therefore,

1It may be that the requirement that the isometry is globally defined may be dropped [11].
2It is interesting to note that the transformation is well-defined on those ‘self-dual’ states for

which p = w. If we set p = w, we actually find that the anomalous term C vanishes and we get
eiQϕL(σ)e−iQ = −ϕL(σ).
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from the worldsheet perspective, there is a significant difference between isometries
and non-isometric diffeomorphisms. Understanding this difference better is key to
understanding T-duality in the absence of continuous isometries in this framework.
For example, it may be that some kind of construction which is manifestly T-duality
invariant, even just for the cases where the Buscher procedure is valid, is what is
needed to make progress on the non-isometric case.

9.1.2 Compactness of the isometry

The Buscher prescription also requires the isometry to be compact. The necessity of
this requirement can be illustrated in the one-dimensional case, where we can consider
a limit in which the circle ‘decompactifies’. Recall that we can write ∂X(R) in terms
of objects at the self-dual radius as

∂X(R)(z) = 1
2(1 +R2)∂X(z) + 1

2(1 −R2)∂̄X(z̄), (9.2)

where ∂X, ∂̄X are at the self-dual radius. We might try to think of the ‘decompactified’
case as taking the limit R → ∞ or, by T-duality, R → 0. However, we can see from
the above that, if we take this limit, we get

∂X(0) = 1
2(∂X + ∂̄X) = Π, (9.3)

and doing the same for ∂̄X(R) gives ∂̄X(0) = Π = ∂X(0), i.e. holomorphic and
antiholomorphic derivatives seem to coincide. Another way of saying this is that if we
have ∂X(R)

∂̄X(R)

 = M(R)
∂X
∂̄X

 , (9.4)

then the matrix M(R) degenerates in the limit R → 0. This failure of the self-dual
basis to extend to this case is unsurprising and suggests a new ingredient would be
needed to extend the duality to this unlikely case. One suspects the curvature of the
connection would be badly behaved at this point, although we have not checked this.

9.1.3 Non-isometric T-duality via Fourier expansions

Given the above discussion of the requirement of an isometry, it seems like, in the parallel
transport formalism we have presented here, there may be some leeway regarding
this requirement. In [15], an interesting idea was presented where, given some metric
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with X-dependence, the T-duality of the corresponding stress tensor could still be
computed by considering the Fourier expansion of the metric. The idea here was that
exponentials had a well-defined transformation under the T-duality automorphism Q

and so, by expressing the metric in terms of such exponentials, we could compute the
T-duality.

The main issue with this is that the construction in [15] still assumes the existence
of universal coordinates. As we saw, if there is explicit coordinate dependence in the
background then we do not have universal coordinates, and so this idea does not seem
to be quite right. However, even in the absence of universal coordinates, we will try to
see if there is any mileage in it. For simplicity, we will just work in the d = 1 case and
we will assume that we start from the self-dual radius point E = G. Let us suppose
we deform to some metric g = G+ λδg(X), where

δg(X) = eikX , (9.5)

where we use the shorthand kX ≡ kLXL + kRXR, kL,R ∈ Z, and λ is some expansion
parameter, i.e. we have a single Fourier mode in our deformation. In order to compute
the duality, we need to compute the deformation of ∂ϕ and then use this to compute the
stress tensor Tg and subsequently the T-duality. Given the above metric deformation,
we suppose that the deformation operator can be taken to be

O = λ
∫
d2z∂ϕ(z)∂̄ϕ(z̄)eikϕ(z,z̄). (9.6)

Thus, to compute the deformation of ∂ϕ(w), we take the OPE∫
d2z∂ϕ(z)∂̄ϕ(z̄)eikϕ(z,z̄)∂ϕ(w)

∼
∫
d2z

[
− 1

2(z − w)2 ∂̄ϕ(z̄)eikϕ(z,z̄) + ikL

2(z − w)∂ϕ(z)∂̄ϕ(z̄)eikϕ(z,z̄)
]

=
∫
d2z

[
−1

2

(
∂

(
∂̄ϕ(z̄)eikϕ(z,z̄)

w − z

)
− ∂ϕ(z)∂̄ϕ(z̄)ikLe

ikϕ(z,z̄)

w − z

)
+ ikL

2(z − w)∂ϕ(z)∂̄ϕ(z̄)eikϕ(z,z̄)
]

= − 1
2

∮ dz̄

z − w
∂̄ϕ(z̄)eikϕ(z,z̄), (9.7)

i.e. we see that the contraction of ∂ϕ(w) with the exponential is cancelled by a
contribution from the contraction with ∂ϕ(z). Thus, the final result looks very similar
to what we obtained in chapter 7 for the constant circle deformation and we find that,
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for |z| = 1,
δO∂ϕ = −λ

2
z̄

z
∂̄ϕ(z̄)eikϕ(z,z̄). (9.8)

We expect δE to act in the same way as usual, i.e.

δE∂ϕ = λ

2∂ϕe
ikϕ, (9.9)

so that overall we have

δ∂ϕ(z) = λ

2 e
ikϕ(z,z̄)

(
∂ϕ(z) − z̄

z
∂̄ϕ(z̄)

)
. (9.10)

Now, the stress tensor is given by Tg = gµν(X)∂Xµ∂Xν , so the exponential eikX

will appear explicitly as well as eikϕ. From earlier (and appendix A), we know how
exponentials in ϕ transform, but, due to the lack of universal coordinates, we do not
know how exponentials transform away from the self-dual point. This seems to be a
major obstacle in deriving the duality, but we will try to proceed anyway, albeit in a
rather speculative way. Suppose the deformation of eikX can be written as

δeikX =
∑

nR,nR

fn(k)einϕ, (9.11)

where nϕ ≡ nLϕL + nRϕR and the fn are constants. Recall from (4.48) that, for nL

even, we simply have
eiQeinLϕLe−iQ = e−inLϕL . (9.12)

Thus, let us simplify things by supposing that kL,R, nL,R ∈ 2Z. In this case, under the
duality, we have

eiQeikXe−iQ =
∑

n

fn(k)e−inϕ. (9.13)

Ideally, what we would like at this point is to be able to say

f−n(k) ∝ fn(k̃), (9.14)

where k̃X = −kLXL + kRXR. This is because, if we can say this, then we essentially
have

eiQeikXe−iQ = eik̃X . (9.15)
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Thus, the stress tensor would be

Tg(z) = 1
1 + λeikX(z,z̄)

(
∂ϕ+ λ

2 e
ikϕ(z,z̄)

(
∂ϕ(z) − z̄

z
∂̄ϕ(z̄)

))2

, (9.16)

and if the duality does ∂ϕ → −∂ϕ as well as (9.15), overall we simply have the usual
Buscher rules, but with k → k̃, i.e. the dual metric is g̃, where

g̃ = 1
1 + λeik̃X

. (9.17)

Another way one might be able to arrive at this result is to suppose that the exponential
at g can be written as a simple deformation of the corresponding exponential at G, i.e.

eikLXL = eikLϕL + δeikLϕL . (9.18)

If we assume that there is no δE transformation, then we only need to look at the OPE
of eikLϕL with the deformation operator, which is∫

d2z : ∂ϕ(z)∂̄ϕ(z̄)eikϕ(z,z̄) :: eikLϕL(w) :

∼
∫
d2z

[
− i

2(z − w) : ∂̄ϕ(z̄)eikϕ(z,z̄)eikLϕL(w) : +(z − w)K2
L/2 : ∂ϕ(z)∂̄ϕ(z̄)eikϕ(z,z̄)eikLϕL(w) :

]
,

(9.19)

where we have put the normal ordering in explicitly for clarity. If this integral is what
gives us the deformation δeikLϕL , then the effect of T-duality on δeikLXL can be deduced
from the T-duality transformation of the above integral, which would once again be
the usual Buscher rules together with kL → −kL.

Note that we have made many assumptions for the exponential transformation along
the way, so the above does not constitute a proof of the duality, but it at least goes
some way to showing how progress could be made on non-isometric T-duality in this
formalism. It may be that the deformation of exponentials under generic deformations
of the metric is a solvable problem and can be done properly, at least in these simple
cases. If so, then the T-duality should be doable and, if this method is valid, this
would be a concrete example of non-isometric T-duality. It should be noted though
that, if the deformation is simply a target space diffeomorphism, then the background
is physically the same as an isometric one, even if it appears to be non-isometric. Since
all circle backgrounds in the d = 1 case are diffeomorphic, the above example could be
argued to be ‘secretly isometric’.
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Additionally, there are some issues with this approach that need to be straightened
out. In particular, there is obviously some tension in going from an object like X,
which is not periodic on the worldsheet, to the pullback of the Fourier series of x to the
worldsheet, which is periodic on the worldsheet. There is a kind of non-commutativity
of taking the Fourier series with pulling back to the worldsheet, and this must be
understood properly. In particular, this approach would probably not be applicable
to the R-flux case. This is because the R-flux background is not globally defined,
whereas fourier modes always are. Another issue here is the ambiguity of the T-
duality transformation of exponential operators. As we saw in chapter 6, the precise
transformation depends on the charge used. In general this may not matter since it is
just the overall factor that is affected. However, if we are interpreting exponentials
as terms in a Fourier series, then such factors are important, and different charges
might give different functions after T-duality. There is then a question of whether
these different backgrounds are equivalent, or if there is some gauge symmetry relating
them. Thus, there are many issues that need to be understood in more detail before
this Fourier expansion approach can be trusted.

This is all we will have to say on non-isometric T-duality. For now, we turn our
attention to how T-duality generally fits into our framework and how we can derive
T-dual backgrounds using the formalism discussed in this thesis.

9.2 Deriving T-dual backgrounds in the parallel
transport formalism

The transformations we have obtained using the parallel transport formalism are
different to what we would expect from the universal coordinate methods considered in
chapter 6, which give an adiabatic approximation. The application of this formalism
to T-duality in trivial torus bundles was also discussed there. We turn now to study
T-duality in the torus bundles discussed above.

For a CFT associated with toroidal backgrounds, we know that the left-moving
component of the stress tensor is

TE = gµν∂Xµ(E)∂̄Xν(E), (9.20)

but for general sigma models there is no clean split into left- and right-moving sectors.
Nonetheless, TE is a useful object to consider as it is the simplest composite operator
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that is a target space scalar and so invariant under δE. This invariance under δE

streamlines the analysis somewhat.
By writing the stress tensor in terms of fields defined at the self-dual radius, [15]

showed how to use the stress tensor to compute the T-dual of a given background:
starting with some background E and writing TE in terms of the fields at the self-dual
point, one can use the action of T-duality at the self-dual point to determine the stress
tensor for the dual background, written in terms of the self-dual basis. TE transforms
as

TE → TẼ = UTEU
−1 (9.21)

under the T-duality automorphism U = eiQ discussed in chapter 4. Knowledge of how
the stress tensor changes under a general enough class of deformations (e.g. marginal
deformations) then allows one to read off Ẽ from the dual tensor TẼ.

For the toroidal backgrounds considered in [15], this was essentially a novel derivation
of the familiar Buscher rules that we wrote down in (2.47). Much of this structure
carries over to the more general constructions considered in the last chapter. In this
section, we sketch how known dualities are realised in the framework presented in this
thesis and to what extent one may use it to generalise beyond the cases where the
Buscher construction is valid.

It is important to stress that it is not true that the deformation operators for T-dual
backgrounds O and Õ are related simply as eiQOe−iQ. That this cannot be true is
easily seen if we consider the explicit deformation parameters of the T 3 with constant
H-flux, nilfold and T-fold backgrounds with respect to the T 3 CFT:

OH = m
∫
Σ

ϕxF−
yz, (9.22)

ON = −m
∫
Σ

ϕxF+
yz +m2

∫
Σ

(ϕx)2∂ϕz∂̄ϕz, (9.23)

OT-fold = −m
∫
Σ

ϕxF−
yz +

∑
n≥1

(−1)n(n+ 1)(m)2n
∫
Σ

(ϕx)2n
(
∂ϕy∂̄ϕy + ∂ϕz∂̄ϕz −mϕxF−

yz

)
.

(9.24)

These are clearly not related simply by a change of sign of the chiral field along the
direction the duality is being performed3. The reason is that the dual descriptions of
the theories involved different parameterisations of the backgrounds. In general, if we
have two dual backgrounds E = G+ δE and Ẽ = G+ δẼ, where G is the background

3Although they are related in this simple way to first order in the parameter m.
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metric at the self-dual point, the deformation operators are given by

OE = δEµν

∫
Σ

∂ϕµ∂̄ϕν , OẼ = δẼµν

∫
Σ

∂ϕµ∂̄ϕν . (9.25)

If we try to T-dualise OE explicitly in the y-direction say, this would simply correspond
to ∂ϕy → −∂ϕy. However, this is not sufficient to relate OE to OẼ, since we also need
δE → δẼ, which is not induced by the simple automorphism on the fields alone. From
the worldsheet perspective, δE and δẼ are coupling constants for perturbations of
two different, but related, theories. In order to relate these deformations, we must
understand how the coupling constants are related.

9.2.1 Trivial torus bundles

First, let us briefly verify the constant case, i.e. when E has no coordinate dependence.
This is essentially the same as [15], though we include it for completeness and to
illustrate the general idea. Specifically, we want to use the stress tensor to show that
the O transformation in the dual background can be deduced from the O transformation
in the original background. As above, suppose we have some background E = G+ δE,
where δE is not necessarily small (i.e. this is to arbitrary order), as well as the
corresponding deformation operator OE. From this (together with δE), we can find
∂Xµ(E) in terms of the self-dual point objects, and we know in this constant case that
we simply reproduce the results of [15]. Thus, the stress tensor, TE, can then be T-
dualised and we obtain the dual tensor TẼ. We can then read off Ẽ and therefore deduce
the dual operator OẼ, where Ẽ = G+ δẼ. Of course, in this constant background case,
we already know that the relation between E and Ẽ is given by the fractional-linear
transformation

Ẽ = (aE + b)(cE + d)−1, U =
 a b

c d

 ∈ O(d, d;Z), (9.26)

which leads to a complicated relationship between the deformation parameters in OE

and OẼ of the form

δẼ = (a(G+ δE) + b)(c+ d)−1 ∑
n≥0

(−1)n
(
(c+ d)−1cδE

)n
−G. (9.27)

Note that, in general, there is a non-trivial zeroth order term here, but for the cases
we are considering (i.e. T-duality), it is always true that a+ b = c+ d = 1 [12], and so
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we have
δẼ = aδE

∑
n≥0

(−1)n (cδE)n . (9.28)

The complication caused by the transformation of δE reflects the fact that the way
in which the data mα parameterise the space of backgrounds depends on the duality
frame chosen.

Circle example

It is easiest to see this in a concrete example, so we briefly review how this works for
the familiar case of the circle. The metric G at the self-dual radius

√
G is changed to

g, with a corresponding change in the field ϕ to X, so that, using (7.7),

∂X = 1
2

(
∂ϕ+ ∂̄ϕ

)
+ 1

2gG
−1
(
∂ϕ− ∂̄ϕ

)
. (9.29)

As seen in chapter 7, this can be constructed from the deformation operator

O = λ
∫

Σ′
d2z ∂ϕ(z)∂̄ϕ(z̄), λ := g −G

G2 . (9.30)

The deformed stress tensor T = g−1∂X∂X may be written as

T = 1
4g

−1
(

(1 + gG−1)∂ϕ+ (1 − gG−1)∂̄ϕ
)2
. (9.31)

Under the T-duality automorphism, U(∂ϕ, ∂̄ϕ)U−1 = (−∂ϕ, ∂̄ϕ), so the dual stress
tensor is (note the relative sign change between terms)

T̃ = 1
4g

−1
(

(1 + gG−1)∂ϕ− (1 − gG−1)∂̄ϕ
)2
. (9.32)

T̃ may be written in the form of (9.31), but with g replaced by g̃ = G2/g, thus
recovering the standard Buscher rule for d = 1. The dual theory can also be expressed
as a deformation of the self-dual theory by the operator

Õ = λ̃
∫

Σ′
d2z ∂ϕ(z)∂̄ϕ(z̄), λ̃(λ) = − λ

1 + λ
. (9.33)

The relationship between the deformation parameters λ and λ̃ is an alternative writing
of the Buscher rules and is an example of the transformation (9.26).
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9.2.2 Stress tensor deformations and T-duality

In this section, we consider a more general case where the background has some
coordinate dependence. The reason why the stress tensor was so useful for the constant
case was because we could write down a general form for TE for any constant background
E. When there is coordinate dependence, to do the same using the parallel transport
method, we need to know explicitly what the coordinate dependence is.

