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Abstract

Noise reduction is a principal aim of the aviation industry. Particular attention is devoted
to reducing turbomachinery noise, which is an important component of overall aero-engine
noise during the take-off and landing stages. This thesis therefore presents analytic
investigations into turbomachinery flows with the aim that the resulting solutions be used
by aircraft designers to produce quieter aircraft. In order to facilitate exact solutions,
the turbine is unwrapped onto the two-dimensional plane, resulting in a periodic array of
blades commonly referred to as a “cascade”. Previous research has been restricted to the
case where the cascade consists of a single impermeable row of flat plates at zero angle
of attack. Consequently, this thesis considers three separate scenarios where the cascades
consist of (i) blades with realistic geometry, (ii) blades with porosity gradients, and (iii)
multiple blades per period window. In each case, we begin by solving the steady potential
flow and proceed by investigating the effects of unsteady perturbations. This coupled
approach provides analysis from both aerodynamic and aeroacoustic perspectives which
is essential for achieving practical noise reductions. In order to find analytic solutions,
sophisticated complex analysis is employed in the form of singular integral equations,
Riemann–Hilbert problems, the Wiener–Hopf method and conformal mappings via the
transcendental Schottky–Klein prime function. These methods are applied in the context
of rigorous asymptotic expansions where the solution is expanded in terms of a small
parameter such as the amplitude of an unsteady incident disturbance or the size of the
blades. The aerodynamic analysis generates exact expressions for the surface velocity,
drag, lift and deflection angle whilst the aeroacoustic solutions furnish exact expressions
for the unsteady surface pressure, sound power output and far-field sound. These formulae
are rapid to compute compared to CFD simulations currently used in industry and,
moreover, they provide fresh insight into the roles played by blade spacing, geometry
and porosity for turbomachinery noise and aerodynamics. Although the solutions in this
thesis are applied to turbomachinery, they will also be useful in other applications such as
solid mechanics, poroelasticity and biological fliers or swimmers operating in formation.
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Chapter 1

Introduction

1.1 Background

The theoretical and practical understanding of sound represents a fascinating challenge
for researchers in fluid mechanics. When generated intentionally, sound can often be
pleasant, such as in music or communication. Conversely, unwanted sound (termed
“noise”) and can negatively impact our physical and mental health, thereby reducing our
overall quality of life. For example, the World Health Organisation estimates that over 1
million healthy life years are lost each year due to traffic-related noise in Western Europe
alone (World Health Organisation, 2011). A large portion of traffic-related noise is due
to aircraft and, accordingly, many researchers are investigating aircraft noise with the
ultimate aim of controlling and subsequently eliminating sources of noise. In this thesis
we analyse flows through aeroengines from two perspectives of practical significance:
aerodynamic, i.e. the study of the motion of air and its interactions with solid objects,
and aeroacoustic, i.e. the study of sound generation by air flows. Whilst the aerodynamic
studies are valuable in their own right, their purpose as presented in this thesis is to
facilitate the corresponding aeroacoustic studies. Discerning the aerodynamics is essential
for investigating the far more complicated aeroacoustic flows, since the propagation of
turbulence through the engine needs to be understood before aeroacoustic modelling can
take place.

Work over the past few decades has yielded significant reductions in aircraft noise.
Jet noise, which was previously the main contributor to overall aircraft noise, has been
shrunk to a level comparable to that of turbomachinery noise (Peake and Parry, 2012).
Early aero-engines were “turbojets”, and consisted of a single stream of air accelerated
through the engine core, as illustrated in figure 1.1a. Engines noise was consequently
dominated by the mixing of the hot jet with the cold ambient air at the exhaust of
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(a) A turbojet aero-engine.

(b) A turbofan aero-engine.

Fig. 1.1 Comparison of turbofan and turbojet engines (The Economist, 2015).

the engine. Turbojets remain desirable at high speeds such as in supersonic flight, but
efficiency and noise concerns mean that alternative “turbofan” engines have become more
widespread in commercial aviation. Turbofan engines are designed such that the engine
features two streams of air where part of the flow “bypasses” the core, as illustrated in
figure 1.1b. The ratio between the mass flow rate of these two streams of air is called the
bypass ratio: higher bypass ratios imply that more air bypasses the core.

The strong coupling of several environmental concerns greatly increases the complexity
of designing aero-engines. Of primary concern are sustainability, greenhouse gas emissions,
fuel efficiency, and noise emissions. These concerns were crystallised into specific targets
in the European Commission’s Flightpath 2050 report (ACARE, 2011), which aims for
reductions of 65% in effective perceived noise level, 75% in CO2 emissions, and a 90% in
NOx emissions, all relative to their respective levels in 2000. These concerns are magnified
when combined with increasing global demand for air travel. In particular, the worldwide
aircraft fleet is expected to double in size over the next 20–25 years. Using aircraft
of current capacity, this growth would require approximately 1,300 new international
airports.
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Fig. 1.2 A modern Trent 1000 aero-engine (Rolls-Royce, 2019)

Modern aero-engines are highly intricate and complicated machines with many complex
physical processes occurring at a range of length scales; a modern Trent 1000 aero-engine
is illustrated in figure 1.2. Such aero-engines are therefore extremely difficult to model
mathematically. The design of the Trent 1000 is of note: the aero-engine has a high
bypass ratio of 10:1 and consequently the fan generates over 85% of the engines thrust
(Rolls-Royce, 2019). This is in contrast to the previous Trent 900, whose bypass ratio was
only 8.7. There is also a low number of turbomachinery stages: the compressor consists
of a single-stage low pressure (LP) compressor (the fan), an eight-stage intermediate
pressure (IP) compressor, and a six-stage high pressure (HP) compressor (EASA, 2019).
Similarly, the turbine consists of a six-stage LP turbine, a single-stage IP turbine and a
single-stage HP turbine.

These features are part of broader design trends that promote the importance of
turbomachinery noise in the near future. Firstly, aircraft designers are designing engines
with higher and higher by-pass ratios through increasing the fan diameter and reducing
the nacelle (Moreau, 2019). Accordingly, fan noise is expected to increase in future aircraft
in contrast to jet noise, which is expected to decrease (Hughes, 2013). Secondly, future
engine designs are likely to have reduced number of stages in the turbine. Consequently,
the turbine rows will experience higher loading, thus generating more intense tonal
and broad band noise. Moreover, these sources of noise are often shifted to frequency
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bands that result in a higher effective perceived noise level (Hultgren, 2010) leading
to higher levels of annoyance. Thirdly, ambitions for lighter aero-engines are resulting
in lighter and slimmer blades in turbomachinery stages (Saiz, 2008). Consequently,
flutter and resonance are likely to play an increasingly important role in turbomachinery
aerodynamics, which will surely impact the overall engine noise. The synergy of these
design trends mean that turbomachinery noise is expected to become the dominant noise
contribution in future aircraft.

Compressor and turbine stages typically consist of pairs of rotor and stators. Whilst
the stators are stationary, the rotors move with a range of 2,700 RPM in LP stages to
13,400 RPM in HP stages (EASA, 2019). The role of the rotors is to accelerate the
flow, while the purpose of the stators is to deflect the flow through a desired angle, thus
increasing the pressure. “Rotor-stator noise” – the noise produced by unsteady wakes shed
by the rotors interacting with the stators – is an important source of turbomachinery noise.
As outlined by Peake and Parry (2012), there are a range of source of turbomachinery
noise such as rotor self-noise, fan-vane interaction, and the interaction between the
casing boundary layer and the rotors. However, rotor-stator noise is the largest source of
broadband noise. One reason for the prominence of rotor-stator interaction is that the
wakes create unsteady loading on the stator row, which in turn creates far field sound.
In many practical scenarios, the flow through turbomachinery stages can be modelled
as approximately 2-D since the flow is constrained to a nearly cylindrical surface of
revolution. Consequently, we may “unwrap” the surface of revolution to obtain a periodic
array of aerofoils in the plane, i.e. a “cascade”. A typical rotor-stator interaction in a
cascade is illustrated in figure 1.3.

The noise produced by rotor-stator interaction is well understood for stators modelled
as flat plates at zero angle of attack (Glegg, 1999; Koch, 1971; Peake, 1992, 1993; Peake
and Kerschen, 1995; Posson et al., 2010b). However, these models do not take into
account the realistic and important effects of mean flow gradients refracting both the
incident gust and scattered field. Surprisingly, the corresponding effects of realistic
aerofoil geometry (including both camber and thickness) have not been investigated to
the same extent, despite knowledge that realistic geometries can have significant impact
on the upstream acoustic field (Evers and Peake, 2002; Peake and Kerschen, 1997, 2004).
In each of these approaches, the flow is calculated by splitting the domain into inner
regions around each leading edge, and matching with an outer solution. This approach is
necessary due to the large gradients which occur at the leading edge, but the methods
cannot reproduce the details of the flow field in the crucial inter-blade region.
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incident flow stator rowturbulencerotor row

sound

Fig. 1.3 A schematic diagram of a rotor-stator interaction.

Numerical simulations of the noise produced in rotor-stator interaction using compu-
tational aeroacoustics (CAA) codes can typically provide details of the unsteady field
throughout the whole flow domain (Gea-Aguilera et al., 2016; Grace, 2016; Hixon et al.,
2010; Verdon, 1993). However, these methods can be computationally costly, and an
analytic expression is useful in elucidating the role of various parameters without the
need for expensive computations. In this thesis we will extend the analysis of Glegg
(1999) and Posson et al. (2010b), which only considered the influence of flat plates at
zero angle of attack. In the former, Glegg found an analytic solution for the acoustic field
outside of the flat plate blade row, and Posson et al. (2010b) extended this to calculate
the unsteady field within the inter-blade region. Our new analytic solution, which is
valid throughout the entire flow domain, extends these two works further and can be
used to swiftly calculate the effects of geometry on the far-field acoustics and unsteady
blade loading, as well as providing a benchmark to test CAA simulations against.

Many researchers in the aeroacoustics community are taking inspiration from the silent
flight of owls in order to develop noise reducing technologies (Graham, 1934; Jaworski
and Peake, 2020). It is generally believed that owls’ wings possess three unique features
that enable them to fly in effective silence. Firstly, there is a comb of stiff fibres along
the leading edge of the wing. Secondly, the wing has a soft, velvety surface, resembling
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Fig. 1.4 The porous, compliant trailing edge of an owl’s wing (Lehigh University, 2014).

a forest canopy Clark et al. (2016). Thirdly, the trailing edge of the wing is porous
and flexible, as illustrated in figure 1.4. This last feature is believe to be particularly
important in the owls’ noise reduction mechanism, and has generated a range of analytic
studies (Ayton, 2016; Jaworski and Peake, 2013; Kisil and Ayton, 2018). These works
indicate that porous trailing edges can generate significant aeroacoustic gains, and these
findings are supported by numerical (Cavalieri et al., 2016) and experimental (Geyer
et al., 2010) studies. In spite of their aeroacoustic advantages, porous blades have not
yet found relevance in turbomachinery, possibly due to adverse aerodynamic effects
associated with the seepage through the blades. In this thesis we will present two studies
(aerodynamic and aeroacoustic) that address this gap in the literature.

Current analytic models for turbomachinery are limited to modelling a single turbo-
machinery stage (i.e. a single rotor row or stator row). This is a severe restriction, as the
interaction effects between adjacent blade rows are important in characterising sound
generation and propagation, as illustrated in figure 1.3. The difficulty in the analytical
treatment of multiple blade rows lies in the non-trivial topology induced by the inclusion
of a second (or third or fourth) blade row. We will address these difficulties and present
the first analytical treatment of blade rows with multiple aerofoils per period window.
As is the theme of this thesis, this problems will be approached from both aerodynamic
and aeroacoustic perspectives.

The scientific study of aeroacoustics begin with the theories of Sir James Lighthill
(Lighthill, 1952, 1954) who considered a high speed turbulent flow in a fluid that is
otherwise at rest. The principal contribution of these works was to rearrange the Navier-
Stokes equations into a simple wave equation with quadrupole forcing. The so-called
“Lighthill’s wave equation” was then solved using Green’s functions by Curle (1955), who
also accounted for the presence of solid boundaries. The acoustic analogy was further
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extended by Ffowcs Williams and Hawkings (1969) to account for aeroacoustic sources
that are in relative motion with respect to a solid boundary.

Analytic, numerical and experimental investigations each have their own comparative
advantages in studying fluid mechanics. All three approaches must be considered for
a truly holistic scientific analysis. Experimental studies are physically faithful and
can consequently elucidate important physical features. Numerical studies are able
to solve broad classes of equations with high degrees of accuracy. The aim of this
thesis is to provide an analytic perspective that can be integrated into a comprehensive
understanding of flows in periodic domains. Since the full Navier–Stokes equations
are prohibitively difficult to solve, asymptotic approximations are often employed. For
example, in this thesis we consider flows that are mostly inviscid and undergoing small
amplitude perturbations. A huge advantage of this approach is that it enables the rapid
evaluation of solutions since they are generally written in terms of easy-to-compute
functions. Swift calculations are entirely necessary if the solution is to be employed in
an optimisation loop, or used as a benchmark for high-fidelity numerical simulations.
Furthermore, analytic solutions are useful for elucidating the structure of the solution,
and their dependence on important physical parameters. These important features can
often be obscured by numerical techniques. Finally, analytic solutions are straightforward
to replicate by other researchers, in contrast to experimental and numerical studies.

Complex function theory has proved a powerful tool in understanding these fluid
problems. The utility of complex function theory stems from its ability to solve two
partial differential equations that arise frequently in aerodynamics and aeroacoustics,
namely the Laplace and Helmholtz equations. In the context of this thesis, these two
equations generally correspond to aerodynamics and aeroacoustics problems respectively.
Of particular importance are the Wiener–Hopf technique, Riemann–Hilbert problems,
and conformal mappings, for which we now provide a brief introduction.

1.2 Methods of Complex Analysis

This thesis relies heavily on techniques of complex analysis. In this section we provide a
concise introduction to three of the most common methods used in this research.

1.2.1 The Wiener–Hopf Method

The Wiener–Hopf method (Wiener and Hopf, 1931) is an elegant technique that is com-
monly employed to solve particular linear partial differential equations (or, equivalently,
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integral equations) subject to mixed boundary conditions. The method has been applied
to a broad range of fields in the physical sciences, such as elasticity, electromagnetism,
finance, solid mechanics, geophysical fluid dynamics as outlined in Lawrie and Abrahams
(2007). Most relevantly, the Wiener–Hopf method has proved a highly popular and
successful technique for solving aeroacoustic problems. In this context, it has been used
to analyse isolated aerofoils (Ayton and Peake, 2015), poroelastic edges (Jaworski and
Peake, 2013), duct linings (Rienstra, 2007), cascade configurations (Glegg, 1999; Peake,
1992) and aerofoils with serrated edges (Ayton, 2018). Many mathematical details and
examples of the technique are provided in Noble (1958), which has become the canonical
text on Wiener–Hopf problems.

We now briefly describe the Wiener–Hopf procedure. By taking an appropriate
integral transform of the relevant partial differential equation or integral equation, we
obtain the identity

Φ+(γ) −G(γ)Φ−(γ) = F (γ), (1.1)

in a strip

S = {γ : τ−(s) < ℑ [γ] < τ+(s), −∞ < s < ∞} ,

where G(γ) is the known “kernel” of the Wiener–Hopf problem, F is a known forcing
function, and Φ+ and Φ− are unknown functions to be found. In this context, the
subscripts “±” indicate that the relevant function is analytic in an upper of lower half
planes L± defined as

L+ = {γ : ℑ [γ] > τ−} , L− = {γ : ℑ [γ] < τ+} ,

as illustrated in figure 1.5. The most challenging step in solving any Wiener–Hopf
problem is factorising the kernel function G into parts that have no poles or zeros in L±

respectively. Assuming that this can be done, we write

G(γ) = G−(γ)G+(γ), (1.2)

and rearrange (1.1) to obtain

Φ+(γ)
G+(γ) −G−(γ)Φ−(γ) = F (γ)

G+(γ) . (1.3)
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τ−

L+

τ+

L−

S

Fig. 1.5 An example of the domains of analyticity for a Wiener–Hopf problem. The blue
region represents L+, the red region represents L− and the overlapping purple region
represents the strip of analyticity S.

We now additively split the right-hand side of (1.3) into parts that are analytic in L±

respectively:

F (γ)
G+(γ) = C+(γ) + C−(γ).

Consequently, we may rearrange (1.3) into the form

Φ+(γ)
G+(γ) − C+(γ) = G−(γ)Φ−(γ) + C−(γ). (1.4)

We now perform the fundamental step in the Wiener–Hopf analysis. We have rearranged
(1.1) into the form (1.4) so that the left-hand side is analytic in L+ and the right-hand
side is analytic in L−. Moreover, (1.4) states that the left- and right-hand sides agree in
a strip. Consequently, each side of (1.4) is the analytic continuation of the other and
consequently each side represents an entire function, E. Accordingly, we may rearrange
(1.4) to obtain

Φ+(γ) = G+(γ) (E(γ) + C+(γ)) ,

Φ−(γ) = 1
G−(γ) (E(γ) − C−(γ)) .
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Now we aim to apply Liouville’s theorem in order to obtain a polynomial bound on E.
Typically, one shows that there are two positive integers, p and q such that

E(γ) = O (|γ|p) , as |γ| → ∞, γ ∈ L+,

E(γ) = O (|γ|q) , as |γ| → ∞, γ ∈ L−.

Consequently, E is bounded by a polynomial of order max(p, q). In most aeroacoustic
applications, physical considerations imply that p = q = 0 so that the entire function is a
constant. Further physical arguments generally yield that the entire function vanishes
(Ayton et al., 2016).

As mentioned in the above example, the prevailing difficulty in solving Wiener–
Hopf problems concerns the multiplicative factorisation of the kernel function. When
analytical factorisations are impossible (which is often the case for matrix Wiener–Hopf
problems), several alternative approaches are available. Firstly, the kernel may be
factorised asymptotically, possibly using an approach similar to Crighton (2001). This
method has been successfully applied to cascade aeroacoustics (Peake, 1992) when the
frequency was assumed to be high. Secondly, a numerical scheme may be employed to
iteratively factorise the kernel function (Kisil, 2015). Thirdly, in some cases an explicit
kernel factorisation can be entirely obviated by employing the Unified Transform Method
(Crowdy and Luca, 2014). Fortunately, the Wiener–Hopf problems encountered in this
thesis have kernels that can be factorised analytically using the Weierstrass factorisation
theorem (Ablowitz and Fokas, 2003), so the aforementioned alternative methods are not
necessary.

1.2.2 Riemann–Hilbert Problems and Singular Integral Equa-
tions

Riemann–Hilbert problems find significance in many areas of mathematics such as random
matrices (Deift, 2000), inverse scattering (Zhou, 2005) and geophysical fluid dynamics
(Moore, 2017). In a typical scalar Riemann–Hilbert problem, we seek to find a function
Φ that is analytic in the entire plane except possibly on a smooth contour L where Φ
satisfies the relation

Φ+(t) −G(t)Φ−(t) = F (t), (1.5)
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+

−

(a) Closed contour

−

+

aj

bj

(b) Open contour

Fig. 1.6 Examples of closed and open contours, L, for Riemann–Hilbert problems. The
blue region indicates the left-hand side (+) of the contour and the red region indicates
the right-hand side (−) of the contour. The endpoints of the open counter are indicated
by aj and bj.

for t ∈ L. The contour L may be open or closed, as illustrated in figure 1.6. Furthermore,
when L is open, it may also consist of the union of M + 1 open contours such that
L = L0 + · · · + LM . In this case, the endpoints of Lj are denoted by aj and bj, and the
subscripts ± refer to the limiting values of Φ when z approaches the contour L from the
left- and right-hand sides respectively.

Note the striking similarity between the Riemann–Hilbert problem (1.5) and the
Wiener–Hopf problem (1.1). The major difference is that, as opposed to being described on
the strip S, the Riemann–Hilbert problem (1.5) is defined on the contour L. Consequently,
the Riemann–Hilbert problem is really a generalisation of the Wiener–Hopf problem.
The Riemann–Hilbert problem (1.5) is defined on a contour and not in a strip and,
accordingly, it can represent Wiener–Hopf problems by considering the contour as a
subset of the strip. Conversely, the Wiener–Hopf technique does not extend to the case
where the strip reduces to a contour, as the analytic continuation argument requires
the overlapping region of agreement to constitute an open subset. Moreover, in the
Riemann–Hilbert context, the function F need only satisfy a Hölder condition on the
contour L, as opposed to satisfying an analyticity requirement in the strip S, which is far
more restrictive. The relationship between Wiener–Hopf problems and Riemann–Hilbert
problems has been explored in further detail by Kisil (2015).

Riemann–Hilbert problems are intimately connected with the theory of singular
integral equations (Muskhelishvili, 1946). In order to see this, we note that any solution
to (1.5) can be written as a Cauchy-type integral

Φ(z) = 1
2πi

ˆ
L

φ(τ)
τ − z

dτ,
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where φ is an unknown “density” function that satisfies a Hölder condition on L. When z
approaches L from either side, the “Plemelj formulae” (Ablowitz and Fokas, 2003) yields
the limiting behaviour

Φ±(t) = ±1
2φ(t) + 1

2πi−
ˆ
L

φ(τ)
τ − t

dτ. (1.6)

Substitution of the Plemelj formulae (1.6) into the original Riemann–Hilbert problem
(1.5) yields the singular integral equation

A(t)φ(t) + B(t)
πi −
ˆ
L

φ(τ)
τ − t

dτ = f(t),

where

A(t) −B(t)
A(t) +B(t) = G(t), f(t) = (A(t) +B(t))F (t).

Consequently, solving a Riemann–Hilbert problem is equivalent to solving its associated
singular integral equation.

When solving Riemann–Hilbert problems, it is typical to first solve the homogeneous
problem and then use this solution to solve the inhomogeneous problem. We neglect
closed contours since they do not arise in the analysis in this thesis. The homogeneous
Riemann–Hilbert problem concerns funding the unknown function Φ(H) with the limiting
values Φ(H)

± such that

Φ(H)
+ (t) −G(t)Φ(H)

− (t) = 0, (1.7)

for t ∈ L. The solution is given by Muskhelishvili (1946) as

Φ(H)(z) = X(z)P (z),

where P is an arbitrary polynomial and

X(z) =
M∏
j=0

(z − aj)αj (z − bj)βj exp
[

1
2πi

ˆ
L

log (G(τ))
τ − z

dτ
]
,

where αj and βj are integers chosen to satisfy

−1 < αj+ℜ
[
− 1

2πi log (G(aj))
]
< 1,
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−1 < βj+ℜ
[ 1

2πi log (G(bj))
]
< 1.

In an analogous way to the selection of the entire function E in the Wiener–Hopf method
in section 3.B, the integers αj and βj are often chosen subject to physical constraints.
In the applications considered in this thesis, we enforce the Kutta condition at the
trailing edges (t = bj) and restrict the singular nature of the pressure at the leading
edges (t = aj).

We now use the solution to the homogeneous problem (1.7) to construct a class of
solutions to the original inhomogeneous problem (1.5). It may be verified by the Plemelj
formula that the function

Φ(z) = X(z)
2πi

ˆ
L

F (t)
X+(t)

dt
t− z

+X(z)P (z),

satisfies the full Riemann–Hilbert problem (1.5).

1.2.3 Multiply Connected Conformal Mappings

During this thesis we are frequently required to solve Laplace’s equation in complicated
geometries. Conformal mapping are powerful tools for attacking such problems since they
allow potential problems in complicated geometries to be reduced to potential problems
in simple geometries (Ablowitz and Fokas, 2003). Accordingly, in fluid dynamical
applications, it is often sufficient to construct the complex potential in a simple (typically
circular) domain and then conformally map this solution to the complicated physical
domain of interest. To this end, we relate the physical coordinate z to the parametric
coordinate ζ by the relation

z = f(ζ),

where f represents the conformal mapping function. A typical conformal map that may
be of aerodynamic interest is illustrated in figure 1.7.

Although conformal mappings have been used for centuries, they have typically been
restricted to simply connected geometries. A domain is “simply connected” if any simple
closed curve can be continuously deformed to a point in the domain. A domain that
is connected but not simply connected is “multiply connected”. It was not until the
early 2000s that substantial progress was made in conformal mapping theory for multiple
connected domains. This link is predominantly attributed to new results on the “Schottky–
Klein prime function” (sometimes referred to as the “prime function”), which has been
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Dζ

z = f(ζ)

Dz

Fig. 1.7 A conformal map between two triply connected domains.

shown to be a fundamental object in understanding multiply connected domains (Crowdy,
2005, 2007, 2008b; Crowdy and Marshall, 2006). Whilst the prime function is intimately
connected with the theory of Abelian functions and Riemann surfaces (Baker, 1897), for
this thesis it is sufficient to view the prime function as a transcendental special function.
In particular, the prime function is computable, as recent research has developed a novel
numerical algorithm to swiftly and accurately compute the prime function for practical
applications (Crowdy et al., 2016, https://github.com/ACCA-Imperial/SKPrime).

1.2.3.1 The Canonical Circular Domain

We define a canonical circular domain of connectivity M + 1 as the interior of the unit
disc with M excised discs. The unit disc is labelled C0 and the excised discs are labelled
{Cj | j = 1, · · · ,M}. We call the geometrical data associated with the circular domain
the “conformal moduli”, which may be expressed as {qj, δj | j = 1, · · · ,M} where the qj
denote the radii of the excised circles and the δj denote the centres. An example of a
quadruply connected canonical circular domain is illustrated in figure 1.8.

1.2.3.2 The Schottky–Klein prime function

The prime function is a transcendental analytic function associated with a particular
canonical circular domain, such as that illustrated in 1.8. For brevity, we suppress the
dependence of the prime function on the conformal moduli (qj and δj) and write it as a
bivariate function ω(ζ, α).

https://github.com/ACCA-Imperial/SKPrime
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Fig. 1.8 A quadruply connected circular domain.

The general definition of the prime function is

ω(ζ, α) = (ζ − α)
∏
θ∈Θ′′

(ζ − θ(α))(α− θ(ζ))
(ζ − θ(ζ))(α− θ(α)) , (1.8)

where Θ′′ represents the Schottky group (which is the collection of all Möbius maps
representing the reflections of excised circles in the unit disc) excluding the identity and
all inverses (Crowdy and Marshall, 2006). This product formula may appear unwieldy,
but in certain situations the infinite product may be written in more concise forms. For
example, in the case M = 0 the canonical circular domain is simply the unit disc and
the prime function is therefore

ω(ζ, α) = ζ − α.

When M = 1, the canonical circular domain is the annulus

ζ = reiθ, q < r < 1, 0 < θ < 2π.
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In this case, the infinite product (1.8) may be written as

ω(ζ, α) = − α

C2P (ζ/α, q),

where

P (ζ, q) ≡ (1 − ζ)
∞∏
k=1

(
1 − q2kζ

) (
1 − q2kζ−1

)
,

for constant C.

1.2.3.3 The Canonical Conformal Maps

Nehari (1952) identified five “canonical” multiply connected conformal mappings for a
circular domain of connectivity M . The target domains of these canonical maps are

(I) M + 1 radial slits,

(II) M + 1 circular arcs,

(III) M + 1 parallel slits,

(IV) A disc with M circular arc slits, and,

(V) A concentric annulus with M − 1 circular arc slits.

These canonical conformal maps are illustrated in figure 1.9. Later work by Crowdy and
Marshall (2006) derived expressions for these conformal mappings explicitly in terms of
the prime function, thereby demonstrating the role of the prime function as a fundamental
object in analysing multiply connected domains. In chapter 6 we will present two new
canonical multiply connected conformal mappings for periodic domains.

1.3 Overview

We now provide an overview of this thesis and emphasise the main results of each chapter.
A list of symbols for each chapter is located immediately after the main body of work in
each chapter, and before any appendices. All references may be found at the end of the
thesis.
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Fig. 1.9 The five canonical conformal maps for a quadruply connected domain.
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Chapter 2

We begin by solving the potential flow through a cascade of thin aerofoils. This analysis
extends previous works (Rienstra, 1992; Thwaites, 1960) who calculated the flow field for
an isolated aerofoil. As is typical in these analyses, we seek an asymptotic approximation
where the aspect ratio of the aerofoils in the cascade are small, along with the angle of
attack. Analytic solutions are available when the stagger χ is small via a Riemann–Hilbert
approach (Gakhov, 1966; Muskhelishvili, 1946), which furnishes compact expressions for
aerodynamically relevant quantities such as the lift, deflection angle, and surface velocity.
The inverse problem – where the surface velocity is known and the aerofoil geometry
must be found – is also solved in the small stagger case. Conversely, when the stagger
is large, we adopt a numerical spectral collocation approach in order to determine the
surface velocity distribution which, in turn, is used to calculate the flow field in the entire
domain. In this case, it is more appropriate to view the problem from the perspective of
a singular integral equation, and numerical solutions are found by expanding the solution
in terms of weighted Chebyshev polynomials (Rienstra, 1992), and applying a numerical
collocation scheme (Erdogan and Gupta, 1972). The scheme is observed to converge
spectrally as the number of basis polynomials is increased.

Chapter 3

We now use the potential flow solution of chapter 2 to investigate the sound generation
for a cascade of aerofoils with realistic geometry. This chapter extends previous analyses
by Glegg (1999) and Posson et al. (2010b) who considered flat plates with uniform
background flow. Nonlinear and viscous effects are ignored, except at the trailing edge of
each blade, where steady and unsteady Kutta conditions are applied. The interaction
is modelled as a convected, unsteady, vortical or entropic gust incident on an infinite
rectilinear cascade of staggered aerofoils in a background flow that is uniform far away
from the cascade. By applying Rapid Distortion Theory (RDT, Batchelor and Proudman
(1954)) and transforming to an orthogonal coordinate system, we reduce the aerofoils
to a cascade of flat plates. In order to proceed, we seek a perturbation expansion in
terms of the disturbance of the background flow from uniform flow. The solution to
the leading-order (flat plate) problem is already available (Glegg, 1999; Posson et al.,
2010b), and becomes the forcing term in the first-order problem. The quasi-periodicity
of the problem geometry allows the complicated source terms originating from the RDT
formulation to be expanded in a Fourier-type basis. Moreover, we approximate the
complex Neumann boundary condition data as a Fourier series, which allows the model to
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be solved analytically using the Wiener–Hopf method. The resulting expression is inverted
to give the scattered acoustic potential function in the entire domain, i.e. a solution to the
inhomogeneous convected Helmholtz equation with inhomogeneous boundary conditions
in a cascade geometry. The solution significantly extends previous analytical work that
is restricted to flat plates or only calculates the far-upstream radiation, and as such
can give insight into the role played by blade geometry on the acoustic field, upstream,
downstream and in the important inter-blade region of the cascade. We discuss various
aeroacoustic results including the scattered pressure, surface pressure and sound power
output for a range of geometries and angles of attack.

Chapter 4

We now move on to study cascades with porous aerofoils. In an analogous manner to
chapter 2, this chapter is an aerodynamic investigation and we calculate the potential
flow through a cascade of porous aerofoils. Previous work (Hajian and Jaworski, 2017;
Iosilevskii, 2011) has calculated the potential flow past an isolated aerofoil with a porosity
gradient, and the purpose of this chapter is to extend these solutions to cascades of
aerofoils. The cascade is modelled as a periodic array of bound vortex sheets whose
strengths satisfy a periodic singular integral equation (SIE) coupled to a Darcy flow
condition. We solve a more general canonical periodic SIE by adapting the classical
method of Muskhelishvili (1946). We then apply the solution to the porous cascade
problem. This method yields exact forms for the lift and deflection angle, as well as the
complex velocity field. We investigate partially porous aerofoils in detail and find analytic
expressions for the seepage drag for flat plates. We also present results for cambered
aerofoils with continuous porosity distributions. These expressions elucidate the role
played by porosity on aerodynamic performance, and show that the adverse effects of
porosity can be mitigated by reducing the blade spacing.

Chapter 5

Continuing with the theme of porous aerofoils, we now explore the aeroacoustic perfor-
mance of cascades of aerofoils with complex boundaries. The method is appropriate to
model blades that are rigid, compliant, porous, or satisfy an impedance condition. Simi-
larly to chapter 3, the solution builds on previous analyses into the aeroacoustic response
of rigid cascades (Glegg, 1999; Peake, 1992, 1993; Posson et al., 2010b). In comparison
to these analyses, the effect of modifying the boundary conditions is to modify the zeros
of the kernel in the Wiener–Hopf analysis. Consequently, the complex boundaries have a
significant effect on the modal structure of the cascade’s inter-blade region, whilst the
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modes in the far-field regions are unchanged. The results demonstrate the considerable
impact of small modifications to the boundary conditions and highlight the importance
of the accurate modelling of aeroelastic effects when predicting sound transmission and
generation in turbomachinery. Significant attention is devoted to ensuring that the kernel
of the Wiener–Hopf equation has the appropriate behaviour in the far field.

Chapter 6

Having studied porous aerofoils in detail, we next consider cascades with multiple blades
per period window. This chapter develops fundamental tools for this problem, which
are then applied to investigate aerodynamic performance. The most effective tools for
these problems are multiply connected conformal mappings (Baddoo and Crowdy, 2019;
Crowdy, 2005; Crowdy and Marshall, 2006). We also present a calculus for calculating
flow through periodic domains, which builds heavily on the calculus for non-periodic
domains presented by Crowdy (2010). We present the periodic extension of the Joukowski
mapping, which enables exact solutions for the potential flow through a cascade of thick
aerofoils.

Chapter 7

Finally, we study the aeroacoustics of cascades with multiple blades per period. We
derive a compact approximation (Howe, 2003) for the quasi-periodic Green’s function
using the results of the previous chapter. Consequently, the results are valid for an
arbitrary number of aerofoil per period window. We approximate the quasi-periodic
Green’s function both with and without a low Mach number background flow.

Chapter 8 – Conclusions

In this chapter we summarise the major results of the thesis and suggest directions for
future work.



Chapter 2

Potential Flow Through Cascades of
Thin, Impermeable Aerofoils

2.1 Introduction

Potential flow past a periodic array of bodies is commonplace in a large range of fluid
mechanical problems. For example, the flow through a rotor cascade in aerodynamics
(Hall and Thwaites, 1965), the flow through structured porous materials (Brenner, 1980),
and the flow around large schools of fish (Liao, 2007). Within these applications it is
not merely the potential flow through the structure that must be calculated but also the
complicated interactions between unsteady perturbations to the flow (such as turbulence)
and the structures themselves. To approach any of these complex unsteady interactions
it is vital to have a clear understanding of the background steady flow as it can convect
and distort the unsteady perturbations. However, there is a distinct lack of analytic
solutions for uniform flow past periodic arrays.

Early research by Balsa (1977) considered the uniform flow past an array of cylinders
which have small diameters compared to their separation distance through the use of
asymptotic analysis. The development of a novel transform method known formally as
the Unified Transform Method (Fokas, 2008) (but more commonly as the Fokas method)
allowed Crowdy (2016) to extend Balsa (1977) to allow for arbitrary ratios of diameter to
separation distance. By solving the problem of uniform flow around cylinders, one could
perhaps use a conformal mapping from a periodic array of non-cylindrical structures, to
the cylindrical array described by Crowdy (2016). Unfortunately, these mappings are
often impossible to invert analytically and thus a numerical scheme must be implemented
(Theodorsen and Garrick, 1979).



22 Potential Flow Through Cascades of Thin, Impermeable Aerofoils

Although there are already several ways to calculate the potential flow through a
cascade of aerofoils, analytical solutions that elucidate the underlying physics are rare.
One well-known solution for flat plates at angle of attack can be found by constructing a
conformal map from a canonical circular domain to the cascade (Robinson and Laurmann,
1956, p. 149). Whilst this solution is exact, the expression for the conformal mapping is
not invertible, so the velocity field may only be written implicitly. Another method that
is ubiquitous in thin-aerofoil theory is the method of singularities: the aerofoil surface is
modelled as a distribution of mass sources and vortices on the chord (for thin aerofoils)
or the surface (for thick aerofoils). This theory has been applied to cascades on several
occasions (Falcão, 1975; Schulten, 1982; Spurr and Allen, 1947), the latter of which is
only valid for large chord-to-gap ratios. The vortex distribution is typically written as a
Glauert sine series, which corresponds to a series of weighted Chebyshev polynomials in
physical space. These methods (of conformal mappings and Glauert sine series) have
been combined (Evers and Peake, 2002) to provide an analytical expression for the steady
flow near the leading edges.

This chapter therefore presents two new solutions: an analytic solution that is valid
when the stagger angle is small, and a numerical solution that is valid for arbitrary
stagger angles.

The analytic solution is based on solving a Riemann–Hilbert problem (Muskhelishvili,
1946) for the potential flow through a periodic array of thin objects. This is an extension
of the solution for an isolated aerofoil by Thwaites (1960), which is commonplace in
aeroacoustic problems (Ayton and Peake, 2013). In addition to the direct problem, of
obtaining the potential flow through a cascade of aerofoils with specified geometry, this
approach allows us to also solve the inverse problem: given a desired flow around an
aerofoil within the cascade, we can determine the geometry of each aerofoil within the
cascade required to generate this specific flow. Following the analytic solution, we present
a Chebyshev spectral collocation method to rapidly compute the flow through a cascade
of aerofoils at arbitrary stagger angle. This method is an extension of the classical
Glauert sine series expansion (Rienstra, 1992) to a cascade geometry. This new method
is an improvement on previous similar analyses (Spurr and Allen, 1947), as discussed
later. We use an ansatz that is inspired by the analytic solution to construct a singular
integral equation for the bound vorticity along the chord. This singular integral equation
is then solved by the method of Erdogan and Gupta (1972).

The layout of this chapter is as follows. In section 2.2 we set up the Riemann–Hilbert
problem for the potential flow through a cascade of aerofoils. In section 2.3 we solve the
direct problem by segregating the boundary conditions arising due to thickness, camber
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and angle of attack, and in section 2.4 we use equations derived in the direct problem to
solve the inverse problem. In section 2.5 we present results for the analytic solution for a
variety of geometries and angles of attack. We derive analytic forms for key aerodynamics
parameters, such as the surface velocity, lift, and deflection angle. We also demonstrate
the inverse problem for a particular class of aerofoil geometries. In section 2.6 we provide
the mathematical details of the numerical scheme. This numerical method is validated
against the analytic solution and the convergence is seen to be spectral (i.e. faster than
any algebraic convergence). We also present an exponential decomposition of the flow in
the upstream and downstream regions, which will be useful in the following aeroacoustic
analysis. Finally, in section 2.7 we discuss the conclusions of the chapter.

2.2 Model Derivation

Consider an infinite cascade of thin aerofoils under the assumption of small disturbances
in a two-dimensional, steady, incompressible flow. We non-dimensionalise lengths so that
the semi-chord of each aerofoil is 1. The extension to compressible flows may be achieved
via a Prandtl–Glauert transformation (Kuethe and Chow, 1998). The flow is uniform
far upstream and has angle of attack α relative to the chords of the aerofoils, which are
inclined at stagger angle χ. We assume that α, χ = O(ϵ) where ϵ is a small parameter
the order of the aspect ratio of the aerofoils. This arrangement is illustrated in figure 2.1.
We write the complex potential for the total steady flow in the form of a series expansion
in ϵ:

w(z) = φ(z) + iψ(z) = U∞
(
ze−i(α+χ) + ϵ w1(z) +O(ϵ2)

)
,

where z = x + iy and w1(z) is a function to be found subject to a no-flux boundary
condition on the aerofoils’ surfaces, appropriate edge conditions at the leading and trailing
edges, and decay far upstream.

We denote the upper and lower boundaries of the nth aerofoil as y±
s,n(t) respectively,

so that

y±
s,n(t) = ϵy±(t) + t sin(χ) + in∆,

and y±
s (t) = ±yth(t) + yc(t), where the subscripts th and c denote thickness and camber

respectively, n ∈ Z and t ∈ [−1, 1] parameterises the aerofoil chord. We restrict our
analysis to bodies that have, at worst, parabolic noses, i.e. yth ∼

√
t as t → −1. This

is in line with the NACA 4-digit aerofoil series that is commonplace in the literature.
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∆

∆

χ

Fig. 2.1 A staggered cascade of aerofoils. The vertical spacing between the aerofoils is
∆ and the upstream velocity is U∞, which is inclined at angle of attack α. The stagger
angle is χ.

Any trailing-edge angle is permitted by the analysis, including cusped ends and finite
angle trailing edges. In the latter case, we expect a stagnation point to form at the
trailing edge. This can be proved via a conformal mapping for a semi-infinite wedge
(Batchelor, 2000, p. 412). In practice, this means that our perturbation solution will
have a log-singularity at the trailing edge to create a stagnation point when combined
with the O(1) solution. Although this log-singularity is unavoidable for thick aerofoils,
we may still enforce that the jump in velocity at the trailing edge vanishes, so the Kutta
condition still holds. Additionally, we require that y±′

s (t) satisfies a Hölder condition on
t ∈ (−1, 1).

The no-flux boundary condition requires ∂ Re[w]/∂n = 0 on the boundary of
the aerofoil, except at the sharp trailing edge where the outward normal derivative
is undefined. Since the outward normal to the upper (lower) surface of each aero-
foil is given by (−ϵy±′

s,n(t), 1), the no-flux condition on the upper (lower) surface is
(−ϵy±′

s,n, 1) · ∇ Re[w] = 0, i.e.

0 =
(
−y±′

s (t), 1
)

·
(
1 + ϵu± (t) , (α + χ) + ϵv± (t)

)
+O(ϵ2) (2.1)

= −y±′
s (t) + (α + χ) + ϵv± (t) +O(ϵ2), (2.2)

where we have assumed that y±′
s , u±, v± are all O(1). This assumption proves to be

valid everywhere except in an O(ϵ2) region close to the leading edge where a further
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asymptotic expansion would be required (Van Dyke, 1964), however this is beyond the
scope of this chapter.

Since ϵ ≪ 1, we can use Taylor’s theorem to apply the no-flux condition on the
aerofoils’ surface to their chords. Furthermore, since χ is small, we may approximate the
staggered chord as a chord with no stagger. This approximation has an O(ϵ2) effect on
the solution, and will be inverted at the end of section 2.3 in order to properly locate the
leading- and trailing-edge stagnation points. Accordingly, an analytic, periodic function
f satisfies

ϵf(t, y±
s,n(t)) = ϵf±(t) +O(ϵ2). (2.3)

Combining (2.2) and (2.3) yields

ϵv(t, in∆±) = y±′
s,n(t) − α− χ = ϵy′

c(t) − α± ϵy′
th(t). (2.4)

The superscript ± here indicates the limiting value taken on the upper and lower
sides of L respectively, where L is defined as the union of the unstaggered chords
traversed from leading edge to trailing edge. Hence, by considering the complex velocity
Φ(z) = w′

1(z) = u(x, y) − iv(x, y) either side of L, Φ must satisfy

Φ±(t) = u±(t) − i (y′
c(t) − α± y′

th(t)) , (2.5)

where u± are the unknown upper and lower tangential surface velocities. If we can solve
for Φ(z), we can obtain the tangential surface velocities and the total complex potential,
w(z).

In addition to the no-flux condition, we must also enforce the Kutta condition by
selecting the circulation such that the rear stagnation point is located at the trailing
edges of the aerofoils. This is equivalent to specifying that the flows over the upper and
lower surfaces are parallel to one another at the trailing edges (Clancy, 1978). Since this
formulation does not permit any wakes, it is sufficient to impose the jump in tangential
velocity to be zero at the trailing edges. At the leading edges, thin aerofoil theory (Abbott
and Von Doenhoff, 1959) tells us that the fluid velocity scales as the inverse square root
of the distance from the leading edges, so we permit square root singularities here. To
fully summarise our problem, we are seeking a function Φ(z) such that

(I) Φ(z) satisfies Laplace’s equation (is holomorphic) in C \ L,

(II) The boundary conditions in (2.5) are satisfied either side of L,
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(III) Φ(z) = O
(
|z|−1/2

)
as z approaches the leading edge of each aerofoil,

(IV) Φ(t) has zero jump in tangential velocity as t approaches the trailing edge along
the chord, and,

(V) Φ(z) → 0 as z → −∞.

Once we know Φ(z) we can obtain the potential flow around the cascade correct to O(ϵ).
In the following section, we find a solution by interpreting (I–V) as a Riemann–Hilbert
problem.

2.3 Direct Problem Solution

We seek to solve (I–V) as a Riemann–Hilbert problem (Muskhelishvili, 1946) but must first
note several non-standard features of the formulation. First, the contour L is unbounded,
and is an infinite union of disjoint contours. Much of the analysis of Riemann–Hilbert
problems is only applicable to problems defined on bounded, finite contours. However,
we do not require all of the theory to solve this problem, and show in Appendix 2.A that,
due to the periodicity of the problem, there is a modified form of the Plemelj formulae
(2.52) which may be applied in this case. This modified form is used to find the “density
function” and solve (I, II) in section 2.3.1. In contrast to the isolated aerofoil case, the
Riemann–Hilbert formulation does not automatically ensure that Φ → 0 as |z| → ∞,
but the use of a fundamental solution in section 2.3.2 is sufficient to fix the upstream
behaviour for (V). Additionally, in section 2.3.3 we verify that the solution satisfies the
edge conditions (III,IV) by considering the asymptotic behaviour near the endpoints, as
given in Appendix 2.B.

A second non-standard feature of the problem is that only the imaginary data is
prescribed on L, as opposed to the full value of Φ. The unknown real data u±(t) may be
eliminated by employing the Schwarz reflection principle (Ablowitz and Fokas, 2003, p.
346). We write the complex velocity as

Φ(z) = Φth(z) + Φc,α(z),

where

Φth(z) = 1
2
(
Φ(z) + Φ(z)

)
, Φc,α(z) = 1

2
(
Φ(z) − Φ(z)

)
. (2.6)
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The overline “ – ” denotes the Schwarz conjugate (denoted in Ablowitz and Fokas (2003)
as “∼”). For example, given an analytic function

f(x, y) = g(x, y) + ih(x, y),

where g and h are real functions, the Schwarz conjugate is defined as

f(z) = g(x,−y) − ih(x,−y),

The functions defined in (2.6) additionally have the properties

Φth(z) = Φth(z), Φc,α(z) = −Φc,α(z).

By taking the limiting value of Φ either side of L, we obtain

Φ+
th(t) − Φ−

th(t) = −2iy′
th(t), (2.7)

Φ+
c,α(t) + Φ−

c,α(t) = −2iy′
c(t) + 2iα, (2.8)

which are two Riemann–Hilbert problems. This formulation yields convenient boundary
values on the chords that only take known imaginary values on L and unknown real
quantities, u±(t), have been removed.

2.3.1 General Solution

Here we find the general solution for Φ, satisfying (I, II) which we will later modify to
set the upstream behaviour and satisfy the edge conditions (III, IV, V). We treat the
thickness, camber, and angle of attack problems separately since the boundary condition
is linear.

2.3.1.1 Thickness Term, Φth

Here we solve (2.7). This is a straightforward Riemann–Hilbert problem and the solution
is

Φth(z) = 1
2πi

ˆ
L

−2iy′
th(τ)

τ − z
dτ, (2.9)
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which can easily be verified with the Modified Plemelj formulae (2.52). We use the result
(2.50) from Appendix 2.A to write

Φth(z) = − 1
∆

ˆ 1

−1
y′
th(τ) coth

(
π(τ − z)

∆

)
dτ. (2.10)

2.3.1.2 Camber Term, Φc

Now we solve for the camber term by splitting Φc,α into two terms dependent on angle
of attack and camber respectively. We decompose (2.8) into parts depending only on
camber and write

Φ+
c (t) + Φ−

c (t) = −2iy′
c(t). (2.11)

The solution to this type of Riemann–Hilbert problem for bounded contours is detailed in
p. 429 of Gakhov (1966). This solution relied on constructing a bounded, closed contour
that connects the contours along which the Riemann–Hilbert problem is defined. This is
not possible in our case, but the method may be adapted. We first need to solve the
homogeneous equation to find the so-called fundamental solution, which we denote by
X(z). In general, the homogeneous equation is

X+(t) = G(t)X−(t),

and a solution is given by (43.2) of Gakhov (1966) as

X(z) = eΠ(z), Π(z) = 1
2πi

ˆ
L

logG(τ)
τ − z

dτ.

In our case, the homogeneous equation is

X+(t) +X−(t) = 0,

and we have log(G) = πi(1 + 2n). Therefore,

Π(z) =
(
n+ 1

2

)ˆ
L

1
τ − z

dτ =
(
n+ 1

2

)
log

sinh
(
π(z−1)

∆

)
sinh

(
π(z+1)

∆

)
 .

More solutions to the homogeneous equation may be found by multiplying or dividing
by polynomials whose the roots are the endpoints of the contours. This is useful when
specifying whether the behaviour at either endpoint is permitted to be unbounded. In
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the periodic case, this non-uniqueness of solutions can be expressed as

X(z) =
[
sinh

(
π(z + 1)

∆

)]λ [
sinh

(
π(z − 1)

∆

)]µ
eΠ(z)

=
[
sinh

(
π(z + 1)

∆

)]λ−n− 1
2
[
sinh

(
π(z − 1)

∆

)]µ+n+ 1
2

,

where λ and µ are integers chosen to satisfy

−1 < λ− n− 1
2 < 1, −1 < µ+ n+ 1

2 < 1.

At this point we recall the conditions on the endpoint behaviour needed to satisfy the
Kutta condition (IV) and leading-edge behaviour (III). There are two choices each for λ
and µ but we choose λ = n, µ = −n in order to satisfy (III) and (IV). Therefore,

X(z) =

√√√√√sinh
(
π(z−1)

∆

)
sinh

(
π(z+1)

∆

) ,
and the limiting value either side of L, with this choice of branch, is

X±(t) = ±i

√√√√√sinh
(
π(1−t)

∆

)
sinh

(
π(1+t)

∆

) .
Following Gakhov (1966), we now use the fundamental solution to solve the inhomogeneous
problem. We write

Φc(z) = X(z)Ψ(z),

so that Ψ satisfies

Ψ+(t) − Ψ−(t) = −2iy′
c(t)

X+(t) .

This is a Riemann–Hilbert problem of the form (2.10) and has solution

Ψ(z) = 1
2πi

ˆ
L

−2iy′
c(τ)

X+(τ)(τ − z)dτ. (2.12)
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Therefore, the solution for equation (2.11) is given by

Φc(z) = −X(z)
∆

ˆ 1

−1

y′
c(τ)

X+(τ) coth
(
π(τ − z)

∆

)
dτ. (2.13)

2.3.1.3 Angle of Attack Term, Φα

We decompose (2.8) into parts depending only on angle of attack and write

Φ+
α (t) + Φ−

α (t) = 2iα, (2.14)

which has the simple solution

Φα(z) = iα. (2.15)

2.3.2 Far-Field Behaviour

In this section we ensure that each solution decays at upstream infinity (V).

2.3.2.1 Thickness Term, Φth

Since coth(z) → ±1 as z → ±∞, we find that Φth(z) → ± 1
∆

´ 1
−1 y

′
th(τ)dτ = 0 as

yth(±1) = 0. Therefore, the upstream condition is already satisfied. Moreover, this result
tells us that an unstaggered, thick cascade does not deflect a flow incident with zero
angle of attack. This is what we would expect physically due to the symmetry of the
problem, and we shall see later that this is not the case with non-zero angle of attack or
camber.

2.3.2.2 Camber Term, Φc

We note that

X(z) → e∓ π
∆ , (2.16)

as z → ±∞. Applying this limit to (2.13) gives

Φc(z) → −e π
∆

∆

ˆ 1

−1

y′
c(τ)

X+(τ) dτ,

as z → −∞. So the solution, in its current form, does not satisfy our upstream condition
(V). We note that the boundary value problem defined by (I) and (II) is only unique up
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to the addition of a function holomorphic on C \ L that takes real values on L± and has
the correct endpoint behaviour (III, IV). If we have such a function, then we can add an
arbitrary multiple of it to the current solution and the resulting function will satisfy the
same boundary value problem, albeit with modified far-field behaviour. An appropriate
function is the fundamental solution, X(z), which is pure imaginary on L. Addition of
imaginary multiples of the fundamental solution will not affect the imaginary parts of
the boundary values. Therefore, the modified function

Φc(z) = −X(z)
∆

ˆ 1

−1

y′
c(τ)

X+(τ)

(
coth

(
π(τ − z)

∆

)
− 1

)
dτ

now has the correct upstream behaviour.

2.3.2.3 Angle of Attack Term, Φα

Similarly to the cambered case, we can use multiples of the fundamental solution to specify
the correct upstream behaviour. The function with the correct upstream behaviour is

Φα(z) = iα
(
1 −X(z)e− π

∆
)
. (2.17)

2.3.3 Endpoint Behaviour

In this section we verify that each solution possesses the correct behaviour at the leading
and trailing edges, according to (III, IV).

2.3.3.1 Thickness Term, Φth

The tangential velocity may be calculated by applying the Plemelj formula:

u±
t (t) = − 1

∆−
ˆ 1

−1
y′
th(τ) coth

(
π(τ − t)

∆

)
dτ. (2.18)

The tangential velocity is identical either side of the aerofoil and therefore the Kutta
condition (IV) is satisfied. This can be seen by the symmetry of the problem and indicates
that there will be no lift and therefore no flow deflection far downstream. As stated
earlier, we only permit thickness functions whose derivatives have, at worst, square root
singularities at the leading edges. This is certainly the case for aerofoils with parabolic
leading edges, such as NACA aerofoils, where y′

th(x) ∼ x−1/2. We refer to Appendix
2.B to explore the behaviour of our solution at the leading edges and show that it is
consistent with condition (III). We write f(t) = y′

th(t) for consistency with Appendix
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2.B. For the leading edges we have

f(t) = f̃(t)
(t+ 1)1/2 ,

where f̃(t) satisfies a Hölder condition at t = −1. We apply equation (2.53c) so as
z → −1 + in∆, with z /∈ L,

Φth(z) ∼ eπi/2

2i sin(π/2) · f̃(−1)
(z + 1)1/2 + Φt1(z) + Φt0(z).

Since Φt0(z) is bounded and tends to a definite limit as z → −1 + ins, this corresponds
to an inverse square root singularity, which is permissible. For the trailing edge, we have
already established that the horizontal velocity jump is identically zero on the aerofoil
and hence the Kutta condition is satisfied.

2.3.3.2 Camber Term, Φc

We now use equation (2.11) and the Plemelj formulae (2.52) to give

u±
c (t) = ∓X+(t)

∆ −
ˆ 1

−1

y′
c(τ)

X+(τ)

(
coth

(
π(τ − t)

∆

)
− 1

)
dτ. (2.19)

The Kutta condition states that the jump in horizontal velocity must be zero at the
trailing edge, and this will only be the case if u±

c (1) = 0. We apply the results of
Appendix 2.B, where

f(t) = y′
c(t)

X+(t) .

We are in the case of equation (2.53d) where γ = 1/2, so

f(t) = f̃(t)
(t− 1)1/2 ,

as t → 1 where f̃ satisfies a Hölder condition at t = 1. Therefore, as t → 1 along the
contour,

u+
c (t) − u−

c (t) ∼ −X+(t)
(

cot(π/2)
2i · f̃(1)

(t− 1)γ + Φc1(t) + Φc0(t)
)

= −X+(t) (Φc1(t) + Φc0(t)) → 0,
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since Φc0(t) and Φc1(t) are bounded at t = 1. Therefore, the Kutta condition is satisfied.
We now consider the behaviour at the leading edges. We are therefore in the case of

equation (2.53a), with f(t) = f̃(t), so as z → −1 + in∆, with z /∈ L,

Φc(z) ∼ −X(z)
(

−f(−1)
2πi log

( 1
z + 1

)
+ Φc1(z) + Φc0(z)

)
= −X(z) (Φc1(z) + Φc0(z)) .

Hence there is a square root singularity at the leading edge, which is permissible by (III).

2.3.3.3 Angle of Attack Term, Φα

Clearly (2.17) has the correct endpoint behaviour and satisfied (III, IV). The tangential
surface velocity is given by

u±
α (t) = ∓αie− π

∆ X+(t).

2.3.4 Final Complex Velocity

By summing the constituent parts of the problem, we get

Φ(z) = iα

1 − e− π
∆

√√√√√sinh
(
π(z−1)

∆

)
sinh

(
π(z+1)

∆

)
− 1

∆

ˆ 1

−1
y′
th(τ) coth

(
π(τ − z)

∆

)
dτ

− 1
i∆

√√√√√sinh
(
π(z−1)

∆

)
sinh

(
π(z+1)

∆

) ˆ 1

−1
y′
c(τ)

√√√√√sinh
(
π(1+τ)

∆

)
sinh

(
π(1−τ)

∆

) (coth
(
π(τ − z)

∆

)
− 1

)
dτ.

(2.20)

The solutions in this section are valid for small stagger angles (χ ≪ 1). However, due
to the approximation of the staggered chord as a horizontal line in section 2.2, the
solution (2.20) suggests that the leading-edge stagnation points are at −1 + in∆ and the
trailing-edge stagnation points are at +1 + in∆. Conversely, the physical leading edge is
located at −eiχ and the physical trailing edge is located at eiχ. Consequently, we include
multiples of eiχ in appropriate places in (2.20) to perturb the stagnation points to the
correct locations. This procedure only introduces O(ϵ2) errors, which are allowable in
the current asymptotic regime. Therefore, the final solution for the complex potential
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with these singularities in the correct locations is given by

Φ(z) = iα

1 − e− π
∆ e−iχ

√√√√√sinh
(
π(z−eiχ)

∆

)
sinh

(
π(z+eiχ)

∆

)
− 1

∆

ˆ 1

−1
y′
th(τ) coth

(
π(τeiχ − z)

∆

)
eiχ dτ

− 1
i∆

√√√√√sinh
(
π(z−eiχ)

∆

)
sinh

(
π(z+eiχ)

∆

) ˆ 1

−1
y′
c(τ)

√√√√√sinh
(
eiχ π(1+τ)

∆

)
sinh

(
eiχ π(1−τ)

∆

) (coth
(
π(τeiχ − z)

∆

)
− 1

)
eiχ dτ.

