1

The transcriptome response of Heliconius melpomene larvae to a novel host plant

- 2 Quan-You Yu^{1,2*}, Shou-Min Fang³, Ze Zhang¹, Chris D. Jiggins^{2*}
- ³ ¹School of Life Sciences, Chongqing University, Chongqing 401331, China.
- ²Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, U.K.
- ⁵ ³College of Life Science, China West Normal University, Nanchong 637002, China.
- 6 ^{*}Correspondence to:
- 7 Quan-You Yu
- 8 School of Life Sciences
- 9 Chongqing University
- 10 Shapingba District
- 11 Chonging 401331
- 12 Tel. +86-23-65678491
- 13 Email: yuqy@cqu.edu.cn
- 14 Chris D. Jiggins
- 15 Department of Zoology
- 16 University of Cambridge
- 17 Downing Street
- 18 Cambridge CB2 3EJ
- 19 Tel. +44-1223-769021
- 20 Email: c.jiggins@zoo.cam.ac.uk

21 **Running title**

22 Host plant adaptation and detoxification

23 Abstract

24	In the warfare between herbivore and host plant, insects have evolved a variety of defensive
25	mechanisms, including allelochemical transformation and excretion. Several studies have explored
26	the transcriptome responses of insects after host plant shifts in order to understand these
27	mechanisms. We investigated the plastic responses of <i>H. melpomene</i> larvae feeding on a native
28	host Passiflora menispermifolia and a less strongly defended non-host species, P. biflora. In total
29	326 differentially expressed genes were identified, with a greater number upregulated on the more
30	strongly defended native host. Functional annotation showed that detoxifying enzymes,
31	transporters and components of peritrophic membrane were strongly represented. In total, 30
32	candidate detoxification genes were differentially expressed, with glutathione S-transferases
33	(GSTs) and UDP-glucuronosyltransferases showing the highest proportion of differential
34	expression, 27.3% and 17.3%, respectively. These differentially-expressed detoxification genes
35	were shown to evolve mainly under the influence of purifying selection, suggesting that
36	protein-coding evolution has not played a major role in host adaptation. We found only one gene,
37	GSTe3, with evidence of adaptive evolution at H40, which is around the G-site and might alter
38	enzyme activity. Based on our transcriptome and molecular evolution analysis, we suggest that
39	transcriptional plasticity of genes in a herbivore may play an important role in adaptation to a new
40	host plant.
41	Key words: Heliconius butterflies; host plant shift; transcriptome; detoxification; molecular
42	evolution

44 Introduction

45 Coevolution between herbivorous insects and host plants is a relatively frequent phenomenon 46 (Ehrlich & Raven 1964). Heliconius butterflies are a diverse system in which to investigate 47 theories of coevolution (Heliconius Genome Consortium 2012; Merrill et al. 2015). Passiflora and 48 related genera are the sole host plants for Heliconius larvae (Benson et al. 1976) and there is some phylogenetic association between species groups of Passiflora and the Heliconius species that 49 50 feed on them (Benson et al. 1976; Brower 1997). Furthermore there is a wide variety of host use 51 strategies among Heliconius species and even between different populations. For example, H. 52 melpomene (postman butterfly) is a specialist in Central America, typically using only a single 53 species, either Passiflora menispermifolia or P. oerstedii (Merrill et al. 2013), but is more 54 generalist in other parts of its range. Although there is considerable ecological data on host-plant 55 use and diversification of Heliconius butterflies, little is known about the molecular and genetic 56 basis for host plant adaptation (Benson et al. 1976; Brower 1997; Merrill et al. 2013). 57 In the ecological interaction between plants and herbivorous insects, plants defend 58 themselves against herbivores by synthesizing toxic compounds (or allelochemicals) (Despres et 59 al. 2007), by physical barriers (Wybouw et al. 2015) or by releasing specific attractants to increase 60 predation of herbivores (Turlings et al. 1995). Allelochemicals are a subset of secondary 61 metabolites which are not required for metabolism (i.e. growth, development and reproduction). 62 Based on their production, allelochemicals are divided into phytoanticipins (constitutive chemicals) 63 and phytoalexins (inducible barriers). A general antiherbivore defence is common to Passiflora 64 plants. Many Passiflora species are cyanogenic, that is they liberate hydrogen cyanide (HCN)

when damaged (Olafsdottir *et al.* 1988; Spencer 1988). In addition, glycosyl flavonoid, alkaloid
and phenolic compounds have been reported as the major phytoanticipins of *Passiflora* (Dhawan *et al.* 2004).

68	To counter the toxic effects of plant toxins, herbivorous insects have evolved a variety of
69	mechanisms to adapt to their host plants, such as chemical transformation, xenobiotic excretion
70	and reducing the absorption of ingested allelochemicals (Barbehenn 2001; Despres et al. 2007; Li
71	et al. 2007). Chemical transformation is the most important detoxification process and has been
72	well studied. Detoxifying enzymes play roles in allelochemical transformation, which are
73	classified into direct metabolism (phase I) and conjugation (phase II) categories. Cytochrome
74	P450 monooxygenases (P450s) are the principal biochemical system for phase I detoxification in
75	insects, and decrease (or, less often, increase) the biological activity of a broad range of substrates
76	through oxidation-reduction or hydrolytic reactions (Despres et al. 2007). Hydrolysis reactions are
77	primarily carried out by phase I enzyme carboxylesterases (COEs), which catalyze the
78	transformation of an ester linkage into alcohol and carboxylic acid products (Hosokawa 2008).
79	Phase II conjugation reactions generally follow phase I, including glutathione S-transferases
80	(GSTs) and UDP-glucuronosyltransferases (UGTs) (Li et al. 2007). Enzymes from both phases
81	work in concert to transform allelochemicals into water-soluble compounds for eventual excretion
82	by transmembrane proteins that are specific for the conjugated toxins, termed phase III
83	transporters (Reddy et al. 2012). Mechanisms for reducing the absorption of allelochemicals are
84	less well studied. In insects, peritrophic membranes (PMs) are extracellular matrices composed of
85	chitin microfibrils and proteins that form thin sheaths around the contents of the midgut lumen

86 (Barbehenn 2001). The strengthened PMs may prevent plant secondary metabolites from entering
87 the insect body (Barbehenn 2001; Celorio-Mancera *et al.* 2013).

88	In order to understand the molecular mechanisms of insect adaptation to plant defense, global
89	analysis of transcriptome responses is one effective approach. For example, RNA-Seq analysis of
90	two instars of Polygonia c-album feeding on Urtica dioica or Ribes uva-crispa identified
91	digestion- and detoxification-related genes and transcripts coding for structural constituents, that
92	showed differential regulation (Celorio-Mancera et al. 2013). Similar studies have been carried
93	out on the moth Manduca sexta (Koenig et al. 2015), the spider mite, Tetranychus urticae
94	(Dermauw et al. 2013; Wybouw et al. 2015) and Drosophila mettleri (Hoang et al. 2015). These
95	studies mainly focused on polyphagous insects (or generalists) feeding on different hosts and
96	detected the expression patterns of differentially expressed genes. However, most herbivorous
97	insects are specialized to one or a few host species (Jaenike 1990), yet transcriptome responses of
98	specialist insects after host plant shifts are less well understood (Ragland et al. 2015).
99	Here we used <i>H. melpomene</i> as a specialist insect to study potential mechanisms of host plant
100	adaptation. This species is a host specialist in Central America and the Pacific slopes of the Andes,
101	but is more generalist in the eastern parts of the range including the Guiana Shield, potentially
102	offering insight into mechanisms of recent adaptation to a specialist lifestyle. Paired-end RNA
103	sequencing of larval guts was performed with H. melpomene after rearing on its natural host plant
104	from Central America, P. menispermifolia, and an acceptable non-host plant, P. biflora. This
105	experiment takes advantage of the fact that <i>P. biflora</i> has a much lower cyanogen content and is
106	considered a 'universal donor' plant that is acceptable to a wide variety of Heliconius species

107	(Engler-Chaouat & Gilbert 2007). Thus, we aim to detect primary genes upregulated in the natural
108	host which are necessary for detoxification of the natural host defensive compounds. In addition,
109	however, the two host species differ in their main classes of cyanogen compounds (aliphatic
110	cyanogens in <i>P. menispermifolia</i> , complex diglycoside cyclopentenyl cyanogens in the case of <i>P</i> .
111	biflora), so differential transcriptional responses to the two hosts might also represent differential
112	detoxification mechanisms for these two types of cyanogenic defence (Engler-Chaouat & Gilbert
113	2007). We specifically investigated the transcriptional responses of the genes encoding
114	detoxifying enzymes. In addition, the genomes of more than 10 closely related Heliconius species
115	have been sequenced (Briscoe et al. 2013; Heliconius Genome Consortium 2012). Some of these
116	species are specialist on only one or a few Passiflora species, others feed on particular sub-genera
117	within Passiflora, while others are generalists (Briscoe et al. 2013; Brown 1981). These genomic
118	datasets enable us to detect evolutionary rates and test for positive selection of detoxifying genes
119	among Heliconius species. Our work contributes to an understanding the roles of qualitative
120	regulation and transcriptional plasticity of detoxification-related genes in the host plant adaptation
121	of Heliconius butterflies.