As always, we start with a reference background, which we take to be a torus,
tuned to the self-dual radius with coordinates ϕi and a single base direction with
coordinate ϕx, such that ϕµ = (ϕx, ϕi). We assume that the base is R, but may impose
identifications so that it is an S1. The action and stress tensor are

S0[X] =
∫

Σ
∂ϕx∂̄ϕx +Gij∂ϕ

i∂̄ϕj, TG = ∂ϕx∂ϕx +Gij∂ϕ
i∂ϕj. (9.34)

This background is then deformed to a background of interest. The associated defor-
mation operator is

O[ϕx] =
∫

Σ
d2z δEij(ϕx)∂ϕi∂̄ϕj, (9.35)

where we define δEij := Eij −Gij and we allow this to be a function of ϕx. It would
be natural to express δEij(ϕx) in terms of a basis of functions on the base fI(ϕx), so
that there is a well-defined decomposition

δEij(ϕx) =
∑

n

λ
(I)
ij fI(ϕx), (9.36)

where the λ(I)
ij give a set of coupling constants for the deformation. Our approach will

be to work on the cover of the base (in this case R) and then impose identifications
ϕx ∼ ϕx + 2π after the deformation. This leads to a natural (although not unique)
decomposition of the deformation operators O = ∑

I OI , where

OI [ϕx] =
∫

Σ
λ

(I)
ij fI(ϕx)∂ϕi∂̄ϕj. (9.37)

One then uses this deformation operator to deform the operators of the theory, such as
the stress tensor:

TE = TG + δO(TG) + δO2(TG) + .... (9.38)

The T-dual stress tensor is given by applying the automorphism4 TẼ = eiQTEe
−iQ.

This then gives a perturbative description of the dual stress tensor. To leading order,
4We assume the duality is performed along one of the fibre directions.
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the deformations are related by

TG + δÕ(TG) + ... = TG + eiQδO(TG)e−iQ + ..., (9.39)

where we note that TG is invariant under the action of the automorphism. This is hard
to calculate in practice and tends to yield complicated expressions on both sides, as the
stress tensor written in terms of the reference background is likely to be a complicated
and unfamiliar object. It is possible, in principle, to extract information on the dual
background Ẽij, from which one could construct a dual sigma model. Given a generic
enough deformation, one for which both the original and dual theories are particular
examples, one can in principle construct the stress tensor of this generic theory in
terms of the fields of the reference background. The couplings λ̃(I)

ij of the dual theory
can then be read off from TẼ, and the dual deformation δẼij constructed as with (9.36).
The dual couplings will be functions of the couplings of the original theory λ̃(I)

ij (λ) and
this relationship is, in essence, the Buscher rules relating the two backgrounds. This
generalises the torus case (9.27), a simple example of which is the relationship between
the radii of a circle background and its dual.

It is worth stressing that the dual theory may be found in terms of its operators;
however, identifying the explicit background for a sigma model construction is more
involved. The procedure we have outlined here is the straightforward generalisation
of that used in [15] for toroidal target spaces. The simplifying feature there was the
existence of universal coordinates with which to calculate.

Leading order deformations and duality

In general, using this approach to deduce T-dual backgrounds is difficult to do compu-
tationally, so we will only demonstrate this to first order for a relatively simple case.
In particular, we will suppose that we start from a trivial torus bundle as described
above and that we deform the background in the fibres to some background Eij , where

Eij = Gij + λϕxδEij +O(λ2), (9.40)

where δE is constant and λ is some small parameter. We will deduce a general form
for the stress tensor TE. Additionally, we will assume that the dual background Ẽ is of
the same form, i.e.

Ẽij = Gij + λϕxδẼij +O(λ2). (9.41)
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This is of course true for the nilfold and H-flux, for which we will verify this method
explicitly. To compute TE, let us first compute the deformation of ∂ϕµ. We have

OE = λδEij

∫
Σ

ϕx∂ϕi∂̄ϕj. (9.42)

The calculation of the first order change in ∂ϕµ closely follows the method set out in
chapter 8 and so we will be brief here. Taking the OPE with ∂ϕi and including the δE

contribution
δE∂ϕi = λ

2 δEijϕ
x∂ϕj, (9.43)

which can be written in integral form as similar to (D.29), gives

δ∂ϕi(w) = −λ

2 δEijG
jk
∫
Σ′

d2z

z − w
F−

xk − λ

2 δEij

∮
C′

0

dϕj(z, z̄)
z − w

ϕx(z, z̄), (9.44)

where we recall that dϕν(z, z̄) = ∂ϕν(z)dz + ∂̄ϕν(z̄)dz̄. For ∂ϕx there is no δE transfor-
mation, so we have

δ∂ϕx(w) = λ

2 δEij

∫
Σ′

d2z

z − w
∂ϕi(z)∂̄ϕj(z̄). (9.45)

Thus, we can now substitute this into the stress tensor to get the deformed stress
tensor T = gµν∂Xµ(E)∂Xν(E), where E = g + B, and if we write gij = Gij + λδgij

then, to first order, δgij = −GikδgklG
lj. After a short computation, we find that

TE(w) = TG(w) − λδgijϕ
x(w, w̄)∂ϕi(w)∂ϕj(w̄) + λ∂ϕx(w)δEij

∫
Σ′

d2z

z − w
∂ϕi(z)∂̄ϕj(z̄)

+ λ∂ϕi(w)

−δEijG
jk
∫
Σ′

d2z

z − w
F−

xk(z, z̄) − δEij

∮
C′

0

ϕx(z, z̄)dϕj(z, z̄)
z − w

 . (9.46)

We could also write the last term in integral form if it is more convenient, using (D.29).
This can now be used to compute the T-dual operator OẼ. We will demonstrate this
by doing the H-flux/nilfold/T-fold example explicitly.

Example: H-flux, nilfold and T-fold

Let us look at how we can use the above to compute the T-dual to first order. Starting
with the H-flux, we have Eij = Gij + mϕxδEij + ..., where δEij and the associated
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deformation operator are

δEij =
 0 1

−1 0

 , OH = m
∫
Σ

ϕxF−
yz. (9.47)

Substituting in the results (8.19), (8.20), (8.21), the stress tensor for the H-flux is
given by

TH(w) = TG(w) +mεµνρ∂ϕµ(w)
∫
Σ′

d2z

z − w
F−

νρ(z, z̄) + δΛTH(w), (9.48)

where
δΛTH(w) = −mεij∂ϕi(w)

∮
C′

0

ϕx(z, z̄)dϕj(z, z̄)
z − w

(9.49)

is a gauge-dependent piece (εyz = −εzy = 1). Let us now compute the T-duality trans-
formation for this in the y-direction, which we recall is obtained via the transformation
∂ϕy → −∂ϕy. Doing so gives

TH(w) → T̃H(w) = TG(w) −m∂ϕx(w)
∫
Σ′

d2z

z − w
F+

yz(z, z̄)

+m∂ϕy(w)
∫
Σ′

d2z

z − w
F−

xz(z, z̄) +m∂ϕz(w)
∫
Σ′

d2z

z − w
F+

xy(z, z̄)

+m∂ϕy(w)
∮

C′
0

ϕx(z, z̄)dϕz(z, z̄)
z − w

+m∂ϕz(w)
∮

C′
0

ϕx(z, z̄) ∗ dϕy(z, z̄)
z − w

, (9.50)

and using (D.29) we can extract a non-integrated term from the last term in this
expression, so that we get something of the same form as (9.46):

T̃H(w) = TG(w) −m∂ϕx(w)
∫
Σ′

d2z

z − w
F+

yz(z, z̄) +m∂ϕy(w)
∫
Σ′

d2z

z − w
F−

xz(z, z̄)

+m∂ϕz(w)
∫
Σ′

d2z

z − w
F−

xy(z, z̄) +m∂ϕy(w)
∮

C′
0

ϕx(z, z̄)dϕz(z, z̄)
z − w

+m∂ϕz(w)
∮

C′
0

ϕx(z, z̄)dϕy(z, z̄)
z − w

+ 2mϕx(w, w̄)∂ϕy(w)∂ϕz(w). (9.51)
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Comparing with the general result (9.46), we can read off that this dual background is
Ẽij = Gij +mϕxδẼij, where δẼij and its associated deformation operator are

δẼij =
 0 −1

−1 0

 , OẼ = −m
∫
Σ

ϕxF+
yz = ON . (9.52)

We recognise this as the nilfold background (8.36) to first order. We can also verify,
using (8.43), (8.44), (8.45), that (9.51) is indeed the stress tensor of the nilfold. Thus,
the known duality is recovered to leading order.

For the T-fold, recall that, to first order, the deformation was simply minus that of
the H-flux. Thus, since the metric is simply gµν = δµν +O(m2), the stress tensor will
be

TT −fold = (∂ϕx + δ∂ϕx)2 + (∂ϕy + δ∂ϕy)2 + (∂ϕz + δ∂ϕz)2 = TG − δTH , (9.53)

where δTH = TH − TG. Thus, to confirm the duality, we simply need to dualise the
nilfold stress tensor (9.51) and compare with (9.48). The duality is in the z-direction,
so we do ∂ϕz → −∂ϕz, which gives

TN(w) → T̃N(w) = TG(w) −m∂ϕx(w)
∫
Σ′

d2z

z − w
F−

yz(z, z̄)

+m∂ϕy(w)
∫
Σ′

d2z

z − w
F+

zx(z, z̄) −m∂ϕz(w)
∫
Σ′

d2z

z − w
F+

xy(z, z̄)

+m∂ϕy(w)
∮

C′
0

ϕx(z, z̄) ∗ dϕz(z, z̄)
z − w

−m∂ϕz(w)
∮

C′
0

ϕx(z, z̄) ∗ dϕy(z, z̄)
z − w

, (9.54)

which can be rewritten as

T̃N(w) = TG(w) − δTH(w)

− 2m∂ϕy(w)
∮ dz

z − w
ϕx(z, z̄)∂ϕz(z) + 2m∂ϕz(w)

∮ dz

z − w
ϕx(z, z̄)∂ϕy(z)

+ 2m∂ϕy

∫ d2z

z − w
∂ϕz(z)∂̄ϕx(z̄) − 2m∂ϕz(w)

∫ d2z

z − w
∂ϕy(z)∂̄ϕx(z̄). (9.55)

Using (D.29), it can easily be shown that the last two rows in (9.55) cancel, and so we
do indeed have T̃N = TT −fold to first order in m, so the duality is recovered once again.

Note that, whilst in the Buscher procedure the conditions for its application are
not strictly met in the case of the T-fold, since the isometry in the z-direction for the
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nilfold is not globally defined, in the procedure above the same issue does not seem to
be present. Aside from the fact that the T-fold background itself is not globally defined
under periodic identification of the base, the application of the above procedure is still
valid.

9.3 Making use of the doubled formalism

The benefit of the doubled formalism is that T-duality is a symmetry of the sigma model
and so many of the complications of the previous section do not arise in this framework.
For torus bundles of the kind we have been considering (isometric, non-degenerating),
there is an explicit doubled formalism, and the deformations may be understood in
terms of a deformation of the doubled metric. As such, the deformation operator O
transforms naturally under O(d, d;Z) and T-duality may be simply understood. It is
rare that we have a concrete doubled formalism5 and so we do not expect to learn
anything new, but it is useful to see how a doubled formalism may be put to good use
when one is available.

The doubled action is given by6 (7.74) and can be written as S = S0 + ∆SE,
where S0 is the action for the flat doubled torus, and we expect that the associated
deformation operators satisfy

eiQOE(E)e−iQ = OE′(E ′), (9.56)

so the deformation operators of dual backgrounds are indeed T-dual in the doubled
formalism. This is easiest to understand by looking at an example, so let us show this
explicitly for the nilfold/H-flux case. Starting with the nilfold, with metric (8.36), we
have the deformation

∆SN [X] = 1
2

∫
Σ

δHIJ(X)∂XI ∂̄XJ , δHIJ(X) =


0 −mX 0 0

−mX (mX)2 0 0
0 0 (mX)2 mX

0 0 mX 0

 .
(9.57)

5Identity structure manifolds seem to be the exception.
6We explicitly discuss the case where only the fibres of the torus bundle are doubled. The

generalisation to cases where all directions are doubled including the associated WZW term in the
doubled action is expected to be straightforward.
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Now, let us do the same for the H-flux. In this case, we have the deformation operator

∆SH [X] = 1
2

∫
Σ

δH′
IJ(X)∂XI ∂̄XJ , δH′

IJ(X) =


(mX)2 0 0 mX

0 (mX)2 −mX 0
0 −mX 0 0
mX 0 0 0

 .
(9.58)

Thus, we have the marginal operators

ON [ϕx] = 1
2

∫
Σ

(
−mϕx(∂ϕy∂̄ϕz + ∂ϕz∂̄ϕy − ∂ϕ̃y∂̄ϕ̃z − ∂ϕ̃z∂̄ϕ̃y) + (mϕx)2(∂ϕ̃y∂̄ϕ̃y + ∂ϕz∂̄ϕz)

)
,

(9.59)

OH [ϕx] = 1
2

∫
Σ

(
−mϕx(∂ϕ̃y∂̄ϕz + ∂ϕz∂̄ϕ̃y − ∂ϕy∂̄ϕ̃z − ∂ϕ̃z∂̄ϕy) + (mϕx)2(∂ϕy∂̄ϕy + ∂ϕz∂̄ϕz)

)
,

(9.60)

and we can see that, under the duality transformation ϕy ↔ ϕ̃y, we do indeed have
eiQONe

−iQ = OH , as expected. The utility of the doubled formalism is that it gives a
duality-covariant parameterisation of this limited space of backgrounds.

Note that the above result is non-perturbative in m. Thus, for these specific cases
where we have a doubled formalism which is explicitly O(d, d) covariant, it is easy to
recover the full duality to all orders. For more general backgrounds where we do not
have a doubled formalism, we will need to use the methods of section 9.2.2.





Chapter 10

Fermion Deformations

Everything we have done so far in this thesis has been for bosons. We now turn our
attention to fermion deformations. We will look at deformations for both the flat torus
case and cases where the background has explicit coordinate dependence. We will
find that the bosonic deformations we derived above obtain fermionic corrections in
the non-CFT case. We will also look at the T-duality between the nilfold and H-flux
and show that, even with the fermion deformations included, we are able to recover
the duality to first order. We will also explore how picture changing fits into this
deformation story, and we will see that this puts operator deformations on a slightly
less certain footing in the supersymmetric context. We work solely with fermions in
the NS-NS sector throughout, and we will only look at N = 1 supersymmetry. The
content of this chapter is based on unpublished work by the author.

10.1 Fermion deformations on a flat torus

As we did for the bosonic case, we will initially look at the deformation on a flat
torus background in (2.1). We will find it useful to adopt the superspace configuration
initially, since the construction is reminiscent of the purely bosonic case. Much of
the calculations will go through similarly to the bosonic case, but there are subtle
differences that must be addressed with care, as we will see. Initially, we will proceed
naively, assuming that the methods used for the bosonic case generalise easily to the
fermionic case. Later on, in section 10.6, we will show that one must be careful because
the deformation operator can be written in different pictures, and this changes how we
think of operator deformations in general.
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10.1.1 Backgrounds without B-field

To start with, let us look at the deformation of the fermion on a flat torus for general
metric, but B-field B = 0. It is easiest to do this in superspace, i.e. we put the toroidal
CFT on a supermanifold with anticommuting coordinates θ, θ̄, such that

θ2 = θ̄2 = {θ, θ̄} = 0, (10.1)

where integration is defined by ∫
d2θθθ̄ = 1, (10.2)

with all other integrals zero (up to equivalence via the relations (10.1)). We define the
superderivatives

D = ∂θ + θ∂z, D̄ = ∂θ̄ + θ̄∂z̄, (10.3)

which satisfy
D2 = ∂z, D̄2 = ∂z̄, {D, D̄} = 0. (10.4)

The superconformal-invariant action is given by

S = 1
2

∫
S

d2zd2θDXµ(z)D̄Xµ(z̄), (10.5)

where we recall that we have dz ∧ dz̄/2πi, the α′ factors are absorbed into the fields, S
is the super Riemann surface and

Xµ(z, z̄) =
√

2Xµ(z, z̄) + iθψµ(z) + iθ̄ψ̄µ(z̄), (10.6)

where z = (z, θ) are the super-coordinates on the worldsheet. Note that the theta
integral can be done explicitly since the integral simply extracts the coefficient of θθ̄.
Doing so, we get (when there is no B-field)

S = 1
2

∫
Σ

d2z
(
2∂Xµ(z)∂̄Xµ(z̄) + ψµ∂̄ψµ(z) + ψ̄µ∂ψ̄µ(z̄)

)
, (10.7)

which is the usual N = 1 superstring action. The equation of motion can be written as

DD̄Xµ(z, z̄) = 0, (10.8)
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and the OPE is

Xµ(z1, z̄1)Xν(z2, z̄2) ∼ −gµν log |z1 − z2 − θ1θ2|2, (10.9)

or if we take ψµ on its own,

ψµ(z)ψν(w) ∼ gµν

z − w
, (10.10)

and similarly for ψ̄. From this, we can compute

DXµ(z1)DXν(z2) ∼ gµν

z1 − z2 − θ1θ2
, (10.11)

DXµ(z1)Xν(z2, z̄2) ∼ gµν(θ2 − θ1)
z1 − z2 − θ1θ2

, (10.12)

Xµ(z1, z̄1)DXν(z2) ∼ gµν(θ1 + θ2)
z1 − z2 − θ1θ2

. (10.13)

Now, we would like to use the above setup to compute the deformation of ψµ. Firstly,
given everything we have done so far, a natural question to ask would be whether
there is a universal coordinate argument we can make for fermions. Given that the
superspace construction looks rather similar to the bosonic construction, it may seem
as though there should be, but in fact there is not. We will explain why in section 10.3,
but for now let us move on and compute the deformation using the parallel transport
formalism of chapter 7.

