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Abstract 4 

Volcanic gases are insidious and often overlooked hazards. The effects of volcanic gases on life 5 

may be direct, such as asphyxiation, respiratory diseases and skin burns; or indirect, e.g. regional 6 

famine caused by the cooling that results from the presence of sulfate aerosols injected into the 7 

stratosphere during explosive eruptions. Although accounting for fewer fatalities overall than some 8 

other forms of volcanic hazards, history has shown that volcanic gases are implicated frequently in 9 

small-scale fatal events in diverse volcanic and geothermal regions. In order to mitigate risks due 10 

to volcanic gases, we must identify the challenges. The first relates to the difficulty of monitoring 11 

and hazard communication: gas concentrations may be elevated over large areas and may change 12 

rapidly with time. Developing alert and early warning systems that will be communicated in a timely 13 

fashion to the population is logistically difficult. The second challenge focuses on education and 14 

understanding risk. An effective response to warnings requires an educated population and a 15 

balanced weighing of conflicting cultural beliefs or economic interests with risk. In the case of gas 16 

hazards, this may also mean having the correct personal protection equipment, knowing where to 17 

go in case of evacuation and being aware of increased risk under certain sets of meteorological 18 

conditions. In this chapter we review several classes of gas hazard, the risks associated with them, 19 

potential risk mitigation strategies and ways of communicating risk. We discuss carbon dioxide 20 

flows and accumulations, including lake overturn events which have accounted for the greatest 21 

number of direct fatalities, the hazards arising from the injection of sulfate aerosol into the 22 

troposphere and into the stratosphere. A significant hazard facing the UK and northern Europe is a 23 

“Laki”-style eruption in Iceland, which will be associated with increased risk of respiratory illness 24 

and mortality due to poor air quality when gases and aerosols are dispersed over Europe. We 25 

discuss strategies for preparing for a future Laki style event and implications for society. 26 

______________________________________________________________________________ 27 

 28 

Volcanic gases have claimed directly the lives of >2000 people over the past 600 years (Auker et 29 

al., 2013). Millions more people have been impacted by volcanic gas, with effects ranging from 30 

respiratory irritation to neurological impacts, to crop failure and famine. Gas hazards contrast 31 

markedly with other volcanic hazards such as lahar, pyroclastic flows and ash fall; they are silent 32 

and invisible killers often prevailing over large areas of complex terrain. Volcanic gases may 33 

accumulate far from their source and flow down valleys as a gravity flow, engulfing and 34 
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asphyxiating people as they sleep. Sometimes the hazard is visible in the form of a condensing 35 

plume emanating from a vent, with acidic gases capable of corroding buildings and aircraft, 36 

damaging crops and causing respiratory disease and skin burns. The trajectory and dispersal of 37 

such a plume is subject to local meteorology. The plume or gas cloud must be detected and 38 

tracked by sophisticated instrumentation. Designing a warning system that works in real time whilst 39 

incorporating both measurements and models tests the ingenuity of personnel at volcano 40 

observatories and meteorological agencies. Yet these hazard-warning systems are necessary if 41 

people are to live at close quarters with degassing volcanoes. The dissemination and 42 

communication of warnings associated with gas hazards requires effective alerts and systems in 43 

place to ensure that the warning gets to the part of the population at risk. The population must 44 

react to the warning in a way that mitigates risk; this is only possible if sufficient understanding of 45 

the hazard exists. The insidious hazard of volcanic gases is often poorly understood and 46 

overlooked. In this chapter, we review the challenges associated with monitoring, detecting and 47 

communicating gas hazards and managing risk associated with gases. We start by reviewing the 48 

types of hazard. 49 

 50 

1. Volcanic gases, insidious hazards 51 

A single event dominates the inventory of deaths due to volcanic gases: in August 1986 Lake Nyos 52 

(Cameroon, Africa) emitted a dense cloud of carbon dioxide (CO2) gas in the middle of the night, 53 

which rapidly flowed down surrounding valleys, suffocating immediately 1700 sleeping people up 54 

to 20 kilometers away from the lake (Kling et al., 1987). Many other deaths have occurred as a 55 

result of people encountering accumulations of CO2 or hydrogen sulfide (H2S) gases in low-lying 56 

areas or in the form of flows and clouds. In a recent analysis volcanic gas inundation was 57 

recognized as the second most common cause of death in the most frequent, fatal volcanic events 58 

(Auker et al., 2013). The key characteristic of this hazard is that usually there is no warning and no 59 

visible sign of it. Gas concentrations may creep up unnoticed until it too late, or a sudden 60 

inundation may leave no time for escape. 61 

 62 

Fatalities arising from the secondary effects of volcanic gases run into the millions over historical 63 

times (Rampino et al., 1988). Large explosive eruptions inject SO2 directly into the stratosphere, 64 

which transforms rapidly (within hours to days) to sulfate aerosol (Robock, 2000). The aerosol 65 

scatters and reflects incoming visible and UV radiation from the sun, causing tropospheric cooling 66 

over the lifetime of the aerosol (typically a few years). Volcanic cooling has caused crop failure and 67 

famine for many years after large eruptions. Some recent eruptions (e.g. Pinatubo, Philippines, 68 

1991 and El Chichon, Mexico, 1982) have allowed direct measurement of the reduction in direct 69 
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 3 

radiative flux into the troposphere, total aerosol optical depth and tropospheric temperature (Dutton 70 

and Christy, 1992), which validated predictions of the effects of stratospheric sulfate aerosol on 71 

climate. Large historic eruptions such as that of Tambora Volcano in 1815 (Indonesia) were 72 

associated with global cooling, leading to famine, social unrest and epidemic typhus, leading to the 73 

“Year Without a Summer” (Oppenheimer, 2003). A dramatic European example is the Laki 74 

(Iceland) eruption of 1783, which was followed by several years of crop failure and cold winters, 75 

resulting in the deaths of >10,000, ~20% of the Icelandic population (Grattan et al., 2003; 76 