(2.21)

It should be noted that, in the asymptotic limit ∆ → ∞, this matches the well-known
case of the flow around a single aerofoil given by Thwaites (1960).

2.4 Inverse Problem Solution

We now consider the problem where the tangential velocities on the upper and lower
surfaces of the aerofoils are specified and an appropriate aerofoil geometry must be
found. This specification of tangential velocity is essential in blade design for axial-flow
compressors in order to control boundary-layer growth and separation (Goldstein and
Jerison, 1947). We may use equations (2.18) and (2.19) to find singular integral equations
for the thickness, camber and angle of attack:

− 2
∆−
ˆ 1

−1
y′
th(τ) coth

(
π(τ − t)

∆

)
dτ = u+(t) + u−(t), (2.22)

−2X+(t)
∆ −
ˆ 1

−1

y′
c(τ) − α

X+(τ)

(
coth

(
π(τ − t)

∆

)
− 1

)
dτ = u+(t) − u−(t). (2.23)

where u±(t) each satisfy a Hölder condition on (−1, 1), except possibly at the end points,
where they have, at worst, integrable singularities. We solve these equations separately.

2.4.0.1 Thickness Term

We define the auxiliary function

Ith(z) = − 1
∆

ˆ 1

−1
y′
th(τ) coth

(
π(τ − z)

∆

)
dτ, (2.24)
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so that

I+
th(t) + I−

th(t) = u+(t) + u−(t).

This Riemann–Hilbert problem is analogous to the one stated in equation (2.11) and
therefore has the solution

Ith(z) = X(z)
2i∆

ˆ 1

−1

u+(t) + u−(t)
X+(t) coth

(
π(τ − z)

∆

)
dτ. (2.25)

Taking the difference either side of L and equating the expressions in (2.24) and (2.25)
yields

y′
th(t) = X+(t)

2∆ −
ˆ 1

−1

u+(τ) + u−(τ)
X+(τ) coth

(
π(τ − t)

∆

)
dτ, (2.26)

subject to the solvability condition
ˆ 1

−1

u+(τ) + u−(τ)
X+(τ) dτ = 0. (2.27)

This condition is necessary because it ensures that (2.24) matches (2.25) in the far-
field. Moreover, it can be seen by integrating (2.26) that this condition guarantees
that yth(−1) = yth(+1). Physically, this condition can be viewed as a consequence of
conservation of momentum: if (2.27) did not hold, then a non-lifting cascade would
generate a non-zero deflection angle. In section 2.5.3 we prove that this is not possible.

2.4.0.2 Camber and Angle of Attack Terms

Similarly to the previous section, we define the auxiliary function

Ic,α(z) = −X(z)
∆

ˆ 1

−1

y′
c(τ) − α

X+(τ)

(
coth

(
π(τ − z)

∆

)
− 1

)
dτ, (2.28)

so that

I+
c,α(t) − I−

c,α(t) = u+(t) − u−(t).
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This Riemann–Hilbert problem is the same as (2.7) and therefore has the solution, with
correct far-field behaviour,

Ic,α(z) = 1
2i∆

ˆ 1

−1

(
u+(τ) − u−(τ)

)(
coth

(
π(τ − z)

∆

)
− 1

)
dτ. (2.29)

Taking the sum either side of L and equating the expressions in (2.28) and (2.29) yields

y′
c(t) − α = 1

2∆−
ˆ 1

−1

(
u+(τ) − u−(τ)

)(
coth

(
π(τ − t)

∆

)
− 1

)
dτ. (2.30)

Both equations (2.26) and (2.30) may be substituted back into (2.22) and (2.23) respec-
tively. By applying the Poincaré–Bertrand transformation formula (Muskhelishvili, 1946,
§23) it may be shown that the stated thickness, camber and angle of attack do, in fact,
result in the correct velocity distributions. In each case, asymptotic analysis indicates
that the singularities at the endpoints of the integrals are either square-root singularities
or log singularities, when the aerofoils have thick trailing edges. Consequently, the
integrals in (2.26) and (2.30) are integrable and the desired aerofoil shape can be found.

2.5 Results for Analytic Solution

In this section we give details of some of the aerodynamically relevant results using the
analysis of section 2.3.

2.5.1 Flow Field

We may use (2.21) to plot the velocity fields and streamlines in figure 2.2. The streamlines
show good agreement with the aerofoil surfaces and the flow leaves the aerofoils’ trailing
edges smoothly, indicating that the Kutta condition is satisfied. The flow perturbation is
greatest near the leading and trailing edges, where singularities and stagnation points
develop, and in the inter-blade region. Away from the cascade, the flow becomes uniform
exponentially fast, in contrast to the single-aerofoil case, where the flow becomes uniform
only algebraically fast.
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Fig. 2.2 Horizontal velocity and streamline plots for cascades of flat plates and three sets
of NACA aerofoils. The streamlines are indicated in black and the background colour
shows the horizontal velocity perturbation.
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2.5.2 Tangential Surface Velocity

We may sum the tangential velocity distributions found in section 2.3 to find the total
distribution either side of each aerofoil:

u±(t) = ±αe− π
∆

√√√√√sinh
(
π(1−t)

∆

)
sinh

(
π(1+t)

∆

) − 1
∆−
ˆ 1

−1
y′
th(τ) coth

(
π(τ − t)

∆

)
dτ

∓ 1
∆

√√√√√sinh
(
π(1−t)

∆

)
sinh

(
π(1+t)

∆

)−
ˆ 1

−1
y′
c(τ)

√√√√√sinh
(
π(1+τ)

∆

)
sinh

(
π(1−τ)

∆

) (coth
(
π(τ − t)

∆

)
− 1

)
dτ. (2.31)

In figure 2.3 we plot this tangential surface velocity as a function of distance along the
chord for a variety of aerofoil spacings and geometries.

The analytical solution is compared with a numerical solution (Bhimarasetty and
Govardhan, 2010) which is obtained by using a conformal map to transform the cascade
of aerofoils to a single object and the potential flow over this body is solved using a
higher-order vortex panel method (Kuethe and Chow, 1998). This numerical method
has shown good agreement with other numerical (Gostelow, 1984) and experimental
results (Herrig et al., 1957). In figure 2.3, the agreement between the analytic and
numerical solutions is almost exact in the cases of angle of attack and camber and the
only significant deviations occur at the leading edge of the thick aerofoils, where our
assumption of small gradient breaks down. In order to resolve this, a further expansion
in the O(ϵ2) region and asymptotic matching is required, but this is beyond the scope
of the chapter. The divergence from the numerical solution at the thick leading edge is
also observed in the single aerofoil case at O(ϵ). As verified by the asymptotic behaviour
of the analytic solution close to the edges in section 2.3.3, the Kutta condition can be
seen to be satisfied since the tangential velocities match at the trailing edge and the
leading edge has an integrable singularity. In the cases of angle of attack and camber,
the tangential surface velocity is equal magnitude but opposite sign either side of the
aerofoils, whereas in the thickness case the upper and lower velocities match.

2.5.3 Deflection Angle and Lift

A primary purpose of aerofoil cascades in turbomachinery applications is to deflect the
flow through a desired angle. Our analysis allows us to derive an analytic expression for
the change in flow angle, denoted by δα, for a given cascade geometry and inlet angle.
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Fig. 2.3 Tangential surface velocity plots for flat plates and three sets of NACA aerofoils.
Our analytical solution is given by the solid lines, corresponding to the upper and lower
surfaces. The numerical solution is given by the dashed lines corresponding to the upper
and lower surfaces.

Since the change in angle of attack is small, we have

δα = Im
[
Φ(+∞) − Φ(−∞)

]
= −Φ(+∞).
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We can use our expression for the flow perturbation (2.21) to write

δα = 2e− π
∆

−α sinh
(
π

∆

)
+ 1

∆

ˆ 1

−1
y′
c(τ)

√√√√√sinh
(
π(1+τ)

∆

)
sinh

(
π(1−τ)

∆

) dτ

 , (2.32)

where we have ignored O(ϵ2) terms for clarity. This equation may be used to choose the
spacing, angle of attack or camber in order to achieve a desired deflection angle.

We may evaluate the deflection angle for the different limits of ∆: as the aerofoil
spacing increases, ∆ → ∞, we have

δα ∼ 2
∆

(
1 − π

∆

)−πα+ −
ˆ 1

−1

√
1 + τ

1 − τ
y′
c(τ) dτ

+O(∆−3), (2.33)

and the deflection angle decays algebraically as the aerofoil spacing increases. This is
consistent with the single blade case (Thwaites, 1960) where there is no flow deflection
far downstream of the blade. Conversely, if we consider the limit of very close blades,
∆ → 0+, then

δα ∼ −α + y′
c(1). (2.34)

The asymptotic behaviour of the integral in (2.32) is evaluated using Laplace’s method.
This equation states that the deflection angle will be equal to the difference between of
the angle of the trailing edge of the mean line of the aerofoil and the angle of attack.
In other words, the outlet angle is the angle of the camber at the trailing edge. The
asymptotic behaviours of the deflection angle (2.33,2.34) is plotted for a range of blade
spacings in figure 2.4.

The deflection angle is closely connected to the aerofoil lift; the Kutta-Joukowski
theorem expresses the lift per unit span acting on the aerofoil as

L = −ρ∞U∞Γ. (2.35)

The circulation is

Γ =
ffi
C

u · dt = −
ˆ 1

−1
(Φ+(t) − Φ−(t)) dt = −

ˆ 1

−1
(u+(t) − u−(t)) dt,

where u± is given by (2.31). The above integral is complicated to calculate, but may be
evaluated analytically using residue calculus. However, this intricacy can be avoided by
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(a) The large ∆ limit, as described in (2.33). The exact solution (2.32) is represented by the blue
curve, the first-order approximation is the orange curve, and the second order approximation
is the yellow curve.
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(b) The small ∆ limit, as described in (2.34). The deflection angle is normalised by the
deflection angle with zero spacing. The exact solution (2.32) is represented by the blue curve,
the first-order approximation is the orange curve according to (2.34).

Fig. 2.4 Asymptotic behaviour for the deflection angle δα on an individual blade in a
cascade of NACA 3506 aerofoils at angle of attack 5◦ for large and small gap-to-chord
ratio, ∆/2.
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Φ = Φ+Φ = 0

Φ = −iδα i × ∆

Fig. 2.5 The contour of integration illustrating the relationship between circulation and
deflection angle.

expressing the lift in terms of the deflection angle. To this end, we integrate Φ along an
appropriate contour, as illustrated in figure 2.5.

This contour consists of the streamline corresponding to the upper surface of an
aerofoil, the streamline corresponding to the lower surface of the aerofoil directly above,
and two vertical contours at upstream and downstream infinity of length ∆. In this
region, Φ is holomorphic and the resulting integral is zero by Cauchy’s theorem. Due
to the periodicity of Φ, the contributions from the streamlines cancel out except on the
aerofoil surface, which corresponds to the negative of the circulation, −Γ. The upstream
vertical contribution vanishes and we are left with the downstream vertical contribution:
−iδα × i∆. Rearranging the integral yields the expression

Γ = ∆ × δα, (2.36)

where the analytic expression of δα is given in equation (2.32). Substituting (2.36) into
(2.35) yields an analytic expression for the lift. This relation may be understood as a
result of conservation of momentum; the net change in momentum (the change in flow
angle times the aerofoil spacing) must be equal to the force exerted on the fluid (the
lift). The single aerofoil result for the lift given by Thwaites (1960) may be recovered
from (2.33) and (2.36). In this limit the deflection angle decays, but the lift approaches
a constant value. The asymptotic behaviour of the lift (2.33,2.34 and 2.36) is plotted for
a range of blade spacings in figure 2.6.
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(a) The large ∆ limit. The lift is normalised by the far-field lift, L∞. The exact solution (2.35)
is represented by the blue curve, the first-order approximation is the orange curve, and the
second order approximation is the yellow curve according to (2.33,2.36).
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(b) The small ∆ limit. The exact solution (2.35) is represented by the blue curve, the first-order
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Fig. 2.6 Asymptotic behaviour for the lift L on an individual blade in a cascade of
NACA 3506 aerofoils at angle of attack 5◦ for large and small gap-to-chord ratio ∆/2.
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2.6 Numerical Solutions for Large Stagger

When the stagger is large, the analytic approach presented in the previous section becomes
invalid. The Schwarz reflection method of section 2.3 – which allowed the thickness
and vorticity distribution to be decoupled – now breaks down, and the corresponding
Riemann–Hilbert problem is not amenable to standard methods. Accordingly, we are
precluded from deriving an analytic solution of the same form as (2.21) and a numerical
solution is required. The small-stagger solution (2.21) provides insight into the form of
the numerical solution, as well as being an essential benchmarking tool.

We rotate the coordinate system through the stagger angle χ so that the blades are
each aligned with the horizontal axis and are separated by d+ is where

d+ is = i∆eiχ.

Informed by the solution to the small stagger problem (2.21), we consider an ansatz for
the complex velocity of the form

Φ(z) = 1
2(d+ is)

ˆ 1

−1
γ(τ)

(
coth

(
πi (τ − z)
d+ is

)
− 1

)
dτ, (2.37)

where γ(τ) represents a distribution of sources, sinks and vorticity arranged on the chord
line. The problem is now to find γ, which we decompose into real and imaginary parts as

γ(τ) = γr(τ) + iγi(τ)

In a similar way to the unstaggered case, we may consider the limits of Φ(z) as z → t±,
(where t ∈ [−1, 1]) via the Modified Plemelj formula (2.52). Taking the difference between
the limits on the upper and lower sides, and equating imaginary parts yields

γi(t) = −2y′
th(t).

Conversely, summing Φ(z) either side of the chord lines the singular integral equation

Σu±(t) − 2i(y′
c(t) − α) = 1

2(d+ is)−
ˆ 1

−1
γ(τ)

(
coth

(
πi (τ − t)
d+ is

)
− 1

)
dτ. (2.38)

We now consider the imaginary part of the (2.38). It is precisely at this point that we
diverge from the small-stagger solution: in contrast to the previous section, the imaginary
part of the right-hand side of (2.38) does not result in a simple expression amenable to
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typical Riemann–Hilbert methods. Instead, we have the singular integral equation

4π(y′
c(t) − α) = −

ˆ 1

−1
(−2y′

th(τ)Kr(τ, t) + γr(τ)Ki(τ, t)) dτ, (2.39)

where

Kr(τ, t) = Re
[

−π
(d+ is)

(
coth

(
πi (τ − t)
d+ is

)
− 1

)]
,

Ki(τ, t) = Im
[

−π
(d+ is)

(
coth

(
πi (τ − t)
d+ is

)
− 1

)]
.

We note that Ki is a singular operator; as τ → t we have

Ki(τ, t) ∼ 1
τ − t

.

Consequently, we separate the singular and regular parts of Ki and write

Ki(τ, t) = 1
τ − t

+ K̃i(τ, t), (2.40)

where

K̃i(τ, t) =



Im
[

π

d+ is

]
, for t = τ,

Im
[

−π
d+ is

(
coth

(
πi (τ − t)
d+ is

)
− 1

)
− 1
τ − t

]
, for t ̸= τ.

Consequently, we may express (2.39) as the singular integral equation

−
ˆ 1

−1

γr(τ)
τ − t

dτ +
ˆ 1

−1
γr(τ)K̃i(τ, t) dτ = f(t), (2.41)

where the forcing term f is given by

f(t) = 4π(y′
c(t) − α) − 2−

ˆ 1

−1
2y′

th(τ)Kr(τ, t) dτ.

Note that the second integral in (2.41) is not considered in the principal value sense
because K̃i is regular for all (t, τ) ∈ [−1, 1]2.

This form of singular integral is amenable to numerical methods by expanding γr into
a suitable series of basis functions. This method was first proposed by Erdogan and Gupta
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(1972), who suggested an expansion of the unknown function γr as a series of weighted
Chebyshev polynomials. This expansion accurately captures the endpoint behaviour of γr,
which necessarily possesses a square-root singularity and zero at the leading and trailing
edge respectively. The method may be extended to permit functions whose endpoint
singularities and zeros are not square roots by considering instead an expansion in
weighted Jacobi polynomials (Krenk, 1975). However, the weighted Chebyshev expansion
is entirely appropriate for the present problem where we are predominantly interested
in NACA 4-digit profiles, and the approach is widely used in isolated aerofoil analyses
(Glauert, 1926; Rienstra, 1992).

Accordingly, we expand γr as a series of weighted Chebyshev polynomials in the form

γr(t) = γr,0

√
1 − t

1 + t
+

√
1 − t2

∞∑
n=1

γr,n Un−1(t), (2.42)

where Un represent the Chebyshev polynomials of the second kind and γr,n represent
unknown coefficients. The problem is now to find these coefficients. The Chebyshev
polynomials Un may be expressed as

Un(t) = sin [(n+ 1)θ]
sin(θ) , t = cos(θ).

Moreover, they satisfy the orthogonality relation
ˆ 1

−1

√
1 − τ 2 Un(τ)Um(τ) dτ = δn,m

π

2 .

In order to apply the expansion (2.42) to the singular integral equation (2.41), we use
the finite Hilbert transforms

−
ˆ 1

−1

√
1 − τ 2Un−1(τ) · dτ

τ − t
= −π Tn(t), (2.43)

−
ˆ 1

−1

√
1 − τ

1 + τ
· dτ
τ − t

= −π, (2.44)

where Tn are the Chebyshev polynomials of the first kind.
We now substitute (2.42) into (2.41) and apply the identities (2.43) and (2.44) to

obtain

−πγr,0 − π
∞∑
n=1

γr,nTn(t) +
ˆ 1

−1
γr(τ)K̃i(τ, t) dτ = f(t). (2.45)
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The remaining integral in the above expression is amenable to Chebyshev–Gauss quadra-
ture. We note the quadrature rules (Olver et al., 2010, §3.5)

ˆ 1

−1
g(τ)

√
1 − τ

1 + τ
dτ ∼

M∑
m=1

w(1)
m g

(
τ (1)
m

)
, as M → ∞,

for

τ
(1)
k = cos

( 2m
2M + 1π

)
,

w
(1)
k = 4π

2M + 1 sin2
(

m

2M + 1π
)
,

and
ˆ 1

−1
g(τ)

√
1 − τ 2 dτ ∼

M∑
m=1

w(2)
m g

(
τ (2)
m

)
, as M → ∞,

for

τ
(2)
k = cos

(
m

M + 1π
)
,

w
(2)
k = π

M + 1 sin2
(

m

M + 1π
)
.

Consequently, we may express (2.45) as

−πγr,0 − π
∞∑
n=1

γr,nTn(t) +
∞∑
m=1

[
γr,0w

(1)
m K̃i

(
t(1)
m , t

)
+ w(2)

m K̃i
(
t(2)
m , t

) ∞∑
n=1

γr,nUn−1
(
t(2)
m

)]
= f(t). (2.46)

We now truncate the infinite sums in (2.46) at N and collocate at the zeros of UN+1 to
obtain an (N + 1) × (N + 1) linear system for the N + 1 unknown coefficients vn. The
remaining matrix equation may easily be inverted in Matlab to obtain the coefficients
γr,n.

2.6.0.1 Validation of Numerical Scheme

We now validate our numerical scheme for a range of examples. The analytic solutions
found in section 2.3.1.2 are used as a benchmark for the numerical method. We consider
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two types of error: the maximum relative error

ϵM(N) = max
i

|γr,N(ti) − γr(ti)|
|γr(ti)|

,

and the L2 relative error

ϵL2(N) =

√√√√√´ 1
−1 |γr,N(t) − γr(t)|2 dt´ 1

−1 |γr(t)|2 dt
,

where γr,N represents the approximate solution with N Chebyshev polynomials, and γr

represents the exact solution.
We observe that both errors converge exponentially with N for all tested cases. For

example, figure 2.7 shows the convergence for a range of parameters. The numerical
results show that the convergence is generally faster for larger blade spacings. This
suggests that the Chebyshev polynomial expansion could be improved by selecting an
alternative set of orthogonal basis functions. However, this extension represents future
work and the current scheme is sufficient for the present research. Moreover, we are
operating in an asymptotic regime where O(ϵ2) errors are ignored, so usually a low
number of basis polynomials are required.

2.6.1 Upstream and Downstream Flow Decompositions

We use the solution for γ (2.42) to express the background flow (2.37) in a form that is
amenable to the Wiener-Hopf method to be applied in chapter 3. Essentially, we wish to
express the mean flow perturbation (2.37) in a Fourier-type basis, as this will yield a
simple form in the spectral plane under a Fourier transform.

It is straightforward to show that

coth
(
πi(τ − z)
d+ is

)
− 1 = − 2

1 − exp
(

2πi(τ−z)
d+is

) .
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(a) The L2 error for a cascade of flat plates at constant angle of attack.
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(b) The maximum relative error for a cascade of NACA 3506 aerofoils. The grid is a sequence
of 100 linearly spaced points between −1 and 1 excluding the end points.

Fig. 2.7 The error convergence for the numerical method.
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The above series can be expanded as a geometric series depending on whether z is
upstream or downstream of the cascade:

coth
(
πi(τ − z)
d+ is

)
− 1 =



2
∞∑
n=1

exp
(

−2πin(τ − z)
d+ is

)
, (x+ 1)s < yd,

−2
∞∑
n=0

exp
(

2πin(τ − z)
d+ is

)
, (x− 1)s > yd.

Substituting this into the expression for the mean flow (2.37) yields the exponential
representation

w1(z) =



∞∑
n=1

v+
n exp

( 2πinz
d+ is

)
, (x+ 1)s < yd,

−
∞∑
n=0

v−
n exp

(−2πinz
d+ is

)
, (x− 1)s > yd,

(2.47)

where the coefficients are given by

v±
n = 1

d+ is

ˆ 1

−1
γ(τ) exp

(∓2πinτ
d+ is

)
dτ.

Analytical expressions for the above coefficients are available by using results for the finite
Fourier transforms of weighted Chebyshev polynomials (Olver et al., 2010, Eq. 18.17.16),
but it is also straightforward to integrate the above numerically using Gauss–Chebyshev
quadrature. Note that v0 is expressible in terms of the circulation Γ as

v−
0 = − Γ

d+ is.

Integrating (2.47) yields analytic forms for the full velocity potential and streamfunction.
We select the constant of integration so that the leading edge z = −1 corresponds to
w(−1) = 0. In the upstream region, (x+ 1)s < yd, we have

w(z)
U∞

= (1 − iα) (z + 1) + d+ is
2πi

∞∑
n=1

v+
n

n

[
exp

(2πinz
d+ is

)
− exp

(−2πin
d+ is

)]
, (2.48)

and in downstream region, (x− 1)s > yd, we have

w(z)
U∞

=
(

1 − iα− Γ
d+ is

)
(z − 1)
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− 1
2πi

ˆ 1

−1
γ(τ)

log
sinh

(
πi(τ−1)
d+is

)
sinh

(
πi(τ+1)
d+is

)
+ 2πi

d+ is

 dτ

+ d+ is
2πi

∞∑
n=1

v−
n

n

[
exp

(−2πinz
d+ is

)
− exp

(−2πin
d+ is

)]
. (2.49)

There is no equivalent decomposition in the inter-blade region since the expressions in
(2.47) are not available. In this region the velocities must be integrated with Gauss–
Chebyshev quadrature to find the velocity potential and streamfunction.

We plot the velocity potential and streamfunction for a range of geometries, stagger
angles and spacings in figures 2.8 and 2.9. Note that the flow clearly satisfies the no-flux
condition on the blades. Additionally, figure 2.9 shows that the flow exits the cascade
smoothly, thus indicating that the Kutta condition is satisfied.

2.7 Conclusions

We have presented two methods to calculate the potential flow through an infinite cascade
of aerofoils. We first presented an analytic solution using a Riemann–Hilbert method and
next presented a numerical method using a weighted Chebyshev expansion. Elements of
the solutions have been chosen to satisfy the appropriate edge conditions at the leading
and trailing edges, as well as the correct upstream behaviour. Analytic expressions for
the surface velocity, deflection angle, and lift have been calculated in terms of the angle
of attack and aerofoil geometry and their asymptotic behaviour has been shown to match
with well established results for single aerofoils. The expressions for surface velocity have
been shown to agree well with numerical solutions which have been validated against
experimental results.

The model and methods of solution are readily extendable to a variety of situations.
For example, the generalisation to weakly compressible flows is straightforward, and
follows swiftly by a Prandtl–Glauert transformation (Kuethe and Chow, 1998) provided
the flow is not transonic. Also, multiple cascades may be easily included in the analysis to
model, for example, multiple columns of swimmers in shoals of fish. Having elucidated the
kernel of the singular integral operator, it is now plain to see that the flow perturbation
approaches uniformity exponentially fast away from the cascade unlike the single aerofoil
case, where the flow becomes uniform algebraically quickly away from the blade. This
means that we may place a second cascade almost directly behind the first one and,
taking the angle of attack experienced by the second cascade from equation 2.32, calculate
the new flow field.
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(a) Flat plates, ∆ = 1, χ = 30◦, α = 10◦
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(b) NACA 5500, ∆ = 1, χ = 30◦, α = 15◦
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(d) NACA 5506, ∆ = 4/3, χ = 40◦, α = 10◦

Fig. 2.8 Contour lines for the velocity potential (blue) and streamfunction (red) for a
range of geometries and angles of attack.
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(d) NACA 5506, ∆ = 4/3, χ = 40◦, α = 10◦

Fig. 2.9 Contour lines for the velocity potential (blue) and streamfunction (red) in the
inter-blade region for a range of geometries and angles of attack.
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Although the solutions presented in this chapter are appropriate for the ensuing
aeroacoustic analysis in chapter 3, there are several limitations that may be relevant to
other studies. The blades in this chapter are modelled as impermeable, with a solid body
no-flux condition. This may not be realistic in biological applications if the aerofoils are
modelling wings that may permit flow leakage. Consequently, in chapter 4 we will extend
the analytic solution to permit porous aerofoils. The blade geometries in the present
chapter are also required to have a small aspect ratio and the angle of attack must also
be small. In many turbomachinery applications the incident angle will be large and the
blades may have geometric profiles beyond those amenable to the methods in this chapter.
These limitations will be addressed in chapter 6 where we derive potential flow solutions
for cascades with arbitrary aerofoil shapes and angles of attack. Furthermore, the work
in the present chapter cannot account for flow separation. This could be addressed
using free streamline theory, where streamlines are assumed to emanate from the body
to separate the outer inviscid region from the turbulent wake, such as in Wade (1967).
Whilst we do not address flow separation fully, it could be modelled using the trajectories
of point vortices presented in chapter 6.
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List of Symbols

Symbol Meaning

∆ Blade spacing

χ Stagger angle

U∞ Upstream velocity

ϵ Order of magnitude of the aerofoil geometry or angle of attack

ys Aerofoil shape profile

yth Aerofoil thickness function

yc Aerofoil camber function

α Angle of attack

t, τ Parameterisations of aerofoil chord

L The contour for the Riemann-Hilbert problem

X Fundamental solution to the Riemann-Hilbert problem

γ Distribution of sources, sinks and vorticity along the chord

I Auxiliary functions for the inverse problem

u± Upper and lower tangential velocities

v± Upper and lower normal velocities

δα Deflection angle

L Lift

γr,n Coefficients of weighted Chebyshev expansion of γr

Tn, Un Chebyshev polynomials of the first and second kind respectively

ϵM Maximum relative error

ϵL2 L2 relative error
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2.A Modified Plemelj Formulae

In this section we prove the Modified Plemelj formulae which is used in the solution of
the Riemann-Hilbert problem in section 2.3. The traditional Plemelj formulae must be
adapted to be suitable for unbounded domains, as found in the cascade problem.

Theorem 1. If f(t) satisfies a Hölder condition on L as defined in section 2.2, except
possibly at the endpoints where it may have integrable singularities, and has period ∆in,
then, for z /∈ L,

Φ(z) := 1
2πi

ˆ
L

f(ζ)
ζ − z

dζ = 1
2i∆

ˆ 1

−1
f(τ) coth

(
π(τ − z)

∆

)
dτ. (2.50)

Proof. By parametrising L, we may write

1
2πi

ˆ
L

f(ζ)
ζ − z

dζ = 1
2πi

∞∑
n=−∞

ˆ 1

−1

f(τ)
(τ + in∆) − z

dτ.

We now use the dominated convergence theorem to interchange the orders of summation
and integration for z /∈ L. We write

hN(τ, z) := f(τ)
N∑

n=−N

1
(τ + in∆) − z

= f(τ)
(

1
τ − z

+ 2
N∑
n=1

(τ − z)
(τ − z)2 + n2∆2

)
,

and then

|hN(τ, z)| ≤ g(τ, z) := |f(τ)|
(

1
|τ − z|

+ 2
∞∑
n=1

|(τ − z)|
|(τ − z)2 + n2∆2|

)
. (2.51)

To complete the proof, we must show that g is integrable. As f satisfies the Hölder
condition and possibly has integrable singularities at the end points, all that remains is
to show that the bracketed term is bounded. Since z /∈ L, we may write z − τ = reiθ,
where r and θ are functions of τ . Moreover, reiθ ̸= ±in∆ and therefore,

g(τ, z) = |f(τ)|
r

1 + 2 r
2

∆2

∞∑
n=1

1∣∣∣ r2

∆2 e2iθ + n2
∣∣∣
 .

By the comparison test with 1
n2 , this sum converges for all τ ∈ [−1, 1], so g(τ, z) is

bounded in the domain of integration and therefore integrable. By the dominated



2.B Asymptotic Results at Endpoints 57

convergence theorem, we are free to interchange the order of limit and integral, so

1
2πi

ˆ
L

f(ζ)
ζ − z

dζ = 1
2πi

ˆ 1

−1
f(τ)

∞∑
n=−∞

1
(τ + in∆) − z

dτ

= 1
2i∆

ˆ 1

−1
f(τ) coth

(
π(τ − z)

∆

)
dτ,

where the last identity is obtained from a classical formula (Bromwich, 2005, p. 296).

Since, as we have shown above, we may split up the integral into its contributions
from each chord, we have

1
2πi−
ˆ
L

f(ζ)
ζ − z

dζ = 1
2i∆−
ˆ 1

−1
f(τ) coth

(
π(τ − z)

∆

)
dτ,

and the analogous result for the Plemelj formulae holds:

Φ±(t) = ±f(t)
2 + 1

2i∆−
ˆ 1

−1
f(τ) coth

(
π(τ − t)

∆

)
dτ. (2.52)

2.B Asymptotic Results at Endpoints

In this section, we consider the asymptotic behaviour of Cauchy-type integrals with coth
kernels, which is necessary for the analysis of endpoint behaviour in section 2.3.3. We
restrict our attention to the endpoints ∓1, since the behaviour at ∓1 + in∆ will be
identical by the periodicity of the kernel. We define

Φ(z) = 1
2i∆

ˆ 1

−1
f(τ) coth

(
π(τ − z)

∆

)
dτ = Φ1(z) + 1

2πi

ˆ 1

−1

f(τ)
τ − z

dτ, (2.53)

where f(t) satisfies a Hölder condition on (−1, 1), except possibly at the ends where it
satisfies

f(t) = f̃(t)
(t− c)β ,

where c is an endpoint of L, β is a real constant, and f̃(t) satisfies a Hölder condition
near and at c. In our case the relevant parameters are β = 0, 1/2. We have removed the
principal value part in (2.53) so that Φ1 is bounded and takes a definite value as z → c

along any path. When z = t on the contour, the remaining integral is considered in the
principal value sense. In the following formulae, ± correspond to taking c = ∓1. The
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branch of log 1
z−c is chosen to pass through the contour. Then the following limits, which

can be deduced from the non-periodic analysis in (Muskhelishvili, 1946, §29), are valid:

1. β = 0

We have the asymptotic behaviours:

(a) as z → c, with z not on the contour,

Φ(z) ∼ ±f(c)
2πi · log

( 1
z − c

)
+ Φ1(z) + Φ0(z), (2.53a)

(b) as t → c, with t on the contour,

Φ(t) ∼ ±f(c)
2πi · log

( 1
t− c

)
+ Φ1(t) + Ψ0(t), (2.53b)

where Φ1 is a function that is analytic at z = c, Ψ0 satisfies a Hölder condition near
and at t = c, and Φ0 is a bounded function tending to a definite limit as z → c.

2. β ̸= 0

We have the asymptotic behaviours:

(a) as z → c, with z not on the contour,

Φ(z) ∼ ± e±βπi

2i sin(βπ) · f̃(c)
(z − c)β + Φ1(z) + Φ0(z), (2.53c)

(b) as t → c, with t on the contour,

Φ(t) ∼ ±cot(βπ)
2i · f̃(c)

(t− c)−β + Φ1(t) + Ψ0(t), (2.53d)

where Φ1 is a function that is analytic at c, Ψ0 = o
(
(t− c)−β

)
as t → c, and

Φ0 = o
(
(z − c)β

)
.



Chapter 3

Scattering by Cascades of Aerofoils
with Realistic Geometry

3.1 Introduction

In this chapter we present an analytic solution for rotor-stator interaction noise. The
solution extends previous work by Glegg (1999) and Posson et al. (2010b) by accounting
for blade geometry and angle of attack, thus enabling us to study the important effects of
aerofoil profiles. Furthermore, we will find expressions for the acoustic potential function
throughout the entire flow domain, and will therefore not be limited to upstream (Peake
and Kerschen, 1997) and downstream (Peake and Kerschen, 2004) regions. We model a
single Fourier component of turbulence incident on the cascade, which we represent as
an unsteady convected gust. Accounting for blade geometry complicates the application
of the boundary conditions but, by making use of an orthogonal coordinate transform,
we are able to model the blades as flat plates in our parametric coordinate system. We
seek a perturbation expansion in terms of the disturbance of the background flow from
uniform flow in order to make analytic progress. In a similar way to the aforementioned
works, the solution is derived using the Wiener–Hopf method. The resulting Fourier
transform is inverted via contour integration to obtain the acoustic potential.

The model in the present chapter is subject to some asymptotic restrictions. Firstly,
the aerofoils are assumed to be formally “thin”, so that background flow gradients are
O(ϵ) perturbations from uniformity. Secondly, the frequency must satisfy kϵ ≪ 1, where
k is the reduced frequency. Far from being restrictive, this asymptotic regime crucially
accounts for the first few blade passing frequencies (BPFs), which significantly contribute
to engine noise. Typically, the upstream rotors move and shed wakes which impinge
on the cascade at the blade passing frequency; accurate modelling of the scattering of
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incident wakes of frequencies close to the BPFs is essential because they usually occur
in the most sensitive frequency regime of human hearing (Dittmar, 1972). Additionally,
the BPFs occur at large sound pressure levels, so they are usually the loudest tones, as
well as the most annoying. Presently, other analytic cascade interaction models that
account for aerofoil geometry (Evers and Peake, 2002; Peake and Kerschen, 1997, 2004)
are restricted to high frequencies that cannot account for these critical interactions.

In section 3.2 we discuss the modelling assumptions and give some key details of
the form of the background mean flow, which prove useful in later analysis. In section
3.2.2 the governing equations for the acoustic potential function are derived using Rapid
Distortion Theory, as in Goldstein (1978), and the corresponding boundary conditions
are derived. A perturbation expansion is used, where the small parameter ϵ is the order
of magnitude of the distortion of the mean flow from uniform flow. This expansion yields
two equations: one at O(1) and another at O(ϵ). The leading order, O(1), equation is
the flat-plate problem solved previously by Glegg (1999). In section 3.3.2, we solve the
O(ϵ) equation for the Fourier transform of the jump in potential either side of the blade.
Whilst more complicated than the O(1) problem due to forcing terms arising from the
mean flow distortion, this problem can be solved using a similar approach to that of
Glegg (1999). In section 3.4 this Fourier transform is inverted, using a similar method to
Posson et al. (2010b). In section 3.5 various aeroacoustic results are discussed. Finally,
in section 3.6, we summarise our work and suggest future directions of research. We
illustrate the important details of the procedure in a road map in figure 3.1.

3.2 Modelling

We consider a linear cascade of blades in a subsonic flow as illustrated in figure 3.2. The
blades are separated by d∗ in the chordwise direction, s∗ in the normal direction and
have infinite span in the x∗

3 direction. (Here ∗ denotes a dimensional quantity.) The
aerofoils have semi-chord length b∗ in Cartesian coordinates (x∗, y∗) and the coordinate
origin is taken to be at the leading edge of the 0th blade. We non-dimensionalise lengths
by b∗. We assume that the blades have non-trivial geometry, such that the upper and
lower surfaces of the blade, ϵys±, can be described by

ϵys±(x) = ±ϵyth(x) + ϵyc(x), (3.1)

where the subscripts c and th denote camber and thickness respectively and ϵ ≪ 1. We
restrict our analysis to bodies that have, at worst, parabolic noses, i.e. yth ∼ ϵth′√x as
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.Mathematical model

Rapid distortion theory
(Batchelor and Proudman, 1954)

Step I: Calculate background flow
(chapter 2)

Step II: Amend
boundary conditions

Step IIa: Linearise no-flux condition
Step IIb: Regularise trailing edge

Step III: Asymptotic expansion of
scattered field in terms of aerofoil geometry: h(φ, ψ) = h0(φ, ψ) + ϵh1(φ, ψ) + · · ·

Step IV: Generate integral
equation for O(ϵ) problem

Step IVa: Fourier series for boundary data
Step IVb: Solve O(1) problem
Step IVc: Introduce generalised derivatives
Step IVd: Modal expansion of source terms

Step V: Extended
Wiener–Hopf method

Step Va: Symmetric solution, D1,Σ

Step Vb: Anti-symmetric solution, D1,∆

Step Vc: Circulatory solution, D1,Γ

Step Vd: Source terms solution, D1,S

Expression for h(φ, ψ)

Model solved

Transformation to (φ, ψ)-space (Myers and Kerschen, 1995)

Fourier transform

Step VI: Invert Fourier transform

Invert (φ, ψ)-transformation

Fig. 3.1 Schematic diagram illustrating the solution method of the present chapter.
The colour of each box represents the space in which the relevant analysis takes
place: green denotes physical (x, y, z)-space; red, parametric (φ, ψ, z)-space; and blue,
spectral γ-space.
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n = 1

n = 0

n = −1

y∗

x∗

ϵα

d
∗
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∗

2b
∗

χ∗
U∗

∞

Fig. 3.2 A cascade of realistic aerofoils at stagger angle χ∗ and incidence angle ϵα subject
to a convected disturbance. The dotted line indicates the chordwise direction and the
dashed line represents the unsteady wakes.

x → 0+ where th = ϵth′ is the maximum thickness of the aerofoil, which is common in
analytical aerofoil interaction problems (Tsai (1992), Ayton and Peake (2013)). Addition-
ally, we require that the camber is bounded and continuous. The steady mean flow far
upstream is uniform with speed U∗

∞ (which we will use to non-dimensionalise velocities).
We also permit the upstream mean flow at infinity to be at a small angle of attack, ϵα.

We denote the velocity potential and streamfunction of the steady background flow
through the cascade as φ∗ and ψ∗ respectively, which we non-dimensionalise as

φ = φ∗

U∗
∞b

∗ , ψ = β∞
ψ∗

U∗
∞b

∗ , x3 = x∗
3
b∗ ,

where β∞ =
√

1 −M2
∞ is the Prandtl-Glauert factor and M∞ is the mean flow Mach

number far upstream. The density is non-dimensionalised with respect to the density far
upstream ρ∗ and the pressure is non-dimensionalised with respect to ρ∗U∗

∞
2

3.2.1 Steady Flow

Before we can approach the unsteady aeroacoustics, we must first solve the steady
background flow.This is step I in the road map (figure 3.1), and the analysis was
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n = 1

n = 0

n = −1
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y ∗

x ∗

n = 1
n = 0

n = −1

ψ

φ

Fig. 3.3 Illustration of the change of coordinate system used to simplify the application
of boundary conditions. The complex aerofoil surface is mapped to a flat plate.

carried out in chapter 2. To aid application of the boundary conditions in the unsteady
problem, we will transform from non-dimensional Cartesian coordinates (x, y) to potential-
streamline coordinates (φ, ψ) as is typical for realistic-geometry aerofoil interactions
studied analytically (Ayton, 2017; Ayton and Peake, 2013; Myers and Kerschen, 1995,
1997; Peake and Kerschen, 1997, 2004). The relationship between coordinates is given by

zβ = zφ + ϵF (zφ),

where zβ = x+ iβ∞y are the non-dimensional coordinates in the Prandtl-Glauert space
(where the flow is incompressible) and zφ = φ+ iψ. F (zφ) is the complex potential of the
steady flow written as q(zφ) − iµ(zφ) = F ′(zφ) where the amplitude of the steady flow is
given by 1+ϵq, in the direction making an angle ϵµ with the horizontal. Consequently, we
may write the non-dimensional perturbation to horizontal uniform flow as (see chapter
2)

q(zβ) − iµ(zβ) = −iα + 1
2(d+ is)

ˆ 2

0
γ(τ)

(
coth

(
πi(τ − zβ)
d+ is

)
− 1

)
dτ, (3.2)

where γ is a distribution of vortices, sources and sinks arranged on the aerofoil chord and
d and s are the blade spacing in the Prandtl-Glauert space. In chapter 2 we presented a
numerical scheme that quickly calculates γ.

By integrating expression (3.2), we obtain analytic forms for the streamfunction and
velocity potential

φ(zβ) + iψ(zβ) = zβ(1 − iϵα) − ϵ

2πi

ˆ 2

0
γ(τ)

log
sinh

(
πi(τ−zβ)
d+is

)
sinh

(
πiτ
d+is

)
+ πizβ

d+ is

 dτ,

(3.3)
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n = 1

n = 0

ψ

φ

sφ

dφ

χφ
−ϵΓ

c+
φ

c−
φ

Fig. 3.4 Diagram showing parameters in the transformed (φ, ψ)-space.

where the constant of integration has been chosen such that F (0) = 0 and the logarithmic
branch is orientated along the aerofoil wake. Consequently, (3.3) allows us to calculate
the spacing between blades in the new coordinate space as

dφ + isφ = φ(d+ is) + iψ(d+ is) = (d+ ϵαs) + i(s− ϵαd). (3.4)

We immediately note that the angle of attack affects the blade spacing in (φ, ψ)-space
and will accordingly influence the cut-on and cut-off frequencies of the acoustic modes.
These new parameters are illustrated in figure 3.4.

Exponential decompositions of the complex velocity field q − iµ are available in the
upstream and downstream regions, and are detailed in chapter 2. Such a decomposition
is essential for the application of the Wiener–Hopf method in section 3.3.2.

We define the location of the upper/lower side of the image of the trailing edge in
(φ, ψ)-space as (c±

φ , 0). It is important to note that the image of the physical trailing
edge is not unique, but the upper and lower sides are in fact mapped to two different
points. Formula (3.3) yields analytic expressions for the trailing-edge images as

c±
φ = 2(1 − iϵα) − ϵ

2πi

ˆ 2

0
γ(τ)

log
sinh

(
πi(τ−2)
d+is

)
sinh

(
πiτ
d+is

)
± πi + 2πi

d+ is

 dτ, (3.5)

which are both real numbers since the physical trailing edge (2, 0±) lies on the same
streamline as the origin. The difference between the location of the upper and lower
trailing edges in (φ, ψ)-space is ϵΓ, which is the circulation around a single aerofoil, and
may be calculated as

ϵΓ = −ϵ
ˆ 2

0
γ(τ)dτ = −ϵπ

(
γr,0 + γr,1

2

)
.

where γr,0 and γr,1 are the first two coefficients of the weighted Chebyshev series defined
in (2.42).
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3.2.2 Unsteady Formulation

We now consider the unsteady interaction in the new, transformed coordinate system.
The present analysis is restricted to inviscid linear disturbances of a two-dimensional
irrotational compressible mean flow, using the formulation derived by Goldstein (1978)
and further developed by Myers and Kerschen (1995). We assume that there are small
amplitude vortical and entropic perturbations in the uniform flow far upstream of the
cascade, which we denote by v′ and s′ respectively. These disturbances are convected
downstream by the mean flow and interact with the cascade, thus producing sound.
Similar approaches have been employed (Evers and Peake, 2002; Peake and Kerschen,
1997, 2004) in modelling gust-cascade interaction. Unlike the flat plate case (Glegg,
1999), the mean flow modifies both the boundary conditions and governing equation.
We will see that extra forcing terms are induced in the governing equation, while the
boundary conditions include terms depending on the surface velocity.

The total unsteady velocity perturbation may be decomposed into the form (Goldstein,
1978)

u′ = ∇G′ + v′, (3.6a)

where v′ satisfies a modified form of the linearised momentum equation. By employing
the method of characteristics, v′ may be found exactly throughout the whole flow domain.
The irrotational scattered field, G′, then satisfies (Goldstein, 1978)

D0

Dt

(
1
c2

0

D0G
′

Dt

)
− 1
ρ0

∇ · (ρ0∇G′) = 1
ρ0

∇ · (ρ0v
′) , (3.6b)

where the material derivative D0/Dt is taken with respect to the local mean flow. The
quantities ρ0 and c0 are the local values of density and speed of sound for the mean flow.
The no-flux boundary condition on G′ at any rigid surface is

∂G′

∂n
= −v′ · n, (3.6d)

where n is the unit normal vector.
The non-dimensional upstream velocity and entropy disturbances far upstream may

be written as

v′ → ν


At

An

As

 eik(φ+knψ+ksx3−t),
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s′ → 2νBeik(φ+knψ+ksx3−t),

subject to At + Anknβ∞ + Asks = 0, where k = ωb∗/U∗
∞ is the reduced frequency and

time is normalised by b∗/U∗
∞. The amplitude of the disturbance, ν, is assumed to be

small (ν ≪ ϵ).
The transformation

G′(φ, ψ) = h(φ, ψ) exp
[
ik(k3x3 − t− δM2

∞φ) + ϵM2
∞q
]
, (3.7)

allowed Kerschen and Myers (1987) to express Goldstein’s wave equation as

∂2h

∂φ2 + ∂2h

∂ψ2 + k2w2h+ ϵ(γ + 1)M4
∞δ

q
∂2h

∂ψ2 + 2ikδ∂h
∂φ

+ k2(w2 + δ2)h


−∂q

∂φ

∂h
∂φ

− ikδh
− ϵ2k2w2β2

∞qh = ϵkS(φ, ψ)eikΩ,

where

Ω = δφ+ knψ + ϵg(φ, ψ), w2 = (δM∞)2 − (ks/β∞)2 , δ = 1/β2
∞, Ãt = At −B,

S(φ, ψ) = 2δ
{

i
(
Ãt − knAnβ

3
∞

)
q+i

(
knÃtβ∞ + Anβ∞

)
µ

+1
k

[
ÃtM

2
∞
∂q

∂φ
+ AnM

2
∞β∞

∂q

∂ψ

]}
,

and g is Lighthill’s Drift function, which represents the cumulative distortion of vortex
filaments by the non-uniform mean flow:

g(φ, ψ) =
ˆ φ

−∞

[
1

U2
0 (η, ψ) − 1

]
dη = −2

ˆ φ

−∞
q(η, ψ)dη.

The no-flux boundary condition applied to rigid surfaces (3.6d) becomes

∂h

∂ψ
+ ϵM2

∞
∂q

∂ψ
h = −

[
An
β∞

(
1 − ϵM2

∞q
)

− ϵ2Ãtµ
]

eikΩ, (3.8)
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no discontinuities
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Fig. 3.5 Schematic illustrating where each boundary condition is applied.

applied on the body surface. We will use the modified pressure p, which is defined in
terms of actual pressure p′ as

p = −p′eik(−ksx3+t) = ∂

∂φ

(
he−ikδφ

)
eikφ. (3.9)

3.2.3 Boundary Conditions

We must specify an adequate number of boundary conditions in order for the problem
to be well-posed and physically valid. The boundary conditions are applied to each
streamline that corresponds to a blade surface, i.e. ψ = nsφ for integer n. Upstream of
the blade, we require that there are no discontinuities across this streamline. On the
blade itself, the no-flux condition for a rigid surface (3.8) must be satisfied either side
of the blade. Downstream of the blade, we require two conditions – firstly the jump
in normal velocity either side of the wake must vanish, and secondly, there can be no
pressure jump across the wake. Due to the disparity between the images of the upper and
lower trailing edge, which is equal to the mean flow circulation, some care is required with
these latter two boundary conditions. The full set of boundary conditions is summarised
and illustrated in figure 3.5.

As previously mentioned in (3.5), there are two trailing edges c±
φ in the paramet-

ric (φ, ψ)-space. In the application of the boundary conditions, we define a single
trailing edge at cφ = c+

φ . This produces O(ϵ) errors, which will be corrected in our
asymptotic expansion later.

In the following analysis, we use ∆n and Σn to denote the difference and sum of a
given quantity either side of the nth aerofoil’s streamline.

3.2.3.1 Upstream Boundary Condition

The condition of no upstream discontinuities is simply

∆n[h](φ) = 0, for φ < 0.
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3.2.3.2 No-Flux Boundary Conditions

The flow on each side of the blade must satisfy the rigid surface condition (3.8) which,
after ignoring O(ϵ2) terms, becomes

∂h±

∂ψ
(φ) + ϵM2

∞
∂q±

∂ψ
(φ)h±(φ) (3.10)

= −

An
β∞

(1 − ϵM2
∞q

±(φ) + ϵikg±(φ)) − ϵ2Ãtµ±(φ)
eikδφ, 0 < φ < cφ, (3.11)

where we have assumed that ϵk ≪ 1. This linearisation corresponds to step IIa in the
road map.

3.2.3.3 Wake Boundary Conditions

We now derive the boundary conditions to be applied on the aerofoil wake. This
corresponds to step IIb in the road map. The lower trailing edge lags behind the upper
trailing edge in (φ, ψ)−space by a distance of −ϵΓ, as illustrated in figures 3.4 and 3.5.
Consequently, the condition of continuity of normal velocity in terms of our acoustic
potential function is

∂h+

∂ψ
(φ)e−ikM2

∞δφ − ∂h−

∂ψ
(φ+ ϵΓ)e−ikM2

∞δ(φ+ϵΓ) = 0, for φ > cφ. (3.12)

We may Taylor expand the second term about φ to give

∂h+

∂ψ
(φ) −

(
∂h−

∂ψ
(φ) + ϵΓ ∂

2h−

∂φ∂ψ
(φ)

)(
1 − ikM2

∞δϵΓ
)

= 0,

where we have assumed that ϵkM2
∞ ≪ 1 and ignored O(ϵ2) terms. We accordingly obtain

the condition on the jump in normal velocity in (φ, ψ)-space as

∆n

[
∂h

∂ψ

]
(φ) = ϵΓ

(
∂2h−

∂φ∂ψ
(φ) − ikM2

∞δ
∂h−

∂ψ
(φ)

)
, for φ > cφ. (3.13)

Using a similar method, we reformulate the pressure continuity condition in (φ, ψ)-space.
Due to the lag in the lower trailing edge location, we may write

p′+(φ) − p′−(φ+ ϵΓ) = 0, for φ > cφ.
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Taylor expanding the latter term about φ and ignoring terms of O(ϵ2) yields

p′+(φ) − p′−(φ) − ϵΓ∂p
′−

∂φ
(φ) = 0.

By substituting (3.9) and cancelling terms, we obtain

∂

∂φ

(
∆n [h] (φ)e−ikδφ

)
eikφ − ϵΓ ∂

∂φ

(
∂

∂φ

(
h−(φ)e−ikδφ

)
eikφ

)
= 0.

We may integrate the above expression to obtain the condition on the jump in acoustic
potential in (φ, ψ)-space as

∆n [h] (φ) = 2πiP eikδφ + ϵΓ
(
∂h−

∂φ
(φ) − ikM2

∞δh
−(φ)

)
, for φ > cφ, (3.14)

where P is a constant of integration that will be determined by the Wiener–Hopf
technique.

3.3 Acoustic Scattered Solution

We now seek a regular perturbation expansion in ϵ for h as

h(φ, ψ) ∼ h0(φ, ψ) + ϵh1(φ, ψ) + · · · (3.15)

This corresponds to step III in the road map. We now separate the O(1) and O(ϵ)
problems in order to generate an integral equation for the O(ϵ) problem (road map step
IV). The asymptotic expansion results in a pair of equations for the first and second
order expansions of h:

O(1) : L(h0) = 0, (3.16.a)
O(ϵ) : L(h1) = S(φ, ψ), (3.16.b)

where

L(f) = ∂2f

∂φ2 + ∂2f

∂ψ2 + k2w2f, (3.17)
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and the forcing term is

S(φ, ψ) = kS(φ, ψ)eikΩ − (γ + 1)M4
∞δ

q
∂2h0

∂ψ2 +2ikδ∂h0

∂φ
+ k2(w2 + δ2)h0


−∂q

∂φ

∂h0

∂φ
− ikδh0

+ 2k2w2β2
∞qh0. (3.18)

The condition of no discontinuities upstream of the cascade simply becomes

∆0[h0](φ) = 0, for φ < 0, (3.19.a)
∆0[h1](φ) = 0, for φ < 0. (3.19.b)

We may use (3.15) to write the the no-flux conditions (3.11) in terms of our perturbation
expansion. In order to simplify the Wiener–Hopf analysis, we separate the boundary
data into symmetric and anti-symmetric parts. This enables us to express the boundary
data striclty in terms of its contribution to the sum (Σ0) or difference (∆0) either side of
the blade. To further facilitate the Wiener–Hopf analysis, we expand the boundary data
in terms of a Fourier series (step IVa of the road map). The anti-symmetric boundary
data becomes

∆0

[
∂h0

∂ψ

]
(φ) = 0, 0 < φ < cφ, (3.20.a)

∆0

[
∂h1

∂ψ

]
(φ) =

∞∑
l=−∞

c∆,l e−iκ−
l
φ, 0 < φ < cφ, (3.20.b)

where κ−
l = −kδ + lπ/cφ. The Fourier coefficients are defined using (3.11) as

c∆,l = 1
cφ

ˆ cφ

0
∆0

[
∂h1

∂ψ

]
(φ) cos

(
nπφ

cφ

)
eiκ−

0 φdφ, (3.20.c)

which also accounts for the ϵM2
∞
∂q±

∂ψ
(φ)h±

0 (φ) terms taken to the right-hand side of (3.11),
which may be considered as known due to the perturbation expansion. Note that the
periodicity of this Fourier series is 2cφ to ensure a good approximation at the leading
and trailing edges.

Similarly, we may write the symmetric data in the no-flux condition (3.11) as

Σ0

[
∂h0

∂ψ

]
(φ) = −2A2

β∞
eikδφ, 0 < φ < cφ, (3.21.a)
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Σ0

[
∂h1

∂ψ

]
(φ) =

∞∑
l=−∞

cΣ,l e−iκ−
l
φ, 0 < φ < cφ, (3.21.b)

where the Fourier coefficients are defined using (3.11) as

cΣ,l = 1
cφ

ˆ cφ

0
Σ0

[
∂h1

∂ψ

]
(φ) cos

(
nπφ

cφ

)
eiκ−

0 φdφ. (3.21.c)

Combining the anti-symmetric (3.20.a, 3.20.b) and symmetric (3.21.a, 3.21.b) data yields
the original no-flux condition (3.11).

By applying the perturbation expansion to continuity of normal velocity across the
wake (3.13) and equating terms of equal order gives

∆0

[
∂h0

∂ψ

]
(φ) = 0, (3.22.a)

∆0

[
∂h1

∂ψ

]
(φ) = Γ

(
∂2h−

∂φ∂ψ
(φ) − ikM2

∞δ
∂h−

∂ψ
(φ)

)
, φ > cφ. (3.22.b)

Using (3.15) allows us to write the continuity of pressure condition (3.14) as

∆0 [h0] (φ) = 2πiP0e−iκ−
0 φ, φ > cφ, (3.23.a)

∆0 [h1] (φ) = 2πiP1e−iκ−
0 φ + Γ

(
∂h−

∂φ
(φ) − ikM2

∞δh
−(φ)

)
, φ > cφ, (3.23.b)

where P0 and P1 are constants of integration to be determined by the unsteady Kutta
condition (Ayton et al., 2016).

3.3.1 Solution to O(1) Problem

The O(1) system of equations (3.16.a, 3.19.a, 3.20.a, 3.21.a, 3.22.a, 3.23.a) was considered
by Glegg (1999) and Posson et al. (2010b). This corresponds to step IVb in the road
map. The solution is written in terms of the φ-Fourier transform of the jump in potential
either side of the blade and wake:

D0(γ) = 1
2π

ˆ ∞

0
∆0 [h] (φ)eiγφdφ,
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and the solution is

D0(γ) = −iAn
β∞(2π)2(γ − κ−

0 )J+(γ)J−(κ−
0 ) −

∞∑
n=0

(A0,n + C0,n)ei(γ−θ−
n )cφ

i(γ − κ−
0 )(γ − θ−

n ) · J−(θ−
n )

J−(γ)

−
∞∑
n=0

B0,n

(γ − θ+
n ) · J+(θ+

n )
J+(γ) , (3.24)

where all undefined terms may be found in the appendices. The function D0(γ) was
found by Glegg (1999), and the Fourier transform was inverted to provide the acoustic
field in the upstream and downstream regions. The acoustic field in the inter-blade region
was found by Posson et al. (2010b) by choosing an appropriate contour of integration
dependent on the region in the channel where the acoustic field was to be evaluated.

3.3.2 Solution to O(ϵ) Problem

Having solved the O(1) equation, we now move on to the O(ϵ) equation. In particular,
we seek to generate an integral equation that will be amenable to the Wiener–Hopf
method. Following Glegg (1999), we seek a solution using integral transforms. Currently,
h1 has a discontinuity across each blade and wake and consequently its derivatives are
not integrable. Therefore, we introduce generalised derivatives (Lighthill, 1958) such that
the Laplacian operator becomes

∇2h1 = ∇̃2h1 −
∞∑

n=−∞
∆n[h1](φ)δ′(ψ − nsφ) −

∞∑
n=−∞

∆n

[
∂h1

∂ψ

]
(φ)δ(ψ − nsφ), (3.25)

where ∇̃2 represents the Laplacian operator with discontinuities removed, the second
term on the right represents the discontinuity of acoustic potential either side of the
blade and wake, and the third term on the right represents the discontinuity of normal
velocity either side of the blade and wake. This step corresponds to step IVc in the road
map. Crucially, the above is expressed in the (φ, ψ)-space, not in physical space.