- 122 Materials and Methods
- 123 *Postman butterflies and host plants*
- 124 Pupae of *H. melpomene rosina* from Costa Rica were purchased from London Pupae Supplies -
- 125 The Granary Manor Farm (Oxford, UK). We collected eggs from *H. melpomene* females and
- allowed them to hatch in plastic cups before transferring them to *P. menispermifolia* and *P. biflora*,
- 127 respectively. All plants were reared in black earth at 25 °C with a relative humidity of 60% (light :

128	night photoperiod of 16 : 8 h). Larvae from the same mother butterfly were reared with fresh
129	leaves under controlled conditions in a climate chamber (LD 12:12, 25°C). The guts of larvae
130	were dissected on the third or fourth day of the fifth instar and food debris removed. Each
131	individual gut was used as one sample and preserved in RNAlater (Ambion, Austin, USA). Five
132	replicate samples were taken for each treatment and stored at -80 °C for RNA isolation.
133	RNA sequencing
134	Total RNAs were extracted using Trizol (Life Technologies, Grand Island, NY, USA) and
135	RNeasy® Mini Kit (Qiagen, Valencia, CA, USA). DNA contaminations were removed from the
136	samples by DNase I (Ambion, Darmstadt, Germany). Purified total RNA samples were quantified
137	using a Nanodrop spectrophotometer. The quality of the RNA samples was checked using an
138	Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). RNA-Seq libraries
139	were prepared and sequenced by BGI Hongkong (China). The transcriptome libraries were
140	generated using Illumina TruSeq TM RNA Sample Preparation Kit (Illumina, San Diego, CA). The
141	mRNA molecules containing polyA were purified using poly-T oligo attached magnetic beads.
142	The resulting cDNA fragments were purified with QIAQuick® PCR extraction kit (Qiagen,
143	Shanghai, China). The cDNA for 10 samples, five from each treatment, were individually
144	barcoded and run for paired-end sequencing on an Illumina HiSeq TM 2000 Genome Analyzer
145	platform (BGI Hongkong, China).
146	RNA-Seq read mapping and identifying differentially expressed gene
147	Raw reads in FASTQ format were filtered by removing reads that contained adapter sequences

and low-quality reads containing > 10% ploy-N or > 50 % of bases whose Phred quality scores \leq

149	5. The quality of clean reads was checked with FastQC. The paired-end reads of each sample were
150	mapped to the <i>H. melpomene</i> reference genome (Hmel1.1) with TopHat (-g 1 -i 20
151	mate-inner-dist 50mate-std-dev 50) (Trapnell et al. 2009). Gene expression levels were
152	estimated using FPKM (fragments per kilobase of transcript per million mapped reads) values
153	using Cufflinks (Trapnell et al. 2010). Differential expression analysis was performed using
154	Cuffdiff2 (Trapnell <i>et al.</i> 2012). False discovery rate (FDR) \leq 0.05 and the absolute value of
155	log_2 fold-change (log_2FC) ≥ 1 were used as thresholds to judge significant difference in gene
156	expression. To compare, read counts of each gene were calculated with HTSeq-count (Anders et al.
157	2015), and DEGs were also detected with DESeq2 (Love <i>et al.</i> 2014), which the adjusted <i>P</i> value
158	≤ 0.05 and $\log_2 FC \geq 1$ were used as thresholds.
159	Functional annotation of differentially expressed genes
160	Homology searches of all the genes of <i>H. melpomene</i> were performed by InterProScan
161	(http://www.ebi.ac.uk/interpro/) and BLAST against the non-redundant (nr) sequence database of
161 162	(http://www.ebi.ac.uk/interpro/) and BLAST against the non-redundant (nr) sequence database of the National Center for Biotechnology Information (NCBI) with an e-value cut-off $\leq 1e^{-5}$.
161 162 163	(http://www.ebi.ac.uk/interpro/) and BLAST against the non-redundant (nr) sequence database of the National Center for Biotechnology Information (NCBI) with an e-value cut-off $\leq 1e^{-5}$. Functional annotations by gene ontology (GO) terms were inferred using Blast2GO software
161 162 163 164	(http://www.ebi.ac.uk/interpro/) and BLAST against the non-redundant (nr) sequence database of the National Center for Biotechnology Information (NCBI) with an e-value cut-off $\leq 1e^{-5}$. Functional annotations by gene ontology (GO) terms were inferred using Blast2GO software (Conesa <i>et al.</i> 2005). Statistical assessments of GO annotations were performed by gene set
161 162 163 164 165	(http://www.ebi.ac.uk/interpro/) and BLAST against the non-redundant (nr) sequence database of the National Center for Biotechnology Information (NCBI) with an e-value cut-off $\leq 1e^{-5}$. Functional annotations by gene ontology (GO) terms were inferred using Blast2GO software (Conesa <i>et al.</i> 2005). Statistical assessments of GO annotations were performed by gene set enrichment analysis, using Fisher's exact test within Blast2GO, including corrections for multiple
161 162 163 164 165 166	(http://www.ebi.ac.uk/interpro/) and BLAST against the non-redundant (nr) sequence database of the National Center for Biotechnology Information (NCBI) with an e-value cut-off $\leq 1e^{-5}$. Functional annotations by gene ontology (GO) terms were inferred using Blast2GO software (Conesa <i>et al.</i> 2005). Statistical assessments of GO annotations were performed by gene set enrichment analysis, using Fisher's exact test within Blast2GO, including corrections for multiple testing using false discovery rate (FDR) (FDR < 0.05). To understand the possible physiological
161 162 163 164 165 166 167	(http://www.ebi.ac.uk/interpro/) and BLAST against the non-redundant (nr) sequence database of the National Center for Biotechnology Information (NCBI) with an e-value cut-off $\leq 1e^{-5}$. Functional annotations by gene ontology (GO) terms were inferred using Blast2GO software (Conesa <i>et al.</i> 2005). Statistical assessments of GO annotations were performed by gene set enrichment analysis, using Fisher's exact test within Blast2GO, including corrections for multiple testing using false discovery rate (FDR) (FDR < 0.05). To understand the possible physiological functions of DEGs, statistically enriched pathways were investigated using KOBAS 2.0 (Xie <i>et al.</i>
161 162 163 164 165 166 167 168	(http://www.ebi.ac.uk/interpro/) and BLAST against the non-redundant (nr) sequence database of the National Center for Biotechnology Information (NCBI) with an e-value cut-off $\leq 1e^{-5}$. Functional annotations by gene ontology (GO) terms were inferred using Blast2GO software (Conesa <i>et al.</i> 2005). Statistical assessments of GO annotations were performed by gene set enrichment analysis, using Fisher's exact test within Blast2GO, including corrections for multiple testing using false discovery rate (FDR) (FDR < 0.05). To understand the possible physiological functions of DEGs, statistically enriched pathways were investigated using KOBAS 2.0 (Xie <i>et al.</i> 2011). Four pathway databases, KEGG, Reactome, BioCyc and PANTHER, were used in our

170 conducted to screen the enriched pathways.

171 Validation of differentially expressed genes by real-time quantitative PCR

- 172 Real-time quantitative PCR (qPCR) was performed using a CFX96TM Real-Time PCR Detection
- 173 System with SYBR Green qPCR Mix (Bio-Rad, USA). The cycling parameters were as follows:
- 174 95°C for 3 min, then 40 cycles of 95°C for 10 s, and annealing for 30 s (the annealing temperature
- is listed in Table S1). Five replicate samples for each treatment were used for qPCR analysis, and
- each sample was analyzed twice. We used two housekeeping control genes for normalization,
- 177 $EF1-\alpha$ and RpS3A. The results were consistent, so $EF1-\alpha$ was used for normalization in
- subsequent analysis. The relative expression levels were analyzed using the $R = 2-\Delta\Delta Ct$ method
- 179 (Livak & Schmittgen 2001).
- 180 Annotations of the detoxifying genes in the whole genome
- tBLASTn searches (E-value < 0.01) were conducted iteratively against the *H. melpomene* genome
- 182 (version v1.1) and haplotype scaffolds (*Heliconius* Genome Consortium 2012) using amino acid
- sequences of *B. mori* GSTs (Yu *et al.* 2008) and UGT (Ahn *et al.* 2012; Huang *et al.* 2008) as
- 184 queries. Genomic sequences that show even weak sequence similarity to queries and its flanking
- regions (2 kb or more long) were extracted. The candidate genes were predicted by FGENESH+
- 186 or FGENESH (http://www.softberry.com/). Predicted proteins were used to search the NCBI
- 187 Conserved Domain Database (Marchler-Bauer et al. 2002). Proteins containing the corresponding
- domains were regarded as putative GSTs and UGTs, respectively (Table S2). Otherwise, they
- 189 were excluded for further analysis. Identical methods were used to identify the detoxification
- 190 genes in the genome (v3 scaffolds, http://monarchbase.umassmed.edu/) of monarch butterfly,

<i>Danaus plexippus</i> (Zhan <i>et al.</i> 2011). Chromosomal assignments were based on pu