Thordarson and Self, 2003).  77 

 78 

Another class of volcanic gas hazards is generally non-fatal, but gives rise to or exacerbates 79 

significant chronic and acute health conditions (Table 1). Persistent gas plumes at low levels in the 80 

atmosphere are common at many volcanoes worldwide. These plumes may be rich in sulfate 81 

aerosol, generating a pervasive, choking haze. At Kīlauea Volcano, Hawaiʻi, studies have shown a 82 

link between incidences of plume inundation and asthma attacks in children (Longo et al., 2010a). 83 

These plumes give rise to acid rain and their corrosive properties (arising from not just the SO2 but 84 

also the acid halogen gases HCl and HF) leads to the damage of buildings, vehicles and 85 

infrastructure. These plumes may persist for decades or longer, making them a significant health 86 

hazard (Delmelle et al., 2002). In other areas, interception of magmatic gases by groundwater 87 

aquifers may lead to contamination of water supplies that are tapped by springs. In East Africa, for 88 

example, the high concentrations of fluorine in the spring water, once dissolved in magmas many 89 

kilometres below, have caused widespread dental fluorosis (D'Alessandro, 2006).  90 

 91 

What are volcanic gases? 92 

 93 

Volcanic gases are mixtures of volatile compounds released from the ground’s surface or directly 94 

from volcanic vents, into the atmosphere. They are generated when magmas exsolve volatiles at 95 

low pressures during their ascent to the surface and eruption. Volcanic gases may precede the 96 

arrival of lava at the surface by several weeks or even months. In some cases, persistent and 97 

diffuse emissions of gases may take place continuously between eruptions, even when the 98 

eruptions occur very infrequently. The gases have different compositions depending on: tectonic 99 

setting, how close to the surface the degassing magma is stored and whether the fluids are 100 

interacting with a wet hydrothermal system prior to reaching the atmosphere (Giggenbach, 1996). 101 

The gases that typically emanate from deep magma intrusions between and prior to eruptions are 102 

dominantly carbon dioxide (CO2) and hydrogen sulfide (H2S). When magma reaches the surface, 103 

the gas composition becomes dominated by the more melt-soluble components: water (which may 104 

make up >85 % by volume of the gas mixture), with lesser amounts of CO2 and SO2 (which make 105 
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up 2-10%), halogen gases hydrogen fluoride (HF) and hydrogen chloride (HCl), and carbon 106 

monoxide (CO) and other minor components. If the gases interact with a hydrothermal system the 107 

acid gases SO2 and HCl are removed, or “scrubbed” (Symonds et al., 2001); this is typical of the 108 

early stages of an eruption, or of “failed” eruptions (Werner et al., 2011). The components of 109 

volcanic gases that are of greatest concern for health  are (Table 1), primarily CO2, SO2, H2S, HCl, 110 

HF and metals such as mercury (Pyle and Mather, 2003) and short-lived radioactive isotopes such 111 

as radon (Baxter et al., 1999). These gases and aerosols are of course also produced in many 112 

industrial settings and the risk of accidents in these settings has prompted most of the studies on 113 

their effects on health. Some gases undergo chemical reactions in the plume, resulting in 114 

secondary products that can cause health and environmental effects. Sulfur dioxide reacts with 115 

water to form sulfuric acid aerosol droplets that leads to acid rain in the troposphere (Mather et al., 116 

2003). When injected into the stratosphere, the aerosols may reflect and absorb radiation from the 117 

sun, resulting in the cooling of the Earth’s surface for up to a few years for the largest eruptions 118 

over the past few decades, perhaps longer for larger classes of historic eruptions (Robock, 2000). 119 

 120 

There are multiple factors governing the magnitude of the volcanic gas health hazard and 121 

consequently, risk: the concentrations of gases (a function of both gas flux and composition), the 122 

mode of delivery to the atmosphere (e.g. from a point-source or over large areas; tropospheric or 123 

stratospheric) and the longevity or duration of the event. Monitoring networks should fulfill several 124 

functions in order to produce a realistic picture of the hazard: instrumentation coverage, precision 125 

(both spatial and temporal) and timeliness are critical. Once the hazard is identified and assessed, 126 

the nature of it must be communicated effectively to the communities at risk via an alert or warning 127 

system. The reaction and response of the community to the risk communication must be 128 

appropriate and prompt, otherwise delays in evacuations and other risk mitigation procedures 129 

might occur. Preparing for future events requires an understanding of the hazard and its 130 

recurrence interval, robust monitoring networks and alarm systems, sophisticated models to 131 

simulate possible outcomes and risk mitigation plans to reduce or prevent fatalities. Whilst this 132 

sequence is well-developed for a subset of hazards in some localities, such as lahar, ash fall and 133 

lava flow inundation, there are very few examples of successful alert systems for gas hazards and 134 

even fewer that have been tested in extremely hazardous scenarios which might allow us to 135 

evaluate the effectiveness of hazard communication and risk mitigation. Challenges specific to gas 136 

hazards relate to: (1) the difficulty of achieving adequate coverage with regard to monitoring (e.g. 137 

gas concentrations may be low across most of an area, but there may be localized regions of high 138 

concentrations, so dense networks of instrumentation are required); (2) developing alert and early 139 

warning systems that will be communicated in a timely fashion to the population. Gas hazards may 140 

develop rapidly and be highly dispersed, making communication of warnings problematic. (3) 141 

Ensuring that an educated population will respond in a timely and appropriate way. An amenable 142 
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 5 

response to warnings or evacuation orders requires an educated population and a balanced 143 

weighing of conflicting cultural beliefs or economic interests with risk. In the case of gas hazards, 144 

this may also mean having the correct personal protection equipment, such as gas masks; 145 

knowing where to go in case of evacuation (e.g. high ground); and being aware of increased risk 146 

under certain sets of meteorological conditions (e.g. on still days with no wind). Different hazards 147 

require vastly different responses. Large eruptions which inject gas (and ash, see chapter XXX) 148 

into the upper atmosphere for example, give rise to regional, or global hazards that have their own 149 

unique set of challenges that focus on dealing with both immediate health effects and longer term 150 

impacts (social and economic) resulting from climate forcing. In this chapter we review some key 151 

case studies and discuss the monitoring, alert and risk mitigation schemes that were in place or 152 

could be implemented for future events. We discuss the particular challenges inherent in dealing 153 

with gas hazards on all temporal and spatial scales and suggest profitable approaches for future 154 

development. 155 

2. Developing risk mitigation strategies for CO2 flows and accumulations 156 

Over the course of a decade beginning in 1979, our understanding of gas hazards was to take a 157 

dramatic turn. Events served as a stark reminder that volcanic gas hazards were capable of 158 

causing significant loss of life. Hazards from atmospheric CO2 are usually limited, because 159 

atmospheric dispersion tends to dilute volcanic or hydrothermal gas emissions to the extent that 160 

concentrations become non-lethal rapidly away from a vent or degassing area. If however, 161 

geological, geographical, hydrological or meteorological factors bring about the accumulation of 162 