As we did in the bosonic case, we can look at the marginal operator O and use
this to compute the deformation of DX. Consider the case where we have a metric
deformation g → g+δg. In the bosonic case, the deformation operator was simply given
by the deformation of the action, and this deformation was generated by the graviton
vertex operator. In this case, we would expect the same idea to apply. However, recall
that we now have the added complication of different picture numbers. In this chapter,
our calculations will only involve the deformation operator corresponding to the (0, 0)
picture graviton vertex operator, which is in fact given by a simple deformation of the
superspace action, i.e.

O = 1
2

∫
Σ

d2zδgµνDXµ(z)D̄Xν(z̄). (10.14)
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Note that, were we to integrate out the fermionic coordinates, we would return to the
bosonic deformation operator, since the fermionic parts vanish on-shell. In section
10.6, we will explain in more detail how this is the (0, 0) picture number deformation
operator, but it is possible to construct deformation operators in other pictures as well,
such as the canonical one.

Now, considering the deformation of DXµ(w), where w = (w, ϕ), we have the OPE

1
2

∫
Σ′

d2zδgνρDXν(z)D̄Xρ(z̄)DXµ(w) ∼ −1
2

∫
Σ′

d2z
δgµρD̄Xρ(z̄)
z − w − θϕ

. (10.15)

Now, recall that in the bosonic case we compared the results of the O calculation with
the mode expansion of ∂Xµ(g + δg), i.e. the deformed operator. Here, we would like
to do something similar. What should we compare the above to? Since it is DX(w)
which we are deforming, we need to know the mode expansion of this operator. We
have

DXµ(w) = iψµ(w) +
√

2ϕ∂Xµ(w), (10.16)

where, since we are in the NS-NS sector, the mode expansions are

ψµ(w) =
∑

n

gµνψ
ν
n+1/2w

−n−1, ψ̄µ(w) =
∑

n

gµνψ̄
ν
n+1/2w

−n−1, (10.17)

where the modes obey the anticommutation relations

{ψµ
n+1/2, ψ

ν
m−1/2} = {ψ̄µ

n+1/2, ψ̄
ν
m−1/2} = gµνδn+m,0. (10.18)

Thus, √
2ϕ∂Xµ(w) + iψµ(w) =

∑
n

gµν

(
−iϕαν

n + ψν
n+1/2

)
w−n−1. (10.19)

Going back to the O calculation, we can expand

1
w − (z − θϕ) =

∑
n≥0

w−n−1(z − θϕ)n =
∑
n≥0

w−n−1(zn − nθϕzn−1), (10.20)

where the last equality follows from the fact that θ, ϕ are fermionic. Thus, (10.15) can
be written as

δgµν

2
∑
n≥0

w−n−1
∫
Σ′

d2z(zn − nθϕzn−1)
(
iψ̄ν(z̄) +

√
2θ̄∂̄Xν(z̄)

)
, (10.21)
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and doing the fermionic integral gives

δgµν

2
∑
n≥0

w−n−1
∫
Σ′

d2znz−n−1ϕ∂̄X(z̄)ν = −δgµν

2
∑
n≥0

ϕw−n−1
∮
C′

dz̄zn∂̄X(z̄)ν , (10.22)

where in the last step we have integrated out a ∂z to go to the boundary. Thus,
comparing this to (10.19), we see that we recover the usual bosonic transformation of
the αn modes, and additionally the fermionic modes are unchanged, i.e.

δOψµ = 0. (10.23)

Given our discussion above regarding the picture number, this is as expected. If we
assume that the δE deformation acts as usual, we overall have that

(δO + δE)ψµ = ψµ + 1
2δgµνψ

ν . (10.24)

Now, recall that the transformation of ∂Xµ truncated at first order in δg. At higher
orders, the δO and δE transformations cancelled out with each other (the details of this
calculation at second order are in appendix E). However, for fermions this will clearly
not be the case, since δOψµ = 0. In fact, if we apply δE again we get

δ2
Eψµ = −1

4δgµνg
νρδgρσψ

σ. (10.25)

We can iterate this to obtain the finite transformation. Since we have to work to
arbitrarily high order here, it takes a bit more work compared to the bosonic case,
especially since we cannot use a universality argument. Note that the finite result
is not a simple exponential transformation, since δE acts on all metric and vielbein
factors. For example, in (10.25), δE would act on gνρ and ψσ, and overall we would
find that

δ3
Eψµ = 3

8

[(
δgg−1

)3
] ν

µ
ψν , (10.26)

where we have used the shorthand[(
δgg−1

)3
] ν

µ
= δgµρg

ρσδgστg
τθδgθαg

αν , (10.27)
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and similarly for (δgg−1)n. Recalling that the operator δE acts via an exponential
operator, we have

(
1 + δE + 1

2!δ
2
E + 1

3!δ
3
E

)
ψµ =

(
δ ν

µ + 1
2
[(
δgg−1

)] ν

µ
− 1

8

[(
δgg−1

)2
] ν

µ
+ 1

16

[(
δgg−1

)3
] ν

µ

)
ψν ,

(10.28)
which we notice looks like a (1 + δgg−1)1/2 expansion (to third order). In fact, we can
prove inductively that this is the case. Taking as our hypothesis that

1
n!δ

n
Eψµ = 1 · 3 · ... · (2n− 3)

n!2n

[
−
(
δgg−1

)n] ν

µ
ψν , (10.29)

it is straightforward to apply δE to this and prove the hypothesis for all n. Thus, the
finite transformation is

ψµ(g′) =
[(

1 + (g′ − g)g−1
)1/2

] ν

µ
ψν(g), (10.30)

where[(
1 + (g′ − g)g−1

)1/2
] ν

µ
≡
∑
n≥0

1 · 3 · ... · (2n− 3)
n!2n

[
−
(
(g′ − g)g−1

)n] ν

µ
. (10.31)

Note that ψ̄µ will have the obvious analogous transformation. We can verify that this
transformation is correct by looking at the OPEs

ψµ(g′)(z)ψν(g′)(w) =
[(

1 + (g′ − g)g−1
)1/2

] ρ

µ

[(
1 + (g′ − g)g−1

)1/2
] σ

ν
ψρ(g)(z)ψσ(g)(w)

∼ 1
z − w

[(
1 + (g′ − g)g−1

)1/2
] ρ

µ

[(
1 + (g′ − g)g−1

)1/2
] σ

ν
gρσ,

(10.32)

and using the expansion (10.31) it can be shown that
[(

1 + (g′ − g)g−1
)1/2

] ρ

µ

[(
1 + (g′ − g)g−1

)1/2
] σ

ν
gρσ = (g+(g′ −g))µν = g′

µν , (10.33)

and so we recover the correct OPEs, as required. Note the finite transformation can
also be written in the simpler form,

ψµ(g′) =
(
g′g−1

) ν

µ
ψν(g). (10.34)
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Superconformal symmetry

Now, how does the above square with the superconformal symmetry? The supercon-
formal transformations are

√
2∆Xµ = εψµ + ε̄ψ̄µ, (10.35)

1√
2

∆ψµ = −ε∂Xµ, (10.36)

1√
2

∆ψ̄µ = −ε̄∂̄Xµ, (10.37)

where ε, ε̄ are anticommuting parameters, and the currents which generate these
transformations are

jε = εTF , j̄ ε̄ = ε̄T̄F , (10.38)

where T̄F is the antiholomorphic supercurrent. It is possible to use the above results to
relate SUSY transformations at different backgrounds. Before we do so, it will be useful
to distinguish the point of enhanced symmetry as we did for the boson. Therefore, we
define1

ηµ := ψµ(G), (10.39)

similarly to how we defined ϕµ = Xµ(G) for bosons.
As an example, let us look at the circle, since this is easy to do to all orders. Let

us suppose we start from the self-dual radius and we deform to a radius R = 1 + δR,
where δR may not be small. In this case, we have, for example,2

∆εR
R ψ(R) = −

√
2εR∂X(R). (10.40)

Then, using (4.30), we can write this as

∆εR
R ψ(R) = −

√
2εR

(
∂ϕ+

(
δR + 1

2δR
2
)

(∂ϕ− ∂̄ϕ)
)

= εR

1 + δR + 1
2δR

2

(
1
ε

∆εη +
(
δR + 1

2δR
2
)(∆εη

ε
− ∆εη̄

ε̄

))

=εR

ε
∆εη − (1 + δR)2 − 1

(1 + δR)2 + 1
εR

ε̄
∆εη̄, (10.41)

1Note that, since ψ is not universal, there is no ambiguity or confusion in defining η directly instead
of indirectly through something like ∂η.

2As usual, when we write ∂X in the d = 1 case we mean ∂Xµ, i.e. indices lowered. When we write
ψ, we mean ψµ, i.e. indices raised.
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where we have used an arbitrary SUSY transformation at the self-dual radius ε. If we
choose εR = ε, we get

∆ε
Rψ = ∆εη − R2 − 1

R2 + 1
ε

ε̄
∆εη̄. (10.42)

Similarly, we have
∆ε

Rψ̄(R) = ∆εη̄ − R2 − 1
R2 + 1

ε

ε̄
∆εη. (10.43)

We can do the same for the SUSY transformation of X, which gives

∆ε
RX(R) = 1

R
∆εϕ. (10.44)

10.2 General toroidal backgrounds

In the case when we have a non-zero B-field, there are further complications. Note
that we are still dealing with the constant background case (i.e. still in the realm of
CFTs) and we will come to the non-CFT case later. Firstly, the action is simply

S = 1
2

∫
S

d2zEµν(X)DXµ(z)D̄Xν(z̄), (10.45)

which in this case can be written as

S =
∫
Σ

d2zEµν∂X
µ(z)∂̄Xν(z̄) + 1

2

∫
Σ

d2zgµν(ψµ∂̄ψν(z) + ψ̄µ∂ψ̄ν(z̄)), (10.46)

i.e. there is still no mixing between the fermionic and bosonic parts (we will see that
this is not the case when E has non-trivial coordinate dependence). Thus, the O
deformation is as before for ψµ, i.e. δOψµ = 0.

For δE, recall that, in the bosonic case, we used the doubled geometry to derive
the transformation in the case when B ≠ 0. In [77], a similar construction was
demonstrated for fermions. We will not go into the details here, but essentially it was
done using a superspace approach. Using this formulation, a sigma model like (3.52)
could be constructed for the doubled superfield and the form was largely the same
as the bosonic case, but with superderivatives instead. Thus, the δE transformation
follows in the same way as it did for the bosonic case and we have

δEψµ = 1
2δEµνψ

ν , (10.47)
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and this can be iterated to obtain the transformation to any order desired. For example,
at second order we have

δ2
Eψµ = 1

2δEµνδE(ψν) = −1
4δEµνg

νρδEρσψ
σ. (10.48)

Following the same method as for the B = 0 case above, we find that the finite
transformation is given by

ψµ(E ′) =
[(

1 + (E ′ − E)g−1
)1/2

] ν

µ
ψν(E). (10.49)

In what follows, we will only be interested in the first order transformation. A question
one could ask is whether we can successfully recover the Buscher rules using the stress
tensor or the supercurrent TF . As we have seen in chapter 9, we can use the stress
tensor to derive T-dual backgrounds, and this is equivalent to using the Buscher rules
for a flat background. Deriving this in the supersymmetric case can also be viewed as
a consistency check for the fermion deformations. We will look at the supercurrent TF

and recover the Buscher rules to first order. Recall that TF = i
√

2ψµ∂Xµ and consider
the background

E = 1 + δE, (10.50)

and the T-dual background
Ẽ = 1 + δẼ. (10.51)

We will show that the T-dual of TF (Ẽ) is indeed TF (E). Firstly, using (2.47) and
expanding the metric and B-field to first order, we obtain the first order Buscher rules
as

δg̃xx = −δgxx, δg̃xi = −δBxi, δg̃ij = δgij,

δB̃xi = −δgxi, δB̃ij = δBij, (10.52)

where we have spacetime coordinates xµ = (x, xi) and we are taking the T-dual in the
x-direction. Then, using (4.30),(10.47) and (10.52), we can write ψµ(Ẽ), ∂Xµ(Ẽ) in
terms of objects at the self-dual point as

ψµ(Ẽ) =
ψx(Ẽ)
ψi(Ẽ)

 =
ηx − 1

2δExxηx − 1
2δExiηi

ηi + 1
2δEijηj + 1

2δE
T
ixηx

 , (10.53)
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∂Xµ(Ẽ) =
∂X(Ẽ)
∂Xi(Ẽ)

 =
∂ϕx − 1

2δExx(∂ϕx − ∂̄ϕx) − 1
2δExi(∂ϕi − ∂̄ϕi)

∂ϕi + 1
2δEij(∂ϕj − ∂̄ϕj) + 1

2δE
T
ix(∂ϕx − ∂̄ϕx)

 . (10.54)

Now, TF (E) is given by

TF (E) = δµνηµ∂ϕν + 1
2δEµνη

µ(∂ϕν − ∂̄ϕν) + 1
2δEµν∂ϕ

µην − δgµν∂ϕ
ν . (10.55)

Using this general form, we substitute (10.53), (10.54) into TF (Ẽ) and apply the
T-duality transformation (ηx, ∂ϕx) → −(ηx, ∂ϕx) to get

TF (Ẽ) →δµνηµην − 1
2δgxxηx(∂ϕx + ∂̄ϕx) + 1

2δBxiηx(∂ϕi − ∂̄Xi) + 1
2δgxiηx(∂ϕi − ∂̄ϕi)

− 1
2δBixηi(∂ϕx + ∂̄ϕx) − 1

2δgxiηi(∂ϕx + ∂̄ϕx) + 1
2δEijηi(∂ϕj − ∂̄ϕj)

− 1
2δgxxηx∂ϕx + 1

2δBxi∂ϕxηi + 1
2δgxi∂ϕxηi + 1

2δBxi∂ϕiηx − 1
2δgix∂ϕiηx

+ 1
2δEij∂ϕiηj + δgxxηx∂ϕi − δBxi(ηx∂ϕi + ηi∂ϕx) − δgijηi∂ϕj. (10.56)

Collecting the terms together, this can be shown to equal (10.55), so we recover the
correct T-duality transformation to first order.

Before moving onto non-CFT cases, let us briefly explore the possibility of a
universal coordinate construction like that utilised for the boson on a flat torus. In
particular, let us see why a similar construction does not seem possible for fermions.

10.3 Universal coordinates for fermions

Recall that the basis for a universal coordinate construction for bosons was the
background-independent canonical commutation relations. For fermions, we have
canonical anticommutation relations given by

{ψµ(σ), ψν(σ′)} = 2πgµνδ(σ − σ′), (10.57)

and similarly for ψ̄. Note that we have explicit dependence on the metric here, and
so it does not seem that we can immediately generalise the bosonic case. However,
we might still hope that we can use the superspace formalism to construct universal
objects. To do this, we need to find a ‘conjugate supermomentum’ Πµ. We could try
to find such an object the canonical way using the action, but it is easier to use our



10.3 Universal coordinates for fermions 175

knowledge of the bosonic case. Recall that we have

X ′µ(z, z̄) = −igµν
(
z∂Xν(z) − z̄∂̄Xν(z̄)

)
,

Πµ(z, z̄) = izET
µν∂X

ν(z) + iz̄Eµν ∂̄X
ν(z̄). (10.58)

We can construct analogues for X′,Π by replacing ∂, ∂̄ with D, D̄, i.e.

X′µ(z, z̄) = −igµν
(
zDXν(z) − z̄D̄Xν(z̄)

)
,

Πµ(z, z̄) = izET
µνDXν(z) + iz̄EµνD̄Xν(z̄). (10.59)

In terms of modes, these can be written as

X′µ(z, z̄) =
∑

n

(
ψµ

n+1/2 − θαµ
n

)
z−n −

∑
n

(
ψ̄µ

n+1/2 − θ̄ᾱµ
n

)
z̄−n,

Πµ(z, z̄) = ET
µν

∑
n

(
θαν

n − ψν
n+1/2

)
z−n + Eµν

∑
n

(
θ̄ᾱν

n − ψ̄ν
n+1/2

)
z̄−n. (10.60)

Note that, whilst X is bosonic, these objects are fermionic. Let us look at the
commutation/anticommutation relations of these objects to see if we can consistently
identify any of them as universal. Note that we will switch to real coordinates (σ, τ)
(in Euclidean signature) here. Firstly, after some short algebra, we find that3

[Πµ(σ),Xν(σ′)] =
(
θ
(
δ ν

µ −Bµρg
ρν
)

+ θ̄
(
δ ν

µ +Bνρg
ρν
))

2πiδ(σ − σ′), (10.62)

where we have suppressed the τ, θ, θ̄ dependence for clarity. What we notice here is
that the θ, θ̄ dependence prevents the background-dependent terms from cancelling.
Thus, from this commutator it seems as though we cannot identify X,Π as universal.
Even if we look at the anticommutator between X′ and Π, we find that

{Πµ(σ),X′ν(σ′)} =
(
−
(
δ ν

µ −Bµρg
ρν
)
eτ−iσ +

(
δ ν

µ +Bµρg
ρν
)
eτ+iσ′)

, (10.63)

where the exponential factors come from {ψµ
n+1/2, ψ

ν
m+1/2} = gµνδn+m+1,0. Thus, once

again we see that we do not get a background independent result.
The above is not to say that a universality argument is impossible for fermions, but

that it is at least not as straightforward as the bosonic case. In any case, the fermion
3Where we have used ∑

n

ein(σ−σ′) = 2πδ(σ − σ′) (10.61)
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transformation is simple enough that we did not need such an argument to compute
its deformation to arbitrary order.