- 192 mapping of scaffolds in the *H. melpomene* reference genome (*Heliconius* Genome Consortium
- 193 2012). The validated GSTs and other detoxification genes of *H. melpomene* were used for
- tBLASTn (E-value < 0.01) search against the genome assemblies of other *Heliconius* species,
- 195 including H. pachinus, H. timareta, H. wallacei, H. hecuba, H. doris, H. hierax, H. xanthocles, H.
- 196 *telesiphe* and *H. clysonymus*. To improve the quality of the sequences found, the coding sequences
- 197 were performed by read mapping in CLC Genomics Workbench v. 6.5.1. Conservative parameters
- 198 (mismatch, insertion and deletion cost of 3; length fraction and similarity fraction of 0.9) were
- used to prevent mis-mapping of paralogous sequences. All read-mappings were inspected by eye.
- 200 Phylogenetic analysis and gene nomenclature
- 201 Multiple sequence alignments of amino acids were aligned using Muscle (Edgar 2004).
- 202 Phylogenetic trees were reconstructed using the neighbor-joining (NJ) and maximum-likelihood
- 203 (ML) method implemented in MEGA 5.0 (Tamura et al. 2011). The pairwise deletion option was
- used in the tree reconstruction and the accuracy of the tree topology was assessed by bootstrap
- analysis with 500 resampling replicates. Positions that have a high percentage of gaps (>70%)
- were trimmed. The ML and NJ trees were consistent, only the NJ tree is presented in subsequent
- 207 analysis. Based on the phylogeny, *H. melpomene* GSTs were named according to silkworm GSTs
- 208 (Yu et al. 2008). According to the current nomenclature guidelines of the UGT Nomenclature
- 209 Committee (Mackenzie et al. 1997), UGT families, indicated by numbers, and subfamilies,
- 210 indicated by capital letters, are defined at 40% and 60% amino acid identity, respectively.
- 211 Molecular evolution of detoxifying genes in Heliconius butterflies

212	Evolutionary rates. The phylogenetically related members and reciprocal best BLAST hits
213	between species were identified as orthologous genes. N- and C-terminal domains of GSTs were
214	identified using Conserved Domain Search (CD-search) (Marchler-Bauer et al. 2002). For further
215	analysis, only genes in which each terminal region of GSTs contained higher than 80% total
216	length of N- or C-terminal domain, or $> 50\%$ for the P450s, UGTs and COEs genes, were retained
217	(Table S3). Only orthologous genes identified in five or more <i>Heliconius</i> species were included.
218	Nucleotide sequences were aligned using PAL2NAL (Suyama et al. 2006) to construct a multiple
219	codon alignment from the corresponding aligned protein sequences. All alignments were manually
220	inspected. The tree topology supplied for CODEML in PAML (Yang 2007) followed the species
221	tree in Fig. S6. To evaluate variation in selective pressure among sites, the site-specific "discrete"
222	model (M3, $K = 3$) of CODEML was used to estimate three different ω values and its site
223	proportions. The rates of synonymous (d_N) and non-synonymous (d_S) substitutions and ω values
224	$(\omega = d_{\rm N}/d_{\rm S})$ among all pairwise comparisons were calculated by the YN00 program implemented
225	in the PAML 4.5 package (Yang 2007).
226	Detection of positive selection. To detect site-specific positive selection, the CODEML program as
227	implemented in PAML4.5 (Yang 2007) was used. Model M0 (one ratio), M1a (nearly neutral),
228	M2a (positive selection), M7 (β distribution), and M8 (β distribution and ω) were run for each set
229	of orthologs (Table S3). To avoid being trapped at local optima, three different initial ω -values of
230	0.5, 1.1, and 2.0 were used in the estimation of the log likelihood for model 7 and model 8 (Low et
231	al. 2007). Models M2a vs. M1a and M8 vs. M7 were compared using likelihood ratio tests (LRT),
232	in which twice the log-likelihood difference (2 Δ lnL) was compared with the distribution of the

233 chi-square statistic to test whether the neutral model should be rejected. Bayes Empirical Bayes

was used to calculate the posterior Bayesian probability, sites with probability >95% and ω >1

inferred to be under positive selection (Yang *et al.* 2005).

236 **Results**

237 Transcriptome characteristics in the larval gut of H. melpomene

238 The lepidopteran gut plays key roles in nutrient digestion and allocation. The guts of the fifth 239 instar larvae reared with the host plants P. menispermifolia and P. biflora were dissected and used 240 for RNA sequencing. After filtering low quality reads and trimming adapters, the clean reads of 241 5 replicate samples for each treatment were mapped to the *H. melpomene* reference genome with TopHat (Trapnell et al. 2009). The expression level of each gene was estimated by Cufflinks 242 243 (Trapnell et al. 2010). In order to discard transcript models that had no read coverage or low 244 coverage, a threshold was set and only transcripts with FPKM ≥ 1 were considered for expression. 245 In total, 7,993 genes were expressed in the gut samples, of which 600 genes were expressed at 246 high levels (hereafter 'highly-expressed') (FPKM \geq 100). GO assignments were used to classify 247 the functions of the genes expressed and highly-expressed in the gut. Most of the genes expressed 248 in the gut (GEG) and genes highly-expressed in the gut (GHG, FPKM \geq 100) have a similar 249 distribution of GO terms (Fig. S1). Based on the molecular function GO annotation, the most 250 abundant GO terms were 'catalytic activity' (47.1% for GEG, 57.6% for GHG) and 'binding' 251 (57.7% for GEG, 43.8% for GHG). The functional categories enriched in the GEG and GHG 252 subsets were related to nutrient digestion and allocation, and xenobiotic detoxification in the gut.

253 Transcriptome response of H. melpomene larvae after host plant shift

254	To explore the physiology of the plastic response of <i>H. melpomene</i> to a novel host environment,
255	newly hatched caterpillars were reared on either their native host plant, P. menispermifolia, or the
256	non-host plant, P. biflora, and their guts dissected in the fifth instar. A previous study indicated
257	that larval growth rates of <i>H. melpomene</i> are similar on five species of <i>Passiflora</i> , including <i>P</i> .
258	biflora (Smiley 1978). Extracted RNA from each individual gut represented one sample, and five
259	replicate samples for each treatment were used for RNA sequencing, respectively. After quality
260	control, a total of ~338 million, 100-bp clean reads were obtained (Table S4) from ten guts of the
261	fifth instar caterpillars reared on host and non-host plants. We mapped the clean reads to the H.
262	melpomene reference genome, and identified significantly differentially expressed genes (DEGs)
263	(absolute value of $\log_2 \text{FC} \ge 1$; FDR-corrected $P < 0.05$) using Cuffdiff2. In total, 326 genes were
264	characterized as being significantly differentially regulated in the guts after host-feeding treatment
265	(Table S5), of which 173 genes were upregulated in larvae reared on the native host. To validate
266	the RNA-Seq data, qPCR was performed for 14 DEGs. The relative expression levels of the
267	selected DEGs are shown in Figure 1A. There was a strong positive correlation (Pearson
268	correlation coefficient $r = 0.939$, $P < 0.001$) between RNA-Seq and qPCR data (Fig. 1B),
269	supporting comparisons based on RNA-Seq data alone.
270	To analyze the functions of the DEGs, Gene Ontology (GO) enrichment analysis was
271	performed using Fisher's exact test in Blast2GO (Conesa et al. 2005). Based on GO classification,
272	269 DEGs (82.5%) could be automatically annotated with GO terms. A total of 27 GO categories
273	were over-represented when compared to the GOslim categories of all genes in the H. melpomene
274	genome (Table S6). The GO terms, catalytic activity (GO:0003824; n = 153) and metabolic

275	process (GO:0008152; n = 149), contained the highest number of genes. Typical stress-induced
276	GO terms were identified, such as 'response to stress' and 'response to external stimulus'. To
277	obtain more insight into the possible physiological functions of the DEGs, statistically enriched
278	pathways were investigated using KOBAS 2.0 (Xie et al. 2011). The enriched pathways with gene
279	number ≥ 6 were shown in Figure S2. This shows that the pathways related to xenobiotic
280	detoxification metabolism, transmembrane transport and nutrient metabolism were
281	over-represented. The significantly enriched detoxification pathways mainly included
282	'Metabolism of xenobiotics by cytochrome P450', 'Drug metabolism-cytochrome P450', 'Drug
283	metabolism-other enzymes', and 'Glutathione metabolism' (Fig. S2).
284	To identify the most important mechanisms involved in the response, differentially expressed
285	genes were used for a tBLASTn search (E-value < 1e-5) against the non-redundant sequence
286	database of National Center for Biotechnology Information (NCBI). Some important functional
287	categories were manually grouped, such as nutrient digestion, detoxification enzymes, transporter,
288	peritrophic matrix (PM) biosynthesis (Table S5). Based on the functional annotations for the
289	DEGs, 16 genes encoding nutrient digestion enzymes were found, of which 12 were trypsin-like
290	proteinases. These digestion enzymes might play important roles in phenotypic adaptation to the
291	non-host plant. We found 30 detoxifying genes that were significantly differentially regulated
292	following the host plant shift, which belonged to four major detoxification supergene families,
293	P450s, GSTs, UGTs and COEs. This shows that 10 out of 12 phase I detoxifying (P450s and
294	COEs) DEGs were upregulated in larvae reared on native host plant. In contrast, only one
295	(HmelGSTe3) of 9 differentially expressed GSTs was upregulated on the native host (Table S5).