In Glegg (1999), the last term in (3.25) disappears on the aerofoil surfaces because
the blades are infinitesimally thin, so there is no jump in the normal velocity either side
of the blade. However, although the blades are “thin" in our (φ, ψ)-space, they have been
converted from thick blades in physical space, and therefore will induce some mass flux in
order to satisfy the no-flux condition in the physical domain. Also, in Glegg (1999), the
last term in (3.25) disappears along the wake, because it is not a source of mass injection.
Whilst this condition is true in our case in physical space, the mean flow circulation has
induced a shift in the upper and lower trailing edges in the (φ, ψ)-space, so some mass
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injection is required in the transformed space in order to have continuous normal velocity
in the physical space.

The jump in the acoustic potential across a blade-streamline is unknown and must be
found as part of the solution. Conversely, the jump ψ-derivative of the acoustic potential
is known in terms of mean flow quantities and the O(1) solution.

As is typical in cascade acoustics problems, we note that the periodicity of the
background flow and gust furnishes a quasi-periodic condition on the physical unsteady
potential:

G′(φ+ ndφ, ψ + nsφ) = G′(φ, ψ)einσφ ,

where σφ is the inter-blade phase angle of the gust in (φ, ψ)-space so that σφ = k(dφ + knsφ).
The inter-blade phase angle in the physical domain, σ, is obtained using (3.4). In terms
of the modified potential, this quasi-periodic condition becomes

h1(φ+ ndφ, ψ + nsφ) = h1(φ, ψ)einσ′
φ , (3.26)

where the modified inter-blade phase angle is σ′
φ = k(δdφ + knsφ). We will use this

relation repeatedly to reduce the problem from an infinite cascade to a strip of finite
height. For example, by inserting (3.26) into the expression for the generalised Laplacian
(3.25), we may rewrite the O(ϵ) governing equation (3.16.b) as

∂2h1

∂φ2 + ∂2h1

∂ψ2 + k2w2h1 = S(φ, ψ)+
∞∑

n=−∞
∆0 [h1] (φ− ndφ)δ′(ψ − nsφ)einσ′

φ

+
∞∑

n=−∞
∆0

[
∂h1

∂ψ

]
(φ− ndφ)δ(ψ − nsφ)einσ′

φ . (3.27)

We define the Fourier integral transform and its inverse as

F (γ, µ) = 1
(2π)2

ˆ ∞

−∞

ˆ ∞

−∞
f(φ, ψ)eiγφ+iµψ dφ dψ,

f(φ, ψ) =
ˆ ∞

−∞

ˆ ∞

−∞
F (γ, µ)e−iγφ−iµψ dγ dµ.

Applying the transform to the left-hand side of (3.27) yields

(−γ2 − µ2 + k2w2)H1(γ, µ) = s0(γ, µ) + 1
2π

∞∑
n=−∞

{−iµD1(γ) +G(γ)} ein(σ′
φ+γdφ+µsφ),

(3.28)
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where

s0(γ, µ) = 1
(2π)2

ˆ ∞

−∞

ˆ ∞

−∞
S(φ, ψ)eiγφ+iµψ dφ dψ, (3.29)

D1(γ) = 1
2π

ˆ ∞

0
∆0 [h1] (φ)eiγφdφ, (3.30)

G(γ) = 1
2π

ˆ ∞

0
∆0

[
∂h1

∂ψ

]
(φ)eiγφdφ. (3.31)

The first of these expressions (3.29) is known in terms of the background flow quantities
and O(1) solution. The last of these expressions (3.31) is also known, and may be
evaluated using the no-flux condition on the blade (3.21.b) and continuity of normal
velocity either side of the wake (3.22.b, 3.53) to obtain

G(γ) =
∞∑

l=−∞

c∆,l
(
(−1)lei(γ−κ−

0 )cφ − 1
)

2πi(γ − κ−
l )

+ Γ
2π

∑
±

±ζκ−
0
H±′

0,κ−
0

ei(γ−κ−
0 )cφ

γ − κ−
0

+
∞∑

m=−∞

ζ−
mH

′
0,mei(γ−λ−

m)cφ

γ − λ−
m

 .
The problem is now to find D1(γ) – the Fourier transform of the jump in acoustic
potential either side of the blade and wake. To do so, we must obtain an expression for
the sum of the normal derivative in order to apply the relevant boundary conditions.

We now invert the Fourier transform in (3.28) to obtain an integral equation into
which we may insert the known boundary data:

h1(φ, ψ) =
ˆ ∞

−∞

ˆ ∞

−∞

e−iγφ−iµψ

k2w2 − µ2 − γ2 ×{
s0(γ, µ) + 1

2π

∞∑
n=−∞

[−iµD1(γ) +G(γ)] ein(σ′
φ+γdφ+µsφ)

}
dγdµ. (3.32)

The µ integral can be carried out using contour integration by writing ζ =
√
k2w2 − γ2

where the branch cut is taken such that Im [ζ] > 0 when γ is in a strip in the spectral
plane for the Wiener–Hopf method. This gives

h1(φ, ψ) =
ˆ ∞

−∞

s1(γ) + 1
2

∞∑
n=−∞

−D1(γ)sgn (nsφ − ψ)

+ G(γ)
iζ

ein(σ′
φ+γdφ)+iζ|nsφ−ψ|

e−iγφdγ, (3.33)
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where we have used the quasi-periodicity (3.26) of the source terms to write

s1(γ, ψ) = 1
4iπζ

ˆ sφ

0
Sφ(γ, ψ1)

∞∑
n=−∞

ein(σ′
φ+γdφ)+iζ|ψ1+nsφ−ψ| dψ1,

Sφ(γ, ψ1) =
ˆ ∞

−∞
S(φ1, ψ1)eiγφ1dφ1. (3.34)

We differentiate (3.33) with respect to ψ and take the limit ψ → 0± to obtain

∂h±
1

∂ψ
(φ) = 2π

ˆ ∞

−∞
{−D1(γ)j(γ) +G(γ) [k(γ) ∓ 1] + S(γ)} e−iγφdγ, (3.35)

where

j(γ) = iζ
4π

∞∑
n=−∞

ein(σ′
φ+γdφ)+iζ|nsφ| = ζ

4π · sin (ζsφ)
cos (ζsφ) − cos

(
γdφ + σ′

φ

) , (3.36)

k(γ) = 1
4π

∞∑
n=−∞
n̸=0

sgn (nsφ) ein(σ′
φ+γdφ)+iζ|nsφ| = 1

4πi ·
sin

(
γdφ + σ′

φ

)
cos (ζsφ) − cos

(
γdφ + σ′

φ

) , (3.37)

S(γ) = − 1
8π2

ˆ sφ

0
Sφ(γ, ψ1)

∞∑
n=−∞

sgn(ψ1 + nsφ)ein(σ′
φ+dφγ)eiζ|ψ1+nsφ| dψ1

= − 1
8π2

ˆ sφ

0
Sφ(γ, ψ1)

∑
±

e±iζψ1

1 − ei(±ζsφ+σ′
φ

+γdφ) dψ1, (3.38)

and we have used (3.134, 3.135, 3.136) in the appendix to simplify the infinite sums. The
analysis of the transforms of these source terms is carried out in appendix 3.E where the
source terms are decomposed into Fourier-type series in the upstream, downstream and
inter-blade regions. The modal expansion corresponds to step IVd in the road map.

We note that if we take the difference of formulae (3.35) and use contour integration
to calculate the resulting integral, we recover the conditions for the jump in normal
velocity (3.20.b) and (3.23.b), as expected. Conversely, summing formulae (3.35) gives
the governing integral equation for the acoustic field

Σ0

[
∂h1

∂ψ

]
(φ) = 4π

ˆ ∞

−∞
{−D1(γ)j(γ) +G(γ)k(γ) + S(γ)} e−iγφdγ, (3.39)

We see that h1 and its normal derivative ∂h1/∂ψ can be expressed solely in terms of
the unknown D1(γ). Thus our problem is now to find D1(γ) which solves the integral
equation (3.39) subject to (3.19.b), (3.20.b) and (3.23.b).
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The linearity of the governing equation and boundary conditions allow the solution
to be split into four parts:

h1(φ, ψ) = h1,Σ(φ, ψ) + h1,∆(φ, ψ) + h1,Γ(φ, ψ) + h1,S(φ, ψ).

There are several reasons for this splitting, chiefly that each component can be broadly
attributed to a feature of the background flow and distortion of the O(1) acoustic field.
Firstly, h1,Σ depends predominantly on the value of the sum of the normal velocity either
side of the blade. In chapter 2, it was shown that this sum is a function of camber and
angle of attack, and thickness terms generally do not appear. Therefore, h1,Σ may roughly
be viewed as the influence of camber and angle of attack on the acoustic field. Secondly,
h1,∆ depends predominantly on the jump in normal velocity. In the flat plate case, this
term disappears due to the symmetry of the blades, whereas in the present case this term
can be viewed as a mass source required to satisfy the no-flux condition. Similarly, this
jump was shown in chapter 2 to depend predominantly on aerofoil thickness, and therefore
h1,∆ may be roughly viewed as the influence of thickness on the acoustic field. However,
the separation of geometrical effects is not total, as both h1,Σ and h1,∆ include terms
proportional to the drift function, g, which does not have a straightforward dependence
on aerofoil geometry. Thirdly, h1,Γ arises due to the circulation induced on each blade
by the background flow. The sum and jump in its normal velocity vanish on the blade,
but it has a specified pressure jump (in (φ, ψ)−space) across the wake. This jump is
necessary to ensure no pressure jump in the physical (x, y)−space. This disparity arises
due to the circulation around the blade in mean flow. Fourthly, and finally, h1,S depends
on the source terms in the equation only. Similarly to h1,Γ, the sum and jump in its
normal velocity on the blades disappear, but unlike the previous solutions it has a forcing
term in the governing Helmholtz equation. This forcing depends on the background flow,
and the distortion of the O(1) solution by the background flow.

In addition to the above physical reasons, this splitting substantially reduces the
mathematical complexity of the problem. Each component induces its own system of
Wiener–Hopf problems, and these may be solved separately. The Kutta condition is
enforced individually for each component. When the Fourier transform is inverted, the
components may be inverted individually, which yields slightly more tractable expressions,
each of which may be verified independently.

In the following sections, the governing equations and boundary conditions are stated
for each of the four components and we solve for the relevant D1,x(γ) (defined in an
analogous way to (3.30)). The Fourier transform of the jump in potential either side of
the blade is solved using a similar Wiener–Hopf method to Glegg (1999) and the solution
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is stated in each case. The analysis is carried out in section 3.B of the appendices, where
the definitions of all new parameters may be found.

3.3.2.1 h1,Σ Problem and Solution (Road Map Step Va)

The governing equation is

Σ0

[
∂h1,Σ

∂ψ

]
(φ) = −4π

ˆ ∞

−∞
D1,Σ(γ)j(γ)e−iγφdγ, (3.40.a)

subject to

∆0 [h1,Σ] (φ) = 0, φ < 0; (3.40.b)

Σ0

[
∂h1,Σ

∂ψ

]
(φ) =

∞∑
l=−∞

cΣ,l e−iκ−
l
φ, 0 < φ < cφ; (3.40.c)

∆0

[
∂h1,Σ

∂ψ

]
(φ) = 0, 0 < φ < cφ; (3.40.d)

∆0

[
∂h1,Σ

∂ψ

]
(φ) = 0, φ > cφ; (3.40.e)

∆0 [h1,Σ] (φ) = 2πiP1,Σe−iκ−
0 φ, φ > cφ. (3.40.f)

This problem corresponds to the homogeneous Helmholtz equation with symmetric
boundary conditions on each blade (3.21.b), along with some unknown vortex shedding
into the wake. The decomposition of the boundary data into a Fourier series means that
the method of solution is relevant to a range of applications where arbitrary boundary
data is prescribed. The method of solution is described in appendix 3.B.2. The solution
is

D1,Σ(γ) =
∞∑

l=−∞

T1,Σ,l

γ − κ−
l

· 1
J+(γ) −

∞∑
l=−∞

S1,Σ,lei(γ−κ−
l

)cφ

i(γ − κ−
0 )(γ − κ−

l ) · J−(κ−
l )

J−(γ)

−
∞∑
n=0

B1,Σ,n

γ − θ+
n

· J+(θ+
n )

J+(γ) −
∞∑
n=0

(A1,Σ,n + C1,Σ,n) eicφ(γ−θ−
n )

i(γ − κ−
0 )(γ − θ−

n ) · J−(θ−
n )

J−(γ) .

3.3.2.2 h1,∆ Problem and Solution (Road Map Step Vb)

The governing equation is

Σ0

[
∂h1,∆

∂ψ

]
(φ) = 4π

ˆ ∞

−∞
{−D1,∆(γ)j(γ) +G∆(γ)k(γ)} e−iγφdγ, (3.41.a)
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where

G∆(γ) =
∞∑

l=−∞

c∆,l
(
(−1)lei(γ−κ−

0 )cφ − 1
)

2πi(γ − κ−
l ) .

This integral equation is solved subject to

∆0 [h1,∆] (φ) =0, φ < 0; (3.41.b)

Σ0

[
∂h1,∆

∂ψ

]
(φ) =0, 0 < φ < cφ; (3.41.c)

∆0

[
∂h1,∆

∂ψ

]
(φ) =

∞∑
l=−∞

gl e−iκ−
l
φ, 0 < φ < cφ; (3.41.d)

∆0

[
∂h1,∆

∂ψ

]
(φ) =0, φ > cφ; (3.41.e)

∆0 [h1,∆] (φ) =2πiP1,∆e−iκ−
0 φ, φ > cφ. (3.41.f)

This problem corresponds to the homogeneous Helmholtz equation with anti-symmetric
boundary conditions along the blade. This term is not present in the flat plate case,
but the blade geometry induces a difference between upper and lower surface velocities,
which generates anti-symmetric terms in the boundary data (3.20.b). The method of
solution is described in appendix 3.B.3 . The solution is

D1,∆(γ) =
∞∑

l=−∞

T1,∆,l

γ − κ−
l

· 1
J+(γ) −

∞∑
l=−∞

S1,∆,lei(γ−κ−
l

)cφ

i(γ − κ−
0 )(γ − κ−

l ) · J−(κ−
l )

J−(γ)

+
∞∑

m=−∞

R1,∆,m

γ − λ−
m

· 1
J+(γ) −

∞∑
m=−∞

U1,∆,m

i(γ − κ−
0 )(γ − λ+

m) · 1
J−(γ)

−
∞∑
n=0

B1,∆,n

γ − θ+
n

· J+(θ+
n )

J+(γ) −
∞∑
n=0

(A1,∆,n + C1,∆,n) eicφ(γ−θ−
n )

i(γ − κ−
0 )(γ − θ−

n ) · J−(θ−
n )

J−(γ) .

3.3.2.3 h1,Γ Problem and Solution (Road Map Step Vc)

The governing equation is

Σ0

[
∂h1,Γ

∂ψ

]
(φ) = 4π

ˆ ∞

−∞
{−D1,Γ(γ)j(γ) +GΓ(γ)k(γ)} e−iγφdγ, (3.42.a)
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where

GΓ(γ) = Γ
2π

 ∞∑
m=−∞

ζ−
mH

′
0,mei(γ−λ−

m)cφ

γ − λ−
m

+
∑
±

±ζκ−
0
H±′

0,κ−
0

ei(γ−κ−
0 )cφ

γ − κ−
0

 .
This integral equation is solved subject to

∆0 [h1,Γ] (φ) = 0, φ < 0; (3.42b)

Σ0

[
∂h1,Γ

∂ψ

]
(φ) = 0, 0 < φ < cφ; (3.42.c)

∆0

[
∂h1,Γ

∂ψ

]
(φ) = 0, 0 < φ < cφ; (3.42.d)

∆0

[
∂h1,Γ

∂ψ

]
(φ) =

Γ
∑

±
∓iζκ−

0
H±′

0,κ−
0

e−iκ−
0 φ − i

∞∑
m=−∞

ζ−
mH

′
0,me−iλ−

mφ

 φ > cφ; (3.42.e)

∆0 [h1,Γ] (φ) =

2πiP1,Γe−iκ−
0 φ + Γ

(
H±′

0,κ−
0

e−iκ−
0 φ +

∞∑
m=−∞

H′
0,me−iλ−

mφ

)
, φ > cφ. (3.42.f)

This problem corresponds to the homogeneous Helmholtz equation with homogeneous
boundary conditions on the blade and prescribed data along the wake (3.22.b, 3.23.b)
that necessitates no flux and no pressure jump across the wake in physical space. In
this case it happens that this prescribed data can be expressed in a Fourier series of the
acoustic modes of the cascade, but any type of Fourier series could have been considered.
However, the acoustic potential function is not fully specified along the wake, and the
unknown constant P1,Γ still needs to be determined via the Wiener–Hopf method to
specify the strength of vortex shedding into the wake. The method of solution is described
in appendix 3.B.4. The solution is

D1,Γ(γ) = − Γ
2πi ·

∞∑
m=−∞

(λ−
m − κ−

0 )H′
0,mei(γ−λ−

m)cφ

(γ − κ−
0 )(γ − λ−

m) · J−(λ−
m)

J−(γ)

−
∞∑

m=−∞

U1,Γ,meiγcφ

i(γ − κ−
0 )(γ − λ+

m) · 1
J−(γ) −

∞∑
n=0

B1,Γ,n

γ − θ+
n

· J+(θ+
n )

J+(γ)

−
∞∑
n=0

C1,Γ,neicφ(γ−θ−
n )

i(γ − κ−
0 )(γ − θ−

n ) · J−(θ−
n )

J−(γ) .
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3.3.2.4 h1,S Problem and Solution (Road Map Step Vd)

The governing equation is

Σ0

[
∂h1,S

∂ψ

]
(φ) = 4π

ˆ ∞

−∞
{−D1,S(γ)j(γ) + S(γ)} e−iγφdγ, (3.43.a)

subject to homogeneous boundary conditions analogous to those in (3.41.b), (3.41.c) and
(3.41.f). This problem is the inhomogeneous Helmholtz equation subject to homogeneous
boundary conditions in a cascade geometry. The only requirements on the source terms
are that they can be expanded in the upstream and downstream regions as series of
the form (3.140) and (3.142) respectively. Consequently, this method of solution can
be applied to other problems that involve forcing terms in a cascade geometry, such as
in Guzman Inigo et al. (2019). By linearity, this solution can be combined with any of
h1,Σ, h1,∆ or h1,Γ to generate a solution to the inhomogeneous Helmholtz equation with
inhomogeneous boundary conditions. The boundary conditions for h1,S are given by

∆0 [h1,S] (φ) = 0, φ < 0; (3.43b)

Σ0

[
∂h1,S

∂ψ

]
(φ) = 0, 0 < φ < cφ; (3.43.c)

∆0

[
∂h1,S

∂ψ

]
(φ) = 0, 0 < φ < cφ; (3.43.d)

∆0

[
∂h1,S

∂ψ

]
(φ) = 0, φ < cφ; (3.43.e)

∆0 [h1,S] (φ) = 2πiP1,Se−iκ−
0 φ, φ > cφ. (3.43.f)

The method of solution is described in appendix 3.B.5 The solution is

D1,S(γ) =
∞∑

m=−∞

R1,S,m

γ − λ−
m

· 1
J+(γ) −

∞∑
m=−∞

U1,S,m

i(γ − κ−
0 )(γ − λ+

m) · eiγcφ

J−(γ)

−
∞∑
n=0

B1,S,n

γ − θ+
n

· J+(θ+
n )

J+(γ) −
∞∑
n=0

(A1,S,n + C1,S,n) eicφ(γ−θ−
n )

i(γ − κ−
0 )(γ − θ−

n ) · J−(θ−
n )

J−(γ) .

3.4 Inversion of Fourier Transform

In this section, we invert the Fourier transforms of the O(ϵ) acoustic field found in section
3.3.2. This corresponds to step VI in the road map. Since D1 is now known, the Fourier
inversion integral in (3.33) can now be computed analytically. The integral is computed
using residue calculus; this approach is similar to the inversion of the O(1) problem done
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sφ

dφ

ψ

φ
(I)
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(II)

(II)

(III)
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(IV) (V)

(V)

cφ

Fig. 3.6 Diagram indicating the different areas in the (φ, ψ)−plane which require different
regions of contour integration in the Fourier inversion.

in Posson et al. (2010b), except there are a large number of additional modes arising in
the O(ϵ) case.

The acoustic field is given by (3.33), which we rewrite as

h(φ, ψ) =
ˆ ∞

−∞

{ˆ sφ

0
ϵSφ(γ, ψ1)IS(γ, ψ, ψ1)dψ1

}

+D(γ)ID(γ, ψ) + ϵG(γ)IG(γ, ψ)
e−iγφdγ, (3.44)

where

ID(γ, ψ) = cos (ζ(ψ − sφ)) − ei(dφγ+σ′
φ) cos (ζψ)

2(cos (sφζ) − cos
(
dφγ + σ′

φ

) ,

IG(γ, ψ) = sin (ζ(ψ − sφ)) − ei(dφγ+σ′
φ) sin (ζψ)

2ζ
(
cos (sφζ) − cos

(
dφγ + σ′

φ

)) ,

IS(γ, ψ, ψ1) = sin (ζ(|ψ − ψ1| − sφ)) − ei(dφγ+σ′
φ)sgn(ψ−ψ1) sin (ζ|ψ − ψ1|)

4πζ
(
cos (sφζ) − cos

(
dφγ + σ′

φ

)) ,

the derivations of which are provided in equations (3.137, 3.138,3.139) of the appendix.
We proceed to evaluate this integral analytically.

The Fourier inversion is achieved by splitting the (φ, ψ)-plane into five regions, as
illustrated in figure 3.6. In a similar way to Posson et al. (2010b), the closure of the
contour for each term is determined by the location in the (φ, ψ)-plane. We calculate the
acoustic potential function in the strip 0 < ψ < sφ, which gives the function in the entire
domain via (3.26). We combine O(1) and O(ϵ) terms to give the full solution up to O(ϵ2).
After considerable calculation, cancellation and simplification, we obtain the following
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expressions, where the new constants and functions are defined in 3.G of the appendix.
Functions denoted by I represent the inhomogeneous functions required by the source
terms.

3.4.1 Upstream Region (I)

In the upstream region,

h(φ, ψ) =
∞∑

m=−∞
H+
m exp

[
−i
(
λ+
mφ− ζ+

mψ
)]

+
∑
M+
m

ϵS+
P,M+

m
I+
P,M+

m
(φ, ψ).

3.4.2 Inter-Blade Upstream Region (II)

In the inter-blade upstream region,

h(φ, ψ) =
∞∑

m=−∞

(H+
a,m cos

(
ψζ+

m

)
+ H+

G,a,m sin(ζ+
mψ)

)
exp

[
−iλ+

mφ
]

+
(
H−

R,a,m cos(ψζ−
m) + H−

G,a,m exp
[
iζ−
mψ

])
exp

[
−iλ−

mφ
]

+
∞∑
n=0

(
Hθ+,a,n exp

[
−iθ+

n φ
]

+ Hθ−,a,n exp
[
−iθ−

n φ
])

cos (nψ)

+
∞∑

l=−∞

{
(HS,a,l + HΣ,a,l) cos

(
ζκ−

l
(ψ − sφ)

)
+ HS,b,l cos

(
ζκ−

l
ψ
)

+ (HS,c,l + H∆,a,l) sin
(
ζκ−

l
(ψ − sφ)

)
+ HS,d,l sin

(
ζκ−

l
ψ
)}

× exp
[
−iκ−

l φ
]

+
∑
l1,l2

ϵSil1,l2I
i
l1,l2(φ, ψ).

3.4.3 Inter-Blade Inner Region (III)

In the inter-blade inner region,

h(φ, ψ) =
∞∑
n=0

(Hθ+,a,n + Hθ+,b,n) exp
[
−iθ+

n φ
]
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+ (Hθ−,a,n + Hθ−,b,n) exp
[
−iθ−

n φ
] cos (nψ)

+
∞∑

l=−∞

{
(HS,a,l + HΣ,a,l) cos

(
ζκ−

l
(ψ − sφ)

)
+ (HS,b,l + HΣ,b,l) cos

(
ζκ−

l
ψ
)

+ (HS,c,l + H∆,a,l) sin
(
ζκ−

l
(ψ − sφ)

)
+ (HS,d,l + H∆,b,l) sin

(
ζκ−

l
ψ
)}

× exp
[
−iκ−

l φ
]

+
∑
l1,l2

ϵSil1,l2I
i
l1,l2(φ, ψ).

3.4.4 Inter-Blade Downstream Region (IV)

In the inter-blade downstream region,

h(φ, ψ) =
∞∑

m=−∞


(
H−
b,m cos

(
(ψ − sφ)ζ−

m

)
+ H−

G,b,m sin
(
(ψ − sφ)ζ−

m

)
+ H−

m,b exp
[
−iζ−

mψ
] )

exp
[
−iλ−

mφ
]

+
(
H+

U,b,m cos((ψ − sφ)ζ+
m) + H+

G,b,m exp
[
−iζ+

mψ
])

exp
[
−iλ+

mφ
]

+
(
λ−
m(ψ − sφ) − ζ−

mφ)
)
H−

Γ,m,be−i(λ−
mφ+ζ−

mψ)


+

∞∑
n=0

(
Hθ+,b,n exp

[
−iθ+

n φ
]

+ Hθ−,b,n exp
[
−iθ−

n φ
])

cos (nψ)

+
∞∑

l=−∞

{
HS,a,l cos

(
ζκ−

l
(ψ − sφ)

)
+ (HS,b,l + HΣ,b,l) cos

(
ζκ−

l
ψ
)

+ HS,c,l sin
(
ζκ−

l
(ψ − sφ)

)
+ (HS,d,l + H∆,b,l) sin

(
ζκ−

l
ψ
)}

× exp
[
−iκ−

l φ
]

+
(∑

±
H−

Γ,κ−
0 ,±,b

exp
[
∓iζκ−

0
ψ
]

+ H−
κ−

0 ,b
cos

(
(ψ − sφ)ζκ−

0

))
exp

[
−iκ−

0 φ
]

+
∑
l1,l2

ϵSil1,l2I
i
l1,l2(φ, ψ).
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3.4.5 Downstream Region (V)

In the downstream region,

h(φ, ψ) =
∞∑

m=−∞
H−
m exp

[
−i
(
λ̃−
mφ+ ζ̃−

mψ
)]

+
∑
M−
m

ϵS−
P,M−

m
I−
P,M−

m
(φ, ψ) +

∑
N−
φ,n

ϵS−
N,N−

φ,n

I−
N,N−

φ,n

(φ, ψ)

+
∑
±
ϵS−

N,κ−
0 ,±

I−
N,κ−

0 ,±
(φ, ψ) +

∑
±

H−
κ−

0 ,±
e

−i(κ−
0 φ±ζ

κ−
0
ψ)
,

+
∞∑

m=−∞
H−

Γ,λ−
m
ψ exp

[
−i
(
λ̃−
mφ+ ζ̃−

mψ
)]
.

3.4.6 Fourier Inversion Discussion

It may be verified by hand that the acoustic potential satisfies the boundary conditions
of no discontinuities upstream (3.19.b), the specified normal velocity on either side of the
blade (3.20.b, 3.21.b), the specified jump in normal velocity (in (φ, ψ)−space) across the
wake (3.22.b) and the specified jump in acoustic potential across the wake (3.23.b). The
pressure jump also vanishes (except in the h1,Γ case, where a finite jump is permitted),
at the trailing edge, signifying the fulfilment of the unsteady Kutta condition. It can also
be verified that the function satisfies the inhomogeneous convected Helmholtz equation,
and has the correct forcing due to the source terms. In section 3.5 it will also be observed
that h is continuous across the different regions.

3.5 Results

In this section we present results to validate our solution against existing methods and
codes, as well as demonstrating the versatility of our method by plotting results for a
range of geometries and aeroacoustic parameters. Due to the large range of available
variables, it is impossible to present a comprehensive parameter study. We have therefore
chosen a range of illustrative cases (table 3.1), and for these we will present key unsteady
features exhibited by our solution that highlight the importance of accurately modelling
realistic aerofoil geometry.
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Case

Parameter Symbol A B C D E F

gap-to-chord ratio ∆/2 1 1 sec(20◦) 0.6 0.8 0.6

stagger angle χ 0◦ 0◦ 20◦ 30◦ 40◦ 30◦

Mach number M 0.5 0.5 0.2 0.3 0.3 0.3

non-dimensional frequency k 5π/4 13π/4 5 7.2 – –

spanwise wave number ks 0 0 0 0 0 0.1

inter-blade phase angle σφ 5π/2 13π/2 3π/4 π/4 3π/4 –

Table 3.1 Summary of different cascade and aeroacoustics parameters used in results
sections. Cases A and B are found in Hall (1997) and case C may be found in Posson
et al. (2010b).

3.5.1 Validation

We first present comparisons to well-known solutions for cascades of flat plates at zero
angle of attack. This is the asymptotic limit of our solution where ϵ = 0, and therefore our
solution should match other analytic and numerical models that cannot account for blade
geometry. The previously mentioned Wiener–Hopf method (Posson et al., 2010b) uses a
similar method to the present chapter but does not take into account blade geometry.
The mode-matching technique (Bouley et al., 2017) matches modal expressions in the
upstream, downstream and inter-blade domains by enforcing conservation laws. The
LINSUB code (implemented here by Hall (1997)) makes use of a semi-numerical model
due to Smith (1973) and compares favourably to experimental results.

We present two qualitative validations: firstly, we plot the surface pressure as predicted
by the four methods in figures 3.7a and 3.7b. The agreement for both frequencies is
excellent, and there are no discernible differences between the methods. The cascades
considered in cases A and B have zero stagger angle. Consequently, we also present a
second validation for a staggered cascade. In figure 3.8 we compare the pressure fields
for flat plates to the field found using the method of Posson et al. (2010b). Again, the
agreement is excellent and there are no discernible differences between the methods.
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Fig. 3.7 Validations of surface pressure jump for flat plates. The real ( ) and imaginary
( ) parts of the blade pressure jump calculated by the present method are compared
to the Wiener–Hopf method (Posson et al., 2010b), a mode-matching technique (Bouley
et al., 2017), and a numerical method (Hall, 1997). The cascade and aeroacoustic
parameters are in table 3.1.
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Fig. 3.8 Comparison to figure 11 of Posson et al. (2010b). The geometrical and aeroacoustic
parameters correspond to case C in table 3.1. The color maps are the same in each figure.
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Fig. 3.9 Scattered pressure field for cascade and aeroacoustic parameters defined in case
D in table 3.1.

3.5.2 Effects of Realistic Geometry

We now illustrate the versatility of the solution by calculating key aeroacoustic properties
for a variety of cascade geometries. The results in this section use aerofoils from the
NACA four-digit series.

3.5.2.1 An Illustrative Example

We now present an illustrative example that demonstrates the importance of accounting
for blade geometry in gust-cascade interaction noise. We show that even subtle differences
in aerofoil geometry and angle of attack can have a strong effect on the scattered pressure
field. It is sufficient to consider a single example where the cascade and aeroacoustic
parameters are defined in case D in table 3.1.

The scattered pressure field is strongly affected by the inlet and outlet angle of
the flow, as illustrated in figure 3.9. We consider a system where a mode is close to
cut-on so that the effects of aerofoil geometry are most noticeable. In particular, the
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non-dimensional frequency is 0.1 below that of the nearest cut-on frequency. In the
first case, the blades are flat plates at zero angle of attack (figure 3.9a), and the modes
are cut-off in both the upstream and downstream regions. Modifying the inlet angle
changes the cut-on frequency of the modes in the upstream region, as illustrated in figure
3.9b. As the inlet angle is reduced to −3◦, the upstream mode becomes cut-on and the
pressure field no longer decays exponentially in the far-field upstream. Mathematically,
this difference is caused by modifications in blade spacing in the drift coordinates (3.4).
Generally, increasing the angle of attack also increases the cut-on frequency so that
modes that would otherwise be cut-on are evanescent. The downstream modes are also
cut-on since the cascade deflected the flow.

Further differences appear when we introduce camber, such as in figure 3.9c. Aerody-
namically, an effect of camber is to change the outlet angle of the flow by channelling the
flow through a curved duct. In particular, the trailing-edge angle plays an important role
in determining the overall deflection angle achieved by the cascade (Baddoo and Ayton,
2018b). In contrast to angle of attack, camber does not affect the modes in the upstream
region: these are uniquely determined by λ+

m in (3.55). Camber does, however, affect the
modes in the downstream region through generating circulation around individual blades.
Further details are available in appendix 3.F, but for now it is sufficient to note that the
cut-on frequencies are modified by increasing the flow deflection. For example, in figure
3.9c we plot the scattered pressure field for a cascade of NACA 3500 aerofoils at zero
angle of attack. This subtle change in geometry means that the mode in the downstream
region is now cut-on. Moreover, the angle of the scattered pressure wave is not the same
as that predicted by the solution for flat plates at angle of attack in figure 3.9b. The
original flat plate solution (Glegg, 1999; Posson et al., 2010b) is not able to account for
these effects, which we have shown are significant.

3.5.2.2 Unsteady Lift

Having found the acoustic potential field throughout the entire domain, we may now
calculate the unsteady loading on each blade. The unsteady loading is defined as the
integral of the unsteady pressure over the blade surface:

Cp =
˛
p′(s)ds.

We rewrite this integral in (φ, ψ)-space as

Cp = −
ˆ cφ

0
∆0

[
p
√

1 + (ϵy′
s)

2 (1 − ϵq)
]

(φ) dφ. (3.45)
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where ϵys corresponds to the blade surface (3.1) and we have ignored time and spanwise
dependence. The terms in the square root are expressible in terms of the surface velocity
of the background flow on the blade. In contrast to the unsteady lift integral for flat
plates (Glegg, 1999), the integral (3.45) may not be computed analytically. However, the
pressure p possesses a square-root singularity at the leading edge and a square-root zero
at the trailing edge. Accordingly, the integral (3.45) may be rapidly computed using a
modified version of Chebyshev–Gauss quadrature.

In figure 3.10 we plot the unsteady lift as a function of aerofoil geometry for a range
of parameters. Consistent with previous analyses for loaded cascades (Fang and Atassi,
1993), we observe that the mean loading greatly affects the unsteady loading in figures
3.10a and 3.10b. The mean loading is generally increased by the inclusion of angle of
attack (figure 3.10a) and camber (figure 3.10b). The effect appears to be more significant
for angle of attack, and in particular, the location of the peak just below k = 4 in figure
3.10a is modified. This effect is attributed to the change in the cut-on frequency of the
upstream acoustic modes. Conversely, the effect of aerofoil camber in figure 3.10b around
k = 4 is noticeable but not as significant. Camber appears to shift the location of the
second peak around k ≈ 7, possibly by distorting the duct modes by creating a curved
channel. Finally, thickness has a less significant effect on the unsteady loading insofar as
the cut-on frequencies of the modes are unchanged, as illustrated in figure 3.10c. The
inclusion of aerofoil thickness does not change the locations of the peaks in unsteady lift,
although it does affect the amplitude at the peaks.

3.5.2.3 Sound Power Output

The sound power from a source, bounded by a volume S, is given by

W =
ˆ
S

I · ndS, (3.46)

where I is the acoustic intensity vector and n is the unit normal pointing out of the
volume containing the sources.

We now define the surface S. Similarly to Glegg (1999), S must enclose all the sources
in the system. Accordingly, we consider a circular fan with B blades and, consequently,
the incoming disturbance and radiated field will repeat with B blades. Equivalently, the
inter-blade phase angle (in physical space) must be of the form σ = 2πl/B for an integer
l.
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Fig. 3.10 The unsteady lift for a range of blade geometries. The graphs correspond to
varying (a) the angle of attack, (b) the camber, (c) the thickness, and (d) all of the above.
The parameters are defined in case F in table 3.1 with kn = 1/2.
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The upstream and downstream surfaces S± are defined in the physical plane along
the lines

sx− dβ∞y = constant.

We now translate these lines into (φ, ψ)-space. The first point is to note that, in (3.3),
as x → ∓∞ we have

log
sinh

(
πi(τ−zβ)
d+is

)
sinh

(
πiτ
d+is

)
 ∼ ∓ πizβ

d+ is,

and, therefore,

(φ+ iψ)(zβ) ∼ zβ

(
1 − iα +H(∓1) ϵΓ

d+ is

)
,

where the final term corresponds to the turning angle of the flow. Consequently, we have

x ∼ R±
1 φ−R±

2 ψ,

β∞y ∼ R±
2 φ+R±

1 ψ,

where

R±
1 = ∆2 + dH(∓1)ϵΓ

|(d+ is)(1 − iα) +H(∓1)ϵΓ|2
,

R±
2 = α∆2 + sH(∓1)ϵΓ

|(d+ is)(1 − iα) +H(∓1)ϵΓ|2
.

Accordingly, the upstream and downstream surface lines in (φ, ψ)-space are
(
sR±

1 − dR±
2

)
φ−

(
dR±

1 + sR±
2

)
ψ = constant,

and the outward pointing unit normal to these lines is given by

n±
φ = ±

(
−sR±

1 + dR±
2 , dR

±
1 + sR±

2 , 0
)

∆
√(

R±
1

)2
+
(
R±

2

)2
.
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The (non-dimensional) acoustic intensity is given by (4.3) in Myers and Kerschen (1995)
as

I = ⟨
[
p′

ρ0
+ ∇G′ · U0

]
(ρ0∇G′ + ρU0)⟩ ,

where ⟨·⟩ denotes the expected value and U0 is the non-dimensional background flow,
and ρ0 is the non-dimensional local density value for the mean flow. By applying the
definition of scattered pressure (Myers and Kerschen, 1995, 2.1c), the term in square
brackets may be written as −∂G′/∂t. We may also write p′ = ρ/M2

0 , (where M0 is the
local Mach number for the mean flow) and by following the approaches of sections 3.8
and 17.5 of Glegg and Devenport (2017), we obtain

I = −ρ0 ⟨∂G
′

∂t

(
∇G′ −M2

0 U0
D0G

′

Dt

)
⟩ .

Since the real part of the potential function G′ is assumed, we may write

∂G′

∂t
=
∣∣∣∣∣∂G′

∂t

∣∣∣∣∣ cos(θ1 − kt),

∇G′ −M2
0 U0

DG′

Dt =
∣∣∣∣∣∇G′ −M2

0 U0
DG′

Dt

∣∣∣∣∣ cos(θ2 − kt),

where θj refers to the phase of the term on the left-hand side of each equation. The
modulus terms may be taken outside of the expected value, and by using

⟨cos(θ1 − kt) cos(θ2 − kt)⟩ = 1
2 ⟨cos(θ1 + θ2 − 2kt) + cos(θ1 − θ2)⟩ = 1

2 cos(θ1 − θ2),

we may express the acoustic intensity as

I = −ρ0

2 Re
∂G′

∂t

(
∇G′ −M2

0 U0
D0G′

Dt

) . (3.47)

We may now integrate the acoustic intensity according to 3.46 in the (φ, ψ)-plane by
using the expression for the modified acoustic potential function found in 3.4.

In figure 3.11, we plot the upstream and downstream sound power outputs for a range
of blade geometries. Consistent with numerical and experimental studies by Gea-Aguilera
et al. (2016) and Fang and Atassi (1993), aerofoil camber and angle of attack (figures
3.11a & 3.11b) introduce significant aeroacoustic effects. In each case, we see that the
effects of geometry perturb the sound power output from the flat plate solution. In
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Fig. 3.11 Upstream (left) and downstream (right) sound power output as a function of
non-dimensional frequency for a range of aerofoil geometries. The aeroacoustic parameters
are case E in table 3.1, except for the non-dimensional frequency, which is the independent
variable here.
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the upstream sound power output we observe new local maxima and minima, which
we attribute to the new modes in the inter-blade channel that are not present in the
O(1) solution. Alternatively, these maxima and minima may also exist in the flat plate
solution, but the effect of aerofoil geometry is to change the frequency at which these
peaks appear. As the frequency increases, the plots in figure 3.11 leave the domain
of validity as the assumption kϵ ≪ 1 breaks down. The downstream sound power
output is general increased by the inclusion of camber, which is to be expected since
the camber deflects the flow downstream. There are subtle changes in the downstream
cut-on frequency for camber as indicated in figure 3.11b.

We attribute these observations to the strong influence of angle of attack and camber
on the background flow. In particular, the mean loading on symmetrical aerofoils is
generally much smaller than the loading on asymmetrical aerofoils, even at large stagger
angles as illustrated in chapter 2. When the blades are loaded, the cut-on frequencies
are different in the upstream and downstream regions (Fang and Atassi, 1993) due to
the distortion of the acoustic field by the background flow. This is observed most clearly
in figures 3.11a and 3.11b. In figure 3.11a, the angle of attack is varied and the cut-on
frequencies are slightly changed in both the upstream and downstream regions since the
flow is distorted in both regions. In terms of our solution expansion, for loaded blades
the contributions from the h1,Γ term – which is proportional to the circulation – are
far larger for loaded aerofoils. Additionally, the source terms are generally larger for
cambered aerofoils, and accordingly the h1,S term has a significant contribution.

In all the results presented, we see that the inclusion of realistic geometry can strongly
affect sound power predictions. The largest difference between the flat plate case and
the solution accounting for full aerofoil geometry (figure 3.11) shows a difference in
sound power level of approximately 4 dB. This is a significant amount, and we attribute
these effects predominantly to the inclusion of camber, which substantially deflects the
flow. Moreover, camber distorts the inter-blade channel, and consequently modifies the
duct modes. The results indicate that, for fan blade design purposes, camber should
certainly be appropriately modelled in aeroacoustic predictive tools. The present method
represents a powerful design tool to this end, and could be applied in industrial settings
to rapidly and accurately compute the steady and unsteady flow through a cascade of
realistic aerofoils.
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3.6 Conclusions

In this chapter we have presented an analytic expression for the acoustic field resulting
from an unsteady vortical or entropic gust impinging on a rectilinear cascade of thin
aerofoils in background flow at small angle of attack. In particular, we have solved the
inhomogeneous convected Helmholtz equation with inhomogeneous Neumann boundary
conditions in a cascade geometry. The resulting expression is valid in the upstream, inter-
blade, and downstream regions, and represents a considerable extension to existing theory,
by including the effects of realistic aerofoil geometry. Key aeroacoustic features, such as
the pressure field, sound power output and unsteady surface pressure may be evaluated
swiftly using Matlab codes. The solution is validated against previous analytical and
numerical approaches and is seen to give very good agreement.
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List of Symbols

Symbol Meaning

ϵ Order of magnitude of the background flow perturbation

q, µ Background flow horizontal and vertical perturbations

M∞ Upstream background flow Mach number

φ, ψ Velocity potential and streamfunction of background flow

dφ, sφ Horizontal and vertical blade spacings in (φ, ψ)-space

χφ Stagger angle in (φ, ψ)-space

∆φ Distance between adjacent leading edges in (φ, ψ)-space

c±
φ Length of upper and lower aerofoil surfaces in (φ, ψ)-space

α Angle of attack

ys Aerofoil shape function

h Modified acoustic potential function

p Modified pressure

β Prandtl–Glauert factor

k Reduced frequency

∆n[f ] Jump of f across ψ = nsφ

Σn[f ] Sum of f across ψ = nsφ

γ Spectral parameter in Fourier plane

ζ(γ)
√
k2w2 − γ2

Dx Fourier transform of ∆0[hx]

M± Upper/lower half-plane in γ-space

γ Bound vorticity distribution for background flow

Γ Background flow circulation
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j Kernel of Wiener–Hopf problem

J± Multiplicative splitting of the kernel j

θ±
n Zeros of J∓

λ±
m Poles of J∓

κ−
l −kδ + lπ/cφ

cΣ,l Fourier series coefficients of sum in normal velocity either side of each aerofoil

c∆,l Fourier series coefficients of jump in normal velocity either side of each aerofoil

S Source terms

S Fourier transform of source terms

Subscripts and superscripts

0 Leading-order terms

1 First-order terms

± Either terms located in M± or analytic in M±

Σ Terms with symmetric boundary conditions

∆ Terms with anti-symmetric boundary conditions

Γ Terms proportional to circulation

S Terms corresponding to source terms
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3.A O(1) Solution

We may write the O(1) problem as

∂2h0

∂φ2 + ∂2h0

∂ψ2 + k2w2h0 = 0, (3.48a)

subject to no discontinuities upstream:

∆0 [h0] (φ) = 0, φ < 0, (3.48b)

no-flux across the blade:

Σ0

[
∂h0

∂ψ

]
(φ) = −2An

β∞
eikδφ, 0 < φ < cφ, (3.48c)

∆0

[
∂h0

∂ψ

]
(φ) = 0, 0 < φ < cφ, (3.48d)

no-flux across the wake:

∆0

[
∂h0

∂ψ

]
(φ) = 0, φ > cφ, (3.48e)

and no pressure jump across the wake:

∆0 [h0] (φ) = 2πiP0eikδφ, φ > cφ. (3.48f)

The solution is given in terms of the Fourier transform of the jump in acoustic potential
either side of the blade streamline in (3.24). In that equation, A0,n, B0,n and C0,n are
defined analogously to section 3.B.2 with

T0,0 = −2An
β∞

, T0,l = 0, l ̸= 0.

The Fourier transform of the acoustic field may be inverted in the downstream region
(Glegg, 1999, §5.1) to obtain the value of the acoustic potential along the wake for insertion
into the boundary conditions (3.22.b) and (3.23.b). In a strip in the downstream region
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(0 < ψ < sφ, sφ(φ− cφ) < dφψ), we have

h0(φ, ψ) =
∞∑

m=−∞
H−

0,me−i(λ−
mφ+ζ−

mψ), (3.49)

+
∑
±
H−

0,κ−
0 ,±

e
−i(κ−

0 φ±ζ
κ−

0
ψ)
, (3.50)

where

H−
0,m = −πζ−

mD
(2,4)
0 (λ−

m)
∆φ

√
k2w2 − f 2

m

,

H−
0,κ−

0 ,±
= πiP0

2 · ei(dφκ−
0 +σ′

φ) − e
±isφζκ−

0

cos(dφκ−
0 + σ′

φ) − cos(sφζκ−
0

) .

Along the lower side of the wake (ψ = 0−) we have

h−
0 (φ) =

∑
±

H−
0,κ−

0 ,±
e

−i(κ−
0 φ+dφκ−

0 +σ′
φ±sφζκ−

0
)
+

∞∑
m=−∞

H−
0,me−iλ−

mφ,

∂h−
0

∂ψ
(φ) =

∑
±

∓iζκ−
0
H−

0,κ−
0 ,±

e
−i(κ−

0 φ+dφκ−
0 +σ′

φ±sφζκ−
0

)
− i

∞∑
m=−∞

ζ−
mH

−
0,me−iλ−

mφ,

where we have used the quasi-periodicity condition (3.26).
Finally, we define the constants

H±′
0,κ−

0
= −i

(
κ−

0 + kM2
∞δ
)
H−

0,κ−
0 ,±

e
−i(dφκ−

0 +σ′
φ±sφζκ−

0
)
, (3.51.a)

H′
0,m = −i

(
λ−
m + kM2

∞δ
)
H−

0,m, (3.51.b)

so that in the normal velocity continuity condition (3.13) we may insert

∂2h−

∂φ∂ψ
(φ) − ikM2

∞δ
∂h−

∂ψ
(φ) =

∑
±

∓iζκ−
0
H±′

0,κ−
0

e−iκ−
0 φ − i

∞∑
m=−∞

ζ−
mH

′
0,me−iλ−

mφ, (3.52)

and in the pressure continuity condition (3.14) we may insert

∂h−

∂φ
(φ) − ikM2

∞δh
−(φ) =

∑
±

H±′
0,κ−

0
e−iκ−

0 φ +
∞∑

m=−∞
H′

0,me−iλ−
mφ, . (3.53)
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3.B Solutions to Wiener–Hopf Problems

In this section we provide the details of the solutions to the integral equations (3.40.a),
(3.41.a), (3.42.a) and (3.43.a) subject to the relevant boundary conditions. This corre-
sponds to step V of the road map. The techniques used to solve each integral equation
are quite similar. Therefore, we will provide the most details for the first solution (h1,Σ)
and refer back to these for the subsequent solutions (h1,∆, h1,Γ and h1,S).

We begin by providing some crucial details of the Wiener–Hopf kernel.

3.B.1 Details of Wiener–Hopf Kernel, j(γ)

Similarly to Glegg (1999), the multiplicative splitting of the Wiener–Hopf kernel is given
by

j(γ) = ζ

4π

{
sin(ζsφ)

cos(ζsφ) − cos(γdφ + σ′
φ)

}
= J+(γ)J−(γ), (3.54)

where

J+(γ) = kw sin(kwsφ)
4π
(
cos(kwsφ) − cos(σ′

φ)
) ·

∏∞
n=0 (1 − γ/θ−

n )∏∞
m=−∞ (1 − γ/λ−

m)eΦ,

J−(γ) =
∏∞
m=0 (1 − γ/θ+

n )∏∞
m=−∞ (1 − γ/λ+

m)e−Φ,

and

Φ =−iγ
π

(sφ log(2 cos(χφ) + χφdφ) .

The zeros of J± are given by the duct modes

θ±
n = ±

√√√√k2w2 −
(
nπ

sφ

)2

,

and the poles are given by the acoustic modes

λ±
m = −fm sin(χφ) ± cos(χφ)

√
k2w2 − f 2

m, fm =
σ′
φ − 2πm

∆φ

. (3.55)
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The derivatives of J± evaluated at the duct modes are

J ′
±(θ∓

n ) = −θ∓
n sφ(1 + δn,1)

4π
(
1 − (−1)n cos(dφθ∓

n + σ′
φ)
)
J∓(θ∓

n )
.

It may be demonstrated using standard results of the Gamma function (Peake, 1992,
Appendix B), that the split kernel has asymptotic behaviour

J±(γ) = O
(
γ1/2

)
, as |γ| → ∞ in M±. (3.56)

During the Wiener-Hopf analysis it is necessary to perform additive splittings of functions
involving the Wiener-Hopf kernel. To expedite this processes, we define the auxiliary
functions

J̃±(γ, η±) = J−(γ)
γ − η± . (3.57)

Note that J̃± is not analytic in M± since it possesses a simple pole at γ = η±. Accordingly,
we use pole removal to obtain the additive splittings

[
J̃±(γ, η±)

]
±

= J±(γ) − J±(η±)
γ − η± ,

[
J̃±(γ, η±)

]
∓

= J±(η±)
γ − η± . (3.58)

We now present the solutions for the Wiener–Hopf equations for the D1,Σ, D1,∆, D1,Γ

and D1,S contributions.

3.B.2 Solution for D1,Σ

The integral equation and boundary conditions for ∆0 [h1,Σ] and D1,Σ are summarised in
(3.40.a–3.40.f). In a similar way to Glegg (1999), we split this problem into four coupled
problems which are amenable to the Wiener–Hopf method. We write

∆0 [h1,Σ] (φ) = ∆0
[
h

(1)
1,Σ

]
(φ) + ∆0

[
h

(2)
1,Σ

]
(φ) + ∆0

[
h

(3)
1,Σ

]
(φ) + ∆0

[
h

(4)
1,Σ

]
(φ), (3.59)

and its Fourier transform

D1,Σ(γ) = D
(1)
1,Σ(γ) +D

(2)
1,Σ(γ) +D

(3)
1,Σ(γ) +D

(4)
1,Σ(γ), (3.60)
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where each ∆0
[
h

(n)
1,Σ

]
and D

(n)
1,Σ satisfy a semi-infinite integral equation of the form

f
(n)
1,Σ(φ) = −4π

ˆ ∞

−∞
D

(n)
1,Σ(γ)j(γ)e−iγφ dγ, (3.62)

for n = 1, 2, 3, 4. The corresponding boundary values are

f
(1)
1,Σ(φ) =

∞∑
l=−∞

cΣ,l e−iκ−
l
φ, φ > 0; (3.62.a)

∆0
[
h

(1)
1,Σ

]
(φ) = 0, φ < 0; (3.62.b)

f
(2)
1,Σ(φ) = 0, φ < cφ; (3.63.a)

∆0
[
h

(1)
1,Σ

]
(φ) + ∆0

[
h

(2)
1,Σ

]
(φ) = 2πiP (2)

1,Σe−iκ−
0 φ, φ > cφ; (3.63.b)

f
(3)
1,Σ(φ) = 0, φ > 0; (3.64.a)

∆0
[
h

(2)
1,Σ

]
(φ) + ∆0

[
h

(3)
1,Σ

]
(φ) + ∆0

[
h

(4)
1,Σ

]
(φ) = 0, φ < 0; (3.64.b)

f
(4)
1,Σ(φ) = 0, φ < cφ; (3.65.a)

∆0
[
h

(3)
1,Σ

]
(φ) + ∆0

[
h

(4)
1,Σ

]
(φ) = 2πiP (4)

1,Σe−iκ−
0 φ, φ > cφ; (3.65.b)

where P (2)
1,Σ and P (4)

1,Σ are two constants of integration that will be specified to enforce the
Kutta condition. Summing the four above conditions results in the original boundary
conditions and, consequently, we may apply the Wiener–Hopf method to each semi-
infinite integral equation and sum the resulting contributions to obtain a solution to the
original equations.

3.B.2.1 Solution to First Wiener–Hopf Problem – D
(1)
1,Σ

In this section we solve the integral equation (3.62) for n = 1,

f
(1)
1,Σ(φ) = −4π

ˆ ∞

−∞
D

(1)
1,Σ(γ)j(γ)e−iγφ dγ, (3.66.a)
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subject to (3.62.a) and (3.62.b):

f
(1)
1,Σ(φ) =

∞∑
l=−∞

cΣ,l e−iκ−
l
φ, φ > 0; ∆0

[
h

(1)
1,Σ

]
(φ) = 0, φ < 0. (3.66.b)

Taking a Fourier transform of (3.66.a) gives

F
(1)
1,Σ,−(γ) + F

(1)
1,Σ,+(γ) = −4πD(1)

1,Σ,+(γ)j(γ), (3.67)

where

F
(1)
1,Σ,−(γ) = 1

2π

ˆ 0

−∞
f

(1)
1,Σ(φ)eiγφdφ, F

(1)
1,Σ,+(γ) = 1

2π

ˆ ∞

0
f

(1)
1,Σ(φ)eiγφdφ, (3.68.a)

D
(1)
1,Σ,+(γ) =

ˆ ∞

0
∆0

[
h

(1)
1,Σ

]
(φ)eiγφdφ. (3.68.b)

We may use (3.54) to multiplicatively factorise j = J−J+ and express the Wiener–Hopf
equation (3.67) as

F
(1)
1,Σ,−(γ)

4πJ−(γ) +
F

(1)
1,Σ,+(γ)

4πJ−(γ) = −D(1)
1,Σ,+(γ)J+(γ). (3.69)

Since we have decomposed the boundary data into a Fourier series, we are able to
analytically calculate its half-range Fourier transform. Applying the first relation in
(3.66.b) results in

F
(1)
1,Σ,+(γ) = 1

2πi

∞∑
l=−∞

cΣ,l

γ − κ−
l

.

The next step in the Wiener–Hopf analysis is to additively factorise the left-hand side
of (3.69). The first term is already analytic in the lower half plane but the second term
is not analytic in either half plane. Therefore, we apply the typical technique of pole
removal (Noble, 1958) to obtain

F
(1)
1,Σ,+(γ)
J−(γ) = 1

2πi

∞∑
l=−∞

cΣ,l

γ − κ−
l

1
J−(κ−

l )︸ ︷︷ ︸
+

+ 1
2πi

∞∑
l=−∞

cΣ,l

γ − κ−
l

{
1

J−(γ) − 1
J−(κ−

l )

}
︸ ︷︷ ︸

−

,
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where the underbrace ± denotes that the function is analytic in the upper or lower
half-plane respectively. Therefore, (3.69) becomes

F
(1)
1,Σ,−(γ)

4πJ−(γ) + 1
8π2i

∞∑
l=−∞

cΣ,l

γ − κ−
l

{
1

J−(γ) − 1
J−(κ−

l )

}

= −D(1)
1,Σ,+(γ)J+(γ) − 1

8π2i

∞∑
l=−∞

cΣ,l

γ − κ−
l

1
J−(κ−

l ) . (3.70)

We may now apply the standard Wiener–Hopf argument: since the left- and right-hand
sides of (3.70) are analytic in M∓ respectively, and they agree on a strip, each side
defines the analytic continuation of the other. Therefore, equation (3.70) defines an
entire function, E1(γ). By appealing to typical arguments that are justified in section
3.C, as |γ| → ∞ in M−, the left-hand side of (3.70) decays due to (3.126.a) and (3.56).
Similarly, as |γ| → ∞ in M+, the right-hand side of (3.70) is bounded due to (3.126.b)
and (3.56). Therefore, E1(γ) is bounded in the entire plane so Liouville’s theorem tells
us that it must be a constant and, since E1(γ) decays in M−, this constant must be zero.
Therefore, we may rearrange the right-hand side of (3.70) to obtain

D
(1)
1,Σ,+(γ) =

∞∑
l=−∞

T1,Σ,l

(γ − κ−
l ) · 1

J+(γ) , (3.71)

where

T1,Σ,l = −cΣ,l

8π2i · 1
J−(κ−

l ) .