CO2, or its concentration into a flow, the effects are life-threatening. Within the Dieng Volcanic 163 

Complex in central Java, on 20 February 1979, a sequence of earthquakes was followed by a 164 

phreatic eruption and sudden release of CO2 (Allard et al., 1989; Le Guern et al., 1982). The area 165 

was known for its hydrothermal manifestations, with boiling mud pools, hot springs and areas of 166 

tree kill indicative of CO2; local people are aware of “death valleys” in which vegetation is dead up 167 

to a certain level on the valley walls, and animals are often killed. People lived (and still do) in the 168 

low areas adjacent to grabens and phreatic craters known to have been sites of explosions and 169 

gas emissions in the past. After three large earthquakes between 2 and 4 am, a phreatic explosion 170 

at 5:15 was associated with the ejection of large blocks and a lahar that reached the outskirts of 171 

the village Kepucukan (Allard et al., 1989). Frightened by the activity, people attempted to escape 172 

from the village, walking west along the road to Batur, another village just 2 km away. Halfway 173 

there, 142 people were engulfed in “gas sheets” that emanated from the erupting crater, which 174 

killed them instantly. Gas emissions, dominated by CO2, continued for another 8 months (Allard et 175 

al., 1989) and may have reached a total volume of 0.1 km3 (Allard et al., 1989).  176 

 177 
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Today, more than 500,000 people live in an area at high risk of hazardous CO2 flows in Dieng 178 

caldera. Gas emission events occur frequently, heralded by seismicity (every few years with large 179 

events every few decades). A recent survey showed that 42% of the people are aware of the risk 180 

of “poisonous gas” but only 16% link this hazard to volcanic activity (Lavigne et al., 2008). Most 181 

people show a reluctance to accept the risk and a greater reluctance to leave the area due to a 182 

combination of religious and cultural beliefs (the area has been a sacred Hindu site since the 7th 183 

century) and economic factors (Dieng is agriculturally rich and in addition attracts many tourists).  184 

Farmers work within metres of dangerous mofettes (cold CO2-producing fumaroles) and mark them 185 

with mounds of earth. Villages are situated at the mouths of valleys that connect phreatic craters 186 

on high ground with the caldera floor and which channel cold CO2 flows. Monitoring the hazards is 187 

therefore of utmost importance and takes place using a network of in situ logging geochemical 188 

sensors and seismometers, maintained by the Indonesian volcanological agencies. Monitoring is 189 

not easy: the sensors are difficult to maintain, have short lifetimes and do not have the spatial 190 

coverage required to monitor all of the gas-producing vents and areas. Since 1979, there have 191 

been six phreatic eruptions accompanied by elevated CO2 emissions. Degassing crises in 2011 192 

and in 2013, however, were successfully managed using the existing system, with CO2 193 

concentration levels used to assign alert levels. Gas emission forced the evacuation of 1200 194 

residents following a phreatic eruption at Timbang crater on 29 May 2011, and people were 195 

advised to remain at least 1 km away from the crater, where dead birds and animals were found 196 

(CVGHM report, 2011). An improved network of telemetered arrays of sensors, webcams and 197 

linked siren warning systems for the surrounding villages was approved for USAID/USGS funding 198 

in 2013. For future events, it is widely assumed that phreatic eruptions will be preceded by 199 

significant seismicity (Le Guern et al., 1980). Evacuations of far larger areas will be necessary to 200 

protect the population from the gas hazard and Early Warning Systems are needed to 201 

communicate encroaching hazards. 202 

 203 

It was not until 1986 that the wider public was exposed to the idea of volcanic gas hazards, when 204 

the 8th largest volcanic disaster in historical times occurred near to Lake Nyos in Cameroon. A 205 

landslide triggered the overturn of a density-stratified lake, within which CO2 had concentrated in 206 

its lower levels. The sudden depressurization of the lake water upon overturn caused an 207 

outpouring of CO2 from the lake and into a valley, killing 1746 people by asphyxiation, up to 25 km 208 

from the lake, as well as thousands of cattle (Kling et al., 1987). Around 15,000 people fled the 209 

area and survived but developed respiratory problems, lesions and paralysis as a result of their 210 

exposure to the gas cloud (Baxter et al., 1989). There were no monitoring systems in place, no 211 

warning system and no assessment of risk before the event; scientists had no idea that this kind of 212 

event was possible prior to 1986. 213 

 214 
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It transpired, from isotopic analysis of the CO2, that the gas had a magmatic origin, and had 215 

entered the lake from fault systems channeling gases from deep in the crust, derived ultimately 216 

from the mantle (Kling et al., 1989). There was no direct volcanic activity associated with the 217 

disaster. Gas sensor networks linked to siren systems were immediately set up at the edges of the 218 

lake and at the heads of the valleys to warn of future gas flow events. A unique hazard mitigation 219 

system was set up in 1999, funded by the United States and supplemented by the governments of 220 