296	Twenty-nine transporter genes were identified as DEGs, in which more than half were upregulated
297	in native host-reared larvae. Functional annotation showed that 12 of the 29 transporters belonged
298	to the major facilitator superfamily (MFS). Previous studies suggested that MFS might be key
299	players facilitating insect adaptation and survival in response to new diets (Dermauw et al. 2013).
300	Chitin and peritrophin are the major components of the peritrophic matrix (Lehane 1997). One
301	chitin synthase and eight chitin-degrading enzymes (chitin deacetylase and chitinase) responded to
302	the host plant shift. Six genes encoding peritrophin also showed differential expression. This
303	regulation of genes related to PM biosynthesis might affect the penetration of allelochemicals in
304	the gut. These results suggest that multiple gene categories are involved in the defense network for
305	plant secondary metabolites in <i>H. melpomene</i> .
306	Specific responses of detoxifying enzymes to plant allelochemicals
307	Allelochemicals are the major defense chemicals in plants, and are also therefore the selective
308	agents on the detoxification systems of insect herbivores (Li et al. 2007; Ragland et al. 2015).
309	Accordingly, we observed major plastic changes in expression of detoxification-related genes after
310	the host plant shift (Fig.S2, Table S5). Based on functional annotations of the DEGs, we found 9,
311	9, 8 and 4 members of GSTs, UGTs, P450s and COEs respectively that were significantly
312	differentially expressed (Table S5). Generally, GSTs and UGTs families contained fewer genes
313	than P450s and COEs in insect genomes (Ahn et al. 2012; Ranson et al. 2002). However, GST
314	and UGT gene families have more members differentially regulated by the host-plant shift in H.
315	melpomene. Thus, it would be interesting to understand whether the two families were expanded
316	in the genome of <i>Heliconius</i> butterflies and the role of duplicated genes in host plant adaptation.

317	Using the amino acid sequences of silkworm GSTs (Yu et al. 2008) and UGTs (Ahn et al.
318	2012; Huang et al. 2008) as queries, we manually annotated the detoxification genes through a
319	local tBLASTn search in the H. melpomene reference genome (Heliconius Genome Consortium
320	2012). In total, 33 GSTs and 52 UGTs were identified in the <i>H. melpomene</i> genome (Fig. 2).
321	GSTs had the highest percentage (9 out of 33, 27.3%) of differential regulation, followed by
322	UGTs (9 out of 52, 17.3%). For P450s, one hundred genes have been found in <i>H. melpomene</i>
323	(Chauhan et al. 2013). One new candidate (HMEL004608) was found in our analysis (Table S5).
324	Thus, only 7.9% of P450 genes showed differential regulation after the host plant shift.
325	For comparison, detoxification-related genes have also been characterized in another
326	butterfly, D. plexippus (Fig. 2). Phylogenetic analysis was performed for GSTs and UGTs of
327	lepidopteran model insects (Fig. 3; Fig. 4). The GSTs and UGTs of <i>H. melpomene</i> and <i>D</i> .
328	plexippus were named using published nomenclature (Ahn et al. 2012; Yu et al. 2008).
329	Interestingly, it was not insect-specific delta and epsilon classes, which are known to be related to
330	insecticide resistance and detoxification in insects (Li et al. 2007), but rather the omega and sigma
331	classes that are more ubiquitously distributed in all organisms, that were most commonly
332	duplicated in the H. melpomene genome (Fig. 2; Fig. 3). H. melpomene is the first species in
333	which omega and sigma classes both showed expansion (Fig. 2). The intron positions of the
334	members of the ubiquitous sigma and omega classes are highly conserved and show very strong
335	class-specificity (Fig. S3). Furthermore, omega and sigma classes were mainly clustered on
336	chromosome 7 and scaffold HE669239 respectively (Fig. S4). RNA-Seq data showed that most of
337	the significantly differentially regulated GSTs belonged to the sigma (4) and omega (3) classes

338 (Table S5).

339	Compared with Diptera, the UGTs were more commonly duplicated in Lepidoptera (Fig. 2).
340	Phylogenetic analysis showed that most of them have duplicated through species-specific
341	expansion (Fig. 4). In H. melpomene, UGT members were clustered and mainly located on
342	chromosomes 9, 10, 16, 17, and 19 (Fig. S4). UGT33 is the largest family and contained 24
343	members (Fig. 4). Based on the analysis of segmental and tandem duplication by MCScanX
344	(Wang et al. 2012), segmental duplication mainly occurred in the early expansions, which resulted
345	in spread of UGT33 among different chromosomes or regions (Fig. S5A). Tandem duplication
346	produced more recent copies (Fig. S5A). These duplicated UGT33s share a common signature
347	motif (FhTQhGLQSTxExxxxxVPhhxxPhxxDQ) (Mackenzie et al. 1997) with UGT33 members
348	from other lepidopteran species (Fig. S5B). Transcriptome data indicated that five out of nine
349	differentially expressed UGTs belonged to the UGT33 subfamily (Table S5).
350	Evolutionary rate and positive selection of detoxification genes among Heliconius butterflies
351	Molecular evolution of the differentially expressed detoxifying genes was studied in 10 closely
352	related Heliconius species. In total, 24 orthologous gene sets of 30 differentially expressed
353	detoxifying genes were analyzed (Table S3). The ω values were calculated by the YN00 program
354	in the PAML (Yang 2007), and a plot of d_N/d_S was shown in Fig. 5. All the genes have evolved
355	mainly under the influence of purifying selection ($\omega < 1$, Fig. 5). There was no evidence for
356	different evolutionary rates between differentially expressed GSTs and the GSTs (oGSTs)
357	unaffected by the host plant shift (Fig. 5). In addition, GST proteins consist of two well-defined
358	domains, the N-terminal domain that binds reduced glutathione (GSH) and the C-terminal domain

that binds the hydrophobic substrates (Ranson & Hemingway 2005). The comparison indicated

- 360 that the selective constraint on the C-terminus of oGSTs was more relaxed than on the N-terminus
- 361 (t-test, $p \ll 0.01$), while the selective pressure on the C-terminus and N-terminus was similar
- among the differentially expressed GSTs (Fig. 5).
- To detect the evolutionary rates of different sites, CODEML (model 3 with K = 3)
- 364 implemented in PAML was used to calculated three different ω values and the corresponding
- 365 proportions of sites. The results indicated that some of the detoxification genes might have
- positively selected sites ($\omega > 1$) (Table S7). We used two standard PAML comparisons (model
- 367 M2a vs. M1a and M8 vs.M7) to test whether an adaptive model fits the data better than the neutral
- 368 model. Only GSTe3 was found to be significant with Bayes Empirical Bayes (BEB) method and P
- < 0.01 (Table 1). The amino acid state of the positively selected site in N-terminal region of
- 370 GSTE3 was shown in Fig. 6A. As shown in Fig. 6A, a histidine/alanine/glycine substitution at site
- 40 has occurred across the six *Heliconius* species. The tertiary protein structure of HmelGSTE3
- was predicted by homology modeling (Fig. 6B). The positively selected site (H40) was located
- ar the glutathione-binding site (G-site) in N-terminal domain.
- 374 Discussion
- 375 Differentially expressed genes

376 *Digestive enzymes.* We anticipated that digestion-related genes of herbivorous insects might

- 377 respond to exposure to different hosts. Previous studies suggested that serine proteases are key
- enzymes allowing larvae to adapt to many different diets (Celorio-Mancera et al. 2013; Chikate et
- al. 2013). In this study, 16 digestion-related genes showed plastic responses in H. melpomene

380	larvae after the host-plant shift (Table S5). Pfam domain searches indicated that 12 of these genes
381	contain a trypsin domain (PF00089.21), and correspond to serine proteases. In addition, another
382	three genes that correspond to carboxypeptidase, alpha-glucosidase and gamma-glutamyl
383	hydrolase (Table S5) were identified. These digestion-related genes might play important roles in
384	adaptation to a novel host plant.
385	Detoxification genes. RNA-Seq is an effective means to identify candidate detoxification genes
386	related to host plant adaptation (Celorio-Mancera et al. 2013; Dermauw et al. 2013; Ragland et al.
387	2015; Wybouw et al. 2015). In the spider mite Tetranychus urticae, 8.1% of all detoxification
388	genes were differentially expressed following adaptation to tomato or bean plants over 30
389	generations, including 10 P450s, 4 COEs, 5 GSTs and 9 UGTs (Wybouw et al. 2015). For the four
390	detoxification gene families, GSTs had the highest percentage of differential expression (15.6%),
391	followed by P450s (13.3%), UGTs (12.0%) and COEs (6.0%). In contrast, a recent study of
392	Manduca sexta showed limited responses of detoxification genes to host plant use (Koenig et al.
393	2015). In our study, 30 detoxifying genes responded significantly to the host plant shift (Table S5).
394	GSTs had the highest percentage (27.3%), followed by UGTs (17.3%) and P450s (7.9%).
395	Compared with the spider mite, GSTs and UGTs have a higher percentage of differential
396	regulation in <i>H. melpomene</i> .
397	Although we might expect detoxification genes to be upregulated in order to deal with the
398	allelochemicals from a non-host plant, in this case P. biflora contains lower concentrations of
399	cyanogenic compounds and is therefore often considered a less toxic host plant (Engler-Chaouat
400	& Gilbert 2007). It is therefore perhaps not surprising that almost all of the differentially