3.B.2.2 Solution to Second Wiener–Hopf Problem – D
(2)
1,Σ

In this section we solve the integral equation (3.62) for n = 2,

f
(2)
1,Σ(φ) = −4π

ˆ ∞

−∞
D

(2)
1,Σ(γ)j(γ)e−iγφdγ, (3.72.a)

subject to (3.63.a) and (3.63.b):

f
(2)
1,Σ(φ) = 0, φ < cφ; ∆0

[
h

(1)
1,Σ

]
(φ) + ∆0

[
h

(2)
1,Σ

]
(φ) = 2πiP (2)

1,Σe−iκ−
0 φ, φ > cφ. (3.72.b)

Taking the Fourier transform of (3.72.a) gives

F
(2)
1,Σ,+(γ) = −4π

(
D

(2)
1,Σ,−(γ) +D

(2)
1,Σ,+

)
j(γ), (3.73)
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where

F
(2)
1,Σ,+(γ) = 1

2π

ˆ ∞

cφ

f
(2)
1,Σ(φ)eiγφdφ

= eiγcφ

2π

ˆ ∞

0
f

(2)
1,Σ(φ+ cφ)eiφγdφ = eiγcφF

∗(2)
1,Σ,+(γ), (3.74.a)

D
(2)
1,Σ,+(γ) = 1

2π

ˆ ∞

cφ

∆0
[
h

(2)
1,Σ

]
(φ)eiγφdφ

= eiγcφ

2π

ˆ ∞

0
∆0

[
h

(2)
1,Σ

]
(φ+ cφ)eiφγdφ = eiγcφD

∗(2)
1,Σ,+(γ), (3.74.b)

D
(2)
1,Σ,−(γ) = 1

2π

ˆ cφ

−∞
∆0

[
h

(2)
1,Σ

]
(φ)eiγφdφ

= eiγcφ

2π

ˆ 0

−∞
∆0

[
h

(2)
1,Σ

]
(φ+ cφ)eiφγdφ = eiγcφD

∗(2)
1,Σ,−(γ). (3.74.c)

Factoring out the eiγcφ dependence and dividing by J+ transforms the Wiener–Hopf
equation (3.73) to

F
∗(2)
1,Σ,+(γ)

4πJ+(γ) = −
(
D

∗(2)
1,Σ,−(γ) +D

∗(2)
1,Σ,+(γ)

)
J−(γ). (3.75)

We may use the downstream boundary condition for this problem (3.72.b) to write

D
∗(2)
1,Σ,+(γ) = −

P
∗(2)
1,Σ

γ − κ−
0

− 1
2π

ˆ ∞

0
∆0

[
h

(1)
1,Σ

]
(φ+ cφ)eiγφdφ. (3.76)

where P ∗(2)
1,Σ = P

(2)
1,Σe−iκ−

0 cφ . To calculate the remaining integral, we use the inversion
formula for the Fourier transform:

∆0
[
h

(1)
1,Σ

]
(φ) =

ˆ ∞−iτ1

−∞−iτ1

D
(1)
1,Σ(γ)e−iγφdγ,

for some sufficiently small τ1 > 0. By substituting this representation into our desired
integral in (3.76), we obtain

1
2π

ˆ ∞

0
∆0

[
h

(1)
1,Σ

]
(φ+ cφ)eiγφdφ = 1

2π

ˆ ∞

0

ˆ ∞−iτ1

−∞−iτ1

D
(1)
1,Σ(γ1)e−iγ1(φ+cφ)dγ1eiγφdφ.
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Rearranging the order of integration and computing the resulting φ-integral gives

1
2π

ˆ ∞

0
∆0

[
h

(1)
1,Σ

]
(φ+ cφ)eiγφdφ = 1

2πi

ˆ ∞−iτ1

−∞−iτ1

D
(1)
1,Σ(γ1)e−iγ1cφ

γ1 − γ
dγ1.

Inspection of the asymptotic behaviour of (3.71) determines that, since dφ < cφ, this
integral can be closed in M−. Since there are no branches in the integrand, the integral
will consist of the residues of simple poles; D(1)

1,Σ possesses simple poles at γ = κ−
l , θ−

n .
Accordingly, we obtain

1
2πi

ˆ ∞−iτ1

−∞−iτ1

1
J+(γ1)

∞∑
l=−∞

T1,Σ,l

(γ1 − κ−
l ) · e−iγ1cφ

γ1 − γ
dγ1

=
∞∑

l=−∞

T1,Σ,l

J+(κ−
l ) · e−iκ−

l
cφ

γ − κ−
l

+
∞∑
n=0


∞∑

l=−∞

T1,Σ,l

(θ−
n − κ−

l )

 · e−iθ−
n cφ

J ′
+(θ−

n )(γ − θ−
n ) ,

and, therefore,

1
2πi

ˆ ∞−iτ1

−∞−iτ1

D
(1)
1,Σ(γ1)e−iγ1cφ

γ1 − γ
dγ1 =

∞∑
l=−∞

S1,Σ,le−iκ−
l
cφ

i(κ−
0 − κ−

l )(γ − κ−
l )

+
∞∑
n=0

A1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 )(γ − θ−
n ) ,

where the constants S1,Σ,l and A1,Σ,n are defined as

S1,Σ,l = i(κ−
0 − κ−

l )
J+(κ−

l ) T1,Σ,l, A1,Σ,n = i(θ−
n − κ−

0 )
J ′

+(θ−
n ) ·

∞∑
l=−∞

T1,Σ,l

θ−
n − κ−

l

.

Finally, we combine the integral with (3.76) to obtain the expression

D
∗(2)
1,Σ,+(γ) = −

∞∑
l=−∞

S1,Σ,leiκ−
l
cφ

i(κ−
0 − κ−

l )(γ − κ−
l ) −

∞∑
n=0

A1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 )(γ − θ−
n ) −

P
∗(2)
1,Σ

γ − κ−
0
. (3.77)

We may now substitute this representation for D∗(2)
1,Σ,+ into the Wiener–Hopf equation

(3.75) to obtain

F
∗(2)
1,Σ,+(γ)

4πJ+(γ) = − J−(γ)D∗(2)
1,Σ,−(γ) + P

∗(2)
1,Σ J̃−(γ, κ−

0 )

+
∞∑

l=−∞

S1,Σ,leiκ−
l
cφ

i(κ−
0 − κ−

l ) J̃−(γ, κ−
l ) +

∞∑
n=0

A1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 ) J̃−(γ, θ−
n ).
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where we have used the auxiliary function J̃ introduced in (3.57).
The left-hand side of the above equation is analytic in the upper half plane, but there

are terms on the right-hand side which are not analytic in either plane. Therefore, we
use the additive splitting (3.58) to obtain

F
∗(2)
1,Σ,+(γ)

4πJ+(γ) −
∞∑

l=−∞

S1,Σ,le−iκ−
l
cφ

i(κ−
0 − κ−

l )
[
J̃−(γ, κ−

l )
]

+
−

∞∑
n=0

A1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 )
[
J̃−(γ, θ−

n )
]

+

−P ∗(2)
1,Σ

[
J̃−(γ, κ−

0 )
]

+
= −J−(γ)D∗(2)

1,Σ,−(γ) +
∞∑

l=−∞

S1,Σ,le−iκ−
l
cφ

i(κ−
0 − κ−

l )
[
J̃−(γ, κ−

l )
]

−

+
∞∑
n=0

A1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 )
[
J̃−(γ, θ−

n )
]

+
+ P

∗(2)
1,Σ

[
J̃−(γ, κ−

0 )
]

+
. (3.78)

In a similar way to section 3.B.2.1, we now apply the standard Wiener–Hopf argument.
In contrast to the previous section where the edge condition constrained the leading-edge
pressure singularity, we now apply the unsteady Kutta condition (Ayton et al., 2016)
which tells us that the intensity of the wake is such that both the velocity and pressure
are bounded at the trailing edge. Practically, this means that ∆0 [h1,Σ] (cφ) ̸= 0 and its
derivatives are finite. Consequently, the left-hand side of (3.78) is bounded. In a similar
way to before, integration by parts can be applied to show that D∗(2)

1,Σ,−(γ) = O(1/γ)
as |γ| → ∞ in M−. Therefore, in this limit the right-hand side of (3.78) tends to a
constant. Analytic continuation, Liouville’s theorem, and the fact that the left-hand side
of (3.78) decays in M+, indicates that this constant must be zero. This allows us to find
an appropriate value of ∆0

[
h

(2)
1,Σ

]
(cφ) that satisfies the Kutta condition. If we multiply

the left-hand side of (3.78) by γ and let |γ| → ∞ in M+, the left-hand side of (3.78)
indicates that

P
∗(2)
1,Σ = −

∞∑
l=−∞

S1,Σ,le−iκ−
l
cφ

i(κ−
0 − κ−

l ) · J−(κ−
l )

J−(κ−
0 ) −

∞∑
n=0

A1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 ) · J−(θ−
n )

J−(κ−
0 ) .

So that, after substituting in the downstream representation (3.77) and the expression
for the pressure constant (3.79), the right-hand side of (3.78) yields

D
(2)
1,Σ(γ) = −

∞∑
l=−∞

S1,Σ,lei(γ−κ−
l

)cφ

i(γ − κ−
0 )(γ − κ−

l ) · J−(κ−
l )

J−(γ) −
∞∑
n=0

A1,Σ,nei(γ−θ−
n )cφ

i(γ − κ−
0 )(γ − θ−

n ) · J−(θ−
n )

J−(γ) .

(3.79)

It should be noted that the only poles of D(2)
1,Σ in M+ are at the zeros of J− where γ = θ+

n .
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3.B.2.3 Solutions to Third and Fourth Wiener–Hopf Problems – D
(3)
1,Σ, D

(4)
1,Σ

Since the boundary conditions (3.64.b) and (3.65.b) for ∆0
[
h

(3)
1,Σ

]
and ∆0

[
h

(4)
1,Σ

]
are

coupled, we must solve for them simultaneously. Taking a Fourier Transform of (3.62)
and applying the boundary conditions for n = 3, 4 gives

F
(3)
1,Σ,−(γ) = −4π

(
D

(3)
1,Σ,−(γ) +D

(3)
1,Σ,+(γ)

)
j(γ), (3.80)

F
∗(4)
1,Σ,+(γ) = −4π

(
D

∗(4)
1,Σ,−(γ) +D

∗(4)
1,Σ,+(γ)

)
j(γ) (3.81)

where F (3)
1,Σ,−, D(3)

1,Σ,− and D(3)
1,Σ,+ are defined in an analogous way to (3.68.a) and (3.68.b),

and F
∗(4)
1,Σ,+, D∗(4)

1,Σ,+ and D
∗(4)
1,Σ,− are defined in an analogous way to (3.74.a), (3.74.b) and

(3.74.c). Using a similar approach to section 3.B.2.2, we may show that the upstream
boundary condition (3.64.a) is equivalent to

D
(3)
1,Σ,−(γ) = 1

2πi

ˆ ∞+iτ0

−∞+iτ0

D
(2)
1,Σ(γ1) +D

(4)
1,Σ(γ1)

γ1 − γ
dγ1,

for sufficiently small τ0 > 0. We now assume that the only poles of D(4)
1,Σ,− in M+ are

at γ = θ+
n . An equivalent assumption was made by Glegg (1999), and it turns out that

the same result is achieved by matching upstream and downstream solutions across the
inter-blade region (Peake, 1993). This assumption, and sufficiently fast decay, allows us
to close the above integral in M+ and evaluate it as

D
(3)
1,Σ,−(γ) = −

∞∑
n=0

B1,Σ,n

γ − θ+
n

, (3.82)

where B1,Σ,n are the residues of D(2)
1,Σ,−(γ1)+D

(4)
1,Σ,−(γ1) in γ = θ+

n . The residues of D(4)
1,Σ,−

are currently unknown, but the residues of D(2)
1,Σ,− are given by

D
(2)
r,Σ,k = −eiθ+

k
cφ

i(θ+
k − κ−

0 )J ′
−(θ+

k )


∞∑

l=−∞

S1,Σ,le−iκ−
l
φc

θ+
k − κ−

l

· J−(κ−
l )

+
∞∑
n=0

A1,Σ,ne−iθ−
n cφ

θ+
k − θ−

n

· J−(θ−
n )

.
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We may now substitute (3.82) into (3.80) and use the factorisations (3.54) and (3.58) to
obtain the Wiener–Hopf equation

F
(3)
1,Σ,−(γ)

4πJ−(γ) +
∞∑
n=0

B1,Σ,n

γ − θ+
n

[
J̃+(γ, θ+

n )
]

−
= D

(3)
1,Σ,+(γ)J+(γ) −

∞∑
n=0

B1,Σ,n

γ − θ+
n

[
J̃+(γ, θ+

n )
]

+
.

We appeal to similar edge conditions as those in section 3.B.2.1, and consequently apply
the typical Wiener–Hopf argument to obtain

D
(3)
1,Σ,+(γ) =

∞∑
n=0

B1,Σ,n

γ − θ+
n

·
{

1 − J+(θ+
n )

J+(γ)

}
.

When we combine this expression with the upstream representation (3.82) we obtain

D
(3)
1,Σ(γ) = −

∞∑
n=0

B1,Σ,n

γ − θ+
n

· J+(θ+
n )

J+(γ) . (3.83)

The residues B1,Σ,n still need to be determined; we now move onto the solution for
D

(4)
1,Σ. In a similar way to section 3.B.2.2, we may invert the Fourier transform for the

downstream boundary condition (3.65.b) to write

D
∗(4)
1,Σ,+(γ) = −

P
∗(4)
1,Σ

γ − κ−
0

− 1
2πi

ˆ ∞+iτ1

−∞−iτ1

∞∑
n=0

B1,Σ,n

(γ1 − γ)(γ1 − θ+
n )

{
1 − J+(θ+

n )
J+(γ1)

}
e−iγ1cφdγ1.

This integral can be closed in M− to obtain

D
∗(4)
1,Σ,+(γ) = −

P
∗(4)
1,Σ

γ − κ−
0

−
∞∑
n=0

C1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 )(γ − θ−
n ) , (3.84)

where

C1,Σ,n =
∞∑
k=0

i(θ−
n − κ−

0 )
(θ+
k − θ−

n ) · J+(θ+
k )

J ′
+(θ−

n ) · B1,Σ,k.

If we truncate the series, we may write this system of equations in matrix form:

C1,Σ = LB1,Σ, (3.85)

where

{L}n,m = i(θ−
n − κ−

0 )
(θ+
m − θ−

n ) · J+(θ+
m)

J ′
+(θ−

n ) .
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We now use the factorisations (3.54) and (3.58) to write the Wiener–Hopf equation (3.81)
in the form

F
∗(4)
1,Σ,+(γ)

4πJ+(γ) + P
∗(4)
1,Σ

[
J̃−(γ, κ−

0 )
]

+
+

∞∑
n=0

C1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 )
[
J̃−(γ, θ−

n )
]

+

= D
∗(4)
1,Σ,−(γ)J−(γ) − P

∗(4)
1,Σ

[
J̃−(γ, κ−

0 )
]

−
−

∞∑
n=0

C1,Σ,ne−icφθ−
n

i(θ−
n − κ−

0 )
[
J̃−(γ, θ−

n )
]

−
. (3.86)

A similar argument to section 3.B.2.2 and application of the unsteady Kutta condition
yields

P
∗(4)
1,Σ = −

∞∑
n=0

C1,Σ,ne−iθ−
n cφ

i(θ−
n − κ−

0 ) · J−(θ−
n )

J−(κ−
0 ) .

Therefore, rearranging (3.86) and applying the downstream boundary condition (3.84)
yields

D
(4)
1,Σ(γ) = −

∞∑
n=0

C1,Σ,neicφ(γ−θ−
n )

i(θ−
n − κ−

0 )(γ − θ−
n ) · J−(θ−

n )
J−(γ) . (3.87)

As expected from our previous assumption, D(4)
1,Σ only posseses poles in M+ at γ = θ+

n .
We calculate the residues at these points as

B1,Σ,n = D1,Σ,n −
∞∑
m=0

C1,Σ,nei(θ+
n−θ−

m)cφ

i(θ+
n − κ−

0 )(θ+
n − θ−

m) · J−(θ−
m)

J ′
−(θ+

n ) ,

or, in matrix form,

B1,Σ = Dr,Σ + FC1,Σ, (3.88)

where

{F}n,m = − ei(θ+
n−θ−

m)cφ

i(θ+
n − κ−

0 )(θ+
n − θ−

m) · J−(θ−
m)

J ′
−(θ+

n ) .

In a similar way to Glegg (1999), the pair of matrix equations (3.85) and (3.88) may be
combined and solved to give expressions for B1,Σ,n and C1,Σ,n. The solution for D1,Σ is
now complete.
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3.B.3 Solution for D1,∆

The integral equation and boundary conditions for ∆0 [h1,∆] and D1,∆ are summarised
in (3.41.a–3.41.f). Similarly to section 3.B.2, we split this problem into four coupled
problems in an analogous way to (3.59) and (3.60). Consequently, each ∆0

[
h

(n)
1,∆

]
and

D
(n)
1,∆ satisfy a semi-infinite integral equation of the form

f
(n)
1,∆(φ) = 4π

ˆ ∞

−∞

{
−D1,∆(γ)j(γ) +

(
δn,1G

(1)
∆ (γ) + δn,2G

(2)
∆ (γ)

)
· k(γ)

}
e−iγφdγ, (3.89)

for n = 1, 2, 3, 4, where

G
(1)
∆ (γ) = −

∞∑
l=−∞

c∆,l

2πi(γ − κ−
l ) , G

(2)
∆ (γ) =

∞∑
l=−∞

(−1)lc∆,l

2πi(γ − κ−
l )ei(γ−κ−

0 )cφ .

The corresponding boundary values are

f
(1)
1,∆(φ) = 0, φ > 0; (3.90.a)

∆0
[
h

(1)
1,∆

]
(φ) = 0, φ < 0; (3.90.b)

f
(2)
1,∆(φ) = 0, φ < cφ; (3.91.a)

∆0
[
h

(1)
1,∆

]
(φ) + ∆0

[
h

(2)
1,∆

]
(φ) = 2πiP (2)

1,∆e−iκ−
0 φ, φ > cφ; (3.91.b)

f
(3)
1,∆(φ) = 0, φ > 0; (3.92.a)

∆0
[
h

(2)
1,∆

]
(φ) + ∆0

[
h

(3)
1,∆

]
(φ) + ∆0

[
h

(4)
1,∆

]
(φ) = 0, φ < 0; (3.92.b)

f
(4)
1,∆(φ) = 0, φ < cφ; (3.93.a)

∆0
[
h

(3)
1,∆

]
(φ) + ∆0

[
h

(4)
1,∆

]
(φ) = 2πiP (4)

1,∆e−iκ−
0 φ, φ > cφ; (3.93.b)

where P (2)
1,∆ and P (4)

1,∆ are two constants of integration that will be specified to enforce the
Kutta condition. Summing the four above boundary values results in the original integral
equation. Consequently, we may apply the Wiener–Hopf method to each individual
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integral equation and sum the resulting contributions to obtain a solution to the original
integral equation.

3.B.3.1 Solution to First Wiener–Hopf Problem – D
(1)
1,∆

Taking a Fourier transform of (3.89) for n = 1, using the kernel splitting relation (3.54),
and applying (3.90.a) and (3.90.b) gives

F
(1)
1,∆,−(γ)

4πJ−(γ) = −D
(1)
1,∆,+(γ)J+(γ) +G

(1)
∆ (γ) k(γ)

J−(γ) . (3.94)

Now we note that the only poles of G(1)
∆ (γ)k(γ) in M− are at γ = κ−

l , λ
−
m. Therefore, we

may apply pole removal to remove the singularities at these locations and write

k(γ)G(1)
∆ (γ)

J−(γ) =
∞∑

m=−∞

k−
r,mG

(1)
∆ (λ−

m)
(γ − λ−

m)J−(λ−
m) −

∞∑
l=−∞

k(κ−
l )c∆,l

2πi(γ − κ−
l )J−(κ−

l )︸ ︷︷ ︸
+

+ k(γ)G(1)
∆ (γ)

J−(γ) −
∞∑

m=−∞

k−
r,mG

(1)
∆ (λ−

m)
(γ − λ−

m)J−(λ−
m) +

∞∑
l=−∞

k(κ−
l )c∆,l

2πi(γ − κ−
l )J−(κ−

l )︸ ︷︷ ︸
−

,

(3.95)

where k−
r,m are the residues of k at γ = λ−

m. Therefore, (3.94) becomes

F
(1)
1,∆,−(γ)

4πJ−(γ) − G
(1)
∆ (γ)k(γ)
J−(γ) +

∞∑
m=−∞

k−
r,mG

(1)
∆ (λ−

m)
(γ − λ−

m)Jm(λ−
m) −

∞∑
l=−∞

k(κ−
0 )c∆,l

2πi(γ − κ−
l )J−(κ−

l ) =

−D(1)
1,∆,+(γ)J+(γ) +

∞∑
m=−∞

k−
r,mG

(1)
∆ (λ−

m)
(γ − λ−

m)J−(λ−
m) −

∞∑
l=−∞

k(κ−
l )c∆,l

2πi(γ − κ−
l )J−(κ−

l ) .

(3.96)

We now appeal to an argument similar to that in section 3.B.2.1 to conclude that each
side of the above expression is equivalent to a constant that must vanish. Consequently,
we obtain the following expression

D
(1)
1,∆(γ) =

∞∑
l=−∞

T1,∆,l

(γ − κ−
l ) · 1

J+(γ) +
∞∑

m=−∞

R1,∆,m

(γ − λ−
m) · 1

J+(γ) , (3.97)



3.B Solutions to Wiener–Hopf Problems 113

where

R1,∆,m =
k−
r,mG

(1)
∆ (λ−

m)
J−(λ−

m) , T1,∆,l = c∆,lk(κ−
l )

2πiJ−(κ−
l ) .

3.B.3.2 Solution to Second Wiener–Hopf Problem – D
(2)
1,∆

Taking a Fourier transform of (3.89) for n = 2, using the kernel splitting relation (3.54),
and applying the analogous form of the upstream boundary values (3.91.a) gives

F
∗(2)
1+ (γ)

4πJ+(γ) = −
(
D

∗(2)
1,∆−(γ) +D

∗(2)
1,∆+(γ)

)
J−(γ) +G

∗(2)
∆ (γ) k(γ)

J+(γ) , (3.98)

where F ∗(2)
1,∆,+, D∗(2)

1,∆,− and D∗(2)
1,∆,+ are defined analogously to (3.74.a), (3.74.b) and (3.74.c)

respectively, and G
∗(2)
∆ (γ) = G

(2)
∆ (γ)e−icφγ. Using a similar approach to section 3.B.2.2,

we may use the downstream boundary values (3.91.b) to write

D
∗(2)
1,∆,+(γ) = −

P
∗(2)
1,∆

γ − κ−
l

− 1
2πi

ˆ ∞−iτ1

−∞−iτ1

D
(1)
1,∆(γ1)e−iγ1cφ

γ1 − γ
dγ1. (3.99)

This integral can be closed in M−. Inspection of (3.97) determines that the only poles
of D(1)

1,∆ in M− are at γ = κ−
l , θ

−
n . By noting the identities

1
2πi

ˆ ∞−iτ1

−∞−iτ1

1
J+(γ1)

∞∑
l=−∞

T1,∆,l

(γ1 − κ−
l ) · e−iγ1cφ

γ1 − γ
dγ1 =

∞∑
l=−∞

T1,∆,l

J+(κ−
l ) · e

−iκ−
l
cφ

γ − κ−
l

+
∞∑
n=0


∞∑

l=−∞

T1,∆,l

θ−
n − κ−

l

 · e−iθ−
n cφ

J ′
+(θ−

n )(γ − θ−
n ) ,

1
2πi

ˆ ∞−iτ1

−∞−iτ1

1
J+(γ1)

∞∑
m=−∞

R1,∆,m

γ1 − λ−
m

· e−iγ1cφ

γ1 − γ
dγ1 =

∞∑
n=0

{ ∞∑
m=−∞

R1,∆,m

θ−
n − λ−

m

}
e−iθ−

n cφ

J ′(θ−
n )(γ − θ−

n ) ,
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we conclude that

1
2πi

ˆ ∞−iτ1

−∞−iτ1

D
(1)
1,∆(γ1)

e−iγ1cφ

γ1 − γ
dγ1 =

∞∑
l=−∞

Sle−iκ−
l
cφ

i(κ−
0 − κ−

l )(γ − κ−
l )

+
∞∑
n=0

Ane−iθ−
n cφ

i(θ−
n − κ−

0 )(γ − θ−
n ) ,

where

S1,∆,l = i(κ−
0 − κ−

l )
J+(κ−

l ) T1,∆,l,

A1,∆,n = i(θ−
n − κ−

0 )
J ′

+(θ−
n )

 ∞∑
m=−∞

R1,∆,m

θ−
n − λ−

m

+
∞∑

l=−∞

T1,∆,l

θ−
n − κ−

l )

 .
Combining these expressions with (3.99) obtains the identity

D
∗(2)
1,∆,+(γ) = −

∞∑
l=−∞

S1,∆,le−iκ−
l
cφ

i(κ−
0 − κ−

l )(γ − κ−
l ) −

∞∑
n=0

A1,∆,ne−iθ−
n cφ

i(θ−
n − κ−

l )(γ − θ−
n ) −

P
∗(2)
1,∆

γ − κ−
0
. (3.100)

Substitution of (3.100) into (3.98) and application of the additive factorisation (3.58),
and an analogous version of (3.95), yields

F
∗(2)
1,∆,+(γ)

4πJ+(γ) −
∞∑

l=−∞

S1,∆,le−iκ−
l
cφ

i(κ−
0 − κ−

l )
[
J̃−(γ, κ−

l )
]

+
−

∞∑
n=0

A1,∆,ne−iθ−
n cφ

i(θ−
n − κ−

0 )
[
J̃−(γ, θ−

n )
]

+

− k(γ)G∗(2)
∆ (γ)

J+(γ) +
∞∑

m=−∞

k+
r,mG

∗(2)
∆ (λ+

m)
(γ − λ+

m)J+(λ+
m) − P

∗(2)
1,∆

[
J̃−(γ, κ−

0 )
]

+

= − J−(γ)D∗(2)
1,∆,−(γ) +

∞∑
l=−∞

S1,∆,le−iκ−
l
cφ

i(κ−
0 − κ−

l )
[
J̃−(γ, κ−

l )
]

−
(3.101)

+
∞∑
n=0

A1,∆,ne−iθ−
n cφ

i(θ−
n − κ−

0 )
[
J̃−(γ, θ−

n )
]

−
+

∞∑
m=−∞

k+
r,mG

∗(2)
∆ (λ+

m)
(γ − λ+

m)J+(λ+
m) + P

∗(2)
1,∆

[
J̃−(γ, κ−

0 )
]

−
.

(3.102)

By applying the unsteady Kutta condition via a similar argument to section 3.B.2.2, we
conclude that each side of the above equation must be equal to zero. Multiplying by γ
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and letting |γ| → ∞ in M+, the left-hand side of (3.102) gives

P
∗(2)
1,∆ = −

∞∑
l=−∞

S1,∆,le−iκ−
l
cφ

i(κ−
0 − κ−

l ) · J−(κ−
l )

J−(κ−
0 ) −

∞∑
n=0

A1,∆,ne−iθ−
n cφ

i(θ−
n − κ−

0 ) · J−(θ−
n )

J−(κ−
0 )

+
∞∑

m=−∞

U1,∆,m

i(λ+
m − κ−

0 ) · 1
J−(κ−

0 ) ,

where

U1,∆,m =i(λ+
m − κ−

0 ) ·
k+
r,mG

∗(2)
∆ (λ+

m)
J+(λ+

m) .

Substituting in the downstream boundary data (3.100), rearranging the right-hand side
of (3.102), and applying the pressure representation (3.103) gives the final expression

D
(2)
1,∆(γ) = −

∞∑
l=−∞

S1,∆,lei(γ−κ−
l

)cφ

i(γ − κ−
0 )(γ − κ−

l ) · J−(κ−
l )

J−(γ) −
∞∑
n=0

A1,∆,nei(γ−θ−
n )cφ

i(γ − κ−
0 )(γ − θ−

n ) · J−(θ−
n )

J−(γ)

−
∞∑

m=−∞

U1,∆,meiγcφ

i(γ − κ−
0 )(γ − λ+

m) · 1
J−(γ) . (3.103)

3.B.3.3 Solution to Third and Fourth Wiener–Hopf Problems – D
(3)
1,∆, D

(4)
1,∆

The method of solution for D(3)
1,∆ and D

(4)
1,∆ is identical to section 3.B.2.3 except that the

residues of D(2)
1,∆ at γ = θ+

n are given by

D
(2)
r,∆,k = −eiθ+

k
cφ

i(θ+
k − κ−

0 )J ′
−(θ+

k )


∞∑

l=−∞

S1,∆,le−iκ−
l
cφ

(θ+
k − κ−

l ) · J−(κ−
l )

+
∞∑
n=0

A1,∆,ne−iθ−
n cφ

(θ+
k − θ−

n ) · J−(θ−
n ) +

∞∑
m=−∞

U1,∆,m

θ+
k − λ+

m

.
Consequently, analogous relations to (3.83) and (3.87) may be derived, and the calcula-
tions of B1,∆,n and C1,∆,n are achieved via (3.85) and (3.88).

3.B.4 Solution for D1,Γ

The integral equation and boundary values for ∆h1,Γ and D1,Γ are summarised in
(3.42.a–3.42.f). Similarly to section 3.B.2, we split this problem into four coupled
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problems, such as in (3.59) and (3.60), resulting in the semi-infinite integral equations

f
(n)
1,Γ (φ) = 4π

ˆ ∞

−∞

{
−D(n)

1,Γ(γ)j(γ) + δ2,nGΓ(γ)k(γ)
}

e−iγφ dγ, (3.104)

for n = 1, 2, 3, 4. The corresponding boundary values are given by

f
(1)
1,Γ(φ) = 0, φ > 0; (3.105.a)

∆0
[
h

(1)
1,Γ

]
(φ) = 0, φ < 0; (3.105.b)

f
(2)
1,Γ(φ) = 0, φ < cφ; (3.106.a)

∆0
[
h

(1)
1,Γ

]
(φ) + ∆0

[
h

(2)
1,Γ

]
(φ) =

2πiP (2)
1,Γe−iκ−

0 φ + Γ
∑

±
H±′

0,κ−
0

e−iκ−
0 φ +

∞∑
m=−∞

H′
0,me−iλ−

mφ

, φ > cφ; (3.106.b)

f
(3)
1,Γ(φ) = 0, φ > 0; (3.107.a)

∆0
[
h

(2)
1,Γ

]
(φ) + ∆0

[
h

(3)
1,Σ

]
+ ∆0

[
h

(4)
1,Γ

]
(φ) = 0, φ < 0; (3.107.b)

f
(4)
1,Γ(φ) = 0, φ < cφ; (3.108.a)

∆0
[
h

(3)
1,Γ

]
(φ) + ∆0

[
h

(4)
1,Σ

]
(φ) = 2πiP (4)

1,Γe−iκ−
0 φ, φ > cφ; (3.108.b)

where, as before, P (2)
1,Γ and P

(4)
1,Γ are two constants of integration that will be specified to

enforce the Kutta condition.

3.B.4.1 Solution to First Wiener–Hopf Problem – D
(1)
1,Γ

By applying a similar argument to section 3.B.2.1, we conclude that

D
(1)
1,Γ(γ) = 0. (3.109)
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3.B.4.2 Solution to Second Wiener–Hopf Problem – D
(2)
1,Γ

Taking the Fourier transform of (3.104) for n = 2, using the kernel splitting property
(3.54), and applying the upstream boundary values (3.106.a) yields

F
∗(2)
1,Γ,+(γ)

4πJ+(γ) = −
(
D

∗(2)
1,Γ,−(γ) +D

∗(2)
1,Γ,+(γ)

)
J−(γ) +G∗

Γ(γ) k(γ)
J+(γ) , (3.110)

where F ∗(2)
1,Γ,+, D∗(2)

1,Γ,− and D∗(2)
1,Γ,+ are defined analogously to (3.74.a), (3.74.b) and (3.74.c)

respectively. The solution to the first integral equation (3.109) means that ∆0
[
h

(1)
1,Γ

]
(φ) ≡

0. Therefore, we may use the downstream boundary values (3.106.b) to write

D
∗(2)
1,Γ,+(γ) = −

P
∗(2)
1,Γ

γ − κ−
0

− Γ
2πi

∑
±

H±′
0,κ−

0
e−iκ−

0 cφ

γ − κ−
0

+
∞∑

m=−∞

H′
0,me−iλ−

mcφ

γ − λ−
m

 .
Consequently, we use pole removal to obtain the additive splitting

J−(γ)D∗(2)
1,Γ,+(γ) =

[
J−(γ)D∗(2)

1,Γ,+(γ)
]

+
+
[
J−(γ)D∗(2)

1,Γ,+(γ)
]

−
, (3.111)

where
[
J−(γ)D∗(2)

1,Γ,+(γ)
]

±
= − P

∗(2)
1,Γ

[
J̃−(γ, κ−

0 )
]

±

− Γ
2πi

∑
±

H±′
0,κ−

0
e−iκ−

0 cφ
[
J̃−(γ, κ−

0 )
]

±
+

∞∑
m=−∞

H′
0,me−iλ−

mcφ
[
J̃−(γ, λ−

m)
]

±

.
We may also use pole removal to obtain the additive splitting

G∗
Γ(γ) k(γ)

J+(γ) = G∗
Γ(γ) k(γ)

J+(γ) −
∞∑

m=−∞

U1,Γ,m

i(λ+
m − κ−

0 )(γ − λ+
m)︸ ︷︷ ︸

+

+
∞∑

m=−∞

U1,Γ,m

i(λ+
m − κ−

0 )(γ − λ+
m)︸ ︷︷ ︸

−

, (3.112)

where

U1,Γ,m = Γζ+
m(λ+

m − κ−
0 )

8π2∆φ

√
k2w2 − fm

· 1
J+(λ+

m)
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×

∑
±

±ζκ−
0
H±′

0,κ−
0

e−iκ−
0 cφ

λ+
m − κ−

0
+

∞∑
k=−∞

ζ−
k H

′
0,ke−iλ−

k
cφ

λ+
m − λ−

k

 .
Substituting the additive splitting (3.111) and wake coefficient (3.112) into the Wiener–
Hopf equation (3.110) yields

F
∗(2)
1,Γ,+(γ)

4πJ+(γ) −G∗
Γ(γ) k(γ)

J+(γ)+
∞∑

m=−∞

U1,Γ,m

i(λ+
m − κ−

0 )(γ − λ+
m) +

[
J−(γ)D∗(2)

1,Γ,+(γ)
]

+

= −D∗(2)
1,Γ,−(γ)J−(γ) −

[
J−(γ)D∗(2)

1,Γ,+(γ)
]

−
+

∞∑
m=−∞

U1,Γ,m

i(λ+
m − κ−

0 )(γ − λ+
m) .

Following section 3.B.2.2, we apply the standard Wiener–Hopf method and obtain

P
∗(2)
1,Γ =

∞∑
m=−∞

U1,∆,m

i(λ+
m − κ−

0 ) · 1
J−(κ−

0 )

− Γ
2πi

(∑
±

H±′
0,κ−

0
e−iκ−

0 cφ +
∞∑

m=−∞
H′

0,me−iλ−
mcφ · J−(λ−

m)
J−(κ−

0 )

)
, (3.113)

and

D
∗(2)
1,Γ,−(γ) =

∞∑
m=−∞

U1,Γ,m

i(λ+
m − κ−

0 )(γ − λ+
m) · 1

J−(γ) + P
∗(2)
1,Γ

[
J̃−(γ, κ−

0 )
]

−
J−(γ)

+ Γ
2πi

∑
±

H±′
0,κ−

0
e−iκ−

0 cφ

[
J̃−(γ, κ−

0 )
]

−
J−(γ) +

∞∑
m=−∞

H′
0,me−iλ−

mcφ

[
J̃−(γ, λ−

m)
]

−
J−(γ)

.
Consequently, substituting in the downstream representation (3.111) and (3.113) results
in

D
(2)
1,Γ(γ) = − Γ

2πi

∞∑
m=−∞

J−(λ−
m)

J−(γ) ·
(λ−

m − κ−
0 )H′

0,mei(γ−λ−
m)cφ

(γ − κ−
0 )(γ − λ−

m)

−
∞∑

m=−∞

U1,Γ,meiγcφ

i(γ − κ−
0 )(γ − λ+

m) · 1
J−(γ) .
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3.B.4.3 Solution to Third and Fourth Wiener–Hopf problems – D
(3)
1,Γ, D

(4)
1,Γ

The solution to the coupled 3rd and 4th Wiener–Hopf equations is identical to that in
previous sections except

D
(2)
r,∆,k = −eiθ+

k
cφ

i(θ+
k − κ−

0 )J ′
−(θ+

k )


∞∑

m=−∞

U1,Γ,m

θ+
k − λ+

m

+ Γ
2π

∞∑
m=−∞

λ−
m − κ−

0
θ+
k − λ−

m

J−(λ−
m)H′

0,me−iλ−
mcφ

.
3.B.5 Solution for D1,S

The integral equation and boundary values for ∆0 [h1,S] and D1,S are summarised in
section 3.3.2.4. We perform an analogous splitting to that in (3.59) and (3.60). The
integral equations satisfied by each ∆0

[
h

(n)
1,S

]
and D

(n)
1,S are

f
(n)
1,S (φ) = 4π

ˆ ∞

−∞

{
−D1,S(γ)j(γ) + δn,1S

(1)(γ) + δn,2S
(2)(γ)

}
e−iγφdγ, (3.114)

for n = 1, 2, 3, 4, where

S(1)(γ) = Su(γ) + Si,(1)(γ), S(2)(γ) = Sd(γ) + Si,(2)(γ),

which are defined in (3.150), (3.151) and (3.152).
The (homogeneous) boundary values are given by

f
(1)
1,S(φ) = 0, φ > 0; (3.115.a)

∆0
[
h

(1)
1,S

]
(φ) = 0, φ < 0; (3.115.b)

f
(2)
1,S(φ) = 0, φ < cφ; (3.116.a)

∆0
[
h

(1)
1,S

]
(φ) + ∆0

[
h

(2)
1,S

]
(φ) = 2πiP (2)

1,Se−iκ−
0 φ, φ > cφ; (3.116.b)

f
(3)
1,S(φ) = 0, φ > 0; (3.117.a)

∆0
[
h

(2)
1,S

]
(φ) + ∆0

[
h

(3)
1,S

]
(φ) + ∆0

[
h

(4)
1,S

]
(φ) = 0, φ < 0; (3.117.b)
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f
(4)
1,S(φ) = 0, φ < cφ; (3.118.a)

∆0
[
h

(4)
1,S

]
(φ) + ∆0

[
h

(3)
1,S

]
(φ) = 2πiP (4)

1,Se−iκ−
0 φ, φ > cφ; (3.118.b)

where P (2)
1,S and P (4)

1,S are two constants of integration that will be specified to enforce the
Kutta condition.

3.B.5.1 Solution to First Wiener–Hopf Problem – D
(1)
1,S

Taking a Fourier transform of (3.114) for n = 1, applying the boundary values (3.115.a)
and (3.115.b), and utilising the kernel splitting (3.54) results in

F
(1)
1,S,−(γ)

4πJ−(γ) = −D(1)
1,S,+(γ)J+(γ) + S(1)(γ)

J−(γ) , (3.119)

where F (1)
1,S,− and D(1)

1,S,+ are defined in an analogous way to section 3.B.2.1. We now note
that the only poles of S(1) in M− are where γ = λ−

m, κ
−
l . Therefore, we may apply pole

removal to obtain the additive factorisation

S(1)(γ)
J−(γ) =

∞∑
m=−∞

Su,r,(1)
m

(γ − λ−
m)J−(λ−

m) +
∞∑

l=−∞

∑∞
l2=−∞ fl,l2Fl2(κ−

l )
(γ − κ−

l )J−(κ−
l )︸ ︷︷ ︸

+

+ S(1)(γ)
J−(γ) −

∞∑
m=−∞

Su,r,(1)
m

(γ − λ−
m)J−(λ−

m) −
∞∑

l=−∞

∑∞
l2=−∞ fl,l2Fl2(κ−

l )
(γ − κ−

l )J−(κ−
l )︸ ︷︷ ︸

−

, (3.120)

where

Su,r,(1)
m =Su,rm +

∑
l1,l2

fl1,l2
F

r,−
l2,m(

λ−
m − κ−

l1

) ,
and F

r,−
l2,m are the residues of Fl2(γ) at the acoustic modes γ = λ−

m, defined in (3.153).
Therefore, (3.119) becomes

F
(1)
− (γ)

4πJ−(γ) − S(1)(γ)
J−(γ) +

∞∑
m=−∞

Su,r,(1)
m

(γ − λ−
m)J−(λ−

m) +
∞∑

l=−∞

∑∞
l2=−∞ fl,l2Fl2(κ−

l )
(γ − κ−

l )J−(κ−
l )

= −D(1)
1,S,+(γ)J+(γ) +

∞∑
m=−∞

Su,r,(1)
m

(γ − λ−
m)J−(λ−

m) +
∞∑

l=−∞

∑∞
l2=−∞ fl,l2Fl2(κ−

l )
(γ − κ−

l )J−(κ−
l ) . (3.121)
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We now apply the typical Wiener–Hopf argument of section 3.B.2.1 and conclude that

D
(1)
1,S(γ) =

∞∑
l=−∞

T1,S,l

γ − κ−
l

· 1
J+(γ) +

∞∑
m=−∞

R1,S,m

γ − λ−
m

· 1
J+(γ) ,

where

R1,S,m = Su,r,(1)
m

J−(λ−
m) , T1,S,l =

∑∞
l2=−∞ fl,l2Fl2(κ−

l )
J−(κ−

l ) .

3.B.5.2 Solution to Second Wiener–Hopf Problem – D
(2)
1,S

Taking a Fourier transform of (3.114) for n = 2, applying the boundary value (3.116.a),
and utilising the kernel splitting (3.54) results in

F
∗(2)
1,S,+(γ)

4πJ+(γ) = −
(
D

∗(2)
1,S,−(γ) +D

∗(2)
1,S,+(γ)

)
J−(γ) + S∗(2)(γ)

J+(γ) , (3.122)

where F ∗(2)
1,S,+, D∗(2)

1,S,± and S∗(2) are defined in an analogous way to section 3.B.2.2. Similarly
to section 3.B.3.2, we may use the downstream boundary values (3.116.b) to write

D
∗(2)
1,S,+(γ) = −

∞∑
l=−∞

S1,S,le−iκ−
l
cφ

i(κ−
0 − κ−

l )(γ − κ−
l ) −

∞∑
n=0

A1,S,ne−iθ−
n cφ

i(θ−
n − κ−

l )(γ − θ−
n ) −

P
∗(2)
1,S

γ − κ−
0
, (3.123)

where A1,S,n and S1,S,l are defined in an analogous way to section 3.B.3. Substitution of
(3.123) into (3.122), application of the additive factorisation (3.58), and an analogous
version of (3.120) yields

F
∗(2)
1,S,+(γ)

4πJ+(γ) −
∞∑

l=−∞

S1,S,le−iκ−
l
cφ

i(κ−
0 − κ−

l )
[
J̃−(γ, κ−

l )
]

+
−

∞∑
n=0

A1,S,ne−iθ−
n cφ

i(θ−
n − κ−

0 )
[
J̃−(γ, θ−

n )
]

+

− S∗(2)(γ)
J+(γ) +

∞∑
m=−∞

S∗d,r,(2)
m

(γ − λ+
m)J+(λ+

m) − P
∗(2)
1,S

[
J̃−(γ, κ−

0 )
]

=
∞∑

l=−∞

S1,S,le−iκ−
l
cφ

i(κ−
0 − κ−

l )(γ − κ−
l )
[
J̃−(γ, κ−

l )
]

−
+

∞∑
n=0

A1,S,ne−iθ−
n cφ

i(θ−
n − κ−

0 )
[
J̃−(γ, θ−

n )
]

−

− J−(γ)D∗(2)
1,S,−(γ) +

∞∑
m=−∞

S∗d,r,(2)
m

(γ − λ+
m)J+(λ+

m) + P
∗(2)
1,S

[
J̃−(γ, κ−

0 )
]

−
. (3.124)
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By applying a similar argument to section 3.B.2.2, we conclude that each side of the
above equation must be equal to zero. Multiplying both sides by γ and letting |γ| → ∞
in M+, the left-hand side of (3.124) gives the value of the wake coefficient

P
∗(2)
1,S = −

∞∑
l=−∞

S1,S,le−iκ−
l
cφ

i(κ−
0 − κ−

l ) · J−(κ−
l )

J−(κ−
0 ) −

∞∑
n=0

A1,S,ne−iθ−
n cφ

i(θ−
n − κ−

0 ) · J−(θ−
n )

J−(κ−
0 )

+
∞∑

m=−∞

U1,S,m

i(λ+
m − κ−

0 ) · 1
J−(κ−

0 ) , (3.125)

where

U1,S,m =i(λ+
m − κ−

0 ) · S
∗d,r,(2)
m

J+(λ+
m) .

Substituting the downstream boundary data (3.123) and the wake coefficient (3.125) into
the Wiener–Hopf equation (3.124) gives the final expression

D
(2)
1,S(γ) = −

∞∑
l=−∞

S1,S,lei(γ−κ−
l

)cφ

i(γ − κ−
0 )(γ − κ−

l ) · J−(κ−
l )

J−(γ) −
∞∑
n=0

A1,S,nei(γ−θ−
n )cφ

i(γ − κ−
0 )(γ − θ−

n ) · J−(θ−
n )

J−(γ)

−
∞∑

m=−∞

U1,S,meiγcφ

i(γ − κ−
0 )(γ − λ+

m) · 1
J−(γ) .

Similarly to previous sections, the only poles of D∗(2)
1,S (γ) in the upper half plane are at

the zeros of J−(γ).

3.B.5.3 Solution to Third and Fourth Wiener–Hopf Problems – D
(3)
1,S, D

(4)
1,S

The solution to the coupled 3rd and 4th Wiener–Hopf equations is identical to that in
previous sections, except

D
(2)
r,S,k = −eiθ+

k
cφ

i(θ+
k − κ−

0 )J ′
−(θ+

k )


∞∑

l=−∞

S1,S,le−iκ−
l
cφ

θ+
k − κ−

l

· J−(κ−
l )

+
∞∑
n=0

A1,S,ne−iθ−
n cφ

θ+
k − θ−

n

· J−(θ−
n ) +

∞∑
m=−∞

U1,S,m

θ+
k − λ+

m

.
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3.C Asymptotic Behaviour of Half-Range Fourier
Integrals

Before we may apply the Wiener–Hopf argument, we must determine the asymptotic
behaviour of the half range Fourier transforms terms using the physical leading-edge
condition. Here we consider the symmetric solution h1,Σ, although the approach can be
generalised to each of the other components. Firstly, the singularity of the velocity field
at the leading edge (φ = 0) can be, at worst, integrable. Therefore, we can write

Σ0

[
∂h1,Σ

∂ψ

]
(φ) ∼ Aφη, as φ → 0−,

for some constant A and −1 < η < 0. By adapting result (1.74) from (Noble, 1958, p.
36), we determine that

F
(1)
1,Σ,−(γ) ∼ − A

2πΓ(η + 1)e 1
2πi(η+1)γ−(η+1), as |γ| → ∞ in M−, (3.126.a)

where Γ here refers to the Gamma function.
We also assume that ∆0[h1,Σ] does not admit singular behaviour at the leading edge:

this assumption is physically supported since, if it did not hold, the pressure at the
leading edge would be non-integrable and result in an infinite force there. Therefore,
∆0[h1,Σ](0) is finite. Consequently, we may apply integration by parts to obtain

D
(1)
1,Σ,+(γ) ∼ −

∆0
[
h

(1)
1,Σ

]
(0)

2πiγ − 1
2πiγ

ˆ ∞

0
∆0

[
h

(1)
1,Σ

]
(φ)eiγφdφ, as |γ| → ∞ in M+,

(3.126.b)

and Riemann–Lebesgue lemma tells us that the second term in the above expression is
o(γ−1).

3.D List of Identities

In this section we present some identities that are used throughout the chapter.
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3.D.1 Radical Equation

Consider the equation

sφζ = ±
(
σ′
φ + dφγ − 2mπ

)
. (3.127)

We may express (σ′
φ − 2mπ)/∆φ = fm to write

sφζ = ± (dφγ + ∆φfm) ,

which has solutions

γ = λ±
m = − dφ

∆φ

fm ±

√
4d2

φ∆2
φf

2
m − 4(∆2

φf
2
m − s2

φk
2w2)(d2

φ + s2
φ)

2(d2
φ + s2

φ)

= − dφ
∆φ

fm ± sφ
∆φ

√
k2w2 − f 2

m.

We can see that λ+
m must correspond to the “+” equation, because the branch cut on the

right-hand side gives positive imaginary part. Therefore, the roots of (3.127) are

sφζ
±
m = ±

(
σ′
φ + dφλ

±
m − 2mπ

)
, (3.128)

where

ζ±
m =

√
k2w2 − λ±2

m = ± sφ
∆φ

fm + dφ
∆φ

√
k2w2 − f 2

m.

This solution gives us several expressions that are useful for simplification at various
points in the analysis:

dφζ
±
m ± sφλ

±
m =∆φ

√
k2w2 − f 2

m, (3.129)

∆2
φ

(
γ − λ−

m

) (
γ − λ+

m

)
=
(
sφζ + dφγ + σ′

φ − 2mπ
) (

−sφζ + dφγ + σ′
φ − 2mπ

)
, (3.130)

λ+
m − λ−

m =2 sφ∆φ

√
k2w2 − f 2

m. (3.131)

Accordingly, we have the following expressions for some relevant residues:

Res
[

1
1 − ei(∓sφζ+dφγ+σ′

φ
) , λ

±
m

]
= iζ±

m

∆φ

√
k2w2 − f 2

m

. (3.132)
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3.D.2 Integrals

We note the integrals

1
2π

ˆ ∞

−∞

iµ
k2w2 − µ2 − γ2 eiµ(nsφ−ψ)dµ = 1

2sgn (nsφ − ψ) eiζ|nsφ−ψ|, (3.133a)

1
2π

ˆ ∞

−∞

1
k2w2 − µ2 − γ2 eiµ(nsφ−ψ)dµ = 1

2iζ eiζ|nsφ−ψ|, (3.133b)

where ζ =
√
k2w2 − γ2. These may be calculated via contour integration and specifying

the branch of ζ to have positive imaginary part.

3.D.3 Doubly-Infinite Sums

For 0 < ψ1 < sφ, we have the following identities

j(γ) = iζ
4π

∞∑
n=−∞

ein(σ′
φ+dφγ)+iζ|n|sφ

= iζ
4π

( ∞∑
n=0

ein(ζsφ−dφγ−σ′
φ) +

∞∑
n=1

ein(ζsφ+dφγ+σ′
φ)
)

= 1
4π

(
1

1 − ei(ζsφ−dφγ−σ′
φ

) − 1
1 − e−i(sφζ+dφγ+σ′

φ
)

)

= ζ

4π · sin (ζsφ)
cos (ζsφ) − cos

(
γdφ + σ′

φ

) , (3.134)
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k(γ) = 1
4π

∞∑
n=−∞
n̸=0

sgn (nsφ) ein(σ′
φ+dφγ)+iζ|nsφ|

= 1
4π

(
−

∞∑
n=1

ein(sφζ−dφγ−σ′
φ) +

∞∑
n=1

ein(sφζ+dφγ+σ′
φ)
)

= i
4π

(
1

1 − e−i(sφζ−dφγ−σ′
φ

) − 1
1 − e−i(sφζ+dφγ+σ′

φ
)

)

= 1
4πi ·

sin
(
γdφ + σ′

φ

)
cos (ζsφ) − cos

(
γdφ + σ′

φ

) , (3.135)

∞∑
n=−∞

sgn(ψ1 + nsφ)ein(σ′
φ+dφγ)eiζ|ψ1+nsφ|

= −e−iζψ1
∞∑
n=1

ein(sφζ−dφγ−σ′
φ) + eiζψ1

∞∑
n=0

ein(sφζ+dφγ+σ′
φ)

= e−iζψ1

1 − ei(dφγ+σ′
φ

−sφζ) + eiζψ1

1 − ei(dφγ+σ′
φ

+sφζ) , (3.136)

ID(γ, ψ) = −1
2

∞∑
n=−∞

sgn (nsφ − ψ) ein(σ′
φ+γdφ)+iζ|nsφ−ψ|

= 1
2 ·
(

eiζψ

1 − ei(sφζ−dφγ−σ′
φ

) + e−iζψ

1 − e−i(sφζ+dφγ+σ′
φ

)

)

= cos (ζ(ψ − s)) − eidγ+iσ cos (ζψ)
2(cos (sζ) − cos (dγ + σ) , (3.137)

IG(γ, ψ) = 1
2iζ

∞∑
n=−∞

ein(σ′
φ+γdφ)+iζ|nsφ−ψ|

= i
2ζ ·

(
eiζψ

1 − ei(sφζ−dφγ−σ′
φ

) − e−iζψ

1 − e−i(sφζ+dφγ+σ′
φ

)

)

= sin (ζ(ψ − s)) − eidγ+iσ sin (ζψ)
2ζ (cos (sζ) − cos (dγ + σ)) , (3.138)

IS(γ, ψ, ψ1) = 1
4πiζ

∞∑
n=−∞

ein(σ′
φ+γdφ)+iζ|ψ1+nsφ−ψ|

= 1
4πiζ ·

(
eiζ|ψ1−ψ| − eiζ(ψ1−ψ)

1 − e−i(ζsφ+dφγ+σ′
φ

) − e−iζ(ψ1−ψ)

1 − e−i(ζsφ−dφγ−σ′
φ

)

)

= sin (ζ(|ψ − ψ1| − sφ)) − ei(dφγ+σ′
φ)sgn(ψ−ψ1) sin (ζ|ψ − ψ1|)

4πζ
(
cos (sφζ) − cos

(
dφγ + σ′

φ

)) . (3.139)

It should be noted that, although these sums are strictly only valid in the Wiener-Hopf
strip where Im[ζ] > 0, they also represent the analytic continuation of the sums from the
strip to the entire complex plane.
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3.E Analysis of Source Terms

In this section, we present our novel, quasi-analytic method of decomposing the source
terms arising in the Rapid Distortion Theory framework. The inclusion of the source
terms in the modified Helmholtz equation is an essential feature of the analysis and is
generalisable to similar problems. Since the solution terms satisfies the quasi-periodicity
relation (3.26), we may restrict our analysis to a single infinite channel of height sφ, and
extrapolate to the entire domain. For example, in (3.38), we used the quasi-periodic
relation to reduce the transformed source terms from an integral in the entire space
to an integral along a channel. We now split the region of interest into the upstream
(φsφ < ψdφ), downstream (φsφ > ψdφ + cφsφ) and inter-blade (ψdφ < φsφ < ψdφ + cφsφ)
regions.

We will first outline our decomposition of the relevant source terms into exponential
functions. Then we will analyse the Fourier transformation of the decompositions in
each of the three regions. Finally, we provide some details of how we invert the Fourier
transform and obtain the final acoustic field.

3.E.1 Exponential Decomposition of Source Terms

In this section we perform the exponential decomposition of the source terms. This step
is necessary in order to know the exact structure of the transformed source terms in the
complex plane, which is a requirement for the application of the Wiener–Hopf method.

In each region (upstream, downstream and inter-blade), we decompose the source
terms into Fourier series (3.141, 3.143, 3.146). We denote the total source contribution
to (3.38) by

S(γ) = Su(γ) + Sd(γ) + Si(γ),

where u, d, i correspond to the upstream, downstream and inter-blade regions as defined
in section 3.E.2.

3.E.1.1 Upstream Region Decomposition

In the upstream region, the source terms satisfy the quasi-periodic relation (3.26).
Accordingly, we may express the upstream source terms as a series of exponential
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functions in the form

Su(φ, ψ) =
∑
M+
m

S+
P,M+

m
e

− 2mπi
∆2
φ

(dφφ+sφψ)
eiM+

m(ψdφ−φsφ)eikknψe−iκ−
0 φ, (3.140)

which we write as

Su(φ, ψ) =
∑
M+
m

S+
P,M+

m
exp

[
−iM̃+

mφ
]

exp
[
i
(
∆φfm + dφM̃

+
m

) ψ
sφ

]
, (3.141)

where

M̃+
m = sφM

+
m + κ−

0 + 2πdφm
∆2
φ

.

3.E.1.2 Downstream Region Decomposition

The source terms in the downstream region take a more complicated form than those in
the upstream region. This increased complexity can be attributed to two factors. Firstly,
the perturbation to the background velocity in the horizontal direction, q, decays in the
upstream region, whereas in the downstream region q tends to a constant value as a
result of the cascade deflecting the flow. Consequently, some source terms that vanish
in the upstream region do not vanish in the downstream region. These terms cause
resonance with the O(1) solution, and this issue is resolved in section 3.F. Secondly, the
source terms in the downstream region possess contributions that do not automatically
satisfy the quasi-periodic relation (3.26). For example, the κ−

0 mode in (3.50) does not
satisfy (3.26) and, therefore, neither does qh0 in (3.18). Consequently, we express the
downstream source terms as

Sd(φ, ψ) =
∑
M−
m

S−
P,M−

m
e

− 2mπi
∆2
φ

(dφ(φ−cφ)+sφψ)
eiM−

m(ψdφ−(φ−cφ)sφ)eikknψe−iκ−
0 (φ−cφ)

+
∞∑

m=−∞
S−
P,λ−

m
e−i(λ−

m(φ−cφ)+ζ−
mψ)

+
∑
N−
φ,n

S−
N,N−

φ,n

e−i(N−
φ,n

(φ−cφ)+N−
ψ,n

ψ) +
∑
±

S−
N,κ−

0 ,±
e

−i
(
κ−

0 (φ−cφ)±ζ
κ−

0
ψ

)
, (3.142)

The role of the coefficients is summarised in table 3.2. We rewrite (3.142) as

Sd(φ, ψ) =
∑
M−
m

S−
P,M−

m
exp

[
−iM̃−

m(φ− cφ)
]

exp
[
i
(
∆φfm + dφM̃

−
m

) ψ
sφ

]
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Resonance with O(1) terms?

yes no

Quasi-periodic?
yes S−

P,M−
m

S−
P,λ−

m

no S−
N,κ−

0 ,±
S−
N,N−

φ,n

Table 3.2 A summary of the meaning of the coefficients of the source terms (3.142) in
the downstream region.