Cameroon, France and Japan, with the aim of artificially degassing Lake Nyos by decompressing 221 

deep lake waters using three pipes, which work in a self-sustaining way, initially pumping deep 222 

water towards the surface but thereafter driven by the degassing of CO2 (KIing et al., 1994). The 223 

scheme has reduced gas pressures in the lake substantially, reducing the risk of future overturn 224 

and gas flow events, which would otherwise have occurred every few decades. A new hazard has 225 

been identified however, in the shape of a weak dam, raising the possibility that dam breach and 226 

removal of water from Lake Nyos could be a potential future trigger for a gas emission event, 227 

regardless of the degassing pipes. Added to this is the increasing risk to people, as they gradually 228 

resettle the area.  229 

 230 

The Lake Nyos event was not unique; two years before the disaster a similar limnic eruption 231 

occurred at Lake Monoun, killing 38 people. Other lakes are associated with significant risks of 232 

similar events: at Lake Kivu, on the border of the Democratic Republic of Congo and Rwanda, 233 

recent measurements have shown that ~300 km3 of CO2 (at standard temperature and pressure) 234 

are present in the lake’s permanently stratified deep water (Schmid et al., 2005). Release of these 235 

gases by limnic overturn would have deadly consequences for the two million people living along 236 

the lake shore. It has been suggested that limnic eruptions in the Holocene have been responsible 237 

for local extinction events (Haberyan and Hecky, 1987). Elsewhere, limnic eruptions have been 238 

implicated in the deaths of a wide range of Eocene vertebrates, which were subsequently 239 

preserved to an exceptional degree, at the Messel Pit (Germany), which was, in Eocene times, a 240 

crater lake over a maar (Franzen and Köster, 1994). Limnic eruptions remain, however, a rare, if 241 

extremely hazardous, event. 242 

 243 

Outstanding questions are those concerning how to mitigate hazard and manage early warning 244 

systems and how to reduce risk associated with these silent, yet deadly hazards. Considerable 245 

interest in modeling gas flow over topography has arisen from recent developments in CO2 246 

transport as a supercritical fluid through long-range pipelines for carbon sequestration (Duncan 247 

and Wang, 2014). The possibility of a breach in a pipeline and associated gas flow has prompted 248 

investment in gas hazard assessment. At Mefite D’Ansanto in central Italy, a near-pure CO2 gas 249 

flows down a channel at a rate of ~1000 tonnes per day (Chiodini et al., 2010). The flow reaches a 250 

height  (defined by a gas concentration of 5 vol%) of 3 meters above the valley floor (far higher 251 
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than a typical human). Using measurements of CO2 concentration at various heights and distances 252 

in the valley to constrain the model and a local wind field, a gas transport model (TWODEE-2; 253 

Folch et al., 2009) was used to simulate the gas flow and to predict the zones of potential hazard 254 

for humans in terms of dangerous (>5 vol%), very dangerous (>10 vol%) and lethal (>15 vol%) 255 

concentrations, which has been used successfully for risk mitigation in the area. Gas transport 256 

models will have great utility in areas subject to dense, cold gas flows and are relatively 257 

inexpensive to implement, given appropriate constraints and calibrations provided by field 258 

measurements. Their unique advantage is that they provide a means to convert discrete 259 

measurements of gas concentrations using sensors into a fully 3-D continuous model of gas 260 

concentration and hazard that can be straightforwardly incorporated into warning systems. 261 

 262 

The gas flows described above are extreme; there are numerous examples of smaller scale gas 263 

accumulation hazards that have caused loss of life. These kinds of manifestations have been 264 

shown to be the most frequently associated with deaths in the record (Auker et al., 2013) and as 265 

such, require robust monitoring, alert systems and risk assessment. Areas of tree kill and 266 

asphyxiated animals were reported at Mammoth Mountain, inside Long Valley Caldera, beginning 267 

in 1990 and caused by the diffuse emission of CO2 over 0.5 km2 that reached up to 1200 tons/day 268 

at its peak (Farrar et al., 1995), following a swarm of earthquakes and an intrusion in 1989. The 269 

emissions have caused fatalities: in 2006 three ski patrollers died after falling close to a fumarole. 270 

The gas hazards occur in a recreational area visited by 1.3 million skiers in the winter and 1.5 271 

million hikers in the summer. Monitoring has been undertaken since 1990 in the form of campaign-272 

style measurements using soil gas chamber spectrometers, and then through three permanently 273 

installed soil gas instruments, operated and monitored by United States Geological Survey 274 

scientists (Gerlach et al., 2001). Risk mitigation measures include the posting of signs in prominent 275 

areas warning of the hazards associated with gas accumulations in topographic lows. For this 276 

lower level of hazard, this communication method is effective and has resulted in a largely safe 277 

enjoyment of the area by a largely educated public, despite the gas emissions.  278 

 279 

In the Azores, in the mid-Atlantic, the situation is rather more precarious. On Sao Miguel Island, 280 

villages are situated within the Furnas volcanic caldera (Baxter et al., 1999; Viveiros et al., 2010). 281 

This is the site of numerous gas manifestations such as boiling fumaroles, diffuse emissions and 282 

cold CO2-rich springs. It is an area popular with tourists, who enjoy the thermal spas. Up to 98% of 283 

the houses, however, are situated over CO2 degassing sites (Viveiros et al., 2010). A study in 284 

1999, which has been repeated many times subsequently, showed that lethal concentrations of 285 

CO2 (>15 vol%) existed in non-ventilated confined spaces in the houses (Baxter et al., 1999). 286 

There have been no confirmed cases of deaths in the area from CO2 asphyxia but there exist 287 

frequent anecdotal records of people being “overcome” by gases (Baxter et al., 1999). No formal 288 
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early warning or alert system exists, but there are soil gas flux spectrometers and soil temperature 289 

sensors located in the village that telemeter data back to the Azores Monitoring Centre for 290 

Volcanology and Geothermal Energy in real time. A survey of the population of the village of 291 

Furnas carried out in 1999 showed that, astonishingly, not a single one of 50 random adult 292 

respondents had any knowledge about the existence of gas hazards in the area. Upon closer 293 

questioning of the wider population only a very small fraction, mainly civil defense and medical 294 

workers, were aware of the hazard (Dibben and Chester, 1999). This shows a profound lack of 295 

education of the general population by the scientific establishment at the time of the survey. Whilst 296 

a more recent survey has not been carried out, it is likely that this has improved in recent years 297 

with the enhancement of monitoring and the responsibility to safeguard tourists. But this situation 298 

raises some thorny issues concerned with risk mitigation (Dibben and Chester, 1999). Highlighting 299 

the most vulnerable areas in the village is likely to reduce the value of property in those areas and 300 

so the public will likely be averse to accepting such information. Gas hazard alerts might affect 301 

tourism and hence the economic status of the area. Building regulations to prevent the build up of 302 

