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SUMMARY

In shallow water flow and transport modeling, the monotone upstream-centered scheme for conservation
laws (MUSCL) is widely used to extend the original Godunov scheme to second-order accuracy. The most
important step in MUSCL-type schemes is the MUSCL reconstruction, which calculate extrapolates the
values of independent variables from the cell center to the edge. The monotonicity of the scheme is preserved
with the help of slope limiters that prevent the occurrence of new extrema during the reconstruction. On
structured grids, the calculation of the slope is straightforward and usually based on a two-point stencil that
uses the cell centers of the neighbor cell and the so-called far-neighbor cell of the edge under consideration.
On unstructured grids, the correct choice for the upwind slope becomes non-trivial. In this work, two novel
TVD schemes are developed based on different techniques for calculating the upwind slope and downwind
slope. An additional treatment that stabilizes the scheme is discussed. The proposed techniques are compared
to two existing MUSCL reconstruction techniques and a detailed discussion of the results is given. It is
shown that the proposed MUSCL reconstruction schemes obtain more accurate results with less numerical
diffusion and higher efficiency. Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: unstructured mesh; total variation diminishing; slope limiters; finite-volume method;
MUSCL scheme; shallow water

1. INTRODUCTION

The monotone upstream-centered scheme for conservation laws (MUSCL) [1] is a well-known
approach to achieve higher order accuracy by data reconstruction. An overview of MUSCL-type
high-order methods can be found in, e.g. [2, Ch. 13.4, pp. 426–440]. MUSCL-type schemes are
essentially an extension of the original Godunov scheme [3]: (1) define the Riemann problems
at cell interfaces using cell averages, (2) solve the Riemann problems to get the numerical flux,
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(3) update the cell averages by summing up flux and source terms [4]. In contrast, MUSCL-type
schemes replace cell averages by piecewise linear functions. Thus, step 1 of the Godunov scheme
is replaced by: (1) extrapolate the cell averages (linearly) to cell interfaces in defining the Riemann
problems (MUSCL reconstruction step). In order to avoid spurious oscillations, the slope of the
extrapolation is limited by so-called slope limiter functions [5]. Many slope limiter functions have
been derived in the literature and an overview can be found in [6] and in classical textbooks such
as [2, 7].

For high-order schemes to produce physical results, they have to be monotone, otherwise spurious
oscillations may occur. Monotonicity of a numerical scheme can be deduced from a property called
total variation that is defined as the summation of differences between every two neighboring states
over the whole domain at a fixed time. If the total variation does not increase in time, the scheme
is said to be total variation diminishing (TVD) and the monotonicity of the scheme is ensured [2].
Slope limiters limit the slope of the MUSCL reconstruction such that it is ensured that no new
extrema are created at the cell interfaces. As will be discussed in the following, the limiter function
depends on the slope of the upwind and downwind direction of the cell centers. The calculation
of these slopes has significant influence on the accuracy of the scheme. Early TVD schemes were
derived on structured grids and when applied directly to unstructured meshes give unsatisfactory
results. The reason is that on structured grids, the slope calculation on the left and right side is very
straight-forward as the direct neighbor cell and the so-called far-neighbor cell (the neighbor of the
direct neighbor cell) can be used directly. In addition, the ratio of these slopes is a good indicator for
stability because all points that contribute to the ratio are equidistant. In contrast, on unstructured
meshes, the calculation of the points that contribute to the calculation of the slopes is not straight-
forward. Hence, the calculation of the slopes itself poses a challenge. TVD MUSCL reconstruction
techniques for unstructured meshes can be divided into monoslope and multislope methods [8]. The
monoslope method that is initially presented in [9] calculates a single vector of slope for the entire
cell based on the three direct neighbors of the cell. In contrast, the multislope method calculates a
slope for each edge based on a three-point stencil. The challenge of applying the multislope method
to unstructured grids is that the determination of the points of the stencil is non-trivial. In literature,
several multislope methods for unstructured grids can be found. For example, [10] calculates a local
slope based on a two-point stencil without considering the far-neighbor cell. In [11], a three-point
stencil is used but instead of the far-neighbor cell, a “virtual” node is included. Motivated by these
approaches, in [6] a multislope method that calculates individual weights for slopes depending on
the distance of the cell centers to the cell interface is derived. In [12] slopes are calculated based
on points that are located on a line normal to the cell interface. Based on the multislope method
by Buffard and Clain [8], Hou et al. [13] proposed a more straightforward vector based multislope
method, which obtains the robustness and accuracy together.

In this work, two novel TVD MUSCL reconstruction techniques are investigated based on an
additional condition for the TVD scheme, and a treatment for limiting the velocity at wet and
dry interfaces is proposed for avoiding the instability caused by MUSCL schemes. The proposed
schemes are compared with the multislope methods by [8] and [13]. The schemes are compared in
five computational test cases: (1) Thacker’s planar rotation benchmark, (2) a steady-state oblique
jump, (3) a radial dam-break, (4) a two-dimensional Riemann problem, and (5) a Tsunami wave
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around a canonical island. In these benchmarks, the accuracy of the TVD method as well as their
computational cost is compared.