+
∞∑

m=−∞
S−
P,λ−

m
exp

[
−iλ−

m(φ− cφ)
]

exp
[
−iζ−

mψ
]

+
∑
N−
φ,n

S−
N,N−

φ,n

exp
[
−iN−

φ,n(φ− cφ)
]

exp
[
−iN−

ψ,nψ
]

+
∑
±

S−
N,κ−

0 ,±
exp

[
−iκ−

0 (φ− cφ)
]

exp
[
∓iζκ−

0
ψ
]
, (3.143)

where

M̃−
m = sφM

−
m + κ−

0 + 2πdφm
∆2
φ

.

3.E.1.3 Inter-Blade Region Decomposition

We seek to express the source terms in the inter-blade region in a similar way to
previous sections. Unfortunately, the decaying Fourier series representation used for the
background flow in previous sections is not applicable since the kernel of the background
cascade flow cannot be expanded as a sum of exponentials. Therefore, we seek a Fourier
series representation of the entire source terms in the inter-blade region. Strictly speaking,
this representation is only necessary for the mean flow terms since we have the exponential
form of the acoustic field in this region. However, the structure of the O(1) acoustic field
in the inter-blade region is highly complex, so we choose to decompose the entire source
terms using this method.

A straightforward 2-D Fourier series where the period is the inter-blade region will
break down. This is because the source terms are discontinuous either side of the blade
in (φ, ψ)-space and, more importantly, posses (integrable) singularities at the leading
edge of every blade. If we were to take a naive Fourier series where the period window is
simply P of figure 3.1, we would not be able to accurately capture the behaviour at the
leading and trailing edges.
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φ

ψ

cφ

sφ

P

a1

a2

dφ

Fig. 3.1 The two-dimensional oblique Bravais lattice for source terms in the inter-blade
region.

We parametrise every point in the plane z = (φ, ψ) as

z = x1
a1

|a1|
+ x2

a2

|a2|
, (3.144)

where a1 = (2cφ, 0) and a2 = (2dφ, 2sφ) are the periods of the extended source terms.
Rearranging (3.144) results in

x1 = φ1 − dφ
sφ
ψ, x2 = ∆φ

sφ
ψ1,

and consequently, the source terms in the inter-blade region may be written in a Fourier
series as

Si(φ, ψ) =
∑
l1,l2

Sil1,l2 exp
[
−πil1

φ

cφ

]
exp

[
−πi ψ

sφ

(
l2 − l1dφ

cφ

)]
exp

[
i(kknψ − κ−

0 φ)
]
,

(3.145)

which reduces to

Si(φ, ψ) =
∑
l1,l2

Sil1,l2 exp
[
−iκ−

l1φ
]

exp
[
i
(
∆φfl2/2 + dφκ

−
l1

) ψ
sφ

]
, (3.146)
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where the coefficients Sil1,l2 are defined by

Sil1,l2 = 1
|a1|

1
|a2|

ˆ |a2|

0

ˆ |a1|

0
Si(φ(x1, x2), ψ(x1, x2))e

2πi
(
l1

x1
|a1| +l2 x2

|a2|

)
dx1dx2. (3.147)

3.E.2 Transformation of Source Terms

We segregate the integral (3.38) into upstream, downstream and inter-blade contributions,
as in the previous section, and write

S(γ) = Su(γ) + Si(γ) + Sd(γ),

where

Sx(γ) = − 1
8π2

ˆ sφ

0
Sxφ(γ, ψ1)

∑
±

e±iζψ1

1 − ei(±ζsφ+σ′
φ

+γdφ) dψ1. (3.148)

for x = u, i, d, and Sxφ are defined as

Suφ(γ) =
ˆ ψ1dφ/sφ

−∞
S(φ1, ψ1)eiγφ1dφ1,

Siφ(γ) =
ˆ ψ1dφ/sφ+cφ

ψ1dφ/sφ

S(φ1, ψ1)eiγφ1dφ1,

Sdφ(γ) =
ˆ ∞

ψ1dφ/sφ+cφ
S(φ1, ψ1)eiγφ1dφ1.

3.E.2.1 Upstream Region Transformation

We may used the upstream decomposition of the source terms (3.141) to evaluate the
upstream Fourier transform of the source terms as

Suφ(γ, φ1) =
∞∑

m=−∞
S+
P,M+

m

ei(dφγ−2mπ+σ′
φ)ψ/sφ

i(γ − M̃+
m)

. (3.149)

Therefore we may calculate the constituent parts of the transformed source terms in
(3.148) as

Su(γ) = − sφ
4π2∆2

φ

∞∑
m=−∞

S+
P,M+

m

γ − M̃+
m

·
dφγ − 2mπ + σ′

φ

(γ − λ−
m)(γ − λ+

m) . (3.150)
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The residues of Su(γ) at γ = λ−
m are given by

Su,rm = − sφζ
−
m

8π2∆φ

√
k2w2 − f 2

m

·
S+
P,M+

m

λ−
m − M̃+

m

,

where we have used the identities (3.131) and (3.128).

3.E.2.2 Downstream Region Transformation

Similarly, we may used the downstream decomposition of the source terms (3.143) to
evaluate the downstream Fourier transform of the source terms as

Sdφ(γ, φ1) = −
∞∑

m=−∞
S−
P,M−

m

ei(dφγ−2mπ+σ′
φ)ψ/sφ

i(γ − M̃−
m)

eiγcφ

−
∞∑

m=−∞
S−
P,λ−

m

ei(dφγ−2mπ+σ′
φ)ψ/sφ

i(γ − λ−
m) eiγcφ

−
∑
n

S−
N,N−

φ,n

ei(dφ(γ−N−
φ,n

)sφ−N−
ψ,n

)ψ/sφ

i(γ −N−
φ,n) eiγcφ

−
∑
±

S−
N,κ−

0 ,±
e

i(dφ(γ−κ−
0 )±sφζκ−

0
)ψ/sφ

i(γ − κ−
0 ) eiγcφ .

Therefore, we may calculate (3.148) as

Sd(γ) = sφ
4π2∆2

φ

∞∑
m=−∞

S−
P,M−

m

γ − M̃−
m

·
dφγ − 2mπ + σ′

φ

(γ − λ−
m)(γ − λ+

m)eiγcφ

+ sφ
4π2∆2

φ

∞∑
m=−∞

S−
P,λ−

m

dφγ − 2mπ + σ′
φ

(γ − λ−
m)2(γ − λ+

m)eiγcφ

+ sφ
8π2

∑
±

S−
N,κ−

0 ,±

γ − κ−
0

∑
±′

e
i(dφ(γ−κ−

0 )−sφ(±ζ
κ−

0
∓′ζ))

− 1
dφ(γ − κ−

0 ) − sφ(±ζκ−
0

∓′ ζ) · 1
1 − ei(±′ζsφ+γdφ+σ′

φ
) eiγcφ

+ sφ
8π2

∑
N−
φ,n

S−
N,N−

φ,n

γ −N−
φ,n

∑
±

ei(dφ(γ−N−
φ,n

)−sφ(N−
ψ,n

∓ζ)) − 1
dφ(γ −N−

φ,n) − sφ(N−
ψ,n ∓ ζ) · 1

1 − ei(±ζsφ+γdφ+σ′
φ

) eiγcφ .

(3.151)
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Using (3.132), we calculate the residues of Sd(γ) at γ = λ+
m as

Sd,rm = sφζ
+
m

8π2∆φ

√
k2w2 − f 2

m

·
S−
P,M−

m

λ+
m − M̃−

m

eicφλ+
m

+ sφζ
+
m

8π2∆φ

√
k2w2 − f 2

m

·
S−
P,λ−

m

λ+
m − λ−

m

eicφλ+
m

+ sφ
8π2

∑
±

S−
N,κ−

0 ,±

λ+
m − κ−

0
· e

i(dφ(λ+
m−κ−

0 )−sφ(±ζ
κ−

0
+ζ+

m))
− 1

dφ(λ+
m − κ−

0 ) − sφ(±ζκ−
0

+ ζ+
m) · ζ+

m

i∆φ

√
k2w2 − f 2

m

eicφλ+
m

+ sφ
8π2

∑
N−
φ,n

S−
N,N−

φ,n

λ+
m −N−

φ,n

· ei(dφ(λ+
m−N−

φ,n
)−sφ(N−

ψ,n
+ζ+

m)) − 1
dφ(λ+

m −N−
φ,n) − sφ(N−

ψ,n + ζ+
m) · ζ+

m

i∆φ

√
k2w2 − f 2

m

eicφλ+
m .

3.E.2.3 Inter-Blade Region Transformation

We may calculate the inter-blade Fourier transform by substituting in our exponential
expression (3.146) to obtain

Siφ(γ, ψ1) =Si,(1)
φ (γ, ψ1) + S

i,(2)
φ (γ, ψ1),

where

S
i,(1)
φ (γ, ψ1) =

∑
l1,l2

Sil1,l2
−1

i
(
γ − κ−

l1

) exp
[
i(dφγ + σ′

φ − πl2)
ψ1

sφ

]
,

S
i,(2)
φ (γ, ψ1) =

∑
l1,l2

Sil1,l2
ei(γ−κ−

l1
)cφ

i
(
γ − κ−

l1

) exp
[
i(dφγ + σ′

φ − πl2)
ψ1

sφ

]
.

Using these representations, the ψ1 integral in (3.148) may now be performed to obtain

Si(γ) = Si,(1)(γ) + Si,(2)(γ),

where

Si,(1)(γ) =
∑
l1,l2

Sil1,l2
Fl2(γ)(
γ − κ−

l1

) , Si,(2)(γ) = −
∑
l1,l2

Sil1,l2e(γ−κ−
l1

)cφ Fl2(γ)(
γ − κ−

l1

) , (3.152)

and

Fl2(γ) = sφ
8π2

∑
±

(−1)l2ei(dφγ+σ′
φ±sφζ) − 1

±sφζ + dφγ + σ′
φ − πl2

· 1
1 − ei(±ζsφ+γdφ+σ′

φ
) .
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When l2 = 2m is even, this reduces to

Fl2(γ) = −sφ
4π2∆2

φ

·
dφγ + σ′

φ − 2mπ
(γ − λ+

m)(γ − λ−
m) .

Consequently, the residues of Fl2 at λ±
m are

F
r,±
l2,m = sφ

8π2 · ζ±
m

∆φ

√
k2w2 − f 2

m

×


2

πi(2m− l2)
, l2 odd,

−δl2,2m, l2 even.
(3.153)

3.E.3 Inversion of Source Terms

When we invert the Fourier transform in section 3.4, we encounter integrals of the form

I(γ, ψ) =
ˆ sφ

0
eia(γ)ψ1/sφ

eiζ|ψ1−ψ| − eiζ(ψ1−ψ)

1 − e−i(ζsφ+γdφ+σ′
φ

) − e−iζ(ψ1−ψ)

1 − ei(−ζsφ+γdφ+σ′
φ

)

dψ1

= isφ
a(γ) − sφζ

[
eiζψ − eiψa(γ)/sφ + ei(a(γ)−(sφ−ψ)ζ) − eiψζ

1 − ei(−sφζ+dφγ+σ′
φ

)

]

+ isφ
a(γ) + sφζ

[
eiψa(γ)/sφ − ei(a(γ)+(sφ−ψ)ζ) + ei(a(γ)+ζ(sφ−ψ)) − e−iψζ

1 − e−i(ζsφ+γdφ+σ′
φ

)

]

for some linear functions a(γ). Note that the residues of I at γ = λ±
m are

Res
[
I, λ±

m

]
= isφζ±

m

a(λ±
m) ∓ sφζ±

m

· ei(a(λ±
m)∓sφζ±

m) − 1
∆φ

√
k2w2 − f 2

m

e±iζ±
mψ.

In the special case a(γ) = i(σ′
φ − πl2 + dφγ), we have

I(γ, ψ)

=
ˆ sφ

0
ei(σ′

φ−πl2+dφγ)ψ1/sφ

eiζ|ψ1−ψ| − eiζ(ψ1−ψ)

1 − e−i(ζsφ+γdφ+σ′
φ

) − e−iζ(ψ1−ψ)

1 − ei(−ζsφ+γdφ+σ′
φ

)

dψ1

= −2πζ

 s2
φ

∆2
φ

· ei(σ′
φ+dφγ−πl2)ψ/sφ

(γ − λ+
l2/2)(γ − λ−

l2/2)

+
∑
±

±sφ
2ζ · e±iζψ

1 − ei(±sφζ−dφγ−σ′
φ

) ·

(
(−1)l2 − 1

)
±sφζ − σ′

φ − dφγ + πl2

.
During the inversion of the Fourier transform, the ensuing γ-integral is then closed in the
upper or lower half plane, depending on which region of the physical domain is under
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consideration. In particular, the residues of the function in the curly brackets at γ = λ±
m

are given by

sφeiζ±
mψ

2∆φ

√
k2w2 − f 2

m

×


2

πi(2m− l2)
, l2 odd,

−δl2,2m, l2 even.

3.F Resolving Resonance

In this section we observe that the regular perturbation expansion (3.15) breaks down
when φ = O(ϵ−1) in the downstream region. In particular, the O(ϵ) solution grows to
O(1) and therefore has the same magnitude as the leading-order solution. Consequently,
the series (3.15) is no longer an asymptotic expansion of the solution. The growth of the
O(ϵ) solution is caused by resonance between the O(ϵ) solution and terms in the O(1)
solution. We now show how to regularise our solution by appealing to a multiple-scales
argument so that the solution is valid in a larger region up to φ = O(ϵ−2).

We first consider the resonance arising in the source term solution h1,S, and then
apply a similar argument to regularise the resonance arising in the h1,Γ solution.

3.F.1 Resonance in the h1,S Solution

In the downstream region we have

h1,S(φ, ψ) =
∞∑

m=−∞
H−
S,m exp

[
−i
(
λ−
mφ+ ζ−

mψ
)]

+
∑
M−
m

S−
P,M−

m
I−
P,M−

m
(φ, ψ) +

∞∑
m=−∞

S−
P,λ−

m
I−
P,λ−

m
(φ, ψ)

+
∑
N−
φ,n

S−
N,N−

φ,n

I−
N,N−

φ,n

(φ, ψ) +
∑
±

S−
N,κ−

0 ,±
I−
N,κ−

0 ,±
(φ, ψ)

+
∑
±

H−
1,S,κ−

0 ,±
e

−i(κ−
0 φ±ζ

κ−
0
ψ)
, (3.154)

where the coefficients are defined as

H−
S,m = − π

∆φ

∞∑
m=−∞

ζ−
mD

(2,4)
1,S (λ−

m)√
k2w2 − f 2

m

+

−
∑
M−
m

S−
P,M−

m

sφ
∆φ

· exp [iλ−
mcφ]

2
√
k2w2 − f 2

m(M̃−
m − λ−

m)



136 Scattering by Cascades of Aerofoils with Realistic Geometry

+ S−
P,λ−

m

1
4(k2w2 − f 2

m) exp
[
iλ−
mcφ

]

−
∑
N−
φ,n

S−
N,N−

φ,n

isφ(ei(dφ(λ−
m−N−

φ,n
)+sφ(ζ−

m−N−
ψ,n

)) − 1)
dφ(λ−

m −N−
φ,n) + sφ(ζ−

m −N−
ψ,n)

exp [iλ−
mcφ]

2(λ−
m −N−

φ,n)∆φ

√
k2w2 − f 2

m

−
∑
±

S−
N,κ−

0 ,±
isφ(e

i(dφ(λ−
m−κ−

0 )+sφ(ζ−
m±ζ

κ−
0

))
− 1)

dφ(λ−
m − κ−

0 ) + sφ(ζ−
m ± ζκ−

0
)

exp [iλ−
mcφ]

2(λ−
m − κ−

0 )∆φ

√
k2w2 − f 2

m

+ 4π2

ζ−
m

∑
l1,l2

Sil1,l2F
r,−
l2,m

λ−
m − κ−

l1

ei(λ−
m−κ−

l1
)cφ ,

H−
1,S,κ−

0 ,±
= πiP1,S

2 · ei(dφκ−
0 +σ′

φ) − e
±isφζκ−

0

cos(dφκ−
0 + σ′

φ) − cos(sφζκ−
0

) , (3.155)

and the inhomogeneous functions are defined as

I−
P,M−

m
(φ, ψ) = −

s2
φ

∆2
φ

·
exp

[
−i
(
M̃−

m(φ− cφ) − (∆φfm + dφM̃
−
m) ψ

sφ

)]
(M̃−

m − λ+
m)(M̃−

m − λ−
m)

,

I−
N,N−

φ,n

(φ, ψ) =
∑
±

1
ζ(N−

φ,n) ±N−
ψ,n

·

e−iN−
ψ,n

ψ − ei(±ζ(N−
φ,n

)ψ+H(∓1)(ζ(N−
φ,n

)−N−
ψ,n

)sφ)

∓ e−i(sφN−
ψ,n

±(sφ−ψ)ζ(N−
φ,n

)) − e±iζ(N−
φ,n

)ψ

1 − e−i(ζ(N−
φ,n

)∓dφN−
φ,n

∓σ′
φ

)

exp
[
−iN−

φ,n(φ− cφ)
]

2ζ(N−
φ,n) ,

I−
P,λ−

m
(φ, ψ) = (sφ(φ− cφ) − dφψ) exp [−i (λ−

m(φ− cφ) + ζ−
mψ)]

2i∆φ

√
k2w2 − f 2

m

,

I−
N,κ−

0 ,±
(φ, ψ) =

± e
±iζ

κ−
0
ψ

ψ − sφ

1 − e
i(∓sφζκ−

0
+dφκ−

0 +σ′
φ

)


−e

−iH(∓1)ζ
κ−

0
sφ

2iζκ−
0

e
±iζ

κ−
0

(ψ−H(∓1)sφ)
− e

∓iζ
κ−

0
(ψ−H(∓1)sφ) 1 − e

−i(−sφζκ−
0

+dφκ−
0 +σ′

φ)

1 − e
−i(sφζκ−

0
+dφκ−

0 +σ′
φ

)




×
exp

[
−i
(
κ−

0 (φ− cφ)
)]

2ζκ−
0

.



3.F Resolving Resonance 137

It may be verified that applying the Helmholtz operator (3.17) to the inhomogeneous
functions yields

L(I−
P,M−

m
) = exp

[
−i
(
M̃−

m(φ− cφ) − (∆φfm + dφM̃
−
m) ψ
sφ

)]
,

L(I−
P,λ−

m
) = exp

[
−i
(
λ−
m(φ− cφ) + ζ−

mψ
)]
,

L(I−
N,N−

φ,n

) = exp
[
−iN−

φ,n(φ− cφ) +N−
ψ,nψ

]
,

L(I−
N,κ−

0 ,±
) = exp

[
−i
(
κ−

0 (φ− cφ) ± ζκ−
0
ψ
)]
,

so that (3.154) is in fact the solution to the inhomogeneous Helmholtz equation.
We now combine the h1,S solution (3.154) with the O(1) solution h0 (3.50) to write

h0(φ, ψ) + ϵh1,S(φ, ψ) =
∞∑

m=−∞

(
H−

0,m + ϵH−
Γ,m

)
exp

[
−i
(
λ−
mφ+ ζ−

mψ
)]

(3.156)

+
∑
M−
m

ϵS−
P,M−

m
I−
P,M−

m
(φ, ψ) +

∞∑
m=−∞

ϵS−
P,λ−

m
I−
P,λ−

m
(φ, ψ)

+
∑
N−
φ,n

ϵS−
N,N−

φ,n

I−
N,N−

φ,n

(φ, ψ) +
∑
±
ϵS−

N,κ−
0 ,±

I−
N,κ−

0 ,±
(φ, ψ)

+
∑
±

(
H−

0,κ−
0 ,±

+ ϵH−
1,S,κ−

0 ,±

)
e

−i(κ−
0 φ±ζ

κ−
0
ψ)
.

We note that the I−
P,λ−

m
terms are proportional to ϵφ. These are secular terms (Van Dyke,

1964), and present a problem for our asymptotic series: the expansion (3.15) breaks
down when φ = O(ϵ−1). Moreover, the solution does not satisfy the Sommerfeld radiation
condition as the acoustic field is not bounded in the far-field when even a single mode is
cut-on. Consequently, we need a way of regularising these terms.

We now combine the resonant I−
P,λ−

m
terms with the terms on line (3.156) and write

h̃0,S(φ, ψ) =
∞∑

m=−∞

(
H−

0,m + ϵH−
S,m

)
{1 − iϵ (sφ(φ− cφ) − dφψ)OS,m}

× exp
[
−i
(
λ−
mφ+ ζ−

mψ
)]
, (3.157)

where

OS,m =
S−
P,λ−

m
eiλ−

mcφ

2∆φ

√
k2w2 − f 2

mH
−

0,m
,
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and we have ignored O(ϵ2) terms. We now note that, when sφ(φ− cφ) − dφψ = O(1), we
may express the term in the curly brackets in (3.157) as

1 − iϵ (sφ(φ− cφ) − dφψ)OS,m = exp [−iϵ (sφ(φ− cφ) − dφψ)OS,m] +O((ϵOS,m)2),

In particular, the above relation is exact along the matching line sφ(φ− cφ) − dφψ where
the downstream region meets the lower triangular region. Consequently, we may express
(3.157) as

h̃0,S(φ, ψ) =
∞∑

m=−∞

(
H−

0,m + ϵH−
S,m

)
exp

[
−i
(
λ̃−
m,Sφ+ ζ̃−

m,Sψ
)]

exp[iϵsφcφOS,m], (3.158)

where we have introduced the modified modes

λ̃−
S,m = λ−

m + ϵsφOS,m,

ζ̃−
S,m = ζ−

m − ϵdφOS,m.

Although we have apparently performed an illegal manoeuvre in regularising (3.157), the
resulting function satisfies the required inhomogeneous Helmholtz equation up to O(φϵ2).
Applying the Helmholtz operator to h̃0,S as defined in (3.158) yields

L
(
h̃0,S

)
=

∞∑
m=−∞

(
H−

0,m + ϵH−
S,m

) {
2ϵOS,m

(
dφζ

−
m − sφλ

−
m

)
+O(ϵ2)

}
× exp

[
−i
(
λ̃−
S,mφ+ ζ̃−

S,mψ
)]

exp[iϵsφcφOS,m]

=
∞∑

m=−∞
ϵS−

P,λ−
m

exp
[
−i
(
λ−
m(φ− cφ) + ζ−

mψ
)]

+O(φϵ2),

which is the form of the desired forcing terms.
We now note that (3.158) is exactly the solution that would have been obtained if a

multiple-scales perturbation expansion had been applied to the downstream region as
opposed to the regular perturbation series (3.15). In that case, we would have written

h̃0,S(φ, ψ) = H0(φ,Φ, ψ) + ϵH1(φ,Φ, ψ) + · · ·

where Φ = ϵφ, and consequently obtained the solution (3.158). Accordingly, we have
obtained the multiple-scales solution albeit via a circuitous route. The solution could be
further expanded into the region φ = O(ϵ−2) via a second multiple-scales type argument,
but it is not necessary in the present work.
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3.F.2 Resonance in the h1,Γ solution

We now apply a similar procedure to regularise terms in the h1,Γ problem so that the
solution is valid in the region φ = O(ϵ−1). In the downstream region, we have

h1,Γ(φ, ψ) =
∞∑

m=−∞
H−

Γ,m exp
[
−i
(
λ−
mφ+ ζ−

mψ
)]

−
∞∑

m=−∞
ΓH′

0,m (sφ(φ− cφ) − dφψ) ζ
−
m exp [−i (λ−

mφ+ ζ−
mψ)]

sφ∆φ

√
k2w2 − f 2

m

−
∞∑

m=−∞
ΓH′

0,m
ψ

sφ
exp

[
−i
(
λ−
mφ+ ζ−

mψ
)]

+
∑
±

H−
1,Γ,κ−

0 ,±
e

−i(κ−
0 φ±ζ

κ−
0
ψ)
,

where

H−
Γ,m = − π

∆φ

∞∑
m=−∞

ζ−
mD

(2,4)
1,Γ (λ−

m)√
k2w2 − f 2

m

−
∑
±

ΓH±′
0,κ−

0

±iζκ−
0

ei(λ−
m−κ−

0 )cφ

2(λ−
m − κ−

0 )
1

∆φ

√
k2w2 − f 2

m

−
∞∑

n=−∞
n̸=m

 iei(λ−
m−λ−

n )cφ

2(λ−
m − λ−

n )ΓH′
0,n

{
ζ−
n + ζ−

m

λ−
n − κ−

0
λ−
m − κ−

0
· J−(λ−

n )
J−(λ−

m)

} 1
∆φ

√
k2w2 − f 2

m

−
∞∑

m=−∞
ΓH′

0,m
(((sφλ−

m)2 − (dφζ−
m)2) cot(sφζ−

m) − sφ/ζ
−
m((ζ−

m)2 + (λ−
m)2))

2i∆2
φ(k2w2 − f 2

m)

− ΓH′
0,m

{
ζ−
m

λ−
m − κ−

0
− λ−

m

ζ−
m

+ ζ−
m

J ′
−(λ−

m)
J−(λ−

m)

}
i

2∆φ

√
k2w2 − f 2

m

+ ΓH′
0,m

sφλ
−
meisφλ−

m + dφζ
−
me−isφζ−

m

2i sin(sφζ−
m)

1
∆φ

√
k2w2 − f 2

m

,

H−
1,Γ,κ−

0 ,±
= πiP1,Γ

2 · ei(dφκ−
0 +σ′

φ) − e
±isφζκ−

0

cos(dφκ−
0 + σ′

φ) − cos(sφζκ−
0

)

+ Γ
2H

±′
0,κ−

0

ei(dφκ−
0 +σ′

φ) − e
±isφζκ−

0

cos(dφκ−
0 + σ′

φ) − cos(sφζκ−
0

) . (3.159)
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In a similar way to the previous section, we combine the h1,Γ solution with the h0 solution
to write

h0(φ, ψ) + ϵh1,Γ(φ, ψ) =
∞∑

m=−∞

(
H−

0,m + ϵH−
Γ,m

)
exp

[
−i
(
λ−
mφ+ ζ−

mψ
)]

(3.160)

−
∞∑

m=−∞
ϵΓH′

0,m (sφ(φ− cφ) − dφψ) ζ
−
m exp [−i (λ−

mφ+ ζ−
mψ)]

sφ∆φ

√
k2w2 − f 2

m

(3.161)

−
∞∑

m=−∞
ϵΓH′

0,m
ψ

sφ
exp

[
−i
(
λ−
mφ+ ζ−

mψ
)]

(3.162)

+
∑
±

(
H−

0,κ−
0 ,±

+ ϵH−
1,Γ,κ−

0 ,±

)
e

−i(κ−
0 φ±ζ

κ−
0
ψ)
.

Again, we note that the terms on line (3.161) are proportional to ϵφ and, accordingly, the
asymptotic expansion (3.15) breaks down when φ = O(ϵ−1). We combine these resonant
terms with the terms on line (3.160) and write

h̃0,Γ(φ, ψ) =
∞∑

m=−∞

(
H−

0,m + ϵH−
Γ,m

)
{1 − iϵ (sφ(φ− cφ) − dφψ)OΓ,m}

× exp
[
−i
(
λ−
mφ+ ζ−

mψ
)]
, (3.163)

where

OΓ,m = −Γζ−
m(λ−

m + kM2
∞δ)

sφ∆φ

√
k2w2 − f 2

m

,

and we have ignored O(ϵ2) terms and used the definition (3.51.b). Similarly to the
previous section, we may express (3.163) as

h̃0,Γ(φ, ψ) =
∞∑

m=−∞

(
H−

0,m + ϵH−
Γ,m

)
exp

[
−i
(
λ̃−

Γ,mφ+ ζ̃−
Γ,mψ

)]
exp[iϵsφcφOΓ,m], (3.164)

where we have introduced the modified modes

λ̃−
Γ,m = λ−

m + ϵsφOΓ,m,

ζ̃−
Γ,m = ζ−

m − ϵdφOΓ,m.
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When combined with the term on line (3.162), the ensuing function satisfies the homoge-
neous Helmholtz equation up to O(φϵ2). Moreover, we have

∆0
[
h̃0,Γ

]
(φ) = 0,

and the jump in acoustic potential (3.42.f) is obtained exclusively by the term on line
(3.162).

3.F.3 Summary

In conclusion, we can resolve the resonance terms by modifying the terms proportional
to e−i(λ−

mφ+ζ−
mψ). In this context, we change the acoustic modes λ−

m and ζ−
m to

λ̃−
m = λ−

m + ϵsφ(OS,m +OΓ,m),
ζ̃−
m = ζ−

m − ϵdφ(OS,m +OΓ,m),

and rescale that part of the solution by a factor of exp [iϵsφcφ(OS,m +OΓ,m)].

3.G Coefficients of Acoustic Potential Function

In this section we define the coefficients of the acoustic potential function found in section
3.4. In this section we use the notation

D(i,j)
n,x = D(i)

n,x +D(j)
n,x,

D(i,j) = D
(i,j)
0 + ϵ

(
D

(i,j)
1,Σ +D

(i,j)
1,∆ +D

(i,j)
1,Γ +D

(i,j)
1,S

)
.

In the upstream region, we define

H+
m = H+

0,m + ϵ
(
H+

Σ,m + H+
∆,m + H+

Γ,m + H+
S,m

)
,

where

H+
n,x,m = πζ+

m

∆φ

√
k2w2 − f 2

m

D(1,3)
n,x (λ+

m), for n = 0 and n = 1, x = Σ,Γ,

H+
∆,m = πζ+

m

∆φ

√
k2w2 − f 2

m

D
(1,3)
1,∆ (λ+

m) + 1
∆φ

√
k2w2 − f 2

m

∞∑
l=−∞

c∆,l

2(λ+
m − κ−

l ) ,
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H+
S,m = πζ+

m

∆φ

√
k2w2 − f 2

m

D
(1,3)
1,S (λ+

m) − 4π2

ζ+
m

∑
l1,l2

Sil1,l2F
r,+
l2,m

λ+
m − κ−

l1

+
∑
M̃+
m

sφ

2∆φ

√
k2w2 − f 2

m(M̃+
m − λ+

m)
.

In the downstream region, we define

H−
m =

{
H−

0,m + ϵ
(
H−

Σ,m + H−
∆,m + H−

Γ,m + H−
S,m

)}
exp [iϵsφcφ(OS,m +OΓ,m)] ,

where

H−
n,x,m = − πζ−

m

∆φ

√
k2w2 − f 2

m

D(2,4)
n,x (λ−

m), for n = 0 and n = 1, x = Σ,

H−
∆,m = − πζ−

m

∆φ

√
k2w2 − f 2

m

D
(2,4)
1,∆ (λ−

m) − 1
∆φ

√
k2w2 − f 2

m

∞∑
l=−∞

c∆,lei(λ−
m−κ−

l
)cφ

2(λ+
m − κ−

l ) ,

and H−
S,m and H−

Γ,m are defined in section 3.F.
The coefficients responsible for enforcing the boundary conditions on the blades are

given by

Hθ+,b,m = πiBn · ei(dφθ+
n+σ′

φ)

cos(dφθ+
n + σ′

φ) − (−1)n ,

Hθ−,a,m = −πAn + Cn

θ−
n − κ−

0
· (−1)n+1

cos(dφθ−
n + σ′

φ) − (−1)n ,

Hθ−,b,m = −πAn + Cn

θ−
n − κ−

0
· ei(dφθ−

n +σ′
φ)

cos(dφθ−
n + σ′

φ) − (−1)n ,

HΣ,a,l = −πi Tl

J+(κ−
l ) · −1

cos(dφκ−
l + σ′

φ) − cos
(
sφζκ−

l

) ,
HΣ,b,l = −πi Tl

J+(κ−
l ) · ei(dφκ−

l
+σ′

φ)

cos(dφκ−
l + σ′

φ) − cos
(
sφζκ−

l

) ,
H∆,a,l = −c∆,l

2ζκ−
l

(
cos(dφκ−

l + σ′
φ) − cos

(
sφζκ−

l

)) ,
H∆,b,l = c∆,lei(dφκ−

l
+σ′

φ)

2ζκ−
l

(
cos(dφκ−

l + σ′
φ) − cos

(
sφζκ−

l

)) ,
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where

Tl = T0,l + ϵ (T1,Σ,l + T1,∆,l + T1,Γ,l + T1,S,l) ,
An = A0,n + ϵ (A1,Σ,n + A1,∆,n + A1,Γ,n + A1,S,n) ,
Bn = B0,n + ϵ (B1,Σ,n + B1,∆,n + B1,Γ,n + B1,S,n) ,
Cn = C0,n + ϵ (C1,Σ,n + C1,∆,n + C1,Γ,n + C1,S,n) .

The coefficients responsible for enforcing the Kutta condition in the inter-blade down-
stream region are

H−
κ−

0 ,b
= H−

0,κ−
0 ,b

+ ϵ
(
H−

1,Σ,κ−
0 ,b

+ H−
1,∆,κ−

0 ,b
+ H−

Γ,κ−
0 ,±,b

+ H−
1,S,κ−

0 ,b

)
,

where

H−
n,x,κ−

0 ,b
= −πiPn,x ·

cos(sφζκ−
0

)
cos(dφκ−

0 + σ′
φ) − cos(sφζκ−

0
) .

The coefficients responsible for enforcing the Kutta condition in the downstream region
are

H−
κ−

0 ,±
= H−

0,κ−
0 ,±

+ ϵ
(
H−

1,Σ,κ−
0 ,±

+ H−
1,∆,κ−

0 ,±
+ H−

1,Γ,κ−
0 ,±

+ H−
1,S,κ−

0 ,±

)
,

where

H−
n,x,κ−

0 ,±
= πiPn,x

2 · ei(dφκ−
0 +σ′

φ) − e
±isφζκ−

0

cos(dφκ−
0 + σ′

φ) − cos(sφζκ−
0

) , for n = 0 and n = 1, x = Σ, ∆,

and H−
1,Γ,κ−

0 ,±
and H−

1,S,κ−
0 ,±

are defined in (3.159) and (3.155).
Further coefficients are defined as

HS,a,l = −
∞∑

l2=−∞

s2
φϵSil,l2

∆2
φ

(
λ+
l2/2 − κ−

l

) (
λ−
l2/2 − κ−

l

)
× 1 − (−1)l2

2
(
cos(sφζκ−

l
) − cos(dφκ−

l + σ′
φ)
) ,

HS,b,l =
∞∑

l2=−∞

s2
φϵSil,l2ei(dφκ−

l
+σ′

φ)

∆2
φ

(
λ+
l2/2 − κ−

l

) (
λ−
l2/2 − κ−

l

)
× 1 − (−1)l2

2
(
cos(sφζκ−

l
) − cos(dφκ−

l + σ′
φ)
) ,
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HS,c,l =
∞∑

l2=−∞

s2
φϵSil,l2

∆2
φ

(
λ+
l2/2 − κ−

l

) (
λ−
l2/2 − κ−

l

)
× 1 − (−1)l2

2
(
cos(sφζκ−

l
) − cos(dφκ−

l + σ′
φ)
) ·

i(πl2 − dφκ
−
l − σ′

φ)
sφζκ−

l

,

HS,d,l = −
∞∑

l2=−∞

s2
φϵSil,l2ei(dφκ−

l
+σ′

φ)

∆2
φ

(
λ+
l2/2 − κ−

l

) (
λ−
l2/2 − κ−

l

)
× 1 − (−1)l2

2
(
cos(sφζκ−

l
) − cos(dφκ−

l + σ′
φ)
) ·

i(πl2 − dφκ
−
l − σ′

φ)
sφζκ−

l

,

H+
U,b,m = π2 4ϵU1,S,mJ+(λ+

m)
(λ+

m − κ−
0 )ζ+

m sin(sφζ+
m) · eiλ+

mcφ ,

H−
R,a,m = −π2i4ϵR1,S,mJ−(λ−

m)
ζ−
m sin(sφζ−

m) · e−isφζ−
m ,

H−
G,a,m = ie−isφζ−

m

∆φ

√
k2w2 − f 2

m

·
∞∑

l=−∞

ϵc∆,l

2(λ−
m − κ−

l ) ,

H+
G,a,m = eisφζ+

m

∆φ

√
k2w2 − f 2

m

· 1
sin(sφζ+

m) ·
∞∑

l=−∞

c∆,l

2(λ+
m − κ−

l ) ,

H−
G,b,m = 1

sin(sφζ−
m)∆φ

√
k2w2 − f 2

m

·
∞∑

l=−∞

ϵc∆,lei(λ−
m−κ−

l
)cφ

2(λ−
m − κ−

l )

+ iϵΓ
∆φ

√
k2w2 − f 2

m sin(ζ−
msφ)

×

∑
n̸=m

ζ−
nH

′
0,n

ei(λ−
m−λ−

n )cφ

2(λ−
m − λ−

n ) +
∑
±

±ζκ−
0
H±′

0,κ−
0

ei(λ−
m−κ−

0 )cφ

2(λ−
m − κ−

0 )


−

ϵΓH′
0,m

2∆φ

√
k2w2 − f 2

m sin(ζ−
msφ)

(
cφζ

−
m − iλ

−
m

ζ−
m

)
,

H+
G,b,m = −ieisφζ+

m

sin(sφζ+
m)∆φ

√
k2w2 − f 2

m

·
∞∑

l=−∞

ϵc∆,lei(λ+
m−κ−

l
)cφ

2(λ+
m − κ−

l )

+ ϵΓeisφζ+
m

∆φ

√
k2w2 − f 2

m sin(sφζ+
m)

×

 ∞∑
n=−∞

ζ−
nH

′
0,n

ei(λ+
m−λ−

n )cφ

2(λ+
m − λ−

n ) +
∑
±

∓ζκ−
0
H±′

0,κ−
0

ei(λ+
m−κ−

0 )cφ

2(λ+
m − κ−

0 )

 ,
H+
a,m = −πi

∆φ

√
k2w2 − f 2

m

· ζ+
meisφζ+

m

sin(sφζ+
m)D

(1,3)(λ+
m),
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H−
b,m = πi ζ−

m

∆φ

√
k2w2 − f 2

m

· D
(2,4)(λ−

m)
sin(sφζ−

m)

+ −ϵΓζ−
m

∆φ

√
k2w2 − f 2

m sin(sφζ−
m)

∑
n ̸=m

H′
0,n

ei(λ−
m−λ−

n )cφ

2(λ−
m − λ−

n ) · λ
−
n − κ−

0
λ−
m − κ−

0
· J−(λ−

n )
J−(λ−

m)

+ ϵΓζ−
m

∆φ

√
k2w2 − f 2

m sin(sφζ−
m)

H′
0,m

2

(
1

λ−
m − κ−

0
+ J ′

−(λ−
m)

J−(λ−
m) − icφ

)
,

H−
m,b = ϵΓH′

0,meiζ−
msφ

×
((sφλ−

m)2 − (dφζ−
m)2) cos(sφζ−

m) − sφ
ζ−
m

((ζ−
m)2 + (λ−

m)2) sin(sφζ−
m)

4 sin(sφζ−
m)2∆2

φ(k2w2 − f 2
m) ,

H−
Γ,κ−

0 ,±,b
=

−ϵΓH±′
0,κ−

0
e

±iζ
κ−

0
sφ

2
(
cos(dφκ−

0 + σ′
φ) − cos

(
sφζκ−

0

)) ,
H−

Γ,λ−
m

= −H′
0,m

ϵΓ
sφ

exp [iϵsφcφ(OS,m +OΓ,m)] ,

H−
Γ,m,b =

−ϵΓH′
0,mi

2 sin(sφζ−
m)∆φ

√
k2w2 − f 2

m

eiζ−
msφ ,

H−
Γ,λ−

m
= −H′

0,m
ϵΓ
sφ

exp [iϵsφcφ(OS,m +OΓ,m)] .

The inhomogeneous functions in the upstream and inter-blade regions are

I+
P,M+

m
(φ, ψ) = −

s2
φ

∆2
φ

·
exp

[
−i
(
φM̃+

m − ψ
sφ

(∆φfm + dφM̃
+
m)
)]

(M̃+
m − λ+

m)(M̃+
m − λ−

m)
,

Iil1,l2(φ, ψ) = −
s2
φ

∆2
φ

·
exp

[
−i
(
κ−
l1φ− ψ

sφ

(
∆φfl2/2 + dφκ

−
l1

))]
(κ−

l1 − λ+
l2/2)(κ

−
l1 − λ−

l2/2)
.

Finally, the inhomogeneous functions in the downstream region are defined in section
3.F.





Chapter 4

Potential Flow Through Cascades of
Thin, Porous Aerofoils

4.1 Introduction

As mentioned in the Introduction, a promising direction in aeroacoustic research is to
take inspiration from the silent flight of owls (Graham, 1934). Amongst other features, it
is known that the porous trailing edge of an owl’s wing is responsible for its surprisingly
effective noise reduction capabilities. This realisation has been a substantial source of
research into the effects of porosity on trailing-edge noise, from experimental (Chen et al.,
2012; Geyer et al., 2010), numerical (Cavalieri et al., 2016; Leclaire et al., 2001) and
analytic (Jaworski and Peake, 2013; Kisil and Ayton, 2018) perspectives. However, despite
being aeroacoustically favourable, porosity gradients typically have adverse aerodynamic
affects, and consequently the aeroacoustic gains afforded by porous trailing edges must
be held in tension with the associated aerodynamic losses. This delicate balancing act
has resulted in further research into the aerodynamic effects of isolated porous aerofoils
(Hajian and Jaworski, 2017; Iosilevskii, 2011, 2013). Accordingly, in this chapter we
conduct a novel investigation into the aerodynamic effects of porosity gradients for
aerofoils in a cascade formation.

Despite their well-known aeroacoustic properties, porous trailing edges have not yet
been applied to reduce turbomachinery noise. The potential flow through a cascade of
thin impermeable objects was solved analytically in chapter 2 by recasting traditional
thin aerofoil theory (Thwaites, 1960) as a Riemann–Hilbert problem. In this chapter, we
extend this analysis to consider a cascade of porous aerofoils. This aerodynamic study is
a necessary first step towards more sophisticated investigations involving the acoustic
emissions generated by a porous cascade. However, the results are not just relevant to
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turbomachinery; there are also implications for natural formation flight, where a group
of flyers or swimmers operate in a periodic arrangement. The compliant porous wing of
a bird, for example, must be modelled in a different way to a rigid wing.

Similar to previous analyses (Hajian and Jaworski, 2017), we model the cascade as a
bound vortex sheet. We consider a perturbation expansion where the blade geometry,
angle of attack and stagger angle are assumed to be small. We also ignore blade thickness,
as small thickness profiles do not affect the pressure jump across the blade and, therefore,
blade thickness decouples from the effects of porosity, except in the definition of the
porosity coefficient. For simplicity and tractability, the porosity is modelled as a Darcy
condition across the wing. This modelling assumption assumes that the flow though
the pores in the wing is a Stokes flow (i.e. low Reynolds number), which breaks down
when the leading edge becomes porous, and higher order terms must be included in the
boundary condition (Ergun, 1952). For this reason, we shall restrict our attention to
aerofoils whose leading edges are impermeable.

During the solution of the porous cascade problem, we are faced with a periodic
singular integral equation (SIE) for the bound vorticity. Analytic solutions to this
equation could not be found in the literature, so, in a similar way to chapter 2, we adapt
classical approaches (Gakhov, 1966; Muskhelishvili, 1946) to find a new solution. The
solution reduces to the original non-periodic solution when the period window becomes
large. The resulting solution may be applied to other problems featuring periodic SIEs,
such as periodic cracks in elasticity problems (Ioakmidis and Theocaris, 1977; Mikhlin,
1957; Schmueser and Comninou, 1979). This SIE is only solvable when the stagger angle
is small and, consequently, this chapter is restricted to asymptotically small stagger
angles, analogous to the analysis in chapter 2.

The layout of this chapter is as follows: in section 4.2 we lay out the mathematical
model and derive the periodic SIE for the bound vorticity. In section 4.3 we solve a more
general periodic SIE by adapting typical approaches. This solution is then applied to the
special case of porous aerofoils, and is validated against the isolated porous aerofoil and
rigid cascade solutions. In section 4.4, we explore the role of porosity on aerodynamic
performance, and observe the crucial role of the porosity at the trailing edge on the
deflection angle. The case of partially porous flat plates, where the aerofoil consists of a
rigid forward section and permeable aft section, is considered and analytic expressions
are generated for the seepage drag and lift. We also investigate cascades with continuous
porosity gradients, and consider the effects of camber. Finally, in section 4.5 we present
the conclusions of the chapter.
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Fig. 4.1 An infinite staggered cascade of porous aerofoils. The vertical spacing between
the aerofoils is ∆, the stagger angle is χ, and the upstream velocity is U∞, which is
inclined at angle of attack α. The colour gradient of the aerofoils represents the porosity
gradient.

4.2 Model Derivation

In this section we present the mathematical model and derive the periodic singular
integral equation for the bound vorticity around a single aerofoil in the cascade. From
this we can then calculate the potential flow through the entire cascade. We ignore
aerofoil thickness in this formulation, except when it is encoded into the porosity gradient,
because, as shown in chapter 2, aerofoil thickness does not induce a velocity (pressure)
jump across the aerofoil, and therefore will not play a role in the porous analysis. We
consider an infinite cascade of infinitesimally thin aerofoils under the assumption of small
disturbances in a two-dimensional, steady, incompressible flow. Similarly to chapter 2,
the flow is uniform far upstream (with speed U∞) and has angle of attack α relative
to the chords of the aerofoils, which are inclined at stagger angle χ. Length scales are
normalised so that each aerofoil has unit semi-chord. We assume that α, χ = O(ϵ) where
ϵ is a small parameter of the order of the aspect ratio of the aerofoils. As in the analytic
solution in chapter 2, the stagger angle disappears from the analysis and we do not
consider stagger further in this chapter. We also permit each blade to have small, O(ϵ),
camber. Our model is illustrated in figure 4.1.
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From chapter 2, the complex velocity of the perturbation to uniform flow may be
expressed as

u(z) − iv(z) = 1
2i∆

ˆ 1

−1
γ(τ)

(
coth

(
π(τ − z)

∆

)
− 1

)
dτ, (4.1)

where γ represents the tangential velocity jump across the blade, otherwise known as the
bound vorticity.

Following Hajian and Jaworski (2017), we write the vertical surface velocity as

v±(t) = vs(t) + y′
c,α(t), (4.2)

where vs represents the seepage velocity through the aerofoil, y′
c,α represents the gradient

of the camber line and the superscript ± represents the limiting value taken from the
upper or lower side of the aerofoil respectively. When vs = 0 we recover the typical
boundary condition of thin aerofoil theory for impermeable wings encountered in chapter
2. However, when the aerofoils are porous, vs is unknown and must be found as part of
the problem.

We may express the seepage velocity in terms of the bound vorticity distribution
around a single aerofoil by assuming a Darcy-type velocity distribution, where the seepage
velocity is proportional to the pressure jump across the aerofoil (Lifanov et al., 2009):

vs(t) = ρ∞U∞CR(t)γ(t). (4.3)

Here R is the porosity distribution, ρ∞ is the (constant) flow density, and C is the
porosity coefficient (Hajian and Jaworski, 2017). The Darcy flow formulation is only valid
when the pore-level Reynolds number is sufficiently small and there is Stokes flow through
the pores (Weidenfeld and Manela, 2016, Appendix A). This formulation therefore breaks
down when the seepage velocity becomes too large. In this case, the Darcy model should
be replaced with a nonlinear relationship between seepage velocity and pressure jump
such as the Ergun model (Ergun, 1952), as suggested in Bae and Moon (2011). However,
this modelling is beyond the scope of the present research and for the moment we focus
on the Darcy flow condition.

We now close the problem for γ(t) by applying the Modified Plemelj formulae for
cascades (appendix 2.A of chapter 2) to (4.1), which yields another expression for the
upper and lower vertical velocities, this time in terms of the bound vorticity distribution,
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γ:

v±(t) = 1
2∆−
ˆ 1

−1
γ(τ)

(
coth

(
π(τ − t)

∆

)
− 1

)
dτ. (4.4)

By substituting (4.3) and (4.4) into (4.2), we obtain the singular integral equation for
the bound vorticity:

ρ∞U∞CR(t)γ(t) − 1
2∆−
ˆ 1

−1
γ(τ)

(
coth

(
π(τ − t)

∆

)
− 1

)
dτ = −U∞y

′
c,α(t). (4.5)

We now normalise the velocity with respect to U∞, and define the non-dimensional
porosity distribution ψ(x) = 2ρ∞U∞CR(x) to obtain the singular integral equation

ψ(t)γ(t) − 1
∆−
ˆ 1

−1
γ(τ)

(
coth

(
π(τ − t)

∆

)
− 1

)
dτ = −2y′

c,α(t). (4.6)

4.3 Periodic Singular Integral Equation Solution

In this section we present the solution to the canonical SIE with periodic kernel by
adapting a classical approach for non-periodic kernels (Muskhelishvili, 1946, Part V). As
discussed in chapter 2, the usual methods, such as those in Muskhelishvili (1946) and
Gakhov (1966) are restricted to contours that are bounded and the union of finitely many
curves. In our case, the contour is not bounded and is the union of (countably) infinitely
many curves. However, due to the periodicity, the technique of Muskhelishvili (1946) may
be adapted. We only provide details of the solution to the dominant part of the SIE in
the case of open contours with continuous coefficients (analogous to (Muskhelishvili, 1946,
§107)), but all pertinent results, such as those on the full SIE, special ends, the adjoint
equation, and discontinuous coefficients also follow in a similar way to the non-periodic
case. In fact, the non-periodic case can be recovered in the limit |∆| → ∞.

The periodic SIE may be written in the general form

A(t)γ(t) + B(t)
i∆ −
ˆ
L

γ(τ)
(

coth
(
π(τ − t)

∆

)
− 1

)
dτ = f(t), (4.7)

for t ∈ L where L = L1 + L2 + · · · + Lp is a finite union of open contours, whose ends
are denoted by {ck | k = 1, . . . , 2k}, in no particular order. Furthermore, we specify that
A, B and f satisfy a Hölder condition on L and A2(t) ̸= B2(t) for all t.

Similar problems have been considered previously, but the solution to the general
SIE has not been presented. For example, Mikhlin (1957) considered a periodic array
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of holes in an elastic medium. That problem is different to the one considered in the
present research as it considered closed contours, and consequently required solution via
conformal mappings. Other problems involving cracks (Ioakmidis and Theocaris, 1977;
Schmueser and Comninou, 1979) also derive similar SIEs, but then resort to numerical
solutions. Previous work in chapter 2 only considered the case A ≡ 0, B ≡ 1, so the
corresponding analysis presented here is far more general.

Following the typical approach of solving SIEs for open contours (Muskhelishvili,
1946, §107), we transform the canonical SIE (4.7) into a Riemann–Hilbert problem by
introducing the auxiliary function

Φ(z) = 1
2i∆

ˆ
L

γ(τ)
(

coth
(
π(τ − z)

∆

)
− 1

)
dτ. (4.8)

Incidentally, Φ represents the complex velocity of the perturbed field in aerodynamic
applications. We note that, unlike the non-periodic case, Φ does not always decay as
|z| → ∞.

We may now rewrite (4.7) in terms of Φ by applying the modified Plemelj formulae
(appendix 2.A of chapter 2) to obtain a Riemann–Hilbert problem in the canonical form

Φ+(t) −G(t)Φ−(t) = f ∗(t), (4.9)

where

G(t) = A(t) −B(t)
A(t) +B(t) , f ∗(t) = f(t)

A(t) +B(t) .

We note that the auxiliary function Φ(z) defined in (4.8) possesses two essential qualities:
it has period ∆i and it decays as z → −∞. Consequently, we write Φ(z) = X(z)Ψ(z),
where both X(z) and Ψ(z) have period i∆, but X(z) tends to a constant whereas Ψ(z)
must vanish as z → −∞. Moreover, we specify that X(z) is the fundamental solution,
i.e. it satisfies the homogeneous Riemann–Hilbert problem defined by

X+(t) −G(t)X−(t) = 0. (4.10)

There are infinitely many solutions to the above equation, which can be written in the
general form

X(z) =
2p∏
k=1

[sinh(π(z − ck)/∆)]λk exp
[

1
2i∆

ˆ
L

log(G(τ)) coth
(
π(τ − z)

∆

)
dτ
]
, (4.11)
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where λk are specially chosen integers (Muskhelishvili, 1946, §79). It can be verified
that this choice of X(z) satisfies (4.10) and has appropriate periodicity. Similarly to the
non-periodic case, the values of λk are determined by consideration of the behaviour
of Φ at the ends of L. These are usually specified by physical considerations, such as
the Kutta condition, and result in the classification of ck into special ends, where the
solution is bounded, and non-special ends, where the solution may be unbounded. Our
constraint that X(z) tends to a constant as z → −∞ introduces the further condition∑2p
k=1 λk = 0, i.e. the index of the class of solutions must vanish.

In the non-periodic case, polynomial multiples of the fundamental solution (4.11) are
solutions to the homogeneous Riemann–Hilbert problem (4.10) (see (Muskhelishvili, 1946,
§79), for example). However, we have specified that the solutions to the homogeneous
problem must be bounded, so polynomial multiples are not permitted. In appendix 4.B we
prove that every solution, bounded as |z| → ∞, to the periodic, homogeneous Riemann–
Hilbert problem is a multiple of (4.11): the solution is unique up to a multiplicative
constant.

Similarly to Muskhelishvili (1946), we now define

Z(t) = (A(t) +B(t))X+(t) = (A(t) −B(t))X−(t). (4.12)

Substitution into the original Riemann–Hilbert problem (4.9) now yields

Ψ+(t) − Ψ−(t) = f(t)
Z(t) ,

which has the solution, with appropriate periodicity and upstream decay,

Ψ(z) = 1
2i∆

ˆ
L

f(τ)
Z(τ)

(
coth

(
π(τ − z)

∆

)
− 1

)
dτ. (4.13)

Now we may use the modified Plemelj formulae to obtain γ as

γ(t) = Φ+(t) − Φ−(t)

= A∗(t)f(t) − B∗(t)Z(t)
i∆ −

ˆ
L

f(τ)
Z(τ)

(
coth

(
π(τ − t)

∆

)
− 1

)
dτ, (4.14)

where

A∗(t) = A(t)
A(t)2 −B(t)2 , B∗ = B(t)

A(t)2 −B(t)2 .
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This completes the solution of the canonical periodic singular integral equation (4.7).

4.3.1 Application to the Cascade of Porous Aerofoils

We may now apply the solution found in (4.14) to the particular case of a cascade of
porous aerofoils. By comparison of (4.6) with (4.7), we obtain

A(t) = ψ(t), B(t) = −i,

f(t) = −2y′
c,α(t), G(t) = ψ(t) + i

ψ(t) − i .

The contour L is taken to be the slit [−1, 1] and we set c1 = −1, c2 = 1, λ1 = 0, λ2 = 0.
We note that, by taking t → ±1 in (4.12), the original fundamental solution possesses an
integrable singularity at −1 and a zero at 1. Therefore, the requisite leading and trailing
edge behaviours are fulfilled, and there is no need to multiply by an entire, periodic
function as suggested in the previous section. However, in other applications, such as
elasticity, singularities at both the leading and trailing edges must be enforced, so a
different treatment of the end points would be required.

The function Z then becomes

Z(t) =
√

1 + ψ2(t) exp
[
π

∆−
ˆ 1

−1
k(τ) coth

(
π(τ − t)

∆

)
dτ
]
, (4.15)

where, similarly to Hajian and Jaworski (2017), we define k(t) = (1/π) cot−1 ψ(t).
The bound vorticity (4.14) is then given by

γ(t) = −
2ψ(t)y′

c,α(t)
1 + ψ2(t) − 2Z(t)

∆(1 + ψ2(t))−
ˆ 1

−1

y′
c,α(τ)
Z(τ)

(
coth

(
π(τ − t)

∆

)
− 1

)
dτ, (4.16)

and the complex potential is

u(z) − iv(z) = Φ(z) = −X(z)
i∆ ·

ˆ 1

−1

y′
c,α(τ)
Z(τ)

(
coth

(
π(τ − z)

∆

)
− 1

)
dτ. (4.17)

4.3.2 Validation

Here we present a comparison of our solution to other relevant solutions. We compare
our solution to previous results for an isolated aerofoil with a porosity gradient, and a
cascade of aerofoils with rigid boundaries.
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4.3.2.1 Comparison to an Isolated Aerofoil

Firstly, we show that our solution agrees with the isolated aerofoil case of Hajian and
Jaworski (2017) when the spacing between blades in the cascade is large. Taking ∆ → ∞,
the fundamental solution (4.12) becomes

Z∞(t) =
√

1 + ψ2(t) exp
[
−
ˆ 1

−1

k(τ)
τ − t

dτ
]
. (4.18)

where the subscript ∞ is used to denote the limit of large spacing. Similarly, taking this
limit in the solution (4.16), and noting the asymptotic behaviour of coth, yields

γ∞(t) = −
2ψ(t)y′

c,α(t)
1 + ψ2(t) − 2Z∞(t)

1 + ψ2(t)−
ˆ 1

−1

y′
c,α(τ)

Z∞(τ)(τ − t)dτ. (4.19)

Comparing with the isolated aerofoil solution, we see that (4.18) is identical to (3.7) in
Hajian and Jaworski (2017) subject to a constant prefactor and (4.19) is identical to (3.8)
in Hajian and Jaworski (2017), subject to the change from vorticity to pressure.

4.3.2.2 Comparison to a Rigid Cascade

Now we compare the solution for a cascade of porous aerofoil to the solution for a cascade
of rigid aerofoils obtained in chapter 4. Taking ψ → 0 is equivalent to k → 1/2, and
therefore (4.15) becomes

Zrigid(t) = exp
[
π

2∆−
ˆ 1

−1
coth

(
π(τ − t)

∆

)
dτ
]

=

√√√√sinh (π(1 − t)/∆)
sinh (π(1 + t)/∆) , (4.20)

which is equivalent to the fundamental solution defined in section 2.3.1.2 of chapter 2.
Using this relation, and taking the rigid limit in the bound vorticity equation (4.16), we
obtain

γrigid(t) = −2Zrigid(t)
∆ −

ˆ 1

−1

y′
c,α(τ)

Zrigid(τ)

(
coth

(
π(τ − t)

∆

)
− 1

)
dτ, (4.21)

which is equivalent to equation (2.31) of chapter 2.
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4.4 Results

Having demonstrated the validity of our solution, we now present results on the effects
of the porosity gradient and blade spacing on aerodynamic performance.