CO2 in basements might be harder for the poor to comply with, resulting in a socially divisive 303 

vulnerability structure. Lastly, installation of a high spatial coverage, precise and reliable monitoring 304 

and early warning system might lead the population to believe that they are no longer threatened, 305 

encouraging risky behaviors.  306 

3. Monitoring and communicating “vog” hazards 307 

When magma is close to the Earth’s surface (and when the gases do not interact with extensive 308 

wet hydrothermal systems), the gas hazards fall into a different category to those described above. 309 

In this case, acidic gases such as sulfur dioxide, hydrogen chlorine and hydrogen fluoride become 310 

important hazards. Active volcanism is therefore associated with thick plumes containing a mixture 311 

of these acid gases, as well as water, CO2 and minor carbon monoxide (CO) and hydrogen sulfide 312 

(H2S). Under these conditions, volcanic smog or “vog” may cause acute respiratory difficulties and 313 

skin, noise and throat irritation. Vog, which is made up of sulfate aerosol particles, has been linked 314 

to asthma and other respiratory diseases (Hansell and Oppenheimer, 2004). Some volcanoes 315 

degas prodigious fluxes of gases quasi-continuously. Mount Etna, in Italy, for example, produces 316 

several thousand tons of SO2 and significant quantities of other acidic gases every day and activity 317 

has persisted at this level for decades (Allard et al., 1991). Other prodigious producers of 318 

tropospheric volcanic gas plumes are Nyiragongo (Democratic Republic of Congo), Ambrym 319 

(Vanuatu), Kīlauea (USA), Erebus (Antarctica), Masaya (Nicaragua), Erta Ale (Ethiopia) and 320 

Villarica (Chile). Some of these volcanoes are sparsely populated; others have major urban 321 

centres within range of their plumes. 322 

 323 
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Kīlauea Volcano, Hawaiʻi, has been in continuous eruption since 1983. At Kīlauea, magma is 324 

outgassing at both the summit (since 2008) and from eruption sites and active lava fields on the 325 

east rift zone (Longo et al., 2010a), giving rise to multiple sources of gases. The emissions affect 326 

not only the 2 million visitors to Hawaiʻi Volcanoes National Park every year, but also wider areas 327 

of Big Island and the other Hawaiian islands via dispersal by the trade winds (figure 4). It has been 328 

shown that indoor SO2 concentrations regularly exceed the World Health Organisation guidelines 329 

in the affected areas of Big Island (Longo et al., 2010b) and that during periods of enhanced 330 

volcanic outgassing there are synchronous increases in the occurrence of acute respiratory 331 

conditions requiring treatment on the island (Longo et al., 2010a). In response to the clear need for 332 

a system of monitoring and early warning, SO2 concentration sensor data from inside the park and 333 

around the island are combined with SO2 emission rates and a model for plume dispersion to 334 

produce a vog model that forecasts air quality for the Hawaiian Islands (figure 5). These warnings 335 

have proven to be a very successful way of mitigating risks due to vog; statistical analysis has 336 

shown that the predictions lie within one standard deviation of the data for forecasts up to 24 hours 337 

ahead (Reikard, 2012). Advice to residents to minimize their exposure to vog once a forecast or 338 

warning for high aerosol concentrations has been issued include closing windows and doors, 339 

limiting outdoor activities and exertion and having medications on hand. Communication of vog 340 

warnings takes place via the web, radio, field units and road signs. This style of monitoring, 341 

modeling, forecasting, warning and communication might profitably be applied to many other 342 

volcanic centres facing similar tropospheric volcanic aerosol pollution in the future.  343 

4. The great dry fog: preparing for a future Laki-style event 344 

The Laki (Lakigigar) eruption 1783–1784 is known to be the largest air pollution incident in 345 

recorded history and its effects were felt throughout the northern hemisphere (Grattan, 1998). 346 

Activity in this area of southern Iceland began in mid-May 1783 with weak earthquakes which 347 

intensified into June. On the 8th of June, the 27 km long fissure opened up with more than 140 348 

vents (Thordarson and Hoskuldsson, 2002; Thordarson et al., 1996). The eruption pumped 100 349 

million tonnes of SO2 into the westerly jet stream, producing sulfur-rich plumes that were dispersed 350 

eastwards over the Eurasian continent and north to the Arctic. The reaction of SO2 with 351 

atmospheric vapour produced 200 million tonnes of sulfate aerosol, of which 175 million tonnes 352 

were removed during the summer and autumn of 1783 via subsiding air masses within high 353 

pressure systems (Thordarson and Hoskuldsson, 2002; Thordarson and Self, 2003). At its peak, 354 

this mechanism may have been delivering up to six million tonnes of sulfate aerosol to the 355 

boundary layer of the atmosphere over Europe each day (Stothers, 1996). The explosive activity 356 

from the eruption produced a tephra layer that covered over 8,000 km2 and is estimated to have 357 

produced 12 km3 of tholeiitic lava flows. Ten eruption episodes occurred during the first five 358 
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months of activity at Laki, each with a few days of explosive eruptions followed by a longer phase 359 

of lava emissions. Volcanic activity began to decrease in December 1783 and ceased on the 7th of 360 

February 1784 (Steingrímsson, 1998; Thordarson and Hoskuldsson, 2002; Thordarson and Self, 361 

2003). 362 

 363 

The consequences of the eruption were catastrophic. In Iceland, acid rains destroyed grazing and 364 

more than half of the livestock died from starvation or in combination with skeletal fluorosis (bone 365 

deformation resulting from the ingestion of high levels of fluorine) precipitated from erupted fluorine 366 

gases. More than a quarter of Iceland’s population subsequently died from starvation and the 367 

survivors suffered from growths, scurvy, dysentery, and ailments of the heart and lungs 368 