2. GOVERNING EQUATIONS AND NUMERICAL MODEL

2.1. Shallow water equations

The two-dimensional shallow water equations (SWEs) can be written in vector form as

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= s (1)

with vectors defined as

q =

 hqx
qy

 , f =

 qx

uqx + gh2/2

uqy

 , g =

 qy

vqx

vqy + gh2/2

 , (2)

s =

 0

−gh ∂z
∂x − cfu

√
u2 + v2

−gh ∂z
∂y − cfv

√
u2 + v2

 , (3)

where t is time, x and y are the Cartesian coordinates, q represents the variable vector consisting of
h, qx and qy that denote water depth, unit-width discharges in x- and y- direction, respectively. u,
v are defined as depth-averaged velocities in x- and y-direction, respectively; f and g are the flux
vectors in x- and y-direction, respectively; s is the source term that includes bed slope and friction
contributions, z is the bed elevation and cf is the bed roughness coefficient. Here, viscous, diffusive
and turbulent flux terms are neglected.

2.2. Finite volume discretization of SWEs on unstructured grids

The SWEs in Eq. (1) can be written in the integral form as∫
Ω

∂q

∂t
dΩ +

∫
Ω

(
∂f

∂x
+
∂g

∂y

)
dΩ =

∫
Ω

sdΩ (4)

where Ω is an arbitrary control volume (CV). Applying the Green-Gauß theorem and replacing the
boundary integral with a sum over all edges, Eq. (4) becomes∫

Ω

∂q

∂t
dΩ +

m∑
k=1

F · nklk =

∫
Ω

sdΩ (5)

wherein m is the number of edges, and n = (nx, ny)T , is the unit normal vector pointing in the
outward normal direction of the boundary edge, l is the length of the edge, F · n is the flux vector
normal to the boundary and can be written as

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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F · n = (fnx + gny) =

 qxnx + qyny

(uqx + gh2/2)nx + vqyny

uqxnx + (vqy + gh2/2)ny

 . (6)

The value of q in cell i is updated using the two-stage explicit Runge-Kutta scheme [14–16],
where the value at the next time level in cell i, qn+1

i , is updated by

qn+1
i =

1

2
{qn

i + κ [κ (qn
i )]} (7)

with

κ(qn
i ) = qn

i +
∆tn

Ω

[∫
Ω

sn+1dΩ−
m∑

k=1

F(qn
i )k · nklk

]
, (8)

where sn+1 is friction source term and discretized in a splitting point implicit way [17], the slope
source term is calculated based on the slope flux calculation method from [18], which is added
into flux term F(qn

i ), κ is a function to represent the updating process to a new time level in the
considered cell. ∆tn is the time step at the nth time level. For this work, the Courant-Friedrichs-
Lewy condition is used here for maintaining the stability,

∆t = CFL min

(
R1√

u2
1 + v2

1 +
√
gh1

, ...,
Rn√

u2
n + v2

n +
√
ghn

)
(9)

where Rn is the minimum distance from the cell center to the edge, CFL is the Courant-Friedrichs-
Lewy number. For explicit time marching algorithms CFL ∈ (0, 1]. In this work, CFL = 0.5 is
adopted.

2.3. MUSCL reconstruction

In order to obtain a second order accurate numerical scheme, Godunov’s theorem [3] can be
circumvented by reconstructing the cell-averaged values linearly using the MUSCL reconstruction
[1]. The MUSCL reconstruction is applied successfully for many physical problems, e.g. [2,16,19–
23]. The reconstruction from cell center i to the cell interface (i, i+ 1), hereinafter also denoted
with the subscript i+ 1/2, is calculated as

qi+1/2 = qi + ∆xi,i+1/2ψ(r)
qi+1 − qi

∆xi,i+1/2 + ∆xi+1/2,i+1
(10)

as shown in Fig. 1, ∆xi,i+1/2 and ∆xi+1/2,i+1 are the distances from the cell center i to the edge
and the cell center i+ 1 to the edge, respectively, ψ is the limiting coefficient of slope, and r is the
slope ratio, which will be discussed in the following section.

The MUSCL reconstruction gives values at the left and right cell interface that can be used to
construct a Riemann problem. The solution of the Riemann problem then yields the numerical flux
in Eq. (6) [2]. In this work, a Harten, Lax, and van Leer Riemann solver with the contact wave
restored (HLLC) [24] is used. The positivity preserving hydrostatic reconstruction by [25] is used

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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to maintain non-negative water depth and correct reconstruction of the Riemann states, and the C-
property preserving divergence form of the bed slope source term proposed by Hou et al. [18] is
used; the source term treatment does not influence the well-balanced property of any of the MUSCL
schemes.