4.4.1 Deflection Angle and Lift

One of the primary functions of cascades in turbomachinery is to turn the flow through
a desired angle. Intuition suggests that any porosity will reduce the flow deflection, and
consequently be detrimental to aerodynamics performance. The solution in section 4.3
provides a way to precisely measure the effects of porosity on aerodynamic performance,
which could be used by designers attempting to balance the aeroacoustic benefits of
porous aerofoils with their aerodynamic limitations.

The deflection angle δα is calculated by taking the imaginary part of the complex
potential (4.17) as z → ∞:

δα = 2 exp
[
− π

∆

ˆ 1

−1
k(τ)dτ

] ˆ 1

−1

y′
c,α(τ)
Z(τ) · dτ

∆ , (4.22)

which is related to the non-dimensional lift by equation 2.36 of chapter 2.
From the above formula, we argue that the porosity at the trailing edge has a dominant

effect on the deflection angle of the cascade. Asymptotic analysis of (4.15) reveals that
Z(t) possess a zero at the trailing edge (t = 1). The strength of this zero depends
critically on the porosity at the trailing edge: in the rigid case there is a square root
zero, but in the porous case the strength of the zero is k(1). Consequently, the major
contribution from the integral in (4.22) will be close to the trailing edge, and will be
strongly influenced by k(1), the trailing edge porosity. Since k < 1/2, the strength of
this zero is always reduced by porosity, and the dominant contribution from the trailing
edge will also be reduced.

Major aeroacoustic gains can be made by tuning the porosity of the trailing edge
Ayton (2016); Kisil and Ayton (2018), but the above formula indicates that a substantial
reduction in deflection angle is unavoidable. The deflection angle can be increased by
reducing the blade spacing, but this is not always possible in practical situations when
the blade spacing is subject to other limitations.
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4.4.2 Exact Solutions for Partially Porous Flat Plates

The aeroacoustic benefits of porous aerofoils are well documented (Ayton, 2016; Cavalieri
et al., 2016; Crighton and Leppington, 1970; Jaworski and Peake, 2013). Particular
attention has been given to partially porous aerofoils since they are more aerodynamically
favourable than fully porous aerofoils. The mechanism for sound reduction in partially
porous wings is elucidated by the iterative method implemented in Kisil and Ayton (2018),
which reveals that interference between scattering from the impermeable-permeable
junction and the trailing edge rotates the far-field directivity for the acoustic field.
Consistent with experimental results Geyer and Sarradj (2014), this research suggests
that the impermeable-permeable junction plays a more important role than previously
believed. Consequently, the aerodynamic modelling of partially porous aerofoils that
possess such junctions is a crucial step in understanding how to harmonise aerodynamic
and aeroacoustic requirements.

The aerodynamics of partially porous aerofoils was first investigated by Iosilevskii
(2011) and Iosilevskii (2013) and extended in Hajian and Jaworski (2017). We now
investigate partially porous aerofoils in a cascade arrangement. The porosity gradient is

ψ(t) = ψ0H(t− a), (4.23)

i.e. the aerofoil is rigid, except for a finite porous extension along [a, 1]. We refer to the
regions [−1, a] and [a, 1] as the forward and aft parts respectively.

Although this porosity distribution is not Hölder continuous, the solution (4.16)
remains valid since the classical results on discontinuous coefficients (Muskhelishvili,
1946) can be imported from the non-periodic case.

In the case of flat plates at angle of attack α, the singular integrals in (4.17) and (4.16)
can be calculated analytically to give exact solutions. Using y′

c,α = −α and applying
contour integration yields the bound vorticity (4.16) as

γ(t) = α
2e−(1+a) π

2∆ e−(1−a)πk∆√
1 + ψ(t)2

∣∣∣∣∣sinh (π(t− a)/∆)
sinh (π(t+ 1)/∆)

∣∣∣∣∣
1/2 ∣∣∣∣∣sinh (π(t− 1)/∆)

sinh (π(t− a)/∆)

∣∣∣∣∣
k

, (4.24)
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and the perturbed complex velocity (4.17) as

u(z) − iv(z) = α

e−(1+a) π
2∆ e−(1−a)πk∆

(
sinh (π(z − a)/∆)
sinh (π(z + 1)/∆)

)1/2

(4.25)

×
(

sinh (π(z − 1)/∆)
sinh (π(z − a)/∆)

)k
− 1

, (4.26)

where k = (1/π) cot−1 ψ0.
We note that as the porosity along the aft section increases (ψ0 → ∞), the velocity

jump across the permeable section has the asymptotic behaviour

γ(t) ∼ α
2e−(1+a) π

2∆

ψ0

∣∣∣∣∣sinh (π(t− a)/∆)
sinh (π(t+ 1)/∆)

∣∣∣∣∣
1/2

. (4.27)

Consequently, γ(t) = O(ψ−1
0 ), and the porous section effectively vanishes as it becomes

fully permeable.
For a cascade of partially porous flat plates with permeable length a, the maximum

velocity jump is given by

γ(tmax) = α
2e−(1+a) π

2∆ e−(1−a)πk∆√
1 + ψ2

0

(2k)k
(1 − 2k)k−1/2

∣∣∣∣∣sinh (π(1 − a)/∆)
sinh (2π/∆)

∣∣∣∣∣
1/2

×
∣∣∣∣∣ sinh (2π/∆)
sinh (π(1 + a)/∆)

∣∣∣∣∣
k

, (4.28)

which is attained when

tmax = ∆
2π log

(
e2π/∆ sinh(π(a+ 1)/∆) + 2k sinh(π(1 − a)/∆)
sinh(π(a+ 1)/∆) + 2ke2π/∆ sinh(π(1 − a)/∆)

)
.

The pressure jump is also maximised at this point.
We now present results for the velocity jump across the chord (which is related to

the pressure jump via γ = −[p]/2) for a variety of permeable lengths, porosities, and
blade spacings in figures 4.2 and 4.3. Since the velocity jump is small, the logarithmic
values are plotted. However, the reader should not be misled by this scale, which may
seem to suggest that the aerodynamic performance can be improved with porosity (see
figure 4.2b, for example, where the pressure jump along the aft section is greater than
when the aerofoil is rigid). Any aerodynamic gains made along the aft section are more
than cancelled out by the corresponding losses along the rigid forward section, which is
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Fig. 4.2 Plots of bound vorticity for permeable lengths a = −1, −0.8, . . . , 0.8, 1 and
porosity ψ = 1 as a function of distance along the chord, t for a) an isolated aerofoil, and
b) a cascade of aerofoils with ∆ = 1. The colour corresponding to each a is clear from
γ(a) = 0. The case a = 1, when the blade is fully rigid, is denoted by the solid black line,
whereas the case a = −1, when the blade is fully permeable, is denoted by the dashed
black line. The maximum velocity jump on the permeable aft section is marked by the
solid dots.

illustrated more clearly in figure 4.2a. We shall return to the aerodynamic performance
in the following section.

In figure 4.2 we plot the bound vorticity as a function of distance along the chord.
The plots exhibit the difference in behaviour between isolated aerofoils and cascades. In
the isolated case, there is a regime of a where porosity increases the velocity jump across
the blade. Comparing figures 4.2a and 4.2b shows that an effect of reducing the blade
spacing is to increase this regime where porosity increases the velocity jump. However,
the magnitude of this increase is small and is offset considerably by the decrease in
velocity jump close to the leading edge, also illustrated in figure 4.2. The apparent
spikes are when the bound vorticity becomes zero at the junction. Physically, this zero
is necessary to enforce continuity of seepage velocity (4.3): any other values result in
jumps in the normal surface velocity. Later we will discuss smooth transitions from
impermeable to permeable that do not exhibit this zero.

In figure 4.3 we plot the velocity jump for fixed a and a variety of porosities. Similarly
to figure 4.2, it is observed that increasing blade spacing increases the region of t where
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(b) Cascade of aerofoils, ∆ = 1, a = −1/2

−1 −0.5 0 0.5 110−3

10−2

10−1

100

101

t

γ
(t

)/
α

(c) Isolated aerofoil, ∆ = ∞, a = 1/2
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(d) Cascade of aerofoils, ∆ = 1, a = 1/2

Fig. 4.3 Plots of bound vorticity as a function of distance along the chord, t, for a variety
of permeable lengths, blade spacings and porosities: a) isolated aerofoil, a = −1/2, b)
cascade of aerofoils, ∆ = 1, a = −1/2, b) isolated aerofoil, a = 1/2, d) cascade of
aerofoils, ∆ = 1, a = 1/2. The porosities are k = 0.1 (blue), 0.2 (orange), 0.3 (yellow),
0.4 (purple). The case k = 0.5, when the blade is fully rigid, is denoted by the solid
black line, whereas the case k = 0, when the aft part of the blade is fully permeable, is
denoted by the dashed black line. The maximum velocity jump on the permeable aft
section is marked by the solid dots.
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the velocity jump increases. Here it is also clear that increasing the blade spacing shifts
the maximum value of γ to the left.

4.4.2.1 Lift and Drag

We now find analytic expressions for the lift and drag on a partially porous flat plate
in a cascade. The lift on an isolated partially porous aerofoil was found by Iosilevskii
(2011) and the analysis was extended by Iosilevskii (2013) to evaluate the seepage drag.

Similarly to the isolated aerofoil case, there are two forces acting on each aerofoil
in the cascade: the normal force and the leading-edge suction force. The components
of these forces are resolved to give the lift and drag. For an isolated, rigid aerofoil,
the forces are calculated using Blasius’ theorem, which leads to the Kutta–Joukowski
theorem, namely that the only force on the aerofoil is normal to the flow direction. For
rigid cascades, a similar procedure yields that the net force on an individual aerofoil
acts normal to the average of the upstream and downstream velocities (Robinson and
Laurmann, 1956, p. 148).

When considering rigid flat plates, the normal force and leading-edge suction force
are carefully balanced to cancel the drag force consistent with the Kutta–Joukowski
theorem (see p. 107 of Katz and Plotkin (2009), for example). Alternatively, the full force
calculation is achieved by properly integrating the singularity arising in Blasius’ theorem
at the leading edge (see p. 131 of Katz and Plotkin (2009), for example). However, the
Kutta–Joukowski theorem no longer applies when the plates are porous and we expect
the drag to be non-zero.

For the cascade, the mean of the upstream and downstream velocities is

Um = 1
2 (U1 + U2) =

(
1, α+ δα

2

)
,

where U1 is the upstream velocity and U2 is the downstream velocity. The generalised
Kutta–Joukowski theorem states that the only force on a cascade of impermeable aerofoils
operates in the direction normal to Um, and we define the drag to be perpendicular
to this vector. In general δα can be calculated by (4.22), or by sending z → ∞ in the
complex velocity expression (4.26).

When the leading edge of the aerofoil is rigid, the leading-edge suction force is

Fs = π

4

(
lim
t→−1

γ(t)
√

1 − t
)2

= α2∆
2

(
1 − e−4π/∆

)2k (
1 − e−2π(1+a)/∆

)1−2k
. (4.29)
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We now calculate the non-dimensional normal force, which is equivalent to the lift up to
O(ϵ2), using

L = Fn =1
2

ˆ 1

−1
(p+(t) − p−(t)) dt = ∆α

(
1 − e−(1+a) π∆ e−(1−a) 2πk

∆
)
. (4.30)

By resolving the leading-edge suction force and normal force into the direction parallel
to the velocity mean flow, we obtain an expression for the seepage drag:

D = −Fs +
(
α + δα

2

)
Fn

= ∆α2

2

[
1 − e−(1+a) 2π

∆ e−(1−a) 4πk
∆ −

(
1 − e−4π/∆

)2k (
1 − e−2π(1+a)/∆

)1−2k
]
. (4.31)

Note that the drag for a partially porous isolated aerofoil (Iosilevskii, 2013, equation
(21)) is recovered in the limit ∆ → ∞.

For a given blade spacing ∆ and permeable length a, the maximum seepage drag is

Dmax = ∆α2

2

1 −

 (1 − a)2π
∆ log

(
1−e−4π/∆

1−e−2π(1+a)/∆

) + 1
 e−(1+a)2π/∆M

 ,

M =
(e2π(1+a)/∆ − 1

)
·

log
(

1−e−4π/∆

1−e−2π(1+a)/∆

)
log (e−(1−a)2π/∆)


−(1−a)2π

∆ log

(
e−(1−a)2π/∆

(1−e−4π/∆)(1−e−2π(1+a)/∆)

)
, (4.32)

which is attained when

kmax =
log

(e2π(1+a)/∆ − 1
)

·
log

(
1−e−4π/∆

1−e−2π(1+a)/∆

)
log (e−(1−a)2π/∆)


2 log

(
e−(1−a)2π/∆

(1−e−4π/∆)(1−e−2π(1+a)/∆)

) . (4.33)

We now present figures illustrating the drag, lift and drag-to-lift ratio. The colour
scales are chosen such that it is aerodynamically favourable to operate in blue regions of
the colour plots.

In figure 4.4 we plot the drag coefficient as a function of permeable length a and
porosity k. The white line indicates the maximum drag possible for a given a, as given in
equations (4.32) and (4.33). The thin blue boundaries on the top and bottom of figures
4.4 show that the drag vanishes for zero and infinite porosity. For zero porosity, the
Kutta–Joukowski theorem (generalised for cascades) states that the drag on individual
impermeable blades is zero. On the other hand, for infinite porosity, there is no pressure
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Fig. 4.4 Drag as a function of permeable length a and porosity function k for a) ∆ = 1,
b) ∆ = 3, c) ∆ = 10, d) ∆ = ∞. The white line indicates the maximum drag for a given
impermeable length.
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jump across the aft, permeable part of wing, and the aerofoil behaves as if it were a rigid
plate truncated at a, and the Kutta–Joukowski theorem applies again.

As described in Iosilevskii (2013), the seepage drag exhibits singular behaviour as
a → −1; there is a discontinuity in the seepage drag when the porosity of a uniform plate
is varied from 0 (when the seepage drag vanishes) to an infinitesimally small value (when
the seepage drag is finite). This discontinuity can be attributed to the discontinuity in
leading-edge suction: for a uniformly porous flat plate, γ = O((1 + t)−k) as t → −1, but
since k < 1/2, the leading-edge suction force (4.29) vanishes discontinuously for even
the smallest value of porosity. Another perspective is that the seepage velocity (4.3) is
proportional to the bound vorticity, so an infinite vorticity corresponds to an infinite
seepage velocity. Since the vorticity is infinite at the leading edge, if the aerofoil is porous
there then the seepage velocity will also be infinite there. Correspondingly, the pore-level
Reynolds number is infinite and the Stokes flow assumption necessary for the Darcy flow
through the pores is not applicable. Consequently, the results should not be trusted
when the leading edge is porous and a more sophisticated porosity model is required,
such as that proposed by Ergun (1952).

Figure 4.4 also illustrates the role played by blade spacing on the seepage drag.
For small spacings (figures 4.4a and 4.4b), the maximum drag is always attained for
0 < k < 1/4 (except for a very small region near a = −1) whereas for large spacings
(figures c, d) the maximum drag is attained for 1/4 < k < 1/2. Increasing the blade
spacing also expands the area of significant drag, as indicated by the expanding red region.
Consequently, decreasing blade spacing can mitigate against the negative aerodynamic
effects associated with porosity.

Similarly to the single blade case (Iosilevskii, 2013), extending the permeable part
forwards carries a severe drag penalty, due to the large pressure jump that the porosity is
reducing. Conversely, the effect of the permeable part in the after direction is negligible,
since the pressure jump is small here, owing to the Kutta condition.

We now investigate the effects of porosity on aerofoil lift. Equation (4.30) elucidates
the symmetrical relationship between a and k: the lift L is unaffected by interchanging
these two parameters. This parity is illustrated in figure 4.5, which plots the reduction
in lift from the rigid case due to porosity and permeable length. The white dashed line
indicates the reflective symmetry between a and k. The effects on lift can be attributed
to the influence of porosity on the pressure jump across the blade. On a rigid blade,
the leading-edge singularity creates a large pressure jump near the front of the aerofoil,
whereas the Kutta condition enforces a small pressure jump near the trailing edge. The
effect of porosity is to reduce the pressure jump, and consequently the effects of porosity
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Fig. 4.5 Normalised lift as a function of permeable length and porosity a) ∆ = 1, b)
∆ = 3, c) ∆ = 10, d) ∆ = ∞. The dashed white line indicates the line of symmetry
between k and a.

are most significant near the leading edge where there is a large reduction in pressure
jump. This is observed through the sharp increase in lift reduction as the permeable part
is extended into the forward direction. The blade spacing effectively reduces the pressure
jump by spreading out the lift between the blades. Consequently, the effects of porosity
and permeable length on the lift reduction are mitigated by reducing the blade spacing.

We finally explore the effects of porosity on lift-to-drag ratio in figure 4.6. No analytic
expressions are available for the minimum lift-to-drag ratio, such as in equations (4.32)



166 Potential Flow Through Cascades of Thin, Porous Aerofoils

a

1 2
−
k

−1 −0.5 0 0.5 10

0.1

0.2

0.3

0.4

0.5

(a)

a

1 2
−
k

−1 −0.5 0 0.5 10

0.1

0.2

0.3

0.4

0.5

(b)

a

1 2
−
k

−1 −0.5 0 0.5 10

0.1

0.2

0.3

0.4

0.5

(c)

a

1 2
−
k

−1 −0.5 0 0.5 10

0.1

0.2

0.3

0.4

0.5

(d)

0 1 2 3 4 5 6 7 8 9 10
log

(
L
αD

)
Fig. 4.6 Lift-to-drag ratio as a function of permeable length and porosity for a) ∆ = 1,
b) ∆ = 3, c) ∆ = 10, d) ∆ = ∞. The white line indicates the minimum lift-to-drag ratio
for a given impermeable length.

and (4.33), so the minima are found numerically and plotted by the dashed white line.
Similar conclusions to those found for the seepage drag may be applied, namely that the
aerodynamic performance rapidly deteriorates as the permeable part is extended into
the forward direction, and that blade spacing can be reduced to mitigate the effects of
porosity.
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Fig. 4.7 The porosity gradient (4.34) used to approximate a partially porous distribution
with junction at a = 0. The curves correspond to b = 0 (dark blue), 0.5 (orange), 0.7
(yellow), 0.8 (purple), 0.9 (green), 0.95 (light blue), 1 (black).

4.4.3 Results on Aerofoils with Continuous Porosity Distribu-
tions

Porosity gradients are rarely discontinuous in the natural world. For example, a bird’s
wing will exhibit a smooth transition from a impermeable leading edge to a porous
trailing edge (Graham, 1934), the porosity gradients are rarely discontinuous. This
smooth transition from rigid to porous may affect the aeroacoustic and aerodynamic
performance of the aerofoil. Moreover, it is believed that discontinuities in porosity are a
secondary source of aeroacoustic scattering and are, therefore, undesirable. Consequently,
we now investigate the effects of a continuously varying porosity gradient. This section
also illustrates the versatility of the solution to consider a range of porosity profiles. We
choose a porosity gradient of

ψ(t) = ψ0

2

(1 + t)(1 − b) + b(1 + tanh ((a− t)/(b− 1)))

+t(1 − t)
2

(
1 + tanh ((a+ 1)/(b− 1))

)
+t(1 + t)

2
(
1 − tanh ((a− 1)/(b− 1))

)
, (4.34)

such that b = 0 corresponds to a linear porosity gradient that is rigid at the leading edge
and b = 1 corresponds to the partially porous case with junction at t = a. This porosity
distribution is illustrated in figure 4.7.

We consider aerofoils at angle of attack α with parabolic camber β such that the
geometrical profile may be written as

y′
c,α(t) = −βt− α. (4.35)
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Fig. 4.8 Plots of bound vorticity for a cascade of aerofoils with continuous porosity
gradients (4.34) with ψ0 = 1 and blade spacing ∆ = 1. a) The bound vorticity for a flat
plate at angle of attack α; b) The absolute value of bound vorticity for an aerofoil with
parabolic camber at zero angle of attack. The solid curves indicate γ > 0 and the dashed
curves denote γ < 0. The colours correspond to those defined in figure 4.7.

The linearity of this profile allows us to separate the effects of angle of attack and
camber, which are illustrated in figures 4.8a and 4.8b. The singular integrals in (4.15)
and (4.16) have been integrated numerically using Matlab. An effect of a smoother
junction results in a smoother change in vorticity distribution, which no longer vanishes
at t = a. Unlike the case of angle of attack, the vorticity distribution becomes negative
for some sections for aerofoils with parabolic camber; the effective angle of attack at the
leading edge of the aerofoil is negative. However, as for angle of attack, the effect of
porosity is to reduce the lift on the cascade by reducing the positive section of the bound
vorticity, where the effective angle of attack is positive.

We now derive an expression for the leading-edge suction for aerofoils with arbitrary
porosity gradients. We first note that

lim
t→−1

(
Z(t)

√
1 − t

)
=
√

∆
π

√
sinh(2π/∆) lim

t→−1

Z(t)

√√√√sinh(π(1 − t)/∆)
sinh(π(1 + t)/∆)

 .
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Fig. 4.9 Plots of the lift-to-drag ratio for cascades of aerofoils with continuous porosity
gradients (4.34) with ψ0 = 1 and a range of blade spacings. The colours correspond to
those defined in figure 4.7.

Consequently, using the definition of Z in (4.15) and the second identity in (4.20), we
may write

lim
t→−1

(
Z(t)

√
1 − t

)
=
√

∆
π

√
sinh(2π/∆) exp

[
π

∆

ˆ 1

−1

(
k(τ) − 1

2

)
coth

(
π(τ + 1)

∆

)
dτ
]
.

If the leading edge is rigid (as we have assumed in this chapter) then k(−1) = 1/2 and
the above integral exists since the singularities at τ = −1 are integrable. Consequently,
for an arbitrary porosity gradient with rigid leading edge, the leading-edge suction force
is given by

Fs = π

4

(
lim
t→−1

Z(t)
√

1 − t
)2

·
{

2
∆

ˆ 1

−1

y′
c,α(τ)
Z(τ)

(
coth

(
π(τ + 1)

∆

)
− 1

)
dτ
}2

= sinh(2π/∆)
∆ exp

[
2π
∆

ˆ 1

−1

(
k(τ) − 1

2

)
coth

(
π(τ + 1)

∆

)
dτ
]

×
{ˆ 1

−1

y′
c,α(τ)
Z(τ)

(
coth

(
π(τ + 1)

∆

)
− 1

)
dτ
}2

.
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We use this result to calculate the drag on a single aerofoil in the cascade as

D = −Fs −
ˆ 1

−1
γ(τ)

(
y′
c,α(τ) − δα

2

)
dτ,

where the last term is the normal force resolved in the direction of the drag. The lift can
be calculated from the deflection angle formula (4.22).

In figure 4.9 we illustrate the effect of blade spacing on the lift-to-drag ratio. Both the
lift and drag vanish as ∆ → 0, but the drag converges faster than the lift thus resulting
in a infinite lift-to-drag ratio. The porosity plays a strong role in the lift-to-drag ratio
for flat plates for all blade spacings, as illustrated in figure 4.9a. Conversely, in the case
of aerofoils with parabolic camber, as the blade spacing vanishes, the lift-to-drag ratios
become indistinguishable for different porosity profile in figure 4.9b.

4.5 Conclusions

We have presented a solution for the potential flow past a cascade of aerofoils with porosity
gradients. This extends previous research that has only considered isolated aerofoils
(Hajian and Jaworski, 2017) with porosity gradients, or a cascade of rigid aerofoils
(chapter 2). By constructing a general singular integral equation, an analytic solution
for the potential flow is found. In fact, the solution to this periodic singular integral
equation has further applications beyond the present research, including applications to
elasticity problems involving periodic arrays of cracks (Ioakmidis and Theocaris, 1977;
Mikhlin, 1957; Schmueser and Comninou, 1979). This chapter forms an aerodynamic
foundation upon which more sophisticated aeroacoustic analyses of porous cascades can
be undertaken. The expression for the steady mean flow paves the way for a Rapid
Distortion Theory analysis, possibly by adapting the approach of chapter 3.

This research leads to an analytic expression of the deflection angle for a cascade of
arbitrarily shaped thin aerofoils with porosity gradients, and crystallises the crucial role of
trailing edge porosity on the deflection angle. We have also investigated partially porous
aerofoils in detail, and found analytic expressions for the lift and drag. These formulae
allow careful investigation of the impact of porosity and blade spacing on aerodynamic
performance. In particular, we note that the negative effects of porosity on deflection
angle, drag and lift are less pronounced for cascades, and these adverse effects can be
mitigated further by decreasing the blade spacing.
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List of Symbols

Symbol Meaning

∆ Blade spacing

χ Stagger angle

U∞ Upstream velocity

ϵ Order of magnitude of the aerofoil geometry or angle of attack

yc Aerofoil camber function

α Angle of attack

t, τ Parameterisations of aerofoil chord

L The contour for the singular integral equation

X Fundamental solution to the Riemann-Hilbert problem

Z Rescaled fundamental solution

γ Distribution vorticity along the chord

δα Deflection angle

L Lift

D Drag

Fs Leading-edge suction force

Fn Normal force

ψ Porosity distribution

k (1/π) cot−1(ψ)

a Location of impermeable-permeable junction for partially porous aerofoils
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4.A Alternative Solution Method via Substitution

We now present an alternative solution to the canonical singular integral equation (4.7)
by applying the substitution performed in Antipov (2000). On one hand, the substitution
method is an improvement over the method of section 4.3 since it enables us to obtain the
exact solution in a more general class of solutions, and is not restricted to the case where∑2p
k=1 λk = 0 (4.11). On the other hand, this extension is physically meaningless in the

context of cascade aerodynamics, and the substitution approach is far more convoluted
and consequently obscures the physical meaning encoded into the solution. Nevertheless,
we provide some details of the substitution method in this appendix for completeness.

We make the substitutions

ξ = tanh
(
πt

∆

)
, ζ = tanh

(
πτ

∆

)
, (4.36)

so that

coth
(
π(τ − t)

∆

)
− 1 = 1 − ζ2

ξ − ζ
− ζ − 1, (4.37)

dτ = ∆
π

dξ
1 − ξ2 . (4.38)

These substitutions are equivalent to conformally mapping the period window to a single
window where the typical singular integral theory (Muskhelishvili, 1946) can be carried
out. Under this substitution, (4.7) becomes

Ã(ζ)γ̃(ζ) + B̃(ζ)
iπ −
ˆ

Γ̃
γ̃(ξ)

(
1

ξ − ζ
− 1

1 − ζ

)
dξ = f̃(ζ), (4.39)

where

γ̃(ζ) = γ(t(ζ))
1 − ζ2 ,

Ã(ζ) = (1 − ζ2)A(t(ζ)), B̃(ζ) = (1 − ζ2)B(t(ζ)),

Γ̃ = tanh
(
πΓ
∆

)
, f̃(ζ) = f(t(ζ)).
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We now write

C =
ˆ

Γ̃
γ̃(ξ)dξ.

In aerodynamic applications, C corresponds to the circulation around a single aerofoil
and must be solved as part of the singular integral problem. In order to proceed with the
typical singular integral equation approach (Muskhelishvili, 1946), we must assume that
C is known. This enables us to find an expression for γ̃ in terms of C, which we may
then integrate and rearrange to find C and complete the expression for γ̃ a posteriori.
We now write (4.39) as

Ã(ζ)γ̃(ζ) + B̃(ζ)
iπ −
ˆ

Γ̃

γ̃(ξ)
ξ − ζ

dξ = F̃ (ζ), (4.40)

where

F̃ (ζ) = f̃(ζ) + B̃(ζ)C
iπ(1 − ζ) .

Now equation (4.40) is in the form of a typical singular integral equation and is therefore
directly amenable to the methods of Muskhelishvili (1946). The solution may be written
as

γ̃(ζ) = Ã∗(ζ)F̃ (ζ) − Ã∗(ζ)Z̃(ζ)
πi

ˆ
Γ̃

F̃ (ξ)
Z̃(ξ)(ξ − ζ)

dξ + B̃∗(ζ)Z̃(ζ)Pκ−1(ζ),

where

Z̃(ζ) = ζ−κ/2
√
Ã2(ζ) − B̃2(ζ) exp

 1
2πi−
ˆ

Γ̃

log
(
G̃(ξ)

)
ξ − ζ

dξ
 ,

for integer κ, and

Ã∗ = Ã(ζ)
Ã2(ζ) − B̃2(ζ)

, B̃∗ = B̃(ζ)
Ã2(ζ) − B̃2(ζ)

,

G̃(ζ) = Ã(ζ) − B̃(ζ)
Ã(ζ) + B̃(ζ)

.
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The final steps of this method involve integrating γ̃ to find C, and then inverting the
substitution (4.36). The solution is equivalent to that obtained in section 4.3.

4.B Uniqueness of Solutions to the Homogeneous,
Periodic Riemann–Hilbert Problem

We now prove that the solutions of the homogeneous, periodic Riemann–Hilbert problem
(4.10) are unique up to a multiplicative constant.

Theorem 2. All solutions of the periodic, homogeneous Riemann–Hilbert problem (4.10)
that tend to constants as |z| → ∞ and share the same classification of special ends, are
multiples of (4.11).

Proof. Define X(z) as in (4.11) and let Y (z) also satisfy the Riemann-Hilbert problem
(4.10). If we define Ω(z) = Y (z)/X(z), then ∀t ∈ Γ,

Ω+(t) = Ω−(t),

since X and Y both satisfy (4.10). Consequently, Ω is holomorphic everywhere, except
possibly at the end points where it may be infinite. However, by our choice of λk at
the end points, the degree of infinity of Ω is always less than one, so corresponds to
a constant or a branch point. Since Ω has only isolated singularities, branch points
are not possible, so Ω is actually holomorphic at the end points. Since X and Y tend
to non-zero constants as |z| → ∞, Ω is entire and bounded, so must be constant by
Liouville’s theorem. Finally,

Y (z) = CX(z)

for some constant C.



Chapter 5

Scattering by Cascades of Aerofoils
with Complex Boundary Conditions

5.1 Introduction

In this chapter we derive analytic solutions for the scattering by cascades where the
boundary conditions are not limited to a typical rigid no-flux condition. The method is
capable of modelling a range of boundary conditions of practical interest, some of which
are detailed below.

Aspirations for lighter and more efficient engines have driven the design of thinner
and lighter blades in turbomachinery (Saiz, 2008). As a result, aeroelastic effects such as
flutter and resonance must be considered in modern turbomachinery design and testing.
The rapid and accurate prediction of the aeroacoustic performance of turbomachinery with
consideration of aeroelastic effects is therefore essential in evaluating the appropriateness
of potential blade designs. Analytic solutions are excellent candidates for this task (Glegg,
1999; Peake, 1992; Posson et al., 2010b), but are presently limited to rigid blades with no
consideration of aeroelastic effects, such as the solution in chapter 3. The present chapter
permits the study of compliant blades (Crighton and Leppington, 1970), where blade
deforms with a (purely) local response to the pressure gradient across the blade and
elastic restoring forces are ignored. This is particularly relevant to marine applications
where inertial effects dominate elastic restoring forces and is an important first step
towards a more general linearised elastic blade (Cavalieri et al., 2016).

As with the previous chapter, an influential trend in aeroacoustic research is to modify
aerofoils with noise reducing technologies.The approach of the present research permits
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porous blades through the assumption of a Darcy-type condition where the seepage
velocity through the blade is proportional to the pressure jump across the blade.

In this chapter we extend the analyses of Glegg (1999) and Posson et al. (2010b) to
analyse the scattering by a cascade of blades with a range of boundary conditions. The
problem is solved with tools from complex variable theory, including the Wiener–Hopf
method. Taking a Fourier transform maps the problem into the spectral plane where the
Wiener–Hopf analysis is carried out in a similar way to Glegg (1999). An inverse Fourier
transform is applied to return the problem to physical space, and contour integration is
applied to recover the acoustic field (Posson et al., 2010b). A significant advantage of the
presented technique is that the method is identical regardless of the boundary condition
– the only effects of modifying the boundary condition are to modify the kernel in the
Wiener–Hopf method.

A striking feature of the analysis is that modifications to the boundary conditions
do not affect the modal structure of the solution in the far field. In the spectral plane,
the only effect of modifying the boundary condition is to vary the locations of the zeros
of the Wiener–Hopf kernel. This has a significant effect on the acoustic field in the
inter-blade region since the cut-on frequencies of the duct modes are modified to account
for energy being absorbed or produced by the blades. The poles of the Wiener–Hopf
kernel correspond to the acoustic modes scattered into the far field and are invariant
under modifications to the boundary conditions. Consequently, the cut-on frequencies
of the acoustic modes are unchanged and the model structure of the upstream and
downstream acoustic fields are the same regardless of boundary condition, although the
coefficients of these modes do change.

We consider four possible boundary conditions labelled cases 0—III. Physically, case
0 corresponds to rigid blades; case I, porous or compliant blades with no background
flow; case II, porous blades with background flow; and case III, a general impedance
relation. Mathematically, case 0 corresponds to a Neumann boundary condition; case I,
a Robin boundary condition; case II, an oblique derivative boundary condition; and case
III, a generalised Cauchy boundary condition.

We begin by presenting a mathematical model for the blade row in section 5.2,
including the modelling of the various boundary conditions. We then present some
details of the mathematical solution in section 5.3. In section 5.4 we conduct a detailed
investigation of the role of blade porosity. In particular, we present a range of results
on sound generation and sound transmission. Finally, in section 5.5 we summarise the
chapter.
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ỹ

x̃

U∗
∞

unsteady perturbation

2b
∗

∆∗

χ∗

background flow

Fig. 5.1 A rectilinear cascade of flat plates with complex boundaries.

5.2 Mathematical Formulation

We consider a rectilinear cascade of blades in a uniform, subsonic flow as illustrated in
figure 5.1. As is typical in these analyses (Glegg, 1999; Peake, 1992, 1993), it is useful to
rotate the coordinate system so that

(x∗, y∗, z∗) = (x̃ cos(χ∗) − ỹ sin(χ∗), x̃ sin(χ∗) + ỹ cos(χ∗), z̃) ,

and the x∗ and y∗ coordinates are tangential and normal to the blades respectively,
which have dimensional length 2b∗. The background flow is tangential to the blades and,
in contrast to chapter 3, may have a spanwise component such that U ∗

0 = (U∗
∞, 0,W ∗

∞),
as illustrated in figure 5.2. The blades in the cascade are inclined at stagger angle χ∗,
and the distance between adjacent blades is ∆∗. Consequently, the spacing between
blades is simply given by

(d∗, s∗) = ∆∗ (sin(χ∗), cos(χ∗)) .
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U∗
∞

W ∗
∞

d∗

s∗

x∗

z∗

y∗

Fig. 5.2 A three-dimensional view of the cascade in the rotated dimensional (x∗, y∗, z∗)
coordinate system. The chordwise and spanwise background velocities are denoted by
U∗

∞ and W ∗
∞ respectively. The complex boundaries are illustrated by the “holes” on each

blade, which may represent compliance, porosity, or impedance.

We further assume that a vortical or acoustic wave is incident on the cascade, resulting in
a velocity perturbation u∗ to the mean flow. The Kutta condition is satisfied by ensuring
that there is no pressure jump at the blades’ trailing edges.

We introduce an acoustic potential function for the scattered field defined by

∇φ∗ = u∗.

Consequently, conservation of momentum yields the scattered pressure as

p∗ = −ρ0
D0φ

∗

D0t∗
, (5.1)

where the (linearised) convective derivative is defined as

D0

D0t∗
= ∂

∂t∗
+ U ∗

0 · ∇ = ∂

∂t∗
+ U∗

∞
∂

∂x∗ +W ∗ ∂

∂z∗ .
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Accordingly, conservation of mass yields the convected wave equation

1
c2

0

D2
0φ

∗

D0t∗2 − ∇2φ∗ = 0, (5.2)

where c0 is the isentropic speed of sound.
We suppose that the unsteady perturbation incident on the cascade takes the form

φ∗
i = exp

[
i
(
k∗
xx

∗ + k∗
yy

∗ + k∗
zz

∗ − ω∗t∗
)]
. (5.3)

Since the system is infinite in the spanwise direction, the scattered solution u∗ must
also have harmonic dependence in the z-direction. Accordingly, making the following
convective transformation and non-dimensionalisations

φ∗(x∗, y∗, z∗, t∗) = U∗
∞b

∗φ(x, y) exp
[
iω
(
−M2δx+ kzz − t

)]
,

d∗ = b∗d, s∗ = b∗ s

β
, ∆ =

√
d2 + s2,

x∗ = b∗x, y∗ = b∗ y

β
, z∗ = b∗z, t∗ = ω

ω∗ t,

k∗
x = δ(kx −M2ω)

b∗ , k∗
y = ωβky

b∗ , k∗
z = ωkz

b∗ ,

M = U∗
∞/c0, β =

√
1 −M2, δ = 1/β2,

ω = b∗

U∗
∞

(ω∗ −W ∗
∞k

∗
z), W ∗

∞ = U∗
∞W∞,

w2 = (Mδ)2 − (kz/β)2 − (2 + 2i)kzδM2W (1 −W∞kz),

reduces (5.2) to
(
∂2

∂x2 + ∂2

∂y2 + ω2w2
)
φ = 0. (5.4)



180 Scattering by Cascades of Aerofoils with Complex Boundary Conditions

In terms of these new variables, the scattered pressure (5.1) becomes

p∗ = −ρ∗U∗2pei(z−t), p = ∂

∂x

(
φe−iωδx

)
eiωx, (5.5)

where p is the non-dimensional pressure, and the incident perturbation becomes

φ∗
i = U∗b∗φi(x, y)eiω(−M2δx+kzz−t), φi = exp [i(δkxx+ ωkyy)] . (5.6)

5.2.1 Boundary Conditions

We now introduce the boundary conditions for the problem. It is sufficient to specify the
behaviour along y = ns± for n ∈ Z. Similarly to chapter 3, we use ∆n and Σn to denote
the difference and sum of a given quantity either side of the nth blade or wake.

5.2.1.1 Upstream Boundary Condition

There may be no discontinuities upstream of the blade row. Consequently, we write

∆nφ(x) = 0, x < nd. (5.7)

5.2.1.2 Blade Surface Boundary Conditions

We now introduce several possible blade surface boundary conditions that can be mod-
elled with the present approach. The boundary conditions we consider are the classical
impermeable, rigid blade, a porous blade without background flow, a porous blade with
background flow, and a general impedance condition. The advantage of this approach is
that a spectrum of boundary conditions of practical interest can be modelled without
needing to modify the method of solution. As we shall see later, the effect of modi-
fying the boundary condition is to modify the kernel in the ensuing Wiener–Hopf analysis.

Case 0
When the blade is rigid and impermeable, the no-flux condition is simply

uT · n = 0, nd < x < nd+ 2, y = ns±, (5.8)

where n is the normal vector directed into the blade and uT denotes the total (incident
and scattered) velocity field. We sum the contributions of (5.8) either size of each blade
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to obtain

Σn

[
∂φ

∂y

]
(x) = − 2w0 exp [i(kxδ(nd+ x) + ωkyns)] , nd < x < nd+ 2. (5.9)

where w0 = iωky is the non-dimensional amplitude of the normal velocity of the incident
perturbation on the 0th blade. This case has been considered in detail in previous research
(Glegg, 1999; Posson et al., 2010b), and is detailed further in chapter 3.

Case I
We now generalise the no-flux condition (5.8) to permit a proportional relationship
between the normal velocity and pressure on the surface so that

uT · n = CIp, nd < x < nd+ 2, y = ns±, (5.10)

for some constant CI . Summing the contributions either side of the blade in (5.10) yields

Σn

[
∂φ

∂y

]
(x) = − 2w0 exp [i(kxδ(nd+ x) + ωkyns)]

+ CI∆n [p] (x), nd < x < nd+ 2. (5.11)

In the absence of background flow (M = 0), this condition becomes

Σn

[
∂φ

∂y

]
(x) = − 2w0 exp [i(kxδ(nd+ x) + ωkyns)]

+ CI∆n [φ] (x), nd < x < nd+ 2. (5.12)

This boundary condition is capable of modelling a range of scenarios. Early research
in aeroelasticity (Crighton and Leppington, 1970) used a boundary condition of the
form of (5.12) to analyse the scattering of aerodynamic sound by a compliant plate. In
that study, the plate was modelled as possessing inertia, but negligible elastic resistance
to deformation. Consequently, the pressure difference across the compliant plate was
proportional to the specific mass of the plate multiplied by the acceleration so that, in
the notation of the present work, CI = (−iωm)−1 where m is the (non-dimensional) mass
of the plate per unit area.

Leppington (1977) later showed that the compliant flat plate model is equivalent to
that of a rigid screen with periodically arranged circular apertures when the apertures
width is small and the wavelength is large compared with the separation. This model
has gained popularity as a tool for analysing the aerodynamic scattering of porous
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edges (Ayton, 2016; Jaworski and Peake, 2013; Kisil and Ayton, 2018). In this case, the
non-dimensional porosity parameter is

CI = αHKR

πR2 .

where R is the radius of the circular apertures of radius, KR is the Rayleigh conductivity,
and the fractional open area is αH .

Case II
In the presence of a background flow, the boundary condition (5.11) becomes

Σn

[
∂φ

∂y

]
(x) = − 2w0 exp [i(kxδ(nd+ x) + ωkyns)]

+ CII (iωδ∆n [φ] (x) − ∆n [φx] (x)) , nd < x < nd+ 2, (5.13)

where CII is a constant and we have applied (5.5). It is worth pointing out that, unlike
CI , we do not have an expression for CII in terms of physical parameters. Further work
is required to derive a physically meaningful expression for CII .

Case III
We may also consider the effects of an impedance boundary condition. In the presence of
background flow, the impedance boundary condition is given by Myers (1980)

uT · n = (iω + U0 · ∇ − n · (n · ∇U0))
p

iωZ .

The real part of the impedance Z is termed the acoustic resistance and represents the
energy transfer of the blade: if Re[Z] > 0 then the blades absorb energy whereas if
Re[Z] < 0 then the blades produce energy. Since the flow is uniform, this condition
applied on the upper and lower surfaces of the blades becomes

v±
T = ∓

(
−iω + U

∂

∂x
+W

∂

∂z

)
p

iωZ .

We now sum the upper and lower components of this impedance condition to obtain a
condition on the sum of the velocity either side of the blade. In terms of non-dimensional
variables, the condition becomes

Σn

[
∂φ

∂y

]
(x) = −2w0 exp [i(kxδ(nd+ x) + ωkyns)]
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Case Model µ0 µ1 µ2

Case 0
[1,2] rigid, impermeable 0 0 0

Case I
[3,4,5,6]

porous, compliant
(no background flow) CI 0 0

Case II
porous

(with background flow) iωδCII −CII 0

Case III
[7,8] impedance −2ω2(1 +Wkz)CIII −2iM2ωCIII CIII

Table 5.1 Summary of possible boundary conditions and corresponding µ0, µ1 and µ2
values for equation (5.15). The references highlight relevant papers, although only [1,2]
consider cascade geometries and are restricted to rigid boundaries. The reference numbers
correspond to [1] (Glegg, 1999), [2] (Posson et al., 2010b), [3] (Leppington, 1977), [4]
(Howe, 1998), [5] (Jaworski and Peake, 2013), [6] (Kisil and Ayton, 2018), [7] (Myers,
1980), and [8] (Brambley, 2009).

+ CIII
(
−2ω2(1 +Wkz)∆n [φ] (x) − 2iM2ω∆n [φx] (x) + ∆n [φx,x] (x)

)
,

(5.14)

where CIII = U3/(iωZ).

Summary of Blade Surface Boundary Conditions
We may characterise all the modified boundary conditions (5.12), (5.13) and (5.14)

in the general form

Σn

[
∂φ

∂y

]
(x) = −2w0 exp [i(kxδ(nd+ x) + ωkyns)]

+ µ0∆n [φ] (x) + µ1∆n [φx] (x) + µ2∆n [φx,x] (x), nd < x < nd+ 2,
(5.15)

where the µn are summarised in table 5.1 for the different boundary conditions. Further-
more, in the present analysis we do not allow any added mass and enforce that there is
no jump in the normal velocity either side of the plate. Accordingly, we may write

∆n

[
∂φ

∂y

]
(x) = 0, nd < x < nd+ 2. (5.16)
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no discontinuities (5.7)
y = ns

x = nd x = nd+ 2

no pressure jump (5.18) &
no normal velocity jump (5.19)

complex boundary (5.15) &
no normal velocity jump (5.16)

Fig. 5.3 Schematic illustrating where each boundary condition is applied.

5.2.1.3 Downstream Boundary Conditions

Downstream, we require the pressure jump across the wake to vanish:

∆n [p] (x) = 0, x > 2 + nd. (5.17)

By employing the pressure definition (5.5) and integrating with respect to x, we may
write the above condition as

∆n [φ] (x) = 2πiP exp [iωδx] , x > nd+ 2, (5.18)

where P is a constant of integration that will be specified by enforcing the Kutta condition.
Additionally, the normal velocity across the wake must vanish, i.e.

∆n

[
∂φ

∂y

]
(x) = 0, x > nd+ 2. (5.19)

5.2.1.4 Summary of Full Boundary Conditions

All in all, we have five boundary conditions. In the upstream region we do not permit
any discontinuities (5.7). Along each blade we have a relation for the sum of normal
velocities either side of the blade (5.15), and do not permit a jump in normal velocity
across the blade (5.16). Finally, across the wake we do not permit a jump in pressure
(5.18) or normal velocity (5.19). The boundary conditions are illustrated in figure 5.3.
This completes the description of the mathematical model.

5.3 Solution

We now present the mathematical solution to the Helmholtz equation (5.4) subject to
the boundary conditions (5.7), (5.15), (5.16), (5.18) and (5.19). For clarity, we present a
“road map” of the solution in figure 5.4. The analysis is similar to that in chapter 3, and
therefore we only present the pertinent points.
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As is typical in cascade acoustics problems we employ integral transforms to obtain a
solution that is uniformly valid throughout the entire domain (Glegg, 1999; Peake, 1992;
Posson et al., 2010b). However, φ is discontinuous across each blade and wake in the
y-direction. Therefore, ∂φ/∂y possesses non-integrable singularities thus preventing the
application of a Fourier transform. Consequently, we must regularise the derivatives of φ
and to remove these non-integrable singularities. To this end, we introduce generalised
derivatives (Lighthill, 1958) and write

∂2φ

∂y2 = ∂̃2φ

∂̃y2
−

∞∑
n=−∞

∆n [φ] (x)δ′(y − ns) −
∞∑

n=−∞
∆n

[
∂φ

∂y

]
(x)δ(y − ns), (5.20)

where ∂̃ represents the partial derivative with discontinuities removed. The second term
in (5.20) vanishes because there is zero jump in normal velocity across the blade (5.16)
and wake (5.19).

The scattered solution must obey the same quasi-periodicity relation as the incident
field (5.3). Consequently, the scattered acoustic potential function in the entire plane
may be reduced to that of a single channel in the domain by writing

φ(x+ nd, y + ns) = φ(x, y)einσ′
, (5.21)

where the inter-blade phase angle for φ is σ′ = kxδd+ ωkys. Substituting (5.20) into the
Helmholtz equation (5.4) and applying the inter-blade phase angle relation (5.21) yields

∂2φ

∂x2 + ∂2φ

∂y2 + ω2w2φ =
∞∑

n=−∞
∆0 [φ] (x− nd)δ′(y − ns)einσ′

. (5.22)

Mathematical model Generate integral equation

Wiener–Hopf method

Expression for φModel solved

Physical plane Spectral plane

FT

IFT

Fig. 5.4 Schematic diagram illustrating the solution method. The abbreviations “FT”
and “IFT” stand for “Fourier transform” and “Inverse Fourier transform” respectively.
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We define the Fourier integral transform and its inverse as

F (γ, η) = 1
(2π)2

ˆ ∞

−∞

ˆ ∞

−∞
f(x, y)eiγx+iηy dx dy,

f(x, y) =
ˆ ∞

−∞

ˆ ∞

−∞
F (γ, η)e−iγx−iηy dγ dη.

Applying the transform to the left-hand side of (5.22) yields

(−γ2 − η2 + ω2w2)Φ(γ, η) = 1
2πi

∞∑
n=−∞

ηD(γ)ein(σ′+γd+ηs), (5.23)

Similarly to chapter 3, the problem is now to find D(γ) which represents the Fourier
transform of the jump in acoustic potential either side of the blade and wake. We invert
the Fourier transform to obtain an expression for the acoustic potential in terms of D:

φ(x, y) = 1
2πi

ˆ ∞

−∞

ˆ ∞

−∞

e−iγx−iηy

ω2w2 − η2 − γ2 ·
∞∑

n=−∞
ηD(γ)ein(σ′+γd+ηs)dγdη. (5.24)

The η integral may be performed by closing the contour of integration in an appropriate
upper or lower half-plane to obtain

φ(x, y) = −1
2

ˆ ∞

−∞

∞∑
n=−∞

D(γ)sgn (ns− y) ein(σ′+γd)+iζ|ns−y|e−iγxdγ, (5.25)

where ζ =
√
ω2w2 − γ2. The branch cut is defined so that Im [ζ] > 0 when γ is in a strip

for the Wiener–Hopf method.
We now differentiate (5.25) with respect to y and consider the limits y → 0±. Summing

the contributions from each of these limits yields the integral equation

Σ0

[
∂φ

∂y

]
(x) = −4π

ˆ ∞

−∞
D(γ)j(γ)e−iγxdγ, (5.26)

where

j(γ) = iζ
4π

∑
n∈Z

ein(σ′+γd)+iζ|ns| = ζ

4π · sin (ζs)
cos (ζs) − cos (γd+ σ′) . (5.27)

We now solve equation (5.26) subject to the remaining boundary conditions applied on
y = 0:

∆0 [φ] (x) = 0, x < 0, (5.28.a)
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Σ0

[
∂φ

∂y

]
(x) = µ0∆0 [φ] (x) + µ1∆0 [φx] (x) + µ2∆0 [φx,x] (x)

− 2w0 exp [ikxδx] 0 < x < 2, (5.28.b)

∆0 [φ] (x) = 2πiP exp [iδωx] , x > 2. (5.28.c)

The system (5.26, 5.28.a, 5.28.b, 5.28.c) represents an integral equation subject to mixed
value boundary conditions. We solve this system with the Wiener–Hopf method in
appendix 5.A. The solution for D is given by

D(γ) = w0

(2π)2i(γ + δkx)K−(−δkx)K+(γ) + w0δ(ω − kx)e2i(γ+δkx)

(2π)2i(γ + δkx)(γ + δω)K+(−δkx)K−(γ)

−
∞∑
n=0

(An + Cn) e2i(γ−θ−
n )

i(γ + δω)(γ − θ−
n ) · K−(θ−

n )
K−(γ) −

∞∑
n=0

Bn

γ − θ+
n

· K+(θ+
n )

K+(γ) , (5.29)

where all new variables are defined in appendix 5.A. Note that the solution is identical
to that for the rigid cascade (Glegg, 1999), except the original Wiener–Hopf kernel j
is now replaced with the modified kernel K. This original kernel is recovered when
µ1 = µ2 = µ3 = 0.

5.3.1 Inversion of Fourier Transform

We now invert the Fourier transform of the acoustic field in the previous section. Since
D is now known, the Fourier inversion integral in (5.25) can now be computed. Similarly
to the analysis in chapter 3 and Posson et al. (2010b), the inversion is performed by
splitting the physical domain into five regions as illustrated in figure 5.5.

s

d

y

x
(I)

(I)

(II)

(II)

(III)

(III)

(IV)

(IV) (V)

(V)

2

Fig. 5.5 Diagram indicating the different regions in the (x, y)−plane which require
different areas of contour integration in the Fourier inversion.
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The details can be found in Appendix 5.B and the final results are stated below. All
undefined functions are defined in Appendices 5.A and 5.B.

5.3.1.1 Upstream Region (I)

In the upstream region,

φ(x, y) = πi
∞∑

m=−∞
D(1,3)(λ+

m)Ar(λ+
m, x, y). (5.30)

5.3.1.2 Inter-Blade Upstream Region (II)

In the inter-blade upstream region,

φ(x, y) = − π
∞∑
n=0

An + Cn

θ−
n + δω

Ad(θ−
n , x, y) − πi

∞∑
n=0

BnAd(θ+
n , x, y)

− π
Ad(−δkx, x, y)
K(−δkx)

· w0

(2π)2 + πi
∞∑

m=−∞
D(1,3)(λ+

m)Aru(λ+
m, x, y).

5.3.1.3 Inter-Blade Inner Region (III)

In the inter-blade inner region,

φ(x, y) = − π
∞∑
n=0

An + Cn

θ−
n + δω

A(θ−
n , x, y) − πi

∞∑
n=0

BnA(θ+
n , x, y)

− π
A(−δkx, x, y)
K(−δkx)

· w0

(2π)2 .

5.3.1.4 Inter-Blade Downstream Region (IV)

In the inter-blade downstream region,

φ(x, y) = − π
∞∑
n=0

An + Cn

θ−
n + δω

Au(θ−
n , x, y) − πi

∞∑
n=0

BnAu(θ+
n , x, y)

− π
Au(−δkx, x, y)
K(−δkx)

· w0

(2π)2

− πi
∞∑

m=−∞
D(2,4)(λ−

m)Ard(λ−
m, x, y) + πiPAd(−δω, x, y).
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Reference

gap-to-
chord
ratio
∆/2

stagger
angle
χ

Mach
number
M

reduced
frequency

ω

inter-blade
phase
angle
σ

Glegg (1999) 0.6 40◦ 0.3 0–40 3π/4

Posson et al. (2010b) sec (20◦) 20◦ 0.2 5 3π/4

Table 5.2 Summary of parameters used in results section.

5.3.1.5 Downstream Region (V)

In the downstream region,

φ(x, y) = − πi
∞∑

m=−∞
D(2,4)(λ−

m)Ar(λ−
m, x, y) + πiPA(−δω, x, y). (5.31)

5.4 Results

We now use the analytic solution derived in section 5.3.1 to explore the aeroacoustic
performance of a blade row with modified boundary conditions. In particular, we focus
on the role of porosity due to its potential to attenuate sound (Ayton, 2016; Jaworski
and Peake, 2013). The results show significant sound reductions for modest changes
in porosity. We argue that this is attributed to the strong effect of porosity on the
unsteady loading: in cascade configurations, the blade loading changes the upstream and
downstream flows and therefore influences the intensity of the scattered sound.

The present method is valid for both sound generation and sound transmission
analyses, both of which we consider in the following results.

5.4.1 Sound Generation

Sound generation is caused when a pressure-free gust (i.e. kx = ω) interacts with the
blade row, resulting in the production of pressure waves. In order to enable comparison
against prior works, we consider cases analysed by Glegg (1999) and Posson et al. (2010b)
as defined in table 5.2.
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5.4.1.1 Unsteady Lift

During the solution to the Wiener–Hopf problem associated with the scattering by a
blade row with complex boundaries, we observed that the major difference with the rigid
case is that the duct modes are modified. Consequently, we expect complex boundary
conditions to have a significant effect of the unsteady loading of the blades. In this
section we test that hypothesis.

The analytic expression for D (5.29) enables the swift calculation of the unsteady
loading on the blades. The unsteady loading is defined as the integral of the unsteady
pressure over the blade surface:

Cp = 1
2πw0

ˆ 2

0
∆0[p](x)dx. (5.32)

Integration by parts and application of the boundary conditions (5.28.a) and (5.28.c)
yields the identity

D(−ωδM2) = 1
2π

ˆ ∞

−∞
∆0[φ](x)e−iωδM2xdx = − 1

iω2π

ˆ 2

0

∂

∂x

(
∆0[φ](x)e−iωδx

)
eiωxdx.

Consequently, the normalised unsteady lift (5.32) may be written as

Cp = −iω
w0

D(−ωδM2).

The modified boundary conditions have a strong effect on the unsteady loading, as
illustrated in figure 5.6. The unsteady loading for a rigid cascade is compared against
the loading for a range of porosity parameters, which correspond to the CII values. The
results indicate that the effect of modified boundary conditions is to shift the locations
of the channel modes, as indicated by the shifts in the local maximum around ω ≈ 12,
which has previously been identified with the cut-on frequency of the channel mode
(Glegg, 1999). As CII increases, the pressure jump across the blade must decrease in
accordance with Darcy’s law (5.13), thus ensuring that the seepage velocity through the
blade is proportional to the pressure jump across the blade. This is observed in figure
5.6, where the effects of increasing the porosity result in an almost uniform reduction in
the unsteady lift.

The impact of porosity on unsteady lift appears most pronounced when the frequency
is low. In particular, the range 0 < ω < 7.62 shows the largest reduction in lift. After
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Fig. 5.6 Unsteady lift for a range of frequencies and porosities. The aerodynamic and
aeroacoustic parameters are defined in table 5.2 and correspond to those in figure 3 of
Glegg (1999). The colours correspond to the porosity parameters CII = 0 (i.e. rigid),
CII = .01, CII = .1 and CII = 1.
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the acoustic mode is cut-on at ω ≈ 7.62, the reductions in lift are generally smaller, but
this is possibly because the lift on the rigid cascade is also reduced.

Another reason for the reduction in unsteady lift is that porosity reduces the build-up
of pressure in the inter-vane channel by allowing the flow field to dissipate energy through
the blades. Accordingly, modes are less likely to become “trapped” in the inter-blade
region, since fluid is now permitted to travel across the blades. Consequently, the
unsteady lift is greatly reduced since the cascade produces a lower pressure jump across
each blade.