Let us now move away from CFTs and turn to the case where there is coordinate
dependence in the background deformation.

10.4 General NLSMs

We now come to the case of general metric and B-field, so there can be some coordinate
dependence in the background. It will be easiest to integrate out the fermions in the
action (10.45) before we compute the deformation.

We expand the background E(X) as

Eµν(X) = Eµν(X) + 1√
2

(iθψρ + iθ̄ψ̄ρ)∂ρEµν(X) − 1
2θθ̄ψ

ρψ̄σ∂ρ∂σEµν . (10.64)

Substituting this in, we obtain the action

S =
∫
Σ

{
Eµν(X)∂Xµ∂Xν + 1

2gµν(X)
(
ψµD̄ψν + ψ̄µDψ̄ν

)
+ 1

2Rµνρσ(X)ψµψνψ̄ρψ̄σ
}
,

(10.65)

where

D̄ψν = ∂̄ψν +
(
Γν

ρσ(X) + gντ (X)∂τBρσ(X)
)
∂̄Xρψσ, (10.66)

Dψν = ∂ψ̄ν +
(
Γν

ρσ(X) − gντ (X)∂τBρσ(X)
)
∂Xρψ̄σ. (10.67)

What we see now is that there are terms which mix fermions and bosons. Thus, we
expect the deformations of the fields to be significantly different to the CFT case.
In particular, the δO∂X transformation will now differ from the purely bosonic case
and will contain fermionic corrections. Let us look at how ∂X and ψ now transform.
Note that, when we look at the general case below, we will not explicitly compute the
contributions from the X-dependence in the metric and B-field, since the precise effect
these have on the deformations must be computed on a case-by-case basis. When we
come to the H-flux/nilfold example, we will compute the full deformation, with all
X-dependence taken into account explicitly.
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10.4.1 ∂Xµ deformation

We will focus on the new terms arising due to the covariant derivatives D, D̄. For ∂Xµ,
the term with Dψ will be the one of relevance. We compute the OPE

1
2

∫
Σ′

d2zgνρ(X(z, z̄))ψ̄ν(z̄)
(
Γρ

στ (X(z, z̄)) − gρθ(X(z, z̄))∂θBστ (X(z, z̄))
)
∂Xσ(z)ψ̄τ (z̄)∂Xµ(w)

∼ − 1
4

∫
Σ′

d2z

(z − w)2 gνρ(X(z, z̄))ψ̄ν(z̄)
(
Γρ

µσ(X(z, z̄)) − gρτ (X(z, z̄))∂τBµσ(X(z, z̄))
)
ψ̄σ(z̄) + ...

= − 1
4

∮
C′

dz̄

z − w
gνρ(X(z, z̄))ψ̄ν

(
Γρ

µσ(X(z, z̄)) − gρτ (X(z, z̄))∂τBµσ(X(z, z̄))
)
ψ̄σ(z̄) + ...,

(10.68)

where the ... denotes terms that would arise due to the X-dependence in the background
objects. Note that there may also be some extra terms from the curvature term in the
action, though for the nilfold the curvature vanishes at first order in m. Thus, the
deformation of ∂Xµ can be summarised as

δ∂Xµ = δB∂Xµ + δF∂Xµ, (10.69)

where the bosonic deformation δB∂Xµ is as usual, and

δF∂Xµ = −1
4gνρ(X)ψ̄ν

(
Γρ

µσ(X) − gρτ (X)∂τBµσ(X)
)
ψ̄σ + ..., (10.70)

where the ..., in addition to the terms discussed above, also includes the terms from
the potential X-dependence in the Riemann tensor. A similar results holds for ∂̄Xµ.
Let us now look at the fermion deformation.

10.4.2 ψµ deformation

In the constant case, we saw that there was no O contribution to the fermion defor-
mation, and this could be seen in a number of ways, one of which was through the
superspace construction that we employed. Another way we can see this is that, in the
constant case, once we take the OPE, we schematically get∫

∂̄ψ, (10.71)
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and since the flat equation of motion is ∂̄ψ = 0, this vanishes. What we will now find
is that, due to the X-dependence, this is no longer the case, since the equation of
motion is more complicated. Once again, we will just look at the terms which give
new contributions compared to the constant case. We have

1
2

∫
Σ′

d2zgνρ(X)ψν(z)
(
Γρ

στ (X) + gρθ(X)∂θBστ (X)
)
∂̄Xσ(z̄)ψτ (z)ψµ(w)

∼1
2

∫
Σ′

d2z

z − w
gνρ(X)

(
Γρ

στ (X) + gρθ(X)∂θBστ (X)
) (
ψν(z)∂̄Xσ(z̄)δτ

µ − ψτ (z)∂̄Xσ(z̄)δν
µ

)

=1
2

∫
Σ′

d2z

z − w
ψν(z)∂̄Xρ(z̄)(∂µgνρ(X) − ∂νδgρµ(X) + 2∂µBνρ(X)), (10.72)

where we have used that

gνρΓρ
στ = 1

2 (∂σgντ + ∂τgνσ − ∂νgστ ) , (10.73)

as well as the fact that

: ψµψν :: ψρ : ∼ − : ψνψµ :: ψρ : . (10.74)

Now, since we cannot take out a derivative in (10.72) like we could in the ∂Xµ case,
we cannot immediately deduce the deformation of ψµ as a whole, but we can write the
mode deformation as

δ(gµνψ
ν
n+1/2) = −1

2

∫
Σ′

d2zznψν(z)∂̄Xρ(z̄)(∂µgνρ(X) − ∂νδgρµ(X) + 2∂µBνρ(X)).

(10.75)
Thus, we see that, in general, there is also an O contribution to the fermion deformation,
and it involves both the fermionic and bosonic fields. To get a better feel for this, let
us look at the specific cases of the H-flux and nilfold. In particular, we will use these
deformations to demonstrate that the T-duality holds as expected.

10.5 Example: The nilfold & T 3 with H-flux

We will first derive the deformations of the fields using the results derived above. We
will then look at the stress tensor as well as the fermionic supercurrents, and we will
show that these objects transform as expected under T-duality. Note that we will only
work to first order in the parameter m throughout. This will make the calculations
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particularly simple since, to first order, there are no extra terms resulting from the
X-dependence (i.e. the ‘...’ terms above are zero here to first order), so we can directly
use the results above.

10.5.1 Nilfold

Using the nilfold background (8.36), we can compute the first order Christoffel symbols
as

Γx
yz = 1

2m, Γy
zx = −1

2m, Γz
xy = −1

2m, (10.76)

with all else zero up to symmetry. Also, as mentioned above, to first order, the Riemann
tensor R vanishes.

Now, note that, although the metric does indeed have X-dependence, the term in
the action

1
2

∫
Σ

gµν(X)
(
ψµD̄ψν + ψ̄µDψ̄ν

)
(10.77)

in fact does not have any explicit X-dependence to first order in m. This is because
the Christoffel symbols are at least order m, and their O(m) parts are constant, so
the O(m) part of (10.77) is given by the product of the O(m) part of the Christoffel
symbols and the O(1) part of the metric, both of which are constant. Thus, we can
simply use the results derived above, and we find that the full transformations to order
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m are4

δ∂ϕx(w) = −1
2m

∫
Σ′

d2z

z − w

(
∂ϕy(z)∂̄ϕz(z̄) − ∂ϕz(z)∂̄ϕy(z̄)

)
, (10.78)

δ∂ϕy(w) = 1
2m

∫
Σ′

d2z

z − w
(∂ϕx(z)∂̄ϕz(z̄) − ∂ϕz(z)∂̄ϕx(z̄)) + 1

2m
∮
C′

ϕx(z, z̄)dϕz(z, z̄)
z − w

− 1
4mη̄x(w̄)η̄z(w̄), (10.79)

δ∂ϕz(w) = 1
2m

∫
Σ′

d2z

z − w
(∂ϕx(z)∂̄ϕy(z̄) − ∂ϕy(z)∂̄ϕx(z̄)) + 1

2m
∮
C′

ϕx(z, z̄)dϕy(z, z̄)
z − w

− 1
4mη̄x(w̄)η̄y(w̄), (10.80)

δηx(w) = −1
2m

∫
Σ′

d2z

z − w

(
ηy(z)∂̄ϕz(z̄) + ηz(z)∂̄ϕy(z̄)

)
, (10.81)

δηy(w) = −1
2m

ϕx(w, w̄)ηz(w) −
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕz(z̄)

 , (10.82)

δηz(w) = −1
2m

ϕx(w, w̄)ηy(w) −
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕy(z̄)

 . (10.83)

It is interesting to note that, even here, the holomorphic and antiholomorphic fermion
fields do not interact in any way. This could also have been anticipated from the
action, since the only term mixing them was the curvature term, which vanishes in
the examples considered here. The holomorphic bosonic fields, on the other hand, do
interact with the antiholomorphic fermion fields.

10.5.2 T 3 with H-flux

For the H-flux, notice that, in the new contributions that arose in section 10.4, the
B-field only came in through ∂B terms, which, for the H-flux, is always constant.

4Note that we once again use η to refer to the point where E = G, though, as in the bosonic case,
we are going to the covering space where the x-direction is decompactified, so the starting point is not
a T 3 strictly speaking.
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Thus, as with the nilfold, we can directly take the results of section 10.4. We get

δ∂ϕx(w) = 1
2m

∫
Σ′

d2z

z − w

(
∂ϕy(z)∂̄ϕz(z̄) − ∂ϕz(z)∂̄ϕy(w̄)

)
, (10.84)

δ∂ϕy(w) = −1
2m

∫
Σ′

d2z

z − w
(∂ϕx(z)∂̄ϕz(z̄) − ∂ϕz(z)∂̄ϕx(z̄)) − 1

2m
∮
C′

ϕx(z, z̄)dϕz(z, z̄)
z − w

+ 1
4mη̄x(w̄)η̄z(w̄), (10.85)

δ∂ϕz(w) = 1
2m

∫
Σ′

d2z

z − w
(∂ϕx(z)∂̄ϕy(z̄) − ∂ϕy(z)∂̄ϕx(z̄)) + 1

2m
∮
C′

ϕx(z, z̄)dϕy(z, z̄)
z − w

− 1
4mη̄x(w̄)η̄y(w̄), (10.86)

δηx(w) = 1
2m

∫
Σ′

d2z

z − w

(
ηy(z)∂̄ϕz(z̄) − ηz(z)∂̄ϕy(z̄)

)
, (10.87)

δηy(w) = 1
2m

ϕx(w, w̄)ηz(w) −
∫
Σ′

d2z

z − w
ψx(z)∂̄ϕz(z̄)

 , (10.88)

δηz(w) = −1
2m

ϕx(w, w̄)ηy(w) −
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕy(z̄)

 . (10.89)

Let us now look at how the T-duality can be recovered. This will essentially be an
extension of what we did in chapter 9.

10.5.3 T-duality

In the bosonic case, we were only interested in the stress tensor as far as the T-duality
was concerned. Here, we shall additionally be interested in the fermionic supercurrent,
i.e. we will look at the objects

TB = −gµν∂Xµ∂Xν − 1
2g

µνψµ∂ψν , TF = i
√

2gµνψµ∂Xν , (10.90)

and the corresponding antiholomorphic objects. We will look at T-duality in the
y-direction, which, in terms of the objects at the self-dual point, is given by

(∂ϕy, ηy) → −(∂ϕy, ηy). (10.91)
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Substituting all of the above results in, we have

TN
B (w) = TG(w) +m∂ϕx(w)

∫
Σ′

d2z

z − w
F+

yz(z, z̄) −m∂ϕy(w)
∫
Σ′

d2z

z − w
F−

xz(z, z̄)

−m∂ϕz(w)
∫
Σ′

d2z

z − w
F−

xy(z, z̄) −m∂ϕy(w)
∮

C′
0

ϕx(z, z̄)dϕz(z, z̄)
z − w

−m∂ϕz(w)
∮

C′
0

−2mϕx(w, w̄)∂ϕy(w)∂ϕz(w)ϕ
x(z, z̄)dϕy(z, z̄)

z − w

+ 1
2m

(
∂ϕy(w)η̄x(w̄)η̄z(w̄) + ∂ϕz(w)η̄x(w̄)η̄y(w̄)

)

+ 1
4m

ηx(w)
∫
Σ′

d2z

(z − w)2 (ηy(z)∂̄ϕz(z̄) + ηz(z)∂̄ϕy(z̄))

− ∂ηx(w)
∫
Σ′

d2z

z − w
(ηy(z)∂̄ϕz(z̄) + ηz(z)∂̄ϕy(z̄))

− ηy(w)
∫
Σ′

d2z

(z − w)2ηx(z)∂̄ϕz(z̄) + ∂ηy(w)
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕz(z̄)

−ηz(w)
∫
Σ′

d2z

(z − w)2ηx(z)∂̄ϕy(z̄) + ∂ηz(w)
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕy(z̄)

 , (10.92)

TH
B (w) = TG(w) −m∂ϕx(w)

∫
Σ′

d2z

z − w
F−

yz(z, z̄) +m∂ϕy(w)
∫
Σ′

d2z

z − w
F−

xz(z, z̄)

−m∂ϕz(w)
∫
Σ′

d2z

z − w
F−

xy(z, z̄) +m∂ϕy(w)
∮

C′
0

ϕx(z, z̄)dϕz(z, z̄)
z − w

−m∂ϕz(w)
∮

C′
0

ϕx(z, z̄)dϕy(z, z̄)
z − w

− 1
2m

(
∂ϕy(w)η̄x(w̄)η̄z(w̄) − ∂ϕz(w)η̄x(w̄)η̄y(w̄)

)

− 1
4m

ηx(w)
∫
Σ′

d2z

(z − w)2 (ηy(z)∂̄ϕz(z̄) − ηz(z)∂̄ϕy(z̄))

− ∂ηx(w)
∫
Σ′

d2z

z − w
(ηy(z)∂̄ϕz(z̄) − ηz(z)∂̄ϕy(z̄))

− ηy(w)
∫
Σ′

d2z

(z − w)2ηx(z)∂̄ϕz(z̄) + ∂ηy(w)
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕz(z̄)

+ηz(w)
∫
Σ′

d2z

(z − w)2ηx(z)∂̄ϕy(z̄) − ∂ηz(w)
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕy(z̄)

 , (10.93)
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1
i
√

2
TN

F (w) = 1
i
√

2
TG

F (w) +mϕx(w, w̄)(ηy(w)∂ϕz(w) + ηz(w)∂ϕy(w))

+ 1
2m

−ηx(w)
∫
Σ′

d2z

z − w
F−

yz(z, z̄)

+ ηy(w)
∫

Σ′

d2z

z − w
F−

xz(z, z̄) +
∮
C′

ϕx(z, z̄)dϕz(z, z̄)
z − w

− 1
2 η̄x(w̄)η̄z(w̄)


+ ηz(w)

∫
Σ′

d2z

z − w
F−

xy(z, z̄) +
∮
C′

ϕx(z, z̄)dϕy(z, z̄)
z − w

− 1
2 η̄x(w̄)η̄y(w̄)


− ∂ϕx(w)

∫
Σ′

d2z

z − w
(ηy(z)∂̄ϕz(z̄) + ηz(z)∂̄ϕy(z̄))

− ∂ϕy(w)
ϕx(w, w̄)ηz(w) −

∫
Σ′

d2z

z − w
ηx(z)∂̄ϕz(z̄)


−∂ϕz(w)

ϕx(w, w̄)ηy(w) −
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕy(z̄)

 , (10.94)

1
i
√

2
TH

F (w) = 1
i
√

2
TG

F (w) + 1
2m

−ηx(w)
∫
Σ′

d2z

z − w
F−

yz(z, z̄)

− ηy(w)
∫

Σ′

d2z

z − w
F−

xz(z, z̄) +
∮
C′

ϕx(z, z̄)dϕz(z, z̄)
z − w

− 1
2 η̄x(w̄)η̄z(w̄)


+ ηz(w)

∫
Σ′

d2z

z − w
F−

xy(z, z̄) +
∮
C′

ϕx(z, z̄)dϕy(z, z̄)
z − w

− 1
2 η̄x(w̄)η̄y(w̄)


+ ∂ϕx(w)

∫
Σ′

d2z

z − w
(ηy(z)∂̄ϕz(z̄) − ηz(z)∂̄ϕy(z̄))

+ ∂ϕy(w)
ϕx(w, w̄)ηz(w) −

∫
Σ′

d2z

z − w
ηx(z)∂̄ϕz(z̄)


−∂ϕz(w)

ϕx(w, w̄)ηy(w) −
∫
Σ′

d2z

z − w
ηx(z)∂̄ϕy(z̄)

 , (10.95)

where
TG = −(∂ϕ2

x + ∂ϕ2
y + ∂ϕ2

z) − 1
2(ηx∂ηx + ηy∂ηy + ηz∂ηz), (10.96)

1
i
√

2
T F

G = ηx∂ϕx + ηy∂ϕy + ηz∂ϕz. (10.97)
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Then, using

ϕx(w, w̄)∂ϕy(w) =
∫
Σ′

d2z

z − w
∂ϕy(z)∂̄ϕx(z̄) −

∮
C′

dz

z − w
ϕx(z, z̄)∂ϕy(z), (10.98)

it is not too hard to show that, under the T-duality transformation (10.91),

TN
B ↔ TH

B ,

TN
F ↔ TH

F . (10.99)

Thus, even with the fermionic contributions, the expected T-duality still holds when
we take the worldsheet interactions into account.