3. MULTISLOPE MUSCL RECONSTRUCTION METHODS

In multislope MUSCL reconstruction methods, the slope for the MUSCL reconstruction in Eq. (10)
is calculated at each edge individually.

In the original multislope scheme (derived in [26] for uniform grids), the edge value is calculated
with a diffusive first order upwind value and an anti-diffusive term as

qCD = qC +
1

2
ψ(r)(qD − qC). (11)

Here, r is the ratio of consecutive slopes [27], that can be calculated with a three-point-stencil that
consists of two adjacent cellsC andD, and the far-neighbor cell U located in the upstream direction.
The ratio r becomes:

r =
5qup
5qdown

(12)

It is noted that due to the uniform grid assumption, the ratio ∆xi,i+1/2

∆xi,i+1/2+∆xi+1/2,i+1
in Eq. (10) is

simplified to 1
2 in Eq. (11).

In literature, two-dimensional (2D) MUSCL schemes on unstructured grids are mainly separated
into one-dimensional (1D) gradient methods, e.g. [11], [10], [6], [12], 2D nodal evaluating methods,
e.g. [28], [29], and vector manipulation methods, e.g. [13], [8]. In this paper, 2D nodal evaluating
methods and vector manipulation methods are compared with regard to efficiency, accuracy and
ease of implementation.

3.1. 2D nodal evaluation methods

A straight-forward approach to calculate the MUSCL slope on unstructured grids is to directly
apply the classical TVD methods derived for 1D structured grids. Then, the upstream node U of
the stencil can be calculated by extrapolating along a certain distance in the upstream direction.
Darwish and Moukalled [10] note that the difficulty of implementing MUSCL reconstructions on
unstructured grids is determining U . Based on prior work by Bruner and Walters [30], Darwish and
Moukalled [10] proposed a MUSCL reconstruction method (Darwish’s scheme) where r is defined
as

r =
2(5q)C ·

−→
d C,D

qD − qC
− 1. (13)

Here,
−→
d C,D is the distance vector from cell center of C to cell center of D. (5q)C is the cell value

gradient of cell C. In contrast to the calculation of r on uniform grids given in Eq. (12), Darwish and
Moukalled [10] account for non-uniform distance between the cell centers. Instead of determining

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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an additional point U , the value at node U is interpolated based on the gradient of cell C, as shown
in Fig. 2 (left). This is in fact a very local calculation of r. If the gradient in cell C does not represent
the overall behavior of the variable, the calculated r differs significantly from a three-point-stencil.

Li and Liao [11] define the stencil for calculating r using the cell centers of two adjacent cells
C and D, and construct a virtual node U which is located in the upstream direction on the line
connecting C and D, such that all nodes are equidistant, cf. Fig. 2 (left). Ur is the cell center where
node U is located in. The value at U is interpolated based on the gradient of the cell containing U
((5q)Ur

):

qU = qUr
+
−→
d Ur,U · (5q)Ur

(14)

and Eq. (12) becomes:

r =
qC − (qUr

+−−−→rUr,U · (5q)Ur
)

qD − qC
(15)

The method by Li and Liao [11] contains more upstream information and is not as local as
Darwish’s scheme.

All of these TVD schemes neglect the interface position and the distance of the cell centers to
the interface. Hou et al. [6] propose a reconstruction (Hou’s 1st scheme) that includes the interface
position in the interpolation. It can be written as

qCD = qC +
dCf

dCf + dDf
ψ(rf )(qD − qC), (16)

r =
(qD − qC)/dCD

(qC − qU )/dUC
. (17)

Here, f denotes the interface, dUC , dCD, dCf , dDf are the distances from node U to C, C to D, C
to interface and D to interface, respectively, cf. Fig. 2 (left).

Hou et al. [12] note that in most reconstruction techniques, the value at node U is interpolated
from the cell center using the gradient of the variable in the cell. Thus, the cell gradient has to be
calculated firstly. It is then argued that in advection dominated flows, the flux can be splitted in
a component normal to the interface and a component tangential to the interface. The tangential
component is transported by the normal component as a passive scalar. Therefore, instead of
connecting the cell centers of the adjacent cell and locate the upstream node U on this line, Hou
et al. [12] suggest to draw a line that goes normal to the interface, through the center of the interface
and locate all three nodes of the stencil on this line, cf. Fig. 2 (right). C, D and U are projections of
the cell centers Cr, Dr and Ur, respectively. Ur is determined as the nearest cell center around the
vertex P1 of cell C to the line. The values at the points C, D and U are not interpolated but shifted
directly from the cell centers, i.e. the value at node U is equal to the value at node Ur. Then, Eqs.
(16) and (17) are used to reconstruct the values at interface.