5.4.1.2 Sound Power Output

Analytical expressions for the sound power output are available by a similar method to
Glegg (1999). The modal upstream or downstream sound power output for the m-th
mode is given by

W±(m) = ωπ2

∆ Re
 |ζ±

mD(λ±
m)|2√

ω2w2 − f 2
m

 .
As noted multiple times in this chapter, modifications to the surface boundary conditions
do not affect the acoustic modes λ±

m. Consequently, the cut-on frequencies of these
upstream and downstream modes are unaffected by porosity, for example. This is
observed in figure 5.7a, where the downstream sound power output for the first, second
and third modes are illustrated for a large frequency range. Clearly the modes are
cut-on at the same frequency, but the magnitude of the sound power output is strongly
affected by porosity. For small porosities (CII = 0.01, 0.1) there is little impact on the
sound power output of the first mode until the channel modes become cut-on at ω ≈ 12.
Following this cut-on frequency, we observe a large decrease in the sound power for all
modes. Similarly to the unsteady lift, this reduction in sound power output can be
attributed to the reduction in the pressure jump across the blade caused by porosity,
thereby reducing the scattered sound in the upstream and downstream regions.

We define the sound power level as

LW±(m) = 10 log10

(
W±(m)
Wr ± (m)

)
dB,

where we take the reference sound power Wr± to be the sound power for a rigid blade
row. The reduction in sound power level is illustrated in figure 5.8 for a rage of porosity
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parameters. We observe that even a modest porosity of CII = 0.1 is capable of large
sound power reductions of 5 dB for the first mode and 20 dB for the second mode.

5.4.2 Sound Transmission

We now use our model to investigate sound transmission through a cascade of flat plates
with complex boundaries. Sound transmission occurs when a sound wave interacts with
a cascade of blades, and is reflected and transmitted through the blade row. In order to
explore the effects of modified boundary conditions on the transmission and reflection,
we follow Bouley et al. (2017) and write the incident acoustic field (5.6) in the form

φi = eiζ+
0 ye−iλ+

0 x, x ≤ yd/h,

where the mode is assumed cut-on, so that λ+
0 is real. Comparison with the solution in

section 5.3.1 shows that the reflected acoustic field takes the form

φr =
∞∑

m=−∞
Rmeiζ+

mye−iλ+
mx, x ≤ yd/h,

and the transmitted acoustic potential takes the form

φt =
∞∑

m=−∞
Tme−iζ−

mye−iλ−
m(x−2), x ≤ 2 + yd/h,

where R and T are the vectors of the reflection and transmission coefficients respectively.
Note that the mode corresponding to the jump in acoustic potential across the wake (δω)
is not included in this analysis since it does not contribute to the pressure field.

By comparison with (5.30) and (5.31) we obtain the expressions for the transmission
and reflection coefficients as

Rm = +πζ
+
mD

(1,3)(λ+
m)√

ω2w2 − f 2
m

, Tm = −πζ−
mD

(2,4)(λ−
m)√

ω2w2 − f 2
m

e−2iλ−
m .

We now perform a parametric study on the effects of porosity on the transmission and
reflection coefficients. In figure 5.9, we plot the total pressure field and the associated
amplitude of the transmission and reflection coefficients. The blades are rigid (CII = 0)
in figures 5.9a.i and 5.9a.ii. In this case, two modes are cut-on, as indicated in figure
5.9a.ii. When the cascade is rigid, the blade row has a strong effect on the reflected and
transmitted fields, which can be observed by the significant distortion of the acoustic
field in figure 5.9a.i. In figure 5.9b.i, the porosity is increased to the relatively modest
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Fig. 5.7 Modal downstream sound power output for a cascade of porous blades at a range
of frequencies for (a) the first mode (m = 0) and (b) the second mode (m = 1). The
aerodynamic and aeroacoustic parameters are defined in table 5.2 and correspond to
those in figure 9 of Glegg (1999). The colours correspond to the porosity parameters
CII = 0 (i.e. rigid), CII = 0.01, CII = 0.1 and CII = 1.
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Fig. 5.8 Modal downstream sound power level for a cascade of porous blades at a range
of frequencies for (a) the first mode (m = 0) and (b) the second mode (m = 1). The
aerodynamic and aeroacoustic parameters are defined in table 5.2 and correspond to
those in figure 9 of Glegg (1999). The colours correspond to the porosity parameters
CII = 0.01, CII = 0.1 and CII = 1.
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value of CII = 0.5. We now observe that the amplitude of the reflected wave substantially
decreases, so that the upstream field seems almost unperturbed by the cascade. In
contrast, the downstream field is still distorted by the cascade, and the presence of the
cut-on modes can still be observed. We note that the two modes are still cut-on, and
the porosity does not affect their cut-on frequency. This is consistent with the argument
made in the Wiener–Hopf analysis, namely that modifying the boundary conditions does
not affect the modal structure of the far-field solution. Finally, when the porosity is
increased to CII = 3, the acoustic field is essentially unaffected by the blade row, as
seen in figure 5.9c.i. This is because the blades are sufficiently porous that the fluid can
pass through the blade unhindered. Accordingly, the only significant transmission and
reflection coefficient remaining is that of the incident perturbation, as shown in figure
5.9.

In general, blade porosity has a strong effect on the amplitude of the reflection
and transmission coefficients. In figure 5.10a, the amplitudes of the transmission and
reflection coefficients are plotted for a range of porosities. We observe a rapid decay in
these amplitudes in the region 10−2 < CII < 1 . When plotted on a log-scale in figure
5.10b, the behaviour resembles an exponential dependence. This is a promising result for
sound reduction technologies, as it suggests that the sound transmission for blade rows
can be drastically altered with small amounts of porosity.

5.5 Conclusions

We have derived an analytic solution for the scattering of an unsteady perturbation
incident on a rectilinear cascade of flat blades with complex boundaries. The analytic
nature of the solution means that it is extremely rapid to compute, and offers physical
insight into the role played by different boundary conditions. In contrast with previous
studies that focussed on the effects of rigid blades (Glegg, 1999; Posson et al., 2010b),
the formulation of the present research allows a range of boundary conditions to be
studied with minimal effort, such as porosity, compliance and flow impedance. In terms
of the spectral plane, the effect of modifying these boundary conditions is to change
the locations of the zeros of the Wiener–Hopf kernel, whilst the poles are unchanged.
Accordingly, the modal structure of the far-field scattered pressure is invariant under
modifications to the flat blades’ boundary conditions. Conversely, the modal structure of
the near-field region undergoes large deformations since the zeros of the kernel correspond
to the duct modes of the inter-blade region. This has a strong effect on the surface
pressure fluctuations and unsteady loading, which has implications for the far-field sound.
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Fig. 5.9 Left: the total (incident and scattered), normalised pressure field. Right: the
amplitudes of the normalised reflection (blue) and transmission (orange) coefficients.
The CII values correspond to CII = 0 (a), CII = 0.5 (b) and CII = 1 (c). The darker
bars indicate modes that are cut-on whereas the lighter bars are cut-off. The parameters
in this case are ∆ = 0.6, χ = 40◦, M = 0.3, ω = 12.5, ky = 0.1, kx = 3.57. The arrow
indicates the direction of the incident wave.
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Fig. 5.10 The first reflection (blue) and transmission (orange) coefficients as a function
of porosity coefficient, CII , on (a) a linear scale, and (b) a log scale. The coefficients are
normalised by their values for a rigid cascade. The cascade parameters are equivalent to
those in figure 5.9.

We have particularly investigated the role of blade porosity in the form of a Darcy-type
condition. The results show that substantial reductions in both the unsteady lift and
sound power output are possible for even modest values of porosity. At low frequencies,
we observe a significant change in the unsteady loading and a moderate effect on the
sound power output. Conversely, at high frequencies we observe a significant effect on
the sound power output and a small effect on the unsteady loading. Furthermore, the
amplitudes of the reflection and transmission coefficients rapidly decrease as the blade
porosity is increased. We attribute these considerable reductions to several physical
mechanisms associated with porosity. Increasing the blade porosity promotes a compliant
relationship between adjacent channels, which prevents the build-up of trapped modes.
Moreover, the flow seepage afforded by porous channels permits the dissipation of energy
through the blades, thus reducing unsteady pressure fluctuations on the blade. This
reduction in pressure fluctuations corresponds to reductions in the scattered pressure
and far-field sound. Finally, this study shows that modified boundary conditions have a
large impact on gust-cascade interaction noise and offers a useful design tool that can
model aeroacoustic and aeroelastic effects.
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List of Symbols

Symbol Meaning

χ Stagger angle

∆ Blade spacing

d, s Horizontal and vertical blade spacing respectively

φ Non-dimensional acoustic potential function

ω Non-dimensional temporal frequency

kx, ky Non-dimensional frequencies in the x and y directions respectively

β Prandtl–Glauert factor

∆n[f ] Jump in f across the line y = ns

CN Coefficient of the N -th derivative of the jump in φ across the blades

γ Spectral parameter in Fourier plane

ζ(γ)
√
ω2w2 − γ2

D Fourier transform of ∆0[φ]

L± Upper/lower half-plane in γ-space

± Subscript, generally refers to a quantity in L±

K Kernel of Wiener–Hopf problem with modified boundaries

j Kernel of Wiener–Hopf problem with rigid boundaries

K± Multiplicative splitting of the kernel K

θ±
n Zeros of K∓

λ±
m Poles of K∓
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5.A Wiener–Hopf Solution

We now solve the integral equation (5.26) subject to the boundary conditions of no
discontinuities upstream (5.7), a modified no-flux condition (5.15) and no pressure jump
across the wake (5.18). In a similar way to Glegg (1999), we split this problem into
four coupled problems that are amenable to the Wiener–Hopf method. This analysis is
different to that of chapter 3: firstly, the modified boundary conditions must be accounted
for and we show how to do this in a concise manner. Secondly, chapter 3 was restricted
to the case of a pressure-free gust (kx = ω), whereas the analysis in the present chapter
is for a more general sound wave. Consequently, we present the full solution to the
Wiener–Hopf solution in this chapter, although there are similarities with that presented
in chapter 3.

We write

∆0 [φ] (x) = ∆0
[
φ(1)

]
(x) + ∆0

[
φ(2)

]
(x) + ∆0

[
φ(3)

]
(x) + ∆0

[
φ(4)

]
(x), (5.33)

and its Fourier transform

D(γ) = D(1)(γ) +D(2)(γ) +D(3)(γ) +D(4)(γ), (5.34)

where each ∆0
[
φ(n)

]
and D(n) satisfy a semi-infinite integral equation of the form

f (n)(x) = −4π
ˆ ∞

−∞
D(n)(γ)j(γ)e−iγx dγ, (5.35)

for n = 1, 2, 3, 4. The corresponding boundary conditions are

f (1)(x) =µ0∆0
[
φ(1)

]
(x) + µ1∆0

[
φ(1)
x

]
(x) + µ2∆0

[
φ(1)
x,x

]
(x)

−2w0 exp [iδkxx] , x > 0, (5.36.a)

f (2)(x) =µ0∆0
[
φ(2)

]
(x) + µ1∆0

[
φ(2)
x

]
(x) + µ2∆0

[
φ(2)
x,x

]
(x), x < 2, (5.37.a)

f (3)(x) =µ0∆0
[
φ(3)

]
(x) + µ1∆0

[
φ(3)
x

]
(x) + µ2∆0

[
φ(3)
x,x

]
(x), x > 0, (5.38.a)

f (4)(x) =µ0∆0
[
φ(4)

]
(x) + µ1∆0

[
φ(4)
x

]
(x) + µ2∆0

[
φ(4)
x,x

]
(x), x < 2, (5.39.a)
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and

∆0
[
φ(1)

]
(x) =0, x < 0, (5.36.b)

∆0
[
φ(1)

]
(x) + ∆0

[
φ(2)

]
(x) =2πiP (2)eiδωx, x > 2, (5.37.b)

∆0
[
φ(2)

]
(x) + ∆0

[
φ(3)

]
(x) + ∆0

[
φ(4)

]
(x) =0, x < 0, (5.38.b)

∆0
[
φ(3)

]
(x) + ∆0

[
φ(4)

]
(x) =2πiP (4)eiδωx, x > 2, (5.39.b)

where P (2) and P (4) are two constants of integration that will be specified to enforce the
Kutta condition. Summing the four above conditions results in the original boundary
conditions and, consequently, we may apply the Wiener–Hopf method to each semi-
infinite integral equation and sum the resulting contributions to obtain a solution to the
original equations.

5.A.0.1 Solution to First Wiener–Hopf Equation – D(1)

In this section, we solve the integral equation (5.35) for n = 1

f (1)(x) = −4π
ˆ ∞

−∞
D(1)(γ)j(γ)e−iγx dγ, (5.40.a)

subject to (5.36.a) and (5.36.b). Taking a Fourier transform of (5.40.a) in x gives

F
(1)
− (γ) + F

(1)
+ (γ) = −4πD(1)

+ (γ)j(γ), (5.41)

where

F
(1)
− (γ) = 1

2π

ˆ 0

−∞
f (1)(x)eiγxdx, F

(1)
+ (γ) = 1

2π

ˆ ∞

0
f (1)(x)eiγxdx, (5.42.a)

D
(1)
+ (γ) =

ˆ ∞

0
∆0

[
φ(1)

]
(x)eiγxdx. (5.42.b)
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We may employ (5.36.a) to obtain

F
(1)
+ (γ) = − w0

πi(γ + δkx)
+
(
µ0 − iµ1γ − µ2γ

2
)
D(1)(γ).

Consequently, the Wiener–Hopf equation (5.41) may be expressed as

F
(1)
− (γ) − w0

πi(γ + δkx)
= −4πD(1)

+ (γ)K(γ), (5.43)

where

K(γ) = j(γ) + 1
4π

(
µ0 − iµ1γ − µ2γ

2
)
. (5.44)

The multiplicative splitting K = K+K− is performed in appendix 5.C. This splitting
enables us to write

F
(1)
− (γ)
K−(γ) − w0

πi(γ + δkx)K−(γ) = −4πD(1)
+ (γ)K+(γ). (5.45)

We now additively factorise the left-hand side of (5.45). We apply pole removal (Noble,
1958) to obtain the additive splitting

1
(γ + δkx)K−(γ) = 1

(γ + δkx)K−(−δkx)︸ ︷︷ ︸
+

+ 1
(γ + δkx)K−(γ) − 1

(γ + δkx)K−(−δkx)︸ ︷︷ ︸
−

,

where the underbrace ± denotes that the function is analytic in L± respectively. There-
fore, (5.43) becomes

F
(1)
− (γ)
K−(γ) − w0

πi(γ + δkx)K−(γ) + w0

πi(γ + δkx)K−(−δkx)
= −4πD(1)

+ (γ)K+(γ) + w0

πi(γ + δkx)K−(−δkx)
. (5.46)

We may now apply the standard Wiener–Hopf argument: since the left- and right-hand
sides of (5.46) are analytic in L∓ respectively, and they agree on a strip, each side
defines the analytic continuation of the other. Therefore, equation (5.46) defines an entire
function, E1(γ). As |γ| → ∞ in the L−, the left-hand side of (5.46) decays. Similarly,
as |γ| → ∞ in L+, the right-hand side of (5.46) vanishes. Therefore, E1(γ) is bounded
in the entire plane and must be constant according to Liouville’s theorem. Moreover,
since E1(γ) decays, this constant must be zero. Finally, we rearrange the right-hand side
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of (5.46) to obtain the solution to the first Wiener–Hopf problem as

D(1)(γ) = w0

(2π)2i(γ + δkx)K−(−δkx)K+(γ) . (5.47)

5.A.0.2 Solution to Second Wiener–Hopf Equation – D(2)

In this section we solve the integral equation (5.35) for n = 2,

f (2)(x) = −4π
ˆ ∞

−∞
D(2)(γ)j(γ)e−iγxdγ, (5.48.a)

subject to (5.37.a) and (5.37.b).

Taking a Fourier transform of (5.48.a) and applying (5.37.a) yields
(
µ0 − iµ1γ − µ2γ

2
)
D(1)(γ) + F

(2)
+ (γ) = −4π

(
D

(2)
− (γ) +D

(2)
+ (γ)

)
j(γ), (5.49)

where

F
(2)
+ (γ) = 1

2π

ˆ ∞

2
f (2)(x)eiγxdx = e2iγ

2π

ˆ ∞

0
f (2)(x+ 2)eixγdx = e2iγF

∗(2)
+ (γ),

(5.50.a)

D
(2)
+ (γ) = 1

2π

ˆ ∞

2
∆0

[
φ(2)

]
(x)eiγxdx = e2iγ

2π

ˆ ∞

0
∆0

[
φ(2)

]
(x+ 2)eixγdx = e2iγD

∗(2)
+ (γ),

(5.50.b)

D
(2)
− (γ) = 1

2π

ˆ 2

−∞
∆0

[
φ(2)

]
(x)eiγxdx = e2iγ

2π

ˆ 0

−∞
∆0

[
φ(2)

]
(x+ 2)eixγdx = e2iγD

∗(2)
− (γ).

(5.50.c)

Factoring out the e2iγ dependence and employing (5.44) transforms the Wiener–Hopf
equation (5.51) to

F
∗(2)
+ (γ) = −4π

(
D

∗(2)
− (γ) +D

∗(2)
+ (γ)

)
K(γ), (5.51)

and we may use the multiplicative splitting of K to write

F
∗(2)
+ (γ)
K+(γ) = −4π

(
D

∗(2)
− (γ) +D

∗(2)
+ (γ)

)
K−(γ). (5.52)
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We may use the downstream boundary condition for this problem (5.37.b) to write

D
∗(2)
+ (γ) = − P ∗(2)

γ + δω
− 1

2π

ˆ ∞

0
∆0

[
φ(1)

]
(x+ 2)eiγxdx. (5.53)

where P ∗(2) = P (2)e2iδkx . To calculate the remaining integral we use the inversion formula
for the Fourier transform:

∆0
[
φ(1)

]
(x) =

ˆ ∞−iτ1

−∞−iτ1

D(1)(γ)e−iγxdγ.

By substituting this representation into our desired integral, we obtain

1
2π

ˆ ∞

0
∆0

[
φ(1)

]
(x+ 2)eiγxdx = 1

2π

ˆ ∞

0

ˆ ∞−iτ1

−∞−iτ1

D(1)(γ1)e−iγ1(x+2)dγ1eiγxdx.

Rearranging the order of integration and computing the resulting x-integral results in

1
2π

ˆ ∞

0
∆0

[
φ(1)

]
(x+ 2)eiγxdx = 1

2πi

ˆ ∞−iτ1

−∞−iτ1

D(1)(γ1)e−2iγ1

γ1 − γ
dγ1. (5.54)

Since d < 2, we may close the remaining integral in L−. There are no branches in
the integrand and the integral consists of the residues of simple poles at γ = −δkx, θ−

n .
Consequently, inserting (5.47) into the above integral yields

1
2πi

ˆ ∞−iτ1

−∞−iτ1

1
(γ + δkx)K−(−δkx)K+(γ) · e−2iγ1

γ1 − γ
dγ1

= e2iδkx

(γ + δkx)K(−δkx)
+

∞∑
n=0

e−2iθ−
n

(θ−
n + δkx)K−(−δkx)K ′

+(θ−
n )(γ − θ−

n ) ,

where the derivatives of K± evaluated at the duct modes θ∓
n are given by

K ′
±(θ∓

n ) = K ′(θ∓
n )

K∓(θ∓
n ) = −1

4πK∓(θ∓
n )

(θ∓
n /ζ(θ∓

n )) sin(sζ(θ∓
n )) + sθ∓

n cos(sζ(θ∓
n ))

cos(sζ(θ∓
n )) − cos(dθ∓

n + σ′)
θ∓
n s sin(sζ(θ∓

n )2 + dζ(θ∓
n ) sin(dθ∓

n + σ′) sin(sζ(θ∓
n ))

(cos(sζ(θ∓
n )) − cos(dθ∓

n + σ′))2

iµ1 + 2µ2θ
∓
n

.
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Therefore, substitution of (5.54) into (5.53) yields

D
∗(2)
+ (γ) = w0e2iδkx

(2π)2i(γ + δkx)K(−δkx)
−

∞∑
n=0

Ane−2iθ−
n

i(θ−
n + δω)(γ − θ−

n )

− P ∗(2)

γ + δω
, (5.55)

where

An = −w0(θ−
n + δω)

(2π)2(θ−
n + δkx)K−(−δkx)K ′

+(θ−
n ) .

Similarly to chapter 3, we use the notation

K̃−(γ, η−) := K−(γ)
γ − η− ,

so that substitution of (5.55) into the Wiener–Hopf equation (5.49) yields

F
∗(2)
+ (γ)

4πK+(γ) = −K−(γ)D∗(2)
− (γ) + P ∗(2)K̃−(γ,−δω)

+ w0e2iδkx

(2π)2i · K̃−(γ,−δkx)
K(−δkx)

−
∞∑
n=0

Ane−2iθ−
n

i(θ−
n + δω)K̃−(γ, θ−

n ). (5.56)

We note the additive splitting

K̃−(γ, η−) =
[
K̃−(γ, η)

]
+

+
[
K̃−(γ, η)

]
−
, (5.57)

where
[
K̃−(γ, η)

]
+

= K−(η−)
γ − η− ,

[
K̃−(γ, η)

]
−

= K−(γ) −K−(η−)
γ − η− .

Substituting these splittings into (5.56) yields

F
∗(2)
+ (γ)

2πK+(γ) − P ∗(2)
[
K̃−(γ,−δω)

]
+

− w0e2iδkx

(2π)2i ·

[
K̃−(γ,−δkx)

]
+

K(−δkx)

+
∞∑
n=0

Ane−2iθ−
n

i(θ−
n + δω)

[
K̃−(γ, θ−

n )
]

+
= −K−(γ)D∗(2)

− (γ) + P ∗(2)
[
K̃−(γ,−δω)

]
−

+w0e2iδkx

(2π)2i ·

[
K̃−(γ,−δkx)

]
−

K(−δkx)
−

∞∑
n=0

Ane−2iθ−
n

i(θ−
n + δω)

[
K̃−(γ, θ−

n )
]

−
. (5.58)
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In a similar way to section 5.A.0.1, we now apply the typical Wiener–Hopf argument. We
enforce the unsteady Kutta condition (Ayton et al., 2016) which restricts the pressure at
the trailing edge to be finite. Consequently, the left-hand side of (5.58) decays as |γ| → ∞
in L+ and the left-hand side of (5.58) tends to an unknown constant as |γ| → ∞ in L−.
Applying analytic continuation and Liouville’s theorem determines that this constant
must be zero. Accordingly, the coefficient of γ−1 on the left-hand side of (5.58) must
vanish so that

P ∗(2) = w0e2iδkx

(2π)2iK+(−δkx)
· 1
K−(−δω) −

∞∑
n=0

Ane−2iθ−
n

i(θ−
n + δω) · K−(θ−

n )
K−(−δω) .

Consequently, after substituting in the downstream representation (5.55) and the expres-
sion for the constant (5.59), the right-hand side of (5.58) yields

D(2)(γ) = w0(δω − δkx)e2i(γ+δkx)

(2π)2i(γ + δkx)(γ + δω)K+(−δkx)
· 1
K−(γ)

−
∞∑
n=0

Ane2i(γ−θ−
n )

i(γ + δω)(γ − θ−
n ) · K−(θ−

n )
K−(γ) . (5.59)

It should be noted that the poles of D(2) in L+ are only at the zeros of K−.

5.A.0.3 Solution to Third and Fourth Wiener–Hopf Equations – D(3), D(4)

Since the integral equations for ∆0
[
φ(3)

]
and ∆0

[
φ(4)

]
are coupled, we must solve for

them simultaneously. Taking a Fourier transform of (5.35) and applying the boundary
conditions for (5.38.a) and (5.39.a) for n = 3, 4 gives

F
(3)
− (γ) = −4π

[
D

(3)
− (γ) +D

(3)
+ (γ)

]
K(γ), (5.60)

F
∗(4)
+ (γ) = −4π

[
D

∗(4)
− (γ) +D

∗(4)
+ (γ)

]
K(γ), (5.61)

where F (3)
− , D(3)

− and D
(3)
+ are defined in an analogous way to (5.42.a) and (5.42.b), and

F
∗(4)
+ , D∗(4)

+ and D
∗(4)
− are defined in an analogous way to (5.50.a), (5.50.b) and (5.50.c).

Using a similar approach to section 5.A.0.2, the upstream boundary condition (5.38.b)
may be expressed as

D
(3)
− (γ) = 1

2πi

ˆ ∞+iτ0

−∞+iτ0

D(2)(γ1) +D(4)(γ1)
γ1 − γ

dγ1.
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Consequently, we may express D(3)
− in terms of its poles θ+

n as

D
(3)
− (γ) = −

∞∑
n=0

Bn

γ − θ+
n

, (5.62)

where Bn are the residues of D(2)
− (γ1) + D

(4)
− (γ1) at γ = θ+

n . The residues of D(4)
− are

currently unknown, but the residues of D(2)
− are given by

D
(2)
r,k = −e2iθ+

k

K ′
−(θ+

k )

{
w0(δω − δkx)e2iδkx

(2π)2i(θ+
k + δkx)(θ+

k + δω)K+(−δkx)

+
∞∑
n=0

Anei(θ+
k

−θ−
n )K−(θ−

n )
i(θ+

k + δω)(θ+
k − θ−

n )

 .
We may now substitute (5.62) into (5.60) to obtain the Wiener–Hopf equation

F
(3)
− (γ)

4πK−(γ) +
∞∑
n=0

Bn

γ − θ+
n

K+(θ+
n ) = D

(3)
+ (γ)K+(γ) −

∞∑
n=0

Bn

γ − θ+
n

(
K+(γ) −K+(θ+

n )
)
.

The edge conditions are identical to those applied in section 5.A.0.1, and we employ the
typical Wiener–Hopf argument to obtain

D
(3)
+ (γ) =

∞∑
n=0

Bn

γ − θ+
n

{
1 − K+(θ+

n )
K+(γ)

}
.

Combining this solution with (5.62) yields

D(3)(γ) = −
∞∑
n=0

Bn

γ − θ+
n

· K+(θ+
n )

K+(γ) . (5.63)

We proceed to the solution for D(4). In a similar way to section 5.A.0.2, we may invert
the Fourier transform for the downstream boundary condition (5.39.b) to write

D
∗(4)
+ (γ) = − P ∗(4)

i(γ + δω) − 1
2πi

ˆ ∞+iτ1

−∞−iτ1

∞∑
n=0

Bn

(γ1 − γ)(γ1 − θ+
n )

{
1 − K+(θ+

n )
K+(γ1)

}
e−2iγ1dγ1.

This integral can be closed in L− to obtain

D
∗(4)
+ (γ) = − P ∗(4)

γ + δω
−

∞∑
n=0

Cne−2iθ−
n

i(θ−
n + δω)(γ − θ−

n ) , (5.64)
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where

Cn =
∞∑
k=0

i(θ−
n + δω)

(θ+
k − θ−

n ) · K+(θ+
k )

K ′
+(θ−

n ) · B1,Σ,k.

After truncation, we may write this system of equations in matrix form

C = LB, (5.65)

where

{L}n,m = i(θ−
n + δω)

(θ+
m − θ−

n ) · K+(θ+
m)

K ′
+(θ−

n ) .

By applying the notation introduced in (5.57), we may express the Wiener–Hopf equation
(5.61) in the form

F
∗(4)
+ (γ)

4πK+(γ) + P ∗(4)
[
K̃−(γ,−δω)

]
+

+
∞∑
n=0

[
K̃−(γ, θ−

n )
]

+
i(θ−

n + δω) Cne−2iθ−
n

= D
∗(4)
− (γ)K−(γ) − P ∗(4)

[
K̃−(γ,−δω)

]
−

−
∞∑
n=0

[
K̃−(γ, θ−

n )
]

−
i(θ−

n + δω) Cne−2iθ−
n . (5.66)

Employing the unsteady Kutta condition in (5.66) yields

P ∗(4) = −
∞∑
n=0

Cne−2iθ−
n

i(θ−
n + δω) · K−(θ−

n )
K−(−δω) .

Finally, applying the downstream boundary condition (5.64) and rearranging (5.66) yields

D(4)(γ) = −
∞∑
n=0

Cne2i(γ−θ−
n )

i(θ−
n + δω)(γ − θ−

n ) · K−(θ−
n )

K−(γ) . (5.67)

We are now able to calculate the residues of D(3) as

Bn = Dr,k −
∞∑
m=0

Cne2i(θ+
n−θ−

m)

i(θ+
n + δω)(θ+

n − θ−
m) · K−(θ−

m)
K ′

−(θ+
n ) ,

or, in matrix form,

B = Dr,k + FC, (5.68)



5.B Details of Fourier Inversion 209

where

{F}n,m = − e2i(θ+
n−θ−

m)

i(θ+
n + δω)(θ+

n − θ−
m) · K−(θ−

m)
K ′

−(θ+
n ) .

The matrix equations (5.65) and (5.68) may be combined and solved to give the final
expressions for Bn and Cn.

5.B Details of Fourier Inversion

The acoustic field is given by

φ(x, y) = 1
2

ˆ ∞

−∞
D(γ)A(γ, x, y)dγ,

where A = Au + Ad and

Au(γ, x, y) = e−iγx · eidγ+iσ′ cos (ζy)
cos (dγ + σ′) − cos (sζ) ,

Ad(γ, x, y) = e−iγx · − cos (ζ(y − s))
cos (dγ + σ′) − cos (sζ) .

We calculate the above integral by splitting the physical plane into five separate regions,
as illustrated in figure 3.6. Both Aa and Ab have poles at the acoustic modes λ±

m where
the residues are given by

Aru(λ±
m, x, y) = ∓ ζ±

meidλ±
m+iσ′ cos (ζ±

my)
∆ sin (sζ±

m)
√
k2w2 − f 2

m

e−iλ±
mx,

Ard(λ±
m, x, y) = ± ζ±

m cos (ζ±
m(y − s))

∆ sin (sζ±
m)
√
k2w2 − f 2

m

e−iλ±
mx.

In order to proceed, we split the acoustic potential into four components

φ(x, y) = 1
2

ˆ ∞

−∞

(
D(1,3)(γ)

)
Au(γ)e−iγ(x−yd/s)dγ︸ ︷︷ ︸

φu,u

+ 1
2

ˆ ∞

−∞

(
D(1,3)(γ)

)
Ad(γ)e−iγ(x−yd/s)dγ︸ ︷︷ ︸

φu,d
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+ 1
2

ˆ ∞

−∞

(
D(2,4)(γ)

)
Au(γ)e−iγ(φ−ψd/h)dγ︸ ︷︷ ︸
φd,u

+ 1
2

ˆ ∞

−∞

(
D(2,4)(γ)

)
Ad(γ)e−iγ(φ−ψd/h)dγ︸ ︷︷ ︸
φd,d

,

where D(i,j) = D(i) +D(j).

λ−
0

λ−
−1 λ−

+1

λ−
+2

−δkx −δω

θ+
0

θ+
1

θ+
2

θ+
3

θ−
0

θ−
1

θ−
2

θ−
3

λ+
0

λ+
+1λ+

−1

λ+
+2λ+

−2

Fig. 5.1 Illustration of the locations of poles in the complex γ-plane, and the relevant
contours of integration.

We first calculate

φu,u(x, y) = 1
2

ˆ ∞

−∞
D

(1,3)
0 (γ)Au(γ, x, y)dγ

= 2π
ˆ ∞

−∞

{
D

(1,3)
0 (γ)J+(γ)

}
· J−(γ) · ei(d−φ)γ+iσ cos (ζψ)

ζ sin (hζ) dγ. (5.69)
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Since J+(γ) has algebraic growth, inspection of (5.29) shows that
∣∣∣D(1,3)

0 (γ)J+(γ)
∣∣∣ → 0 as

|γ| → ∞ except at the poles at θ+
n and −δkx. Consequently, we close the above integral

in L+ if x < d and in L− if x > d. Accordingly, we obtain for x < d

φu,u(x, y) = −πi
∞∑
n=0

BnAu(θ+
n , x, y) + πi

∞∑
m=−∞

D(1,3)(λ+
m)Aru(λ+

m, x, y),

and for x > d,

φu,u(x, y) = −π
∞∑
n=0

An + Cn

θ−
n + δω

Au(θ−
n , x, y) − π

Au(−δkx, x, y)
K(−δkx)

· w0

(2π)2 .

We proceed by considering

φu,d(x, y) = 1
2

ˆ ∞

−∞
D(1,3)(γ)Ad(γ, x, y)dγ

= 2π
ˆ ∞

−∞

{
D

(1,3)
0 (γ)J+(γ)

}
· J−(γ) · −e−iγx cos (ζ(y − s))

ζ sin (sζ) dγ.

Using a similar argument to the analysis for (5.69), we close the above integral in L− if
x > 0 in L+ if x < 0. Consequently, for x > 0 we obtain

φu,d(x, y) = −π
∞∑
n=0

An + Cn

θ−
n + δω

Ad(θ−
n , x, y) − π

Ad(−δkx, x, y)
K(−δkx)

· w0

(2π)2 ,

and for x < 0 we obtain

φu,d(x, y) = −πi
∞∑
n=0

BnAd(θ+
n , x, y) + πi

∞∑
m=−∞

D(1,3)(λ+
m)Ard(λ+

m, x, y),

We now consider

φd,u(x, y) = 1
2

ˆ ∞

−∞
D

(2,4)
0 (γ)Au(γ, x, y)dγ

= 2π
ˆ ∞

−∞

{
D(2,4)(γ)e−2iγJ−(γ)

}
J+(γ)ei(d+2−x)γ+iσ′ cos (ζy)

ζ sin(sζ) dγ.

Following a similar argument to (5.69),
∣∣∣D(2,4)

0 (γ)e−2iγJ−(γ)
∣∣∣ → 0 as |γ| → ∞ except at

the poles at −δω, −δkx and θ±
n . Consequently, we close the integral in L+ if x < d+ 2
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and in L− if x > d+ 2. For x < d+ 2 we obtain

φd,u(x, y) = πi
∞∑
n=0

BnAu(θ+
n ),

and for x > d+ 2 we obtain

φd,u(x, y) = π
∞∑
n=0

An + Cn

θ−
n + δω

Au(θ−
n , x, y) + πiPAu(−δω, x, y)

+ π
Au(−δkx, x, y)
K(−δkx)

· w0

(2π)2 − πi
∞∑

m=−∞
D(2,4)(λ−

m)Aru(λ−
m, x, y).

The final integral is

φd,d(x, y) = 1
2

ˆ ∞

−∞
D(2,4)(γ)e−iγφAd(γ, x, y)dγ

= 2π
ˆ ∞

−∞

{
D(2,4)(γ)e−2iγJ−(γ)

}
J+(γ)−ei(2−x)γ cos (ζ(y − s))

ζ sin(sζ) dγ.

Using similar arguments to the previous integrals, we close the above integral in L+ if
x < 2 and in L− if x > 2. Consequently, for x < 2 we obtain

φd,d(φ, ψ) = πi
∞∑
n=0

BnAd(θ+
n ),

and for x > 2 we obtain

φd,d(x, y) = π
∞∑
n=0

An + Cn

θ−
n + δω

Ad(θ−
n , x, y) + πiPAd(−δω, x, y)

+ π
Ad(−δkx, x, y)
K(−δkx)

· w0

(2π)2 − πi
∞∑

m=−∞
D(2,4)(λ−

m)Ard(λ−
m, x, y).

Summing the contributions from each integral yields the full Fourier inversion in section
5.3.1

5.C Factorisation of Kernel Function

The kernel function is defined as (5.44)

K(γ) = ζ sin(sζ)
4π (cos(sζ) − cos(dγ + σ′)) + 1

4π
(
µ0 − iµ1γ − µ2γ

2
)
. (5.70)
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We seek a multiplicative factorisation of this function into parts that are analytic in
L± respectively. Consequently, we restrict our attention to the upper half plane and a
corresponding factorisation for the lower half plane can be constructed by an appropriate
symmetry argument.

5.C.1 Factorisation of Poles of K

Previous work (Glegg, 1999; Peake, 1992) has factorised the poles of K into the form:

cos(sζ) − cos(dγ + σ′) = E(γ)
∞∏

m=−∞

(
1 − γ

λ+
m

) ∞∏
m=−∞

(
1 − γ

λ−
m

)
,

where E(γ) is an entire function that contains no zeros, and

λ±
m = −fm sin(χ) ± cos(χ)ζ(fm), fm = σ′ − 2πm

∆ .

5.C.1.1 Asymptotic Behaviour of Poles

We note that the asymptotic behaviour of these poles is

λ+
m ∼ λ

(0)+
R m+ λ

(2)+
R + o(1), (5.71)

λ+
−m ∼ λ

(0)+
L m+ λ

(2)+
L + o(1), (5.72)

as n → ∞ where

λ
(0)+
R = 2πd+ is

∆2 , λ
(2)+
R = −d+ is

∆2 σ′,

λ
(0)+
L = 2π−d+ is

∆2 , λ
(2)+
L = −d+ is

∆2 σ′.

The subscripts R and L indicate that the pole is in the right- or left-hand side of L+

respectively.

5.C.2 Factorisation of Zeros of K

We now outline the procedure for factorising the zeros of K. In contrast to previous
analyses for rigid plates (Glegg, 1999; Peake, 1992), no analytic factorisation is available.
A numerical root finding algorithm is sufficient to find the locations of these roots, but
we also require some knowledge about their asymptotic behaviour. The reason for this
is that during the Wiener–Hopf method we must know the asymptotic behaviour of
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the factorised kernel function. This asymptotic behaviour is inextricably linked to the
asymptotic behaviour of the kernel’s zeros and poles.

We focus on the zeros located in the first quadrant of the complex γ−plane. These
roots are labelled as θ+

n,R. The asymptotic behaviour of the roots in the other quadrants
can be determined by a similar procedure.

Recall the definition of the branch cut of ζ:

ζ =
√
k2w2 − γ2 = eiψ1/2eiψ2/2

∣∣∣k2w2 − γ2
∣∣∣1/2

,

where

ψ1 = arg(kw − γ), ψ2 = arg(kw + γ),

and

π/2 < ψ1 < 5π/2, −π/2 < ψ2 < 3π/2.

Since θ+
n,R are in the first quadrant, we have

ζ(θ+
n,R) ∼ iθ+

n,R, as n → ∞.

This leads us to determine the following asymptotic behaviours:

sin(sζ(θ+
n,R)) ∼ − 1

2ie
sθ+
n,R ,

cos(sζ(θ+
n,R)) ∼ 1

2esθ
+
n,R , cos(dθ+

n,R + σ′) ∼ 1
2e−i(dθ+

n,R+σ′).

We now substitute these representations into (5.70) to obtain asymptotic expansions
for the roots θi+n,R. Each case must be considered separately, although the asymptotic
behaviours are similar.

Case I Boundary Condition

For the no-mean-flow boundary condition, the asymptotic behaviour of the roots obeys

θ+
n,R ∼ µ0

(
1 − exp

[
−i((d− is)θ+

n,R + σ′)
])
. (5.73)
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We seek an asymptotic expansion of the first quadrant roots of the classical form

θ+
n,R ∼

∞∑
m=0

a
(k)
R θ

(k)
R (n), (5.74)

where θ(k+1)
R (n) = o

(
θ

(k)
R (n)

)
as n → ∞. In (5.73) we require the linear and exponential

terms to match. However, since
∣∣∣θ+
n,R

∣∣∣ → ∞ as n → ∞, the exponential term will grow
at a faster rate than the linear term. Consequently, the real part of the argument of the
exponential must be asymptotically small compared to the imaginary part. We therefore
expand the roots into real and imaginary parts as θ+

n,R = θr+n,R + iθi+n,R and write

dθi+n,R − sθr+n,R = G(n), (5.75)

where G(n) = o(θ(0)
R (n)). Rearranging yields

θ+
n,R = θ+

n,R + iθi+n,R =
(

1 + is
d

)
θr+n,R − iG(n)

d
.

Since the arguments of the left- and right-hand sides of equation (5.73) must match, we
obtain an expression for the imaginary part of the argument of the exponential:

σ′ + dθr+n,R + sθi+n,R = π − arctan
(
s

d

)
− 2nπ + o (1) . (5.76)

Applying the asymptotic expansion (5.74) and taking the leading order terms of (5.75)
and (5.76) yields

θ
(0)
R (n) = n,

a
(0)
R = 2π(d+ is)

∆2 .
(5.77)

We may now substitute the expansion for θ+
n,R so far into (5.73) to obtain

2π(d+ is)
∆2 n+ o(n) ∼ µ0

(
1 + exp

[
G(n) + i arctan

(
s

d

)])
.

We now match leading order terms to obtain

2π
∆ n = µ0 exp [G(n)] ,
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so that

G(n) = log (n) + log
(

2π
µ0∆

)
.

Similarly, taking the leading order terms in (5.75) and (5.76) yields

θ
(1)
R (n) = log(n),

a
(1)
R = id+ is

∆2 .
(5.78)

and

θ
(2)
R (n) = 1,

a
(2)
R = d+ is

∆2 ·
(
π − σ′ + i log

(
2π
µ0∆

)
− arctan

(
s

d

))
.

(5.79)

Substitution of (5.77, 5.78, 5.79) into the asymptotic expansion (5.74) yields

θ+
n,R ∼ d+ is

∆2

(
2πn+ i log(n) + π − σ′ + i log

(
2π
µ0∆

)
− arctan

(
s

d

)
+ o(1)

)
. (5.80)

Similar analysis yields the asymptotic behaviour for the roots in the second quadrant as

θ+
n,L ∼ −d+ is

∆2

(
2πn− i log(n) − π + σ′ − i log

(
2π
µ0∆

)
− arctan

(
s

d

)
+ o(1)

)
. (5.81)

Case II Boundary Condition

For the Darcy-type boundary condition, the asymptotic behaviour of the roots obeys the
equation

1 ∼ −iµ1
(
1 − exp

[
−i((d− is)θ+

n,R + σ′)
])
. (5.82)

We assume an asymptotic expansion of the roots of the form (5.74). Similar reasoning to
the previous sections yields that the leading order terms are also given by

a
(0)
R = 2π(d+ is)

∆2 , a
(0)
L = 2π(−d+ is)

∆2 . (5.83)
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We may now solve (5.82) directly to find the coefficients of the next two orders of the
asymptotic expansion as

a
(1)
R = 0, a

(1)
L = 0,

a
(2)
R = d+ is

∆2

(
i log

(
1 + 1

iµ0

)
− σ′

)
, a

(2)
L = −d+ is

∆2

(
−i log

(
1 − 1

iµ0

)
+ σ′

)
.

Case III boundary condition

For the case III boundary condition, the asymptotic behaviour of the roots obeys

1 ∼ −µ2θ
+
n,R

(
1 − exp

[
−i((d− is)θ+

n,R + σ′)
])
. (5.84)

Similar analysis to the previous sections possesses an identical asymptotic expansion (up
to the terms considered) and we have, at leading order,

a
(0)
R = 2π(d+ is)

∆2 , a
(0)
L = 2π(−d+ is)

∆2 . (5.85)

Substitution of (5.85) into (5.84) yields the coefficients of the next two orders of the
asymptotic expansion as

a
(1)
R = 0, a

(1)
L = 0,

a
(2)
R = σ′(−d− is)

∆2 , a
(2)
L = σ′(−d+ is)

∆2 .

5.C.3 Full Factorisation of Kernel, K

We propose a multiplicative splitting of K of the form:

K(γ) = K+(γ)K−(γ),

where

K−(γ) = eE(γ)
∏∞
m=1

(
1 − γ/θ+

m,R

) (
1 − γ/θ+

m,L

)
∏∞
m=−∞ (1 − γ/λ+

m) , (5.86.a)

K+(γ) = e−E(γ)
∏∞
m=1

(
1 − γ/θ−

m,R

) (
1 − γ/θ−

m,L

)
∏∞
m=−∞ (1 − γ/λ−

m) K(0). (5.86.b)
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The entire function E is included to ensure that K± has algebraic growth in L±

respectively. Previous works for rigid blades (Glegg, 1999; Peake, 1992) have derived the
form of the entire function E and shown that it is a polynomial. In the remainder of this
section, we will show that E is in fact a constant for the present problem.

Asymptotic Behaviour of Proposed Factorisation

We focus on K− since the asymptotic behaviour of K+ follows in an analogous manner.
We first establish the existence and growth of some relevant products.

Proposition 1. The infinite product

P1 =
∞∏
m=1

a(0)
R m+ a

(2)
R

θ+
m,R

 ·

a(0)
L m+ a

(2)
L

θ+
m,L

 (5.87)

exists.

Proof. We use the asymptotic expansions (5.80) and (5.81) to obtain

a
(0)
R m+ a

(1)
R

θ+
m,R

∼ 1 − a
(1)
R log(m)
a

(0)
R m

+ o(m−1),

a
(0)
L m+ a

(1)
L

θ+
m,L

∼ 1 − a
(1)
L log(m)
a

(0)
L m

+ o(m−1),

respectively. Substitution into the product (5.87) yields

P1 =
∞∏
m=1

(
1 − A

log(m)
m

+ o(m−1)
)
, (5.88)

where

A = a
(1)
R

a
(0)
R

+ a
(1)
L

a
(0)
L

,

and application of (5.77) and (5.78) shows that A = 0. Consequently, the products (5.88)
and therefore (5.87) exist via the comparison method.

Proposition 2. The infinite product

P2(γ) =
∞∏
m=1

(
θ+
m,R − γ

a
(0)
R m+ a

(2)
R − γ

)
·
(

θ+
m,L − γ

a
(0)
L m+ a

(2)
L − γ

)
(5.89)
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tends to unity as γ → ∞ in L−.

Proof. Consider the log-derivative of P2(γ):

L(γ) = d log(P2(γ))
dγ

=
∞∑
m=1

 θ+
m,R − (a(0)

R m+ a
(2)
R )

(a(0)
R m+ a

(2)
R − γ)(θ+

m,R − γ)
+

θ+
m,L − (a(0)

L m+ a
(2)
L )

(a(0)
L m+ a

(2)
L − γ)(θ+

m,L − γ)


=

∞∑
m=1

fm(γ). (5.90)

Recall (5.80) and Im[γ] < 0 and Im[a(0)
R , a

(0)
L ] > 0. Therefore, ∃M1 > 0 s.t. ∀m1 > M1,

Im[θ+
m1,R − γ], Im[a(0)

R m1 + a
(2)
R − γ] > m1 Im[a(0)

R ],
Im[θ+

m1,L − γ], Im[a(0)
L m1 + a

(2)
L − γ] > m1 Im[a(0)

L ].

Furthermore, (5.80) shows that ∃M2 > 0 s.t. ∀m2 > M2,∣∣∣θ+
m2,R − (a(0)

R m2 + a
(2)
R )

∣∣∣ < CR log(m2),∣∣∣θ+
m2,L − (a(0)

L m2 + a
(2)
L )

∣∣∣ < CL log(m2),

for some CL and CR. Therefore, we have a uniform bound on fm(γ) form > M = max(M1,M2):

|fm(γ)| < C
log(m)
m2 ,

for some C. Consequently, the series L(γ) converges uniformly in L−.
Now note that P2(0) exists by proposition 1. Since the log-derivative of P2 is

uniformly convergent, we may adapt (14.2.7) of Tao (2016) and claim that P2 itself
converges uniformly as γ → ∞ in L−. Therefore, we may exchange the orders of limit
and product and write

lim
γ→∞
γ∈L−

P2(γ) =
∞∏
m=1

lim
γ→∞
γ∈L−

((
θ+
m,R − γ

a
(0)
R m+ a

(2)
R − γ

)
·
(

θ+
m,L − γ

a
(0)
L m+ a

(2)
L − γ

))
= 1.
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We now calculate the asymptotic behaviour of K− by comparison with the product

P (γ) =
∞∏
m=1

(
1 − γ/θ+

m,R

)
eγ/θ

+
m,R

(
1 − γ/θ+

m,L

)
eγ/θ

+
m,L(

1 − γ/(a(0)
R m+ a

(2)
R )

)
eγ/a

(0)
R m

(
1 − γ/(a(0)

L m+ a
(2)
L )

)
eγ/a

(0)
L m

. (5.91)

This function may be written as

P (γ) = exp
(
γ

∞∑
m=1

1
θ+
m,R

− 1
a

(0)
R m

− 1
θ+
m,L

− 1
a

(0)
L m

)
P1P2(γ).

The product P1 is known to exist by proposition 1. Applying proposition 2 yields

P (γ) ∼Bγα exp
(
γ

∞∑
m=1

1
θ+
m,R

− 1
a

(0)
R m

+ 1
θ+
m,L

− 1
a

(0)
L m

)
,

for some constant B. By applying the asymptotic behaviour of the Gamma function
(Peake, 1992, B7 & B8), we derive the relation

∞∏
n=1

(
1 − γ

am+ b

)
exp

[
γ

am

]
∼ C exp

[
γ

a
(E − 1 − log(−a)) +

(
γ

a
− b

a
− 1

2

)
log(γ)

]
,

where E is the Euler-–Mascheroni constant and

C = −b√
2π

Γ
(
b

a

)
(−a)

b
a

− 1
2 .

This representation may be substituted into the denominator of (5.91). Rearranging
yields the asymptotic behaviour

∞∏
m=1

(
1 − γ/θ+

m,R

)
eγ/θ

+
m,R

(
1 − γ/θ+

m,L

)
eγ/θ

+
m,L ∼ B2γ

α exp
(
γ

∞∑
m=1

1
θ+
m,R

+ 1
θ+
m,L

)

× exp
[

γ

a
(0)
R a

(0)
L

(
(E − 1)

(
a

(0)
R + a

(0)
L

)
− a

(0)
L log(a(0)

R ) + a
(0)
R log(a(0)

L )
)

+γ ( 1
a

(0)
R

+ 1
a

(0)
L

)
−

a(2)
R

a
(0)
R

+ a
(2)
L

a
(0)
L

− 1
 log(γ)

 ,
for some constant B2. We also note that

∞∏
m=−∞

(
1 − γ/λ+

m

)
eγ/λ

+
m ∼ B3γ exp

γ ∞∑
m=1

1
λ

(0)+
m

+ 1
λ

(0)+
−m
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× exp
 γ

λ
(0)+
m λ

(0)+
−m

(
(E − 1)

(
λ(0)+
m + λ

(0)+
−m

)
− λ

(0)+
−m log(λ(0)+

m ) + λ(0)+
m log(λ(0)+

−m )
)

+
γ

 1
λ

(0)+
m

+ 1
λ

(0)+
−m

−

λ(2)+
m

λ
(0)+
m

+ λ
(2)+
−m

λ
(0)+
−m

− 1
 log(γ)

 ,
for some constant B3. Noting that λ(0)+

m = a
(m)
R and λ

(0)+
−m = a

(m)
L , we obtain

∏∞
m=1

(
1 − γ/θ+

m,R

) (
1 − γ/θ+

m,L

)
∏∞
m=−∞ (1 − γ/λ+

m) ∼B4γ
α−1 exp

−

a(2)
R

a
(0)
R

+ a
(2)
L

a
(0)
L

 log(γ)
 ,

for some constant B4. Consequently, the entire function E in (5.86.a) is a constant.





Chapter 6

Potential Flow Through Cascades
with Multiple Aerofoils per Period

6.1 Introduction

The analyses in this thesis have, thus far, been restricted to cascades consisting of blades
with thin profiles and at small angles of attack. These restrictions allowed us to find
analytic solutions for the potential flow through cascades of rigid and porous aerofoils in
chapters 2 and 4 respectively. However, the blades used in realistic turbomachinery stages
possess large amounts of camber in order to turn the flow through a desired angle. The
studies in previous chapters were also limited insofar as they were restricted to analysing
a single cascade in isolation and were unable to account for interference effects between
adjacent cascades. Such effects may be important in rotor-stator interactions where
adjacent blade rows are tightly spaced. Additionally, the work in previous chapters was
limited to uniform flows and could not be used to analyse the behaviour of singularities
in the flow or the effects of the motion of the blades. The rapid motion of rotors is
clearly essential to their modelling, and is not accessible using the methods of previous
chapters. In this chapter, we address these deficiencies and derive solutions for the
potential flow through cascades where (a) the blades are of arbitrary geometry, (b) there
are an arbitrary number of blades per period window, and (c) the flow may involve point
vortices and moving blades. A possible arrangement that is amenable to the methods of
the present section is illustrated in figure 6.1.

Essential tools for constructing these flows are conformal mappings. As outlined
in section 1.2.3, conformal mappings enable us to relate simple canonical domains to
complex, physical domains. Since Laplace’s equation is invariant under such mappings, it
is sufficient to construct the complex potential in the simple domain, and then map the
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rotor stator rotor

Fig. 6.1 An example of a possible rotor-stator configuration amenable to the methods
outlined in this chapter. The upstream arrow indicates an incoming mean flow (at
arbitrary angle of attack), the spirals indicate point vortices, and the vertical arrows
indicate the motion of the blades. The arrangement is periodic in the vertical direction.

solution to the target domain of interest. Consequently, we also study periodic conformal
mappings that may be used to map a circular domain to the desired target domain.

In section 1.2.3.2 we introduced the transcendental Schottky–Klein prime function.
We demonstrated that the prime function is a fundamental object in multiply connected
domains, partly because the five canonical conformal mappings can be expressed in terms
of the prime function. Accordingly, the prime function is an important building block
for the potential flow solutions in this chapter. The prime function has previously been
applied to solve potential flows in non-periodic domain by Crowdy (2010), and we now
extend that analysis to consider potential flows through periodic domains. In particular,
we present two new “canonical” conformal mappings for periodic domains which we
will use to construct the potential flow. We also show that we recover the non-periodic
solution in the limit where the period is large.

The layout of this chapter is as follows. In section 6.2, we present two new “canonical”
periodic conformal mappings. We also present a new periodic Joukowski mapping that
enables a range of relevant aerofoil shapes to be analysed. In section 6.3, we present
analytic solutions for a range of flows through periodic domains, including point vortices,
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C0

Dζ
C1

C2

a∞−

a∞+
P0

P2

P1
f(a∞−)

f(a∞+)

Dz

z = f(ζ)

Fig. 6.2 An example of a periodic conformal mapping from a canonical circular domain to
the physical target domain in figure 6.1. In this case, there are three objects per period
window, so M = 2. The dashed line indicates the branch cut.

uniform flows, and the effect of moving objects. Finally, in section 6.4 we summarise the
chapter.

6.2 Periodic Conformal Mappings

Periodic conformal mappings have been applied in various contexts within fluid dynamics.
Following Baddoo and Crowdy (2019), we divide all periodic conformal mappings into
three cases with respect to the boundedness of the target period window: the target
period window may be unbounded in two directions (case I), unbounded in only one
direction (case II), or bounded (case III). Case I mappings have found relevance in the
study of superhydrophobic surfaces (Crowdy, 2011) where the mappings were used to
derive frictional slip lengths for grooved surfaces. Additionally, these mappings have been
applied to find analytic solutions for free boundary problems, including von Kármán
streets of hollow vortices (Crowdy and Green, 2011) for both simply connected and
doubly connected domains, and arrays of bubbles in Hele–Shaw cells (Vasconcelos, 1993,
2015). Case II mappings have been used to study the interaction of a vortex street with a
shear flow by Crowdy and Nelson (2010), and free surface Euler flows by Crowdy (2000).
Case III mappings have been applied to study steady capillary waves on an annulus
by Crowdy (1999), and to derive effective slip lengths for superhydrophobic surfaces by
Crowdy (2017).

It is often difficult to construct the desired mapping, particularly in case I domains.
Whilst constructive formulae are available for simply connected geometries in case II
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and case III (Floryan, 1985; Floryan and Zemach, 1993), case I mappings have not been
investigated in detail until relatively recently (Baddoo and Crowdy, 2019). The only
previous example of a case I mapping is a mapping from the unit disc to a periodic array
of slits, which has found prominence in turbomachinery studies (Evers and Peake, 2002;
Robinson and Laurmann, 1956; Wade, 1967). We will show later that this mapping is, in
fact, a special case of the new canonical periodic mappings derived in this section. In
this section, we present several new periodic conformal mappings, many of which are
valid for an arbitrary number of objects per period window.

In general, we wish to relate a canonical circular domain Dζ to a periodic physical
target domain Dz as illustrated in figure 6.2. As discussed in section 1.2.3, a canonical
circular domain of connectivity M + 1 is defined as the unit disc with M excised circles.
We assume that the points a∞± ∈ Dζ are mapped to downstream and upstream infinity
respectively. Moreover, we assume that the circular domain has a branch cut which
connects a∞± . This branch cut is responsible for the periodicity of the mappings in this
section. We label the discs in the circular domain as Cj , and the images of these discs in
the physical domain as Pj, as illustrated in figure 6.2.

6.2.1 Two Canonical Periodic Conformal Mappings

We now consider two special periodic conformal mappings. These mappings are given
special attention because they map the canonical circular domain to a periodic array of
slits with constant imaginary part. These mappings will later be used to construct the
complex potential for a flow through a periodic domain, which we also require to have
constant imaginary part on each boundary.

We first consider the “circular arc maps” (Crowdy and Marshall, 2006; Nehari, 1952)
that were introduced in section 1.2.3. The effect of these mappings are to transplant the
M + 1 discs to M + 1 finite-length circular arc slits, each of which are centered at the
origin in the z-plane. The mappings take the functional form

T (ζ; a∞− , a∞+) = ω(ζ, a∞−)ω(ζ, 1/a∞+)
ω(ζ, 1/a∞−)ω(ζ, a∞+) ,

where a∞− is mapped to the origin and a∞+ is mapped to infinity. The function ω(·, ·) is
the Schottky–Klein prime function introduced in section 1.2.3.2. The effect of such a
mapping is illustrated in figure 6.3 for M = 2.
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Dζ
a∞−

a∞+

Dz

z = T (ζ; a∞− , a∞+)

Fig. 6.3 A circular arc map for M = 2.

We now take the logarithm of the circular arc slit map and rescale by a pure imaginary
factor such as

H(ζ; a∞− , a∞+) = 1
2πi log(T (ζ; a∞− , a∞+))

= 1
2πi log

(
ω(ζ, a∞−)ω(ζ, 1/a∞+)
ω(ζ, a∞+)ω(ζ, 1/a∞−)

)
.

Since circular arcs have constant radius, taking a logarithm transplants these circular
arcs to lines with constant real part. Rescaling by an imaginary factor then rotates the
system so that the slits have constant imaginary part. In particular, the period of the
mapping is real so that the branch cut is oriented horizontally. Accordingly, the branch
cut in Dζ is arranged such that it passes between the branch points at a∞− and a∞+ ,
as illustrated in figure 6.4. In hydrodynamical terms, H corresponds to the complex
potential induced by two vortices of equal but opposite strength located at a∞− and a∞+ .
The mapping H is the first canonical periodic conformal mapping. Note that the images
of the discs are slits with constant imaginary parts.