10.6 The deformation operator and picture chang-
ing

The deformation operator we have been using above has been derived from the
worldsheet sigma model. As such, for the case of constant background, we found
that there was no δO contribution to the fermion deformation since the on-shell fermion
deformation operator vanishes. Recall that the Type II graviton vertex operator in the
(0, 0) picture takes the form

V(0,0)(k, ϵ, z, z̄) = ϵµν(k)V µ
(0)(k, z)V̄ ν

(0)(k, z̄), (10.100)

where
V µ

(0)(k, z) =
√

2
(
i∂Xµ(z) + 1

2(k · ψ)ψµ(z)
)
eik·XL(z). (10.101)

As we can see, in the limit k → 0, this reduces to the usual bosonic graviton operator,
and so the deformation operator would be the standard metric deformation operator
that we have been using throughout. However, a natural question now arises: what
happens when we consider the graviton in other pictures aside from the (0, 0) one?
The other common picture is the canonical (−1,−1) picture, where the graviton vertex
operator is given by

V(−1,−1)(k, ϵ, z, z̄) = ϵµν(k)V µ
(−1)(k, z)V ν

(−1)(k, z̄), (10.102)
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where ϵ is a symmetric polarisation tensor and

V µ
(−1)(k, z) = e−φ(z)ψµ(z)eik·XL(z), (10.103)

where φ is a bosonic ghost field obeying the OPE

φ(z)φ(w) ∼ − log(z − w). (10.104)

If we now construct our deformation operator using this vertex operator instead of the
usual deformation of the action, then we have

O(−1,−1) = δgµν

∫
Σ

d2zψµ(z)ψ̄ν(z̄), (10.105)

where we ignore the ghost fields since we will not focus on them here, and we assume
we are working within the realm of toroidal CFTs, i.e. g, δg are constant. Then, we
have the contraction

O(−1,−1)ψµ(w) ∼ −δgµν

∫
Σ′

d2z

z − w
ψ̄ν(z̄), (10.106)

from which we derive

δO(−1,−1)(gµνψ
ν
n+1/2) = −δgµν

∫
Σ′

d2zznψ̄ν
n+1/2. (10.107)

Thus, in the canonical picture, the O deformation of ψµ is non-zero, whereas we would
have

δO(−1,−1)∂Xµ = 0. (10.108)

The δE transformation is presumably independent of picture, since it only depends on
the change in the background.

One could take this further and compute the deformations for a general toroidal
background (i.e. non-zero B-field), and then look at non-constant backgrounds, T-
duality, etc., but we will not do so here. The main point that we want to make here is
that the deformation of an operator in the supersymmetric context is picture-dependent.
Of course, this is fine since, in a correlation function, the operators would be in whatever
pictures are necessary to have the correct overall picture number. To compute the
deformation, we would then insert the deformation operator in the (0, 0) picture (to
preserve picture number), and we could switch to deformation operators in different
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pictures using the picture changing operator, as long as the overall picture number of
the correlator is correct. Indeed, taking the picture raising operator to be

P+(z) = 2TF (z)eφ(z) + ..., (10.109)

where the +... represents ghost terms which are unimportant here, we find that∮
|z−w|=1

dzP+(z)V(−1)(w) = 2V(0)(w). (10.110)

Thus, we can use the appropriate picture changing operators to switch between different
deformation operators, since they are constructed from the graviton vertex operators.
If the goal is to compute the deformation of a correlator, then which picture one uses
to compute the deformations should not make any difference to the final result.

What is interesting to note is that the deformation (10.107) can be obtained from
(10.21) by simply setting θ = θ̄ = 0 instead of integrating out θ. Looking at (10.16), we
see that this will leave only the fermion fields and comparing coefficients with (10.21) as
we would normally do will reproduce (10.107). This is reminiscent of arguments made
in the literature5 where it was claimed that the canonical picture could be obtained by
taking a section of the super Riemann surface where θ = θ̄ = 0. In general, it seems
that the best way to think of the deformation operator is as follows. We start with the
integration over the Riemann surface with coordinates z, z̄ only, i.e.

O = 1
2δgµν

∫
Σ

d2zDXµ(z)D̄Xν(z̄). (10.111)

Then, the way we deal with the θ dependence will determine the picture. If we integrate
out θ then we obtain the 0 picture, which is what we have used in most of the above
calculations. If we set θ = 0 then we are in the −1, or canonical, picture.

Thus, we see that, in the supersymmetric setting, deformations of individual
operators are much subtler. Also, it is harder to isolate the deformations from the
correlation function under consideration. Given that we usually need to preserve
picture number, if we assume that we always insert the picture zero operator then we
can always choose to work with this operator only, but we must bear in mind that
what we mean by an operator deformation is picture-dependent.

Clearly, there are many subtle details regarding this picture changing story, and
it would be interesting to study this in more detail, and indeed the SUSY operator

5See [78, 79] for example.
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deformation story more generally. For example, we have not studied the ghost fields at
all, and it may be that the way they behave is significant. We will not go any further
in this thesis, but, hopefully, what we have presented here will inspire future research
in this direction. Evidently, our understanding of operator deformations is far from
complete, and there are many avenues yet to be explored.





Chapter 11

Conclusion

The goal of this thesis has been to shed light on the subject of operator deformations
in string theory, and to gain a new perspective on T-duality. To some extent, we have
succeeded in making both subjects better understood and opened up new avenues
for exploration. We started by considering the idea of using universal coordinates
to deduce operator deformations and to compute T-duality using the stress tensor
[15]. Such ideas had gone largely unnoticed in the literature, and we brought them
into a modern context. We also developed these ideas further by applying them to
torus bundle target spaces and framing universal coordinates in the context of the
Γ̂ connection on the space of toroidal CFTs. More generally, our motivation was to
reframe and place in a contemporary setting the operator algebra arguments around
stringy symmetries which appeared in the older literature [18, 15].

Another of our aims was to provide a framework in which to discuss T-duality in a
wide range of cases that did not rely solely on questions of the existence of isometries
of the target space theory. One motivation for a different approach is the desire to
better understand under what conditions a T-dual description of a background exists,
given that there are cases where global isometries are not a feature of the background
yet something akin to T-duality appears possible. That the operator algebra approach
provides a language to discuss T-duality that is not reliant on target space concepts is
particularly appealing. To this end, we clarified some of the issues surrounding the
operator approach to T-duality that were not, to our knowledge, addressed in the
older literature. In particular, the non-uniqueness of the T-duality charge and the
role isometries played in simplifying the discussion were clarified. Though the duality
calculations in this thesis may sometimes have seemed more complicated than their
Buscher procedure counterparts, the formalism discussed here is expected to apply
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to a more general class of backgrounds and seems to be a more fundamental way of
understanding T-duality.

We sketched out a general framework in which issues of T-duality rest on the
construction of a connection and a path γ in moduli space between a background of
enhanced symmetry, in which the duality is manifest, and the background in question.
This combines the ideas of [27, 15] with the studies of connections on the space of
string backgrounds given in [20, 43, 22]. For on-shell considerations, the connection is
on the state space of CFTs, but this can be generalised to more general sigma models,
as we discussed in chapter 5. From a string field theory perspective, this provides a
way of discussing off-shell physics. This provides a different starting point for T-duality
than the traditional Buscher construction and one that may admit concrete discussions
of non-isometric generalisation from the perspective of the full worldsheet quantum
theory. We briefly discussed non-isometric T-duality and in particular we turned to an
idea in [15] where coordinate dependence in the background was reframed in terms of
Fourier expansions. We developed this idea slightly and described some of the issues
with it, such as the non-commutativity of taking the Fourier expansion of a function
of the target space coordinates and pulling objects back to the worldsheet. Though
lacking somewhat as a valid approach to non-isometric T-duality, there is perhaps
some potential in the idea and it may be that the issues discussed can be ironed out.
We also looked at the possibility of directly using the T-duality charge to compute the
T-duality of ϕx(σ). We found that the simple ϕx(σ) → ϕ̃x(σ) transformation may not
be too naive, though again there are complications here. It would be good to study
this issue in the context of an exact solution (or to leading order in α′), as is discussed
in [54–56] or more recently the class of backgrounds found in [52, 80]. As a simpler and
more tractable case, it would be interesting to study the duality on orbifolds where
some part of the enhanced gauge symmetry is broken by the orbifold action. This might
give more perspective on mirror symmetry in K3 and Calabi-Yau manifolds via their
orbifold limits. For similar reasons, it would be interesting to see to what extent the
construction considered here could be generalised to torus bundles with degenerating
fibres. A good example to study in more detail might be the SU(2) example mentioned
briefly in section 6.3, though this may present a significant computational challenge.

Somewhat surprisingly, the doubled algebra was shown to arise from the zero
modes of the commutation relations of the torus bundle directly, where the central
extensions played an important role. The doubled geometry arose in this context as
an effective classical description of the quantum theory. The distinction between the
doubled geometry of [12] and the centrally extended algebras that appeared here is
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subtle and deserves further investigation. Similarly, it would be interesting to know
what significance the more general algebras discussed in section 6.11 have. They are
clearly related to the parallelizable flux compactifications [62, 32], but may have wider
applicability. In the same way that the contraction of the doubled algebra generated
by the vector fields (3.12) arose from the zero modes of the operator algebra (6.87),
it would be interesting to see if there are non-parallelisable cases where the operator
algebra of section 6.11.2 can be used to find a concrete proposal for the corresponding
doubled geometry.

We also considered a general formalism for constructing the deformations of op-
erators. As mentioned, a description of how to deform a generic operator at a point
in the space of backgrounds, for both CFTs and more general spaces of QFTs, was
lacking in the literature, since the focus has primarily been on correlation functions and
the stress tensor. In particular, our formalism explicitly takes into account the target
space tensor structure of the operator of interest, and we showed how this affects the
deformation. One of our main goals was to show how our formalism extends to more
general QFTs, and this was demonstrated by looking at the H-flux and nilfold. For
marginal deformations of free CFTs, the deformation preserves the subspace spanned
by ∂X and ∂̄X. For the non-CFT cases, we found that the X-dependence made a
significant difference to the deformation of ∂ϕµ, mixing in terms of the form ϕx∂ϕν and
ϕx∂̄ϕν , as well as the ∂̄ϕν terms seen in trivial torus bundles. More general deformation
operators would lead to a more general mixing of the operator basis.

We also described how this method would work at higher orders, and the second order
result for the flat torus deformation of ∂Xµ is demonstrated explicitly in appendix E.
Our construction should be applicable to a wide variety of contexts, and is a significant
step forward in operator deformations. Of course, there are issues, the main one being
the computational difficulty of some of the calculations. As we saw for the torus
bundle deformations, getting the first order results was already somewhat involved. Of
course, given that we are dealing with interacting worldsheet theories here, we expect
the calculations to be difficult, and it may be more of a problem with the context
rather than the approach. However, a question that would be interesting to consider
is whether or not there is a specific connection that makes these calculations easier.
We saw that the Γ̂ connection was the natural choice for CFTs and it usually made
the calculations simpler. If we take the H-flux for example, is there a connection
which makes the deformations particularly simple? The c, c̄ connections described
in [22] were natural connections to use in a general context, but it may be that,
practically, using specific connections relevant to one’s needs is a more useful way to
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do these deformation calculations. An idea related to this is that of a general universal
coordinate construction. As we saw, the Γ̂ connection was essentially equivalent to the
universal coordinates in the flat torus case, but this did not extend to more general
cases. It would be interesting to see if there is a connection which would allow us to
construct some analogous universal objects for the H-flux case (or nilfold). If such a
connection exists, the objects invariant under deformation wrt this connection would be
considered universal, and ideally we could use these objects to obtain the deformations
to all orders relatively easily.

We also discussed T-duality in the context of these torus bundle backgrounds away
from the adiabatic limit, and we recovered the expected duality. This was a direct
generalisation of the ideas employed in [15] and has the potential to be applicable
to a much wider class of backgrounds. Computationally, using this approach for a
completely general background seems like a difficult task beyond first order, though in
principle it at least extends the applicability of T-duality beyond the context of the
Buscher rules and leads to a different perspective on the duality and its relationship
with symmetry enhancement.

One of the benefits of the approach explored here is that it should be applicable
to a very large class of sigma models. Of particular interest would be to explore
whether these techniques can be applied to effective worldsheet theories, where specific
quantum effects (such as worldsheet instantons) have been incorporated. A specific
example is the KK-monopole/NS5-brane duality. Here, worldsheet instantons localise
the solutions, breaking the global worldsheet symmetry associated with a target space
isometry [53, 54]. Following the notation of [52], the NS5-brane background is given by

ds2
10 = V (xi)ds2(R4) + ds2(R1,5), (11.1)

where the xi are coordinates on the transverse space R4, ds2(R4) and ds2(R1,5) are
the standard flat metrics, the function V (xi) is a harmonic function and the H-flux is
given by Hijk = −ϵijklδ

lm∂mV .
In the case where V = V (r)1, where r = |(x1, x2, x3)|, V is given by

V (r) = 1
g2 + 1

2r . (11.2)

1In [52], they are mainly interested in the case where V = V (τ), i.e. V only depends on a single
coordinate τ . This is because this case can be interpreted as a T 3 with H-flux fibred over a line,
which is relevant in constructing certain types of hyperkahler manifolds. For this case, the T-duality is
relatively easy to study since it reduces to the T-duality chain of the H-flux, which is well-known [12].
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As explained in [54], this smeared NS5-brane is localised in the θ direction when
worldsheet instantons are taken into account. This results in the replacement V (r) →
V (r, θ), where

V (r, θ) = 1
g2 + 1

2r

1 +
∑
k≥1

∑
±
e−kr±ikθ

 . (11.3)

Recall that we found that the T-duality automorphism did not have a well-defined
action on the worldsheet coordinate X, but that it did have a well-defined action on
exponentials of the form einXL , for integers n. Therefore, it may be that the T-dual
of the localised NS5-brane can be computed explicitly using the T-duality methods
discussed in this thesis2.

Specifically, one could start with an effective action, based on the instanton-corrected
potential (11.3), imagine tuning θ to be at the self-dual radius3 and then perform a
T-duality automorphism on this effective sigma model to recover the KK-monopole
background. The analysis of [54] predicts

V (r, θ) = 1
g2 + 1

2r

1 +
∑
k≥1

∑
±
m(k)e−kr±ikθ

 , (11.6)

where the m(k) are unknown constants. In principle, the results of [1] predict a
relationship between the m(k) and their counterparts m̃(k) in the KK-monopole
solution.

It would be interesting to apply the construction developed in this thesis to these
localised backgrounds. Usually, one performs the duality with the smeared backgrounds
and then localises by incorporating the instanton corrections, but is it possible to
incorporate the instanton effects directly? The idea would be to apply the construction

2We note that the localising instantons are not arising from non-perturbative effects in λ. Rein-
serting the α′ dependence [55]: g = R/

√
α′, r = Rr′/α′, θ = Rθ′ and ds2 = −ds′2/α′, giving

V = α′

R2

(
1 + R

2r′

)
. (11.4)

To view the NS5-brane as a deformation of the flat background, we introduce a parameter λ and so
rescale R → λR, which gives

V → α′

(λR)2

(
1 + λR

2r′

)
. (11.5)

In these coordinates, the instanton corrections become e− kr′R
α′ and we see that, with λ included, the

instanton corrections go like e− kr′Rλ
α′ , i.e. they are analytic in λ.

3There is a tension here. The effective action describes the large volume supergravity limit. At
the self-dual radius, we would need to include other α′ corrections to the supergravity. As such, this
discussion is only illustrative.
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above to the quantum effective worldsheet action in which these instanton effects have
already been incorporated.

Recall that we made a brief note about topology change in these off-shell defor-
mations. Essentially, we ignored this by always going to a convenient covering space
where such issues were not present. It would be good to look at topological issues in
these deformations more closely.

In the last chapter, we extended our formalism for operator deformations to the
supersymmetric case, where we looked at N = 1 supersymmetry in the NS-NS sector.
We discussed the possibility of constructing universal coordinates for fermions as we
did for bosons in the flat torus case, and we saw that such a construction did not
seem possible. Our investigation was not conclusive however, so it would be interesting
to see if this really is the case or if there is a universal coordinate construction for
fermions. If such a construction exists, it is most likely much more complicated to
describe compared to the bosonic case. Even without such a construction, we were able
to derive deformations of fermions for flat toroidal target spaces, as well as the H-flux
and nilfold. In these latter cases, we found that ∂ϕµ also received extra contributions
in its deformation from fermions. We once again showed that the T-duality between
these backgrounds holds as expected.