3.2. Vector manipulation methods

Buffard and Clain [8] developed an approach to construct the upwind and downwind slope of
edges in the considered cells by manipulating the geometric directional unit vector. Based on this

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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approach, Hou et al. [13] developed a more straightforward scheme for the calculation of the upwind
and downwind slopes.

As shown in Fig. 3, dimensional unit vectors are calculated as

−→rk =

−−→
iMk

|
−−→
iMk|

(18)

−→
tk =

−→
ijk

|−→ijk|
. (19)

M is the center of the edge, −→rk and −→tk are the unit directional vectors from considered cell center to
the edge center and neighbor cell center respectively. It also can easily be shown that the opposite
direction of −→rk will pass by the node coordinate which belongs to the considered cell but not the
vertex of the edge.

The slope along −→tk can be calculated as

5qij =
qjk − qi
|ijk|

. (20)

By following the approach of Buffard and Clain [8], the slopes along the line connecting the cell
center with the edge center in the upwind and downwind direction can be thought as the slopes from
the far node Nm, with m = 1, 2, 3, to the cell center i and from the cell center i to the considered
edge center M , respectively, i.e the slopes along −−→rk and −→rk in Fig. 3, respectively.

In the scheme by Hou et al. [13], the vectors −→rk and −−→rk are obtained by solving a set of linear
equations, that can be obtained by geometric considerations as

−→r1 = α1
−→
t1 + α2

−→
t3 (21)

−−→r1 = β1
−→
t2 + β2

−→
t3 . (22)

Here, α1,2 and β1,2 are coefficients for linear construction and can be calculated from Eqs. 21 and
22. The slopes along−→tk are obtained by Eq. 20. The gradients along−→tk and−→rk are independent from
each other and (grad · −→t )i,j = 5qi,j , so that slopes at the upwind and downwind direction can be
calculated as

5qiM = α1 5 qi,j1 + α2 5 qi,j2 (23)

5qN1,i = −(β1 5 qi,j2 + β2 5 qi,j3). (24)

Values at the cell edge are defined as qiM and qoM , where the superscripts i and o denote that the
variable is defined at the inside or at the outside of the cell under consideration, respectively. It is
noted, that the variables at the outside of the cell under consideration equal the inside variables of
the neighbor cell. qiM can be calculated as

qiM = qi + |iMk|ψ(5qiMk
,5qNji) (25)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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where k is the local index of the edge, and j is the local index of the node along the opposite
direction of the considered edge. ψ is the limiter function as defined in the previous section, with
the difference being that the parameters here are using the upwind and downwind slopes instead of
the slope ratio r.

3.3. Methods of improving the TVD property

One aspect that to the authors’ knowledge is not discussed in the literature is a special case of
MUSCL reconstruction that violates monotonicity without creating new extrema. Consider the case
illustrated in Fig. 4. If r(C,D) > 1.0 and r(D,C) > 1.0, where r(C,D) is the slope ratio on the left
side of the edge and r(D,C) is the slope ratio on the right side of the edge, the reconstructed values
give qeL > qeR even though qC < qD. The classical TVD limiter does not prevent this case because
no new extremum is created. However, the numerical flux based on qeL and qeR in this case is
physically not feasible.

In this work, it is ensured that the following condition is satisfied, so that the case discussed above
is always prevented:

(qi+1 − qi)(qi+1,i − qi,i+1) ≥ 0.0 (26)

This condition preserves the monotonicity for both cells and edges. The derivation of Eq. (26) is
briefly presented in the following.

The TVD condition for the one-dimensional case is given in [5] as:

qn+1
i = qni + C+,(i,i+1)∆q

n
i,i+1 − C−,(i−1,i)∆q

n
i−1,i (27)

Here, C is a variable-dependent coefficient, subscript ‘+’ and ‘−’ mean the flux flow into and out
of cell i respectively, ∆qni,i+1 = qni+1 − qni . The sufficient TVD conditions are expressed in a series
of inequalities:

C+,(i,i+1) ≥ 0, C−,(i,i+1) ≥ 0, C+,(i,i+1) + C−,(i,i+1) ≤ 1 (28)

A TVD scheme needs to satisfy the conditions given in Eqs. (27 and 28). For one dimensional
grids, the variable at time step n+ 1 in the cell i can be written as

qn+1
i = qni + C+,(i,i+1)(qi+1 − qi)− C−,(i−1,i)(qi − qi−1), (29)

and the reconstructed variables read

qi+1,i = qi+1 + Υ(i+1,i)(qi − qi+1) (30)

qi,i+1 = qi + Υ(i,i+1)(qi+1 − qi) (31)

qi,i−1 = qi + Υ(i,i−1)(qi−1 − qi) (32)

qi−1,i = qi−1 + Υ(i−1,i)(qi − qi−1). (33)

Υ can be seen as the distance multiplied with the slope limiter. Then, it is easy to get