401	expressed P450s (7 out of 8) and COEs (3 out of 4) were upregulated in larvae reared on the
402	native host plant (Table S5). For some species including H. melpomene, Passiflora natural product
403	diversity does not cause major deleterious effects on Heliconius growth suggesting that larval
404	feeding specialization is not primarily driven by biochemical coevolution (Smiley 1978; Smiley &
405	Wisdom 1985). Heliconius-Passiflora interactions are therefore mediated primarily by adult
406	female butterflies correctly identifying suitable host plants for oviposition (Briscoe et al. 2013).
407	So, these differentially expressed phase I detoxifying genes showed higher constitutive
408	expressions and might be responsible for routine detoxification of allelochemicals in <i>H</i> .
409	melpomene on its natural host in Central America.
410	Cytosolic GSTs are important enzymes involved in detoxification of various plant
411	xenobiotics, which can be induced by xanthotoxin, indoles and flavonoids (Li et al. 2007).
412	Previous studies indicated that insect specific delta and epsilon classes primarily mediated
413	allelochemical tolerance and insecticide resistance (Li et al. 2007). In our study, nine GST genes
414	showed plastic responses to the host plant shift in <i>H. melpomene</i> , two of which (<i>HmelGSTd2</i> and
415	HmelGSTe3) belonged to insect specific classes (Table S5). In addition, only HmelGSTe3 showed
416	a similar response to phase I detoxifying genes and was upregulated on the native host plant. Thus,
417	it is surprising that a large number of ubiquitous omega and sigma GSTs were upregulated in
418	non-host feeding larvae. The GSTs offer passive protection against pyrethroid insecticides in
419	Tenebrio molitor (Kostaropoulos et al. 2001), and in Petunia AN9 is a flavonoid-binding GST
420	protein that acts as a cytoplasmic flavonoid carrier protein (Mueller et al. 2000). It may be that
421	upregulated omega and sigma GSTs might mainly act as allelochemical binding proteins in the

423	Transporter genes. Transporters play an important role in excretion, conjugation or sequestration
424	of xenobiotic compounds from cells. Combinations of enzymes and transporters work together as
425	a detoxification "system". In total, 29 transporter genes were differentially expressed after host
426	plant shift in <i>H. melpomene</i> . ATP binding cassette (ABC) transporters have traditionally been
427	regarded as major components in the excretion process (Glavinas et al. 2004), but only two ABC
428	transporters showed up-regulation in non-host feeding larvae. Similar responses have been seen in
429	previous studies (Dermauw et al. 2013; Wybouw et al. 2015). Major facilitator superfamily (MFS,
430	Transporter Classification DataBase, TC# 2.A.1) is one of the largest families of membrane
431	transporters along with ABC transporters (Reddy et al. 2012). The potential role for MFS
432	transporters in detoxification of herbivores has only recently been demonstrated (Celorio-Mancera
433	et al. 2013; Dermauw et al. 2013; Wybouw et al. 2015). In our study, twelve MFS members were
434	differentially regulated in <i>H. melpomene</i> after the host plant shift (Table S5). In addition, other
435	transporters were also found, such as Zinc transporter, proton-coupled amino acid transporter,
436	organic anion transporter, and etc. These membrane proteins might function as efflux transporters
437	and facilitate host plant adaptation.
438	Peritrophic matrix biosynthesis-related genes. During long term adaptive evolution the peritrophic
439	matrix (PM) can decrease penetration of allelochemicals to enhance adaptation of insects to their

- 440 host plants (Barbehenn 2001; Celorio-Mancera *et al.* 2013). It has been shown that the PM can
- 441 decrease or prevent the permeability of plant allelochemicals, such as rutin, tannic acid, digitoxin,
- and chlorogenic acid (Barbehenn 2001). Peritrophic matrix is a proteoglycan matrix formed of

443	proteins, glycoproteins, and chitin microfibrils, which may protect insects from insult by
444	pathogens and toxins (Lehane 1997). Peritrophins are a major fraction of the PM proteins and
445	noncovalently bonded to chitin. Chitin, a homopolymer of β -(1-4)-linked <i>N</i> -acetyl-D-glucosamine,
446	can be hydrolyzed by chitinase and chitin deacetylase which breaks down glycosidic bonds and
447	acetamido groups, respectively (Arakane et al. 2009; Lehane 1997). After host plant shift, six
448	genes encoding peritrophin proteins and one chitin synthase were differentially expressed, all of
449	which were upregulated in non-host-feeding larvae. In addition, 3 out of 8 differentially expressed
450	chitin-degrading enzymes were upregulated in non-host treatment. Taken together, more
451	peritrophins and chitins might be synthesized in the non-host feeding larval gut. The strengthened
452	cuticular component of PM might be another important mechanism to adapt to host plants in H.
453	melpomene.
454	Detoxification of cyanogenic glucosides. Cyanogenic glycosides (CNglc, cyanogen) are important
455	defensive compounds in Passiflora plants (Olafsdottir et al. 1988; Spencer 1988). After long-term
456	coevolution between Heliconius butterflies and Passiflora hosts, some Heliconius not only
457	specifically sequester simple monoglycoside cyclopentenyl (SMC) cyanogens, but also most
458	species synthesize CNglc linamarin and lotaustralin de novo for their own defense against
459	predators (Engler-Chaouat & Gilbert 2007; Nahrstedt & Davis 1981). In this study, H. melpomene
460	was exposed to two non-SMC plants, P. menispermifolia and P. biflora, with the former having a
461	higher cyanogen content (Engler-Chaouat & Gilbert 2007). The ingested non-SMC cyanogens
462	might be degraded by β -glucosidases and α -hydroxynitrile lyases (Ketudat Cairns & Esen 2010;
463	Zagrobelny <i>et al.</i> 2004). Although no specific β -glucosidase involved in CNglc catabolism has

464	been characterised in	n insects yet, a	β-glucosidase	(ZfBGD1) has	been identified in
-----	-----------------------	------------------	---------------	--------------	--------------------

- 465 CNglc-containing droplets of Zygaena filipendulae larvae (Pentzold et al. 2016). Among the 326
- 466 DEGs in the *H. melpomene* gut after host plant shift, three homologs of β -glucosidase enzymes
- 467 (HMEL013290, HMEL014474 and HMEL014483) were identified. All of these were significantly
- 468 upregulated in larvae reared on the native host, *P. menispermifolia* (Table S5). Except for
- sequestration and degradation of cyanogens, insects have evolved to cope with the toxic effects of
- 470 HCN, through conversion of HCN into β -cyanoalanine by β -cyanoalanine synthase (CAS)
- 471 (Despres et al. 2007; Wybouw et al. 2014). Three candidates of CAS (HMEL013489,
- 472 HMEL016300 and HMEL002400) were found in *H. melpomene* (Wybouw *et al.* 2014). Although
- 473 none of them showed significantly differential expression after host plant shift, HMEL002400 was
- 474 expressed higher in larvae reared on the host (FPKM=46.62) as compared to non-host larvae
- 475 (FPKM=20.12), with an FDR value of 0.052. Our results suggested that the differentially
- 476 expressed β-glucosidases and elevated CAS might play important roles in detoxifying cyanogens
- 477 and its toxic product, HCN.
- 478 *Comparison of DEGs detected by Cuffdiff2 and DESeq2.* In this study, we compared the DEGs
- detected with Cuffdiff2 and DESeq2 methods. Generally, 217 DEGs were detected by DESeq2
- 480 (Table S8), in which 147 were found in the differentially expressed gene lists detected by
- 481 Cuffdiff2 (Table S5). Although the total number of DEGs detected by DESeq2 were decreased,
- 482 more than half the genes related to detoxification, peritrophic matrix biosynthesis, transporter and
- 483 nutrient digestion were also identified (Table S8), which would support the results based on
- 484 Cuffdiff2. For detoxification gene group, 7 out of 9 differentially expressed GST genes (Table S5)