It would be interesting to see if this supersymmetric case could be pushed further
to include more complicated cases such as Ramond flux. Since there is no sigma model
construction for turning on Ramond flux, we would have to rely directly on the vertex
operators corresponding to Ramond flux instead of the action. Throughout this thesis,
we have used the action to construct the deformation operator, but in section 10.6,
we briefly described how we could construct deformation operators starting from the
vertex operators. Thus, it may be possible to extend the ideas presented there to
Ramond vertex operators. In fact, this vertex operator approach potentially opens
up a much more general construction of this deformation formalism where we do not
need to know the action of the theory. Indeed, we do not even need the theory to
have a sigma model formulation. This would also potentially allow deformations much
more general than metric deformations. This would place the formalism in a more
contemporary setting where we are relying solely on the operators of the theory as
opposed to always having to start with a worldsheet sigma model.

Another interesting direction is further investigation of non-abelian T-duality
[81, 82]. It would be interesting to see whether, using the formalism in this thesis, the
status of non-abelian T-duality could be further clarified. The perspective that the
enhanced symmetry group should have some off-shell significance and is broken by a
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choice of vacuum may be useful here. In the cases we have considered, torus bundles -
for which the action of the unbroken Z2 symmetry is clear - play a central role. To
make progress on the general question of non-abelian duality from the perspective
advocated here, one would need a better understanding of the relationship, if any,
between the enhanced symmetry group and the non-abelian isometries of the target
space.

Finally, we note that there is also a close connection with the constructions discussed
here and the linear sigma model approach used to prove mirror symmetry [3, 4]. There,
the starting point is an ‘off-shell’ model, in that it does not describe a genuine string
background. The model then flows to a string background under renormalization,
constrained by the superpotential. It would be interesting to explore this connection
further.

The predominant theme of this thesis has largely been one of a unification of
ideas. Ideas and formalisms such as universal coordinates, parallel transport, CFT
algebras and doubled geometry have been brought together in an attempt to further
our understanding of worldsheet sigma models. Though the reader may perhaps be
familiar with some of the concepts described here, it is unlikely that they are familiar
with all of them, and we hope that by collating them in the novel manner in which we
have done in this thesis, we have furthered our understanding of operator deformations
and T-duality in string theory.
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Appendix A

Vertex Operators and WZW

This appendix contain some comments and observations that may be known but, to
our knowledge, have not appeared in the literature.

A.1 More general operators

In this appendix we extend the results of chapter 6 to more general operators, with a
particular focus on those operators which may be thought of as the building blocks of
vertex operators. Of particular interest are the vertex operators, for which we shall
need a better understanding of how operators eikµϕµ

L and ∂nϕµ transform under the
particular automorphism in question for general kµ and n. In general, the action
of an SU(2) automorphism will transform an operator of conformal weight h into a
linear combination of other operators of the same weight. In particular, though the
transformation of ∂ϕµ(z) is straightforward, the transformation of ϕµ

L(z) is anything but
(see section 6.9), and so the transformation of operators of the form einϕµ

L(z) needs careful
consideration. We will use OPEs instead of commutation relations here, as opposed to
most of our calculations in chapter 6, as they are easier to work with for exponential
calculations. Therefore, we will need to use Euclidean signature. Additionally, we will
work in d = 1 to keep things simple.

The transformation of ∂nϕ was given in (4.47) and was straightforward to deduce.
As mentioned earlier, [15] compute the transformation of exponentials using a point-
splitting argument, but we will take an inductive approach.

The transformation of e2iϕL(z) under the T-duality automorphism was considered
in section 4.3. In order to better understand the transformation of einϕL(z) for n ∈ Z,
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let us next look at the transformation of eiϕL(z). Using the OPE (4.45), we have

[Q, eiϕL(w)] = π

2 e
−iϕL(w), [Q(2), eiϕL(w)] = π2

4 e
iϕL(w), (A.1)

where the notation for nested commutators is given in (6.69). There is a clear repeating
pattern, oscillating between eiϕL and e−iϕL , and it is not hard to guess the general
term. Thus, we obtain the result

eiQeiϕL(z)e−iQ = ie−iϕL(z). (A.2)

This transformation seems at odds with the general expectation ϕL(z) → −ϕL(z) that
we have seen in the massless vertex operators, suggesting instead ϕL(z) → −ϕL(z)+π/2
(though this is not true either). In fact, as we will now show, we have

einϕL(z) →

 ie−inϕL(z), n odd
e−inϕL(z), n even.

(A.3)

We see that, in the n odd case, there is an extra factor of i compared to expectations.
It is in fact not the case that we can simply look at transformations such as (A.3) and
deduce a transformation of ϕL. We can prove (A.3) via an inductive argument, which
goes as follows. Define composite operators A±

n by

e±i2ϕL(z) = e±i2ϕL(w)
∞∑

n=0

1
n!A

±
n (w). (A.4)

Then, the first step is to show that

A±
n = En ±On, (A.5)

where En is even under T-duality and On is odd. We can prove this via induction. We
have:

A+
n =2i∂ϕA+

n−1 + ∂A+
n−1

=2i∂ϕ(En−1 +On−1) + ∂En−1 + ∂On−1

= : En +On, (A.6)
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where

En = 2i∂ϕOn−1 + ∂En−1, (A.7)
On = 2i∂ϕEn−1 + ∂On−1. (A.8)

Doing the same for A−
n , we find that

A−
n = En −On, (A.9)

as required. Finally, we note that the result is clearly true for n = 1, and hence we
have proven (A.5).
The next step is to consider the following commutator:

[Q, cos(nϕL)] =1
8

∮
dz(ei2ϕL(z) + e−i2ϕL(z))(einϕL(w) + e−inϕL(w))

∼π

4

∮
dz(z − w)−n

(
e−i(n−2)ϕL(w)∑

m

1
m!A

+
m(w) + e(n−2)ϕL(w)∑

m

1
m!A

−
m(w)

)

=π4

(
e−i(n−2)ϕL(w) 1

(n− 1)!A
+
n−1(w) + ei(n−2)ϕL(w) 1

(n− 1)!A
−
n−1(w)

)

= 1
2(n− 1)! (En(w) cos((n− 2)ϕL(w)) − iOn(w) sin((n− 2)ϕL(w))) .

(A.10)

Now, what we are leading up to is the result

cos(nϕL) →

i cos(nϕL), n odd
cos(nϕL), n even,

(A.11)

sin(nϕL) →

−i sin(nϕL), n odd
− sin(nϕL), n even,

(A.12)

which is equivalent to (A.3). Once again, we will use induction, this time via (A.10).
First, note that

[Q, eiQPe−iQ] = eiQ[Q,P ]e−iQ, (A.13)

where P is any operator. Using this in (A.10) with the known transformations of
En, On and the induction hypothesis on cos((n− 2)ϕL), sin((n− 2)ϕL) (i.e. the RHS of
(A.10)), we deduce that (A.11) is indeed true (we have already shown that it is true
for n = 1, 2). The same process leads to the proof of (A.12), and hence we have shown
that (A.3) is true, as required.
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Note that we could also do exactly the same with the sine charge and it would just
give different phases for the exponential transformations. We will just state the results:

eniϕL
Qs

−→

(−1)n+1
2 e−niϕL , n odd,

(−1)n
2 e−niϕL , n even.

(A.14)

This leads to

cos(nϕL) Qs

−→

(−1)n+1
2 i sin(nϕL), n odd,

(−1)n
2 cos(nϕL), n even,

(A.15)

sin(nϕL) Qs

−→

(−1)n+1
2 i cos(nϕL), n odd,

(−1)n
2 +1 sin(nϕL), n even.

(A.16)

We can see that, as opposed to the cosine charge, we have sines and cosines transforming
into each other. However, as we saw in 4.3.5, it does not matter which charge we use
since they are equivalent up to U(1) gauge transformations.

A.2 The WZW formulation

To better understand what is going on, we turn to the WZW formulation of the model
at the self-dual radius.

We can formulate the T-duality of circle compactifications at the SDR using the
SU(2) WZW model. The massless (1, 0) currents define a level 1 ŝu(2) affine lie algebra.
If we define

J1 = cos(2ϕL), J2 = sin(2ϕL), J3 = i∂ϕ, (A.17)

then, as with all conformal primaries, we can expand them in modes as

J i(z) =
∞∑

n=−∞
J i

nz
−n−1. (A.18)

These obey the level 1 current algebra

[J i
n, J

j
m] = 2π

(
n

2 δn+mδ
ij + iϵijkJk

n+m

)
. (A.19)

In this formulation, the (cosine) charge takes the simple form

Q = 1
2

∮
dz cos(2ϕL(z)) = 1

2J
1
0 , (A.20)
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or J2
0 for the sine charge. It can then be verified that the effect of the charge on the

modes J i(z) → eiQJ i(z)e−iQ is

J1
n → J1

n, J2
n → −J2

n, J3
n → −J3

n. (A.21)

This should reproduce all of the T-duality transformation results that we derived earlier.
We will verify this using the states corresponding to the relevant vertex operators. The
states at level 1 can be constructed from the highest weight states with level 1 by
acting on them with the modes J i

n, n < 0 (note that the level of a weight in the case of
SU(2) is given by the sum of its Dynkin labels). The states that are generated from a
single highest weight state |λ⟩ form the irreducible module Lλ. In the case of SU(2), it
turns out that there are 2 such modules, L[1,0] and L[0,1], where the subscripts are the
Dynkin labels of the corresponding highest weight states (see [83] for a review). We
start with the module L[1,0], for which the highest weight state is simply the vacuum.
The generic state is then

|λ′⟩ = J i
−n...J

j
−m|0⟩. (A.22)

For the L[0,1] module, the highest weight state is |0′⟩ := eiϕL(0)|0⟩, and the generic state
is

|λ′⟩ = J i
−n...J

j
−m|0′⟩. (A.23)

Note that, from the point of view of the WZW model, it is clear to see that each mass
level has either ‘odd’ or ‘even’ exponentials, but not both (i.e. einϕL where n is odd
or even). The vertex operators with odd and even exponentials belong to different
modules, so they do not mix under the action of SU(2). It is only via the WZW
formulation that this becomes clear. In particular, the action of T-duality on one of
these states is

eiQJ i
−n...J

j
−m|λ⟩ = eiQJ i

−ne
−iQ...eiQJ j

−me
−iQeiQ|λ⟩, (A.24)

where |λ⟩ is one of the highest weight states. If we recall also that, under T-duality
with the cosine charge,

eiϕL → ie−iϕL , (A.25)

we see that the action of T-duality simply amounts to sign changes and the possible
factor of i coming from the transformation of the |0′⟩ state,

e−iQ|0′⟩ = i|0′⟩. (A.26)
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There is no mixing between the two modules1. This can also be seen from the fact that
the states at each grade (i.e. each conformal dimension) form representations of SU(2).

A.3 An example

Let us now look at a specific example to see explicitly the equivalence between these
two formulations of the bosonic string at the SDR. We will look at the case of the
operators

∂2ϕ(z), ∂ϕ(z)∂ϕ(z), ∂ϕ(z)e±2iϕL(z), (A.29)

which are used to build massive vertex operators. We can order these by their
eigenvalues of J3

0 =
∮
J3. The state with the largest eigenvalue is the highest weight

state, and we can obtain all other states by acting with J−
0 =

∮
J−. For example, we

have

[J3
0 , ∂ϕ(w)e2iϕL(w)] = ∂ϕ(w)e2iϕL(w), (A.30)

i.e. the J3
0 eigenvalue is +1 in this case. Repeating for the other states, we find that the

eigenvalues for ∂2ϕ, ∂ϕ2, ∂ϕe−2iϕL are 0, 0,−1 respectively. Thus, ∂ϕe2iϕL corresponds
to the highest weight state. Acting with J−

0 , we obtain

[J−
0 , ∂ϕ(w)e2iϕL(w)] =

∮
dzJ−(z)∂ϕ(w)e2iϕL(w) = ∂2ϕ(w). (A.31)

Similarly, lowering again gives ∂ϕe−2iϕL . Thus, these three states are in a triplet
of SU(2) and ∂ϕ2 is in a singlet. We can also determine the action of T-duality
straightforwardly using the state-operator correspondence. The states corresponding

1We can also write
eiϕL |0⟩ → ie−iϕL |0⟩ = iJ−

0 e
iϕL |0⟩, (A.27)

where J± = J1 ± iJ2, and we can expand J− to get

iJ−(z)eiϕL |0⟩ = i
∑

n

: J−
n

zn+1 e
iϕL : |0⟩ z→0−−−→ iJ−

−1e
ixL |0⟩, (A.28)

where xL = 1
2 (x− x̃), and we have used the fact that the normal ordering means we do not have to

worry about terms in J− which do not commute with eiϕL .
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to the above operators are

∂ϕ(z)e±2iϕL(z) ↔ J3
−1J

±
−1|0⟩ ≡ |2,±1⟩(2), (A.32)

∂2ϕ(z) ↔ J−
−2|0⟩ ≡ |2, 0⟩(2), (A.33)

∂ϕ2(z) ↔ J3
−1J

3
−1|0⟩ ≡ |2, 1⟩(0), (A.34)

where the numerical labels are, respectively, the L0 eigenvalue, the J3
0 eigenvalue and

the SU(2) representation, and normal ordering is implicit. By direct calculation or
by using the action of T-duality on the modes given in (A.21), we see that the states
transform in exactly the same way as the operators would imply, i.e. we recover the
transformation

∂2ϕ → −∂2ϕ, ∂ϕ2 → ∂ϕ2, ∂ϕe±2iϕL → −∂ϕe∓2iϕL . (A.35)





Appendix B

Elliptic Monodromy

We present an example of a simple torus bundle with a geometric twist over the base
circle from the elliptic conjugacy class of SL(2;Z). Specifically, we will look at the
monodromy

f =
 0 π/2

−π/2 0

 =⇒ efx =
 cos

(
πx
2

)
sin

(
πx
2

)
− sin

(
πx
2

)
cos

(
πx
2

) . (B.1)

Then, the generators of the algebra are given by

Za = (e−fX) µ
a Πµ =

cos
(

πX
2

)
Πy − sin

(
πX
2

)
Πz

sin
(

πX
2

)
Πy + cos

(
πX
2

)
Πz

 , (B.2)

X a = (efT X)a
µX ′µ =

cos
(

πX
2

)
Y ′ − sin

(
πX
2

)
Z ′

sin
(

πX
2

)
Y ′ + cos

(
πX
2

)
Z ′

 , (B.3)

and
Zx = Πx, X x = X ′. (B.4)
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The only commutator which is not trivially satisfied is [X y,Zz] (and those related to
it). This is

[X y(σ),Zz(σ′)] =
[
cos

(
πX

2

)
Y ′(σ) − sin

(
πX

2

)
Z ′(σ), sin

(
πX

2

)
Πy(σ′) + cos

(
πX

2

)
Πz(σ′)

]
=2πiδ′(σ − σ′)

(
cos

(
πX(σ)

2

)
sin

(
πX(σ′)

2

)
− sin

(
πX(σ)

2

)
cos

(
πX(σ′)

2

))

= − 2πiδ(σ − σ′)πX
′(σ)
2

(
cos2

(
πX(σ)

2

)
+ sin2

(
πX(σ)

2

))

=(−2πiδ(σ − σ′))
(
π

2 X x(σ)
)
, (B.5)

where in the third line we have ‘integrated by parts’. We write the final line in such a
way as to make explicit the expected algebra of the elliptic monodromy. The other
commutators follow similarly and we thus obtain the full doubled algebra

[Zx(σ),Zz(σ′)] = (−2πiδ(σ − σ′))
(
π

2 Zy(σ)
)
, [Zx(σ),Zy(σ′)] = (−2πiδ(σ − σ′))

(
−π

2 Zz(σ)
)
,

[Zx(σ),X y(σ′)] = (−2πiδ(σ − σ′))
(

−π

2 X z(σ)
)
, [Zx(σ),X z(σ′)] = (−2πiδ(σ − σ′))

(
π

2 X y(σ)
)
,

[X y(σ),Zz(σ′)] = −[X z(σ),Zy(σ′)] = (−2πiδ(σ − σ′))
(

−π

2 X x(σ)
)
, (B.6)

and the central extension

[Za(σ),X b(σ′)] = 2πiδ b
a δ

′(σ − σ′), (B.7)

agreeing with the doubled geometry [12]. This background is interesting because it
is a genuine string theory background that can be obtained from the supergravity
construction as a minimum of the potential [29]. Normally, such minima only satisfy
the supergravity equations of motion, but in this case the minimum is equivalent to
a toroidal orbifold and is therefore a solution of the full string theory equations of
motion.



Appendix C

Details of commutation relations in
section 6.11

We present here the details of the calculations of the commutation relations of the
doubled algebra and the associators in section 6.11.1. We considered there the most
general geometric flux compactifications.