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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qi+1 − qi =
qi+1,i − qi,i+1

1.0−Υ(i+1,i) −Υ(i,i+1)
(34)

qi − qi−1 =
qi,i−1 − qi−1,i

1.0−Υ(i,i−1) −Υ(i−1,i)
(35)

so that the Eq. (29) can be rewritten as:

qn+1
i = qni +

C+,(i,i+1)

1.0−Υ(i+1,i) −Υ(i,i+1)
(qni+1,i − qni,i+1)−

C−,(i−1,i)

1.0−Υ(i,i−1) −Υ(i−1,i)
(qni,i−1 − qni−1,i),

(36)

∆qn+1
i,i+1 = qn+1

i+1 − q
n+1
i

= qni+1 +
C+,(i+1,i+2)

1.0−Υ(i+2,i+1) −Υ(i+1,i+2)
(qni+2,i+1 − qni+1,i+2)−

C−,(i,i+1)

1.0−Υ(i+1,i) −Υ(i,i+1)
(qni+1,i − qni,i+1)

− (qni +
C+,(i,i+1)

1.0−Υ(i+1,i) −Υ(i,i+1)
(qni+1,i − qni,i+1)−

C−,(i−1,i)

1.0−Υ(i,i−1) −Υ(i−1,i)
(qni,i−1 − qni−1,i))

=
qni+1,i − qni,i+1

1.0−Υ(i+1,i) −Υ(i,i+1)
+

C+,(i+1,i+2)

1.0−Υ(i+2,i+1) −Υ(i+1,i+2)
(qni+2,i+1 − qni+1,i+2)

−
C−,(i,i+1)

1.0−Υ(i+1,i) −Υ(i,i+1)
(qni+1,i − qni,i+1)− (

C+,(i,i+1)

1.0−Υ(i+1,i) −Υ(i,i+1)
(qni+1,i − qni,i+1)

−
C−,(i−1,i)

1.0−Υ(i,i−1) −Υ(i−1,i)
(qni,i−1 − qni−1,i))

=
1.0− C−,(i,i+1) − C+,(i,i+1)

1.0−Υ(i+1,i) −Υ(i,i+1)
(qni+1 − qni,i+1) +

C+,(i+1,i+2)

1.0−Υ(i+2,i+1) −Υ(i+1,i+2)
(qni+2,i+1 − qni+1,i+2)

+
C−,(i−1,i)

1.0−Υ(i,i−1) −Υ(i−1,i)
(qni,i−1 − qni−1,i). (37)

For TVD schemes, it is not difficult to get 1.0− C−,(i,i+1) − C+,(i,i+1) ≥ 0, C+,(i+1,i+2) ≥
0, C−,(i−1,i) ≥ 0. If Eq. (37) satisfies the TVD property, the coefficients should be non-negative,
which gives that 1.0−Υ(i,i−1) −Υ(i−1,i), 1.0−Υ(i+1,i) −Υ(i,i+1), 1.0−Υ(i+2,i+1) −Υ(i+1,i+2)

should all be positive values and thus

|∆qn+1
i,i+1| ≤

1.0− C−,(i,i+1) − C+,(i,i+1)

1.0−Υ(i+1,i) −Υ(i,i+1)
|qni+1 − qni,i+1|+

C+,(i+1,i+2)

1.0−Υ(i+2,i+1) −Υ(i+1,i+2)
|qni+2,i+1 − qni+1,i+2|

+
C−,(i−1,i)

1.0−Υ(i,i−1) −Υ(i−1,i)
|qni,i−1 − qni−1,i|. (38)

Summing up Eq. (38) for −∞ < i <∞ the total variation at time n+ 1 gives
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TV (qn+1) =

i=∞∑
i=−∞

|∆qn+1
i,i+1| ≤

i=∞∑
i=−∞

1.0− C−,(i,i+1) − C+,(i,i+1)

1.0−Υ(i+1,i) −Υ(i,i+1)
|qni+1 − qni,i+1|

+

i=∞∑
i=−∞

C+,(i+1,i+2)

1.0−Υ(i+2,i+1) −Υ(i+1,i+2)
|qni+2,i+1 − qni+1,i+2|

+

i=∞∑
i=−∞

C−,(i−1,i)

1.0−Υ(i,i−1) −Υ(i−1,i)
|qni,i−1 − qni−1,i|

=

i=∞∑
i=−∞

|∆qni,i+1| = TV (qn). (39)

It is noted that Υ depends on the slope limiter Ψ and the position information
∆xi,i+1/2/(∆xi,i+1/2 + ∆xi+1/2,i+1), so Eqs. (30) - (36) are also valid for unstructured grids.
If 1.0−Υ(i+1,i) −Υ(i,i+1) and 1.0−Υ(i,i−1) −Υ(i−1,i) are zero, which means the reconstructed
values along the edge for both neighbors are the same, the absolute value for the value difference is
zero and does not influence the TVD property of this scheme, as