We now present the analytic form of the radial slit map, which was introduced in
1.2.3, as

R(ζ; a∞− , a∞+) = ω(ζ, a∞−)ω(ζ, 1/a∞−)
ω(ζ, a∞+)ω(ζ, 1/a∞+) .

Crowdy and Marshall (2006) showed that this mapping transplants each boundary circle
in the circular domain to a radial slit pointing at the origin. Similarly to the circular
arc map T , the point a∞− is mapped to the origin whereas the point a∞+ is mapped to



228 Potential Flow Through Cascades with Multiple Aerofoils per Period

Dζ
a∞−

a∞+

Dz

z = H(ζ; a∞− , a∞+)

Fig. 6.4 The effect of the conformal mapping H on a canonical circular domain for M = 2.

infinity. The geometric effect of the radial slit map is illustrated in figure 6.5 in the case
M = 2.

Dζ
a∞−

a∞+

Dz

z = R(ζ; a∞− , a∞+)

Fig. 6.5 A radial slit map for M = 2.

Similarly to the canonical mapping H, we take a logarithm of this radial slit map
and write

V (ζ; a∞− , a∞+) = 1
2π log (R(ζ; a∞− , a∞+))

= 1
2π log

(
ω(ζ, a∞−)ω(ζ, 1/a∞−)
ω(ζ, a∞+)ω(ζ, 1/a∞+)

)
.

This new composite mapping sends each disc to a slit with constant imaginary part,
as illustrated in figure 6.6. As the argument of V winds around the branch point a∞−

in the clockwise direction, V increases by i. Conversely, winding around a∞+ in the
clockwise direction decreases V by i. Consequently, and in contrast to H, the period is
now oriented in the vertical direction. In hydrodynamical terms, V corresponds to the
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complex potential induced by a source-sink pair with the source located at ζ = a∞− and
the sink located at ζ = a∞+ (Crowdy, 2013).

Dζ
a∞−

a∞+

Dz

z = V (ζ; a∞− , a∞+)

Fig. 6.6 The effect of the conformal mapping V on a canonical circular domain for M = 2.

We now combine the canonical slit maps to produce a new map. Since H has period
1 and V has period i, the mapping

S(ζ; a∞− , a∞+) = eiχ
(

cos
(
χ− π

2

)
H(ζ; a∞− , a∞+) − sin

(
χ− π

2

)
V (ζ; a∞− , a∞+)

)
has period i, except the slits no longer have constant imaginary part but rather make an
angle of χ with the horizontal axis. Expanded in terms of the prime function, S may be
expressed as

S(ζ; a∞− , a∞+) = 1
2π

(
log

(
ω(ζ, a∞−)
ω(ζ, a∞+)

)
+ e2iχ log

(
ω(ζ, 1/a∞−)
ω(ζ, 1/a∞+)

))
. (6.1)

The effect of S as a conformal mapping is illustrated in figure 6.7. The mapping S could
be used as a first approximation to the mapping in figure 6.2, although the slits mapped
by S must all be at the same angle. In hydrodynamical terms, S represents the complex
potential induced by a vortex spiral (Crowdy, 2013).

6.2.2 The Periodic Joukowski Mapping

In this section, we show that the new canonical periodic conformal mappings may be used
to construct conformal mappings for periodic arrays of “Joukowski-type” aerofoils. For
simplicity, we consider the case M = 0, although the general strategy could be applied
to cases where there are multiple objects per period window.
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Dζ
a∞−

a∞+

Dz

z = S(ζ; a∞− , a∞+)

Fig. 6.7 The effect of the conformal mapping S on a canonical circular domain for M = 2.
The slits are inclined at an angle of χ to the horizontal.

In the case where there is a single object per period window (M = 0), the mapping S
becomes

S(ζ; a∞− , a∞+) = 1
2π

(
log

(
ζ − a∞−

ζ − a∞+

)
+ e2iχ log

(
ζ − 1/a∞−

ζ − 1/a∞+

))
,

which is precisely the mapping used in the previously mentioned turbomachinery studies
(Evers and Peake, 2002; Robinson and Laurmann, 1956; Wade, 1967). This mapping is,
in fact, a periodic analogue of the Joukowski transform: as we send a∞− , a∞+ → 0, we
obtain

S(ζ; 0, 0) = C

(
ζ + 1

ζ

)
, (6.2)

for constant C. Note that the above mapping is no longer periodic since there is no
branch cut in the ζ-plane. In particular, the branch points at a∞− and a∞+ have joined
to form a simple pole.

The Joukowski transform (first presented in Joukowski (1910)) is a popular conformal
mapping that is often used in aerodynamic applications. The mapping relates the unit
disc to a class of “Joukowski-type” aerofoils. Its popularity stems from: (i) the fact
that the mapping can be expressed in a simple form, (ii) it is invertible, (iii) and it can
generate a large range of aerofoil geometries. In this section we exploit the new periodic
slit mapping S to map the unit disc to a periodic array of Joukowski aerofoils.

It is illustrative to begin with a brief discussion of the non-periodic Joukowski mapping.
The mapping (6.2) maps the interior of the unit disc to the exterior of a slit ranging
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zM (ζ) S(zM ; 0, 0)

Fig. 6.8 The procedure for constructing the non-periodic Joukowski mapping.

between ±1. It is of particular importance to note that the derivative of the mapping
(6.2) has a simple pole at the pre-image of the edges of the slit at ζ = ±1. Consequently,
the image of any curve that passes through the points ζ = ±1 will also have a cusp at
S(±1; 0, 0). When the curve is chosen to be a circle, the image of the curve possesses a
blunt leading edge and a cusped trailing edge: it is a Joukowski aerofoil. Moreover, the
velocity potential in the circle can be computed using standard techniques. Consequently,
we perturb the unit disc by a Möbius map of the form

zM(ζ) = (z − 1)reiθ + 1,

for some angle θ and scale factor r. This Möbius map is chosen since it maps the unit
disc to a new disc that passes through +1. The circle must enclose the pre-image of
infinity (in this case ζ = 0) otherwise the region Dz is bounded. We now apply the
Joukowski map (6.2) to the new perturbed disc to obtain a Joukowski-type aerofoil. This
procedure is illustrated in figure 6.8.

We now employ a similar strategy to derive the periodic Joukowski mapping. We
first note that the zeros of the derivative of S are not, in general at ζ = ±1. Since the
image of the circle under the Möbius map must pass through an edge, we write

zM,P = (z − ζt)reiθ + ζt, (6.3)

where
[
Sζ(ζ, a∞+ , a−

∞)
]
ζ=ζt

= 0.

In an analogous way to the non-periodic case, the circle zM,P (C0) must enclose both of
the branch points. We now apply the periodic slit map to the transformed circle to obtain
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zM,P (ζ) S(zM,P ; a∞− , a∞+)

Fig. 6.9 The procedure for constructing the periodic Joukowski mapping.

in
cr

ea
sin

g
θ

decreasing r increasing r

Fig. 6.10 Several examples of Joukowski-type aerofoils that are amenable to the periodic
Joukowski formula. The dependence of the aerofoil shape on the parameters of the
Möbius mapping (6.3) are illustrated by the arrows.

a periodic array of Joukowski-type aerofoils. This mapping procedure is illustrated in
figure 6.9.

A range of aerofoil geometries are amenable to the periodic Joukowski mapping, some
of which are illustrated in figure 6.10. We note that every aerofoil has a blunt leading
edge and a cusped trailing edge. Evidently, a large range of interesting geometries are
available, including large cambers and thickness that are not permissible in the thin
aerofoil approximation of chapter 2. The aerofoil geometry is controlled by varying the
radius and angle of intersection of the modified circle in the Joukowski transformation.
Varying the radius controls the thickness of the aerofoil, whereas varying the angle of
intersection controls the camber.
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Fig. 6.11 Several examples of cascades of Joukowski-type aerofoils. The black lines are
the images of a polar grid centered at the origin in the zM,P -plane.
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6.2.3 The Periodic Schwarz–Christoffel Formula

Although the extended Riemann mapping theorem guarantees the existence of a conformal
mapping between two domains of the same connectivity, it is often difficult to construct
such a mapping in practice. Schwarz–Christoffel (S–C) formulae are useful tools for
generating such mappings, as they represent constructive tools that furnish a conformal
mapping to a desired target domain. Typically, S–C mappings provide a conformal
mapping between a canonical domain (taken to be circles in the present work) and a
polygonal domain, although there are extensions available for polycircular arc domains
(Crowdy et al., 2011), gear-like regions (Goodman, 1960), and curved regions (Henrici,
1986). Although the mappings are explicit, every S–C mapping is subject to a family
of accessory parameters that must, in general, be determined numerically. A great deal
of work has been devoted to solving this “parameter problem”, and a comprehensive
review is available in Driscoll and Trefethen (2002). In particular, the Matlab program
sc-toolbox (https://github.com/tobydriscoll/sc-toolbox) allows the rapid computation
of (usually simply connected) S–C mappings through the use of several novel numerical
algorithms (Driscoll, 1996, 2005).

Historically, Schwarz–Christoffel mappings were typically restricted to simply con-
nected domains. A major advance came about in the early 2000s when two groups of
researchers independently extended the S–C mapping formulae to consider multiply con-
nected domains (Crowdy, 2005, 2007; DeLillo et al., 2004). The latter has an advantage
over the former insofar as the mapping formula is written explicitly in terms of the
aforementioned Schottky–Klein prime function. Further work has been done to solve the
parameter problem in the multiply connected domains Kropf (2012).

Recent work in Baddoo and Crowdy (2019) has further extended the original S–C
mapping to permit target domains that are periodic. In a similar way to other work by
Crowdy (Crowdy, 2005, 2007), the mapping formula is phrased in terms of the Schottky-
Klein prime function. Consequently, the formula is valid for any number of objects per
period window. An example of such a mapping with three objects per period window is
illustrated in figure 6.12. The mapping formula is given by (6.3) in Baddoo and Crowdy
(2019) as

z = f(ζ) = A

ˆ ζ

1
SP (ζ ′; a∞+ , a−

∞)
M∏
j=0

nj∏
k=1

[
ω(ζ ′, a

(j)
k )
]β(j)
k dζ ′ +B, (6.4)

where β(j)
k represent the turning angles at each vertex and a

(j)
k represent the unknown

preimages of each vertex. The subscript corresponds to the k-th vertex and the superscript

https://github.com/tobydriscoll/sc-toolbox
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Dζ
a∞+

a∞−

Dz

f(a∞−)

f(a∞+)
z = f(ζ)

Fig. 6.12 An example of a periodic Schwarz–Christoffel mapping with real period.

corresponds to the j-th circle. The constants A and B represent the translation and
scaling of the map. The function SP possesses simple poles at a∞± so that, when
integrated, they become branch points at a∞± . In particular, SP is given by

SP (ζ; a, a∞+ , a∞−) = SB(ζ)
ω(ζ, a∞+)ω(ζ, a∞−)ω(ζ, 1/a∞+)ω(ζ, 1/a∞−) ,

and SB is defined as

SB(ζ) = ωζ(ζ, a)ω(ζ, 1/a) − ωζ(ζ, 1/a)ω(ζ, a)∏M
j=1 ω(ζ, γ(j)

1 )ω(ζ, γ(j)
2 )

,

where a ∈ Dζ is a constant in the circular domain and γ
(j)
1,2 are constants defined in

Baddoo and Crowdy (2019).
The original S–C mapping is recovered in the limit where a∞± → a and the two branch

points combine to form a simple pole at ζ = a, thereby rending the map non-periodic.
Further work is required to solve the parameter problem for the periodic S–C mapping,
but a similar approach to that employed by Driscoll (2005) will be applicable, at least in
the case where there is only a single object per period window.

6.3 The Calculus of Flows in Periodic Domains

In this section we adapt the work of Crowdy (2010) to enable the calculation of com-
plex potentials for flows in periodic domains with multiple objects per period window.
Constructing the complex potential for a simply connected domain is straightforward
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upon use of the Milne-Thomson circle theorem (Batchelor, 2000). However, problems
in multiply connected domains are not amenable to the same tools, and the complex
potential must be phrased in terms of the Schottky–Klein prime function. In this section,
we focus on solutions for complex potential induced by (1) point vortices, (2) a uniform
flow and (3) moving objects. The analytic solutions for point vortices and moving
objects are identical to the non-periodic solution by Crowdy (2010), and do not require
modification. Nevertheless, these solutions have not previously been applied to periodic
domains and, therefore, we reiterate the original solutions by Crowdy and provide new
illustrative examples. Conversely, the solution for uniform flow must be modified to
account for the periodicity of the domain. In this case, we will show that we recover the
original solution by Crowdy (2010) in the limit where the period tends to infinity.

6.3.1 Point Vortices

A fundamental object in constructing potential flows in multiply connected domains is
the hydrodynamic Green’s function G0, which satisfies

∇2G0(ζ, β) = −δ(ζ − β), ζ ∈ Dζ , (6.5.a)

Im [G0(ζ, β)] = cj, ζ ∈ Cj, j = 0, · · · ,M. (6.5.b)

Crowdy and Marshall (2005) showed that the hydrodynamic Green’s function takes the
form

G0(ζ, β) = 1
2πi log

(
ω(ζ, β)

|β|ω(ζ, 1/β)

)
, (6.6)

where ω is the Schottky–Klein prime function introduced in section 1.2.3.2. In hy-
drodynamical terms, G0 is the complex potential for a unit circulation point vortex.
An advantage of writing G0 in the form of (6.6) is that, since it is phrased in terms
of the Schottky–Klein prime function, (6.6) is valid for circular domains of arbitrary
connectivity. Moreover, G0 has −1 circulation around C0 and zero circulation around Cj ,
j = 1, · · · ,M . The circulations around each circle may be changed by introducing the
modified hydrodynamic Green’s function

Gj(ζ, β) = 1
2πi log

(
ω(ζ, β)

|β|ω(ζ, θj(1/β))

)
,
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where θj are the Möbius mappings

θj(ζ) = δj +
q2
j ζ

1 − δjζ
, (6.7)

and qj and δj are the conformal moduli described in section 1.2.3. The modified function
Gj has unit circulation around Cj and zero circulation around Ci, i = 0, · · · j − 1, j +
1, · · ·M . We will use this fact later to construct flows with specified circulations around
each object, thus satisfying the Kutta condition. Accordingly, we may construct the
complex potential induced by n vortices by writing

Wκ(ζ) =
n∑
k=1

κkGjk(ζ, βk)

= 1
2πi

n∑
k=1

κk log
 ω(ζ, βk)

|βk|ω(ζ, θjk
(
1/βk

)
)

 . (6.8)

In many applications it is desirable to give each object a specific circulation. Consequently,
we may place point vortices at one of the pre-images of infinity to remove the circulations
around each body. For example, we may remove the circulations by placing appropriately
tuned vortices at a∞− .

Wκ(ζ) =
n∑
k=1

κk (Gjk(ζ, βk) −Gjk(ζ, a∞−))

= 1
2πi

n∑
k=1

κk log
∣∣∣∣∣a∞−

βk

∣∣∣∣∣ · ω(ζ, βk)
ω(ζ, a∞±) · ω(ζ, θjk (1/a∞−))

ω(ζ, θjk
(
1/βk

)
)

 . (6.9)

In figure 6.13, we plot the streamlines induced by point vortex in a periodic domain
with three objects per period window (M = 2). In figure 6.13a, the vortex induces −1
circulation around the image of C0 and zero circulation around every other slit. The
circulation is then deleted via the placement of a point vortex at both the pre-images of
infinity in figure 6.13b. This has a significant effect on the flow field upstream of the
cascade, whereas the downstream field is relatively unchanged. The behaviour of the flow
field local to the point vortex is also unchanged by the modifications to the circulation.

The trajectories of point vortices may also be analysed using this framework. The
Kirchhoff–Routh path function (Saffman, 1993) provides analytic expressions for the
trajectories of point vortices. The path function has also been extended to multiply
connected domains (Crowdy and Marshall, 2005), but further work is required to ensure
that the same formulation is applicable to the periodic domains of this chapter.
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(a) (b)

Fig. 6.13 Streamlines for a vortex induced flow with zero circulation around each Cj,
j = 1, 2 and (a) −1 circulation around C0, (b) 0 circulation around C0. In this case there
are three objects per period window and M = 2. The point vortex is located at the
purple circle and the branch cut is illustrated in the dashed line.

6.3.2 Uniform Flow

We now construct the complex potential for a uniform flow through the periodic ar-
rangement of objects. The complex potential in a period window in the physical z-plane,
wU(z), satisfies

∇2
zwU(z) = 0, z ∈ Dz, (6.10.a)

Im [wU(z)] = cj, z ∈ Pj, j = 0, · · · ,M, (6.10.b)

dwU
dz ∼ Ue−iα, as |z| → ∞, (6.10.c)
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where U is the magnitude of the uniform flow at infinity, cj are some constants, and α

is the angle of attack. A periodic conformal mapping f(ζ) must posses a branch cut in
the circular ζ-plane. Accordingly, f(ζ) has a pair of branch points at a∞± , and we have
the following asymptotic behaviours:

f(ζ) → ∓A log (ζ − a∞±) + locally analytic function,

as ζ → a±
∞ for some constant A.

We write the complex potential in the ζ-plane as

wU(z) = wU(f(ζ)) = WU(ζ). (6.11)

Consequently, in the ζ-plane, equations (6.10.a), (6.10.b), and (6.10.c) become

∇2
ζWU(ζ) = 0, ζ ∈ Dζ/ {a∞±} , (6.12.a)

Im [WU(ζ)] = cj, ζ ∈ Cj, j = 0, · · · ,M, (6.12.b)

dWU

dζ

/
df
dζ ∼ Ue−iα, as ζ → a∞± . (6.12.c)

Substitution of (6.11) into (6.12.c) yields

dWU

dζ ∼ ∓ UAe−iα

ζ − a∞±
, (6.13)

as ζ → a∞± . Consequently, WU must possess logarithmic branch points at ζ = a∞± , in
addition to being holomorphic (6.12.a) and taking constant imaginary values on each
boundary (6.12.c). Using an approach analogous to that of section 6.2 in Crowdy (2010),
we can construct this complex potential using the two canonical periodic mappings
derived in section 6.2. The two canonical slit maps H and V have the asymptotic
behaviours

H(ζ; a∞+ , a∞−) ∼ ∓ 1
2πi log (ζ − a∞±) ,

V (ζ; a∞+ , a∞−) ∼ ∓ 1
2π log (ζ − a∞±) ,

as ζ → a∞± . Moreover, both H and V have constant imaginary value on each Cj,
j = 0, · · · ,M . Consequently, we may take real, linear combinations of the two canonical
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slit maps to generate a new mapping that possesses the correct singularities at the
pre-images of infinity, a∞± , whilst maintaining a constant imaginary value on each circle.
The function

WU(ζ) = 2πU (cos(α)V (ζ; a∞+ , a∞−) + sin(α)H(ζ; a∞+ , a∞−)) ,

indeed has constant imaginary part on each boundary circle, and has the asymptotic
behaviour described in (6.13). In terms of the prime function, we may expand WU into
the form

WU(ζ) = AU

(
e−iα log

(
ω(ζ, a∞−)
ω(ζ, a∞+)

)
+ eiα log

(
ω(ζ, 1/a∞−)
ω(ζ, 1/a∞+)

))
. (6.14)

It may be shown by analytic continuation and Liouville’s theorem that (6.14) is unique
in satisfying (6.12.a), (6.12.b), and (6.12.c). Moreover, WU (ζ) is single-valued as ζ loops
around any of the circles Cj , which implies that each object has zero circulation (Crowdy,
2006). It should be noted that the form of WU is identical to that of the combined
canonical slit map S, defined in (6.1), up to a multiplicative factor.

In the case where there is a single object per period window, we have M = 0 and
(6.14) becomes

WU(ζ) = AU

(
e−iα log

(
ζ − a∞+

ζ − a∞−

)
+ eiα log

(
a∞+

a∞−
· a∞−ζ − 1
a∞+ζ − 1

))
. (6.15)

In figure 6.14 we plot the streamlines for the uniform flow through a periodic array of
slits. In these figures there is no circulation around any object and, consequently, the
outlet angle is the same as the inlet angle. Clearly the no-flux condition is satisfied in
figures 6.14a and 6.14b since the streamlines do not pass through any of the slits. It is
noted that the velocity field associated with these streamlines possess a singularity at
the sharp corners of the slits at each leading and trailing edge. As will be detailed later,
this can be corrected by enforcing the Kutta condition.

6.3.2.1 Comparison to Solution for Non-Periodic Flows

We now show that the solution for uniform flow through a periodic domain (6.14) collapses
to the solution for uniform flow through a non-periodic domain (Crowdy, 2010) in the
appropriate limit. We take the limit a∞+ → a∞− , which corresponds to the two branch
points in the conformal mapping coalescing to form a simple pole. Consequently, in
this limit there is no branch cut and the mapping is not periodic. Taylor expanding the
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(a) (b)

Fig. 6.14 Streamlines for uniform flow through a periodic arrangement of slits at angle
of attack (a) α = −π/4, (b) α = π/4 . In this case there are three objects per period
window and M = 2. There is zero circulation around every object. The branch cut is
illustrated by the dashed line.

logarithms in (6.14) yields

log
(
ω(ζ, a∞+)
ω(ζ, a∞−)

)
∼ (a∞− − a∞+)ωα(ζ, a∞−)

ω(ζ, a∞−)

= 2πi (a∞− − a∞+)
[
∂G0

∂β
(ζ, β)

]
β=a∞−

, (6.16.a)

log
(
ω(ζ, 1/a∞−)
ω(ζ, 1/a∞+)

)
∼ (a∞− − a∞+) 1

a∞− 2
ωβ(ζ, 1/a∞−)
ω(ζ, 1/a∞−)

= 2πi (a∞− − a∞+)
[
∂G0

∂β
(ζ, β)

]
β=a∞−

, (6.16.b)
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subject to addition of an arbitrary constant, where the subscript β indicates the derivative
with respect to the second argument. Substitution of (6.16.a) and (6.16.b) into (6.14)
and rescaling A = Ã/ (a∞+ − a∞−) yields

WU(ζ) ∼ 2πiÃU
[
eiα∂G0

∂β
− e−iα∂G0

∂β

]
β=a∞−

,

as a∞+ → a∞− , which is equivalent to the complex potential for uniform flow through a
non-periodic system as detailed in section 6.2 of Crowdy (2010).

6.3.3 Moving Objects

In many applications the objects are moving, in addition to being in a background flow.
For example, if we wish to model a sets of rotors and stators then the rotors cannot
be accurately modelled as being stationary. In natural flight, birds may utilize pitch
and heave motions in approximately periodic configurations to enhance their lift. In
industrial applications, stirrers perturb fluid to achieve optimal mixing (Crowdy, 2008a).
In each of these cases, the standard no-flux boundary condition changes, and we must
accordingly introduce extra terms in our analysis.

The kinematic boundary condition states that the normal velocity of fluid on a rigid
surface must move at the same velocity as that surface. Consequently, we write

u · n = Uj · n on Pj, (6.17)

where n represents the normal direction, u represents the fluid velocity, and Uj represents
the prescribed velocity of that boundary. We note that the dot product may be rewritten
in terms of complex notation as a · b = Re[āb] where a is the obvious complexification
of a. We also note that the tangent vector t may be written in complex form as dz/ds,
where s is the arc length. Therefore, the normal vector n may be written as −idz/ds
and the kinematic boundary condition (6.17) may be written as

Re
[
ū(s) × −idzds

]
= Re

[
Ūj(s) × −idzds

]
.

We introduce the complex potential due to the kinematic condition as wB and therefore
write the kinematic condition as

Re
[

dwB
dz × −idzds

]
= Re

[
Ūj(s) × −idzds

]
. (6.18)



6.3 The Calculus of Flows in Periodic Domains 243

The first term may be simplified by the chain rule to obtain

Re
[
−idwBds

]
= Re

[
−iŪj(s)

dz
ds

]
.

In the present work, we only consider rigid bodies. Accordingly, the only possible motions
are rotations and translations. Therefore, every point z ∈ Pj may be expressed as

z = cj(t) + ηj(s)eiϑj(t).

The velocity of each moving object may therefore be written as

Uj(s) = ċj(t) + iϑ̇j(t)ηj(s)eiϑj(t) = ċj(t) + iϑ̇j(t) (z − cj(t)) ,

Therefore, the kinematic condition (6.18) becomes

Re
[
−idwBds

]
= Re

[
−i
{

˙̄cj(t) − iϑ̇j(t) (z̄ − c̄j(t))
} dz

ds

]

= Re
[
−i ˙̄cj(t)

dz
ds − ϑ̇j(t) (z̄ − c̄j(t))

dz
ds

]
. (6.19)

Noting that

d
ds |z − cj|2 = 2Re

[
dz
ds (z̄ − c̄j)

]
,

we may integrate the kinematic condition (6.19) with respect to arc length s to get

Re [−iwB] = Re
[
−i ˙̄cj(z − cj) − ϑ̇j

2 |z − cj|2
]

+ dj, for z ∈ Pj (6.20)

for a constant dj which will be chosen to comply with a compatibility condition to be
defined later.

We write WB(ζ) = wB(z) and translate (6.20) into the canonical circular domain to
obtain the condition

Re [−iWB] = Re
[
−i ˙̄cj(z(ζ) − cj) − ϑ̇j

2 |z(ζ) − cj|2
]

+ dj ≡ φj
(
ζ, ζ̄

)
, for ζ ∈ Cj.

(6.21)
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In other words, the problem is to find an analytic function −iWB such that the real part
of −iWB equals φj(ζ, ζ̄) on the boundary of each circle Cj . This is a form of the modified
Schwarz problem, the solution to which has been given by Crowdy (2008b) for a domain
of arbitrary connectivity as

WB(ζ) = 1
2π

‰
∂Dζ

φj
(
ζ ′, ζ ′

) (
d log(ω (ζ ′, ζ)) + d log

(
ω
(
ζ ′, 1/ζ

)))
+ E, (6.22)

where E is an arbitrary real constant. In particular, WB has zero circulation around
each circle. The boundary data must furthermore satisfy the compatibility condition

‰
∂Dζ

φj
(
ζ(s), ζ(s)

) ∂σj
∂n

ds = 0, j = 1, · · · ,M,

where s represents the arc length, ∂/∂n represents the normal derivative, and σj represent
the harmonic measures (Crowdy, 2008b; Crowdy et al., 2016).

The integral in (6.22) is taken over every boundary circle and can therefore be
decomposed into contributions from each circle. Consequently, the solution to the
modified Schwarz problem may also be expressed as

WB(ζ) = 1
2π

‰
C0

φ0
(
ζ ′, ζ ′

) (
d log(ω (ζ ′, ζ)) + d log

(
ω
(
ζ ′, 1/ζ

)))

− 1
2π

M∑
j=1

‰
Cj

φj
(
ζ ′, ζ ′

) (
d log(ω (ζ ′, ζ)) + d log

(
ω
(
θj (1/ζ ) , 1/ζ ′

)))
+ E,

where θj are the Möbius mappings defined in (6.7).
In the case M = 0 there is a single object per period window and the solution to the

modified Schwarz problem is given by the Poisson formula (Ablowitz and Fokas, 2003):

WB(ζ) = 1
2π

‰
C0

φ0
(
ζ ′, ζ ′

)
· ζ

′ + ζ

ζ ′ − ζ
· dζ ′

ζ ′ + E.

Furthermore, in the case M = 1 there are two objects per period window, and, when the
canonical circular domain is the annulus ρ < |z| < 1, the solution is given by the Villat
formula (Akhiezer, 1990; Crowdy, 2008b)

WB(ζ) = 1
2π

‰
C0

φ0
(
ζ ′, ζ ′

)
·
(

1 − 2K
(
ζ ′

ζ

))
· dζ ′

ζ ′

+ 1
2π

‰
C1

φ1
(
ζ ′, ζ ′

)
· 2K

(
ζ ′

ζ

)
· dζ ′

ζ ′ + E,



6.3 The Calculus of Flows in Periodic Domains 245

(a) (b)

Fig. 6.15 The potential flow induced by a cascade of moving Joukowski aerofoils. The
direction of motion is indicated by the arrow. In figure (a) there is no background uniform
flow, whereas in figure (b) there is a background uniform flow.

where

K(ζ) = ζPζ(ζ)
P (ζ) ,

P (ζ) = (1 − ζ)
∞∏
j=1

(
1 − ρ2jζ

)(
1 − ρ2j

ζ

)
.

In figure 6.15 we plot the streamlines induced by a cascade of Joukowski aerofoils that
are moving in the vertical direction. Two cases are considered: with and without a
background flow. In contrast to previous examples, the streamfunction is no longer
constant along the aerofoils’ surfaces since the motion of the blades implies that the rigid
surface does not define a streamline. Note that the velocity is infinite at the trailing
edges since the conformal mapping has vanishing derivative there. We now address this
issue by applying the Kutta condition.
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6.3.4 The Kutta Condition

Thus far we have been careful to ensure that the circulation around each object vanishes.
However, this means that the flow is infinite in the z-plane wherever the objects have
sharp corners. Accordingly, in this section we regularise the flow at these sharp corners
by enforcing the Kutta condition.

We introduce the complex potential

WΓ(ζ) = −
M∑
k=0

ΓkGk(ζ, a∞+)

= − 1
2πi

M∑
k=0

Γk log
(

ω(ζ, a∞+)
|a∞+|ω(ζ, θk (1/a∞+))

)
, (6.23)

which represents the complex potential of a vortex placed at the pre-image of downstream
infinity, a∞+ . The circulation induced by WΓ on the circle Cj is Γj , and we choose the Γj
specifically so that the flow is regular at a particular corner. We may regularise the flow
at a maximum of M + 1 corners since we have M + 1 Green’s functions to manipulate.

We write the full complex potential as

W (ζ) = Wκ(ζ) +WU(ζ) +WB(ζ) +WΓ(ζ),

where the contributions are induced by point vortices, a background uniform flow, the
motion of the objects, and the circulations around the objects respectively. In order to
satisfy the Kutta condition at the J corners ζj, we enforce

dW
dζ (ζj) = 0, j = 1, · · · , J. (6.24)

We set Γj = 0 if we do not regularise the flow on the j-th object. Rearranging (6.24)
yields

1
2πi

ωζ(ζj, a∞+)
ω(ζj, a∞+) −ωζ(ζj, θk(1/a∞+))

ω(ζj, θk(1/a∞+))

Γk

= dWκ

dζ (ζj) + dWU

dζ (ζj) + dWB

dζ (ζj), j = 1, · · · , J.

It is straightforward to invert this linear system to obtain numerical values for the
circulations.
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In periodic configurations, the effect of applying the Kutta condition is to modify
the deflection angle obtained by the cascade, as illustrated in figure 6.16. The Kutta
condition is not enforced in figures 6.16a and 6.16c and, therefore, the circulation around
each object is zero. Consequently, the flow velocity is infinite at both the leading and
trailing edges of each slit. In the absence of vortices, neglecting the Kutta condition
implies that the outlet angle of the flow is identical to the inlet angle, such as in figure
6.16a. Applying the Kutta condition changes the flow angle at downstream infinity, and
accordingly changes the outlet angle of the flow as seen in figure 6.16b. We also illustrate
an example where there are point vortices in the flow in figures 6.16c and 6.16d. Applying
the Kutta condition results in a drastic change in the outlet angle in figure 6.16d, and the
effect of the point vortices on the global properties of the flow is substantially reduced.

We also plot the streamlines for a uniform flow past a cascade of Joukowski aerofoils
in figure 6.17. This problem is intractable with the methods of chapter 2, which were
restricted to thin aerofoils at small angles of attack. In contrast, the present method is,
in principle, not restricted to a particular aerofoil geometry, although the appropriate
conformal map must be determined. Moreover, we are now able to include point vortices
in the flow, and model the motion of the blades.

6.4 Conclusions

In this chapter, we have derived analytic solutions for the potential flow through a
cascade where there are multiple objects per period window. To facilitate this solution,
we derived two new canonical periodic conformal maps that each map a circular domain
to a periodic array of slits. These maps are expressed in terms of the transcendental
Schottky–Klein prime function and, accordingly, they are valid for period windows of
arbitrary connectivity. In the case where there is just a single object per period window,
we used these canonical mappings to derive a periodic analogue of the Joukowski mapping.
The canonical mappings were also used to construct the complex potential for a uniform
flow through a periodic array of objects. We also applied previous work on non-periodic
domains by Crowdy (2010) to our new periodic problems to construct flows with point
vortices and moving objects. Critically, all the solutions presented in this chapter are
valid for an arbitrary number of objects per period window.
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(a) (b)

(c) (d)

Fig. 6.16 Illustration of the Kutta condition applied to a cascade of slits. In figures (a)
and (c), there is no regularisation at the trailing edges, whereas in figures (b) and (d),
the Kutta condition is applied at each trailing edge. Point vortices are located at the
purple circles and the branch cut is illustrated by the dashed line.
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Fig. 6.17 Several examples of the flow past cascades of Joukowski-type aerofoils where
the Kutta condition is enforced.
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List of Symbols

Symbol Meaning

z Coordinate in physical domain

ζ Coordinate in canonical circular domain

f Conformal mapping relating z and ζ

χ Stagger angle

ω(·, ·) Schottky–Klein prime function

a∞± Pre-images of downstream and upstream infinity

T (· ; ·, ·) Circular arc map

R(· ; ·, ·) Radial slit map

H(· ; ·, ·) First canonical periodic slit map

V (· ; ·, ·) Second canonical periodic slit map

S(· ; ·, ·) Combined canonical periodic slit maps

Gj(·, ·) Modified hydrodynamic Green’s function

Cj Discs in the canonical circular domain

Pj Image of disc Cj in the physical domain

Dζ Canonical circular domain

Dz Physical domain

Wκ Velocity potential for point vortices

WU Velocity potential for uniform flow

WB Velocity potential for motion of objects

Γj Circulation around disc j

β Vortex location

α Angle of attack



Chapter 7

The Quasi-Periodic Compact
Green’s Function

7.1 Introduction

In this chapter we investigate sound generation by cascades with multiple aerofoils per
period window. This topic has received scant attention in the literature, possibly due to
the non-trivial topology associated with the geometry of the cascade. Nevertheless, the
modelling of interference effects between adjacent cascades is essential for the accurate
modelling of rotor-stator interaction noise. We now leverage the potential flows solutions
of chapter 6 to analyse the acoustics of cascades with multiple objects per period window.
Similarly to chapter 6, our solutions are, in principle, valid for cascades with an arbitrary
number of aerofoils per period window. The aerofoils themselves may also have arbitrary
geometric profiles.

The compact Green’s function (Howe, 2003) is a powerful tool for modelling the
production of sound. By assuming that the length scale of the scattering objects is small
in comparison to the acoustic wavelength, the Green’s function can be approximated
using the so-called Kirchhoff vectors. These quantities essentially represent a potential
flow through the system and are therefore amenable to methods of complex variable
theory derived in the previous chapter. In periodic domains, the acoustic potential can
be written in terms of the quasi-periodic Green’s function. In the compact regime, we are
able to derive an approximation for the quasi-periodic Green’s function that is written in
terms of quantities derived in chapter 6.

The structure of this chapter is as follows. In section 7.2 we present the quasi-
periodic Green’s function in the context of acoustics. In section 7.3 we derive a compact
approximation to the quasi-periodic Green’s function in the absence of background flow.
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∆

q(x)

q(x)eiσ

∼ l

Fig. 7.1 A cascade with multiple aerofoils per period window with quasi-periodic acoustic
sources. The length of the period is ∆ and each period contains a source, q. The
difference in phase between adjacent period windows is σ. The characteristic horizontal
length scale of the cascade is l.

In section 7.4 we generalise this approach to account for a low Mach number background
flow. Finally, in section 7.5 we summarise the chapter.

7.2 Mathematical Modelling

We consider an unbounded, periodic domain where each period window consists of an
arrangement of aerofoils and a source. The horizontal length scale of the arrangement is
l, and the spatial period is ∆, which is oriented in the vertical direction. The system
is illustrated in figure 7.1. We generally wish to solve the inhomogeneous Helmholtz
equation for the acoustic potential

κ2
0φ(x) + ∇2

xφ(x) = q(x),

where κ0 = ω/c0 and ω is the frequency of the fluctuating source q. We suppose further
that the sources in adjacent period windows possess a phase shift of σ, as illustrated in
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figure 7.1. Consequently, the acoustic potential must satisfy the quasi-periodicity relation

φ(x +m∆) = eimσφ(x), m ∈ Z, (7.1)

where ∆ = (0,∆).
We suppose that we can find a Green’s function, G, such that

κ2
0G(x,y) + ∇2

yG(x,y) = δ(x − y), (7.2)

where x is fixed and G is effectively a function of y. If G can be found, then the
divergence theorem determines the acoustic potential as

φ(x) =
˛
∂Dz

{
G(x,y)∂φ

∂n
(y) − φ(y)∂G

∂n
(x,y)

}
dy

+
¨
Dz

G(x,y)q(y)dAy, (7.3)

where the normal derivative is directed into the fluid. The contour ∂Dz represents the
boundary of every object in the fluid, as illustrated in figure 7.2a. Due to the quasi-
periodicity relation (7.1), we may reduce the integrals in Dζ to integrals on a single
period window D0, as illustrated in figure 7.2b. Consequently, (7.3) becomes

φ(x) =
∞∑

m=−∞
eimσ
˛
∂D0

{
G(x,y +m∆)∂φ

∂n
(y) − φ(y)∂G

∂n
(x,y +m∆)

}
dy

+
∞∑

m=−∞
eimσ
¨
D0

G(x,y +m∆)q(y)dAy.

We now interchange the orders of summation and integration and write

φ(x) =
˛
∂D0

{
Gq(x,y)∂φ

∂n
(y) − φ(y)∂G

q

∂n
(x,y)

}
dy

+
¨
D0

Gq(x,y)q(y)dAy

where Gq is the quasi-periodic Green’s function defined by

Gq(x,y) =
∞∑

m=−∞
eimσG(x,y +m∆).
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(a) The area Dz and contour ∂Dz. (b) The area D0 and contour ∂D0.

Fig. 7.2 An illustration of the reduction of the integrals to a single period window. The
areas Dz and D0 are indicated by the blue shading and the contours ∂Dz and ∂D0 are
indicated by the arrows.

Equivalently, Gq is the solution to

∇2
yG

q(x,y) + κ2
0G

q(x,y) =
∞∑

m=−∞
eimσδ(x − (y +m∆)). (7.4)

Therefore, Gq is the Green’s function for a periodic array of sources with a phase shift of
σ between each period window.

7.3 Compact Approximation without Background Flow

We now seek an approximation for Gq. Using the reciprocity property of acoustic Green’s
functions (Howe, 1998), we place the observer at y and the sources at x +m∆ for m ∈ Z.
We further suppose that Gq satisfies the no-flux condition

∂Gq

∂ny
(x,y) = 0, y ∈ ∂Dz, (7.5)

in addition to the forced Helmholtz equation (7.4). Our approximation must be valid
in the compact limit (κ0l ≪ 1) when the sources are in the far field (|x| → ∞) and
the observer is close to the cascade (|y| ∼ l). We write the full quasi-periodic compact
Green’s function as

Gq(x,y) ∼ Gq
0(x,y) +Gq

1(x,y),
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where Gq
0 is the free space quasi-periodic Green’s function for an array of cylindrically

spreading waves and Gq
1 is a first order correction to be chosen to satisfy the boundary

conditions on each aerofoil in the cascade. The free space Green’s function for a source
at x and observer at y is given by

Gq
0(x,y) = − i

4H
(1)
0 (κ0 |x − y|) ,

where H(1)
0 is the zero-order Hankel function of the first kind. The quasi-periodic Green’s

function is therefore obtained by summing the source distributions from each period
window, with a phase shift of σ. Consequently, the free space quasi-periodic Green’s
function is given by

Gq
0(x,y) = − i

4

∞∑
m=−∞

eiσmH
(1)
0 (κ0 |x +m∆ − y|) . (7.6)

Equation 7.6 is referred to as the spatial representation of the quasi-periodic Green’s
function. However, the series in (7.6) converges extremely slowly, and the form generally
obscures the behaviour of Gq

0 as |X| → ∞. There are many strategies available to
speed-up the numerical computation of G0, as outlined by Linton (1998), one of which
we will apply later. We now expand Gq

0 in our desired asymptotic regime. We first note
that (Olver et al., 2010, Eq. 10.17.5)

H
(1)
0 (z) ∼

√
2
πz

exp
[
i
(
z − π

4

)]
, (7.7)

as |z| → ∞. By combining (7.7) with the relations

|x +m∆ − y| ∼ |x +m∆| − (x +m∆) · y

|x +m∆|
,

1
|x +m∆ − y|

∼ 1
|x +m∆|

,

we may approximate the free space quasi-periodic Green’s function as

Gq
0(x,y) ∼ −i

2
√

2π

∞∑
m=−∞

eiσm√
|x +m∆|

exp
[
iκ0

(
|x +m∆| − (x +m∆) · y

|x +m∆|

)
− iπ4

]
.

(7.8)

The above series converges, as proved by Bruno and Reitich (1992).
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Since |y| ∼ l and κ0l ≪ 1, we have |κ0y| ≪ 1. Consequently, we may write

exp
[
−iκ0

(x +m∆) · y

|x +m∆|

]
∼ 1 − iκ0

(x +m∆) · y

|x +m∆|
,

so that (7.8) becomes

Gq
0(y,x) ∼ −eiπ/4

2
√

2π

∞∑
m=−∞

eiσm exp [iκ0 |x +m∆|]√
|x +m∆|

(
1 − iκ0

(x +m∆) · y

|x +m∆|

)
.

We now choose Gq
1 so that the full quasi-periodic Green’s function, Gq, satisfies the

no-flux boundary condition (7.5). The appropriate choice of Gq
1 is

Gq
1(y,x) ∼ −eiπ/4

2
√

2π

∞∑
m=−∞

eiσm exp [iκ0 |x +m∆|]√
|x +m∆|

iκ0
(x +m∆) · ϕ∗(y)

|x +m∆|
.

where ϕ satisfies

∇2
yϕ

∗(y) = 0, y ∈ Dz, (7.9.a)

∂ϕ∗

∂n
(y) = ny, y ∈ ∂Dz, (7.9.b)

|ϕ∗(y)| → 0 |y| → ∞, y ∦ ∆. (7.9.c)

The first condition (7.9.a) ensures that Gq
1 satisfies the homogeneous form of the

Helmholtz equation (7.2) up to O((κ0l)2) so that the full Helmholtz equation (7.2) is
satisfied by the full Green’s function, Gq. The second condition (7.9.b) ensures that the
full quasi-periodic compact Green’s function satisfies the no flux condition (7.5). The
final condition (7.9.c) states that the distortion of the flow produced by the cascade
should be small when the observer is far from the cascade. Additionally, the causality
principle implies that each ϕi must have vanishing circulation around every aerofoil
(Howe, 1998).

Consequently, the full compact quasi-periodic Green’s function may be expressed as

Gq(y,x) ∼ −eiπ/4

2
√

2π

∞∑
m=−∞

eiσm exp [iκ0 |x +m∆|]√
|x +m∆|

(
1 − iκ0

(x +m∆) · Y

|x +m∆|

)
, (7.10)
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where Y are the Kirchhoff vectors (Howe, 2003) defined by

Y (y) ≡ y − ϕ∗(y).

The Kirchhoff vectors satisfy

∇2
yY (y) = 0, y ∈ Dz, (7.11.a)

∂Y

∂n
(y) = 0, y ∈ ∂Dz, (7.11.b)

Y (y) → y, |y| → ∞, y ∦ ∆. (7.11.c)

Condition (7.11.b) follows from

∂Y

∂n
= ∂y

∂n
− n = nj

∂y

∂yj
− n = 0.

The solutions of (7.11.a—7.11.c) have a hydrodynamic interpretation: Yj is the velocity
potential for uniform flow in the j-direction satisfying a no-flux condition. In chapter 6
we derived analytic forms for the complex potential satisfying these requirements. Using
these analytic forms, we may write

Y1(y) = Re
[
A

(
log

(
ω(ζ(y), a∞−)
ω(ζ(y), a∞+)

)
+ log

(
ω(ζ(y), 1/a∞−)
ω(ζ(y), 1/a∞+)

))]
, (7.12.a)

Y2(y) = Re
[
Ai
(

− log
(
ω(ζ(y), a∞−)
ω(ζ(y), a∞+)

)
+ log

(
ω(ζ(y), 1/a∞−)
ω(ζ(y), 1/a∞+)

))]
, (7.12.b)

where ζ is the conformal mapping from the physical domain to a canonical circular
domain and ω(·, ·) is the Schottky–Klein prime function (see section 1.2.3.2). All other
undefined quantities are defined in chapter 6. An example of the Kirchhoff vectors are
plotted in figure 7.3 for a cascade with three aerofoils per period window. The Kirchhoff
vector Y1 is the velocity potential for flow in the horizontal direction whereas Y2 is the
velocity potential for flow in the vertical direction. Note that the contours intersect each
aerofoil at a right angle, thus indicating that the no-flux condition (7.11.b) is satisfied.
Moreover, observing the upstream and downstream behaviour in figure 7.3 indicates that
condition (7.11.c) is satisfied. We also note that, by formulating the solution in terms
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(a) Y1 (b) Y2

Fig. 7.3 The contours of the Kirchhoff vectors for a cascade with three aerofoils per
period window.

of the prime function, the Kirchhoff vectors in (7.12.a) and (7.12.b) are valid for any
number of objects per period window.

By reversing the asymptotic approximations made in this section, we may also write
the compact, quasi-periodic Green’s function (7.10) in the symmetric form

Gq(x,y) ∼ −i
4

∞∑
m=−∞

eiσmH
(1)
0 (κ0 |X − Y +m∆|), (7.13)

where

X(x) ≡ x − ϕ∗(x).

Alternatively, we may write (7.13) as

Gq(x,y) ∼ Gq
0(X,Y ).

In other words, the compact approximation to the quasi-periodic Green’s function is
simply the original free space quasi-periodic Green’s function where the arguments
are replaced by the Kirchhoff vectors. This final expression is particularly significant
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since it means that all the convergence properties of the Gq
0 may be translated to our

compact approximation. For example, Gq
0 may be equivalently expressed in the spectral

representation (Linton, 1998)

Gq
0(x,y) = − 1

2∆

∞∑
m=−∞

e−ζm|x1−y1|/∆ eiσm|x2−y2|/∆

ζm
, (7.14)

where

σm = σ + 2πm, ζm =
√
σm − ∆2κ2

0.

We assume that the frequency is not at a Wood anomaly (when one or more scattered
waves propagate in the (0, 1) direction, (Wood, 1902)), so ζm ̸= 0. The advantage of the
spectral representation (7.14) is that the behaviour as |x| → ∞ is clear. Moreover, the
series in (7.14) converges exponentially, so is more appropriate for numerical computations.
However, it is not immediately obvious that (7.14) possesses the correct distribution of
monopoles, but this can be proved rigorously (Bruno and Reitich, 1992).

Applying the spectral representation (7.14) to our compact approximation allows us
to write

Gq(x,y) ∼ − 1
2∆

∞∑
m=−∞

e−ζm|X1−Y1|/∆ eiσm|X2−Y2|/∆

ζm
.

7.4 Compact Approximation with Background Flow

We now extend the quasi-periodic compact Green’s function to account for a background
low Mach number, irrotational flow. If we assume that the Mach number is sufficiently
low such that (M2 ≪ 1), the acoustic potential, φ now satisfies the inhomogeneous
convected wave equation:

1
c2

0

D2
0φ

D0t2
(x) − ∇2

xφ(x) = −q(x), (7.15)

where

D0

D0t
= ∂

∂t
+ U0 · ∇x

is the material derivative with respect to the background flow U0 = (U1, U2).
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In this case, the frequency domain Green’s function satisfies the equation (Howe,
1998)

(
∇2
y + κ2

0 − 2iκ0M0 · ∇y

)
G = δ(x − y), (7.16)

where M0 = U0/c0. Since the flow is at low Mach number it is effectively incompressible
and we may write the components of the mean flow as

Ui = U∞ · ∇Φi,

where

U∞ = U∞ (cos(α), sin(α))

is the background velocity far upstream and Φi corresponds to the velocity potential
for potential flow through the cascade in the yi direction far upstream. Note that we
have not set the downstream angle of the background flow as this will in general be
determined by the steady Kutta condition.

We follow Taylor (1978) and use the substitution

G(x,y) = G̃(x,y) exp [iκ0M0 · Φ(y)] ,

to transform the convected Helmholtz equation (7.16) to

∇2
yG̃(x,y) + κ2

0G̃(x,y) = δ (x − y) exp [−iκ0M0 · Φ(x)] ,

Consequently, we may follow an analogous procedure to section 7.3 to obtain an expression
for the symmetric quasi-periodic compact Green’s function in background flow as

Gq(x,y) = − 1
2∆ exp [−iκ0M0 · (Φ(x) − Φ(y))]

∞∑
m=−∞

e−ζm|X1−Y1|/∆ eiσm|X2−Y2|/∆

ζm
.

The above expression shows that, in the compact limit, the effect of background flow is to
change the phase of the Green’s function. If the cascade is loaded, it will produce lift and
therefore the inlet angle is different to the outlet angle. Consequently, Φ will be different
in the upstream and downstream regions, and therefore the background flow will induce
a different phase shift in the upstream and downstream regions. This phenomenon is not
observed for isolated bodies since Φ must be the same in the upstream and downstream
regions.
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7.5 Conclusions

In this chapter we have derived a compact approximation to the quasi-periodic Green’s
function. The approximation is written in terms of the Kirchhoff vectors, which represent
the velocity potential for a uniform flow through the cascade. Moreover, we have
presented analytic forms for the Kirchhoff vectors in terms of the Schottky–Klein prime
function. Accordingly, the solutions in this chapter are valid for any number of aerofoils
per period window. Importantly, we have shown that the compact approximation to the
quasi-periodic Green’s function may be written as the free space quasi-periodic Green’s
function where the arguments are replaced by the Kirchhoff vectors. Consequently, rapid
numerical algorithms for the free space quasi-periodic Green’s function (such as Bruno
and Fernandez-Lado (2017)) may be leveraged for our compact approximation.

However, the method is not without its limitations. Since we assumed that the
cascade is acoustically compact, the range of admissible frequencies is quite narrow, and
will not be appropriate for all cascade interactions. As with chapter 6, the appropriate
conformal map must be determined in order to calculate the Kirchhoff vectors, and
further work is required for the rapid and reliable computation of these mappings.
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List of Symbols

Symbol Meaning

φ Acoustic potential function

q Source terms

ω Frequency of source

l Characteristic horizontal length scale of the cascade

∆ Spatial length of period

κ0 ω/c0 (reduced frequency)

σ Phase shift between adjacent period windows

G Green’s function

Gq Quasi-periodic Green’s function

G0 Free space Green’s function

Gq
0 Free space quasi-periodic Green’s function

G̃ Transformed Green’s function for convected wave equation

Y Kirchhoff vector

ω(·, ·) Schottky-Klein prime function

U0 Background flow vector

U∞ Upstream background flow vector

α Angle of attack



Chapter 8

Conclusion

During this thesis we have derived analytic solutions for flows through cascades. We have
devoted efforts to three scenarios of practical interest, namely cascades with a) aerofoils
with realistic geometry, b) porous aerofoils, and c) multiple aerofoils per period window.
Each scenario has been investigated from both aerodynamic (steady) and aeroacoustic
(unsteady) perspectives to provide a holistic analysis. We have employed a range of tools
to solve these problems, with a particular emphasis on complex variable methods. The
main tools have been Riemann–Hilbert problems, the Wiener–Hopf method and multiply
connected conformal mappings and we also made use of the compact Green’s function.

The solutions presented in this thesis offer physical insight into the roles played by
aerofoil shape, blade spacing and the aerofoil surface boundary condition. For example,
we derived an explicit asymptotic relation that relates the angle of attack, aerofoil
camber and blade spacing to the deflection angle for a cascade in a potential flow in
chapter 2. In chapter 3 we showed that aerofoil geometry has a significant effect on
gust-cascade interaction noise, and that angle of attack and camber control the upstream
and downstream cut-on frequencies respectively. In chapter 4 we showed that that the
adverse aerodynamic losses caused by porosity can be mitigated by reducing the blade
spacing, and in chapter 5 we showed that gust-cascade interaction noise can be greatly
reduced by introducing aerofoil porosity and therefore permitting flow seepage through
the blades. The analytic nature of the solutions means that they are are extremely rapid
to compute and therefore could provide important design tools for designers seeking to
optimise the aerodynamic and aeroacoustic performance of cascades.

In the remainder of this conclusion we suggest directions of future research for the
problems encountered in each chapter.
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8.1 Future Work by Chapter

Chapter 2

In this chapter we extended thin aerofoil theory to derive an asymptotic solution for
the potential flow past a cascade of thin aerofoils. This is only the first step in a full
generalisation of thin aerofoil theory to cascades, and there is a plethora of further work
to be done in generalising other aspects of thin aerofoil theory. For example, the inclusion
of small amplitude unsteady disturbances is a straightforward extension of the analysis
presented in chapter 2. Analytic forms of aerodynamic transfer functions could be derived,
such as the Theodorsen, Sears, Küssner and Wagner functions (Bisplinghoff et al., 1996).
Another natural extension of this work is to take into account three-dimensional effects.
One way to achieve this is to consider cascades with wings of finite span, where the wing
circulation satisfies a periodic singular integro-differential equation (von Kármán and
Burgers, 1936).

Chapter 3

In this chapter we derived an analytic solution for gust-cascade interaction noise whilst
accounting for aerofoil geometry and angle of attack. The model is restricted to aerofoils
with small thickness and mean loading of size O(ϵ) and is valid for non-dimensional
frequencies such that kϵ ≪ 1. This range includes the important first few blade passing
frequencies for turbulence-OGV interaction noise within a typical high bypass ratio aero-
engine, which is a dominant source of broadband noise. Nevertheless, these restrictions
should be relaxed in future research. Work is currently underway in applying the model
to predict the acoustic feedback from an aero-engine turbine during unsteady combustion
(Guzman Inigo et al., 2019, 2018). The model could also be integrated into a broadband
fan noise prediction model Posson et al. (2010a) to better account for three-dimensional
effects in a realistic axial fan.

Chapter 4

In this chapter we extended the analysis of chapter 2 to consider cascades of aerofoils
with porosity gradients. The porosity was modelled using a Darcy-type condition, where
the flow through the wing is assumed to be proportional to the pressure jump across
the wing. As indicated in chapter 4, the Darcy formulation is only valid when the
pore-scale Reynolds number is small. Accordingly, the analysis is only valid for small
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porosities. Future work will be devoted to applying the Ergun model (Ergun, 1952)
which is applicable to high Reynolds number flows.

The analysis in this chapter is restricted to cascades with small stagger, since the SIE
for general stagger does not have an analytic solution. However, recent work (Baddoo
et al., 2019a,b) has developed a numerical scheme to solve SIEs that could be leveraged
for a cascade of porous aerofoils. The method is based on expanding the solution function
γ into a series of weighted Jacobi polynomials, and determining the coefficients of the
series using a spectral collocation method. The parameters of the Jacobi polynomials are
determined by asymptotic analysis at the endpoints of the aerofoils. The convergence of
the method is spectral, i.e. exponentially fast, and enables a rapid solution without the
evaluation of singular integrals. This approach is analogous to the series expansion in
Chebyshev polynomials conducted in chapter 2, where the Chebyshev polynomials are
replaced with the appropriate Jacobi polynomials.

Chapter 5

In this chapter we investigated the scattering of cascades with modified boundary
conditions. We devoted efforts to analysing a Darcy-type condition. However, there
is little theoretical support for this model. Moreover, as mentioned above, the Darcy
flow model assumes a Stokes flow through the wing, which will generally not be valid in
aeroacoustic applications. Nevertheless, this chapter is a valuable first step towards more
sophisticated analyses of the aeroacoustics of cascades of porous aerofoils. Similarly to
chapter 3, future work should focus on integrating this analysis into a broadband fan
noise prediction model, such as that in Posson et al. (2010a). Future work will focus on
more detailed analysis of elastic plates (Ayton, 2016; Cavalieri et al., 2016) in order to
explore the important effects of flutter and resonance.

Chapter 6

In this chapter we presented analytic solutions to the potential flow through periodic
domains where there is an arbitrary number of objects in each period window. However,
the solutions are only useful when the appropriate conformal map is available. These
conformal mappings are not always trivial to construct and, accordingly, further work
is required in solving the “parameter problem” (see Driscoll and Trefethen (2002)) for
the periodic Schwarz–Christoffel mapping (Baddoo and Crowdy, 2019). An approach
analogous to that employed in Driscoll (2005) is a promising path forwards in this regard.

The work in this chapter could certainly be applied to discrete vortex models for
turbomachinery. In particular, a periodic extension of the analysis in Michelin and
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Llewellyn Smith (2009) would provide a powerful tool for analysing turbomachinery
aerodynamics. In that study, the unsteady motion of a rigid body in inviscid flow
was analysed with results comparing well to numerical and experimental studies. The
discrete vortex shedding was analysed using the approach of (Brown and Michael, 1954),
which enables the Kutta condition to be satisfied at each sharp corner. This method is
computationally inexpensive, and could be applied using the techniques of the present
chapter. The method could also be adapted to consider more sophisticated hybrid models
consisting of point vortices and vortex sheets, such as in Darakananda and Eldredge
(2019). Analytic expressions for the trajectories of point vortices could also be derived
by adapting the work of Crowdy and Marshall (2005).

Chapter 7

In this chapter we presented a compact approximation to the quasi-periodic Green’s
function. Further applications of the new Green’s function are multifarious, and several
possible applications are detailed in Howe (1998) such as vibrating cascades, vortex sound,
and acoustic scattering. Further work is also required to satisfy the Kutta condition in
unsteady flow by vortex shedding at the trailing edges.
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