(Steingrímsson, 1998). The aerosol produced in the atmosphere resulted in a “dry fog” which hung 369 

over Britain, Scandinavia, France, Belgium, the Netherlands, Germany and Italy during the 370 

summer of 1783, affecting human health and withering vegetation (Durand and Grattan, 2001). 371 

The aerosol also caused severe climatic perturbations. In the UK, August temperatures in 1783 372 

were 2.5ºC to 3ºC higher than the decadal average, creating the hottest summer on record for 200 373 

years. A bitterly cold winter followed, with temperatures 2ºC below average (Luterbacher et al., 374 

2004). Coincidentally, in England, the death rate doubled during July 1783–June 1784 with 30,000 375 

additional deaths recorded (Federation of Family History Societies, 2010; Grattan et al., 2007; 376 

Witham and Oppenheimer, 2004b). This period is classified as a ‘mortality crisis’ because the 377 

annual national mortality rate was 10-20% above the 51-year moving mean (Wrigley and 378 

Schofield, 1989). Two discrete periods of crisis mortality occurred: August-September 1783 and 379 

January-February 1784, which in combination accounted for around 20,000 additional deaths, with 380 

the East of England the most affected region (Witham and Oppenheimer, 2004a). Crisis years are 381 

not unusual however, during the period 1541-1870 there were 22 crises where the death rate was 382 

20-30% higher, which is greater than the 1783-84 crisis of 16.7% (Grattan et al., 2003). Whilst it is 383 

difficult to prove a direct causal link between the eruption and the mortality crisis the connection 384 

between temperature extremes and mortality of the elderly or vulnerable is well established 385 

((Keatinge and Donaldson, 2004; Kovats, 2008; Royal Society, 2014; Wilkinson et al., 2004). The 386 

effects of the Laki volcanic cloud are implicated in the climatic anomalies of 1783–4 and it is 387 

therefore likely that the Laki Craters eruption did contribute to the crises (Grattan et al., 2003; 388 

Witham and Oppenheimer, 2004a). 389 

 390 

Current levels of particulate air pollution in many parts of the UK exert considerable impact upon 391 

public health (Public Health England, 2014). Epidemiological studies have linked premature 392 

mortality with exposure to air pollution, particularly to particles smaller than 2.5 µm in diameter 393 

(PM2.5) (Pope and Dockery, 2006). During a 14 day period in March and April 2014, air pollution 394 

was ‘very high’ (based on government monitoring of PM10 and PM2.5) across the UK, which 395 
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resulted in 3500 additional healthcare visits for acute respiratory symptoms and approximately 500 396 

for severe asthma (Smith et al., 2015). The air pollution episode was due to anticyclonic 397 

atmospheric conditions which brought together local air pollution emissions, pollution from 398 

continental Europe and dust transported atmospherically from the Sahara (Smith et al., 2015). Air 399 

pollution levels resulting solely from local emissions also regularly breach European Union 400 

directives; NO2 is of particular concern and in April 2015 the UK Supreme Court ruled that the 401 

government must submit new air quality plans to the European Commission by the end of the 402 

calendar year (Supreme Court Press Office, 2015).  403 

 404 

Given that air pollution in parts of the UK is regularly at (or in breach of) permissible levels, even a 405 

modest-sized eruption in Iceland could push UK cities over the threshold into very high levels of 406 

pollution. Over the last 1130 years, there have been four fissure eruptions in Iceland that caused 407 

environmental and climatic perturbation, of which Laki was the second largest and the occurrence 408 

of a contemporary Laki-style eruption poses a serious threat to the health of European populations. 409 

The need for preparedness for such an event was raised by a Geological Society working group in 410 

2005 (Sparks et al., 2005) and subsequently added to the National Risk Register of Civil 411 

Emergencies (Loughlin et al., 2014).  412 

 413 

Recent modelling of likely excess mortality resulting from a modern Laki reveals that a similar-414 

sized eruption would produce, on average, 120% more PM2.5 over background levels, which 415 

would result in 142,000 additional deaths, an increase of 3.5% in the mortality rate (Schmidt et al., 416 

2011). This rate of mortality is much lower than actually occurred during the 1780s, which could be 417 

due to several factors, including the assumption that modern populations are more resilient to air 418 

pollution and environmental stress (which may not be the case), and that the concentration 419 

response functions in the model do not account for all adverse health effects (i.e. asthma caused 420 

by elevated SO2) (Schmidt et al., 2011).  421 

 422 

The link between elevated mortality and extremes of temperature is also well-established and 423 

therefore volcanically-induced anomalous weather could also contribute to a post-eruptive death 424 

toll. The European heatwave of 2003 was a three week period of abnormally hot weather which 425 

resulted in over 52,000 deaths across Europe with cities particularly affected (Royal Society, 426 

2014). There were over 14,800 fatalities in France, with excess mortality greater than 78% in Paris, 427 

Dijon, Poitiers, Le Mans and Lyon. In the UK there were 2091 fatalities of which 616 occurred in 428 

London alone (Kovats and Kristie, 2006; Royal Society, 2014). There was a resultant increase in 429 

heat health warning systems across Europe (heat surveillance systems with associated risk 430 

warnings and awareness raising) with 16 active by 2006, which resulted in a reduction in the 431 

mortality following the 2006 heatwave (Royal Society, 2014). The World Health Organisation’s 432 
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EuroHEAT project researches heat health effects in European cities, preparedness and public 433 

health system responses. It has highlighted that the health burdens fall disproportionately on those 434 

living in urban areas, particularly if they are also physiologically susceptible, socio-economically 435 

disadvantaged and live in degraded environments; a variety of practical measures to increase 436 

resilience have been suggested alongside legislation, national plans and social capital-building 437 

(World Health Organization, 2007). 438 

 439 

A future eruption similar to Laki would likely be forecast days to weeks in advance using the 440 

sophisticated volcano monitoring networks that are in place (Sigmundsson et al., 2014). The 441 

eruption itself would likely be accompanied by prolonged high fluxes of gases and ash, producing 442 

an aerosol-laden plume in the troposphere, as observed in recent Icelandic eruptions. During some 443 

prolonged or particularly intense periods of eruption the plume may even reach the stratosphere 444 