C.1 Commutation relations

We compute the commutation relations of the generators (6.98). Firstly, for the ‘[Z,Z]’
commutators, we have

[Za(σ),Zb(σ′)] =[e µ
a (σ)(Πµ(σ) −Bµν(σ)X ′ν(σ)), e ρ

b (σ′)(Πρ(σ′) −Bρσ(σ′)X ′σ(σ′))]
=e ρ

b (σ′)∂ρe
µ

a (σ)e e
µ (σ)Ze(σ)2πiδ(σ − σ′)

− e µ
a (σ)∂µe

ρ
b (σ′)e e

ρ (σ′)Ze(σ′)2πiδ(σ − σ′)
+ 2πiδ(σ − σ′)e µ

a (σ)e ρ
b (σ′)X ′ν(σ′)(−∂µBνρ − ∂ρBµν − ∂νBρµ)

=2e µ
a e ν

b ∂[µe
c

ν] Zc(σ)2πiδ(σ − σ′)
− 2πiδ(σ − σ′)(KabcX c(σ′))

= − f c
abZc(σ)2πiδ(σ − σ′) −KabcX c(σ′)2πiδ(σ − σ′), (C.1)

where, for example, we have used [Πρ(σ′), e µ
a (σ)] = −2πiδ(σ − σ′)∂ρe

µ
a (σ).
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Next, for the ‘[Z,X ]’ commutators, we have

[Za(σ),X b(σ′)] =[e µ
a (σ) (Πµ(σ) −Bµν(σ)X ′ν(σ)) , eb

ρ(σ′)X ′ρ(σ′)]
= − e µ

a (σ)∂µe
b
ρ(σ′)X ′ρ(σ′)2πiδ(σ − σ′) + e µ

a (σ)eb
µ(σ′)2πiδ′(σ − σ′)

= − e µ
a (σ)∂µe

b
ρ(σ′)X ′ρ(σ′)2πiδ(σ − σ′)

+ e µ
a (σ)

(
eb

µ(σ) + (σ′ − σ)eb
µ

′(σ) +O((σ − σ′)2)
)

2πiδ′(σ − σ′)

=f b
acX c(σ)2πiδ(σ − σ′) + δb

a2πiδ′(σ − σ′) +O((σ − σ′)2), (C.2)

where the higher order terms are proportional to (for n ≥ 2)

δ′(σ − σ′)(σ − σ′)n =δ′(σ − σ′)
n∑

m=0
(σ)n−m(−σ′)m

n
m


=

n∑
m=0

n
m

 (σ)n−m(−1)m
[
(σ)mδ′(σ − σ′) +m(σ)m−1δ(σ − σ′)

]
=(σ − σ)nδ′(σ − σ′) + n(σ − σ)n−1δ(σ − σ′) = 0, (C.3)

and so

[Za(σ),X b(σ′)] = f b
acX c(σ)2πiδ(σ − σ′) + δ b

a 2πiδ′(σ − σ′). (C.4)

The final ‘[X ,X ] = 0’ commutator follows trivially. We thus obtain the algebra (6.100),
as claimed.

C.2 Associativity

Here we verify the nested commutators (6.101) and (6.104) required to compute the
associators. For ‘[Z, [Z,Z]]’, we have

[Za(σ), [Zb(σ′),Zc(σ′′)]] =[Za(σ),−f d
bc Zd(σ′′) −KbcdX d(σ′′)]2πiδ(σ′ − σ′′)

= − 4π2δ(σ − σ′′)δ(σ′ − σ′′)
{
f d

bc f
e

ad Ze(σ′′) + f d
bc KadeX e(σ′′)

−f d
ae KbcdX e(σ′′)

}
+ 4π2δ′(σ − σ′′)δ(σ′ − σ′′)Kbcdδ

d
a,

(C.5)

as claimed. Note that, after (6.102), it is claimed that the central extension terms vanish
when we add the cyclic permutations via delta function manipulations. Specifically, we



C.2 Associativity 215

use

δ′(σ − σ′′)δ(σ′ − σ′′) =∂σ (δ(σ − σ′′)δ(σ′ − σ′′))
=∂σ (δ(σ′ − σ)δ(σ′′ − σ))
=δ′(σ − σ′)δ(σ′′ − σ) + δ(σ − σ′)δ′(σ − σ′′). (C.6)

Substituting this into (6.102), we see that the central extension term does indeed vanish.

For the ‘[Z, [Z,X ]]’ nested commutator, we have

[Zb(σ′), [Zc(σ′′),X a(σ)]] =[Zb(σ′), f a
cd X d(σ)2πiδ(σ′′ − σ) + δa

c 2πiδ′(σ′′ − σ)]
= − 4π2δ(σ′ − σ)δ(σ′′ − σ)

(
f a

cd f d
be X e(σ)

)
+ 4π2δ′(σ − σ′)δ(σ′′ − σ)f a

cb . (C.7)

Other calculations required to compute the associators proceed along similar lines.





Appendix D

H-flux Mode Transformation

Given everything that we have done, we should be in a position to compute the
deformation of the H-flux modes, at least to first order. We will go through the
calculation of δαy

n in detail. Note that here we use the formalism of chapter 7.

D.1 δO calculation

Taking the OPE of ∂ϕy(w) with the deformation operator and integrating by parts
gives

− 1
2m

∮
C′

dz̄
ϕx(z, z̄)∂̄ϕz(z̄)

z − w
+
∫
Σ′

d2z
∂ϕx(z)∂̄ϕz(z̄)

z − w

 , (D.1)

where C ′ = C ′
0 ∪ C ′

w. Let us deal with the contour integrals first. Expanding in terms
of modes, we have:

im

2
√

2
∑
k≥0

p

ᾱz
pw

−k−1
∮
C′

dz̄ ϕx(z, z̄)zkz̄−p−1, (D.2)

where

ϕx(z, z̄) = x− i√
2

(αx
0 log z + ᾱx

0 log z̄) + i√
2
∑
n̸=0

1
n

(αx
nz

−n + ᾱx
nz̄

−n). (D.3)

Let us compute the kinds of integrals that appear here. The most involved ones are
those with logs, which generally look like∮

C′

dz̄zkz̄−p−1 log z, (D.4)
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and if we are on a contour where |z| = r then this simplifies to

− r−2p
∮
C′

dzzk+p−1 log z. (D.5)

Let us first deal with the circle around z = 0. We will take the contour to have radius ϵ
and take the limit ϵ → 0 at the end. There is a branch point at z = 0, but, as discussed
in chapter 8, the choice of branch simply amounts to a choice of gauge. Therefore, we
will still consider a circle around z = 0, bearing in mind that there is a gauge-dependent
piece. Setting z = ϵeiθ, the integral becomes

− ϵk−p

2π

2π∫
0

dθei(k+p)θ(log ϵ+ iθ) =


ϵk−p

2πi(k+p)2 , k + p ̸= 0,
−ϵ2k(log ϵ+ iπ), k + p = 0.

(D.6)

In the above integral, the terms which come from the iθ part of the integral are the
branch-dependent part, and if we neglect these terms we get

− ϵk−p

2π

2π∫
0

dθei(k+p)θ(log ϵ+ iθ) = −δk+p,0ϵ
2k log ϵ+ ..., (D.7)

where ... represents the branch-dependent contributions. We also need to check whether
there is any contribution from the z = w boundary. There is no branch cut here, so we
can just use a circular contour with radius ϵ → 0, so we have

ϵ

2π

2π∫
0

dθeiθwkw̄−p−1
(

1 + ϵ

w
eiθ
)k (

1 + ϵ

w̄
e−iθ

)−p−1
log(w + ϵeiθ), (D.8)

which we can see vanishes in the limit ϵ → 0, so there is no contribution here. Similarly,∮
C′

dz̄zkz̄−p−1 log z̄ = −δk+p,0ϵ
2k log ϵ− ..., (D.9)

where the minus before the ... indicates that the branch-dependent contributions are
minus those of (D.7).

The other type of integral which we are interested in is∮
C′

dz̄zk−nz̄−p−1. (D.10)
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This is fairly straightforward and we simply need to compute the contributions from
contours around z = 0, w as usual. We will state the results. From z = 0, we get
−ϵk−n−pδk−n+p,0. From z = w, we once again find that there is no contribution when
we take the radius to zero.

Thus, we now have all of the integrals we need to compute (D.2). Substituting
everything in and neglecting branch-dependent contributions, we have1

− im

2
√

2
∑
k≥0

∑
p

w−k−1ᾱz
p lim

ϵ→0

xϵk−pδk+p,0 + i√
2
∑

n

1
n
ϵk−n−p (αx

nδk−n+p,0 + ᾱx
nδk+n+p,0)

.
(D.11)

A note on evaluating contour integrals

The above calculation is perfectly valid, but it is not the only way of evaluating the
contour integral. To illustrate the idea, we will look at the much simpler case of the
circle CFT of radius R. Here, as we saw earlier, if we wish to deform ∂X(R) to the
circle of radius R + δR, the δO part of the deformation involves taking the OPE with
the marginal operator, and we end up with an integral proportional to

∮
Cϵ

0

dz

z2(w − z) ∂̄X(z̄), (D.12)

as well as an integral around w which is unimportant here. Now, the usual way of
evaluating this would be to expand ∂̄X(z̄) and (w− z)−1 in powers of z, using the fact
that |z| = ϵ, and then compute the resulting integrals. Doing this, we get

∮
Cϵ

0

dz

z2(w − z) ∂̄X(z̄) = − i√
2
∑
m≥0

ᾱ−mϵ
−2(−m+1)w−m−1, (D.13)

and, together with the δE transformation, we would compare coefficients to get the
mode transformations for αn, n ≥ 0, and then argue that this must extend to all n to
preserve commutation relations. However, alternatively, we could treat the contour
as a contour around the singularity at infinity. This then changes the expansion of
(w − z)−1, since

1
w − z

=
∑
m≥0

w−m−1zm, |z| < |w|, (D.14)

1Where the n = 0 case is understood as the limit limn→0
ϵk−n−p

n = −ϵk−p log ϵ.
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1
w − z

= −
∑
m<0

w−m−1zm, |z| > |w|. (D.15)

Thus, if we set y = 1/z and use

dz

w − z
= − dy

y(wy − 1) , (D.16)

we instead find that∮
Cϵ

0

dz

z2(w − z) ∂̄X(z̄) = − i√
2
∑

m≥0,n

ᾱnϵ
−2(n+1)wm

∮
|y|=1/ϵ

dyy−n+m, (D.17)

which, after evaluating and relabelling, gives

− i√
2
∑
m<0

ᾱ−mϵ
−2(−m+1)w−m−1, (D.18)

i.e. the same as (D.13), but with m < 0. We can now compare coefficients as we would
normally do and obtain the mode transformation for αn, n < 0, and clearly this agrees
with what we would get if we did it the ‘canonical’ way, as we would hope. For the
circle case, apart from giving a way to directly compute the mode expansions for all
modes (instead of only half and then inferring the other half), there is no particular
benefit here. However, for the H-flux case, it makes the prescription much clearer
since we have 2d integrals where the region of integration includes both |z| > |w| and
|z| < |w|. We come to this calculation now.

The integral over the worldsheet

Let us evaluate the second term in (D.1). First, we look at the region ϵ < |z| < |w|,
where we have

− 1
2m

∫
Σ′

|z|<|w|

d2z

z − w
∂ϕx(z)∂̄ϕz(z̄) = −m

4
∑
n,p
k≥0

αx
nᾱ

z
pw

−k−1
∫
Σ′

|z|<|w|

d2zzk−n−1z̄−p−1. (D.19)

This is straightforward once we set z = reiθ, so we will simply state the results. We get

m

8
∑

p
k≥0

αx
k+pᾱ

z
p

p
w−k−1

(
|w|−2p − ϵ−2p

)
, (D.20)
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where the p = 0 term is understood in terms of a limit in a similar way to (D.11). For
|z| > |w|, to deal with the singularity at infinity, we will regularise the integral by
integrating over the region |w| < |z| < 1/ϵ. The calculation is very similar and we get

m

8
∑

p
k<0

αx
k+pᾱ

z
p

p
w−k−1

(
|w|−2p − ϵ2p

)
. (D.21)

Thus, up to divergences in the ϵ → 0 limit, we get the same result in both regions
|z| < |w| and |z| > |w|, except for the range of the summation variable k. As we
mentioned when discussing the circle case above, we want this to be the case so that
our results are the same whichever region we look at and whichever method we use.

Now, we would like to combine (D.11) and (D.20) to obtain δOα
y
n. As discussed

above, we have different prescriptions depending on whether n ≥ 0 or n < 0. For n ≥ 0,
which is the case we usually focus on, we choose the contour integral representation
where the contour is |z| = ϵ, and we take the part of the 2d integral where |z| < |w|.
To read off the deformation of αy

n, as usual we must take the coefficient of w−n−1 in
(D.11), (D.20). However, note that the coefficient in (D.20) has w-dependence. To
deal with this, we note that, when we are extracting the w−n−1 coefficient, formally
what we are doing is multiplying by wn and doing the contour integral

∮
|w|=η dw, for

some constant η. When the coefficient is independent of w, this amounts to simply
reading off the coefficient and the result is independent of η. However, in the case of
(D.20), we find that extracting the w−n−1 coefficient amounts to setting |w| = η. Thus,
we obtain

δOα
y
n = xAnᾱ

z
−n +

∑
p

Bnpᾱ
z
pα

x
n+p +

∑
p

Cnpᾱ
z
pᾱ

x
−n−p, n ≥ 0, (D.22)

where

An = − im

2
√

2
lim
ϵ→0

ϵ2n, Bnp = m

4 lim
ϵ→0

(
ϵ−2p

n+ p
+ η−2p − ϵ−2p

2p

)
, Cnp = −m

4 lim
ϵ→0

ϵ2n

n+ p
.

Given that the above is for n ≥ 0, we can take the limits for An and Cnp since these
have no divergences and, extending the result to n < 0, we get

δOα
y
n =

∑
p

Bnpᾱ
z
pα

x
n+p, n ̸= 0, (D.23)

δOα
y
0 = − imx

2
√

2
ᾱz

0 +
∑

p

B0pᾱ
z
pα

x
p − m

4
∑

p

1
p
ᾱz

pᾱ
x
−p. (D.24)
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If we wanted to compute the n < 0 case directly, we could use the corresponding
integral results for |z| > |w|. As discussed above, both methods should give the same
results.

Some comments are in order:

• We have left the limits in Bnp unresolved in the above deformation. This is
because the way we deal with these limits will depend on the connection we
choose, i.e. the way we choose to regularise divergences. Recall that, in the circle
case, we found from (7.44) that there were no divergent terms and we could
take the limit ϵ → 0 for all terms, which resulted in δO∂X = 0 for the c and c̄

connections. However, here we find that, due to the X-dependence, we now do
have non-zero terms in the limit ϵ → 0.

• Note that this result depends on |w| = η, as opposed to the CFT case. Given
that we no longer have conformal symmetry, the distance from the origin of the
operator we are deforming does indeed have an effect on the transformation.

• Finally, note that, in the adiabatic limit where X → x, the above result reduces
to the expected result for a flat torus, i.e. the O deformation is given solely by
the An term.

D.2 δE calculation

From earlier considerations, we know that the δE transformation is given by

δE∂ϕy = 1
2mϕ

x∂ϕz. (D.25)

In order to extract the transformation of the modes, we can rewrite this as an integral
by noting that2

0 =
∫
Σ′

d2z∂̄
( 1
z − w

)
ϕx(z, z̄)∂ϕz(z) =

∮
C′

dz

z − w
ϕx(z, z̄)∂ϕz(z) −

∫
Σ′

d2z

z − w
∂̄ϕx(z̄)∂ϕz(z).

(D.26)
2Where we have used

∂

∂z̄

(
1

z − w

)
= δ2(z − w),

and integrated by parts.
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Now, let us look specifically at the contour integral around the point w. If we expand
ϕx(z, z̄), ∂ϕz(z) around w, this is

∮
C′

w

dz

z − w

(
ϕx(w, w̄) + ((z − w)∂ϕx(w) + ...) + ((z̄ − w̄)∂̄ϕx(w̄) + ...)

)
×
(
∂ϕz(w) + (z − w)∂2ϕz(w) + ...

)
, (D.27)

and on the contour |z − w| = ϵ we can set z̄ − w̄ = ϵ2/(z − w), which gives infinitely
many non-zero terms in the integral above. However, in the limit ϵ → 0 only one term
survives, so we end up with

∮
C′

w

dz

z − w
ϕx(z, z̄)∂ϕz(z) = ϕx(w, w̄)∂ϕz(w), (D.28)

and so, going back to (D.26), we find that

1
2mϕ

x(w, w̄)∂ϕz(w) = 1
2m

∫
Σ′

d2z

z − w
∂̄ϕx(z̄)∂ϕz(z) − 1

2m
∮

C′
0

dz

z − w
ϕx(z, z̄)∂ϕz(z).