1.0−Υ(i+1,i) −Υ(i,i+1) ≥ 0, (40)

if qi+1 ≥ qi, Eq. (40) can be rewritten as

qi + γi,i+1(qi+1 − qi)− (qi+1 + γi+1,i(qi − qi+1)) ≤ 0.0, (41)

it can be obtained that if qi ≤ qi+1 then qi,i+1 ≤ qi+1,i, and vice versa, it will be very easy to get the
relationship for the variables along the edges,

(qi+1 − qi)(qi+1,i − qi,i+1) ≥ 0.0 (42)

which is the condition given by Eq. (26).
If the TVD condition is satisfied for the reconstruction method, the scheme should fullfill the

relationship given in Eq. (28), but if the upwind and downwind neighbor cells are defined as i− 2

and i+ 2 respectively, Eq. (28) becomes

qn+1
i = qni + C+,(i,i+2)∆q

n
i,i+1 − C−,(i−2,i)∆q

n
i−1,i. (43)

The value difference between cell i and i+ 1 on the new time step n+ 1 can be stated as,

∆qn+1
i,i+1 = (1− C+,(i,i+2) − C−,(i,i+2))∆q

n
i,i+1 + C+,(i+1,i+3)∆q

n
i+1,i+2 + C−,i−2,i∆q

n
i−1,i. (44)

If all the coefficients satisfy the inequalities

C+,(i,i+2) ≥ 0, C−,(i,i+2) ≥ 0, C+,(i,i+2) + C−,(i,i+2) ≤ 1, (45)
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the total variation can be summed up for the −∞ < i < +∞ and the following expression is
obtained:

TV (qn+1) =

i=∞∑
i=−∞

|∆qn+1
i,i+1| ≤

i=∞∑
i=−∞

(1.0− C−,(i,i+2) − C+,(i,i+2))|∆qni.i+1|

+

i=∞∑
i=−∞

C+,(i+1,i+3)|∆qni+1,i+2|+
i=∞∑
i=−∞

(C−,(i−2,i))|∆qni−1,i| (46)

Changing the indices of the last two terms to i+ 2 and i− 2, respectively, it is seen that the
resulting equation is not TVD anymore:

TV (qn+1) =

i=∞∑
i=−∞

|∆qn+1
i,i+1| ≤

i=∞∑
i=−∞

(1.0− C−,(i,i+2) + C−,(i−1,i+1))|∆qni.i+1|

6= TV (qn). (47)

It can be concluded that the coefficients which get the influence from the i− 2 and i+ 2 will
not lead to a TVD scheme. As shown in Fig. 5, the situation can be thought about as a dam break
problem. From the time level t to t+ 1, if i± 2 are chosen to be the upwind and downwind cells, the
slope for the water depth (left) is calculated properly, but the slope for the discharge (right), i+ 2

will yield a wrong interpolation if the cell i is used as the upwind cell instead of i+ 1.
Considering the previous 2D node evaluation methods, only Darwish’s scheme satisfies the

condition presented in this section. In contrast, the other 2D node evaluation schemes using a certain
distance or preferential direction may set i± (n 6= 1) as the upwind cell, thus leading to a non-stable
scheme. However, Darwish’s scheme consists of a very localized stencil and therefore has a lower
order of accuracy.

In [28, 29], the stability condition of 2D shallow water equations is extended to an interval from
the minimum and maximum value of the cell centered values at both sides of the considered edge
and the values of the two vertices of that edge, so that it will allow that the interpolated values of
the edge can be the values larger or lesser than the values at the cell centers of both adjacent cells.

The TVD condition for the vector manipulation method is obtained by verifying that the scheme
satisfies Eq. (26). As an illustrative example, a Scottish mesh is chosen to calculate the stencil of the
reconstruction method, as shown in Fig. 6. α1, α2 and β1, β2 are calculated to be 1.34164, 0.632456

and 1.26491, 1.34164. Because the vectors −→r1 and −−→r1 are located between the vectors, they will be
used for constructing the linear system later, it can be shown that all of the values are non-negative
numbers, so that the slope for the upwind and downwind is depending on −→tj . Let hD = 1.1 m,
hE = 0.2 m, then the reconstruction of hD,M = 1.1 m remains first order, but for qC,M , the slopes
for the upwind and downwind in cell C can be calculated as 5qN,C = 0.7589, 5qC,M = 0.7589,
which means there will be a positive value calculated by the limiter function and multiplied with the
distance, which may create a local extremum value larger than qD,M . If hD = 1.0, the overestimated
interpolation also will happen and will lead to the unphysical flux.
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4. IMPROVED MULTISLOPE MUSCL RECONSTRUCTION METHODS

For multislope methods on unstructured grids, the three-point-stencil can be considered as a one-
dimensional interpolation stencil problem in the local coordinate system of the edge, whereby the
main challenge becomes the definition of the upstream node. In this work, it is suggested to use
the upwind values interpolated or extrapolated by the surrounding neighbor cell center values. The
details are given in the following.