(Thordarson and Self, 2003). The plume will be modifed physically and chemically as it moves 445 

away from the vent. Dispersal largely depends on wind direction and shear, meteorological 446 

conditions, synoptic-scale features (Dacre et al., 2013) and the stability of the atmosphere. 447 

Reactions take place in the gas phase and on the surfaces of ash and aerosol particles, where 448 

SO2 is transformed to sulfate aerosol as well as other chemical reactions involving halogen 449 

radicals and ozone and NOx species (von Glasow et al., 2009). Chemical transformations of the 450 

plume will depend on the availability of surfaces for reactions and will be affected by particle 451 

aggregation and sedimentation. The lifetime of sulphate aerosols and SO2 in the troposphere 452 

depends on altitude and season and is of the order of 5‐10 days at the low altitudes between UK 453 

and Iceland (Stevenson et al., 2003). The source parameters and associated uncertainties for 454 

modelling of a Laki eruption scenario were developed by the British Geological Survey who 455 

determined that once an eruption was underway and assuming the least favourable meteorological 456 

conditions for the UK  (a strong north-westerly wind), there would be a minimum lead time of 457 

approximately six hours (Loughlin et al., 2013). A sustained supply of gas and aerosol from the 458 

source and unfavourable meteorology might maintain long-term (months) direct impacts in the UK 459 

(Loughlin et al., 2014).  460 

 461 

Most of the risks associated with the eruption could be mitigated, given sufficient time to prepare 462 

for them, but there is work to be done in preparing guidelines to deal with hazards such as acid 463 

rain, increased levels of atmospheric pollutants, contaminated water, and the effect of aerosol on 464 

aviation (Loughlin et al., 2014). An effective response to an impending crisis will also require a 465 

much better understanding of plume chemistry and dispersion and its effects on the environment 466 

and on climate; there is a clear need to make these a research priority. Tracking volcanic clouds 467 

using satellites is now possible for eruptions in most parts of the world (figure 6), but there is 468 
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clearly scope to improve coverage in both time and space (including depth resolution in the 469 

atmosphere). Air quality monitoring networks would require augmentation and coordination to be 470 

used as input to forecasting models. There are many examples of smaller scale gas and aerosol 471 

monitoring and alert systems that have been successful (e.g. Kīlauea, USA; Mijakejima, Japan), 472 

but there are particular challenges applying these kinds of strategies to large regions potentially to 473 

include the whole of northern Europe. A major breakthrough has been the development of 474 

sophisticated modelling of aerosol formation, transport and loss. Early models used Global 475 

Circulation Models to simulate aerosol formation and its effects on climate (Chenet et al., 2005; 476 

Highwood and Stevenson, 2003) but it was recognised that fully coupled chemistry and 477 

microphysics models were required in order to simulate aerosol size distributions (Schmidt et al., 478 

2010). Recently, the atmospheric chemistry and metereology model NAME (Jones et al., 2007) 479 

has shown promise for modelling the physical dispersion and transformation of volcanic SO2 to 480 

aerosol. Current modelling is exploring the likelihood of near-surface concentrations of sulfur and 481 

halogen species exceeding health thresholds and the effects of acid deposition on ecosystems 482 

(Witham et al., 2014). Whilst these models are sophisticated, it is important to note that all models 483 

inherently involve uncertainties; particularly significant here are the estimated volcanic ash 484 

emission rates (Witham et al., 2012). A striking new finding from modelling the effects of 485 

tropospheric SO2 emissions from the 2014 Holuhraun eruption has been that the sulfate aerosol 486 

increases the albedo of liquid clouds, causing a radiative forcing that might have been observable, 487 

had the eruption continued into summer 2015 (Gettelman et al., 2015). Radiative forcing of this 488 

magnitude is sufficient to cause changes in atmospheric circulation and might be a feasible 489 

mechanism to explain the far-reaching climatic effects of the 1783 Laki eruption (Gettelman et al., 490 

2015). Understanding how dominantly tropospheric SO2 emissions from large Icelandic flood 491 

basalt eruptions may affect climate and ultimately European air quality is a critical component of 492 

mitigating risk from a future eruption. The recent eruptions of Eyjafjallajökull (2010), Grímsvötn 493 

(2011) and Holuhraun (2014) illustrate well that Icelandic eruptions have potential to disrupt 494 

aviation, our economy and air quality; the impacts of an even larger future eruption will 495 

undoubtedly extend into the realms of human health, agriculture and the structure of our society.  496 

5. Perspectives for the future 497 

We have shown that the hazards due to volcanic gases are diverse in terms of not only their 498 

chemical nature but also their impacts. Monitoring and modeling the hazards, producing effective 499 

warning or forecast systems and risk mitigation strategies are all associated with unique 500 

challenges not shared with other volcanic hazards. Gas hazards may be diffuse and affect a large 501 

area. While there have been examples of successful monitoring strategies that integrate 502 

observations into sophisticated models describing gas behavior, these are few and far between. 503 
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Future work requires innovative and far-reaching solutions to these monitoring challenges that can 504 

be applied in developing countries with minimal maintenance. Arguably the greatest strides are 505 

being made in modelling, with sophisticated models that couple chemistry with particle 506 

microphysics showing great promise as a monitoring and risk mitigation tool when combined with 507 

high quality ground- and satellite-based observations of volcanic emissions. Overcoming the 508 

challenges associated with educating populations with regard to gas hazards and maintaining 509 

effective communications is critical for future risk mitigation. Our greatest challenge may be a 510 

future large fissure eruption in Iceland, which may have significant consequences for air quality, 511 

our economy and environment in Europe and in North America.  512 

 513 
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Figures 689 

 690 

Figure 1: Cartoon to show the range of gas hazards and the scale of their impacts. A:  Diffuse 691 

degassing through fractures and faults. These gases are sourced from deep magma reservoirs. 692 