485	were characterized as DEGs using DESeq2, meanwhile, <i>HmelGSTs10</i> and <i>HmelGSTs11</i> were
486	identified as new DEGs. Although HmelGSTe3 was identified as non-differentially expressed gene
487	using DESeq2, it was a differentially expressed gene validated by qPCR (Fig. 1). UGT genes
488	showed an exception that only 2 out of 9 UGTs were detected as DEGs using DESeq2. In typical
489	high-throughput sequencing experiments, as few as two or three replicates per condition were used
490	(Love et al. 2014). To obtain robust results, five replicates were performed in our study. While
491	more replicates might result in higher variance of read counts for a certain gene within group
492	(Love et al. 2014). DESeq2 is a method for differential analysis of count data, which enables a
493	more quantitative analysis focused on the strength rather than the mere presence of differential
494	expression (Love et al. 2014). In this study, Cuffdiff2 method was mainly used to identify DEGs,
495	and it might find some evidences for the mere presence of differential expression.
496	Molecular evolution of detoxifying genes in Heliconius butterflies
497	Heliconius butterflies have complex relationships with their Passifloraceae host plants. Some
498	species are specialist herbivores, while others are generalists (Briscoe et al. 2013; Brown 1981). It
499	seems likely that the detoxification system has played an important role in host adaptation among
500	these butterflies. In order to understand the roles of detoxification enzymes in herbivore adaptation,
501	we studied the molecular evolution of detoxifying genes. We focused on gene gain and loss of
502	GSTs and showed that there has been broad conservation of gene number subsequent to the
503	Heliconius radiation (Fig. S6), while omega and sigma classes expanded before the radiation of
504	Heliconius (Fig. S6)

After the host plant shift in H. melpomene, 30 detoxification genes showed significant

506	differential expression (Table S5). Of these, 24 orthologous gene sets had enough coverage across
507	10 Heliconius species and were used to estimate ω values (Fig. 5). Broadly, GSTs, UGTs, COEs
508	and P450s (Fig. 5) were all under strong purifying selection. Using the "site-specific" model in
509	PAML software, one positively selected site (H40) was found in GSTE3, located near the
510	glutathione-binding pocket in N-terminal domain (Fig. 6). In Pinus tabuliformis, two positively
511	selected sites (corresponding to Arg-12 and Asn-37 of PtaGSTU17) located close to the G-site can
512	dramatically alter enzyme activities (Lan et al. 2013). In Anopheles dirus, E25Q residue of
513	adGST1-1 is located between helix 1 and sheet 2 and appears to affect tertiary structure around the
514	hydrophobic core in N-terminal domain, and further change the enzyme activity (Ketterman et al.
515	2001). It seems plausible therefore that the site of positive selection in GSTE3 might alter enzyme
516	activity. Thus, GSTe3 shows both a transcriptional response and evidence for positive selection, so
517	could be considered a potential candidate for host adaptation among Heliconius butterflies.
518	Conclusion
519	Previous studies suggested that larval feeding specialization of Heliconius is mediated
520	primarily by adult female butterflies (Briscoe et al. 2013), not primarily driven by biochemical
521	coevolution (Smiley 1978; Smiley & Wisdom 1985). In insects, the gut is the first barrier for
522	penetration and detoxification of plant allelochemicals (Krieger et al. 1971). We have analyzed
523	the transcriptome response of guts in <i>H. melpomene</i> after a host plant shift. Based on the
524	functional annotations of DEGs, we suggest that Heliconius have a broad based defense
525	mechanism for detoxifying host secondary metabolites (Fig. 7). Our results demonstrate that phase
526	I detoxifying genes and β -glucosidases might play important roles in routine detoxification of

- sile strongly defended host allelochemicals, as most were upregulated in larvae reared on the more strongly defended host
- 528 species, *P. menispermifolia* (Table S5). Most of the differentially expressed UGTs/GSTs belonged
- 529 to lineage-specific duplications (Fig. 3, Fig.4), and were upregulated in larvae reared on non-host
- 530 plant. The high degree of plasticity may help to partly cope with natural shifts between hosts in *H*.
- 531 *melpomene* (Smiley 1978).

532 Acknowledgements

- 533 Thanks to Jenny Barna for remote computing support; Nicola Nadeau, Richard Wallbank, Richard
- 534 Merrill and Carolina Pardo for providing much help during the larval rearing and experiment.
- 535 John Davey, Simon H. Martin, Krzysztof M. Kozak and Martin Thompson for bioinformatics
- assistance. This work was supported by the National High Technology Research and Development
- 537 Program of China (2013AA102507-2 to ZZ), the Fundamental Research Funds for the Central
- 538 Universities (106112015CDJXY290002 to YQY), the National Natural Science Foundation of
- 539 China (31201851 to YQY). CDJ is supported by an ERC Advanced Grant Speciation Genetics
- 540 339873.

541 References

- 542 Ahn SJ, Vogel H, Heckel DG (2012) Comparative analysis of the UDP-glycosyltransferase
- 543 multigene family in insects. *Insect Biochemistry and Molecular Biology*, **42**: 133-147.
- Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput
 sequencing data. *Bioinformatics*, **31**: 166-169.
- Arakane Y, Dixit R, Begum K *et al.* (2009) Analysis of functions of the chitin deacetylase gene
 family in *Tribolium castaneum*. *Insect Biochemistry and Molecular Biology*, **39**: 355-365.
- 548 Arnold K, Bordoli L, Kopp J *et al.* (2006) The SWISS-MODEL workspace: a web-based 549 environment for protein structure homology modelling. *Bioinformatics*, **22**: 195-201.
- Barbehenn RV (2001) Roles of peritrophic membranes in protecting herbivorous insects from
 ingested plant allelochemicals. *Archives of Insect Biochemistry and Physiology*, 47: 86-99.
- 552 Beltran M, Jiggins CD, Brower AVZ et al. (2007) Do pollen feeding, pupal-mating and larval
- 553 gregariousness have a single origin in *Heliconius* butterflies? Inferences from multilocus DNA

- Benson WW, Brown KS, Gilbert LE (1976) Coevolution of plants and herbivores: passion flower
 butterflies. *Evolution*, 29: 659-680.
- Briscoe AD, Macias-Munoz A, Kozak KM *et al.* (2013) Female behaviour drives expression and
 evolution of gustatory receptors in butterflies. *PLoS Genetics*, 9: e1003620.
- 559 Brower AVZ (1997) The evolution of ecologically important characters in Heliconius butterflies
- 560 (Lepidoptera: Nymphalidae): a cladistic review. *Zoological Journal of the Linnean Society*, 119:
 561 457-472.
- Brown KS (1981) The biology of *Heliconius* and related genera. *Annual Review of Entomology*,
 26: 427-456.
- 564 Celorio-Mancera MDLP, Wheat CW, Vogel H *et al.* (2013) Mechanisms of macroevolution:
 565 polyphagous plasticity in butterfly larvae revealed by RNA-Seq. *Molecular Ecology*, 22:
 566 4884-4895.
- 567 Chauhan R, Jones R, Wilkinson P *et al.* (2013) Cytochrome P450-encoding genes from the
 568 *Heliconius* genome as candidates for cyanogenesis. *Insect Molecular Biology*, 22: 532-540.
- 569 Chikate YR, Tamhane VA, Joshi RS et al. (2013) Differential protease activity augments

570 polyphagy in *Helicoverpa armigera*. Insect Molecular Biology, **22**: 258-272.

- 571 Claudianos C, Ranson H, Johnson RM *et al.* (2006) A deficit of detoxification enzymes: pesticide
- sensitivity and environmental response in the honeybee. *Insect Molecular Biology*, **15**: 615-636.
- 573 Conesa A, Gotz S, Garcia-Gomez JM *et al.* (2005) Blast2GO: a universal tool for annotation,
 574 visualization and analysis in functional genomics research. *Bioinformatics*, 21: 3674-3676.
- 575 Dermauw W, Wybouw N, Rombauts S *et al.* (2013) A link between host plant adaptation and
 576 pesticide resistance in the polyphagous spider mite *Tetranychus urticae*. *Proceedings of the*577 *National Academy of Sciences of the United States of America*, **110**: E113-122.
- 578 Despres L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant
 579 chemicals. *Trends in Ecology & Evolution*, 22: 298-307.
- 580 Dhawan K, Dhawan S, Sharma A (2004) *Passiflora*: a review update. *Journal of* 581 *Ethnopharmacology*, 94: 1-23.
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.
 Nucleic Acids Research, 32: 1792-1797.
- 584 Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevoution. *Evolution*, 18:
 586-608.
- Engler-Chaouat HS, Gilbert LE (2007) De novo synthesis vs. sequestration: negatively correlated
 metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. *Journal of Chemical Ecology* 33: 25-42.
- Glavinas H, Krajcsi P, Cserepes J *et al.* (2004) The role of ABC transporters in drug resistance,
 metabolism and toxicity. *Current drug delivery*, 1: 27-42.
- Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for
 comparative protein modeling. *Electrophoresis*, 18: 2714-2723.
- Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of
 mimicry adaptations among species. *Nature*, 487: 94-98.
- 595 Hoang K, Matzkin LM, Bono JM (2015) Transcriptional variation associated with cactus host
- plant adaptation in *Drosophila mettleri* populations. *Molecular Ecology*, **24**: 5186-5199.

sequence data. *Biological Journal of the Linnean Society of London*, **92**: 221-239.

- Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome ofthe honeybee *Apis mellifera*. Nature, 444: 512.
- Hosokawa M (2008) Structure and catalytic properties of carboxylesterase isozymes involved in
 metabolic activation of prodrugs. *Molecules*, 13: 412-431.
- Huang FF, Chai CL, Zhang Z *et al.* (2008) The UDP-glucosyltransferase multigene family in *Bombyx mori. BMC Genomics*, 9: 563.
- Jaenike J (1990) Host specialization in phytophagous insects. Annual Review of Ecology and
 Systematics, 21: 243-273.
- Ketterman AJ, Prommeenate P, Boonchauy C *et al.* (2001) Single amino acid changes outside the
 active site significantly affect activity of glutathione S-transferases. *Insect Biochemistry and Molecular Biology*, 31: 65-74.
- Ketudat Cairns JR, Esen A (2010) β-Glucosidases. *Cellular and Molecular Life Sciences*, 67:
 3389-3405.
- Koenig C, Bretschneider A, Heckel DG *et al.* (2015) The plastic response of *Manduca sexta* to
 host and non-host plants. *Insect Biochemistry and Molecular Biology*, 63: 72-85.
- 612 Kostaropoulos I, Papadopoulos AI, Metaxakis A *et al.* (2001) Glutathione S-transferase in the
- defence against pyrethroids in insects. *Insect Biochemistry and Molecular Biology*, **31**: 313-319.
 Krieger RI, Feeny PP, Wilkinson CF (1971) Detoxication enzymes in the guts of caterpillars: an
- evolutionary answer to plant defenses? *Science*, **172**: 579-581.
- Lan T, Wang XR, Zeng QY (2013) Structural and functional evolution of positively selected sites
 in pine glutathione S-transferase enzyme family. *The Journal of Biological Chemistry*, 288:
 24441-24451.
- Lehane MJ (1997) Peritrophic matrix structure and function. *Annual Review of Entomology*, 42:
 525-550.
- Li X, Schuler MA, Berenbaum MR (2007). Molecular mechanisms of metabolic resistance to
 synthetic and natural xenobiotics. *Annual Review of Entomology*, **52**: 231-253.
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time
 quantitative PCR and the 2 (-Delta Delta C(T)) method. *Methods*, 25: 402-408.
- Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for
 RNA-seq data with DESeq2. *Genome Biology*, 15: 550.
- Low WY, Ng HL, Morton CJ *et al.* (2007) Molecular evolution of glutathione S-transferases in the
 genus *Drosophila. Genetics*, **177**: 1363-1375.
- 629 Mackenzie PI, Owens IS, Burchell B *et al.* (1997) The UDP glycosyltransferase gene superfamily:
- recommended nomenclature update based on evolutionary divergence. *Pharmacogenetics*, 7:255-269.
- 632 Marchler-Bauer A, Panchenko AR, Shoemaker BA *et al.* (2002) CDD: a database of conserved
- domain alignments with links to domain three-dimensional structure. *Nucleic Acids Research*,
 30: 281-283.
- Merrill RM, Dasmahapatra KK, Davey JW et al. (2015) The diversification of *Heliconius*butterflies: what have we learned in 150 years? *Journal of Evolutionary Biology*, 28:
 1417-1438.
- 638 Merrill RM, Naisbit RE, Mallet J et al. (2013) Ecological and genetic factors influencing the
- 639 transition between host-use strategies in sympatric Heliconius butterflies. Journal of

640 *Evolutionary Biology*, **26**: 1959-1967.

- Mueller LA, Goodman CD, Silady RA *et al.* (2000) AN9, a petunia glutathione S-transferase
 required for anthocyanin sequestration, is a flavonoid-binding protein. *Plant Physiology*, 123:
 1561-1570.
- Nahrstedt A, Davis RH (1981) Cyanogenic glycosides in butterflies: detection and synthesis of
 linamarin and lotaustralin in the heliconiinae. *Planta Medica*, 42: 124-125.
- 646 Nakamura C, Yajima S, Miyamoto T et al. (2013) Structural analysis of an epsilon-class
- glutathione transferase from housefly, *Musca domestica. Biochemical and Biophysical Research Communications*, 430: 1206-1211.
- Nam J, Nei M (2005) Evolutionary change of the numbers of homeobox genes in bilateral animals.
 Molecular Biology and Evolution, 22: 2386-2394.
- Oakeshott JG, Johnson RM, Berenbaum MR *et al.* (2010) Metabolic enzymes associated with
 xenobiotic and chemosensory responses in *Nasonia vitripennis. Insect Molecular Biology*, 19: 147-163.
- Olafsdottir ES, Andersen JV, Jaroszewski JW (1988) Cyanohydrin glycosides of Passifloraceae.
 Phytochemistry, 28: 127-132.
- Pentzold S, Zagrobelny M, Khakimov B, *et al.* (2016) Lepidopteran defence droplets a
 composite physical and chemical weapon against potential predators. *Scientific Reports*, 6:
 22407.
- Pringle EG, Baxter SW, Webster CL *et al.* (2007) Synteny and chromosome evolution in the
 lepidoptera: evidence from mapping in Heliconius melpomene. *Genetics*, **177**: 417-426.
- Ragland GJ, Almskaar K, Vertacnik KL *et al.* (2015) Differences in performance and
 transcriptome-wide gene expression associated with *Rhagoletis* (Diptera: Tephritidae) larvae
 feeding in alternate host fruit environments. *Molecular Ecology*, 24: 2759-2776.
- Ranson H, Claudianos C, Ortelli F *et al.* (2002) Evolution of supergene families associated with
 insecticide resistance. *Science*, 298: 179-181.
- 666 Ranson H, Hemingway J (2005) Glutathione transferases. In: Comprehensive molecular insect
- science-pharmacology Volume 5: Glutathione transferases. (eds Gilbert LI, Iatrou K, Gill SS),
 pp. 383-398.Oxford: Elsevier.
- Reddy VS, Shlykov MA, Castillo R *et al.* (2012) The major facilitator superfamily (MFS)
 revisited. *FEBS Journal*, **279**: 2022-2035.
- Saier MH Jr, Yen MR, Noto K *et al.* (2009) The transporter classification database: recent
 advances. *Nucleic Acids Research*, 37: D274-278.
- Smiley J (1978) Plant chemistry and the evolution of host specificity: new evidence from *Heliconius* and *Passiflora*. *Science*, 201: 745-747.
- Smiley JT, Wisdom CS (1985) Determinants of growth rate on chemically heterogeneous host
 plants by specialist insects. *Biochemical Systematics and Ecology*, 13: 305-312.
- Spencer KC (1988) Chemical mediation of coevolution in the *Passiflora-Heliconius* interaction. In:
 Chemical mediation of coevolution (eds Spencer KC), pp. 167-240. London: Academic Press.
- 679 Strode C, Wondji CS, David JP *et al.* (2008) Genomic analysis of detoxification genes in the
 680 mosquito *Aedes aegypti. Insect Biochemistry and Molecular Biology*, **38**: 113-123.
- 681 Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence
- alignments into the corresponding codon alignments. *Nucleic Acids Research*, **34**: W609-612.

- Tamura K, Peterson D, Peterson N *et al.* (2011) MEGA5: molecular evolutionary genetics analysis
 using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution*, 28: 2731-2739.
- Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq.
 Bioinformatics, 25: 1105-1111.
- Trapnell C, Roberts A, Goff L *et al.* (2012) Differential gene and transcript expression analysis of
 RNA-seq experiments with TopHat and Cufflinks. *Nature Protocols*, 7: 562-578.
- 690 Trapnell C, Williams BA, Pertea G et al. (2010) Transcript assembly and quantification by
- RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
 Nature Biotechnology, 28: 511-515.
- Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest
 Tribolium castaneum. Nature, 452: 949-955.
- Turlings TC, Loughrin JH, McCall PJ *et al.* (1995) How caterpillar-damaged plants protect
 themselves by attracting parasitic wasps. *Proceedings of the National Academy of Sciences of the United States of America*, **92**:4169-74.
- Wang Y, Tang H, Debarry JD *et al.* (2012) MCScanX: a toolkit for detection and evolutionary
 analysis of gene synteny and collinearity. *Nucleic Acids Research*, 40: e49.
- Wybouw N, Dermauw W, Tirry L, *et al.* (2014) A gene horizontally transferred from bacteria
 protects arthropods from host plant cyanide poisoning. *Elife*, **3**: e02365.
- Wybouw N, Zhurov V, Martel C *et al.* (2015) Adaptation of a polyphagous herbivore to a novel
 host plant extensively shapes the transcriptome of herbivore and host. *Molecular Ecology*, 24:
 4647-63.
- Xie C, Mao X, Huang J *et al.* (2011) KOBAS 2.0: a web server for annotation and identification
 of enriched pathways and diseases. *Nucleic Acids Research*, **39**: W316-322.
- Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution*, 24: 1586-1591.
- Yang Z, Wong WS, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under
 positive selection. *Molecular Biology and Evolution*, 22: 1107-1118.
- Yu Q, Lu C, Li B *et al.* (2008) Identification, genomic organization and expression pattern of
 glutathione S-transferase in the silkworm, *Bombyx mori. Insect Biochemistry and Molecular Biology*, 38: 1158-1164.
- Zagrobelny M, Bak S, Rasmussen AV, *et al.* (2004) Cyanogenic glucosides and plant-insect
 interactions. *Phytochemistry*, **65**: 293-306.
- 716 Zhan S, Merlin C, Boore JL et al. (2011) The monarch butterfly genome yields insights into
- 717 long-distance migration. *Cell*, **147**: 1171-1185.