In the following, it is assumed that all the multislope MUSCL methods require that the cell center
of the considered cell is located inside the triangle constructed by the cell centers of the surrounding
neighbors, cf. Fig. 7.

4.1. Improved 2D node evaluation method

Motivated by the reconstruction method proposed in [12], which is based on the fact that in
advection-dominated problems the flux at the interface mainly depends on the variables transport
normal to this interface, the following TVD reconstruction is suggested:

1. Draw a line perpendicular to the considered edge, which passes through the center of the edge
2. Find the intersection node U of the normal line and the line connecting the neighboring

cell centers which are the outside neighbors of the edges in the considered cell except the
considered edge. cf. Fig. 8a.

3. Interpolate (if U is located between E and F ) or extrapolate (if U is not located between E
and F ).

4. Reconstruct the values.

The main novelty of this method is the choice of the upstream node U . The upwind cell of the
considered cell for the considered edge is chosen from the neighboring cells of the considered cell.
As illustrated in Fig. 8a, these are cells E and F , thus, both of these two cells can be thought as the
upwind cell, but both of these two cell centers are far from the normal line of the considered edge.
Thus, the value of the upstream node is calculated by interpolating or extrapolating the values at the
center of E and the center of F . There are two ways to draw a line to determine the position of the
upstream node U : (1) the line is drawn through the edge center M in the normal direction of the
edge (cf. Fig. 8a), so called UEM; or (2) the line is drawn through the cell center of C and the cell
center of D (cf. Fig. 8b), so called UEQ. Note that in the latter case values are not reconstructed at
the edge center M , but at the intersection point Q (cf. Fig. 8b). U is determined by intersecting this
constructed line and a line drawn through the cell centers of E and F . It is noted that for UEM, the
distance from cell center C to the projection point Cr (|

−−→
CCr|) and the distance from cell center D

to the projection point Dr (|
−−−→
DDr|) may be large in comparison to the distances |

−−−→
CrDr| and |

−−→
CrU |,

leading to numerical diffusion and increased mesh-dependency.

4.2. Improved vector manipulation method

In section 3.3, the discussion of occurring local extrema is based on Hou’s vector manipulation
method [13]. The MUSCL reconstruction interpolates the cell centered values to the edge along the
gradient of the edge direction, or, in other words, along the outside neighbor cells. Special attention

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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has to be given to the downwind slope calculation in order to preserve the TVD property. In this
study, it is suggested to use the geometric vector relationship to calculate the downwind slope by
connecting both cells across the considered edge, and construct the vector from the outside cell
center to this edge center, as shown in Fig. 9a. Then

−−→
CM =

−−→
CD +

−−→
DM (48)

so that,

−−→rCM =
|
−−→
CD|
|
−−→
CM |

−−→rCD +
|
−−→
DM |
|
−−→
CM |

−−→rDM (49)

5qCM =
|
−−→
CD|
|
−−→
CM |

5 qCD +
|
−−→
DM |
|
−−→
CM |

5 qDM . (50)

The additional computational effort is very small compared to the scheme of Hou et. al [13],
but the slope for calculating the downwind is solely depending on the variables of the downwind
direction (outside cell). Recalculating the water depth in section 3.3, if hD = 1.0, the downwind
slope is calculated as 5qCM < 0.0, and hence qCM will be reconstructed first order accurate. If
hD = 1.1, the downwind slope is calculated by Eq. 49, giving 5qCM = −0.8064. Then, qCM will
also be reconstructed first order accurate. When we observe the meshes, it can be seen that the line
CM will pass through the center of cells D and E, and the cell E shows a decreased slope from
cell C and D. Therefore, it is meaningful to use a first order for reconstruction of the values at the
considered edge.

In comparison, consider the method by Buffard and Clain [8], where the slope is calculated along
the line connecting the center of the considered cell with the center of the neighbor cell, cf. Fig.
9b. While this method is able to accurately calculate downwind slopes, the extrapolated values at
the considered edge are calculated not in the center of this edge M , but rather at the intersection
point Q and therefore may not represent the averaged values at the considered edge. Hereinafter, the
improved vector manipulation method is referred to as VEM, and the method by Buffard and Clain
is referred to as VEQ.

4.3. Comparison of the multislope MUSCL reconstruction procedures in a cell

The procedures of MUSCL reconstruction methods used in this work are summarized and compared
in Tab. I.