They may persist for long periods between and during eruptions. They typically affect local areas 693 

only but present significant hazards to people when gases accumulate in basements and 694 

topographic lows. B: Acidic tropospheric plumes from active volcanic vents contain SO2 and 695 

halogen gases. They lead to pervasive vog (sulfate aerosol) that may cause or exacerbate 696 

respiratory diseases. They may persist for many years during non-eruptive activity at some 697 

volcanoes and the plumes are dispersed over 10s of km. C: Sudden flows of cold CO2-rich gases 698 

occur as a consequence of lake overturn or phreatic explosions. They may last only minutes but 699 

may travel many 10s of km in that time, flowing close to the ground with lethal concentrations of 700 

CO2. D: Large explosive eruptions inject SO2 directly into the upper troposphere or stratosphere. 701 

The resulting sulfate aerosol has potential to cause significant regional and/or global environmental 702 

and climatic effects that may lead to cooling and crop failure, acid rain, increased mortality and 703 

crop failure over years timescales. 704 

 705 

Figure 2: Volcanic plume from the summit of Kīlauea Volcano, Hawaiʻi. This plume contains acid 706 

gases and condensed water droplets, conducive to the formation of “vog” (volcanic smog, or 707 

sulfate aerosol). Photograph credit United States Geological Survey. 708 

 709 

Figure 3: Condensed steam and CO2 accumulating in a valley close to Timbang Crater, Dieng 710 

Plateau, Indonesia in 2011. Note the dead vegetation below the level of the gas as a result of the 711 

high CO2 concentrations. Photgraph credit Andy Rosati, Volcano Discovery. 712 

 713 

Figure 4: Hawaiian Islands, December 3, 2008, showing a pervasive tropospheric vog plume 714 

carried westwards from Kīlauea Volcano by the Trade winds. Image acquired by the Moderate 715 

Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. 716 

 717 

Figure 5: Model to forecast “vog” and communicate vog hazard warnings for the Hawaiian Islands.  718 

The model uses estimates of volcanic gas emissions along with forecast winds to predict the 719 

concentrations of sulfur dioxide gas (SO2, left) and sulfate aerosol particles (SO4, right) downwind 720 

of the ongoing Kīlauea Volcano eruption. Images from the Vog Measurement and Prediction 721 

Website (VMAP; http://weather.hawaii.edu/vmap), hosted by the School of Ocean and Earth 722 

Science and Technology, University of Hawaiʻi at Manoa. 723 

 724 
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Figure 6: Risk mitigation during a future large eruption in Iceland will depend on effective 725 

monitoring and hazard forecasting, which will be possible with a new generation of satellite-based 726 

sensors e.g. ESA’s Sentinal 5 Precursor mission. Here we show data from existing satellite-based 727 

sensors. The OMI instrument on Nasa’s Aura satellite can image the spatial distribution (in x-y) of 728 

A: sulfur dioxide and B. sulfate aerosol in the atmosphere from volcanic eruptions. These 729 

simultaneous traces were recorded on 8 May 2010 during the Eyjafjallajökull eruption. (NASA). C: 730 

on April 17, 2010, during the same eruption, NASA's Cloud-Aerosol Lidar and Infrared Pathfinder 731 

Satellite Observations (CALIPSO) satellite captured this image of the Eyjafjallajökull Volcano ash 732 

and aerosol cloud, providing a vertical profile of a slice of the atmosphere. 733 
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Gas species Mode of dispersal Type of 
hazard 

In what 
quantity? 

Acute effects Chronic effects 

      
Sulfur dioxide, 
sulfate 
aerosol 

Tropospheric gas 
plumes from vents or 
lava lakes 

Acidic 
irritant 

 Upper airway irritation, 
pulmonary edema, nose, 
throat, skin irritation 

Exacerbation 
of respiratory 
disease  

 Stratospheric 
injection during 
explosive eruption 

Climate-
forcing, 
particularly 
in tropics  

More than a 
few Mt. 

Tropospheric cooling lasting 
100-101 years 

 
 
 
 

Hydrogen 
sulfide 

Diffuse degassing 
from the ground or 
from vents prior to or 
during eruptions 

Irritant, 
asphyxiant, 
inhibitor of 
metabolic 
enzymes  

Prolonged 
exposure > 50 
ppm may 
cause death 

Headache, nausea, 
vomiting, confusion, 
paralysis, diarrhea. Cough, 
shortness of breath, 
pulmonary edema. Eye and 
throat irritation. 

 

Fluoride 
compounds 
(HF, fluoride 
dissolved in 
water) 

Tropospheric plumes 
during eruptions. 
Groundwaters and 
acid rain (through 
dissolution and/or 
leaching of ash 
particles) 

Acidic 
irritant 

 Hypocalcemia, coughing, 
bronchitis, pneumonitis, 
pulmonary edema. Nausea, 
vomiting. Eye and throat 
irritation. Slow healing skin 
burns. 

Permanent 
lung injury. 
Mottling or 
pitting of dental 
enamel. 
Osteoporosis, 
kyphosis spine. 

Chloride 
compounds 
(HCl, other 
chlorides in 
gaseous and 
aqueous form) 

Tropospheric plumes 
during eruptions. 
Groundwaters and 
acid rain. Plumes 
arising from the 
contact of lava and 
seawater. 

Acidic 
irritant 

 Coughing, bronchitis, 
pneumonitis, pulmonary 
edema. Eye and throat 
irritation. 

Permanent 
lung injury. 

Carbon 
dioxide 

Diffuse/vent 
degassing pre- or 
syn-eruption. 
Overturn CO2-
saturated lakes.  

Inert 
asphyxiant 

 Asphyxia, collapse. Paralysis, 
neurological 
damage. 

Carbon 
monoxide 

Diffuse/vent 
degassing between or 
prior to eruptions. 

Noxious 
asphyxiant, 
binds to 
haemoglob
in 

 Collapse, coma. Paralysis, 
neurological 
damage. 

Metals e.g. 
mercury Hg 

Tropospheric plumes 
during eruptions, 
groundwater and 
diffuse degassing. 

Oxidant 
irritant 

 Bronchitis, pneumonitis, 
pulmonary edema. 
Neurotoxicity. 

Neurotoxicity. 

 3 
Table 1: health effects of volcanic gases (Hansell and Oppenheimer, 2004). 4 
 5 
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