718 Data accessibility

- 719 Illumina reads for each of the libraries were deposited in Sequence Read Archive (SRA) database
- under the accession number: SRP074338. Supplementary data is deposited in the Dryad repository:doi:10.5061/dryad.65k4n.
- 722

723 Author Contributions

- Y.Q.Y. and C.D.J. conceived and designed the study. Y.Q.Y. performed the experiments,
- analyzed the data, and drafted and revised manuscript. C.D.J. and Z.Z. revised the manuscript.
- 726 S.M.F. performed the qPCR experiment and revised the manuscript.

727 Figure and Table captions

728 Fig. 1 Quantitative real-time PCR validation of the differentially expressed genes and

comparison with RNA-Seq data. The relative expression of a candidate gene was normalized against $EF1-\alpha$. The data are the average \pm standard error of five independent replicated qPCR

731 experiments.

Fig. 2 Gene numbers in multigene families related to detoxification in the genomes of insects.

733 The species tree was modified from Honeybee Genome Sequencing Consortium (2006). The

divergence time of *B. mori*, *D. plexippus* and *H. melpomene* was from Pringle *et al.* (2007). Gene

numbers of the other detoxification enzymes were obtained from previous literature (Ahn *et al.*

736 2012; Claudianos *et al.* 2006; Oakeshott *et al.* 2010; Strode *et al.* 2008; Tribolium Genome

737 Sequencing Consortium 2008; Yu *et al.* 2008). De: delta; Ep: epsilon; Om: omega; Si: sigma; Th:

theta; Ze: zeta; Un: unclassified class.

739 Fig. 3 Phylogenetic tree of GSTs in H. melpomene, B. mori and D. plexippus. The tree was

reconstructed with MEGA5.0 using neighbor-joining (NJ), Jones-Taylor-Thornton(JTT)

substitution model and 500 replicates. The dots on the nodes of phylogenetic tree indicate

bootstrap values higher than 0.8. GST sequences of *B. mori* were retrived from Yu *et al.* (2008).

GST sequences of *H. melpomene* and *D. plexippus* are in Table S2.

744 Fig. 4 Phylogenetic tree of UGTs in *H. melpomene*, *D. plexippus*, *B. mori* and *Helicoverpa*

745 *armigera*. The dots on the nodes of phylogenetic tree indicate bootstrap values higher than 0.8.

UGT sequences of *B. mori* and *H. armigera* were retrived from Huang *et al.* (2008) and Ahn *et al.*

747 (2012). UGT sequences of *H. melpomene* and *D. plexippus* were from Table S2.

Fig. 5 Box plot of the d_N/d_S values of the detoxification genes in *Heliconius* butterflies. In total,

749 24 orthologous gene sets of differentially expressed detoxifying genes were used for evolutionary

rate analysis. To compare the evolutionary rates between differentially and non-differentially

expressed detoxifying genes, 21 non-differentially expressed GST (oGST) genes were

characterized in a further nine *Heliconius* species (Table S3). GSTs were divided into N-terminus

(GST-N) and C-terminus (GST-C) regions to compare evolutionary rates in different functionaldomains.

Fig. 6 Homology modeling and character state of a putatively selected site in the

756 HmelGSTE3 protein. (A) The character state of position 40 of HmelGSTE3 in six species. (B)

757 Tertiary structure modeling of HmelGSTE3. The folding pattern of HmelGSTE3 protein sequence

758 was predicted by the SWISS-MODEL workspace web server (Arnold *et al.* 2006). The epsilon

- 759 GST of *Musca domestica* was used as a template for protein modeling (Nakamura *et al.* 2013).
- 760 The model was generated with Swiss-PdbViewer v4.1 (Guex & Peitsch 1997). The
- 761 glutathione-binding site (G-site) was predicted by CD-search (Marchler-Bauer *et al.* 2002) and
- shown with red sticks. The putative positively selected site H40 is represented in a sphere. The
- 763 N-terminal, C-terminal and linker regions are shown in green, red and gray, respectively.

764 Fig. 7 Schematic models of proposed mechanisms for resistance to host secondary

- 765 metabolites in *Heliconius* butterflies. Based on Despres *et al.* (2007), the detoxification model
- was reconstructed in the larval gut of *Heliconius* butterflies. The first mechanism is decreasing
- penetration (a) through regulating the components of peritrophic matrix (PM). The ingested
- allelochemicals can be partially detoxified by the classical processes, including phase I direct
- 769 metabolism (b), phase II conjugation (c) and phase III excretion (d). The duplicated sigma and
- omega GSTs may sequester (e) some of the allelochemicals and help to excrete them.
- 771 Detoxification of cyanogenic glucosides is not shown here.
- Fig. S1 Gene ontology classification of the postman butterfly genes expressed in the gut.
- 773 GEG: gene expressed in the gut. GHG: gene highly-rexpressed in the gut.
- Fig. S2 Scatterplot of enriched pathways for DEGs in larval gut after host plant shift. The
- size and color of the dots represent the gene number and the range of the FDR value, respectively.

Rich factor is the ratio of the differentially expressed gene number to the total gene number in a

- certain pathway. Four pathway databases were used in our analysis, including Kyoto Encyclopedia
- of Genes and Genomes (KEGG) pathway, Reactome, BioCyc and Protein Analysis Through
- 779 Evolutionary Relationships (PANTHER).
- Fig. S3 NJ tree and intron positions of HmelGST genes. Phase 0, 1, and 2 introns are shown by
 black, blue, and red solid lines, respectively.
- **Fig. S4 Distributions of** *H. melpomene* **GST and UGT genes on chromosmes.** Scaffold
- arrangement is based on the published linkage map (*Heliconius* Genome Consortium 2012).
- Fig. S5 Duplication mechanisms and conserved motif of UGT33 family in *H. melpomene*.
- 785 MCScanX (max gaps = 50) was used to identify the segmental and tandem duplications of
- 786 detoxification genes in *H. melpomene*. This annotated tree was predicted by the collinear and
- tandem relationships of the output from 'family tree plotter of MCScanX'. The characters T and S
- on the nodes mean tandem and segmental duplications, respectively. All the UGT33 family
- members in Fig. 4 were used to create sequence logo of signature region
- 790 (http://weblogo.berkeley.edu/logo.cgi).
- Fig. S6 Gene gain and loss of GSTs superfamily in *Heliconius* butterflies. The species tree was
 derived from a phylogeny based on independent nuclear and mitochondrial DNA sequences
 (Beltran *et al.* 2007). Each class of GSTs from 10 *Heliconius* species was used to reconstruct the
 NJ phylogenetic tree. Gene gain and loss was estimated with the method of Nam & Nei (2005).
- 795 Table S1 Primer sequences used for quantitative PCR validation.
- 796 Table S2 Annotation and sequences of GST and UGT multigene families in the *H*.
- 797 *melpomene* and *Danaus plexippus* genomes.
- 798 Table S3 Sequences of detoxifying genes used for PAML analysis.
- 799 Table S4 Summary of reads and assembly of the gut transcriptomes in *H. melpomene*. "host"
- and "non" represent the samples from individuals reared with host and non-host plant, respectively.

801 The number after the sample name means replicates.

802 Table S5 Annotations and expression signals of 326 DEGs in larval gut after host plant shift.

- 803 The protein sequences of all the genes were used as queries to BLASTp search against nr database
- in NCBI (http://www.ncbi.nlm.nih.gov/). Transporter Classification DataBase (TCDB) was
- searched for the best hits of transporter genes (Saier *et al.* 2009). Peritrophin and genes related to
- 806 nutrient digestion were classified by search against PFAM database (http://pfam.xfam.org/).

807 Table S6 GO enrichment analysis of the differentially expressed genes.

808 Table S7 Orthologous divergence of detoxification genes among *Heliconius* butterflies.

Model	No. of	Estimates of parameters	ln L	P-value	BEB [*]
	parameters				
M0: one ratio	1	$\omega_0 = 0.29855$	-446.40		
M1a: neutral	1	$p_0 = 0.82404, p_1 = 0.17596$	-443.02		
		$\omega_0 \!= 0.05580, \omega_1 \!= 1.00000$			
M2a: selection	3	$p_0 = 0.98698, p_1 = 0.00000, p_2 = 0.01302$	-437.75	0.0051	40
		$\omega_0 = 0.20073, \omega_1 = 1.00000, \omega_2 = 87.94816$			
M7: beta	2	p = 0.01427, q = 0.04601	-442.80		
M8: beta and ω	4	$p_0 = 0.98698, p = 24.66788$	-437.47	0.0049	40
		$q = 99.00000, p_1 = 0.01302, \omega = 84.22935$			

809 Table 1 Parameters and maximum-likelihood values under model estimates for *GSTe3* gene 810 in *Heliconius* butterflies.

811 *The amino acid site under positive selection was determined with the Bayes Empirical Bayes (BEB) method (P >

812 99%). Parameters p and q are the shape parameters of the beta distribution which underlies M7 and M8.

814 Fig. 2

815 Fig. 3

817 Fig. 5

818 Fig. 6

823 Fig. S4

Scaffold: HE669239

824 Fig. S5

47

825 Fig. S6