(D.29)
Now we simply have to compute these integrals. The second integral was already dealt
with in the O case. The first is very similar to what we had in the O case, but not
quite the same. However, the details are the same in essence, so we will simply state
the final result. We find:

δEα
y
n = imx

2
√

2
αz

n +
∑

p

Dnpα
z
pᾱ

x
p−n +

∑
p

Enpα
z
pα

x
n−p, (D.30)

where

Dnp = −m

4 lim
ϵ→0

(
η−2(p−n) + ϵ−2(p−n)

2(p− n)

)
, Enp = −m

4
1

n− p
, (D.31)

where we have also used the same notation as above for cases where the denominator
seems to vanish, i.e. these correspond to log terms.3 Note that the first and last
terms in (D.30) are independent of ϵ, which is reassuring given the results we have
derived previously for the flat torus case. Once again, the adiabatic limit, i.e. the term
proportional to x, gives us what we would expect.

3For the terms where there is no power of ϵ in the numerator, we do as follows. Take 1
n−p as an

example. Look at ϵn−p−k

n−p in the limit n− p → 0 and then set k = n− p.
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Higher Order Deformations

E.1 Multiple O insertions

Our prescription for deforming an operator in chapter 7 involved the insertion of a
deformation operator O =

∫
O, which was then integrated over the worldsheet with

discs removed around insertion points. The choice of connection gave a prescription
for how these discs are defined. However, if we have multiple insertions of O then
more information is needed. Here, we give a prescription that reproduces the expected
results.

Suppose we have some operator A(w, w̄) which we wish to deform (with target
space indices suppressed). As given in section 7.1.3 for ∂X, we define the On operator
insertion as ∫

Σn

d2zn...
∫

Σ1

d2z1O(zn, z̄n)...O(z1, z̄1)A(w, w̄), (E.1)

where we recall that the domain of integration Σi is

Σi = {zi ∈ C| |zi| ≥ ϵ, |zi − w| > 0, |zi − zj| ≥ ϵ ∀j > i}. (E.2)

Once we have this prescription, we can then take OPEs between the various operators
and explicitly compute the integral to any order that is desired. As an example, we
will look at the (O + δE)2 calculation for ∂Xµ for a CFT deformation g → g + δg.
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E.2 (O + δE)2 for ∂Xµ

For simplicity, we will suppose that there are no B-field deformations involved. We
know that, given a deformation g → g + δg, if we have operator insertion

O = δgµν

∫
Σ

∂Xµ∂̄Xν , (E.3)

as well as the δE operator (7.55), we get the deformation

δ∂Xµ = 1
2δgµν(∂Xν − ∂̄Xν), (E.4)

and this is in fact the full transformation. We know this because we already have
the full transformation from other methods, such as universal coordinates. If this is
the case, it should be that all contributions from higher power insertions of O and δE

cancel, e.g. at second order in δg, we expect

(δO2 + δOδE + δEδO + δ2
E)∂Xµ = 0. (E.5)

Similar results should hold for higher orders1. Let us verify the second order result.

E.2.1 O2

We will start with O2 since this is the most involved calculation. We have∫
Σ2

d2z2

∫
Σ1

d2z1O(z2, z̄2)O(z1, z̄1)∂Xµ(w), (E.6)

where O = δgµν∂X
µ∂̄Xν and

Σ1 = {z1 ∈ C| |z1| > ϵ, |z1 − z2| > ϵ, |z1 − w| > 0}, (E.7)
Σ2 = {z2 ∈ C| |z2| > ϵ, |z2 − w| > 0}. (E.8)

1Note that this is only true for ∂Xµ and is not true for ∂Xµ. This is because the ∂Xµ transformation
involves the inverse metric, which induces corrections to all orders in δg. This is the same reason why
the transformation of the modes αµ

n involves corrections to all orders, but gµνα
ν
n truncates at first

order in δg, as explained in section 7.1.3
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The second order contribution is given by the following contractions:

δgνρδgστ

∫
Σ2

d2z2

∫
Σ1

d2z1∂X
ν(z2)∂̄Xρ(z̄2)∂Xσ(z1)∂̄Xτ (z̄1)∂Xµ(w)

+
∫

Σ2

d2z2

∫
Σ1

d2z1∂X
ν(z2)∂̄Xρ(z̄2)∂Xσ(z1)∂̄Xτ (z̄1)∂Xµ(w)

 . (E.9)

Let us look at the first contraction. This is

1
4δgνρδgµσg

ρσ
∫

Σ2

d2z2

∫
Σ1

d2z1
1

(z̄2 − z̄1)2(z1 − w)2∂X
ν(z2). (E.10)

For ease of notation, we will ignore the metric factors for now and focus solely on the
integral, which is

∫
Σ2

d2z2

∫
Σ1

d2z1
∂Xν(z2)

(z̄2 − z̄1)2(z1 − w)2 =
∫

Σ2

d2z2

∮
∂Σ1

dz̄1
∂Xν(z2)

(z̄2 − z̄1)2(z1 − w) , (E.11)

where we have used that ∂
∂z1

(
1

z̄1−z̄2

)
= 0, since Σ1 excludes a disc around z2. Let us

now consider the integral

∑
i

∮
Γi

dz̄1
1

(z̄1 − z̄2)2(z1 − w) , (E.12)

where ⋃i Γi = ∂Σ1. We have boundaries around z1 = 0, w, z2. Let us call the boundaries
Γ0,Γw,Γ2 respectively, and let us consider each of these in turn.

Γ0 = ∂D0

We take z1 = ϵeiθ and s := eiθ, which results in the integral

− 1
z̄2

2

∮
|s|=1

ds(
s− ϵ

z̄2

)2 (
s− w

ϵ

) , (E.13)

which has a pole at s = ϵ
z̄2

if we take |w|, |zi| > ϵ, which we do. Evaluating the residue,
we obtain the result

∮
|z1|=ϵ

dz̄1
1

(z̄1 − z̄2)2(z1 − w) = − ϵ2

(wz̄2 − ϵ2)2 . (E.14)
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Γw = ∂Dw

Let z1 = w + ϵeiθ. Then, the contour integral becomes

− i

2π∫
0

dθ
e−2iθ

(z̄2 − w̄ − ϵe−iθ)2 = − 1
(z̄2 − w̄)2

∮
|s|=1

ds

s
(
s− ϵ

z̄2−w̄

)2 , (E.15)

where s = eiθ has been used in the second equality. The integrand has poles at both
s = 0 and s = ϵ(z̄2 − w̄)−1. Doing the residue calculation, we find that we get equal
and opposite contributions from each pole, and so we get zero contribution from this
boundary.

Γ1 = ∂Dz2

Once again we make a substitution by taking z1 = z2 + ϵeiθ, s = eiθ, which gives

− 1
ϵ2

∮
|s|=1

ds

s+ (z2 − w)ϵ−1 , (E.16)

which has no poles since |w|, |zi| > ϵ and |w − zi| > ϵ, so this boundary gives zero
contribution.

Thus, overall we have

∑
i

∮
Γi

dz̄1
1

(z̄1 − z̄2)2(z1 − w) = − ϵ2

(wz̄2 − ϵ2)2 . (E.17)

Going back to (E.11), we now wish to do the z2 integral, i.e. we compute

∫
Σ2

d2z2∂X
ν(z2)

∮
∂Σ1

dz̄1
1

(z̄1 − z̄2)2(z1 − w) = ϵ2

w

∮
∂Σ2

dz2
∂Xν(z2)
wz̄2 − ϵ2 , (E.18)

where we have used − ϵ2

(wz̄2−ϵ2)2 = ∂
∂z̄2

ϵ2

w(wz̄2−ϵ2) and integrated out the derivative. Using
the mode expansion of ∂Xν(z2) and letting z2 = ϵeiθ, this becomes

ϵ

w
√

2
∑

n

αν
n

2π∫
0

dθ
ϵ−ne−inθ

we−iθ − ϵ
= i√

2
∑

n

αν
nϵ

−n
∮

|s|=1

ds
1

sn(s− w
ϵ
) , (E.19)
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where we have set s = eiθ in the second equality. The integrand has a single pole at
s = 0 with residue −(w/ϵ)−n, so overall we have

∫
Σ2

d2z2∂X
ν(z2)

∮
∂Σ1

dz̄1
1

(z̄1 − z̄2)2(z1 − w) = − i√
2
∑

n

w−n−1αν
n. (E.20)

This completes the calculation of the first contraction in (E.9). The calculation for the
second one involves similar integrals and we will give some brief details. The integral is

1
4δgµνδgρσg

νσ
∫

Σ2

d2z2

∫
Σ1

d2z1
1

(z̄2 − z̄1)2(z2 − w)2∂X
ρ(z1) =: 1

4δgµνδgρσg
νσ Iρ, (E.21)

and so the integral Iρ that we are interested in calculating is

Iρ = −
∫

Σ2

d2z2

∮
∂Σ1

dz1
∂Xρ(z1)

(z̄1 − z̄2)(z2 − w)2 = i√
2
∑

n

αρ
n

∫
Σ2

d2z2

(z2 − w)2

∮
∂Σ1

dz1
z−n−1

1
z̄1 − z̄2

,

(E.22)

where now we must include ∂Xρ(z1) from the outset since it has z1 dependence. We
are thus interested in the integral

∑
i

∮
Γi

z−n−1
1

z̄1 − z̄2
. (E.23)

As before, let us look at each boundary in turn.

Γ0

Using |z1| = ϵ, we have z̄1 − z̄2 = ϵ2−z1z̄2
z2

, and substituting this in gives

− 1
z̄2

∮
|z1|=ϵ

dz1
z−n

1
z1 − ϵ2/z̄2

= − 1
z̄2

 1
(n− 1)!

∂n−1

∂zn−1
1

(
z1 − ϵ2

z̄2

)−1


z1=0

− 1
z̄2

(
ϵ2

z̄2

)−n

= 0,

(E.24)

so we get zero contribution from this boundary.
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Γw
We set z1 = w + ϵeiθ as well as s = eiθ, which gives

ϵ−n

w̄ − z̄1

∮
|s|=1

ds
s(

s+ w
ϵ

)n+1 (
s+ ϵ

w̄−z̄2

) , (E.25)

which has a pole at s = − ϵ
w̄−z̄2

, and evaluating the integral and taking the limit ϵ → 0,
we find that this also vanishes (recall that our prescription is such that we always take
the circle around w to vanish), so once again there is no contribution.

Γ1

We have |z1 − z2| = ϵ, so the integral simply becomes

ϵ2
∮

|z1−z2|=ϵ

dz1
z1 − z2

zn+1
1

, (E.26)

and setting z1 = z2 + ϵs, where s = eiθ, we get

ϵ−n−1
∮

|s|=1

ds
s(

s+ z2
ϵ

)n+1 = 0, (E.27)

since there are no poles inside the unit circle. Thus, all boundaries give zero, so we
conclude that ∫

Σ1

d2z1

∫
Σ2

d2z2
1

(z̄1 − z̄2)2(z2 − w)2∂X
ρ(z1) = 0, (E.28)

i.e. the second term in (E.9) vanishes, and the only contribution is from the first term.
Therefore, overall we have

δO2∂Xµ = 1
4δgµνg

νρδgρσ∂X
σ. (E.29)

Note that this is precisely what we would get if we applied δO in a naive sequential
way, i.e. if we said

δO2∂Xµ = 1
2δO (δgµν∂X

ν) = 1
4δgµνg

νρδgρσ∂X
σ, (E.30)

and so it seems as though we can simply say δOn = (δO)n. We will see shortly that
this is indeed how we claim the higher order transformations work.
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E.2.2 δE
2

This is fairly straightforward. The first action gives 1
2δgµνe

ν
a∂X

a, and so overall, after
the second action, we get

δ2
E∂Xµ = −1

4δgµνg
νρδgρσ∂X

σ = −δ2
O∂Xµ, (E.31)

and so we have (δ2
O + δ2

E)∂Xµ = 0.

E.2.3 OδE + δEO

This is again straightforward, so we will simply state the results. We have

δEδO∂Xµ = −δOδE∂Xµ = 1
4δgµνg

νρδgρσ∂̄X
σ. (E.32)

Thus, we find that (δO + δE)2∂Xµ = 0, as expected. We expect that (δO + δE)n∂Xµ = 0
holds for all n > 1.

For other operators the story will be different, and each operator must be dealt
with on a case-by-case basis. For example, if we are looking at the stress tensor T , we
should find that there are non-zero contributions only to order δg2, and so we expect

(δO + δE)nT = 0, n ≥ 3. (E.33)

Of course, we could also just substitute the transformation for ∂X into T instead of
deriving it from scratch, and this should give the same result.

E.3 An operational approach to higher order O
insertions

The above calculations suggest a way of ‘operationalising’ the O insertions at higher
order. What we saw was that, for the δO2∂Xµ calculation, the only double contraction
which gave a contribution was the one which corresponded to the order of integration,
i.e. the contraction schematically of the form

∫
Σ2

∫
Σ1

O2O1∂Xµ. (E.34)
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We postulate that this generalises to higher powers, i.e. at order n, the only contraction
of relevance is the following:∫

Σn

...
∫

Σ1

[On[On−1[...[O2[O1, ∂Xµ]]...]], (E.35)

i.e. we contract in the order in which we compute the integrals (we use commutator
notation for clarity, as explained in section 7.1.3). Thus, we would first contract ∂Xµ

with O1, then contract the result with O2, and so on. This provides a way of making
the application of multiple O operators more systematic, since this can intuitively be
understood as sequentially applying the operator insertions. This allows us to write
the deformation to all orders as

δ∂Xµ = exp(δO + δE)∂Xµ. (E.36)

Note that we are not giving a mathematical or physical proof that this approach works,
we are simply saying that this is a prescription which is intuitive and seems to agree
with known results. Also, although we have specifically looked at ∂Xµ here, we expect
this approach to work for any operator.



Appendix F

Level Matching

For a variety of reasons, it is important that, in all of our discussions on operator
deformations, we still have level matching, or rotational invariance. One reason is that,
in [23], the variational formula that is postulated is averaged over all angular variables.

F.1 Level matching for the circle

First we do the circle case to illustrate how it works in a standard CFT context. For a
circle of radius R deformed to R + δR, we have deformation operator

O = λ
∫
Σ

∂X∂̄X, (F.1)

where λ = δg/R2 = (2RδR + δR2)/R2. To show level matching, we must show that

[O, L0] = [O, L̄0], (F.2)

where
L0 =

∮
|z|=1

dzzT (z), L̄0 =
∮

|z|=1

dz̄z̄T (z̄), (F.3)

where both integrals are independent of the radius of the contour. In other words, we
must show that [O, L0] is invariant under holomorphic ↔ antiholomorphic. We have

[O, L0] =λ
∫
Σ

d2z
∮

Cz

dw∂X(z)∂̄X(z̄)g−1w∂X(w)∂X(w)

∼ − λ
∫
Σ

d2z
∮

Cz

dw

(z − w)2 ∂̄X(z̄)w∂X(w), (F.4)
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and doing the contour integral and integrating by parts gives

λ
∮

C′
0,C′

w

dz̄z∂X(z)∂̄X(z̄). (F.5)

The integral around Cw can easily be seen to vanish when we take the limit ϵ → 0, so
we are left with

λ
∮

C0

dz̄z∂X(z)∂̄X(z), (F.6)

and using zdz̄ = −z̄dz when |z| is constant, we see that this is invariant under z ↔ z̄,
and so we do indeed have [O, L−

0 ] = 0, as required.

F.2 Level matching for the H-flux

Now we come to the more complicated case of the H-flux, although we will see that
level matching is still preserved. Using the results (8.19), (8.20), (8.21), we have

[O, L0] = m
∫
Σ

d2z
∮

Cz

dwϕx(z, z̄)F−
yz(z, z̄)

(
∂ϕ2

x(w) + ∂ϕ2
y(w) + ∂ϕ2

z(w)
)

∼ m
∫
Σ

d2z
∮

Cz

dw
w

z − w

(
F−

yz(z, z̄)∂ϕx(w) − ϕx(z, z̄)
z − w

(∂̄ϕz(z̄)∂ϕy(w) − ∂̄ϕy(z̄)∂ϕz(w))
)

= −m
∫
Σ

d2z

(
z∂ϕx(z)F−

yz(z, z̄) + ϕx(z, z̄)F−
yz(z, z̄) + zϕx(z, z̄)∂F−

yz(z, z̄)
)
, (F.7)

where in the last step we have done the w contour integral and used that ∂∂̄ϕy =
∂∂̄ϕz = 0. The last term in the final equality above can be written as

−m
∫
Σ

d2z
(
∂z(zϕx(z, z̄)F−

yz(z, z̄)) − ϕx(z, z̄)F−
yz(z, z̄) − z∂ϕx(z)F−

yz(z, z̄)
)

= m
∮

C′
0,C′

w

dz̄ϕx(z, z̄)F−
yz(z, z̄) +m

∫
Σ

d2z (ϕx(z, z̄) + z∂ϕx(z))F−
yz(z, z̄). (F.8)

By the same argument as for the circle, the contour integral around w vanishes, and so
overall we have

[O, L0] = m
∮

C′
0

dz̄zϕx(z, z̄)
(
∂ϕy(z)∂̄ϕz(z̄) − ∂ϕz(z)∂̄ϕy(z̄)

)
, (F.9)



F.2 Level matching for the H-flux 235

which is indeed invariant under z ↔ z̄, so we still have [O, L−
0 ] = 0 for the H-flux.
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