In this work, a modified Van Leer’s limiter function from [6] is adopted for 2D nodal evaluation
methods:

Ψ(r) =
0.5Rr + 0.5R|r|

R− 1 + r
(51)

Here, R = (dCf + dDf )/dCf ; and a limiter function from [31] is adopted here for vector
manipulation methods:

Ψ(a, b) =

{
(a2+e)b+(b2+e)a

a2+b2+2e if ab > 0

0 if ab ≤ 0
(52)
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4.4. Boundary treatment

In this work, the boundary conditions are treated by following the description in [16], in order to
maintain the high order inside the computational domain, a ghost cell technique is applied here. We
will individually discuss the different MUSCL methods presented in Table I based on the legend of
Fig. 10.

• UEQ: The ghost cells are used here for storing the values of the boundary information. In
order to make sure that all internal cells have neighboring cells out of the local internal edge,
the geometric information is stored by mirroring the internal neighboring cell. After storing
the geometric information in the ghost cells, a two step boundary interpolation will be carried
out to preserve the high order of accuracy for the whole computational domain.

– The internal neighboring cells ACD, BDE will use cell centered values for calculating
the ghost cells values by using the boundary conditions from [16].

– The interpolation of edge values at edge CD and DE will be calculated based on the
UEQ method, and the ghost cells’ value will be chosen as the downwind cell value. After
that, a new loop calculation for boundary edge values at DC and ED will be updated
by the boundary conditions [16]. The ghost cells’ values will remain the same as the
boundary edges, and thus all internal cells and edges have neighboring cells for the high
order reconstruction.

• VEM, VEQ and HOU: With the ghost cell technique, the slope from the center of ghost cell
to the edge center will be thought as 0.0.

– Compute the ghost cell values using the same method as UEQ. The downwind slope
of the internal cell will be thought as the value difference between ghost cell and the
internal cell divided by the distance from the internal cell center to the edge center and
edge perpendicular point for the VEM (same as HOU) and VEQ, respectively.

4.5. A novel approach for restraining the recnstruction instability

The instability of MUSCL reconstructions is mainly caused by overestimated velocities [32], which
will yield an overestimated flux across the cell edges. In order to avoid numerical instability, the
velocities at the edge should satisfy the monotonicity condition

max(uC , uD) ≥ uLM ≥ min(uC , uD). (53)

here, uC , uD and uLM means the velocities at the cell inside, outside and the velocity at edge after
interpolation.

If the case that creates local maxima in velocity is considered, if the unit discharges have the same
sign, i.e. qCqD ≥ 0, then min(|qC |, |qD|) ≤ |qLM | ≤ max(|qC |, |qD|), and Eq. 53 can be rewritten as

min(|uC |, |uD|) ≤ |uLM | ≤ max(|uC |, |uD|) if qCqD ≥ 0. (54)

This means, if the discharges have the same sign, the absolute value of the discharge can be
considered for simplification. If the slope of the absolute value of the discharge and the slope of the
water depth have different signs, no local maximum will be created, and therefore
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min(|uC |, |uD|) ≤ |uLM | ≤ max(|uC |, |uD|) if
d(|q|)
dx

∗ dh
dx
≤ 0 ∧ qCqD ≥ 0. (55)

It is always true for Eq. 55, besides this, if discharge with same signs are considered, two distinct
cases can be identified that will create local extrema in the velocity: (1) increasing water depth, (2)
decreasing water depth.

For the increasing water depth, if the velocity is beyond the range of the adjacent velocities, again
two distinct cases have to be considered:

1. For the larger velocity interpolation: Velocities are calculated by using the discharge divided
by the water depth. If the velocity is bigger than the adjacent velocities (absolute values), we
can conclude that the discharge is overestimated. In this case, we will use the water depth hLM
multiplied with the velocity with the larger absolute value. This means, that the increasing
estimated situation (slope) of discharge is not changed, but adjusted by imposing a limit to the
MUSCL reconstruction of the discharge, as shown in Fig. 11 (a).

2. For the smaller velocity interpolation: As before, we want to limit the MUSCL reconstruction
values but do not want to change the slope sign for the MUSCL reconstruction. In the
other word, the aim of the additional limitation is just for limiting the relatively bigger
overestimate, for this smaller velocity interpolation, we think about the modification of water
depth, increasing the absolute value of discharge may give local extrema, as shown in Fig. 11
(b).

For the decreasing water depth, if the velocity beyond the range of the velocities, we also give
two situations for consideration.

• For the larger velocity interpolation: If the velocity is larger than the range of velocities
(absolute values), the water depth is underestimated. The water depth will be calculated as
the edge discharge qLM divided by the larger velocity of the both sides, as shown in Fig. 11 (c).

• For the smaller velocity interpolation: If the velocity is underestimated for the conditions of
the water depth and the absolute discharge is decreasing, the discharge is underestimated so
that the discharge will be calculated as the water depth multiplied with the smaller velocity of
the both sides, as shown in Fig. 11 (d).

We can summarize as:

if qC ∗ qD ≥ 0



qLM = hLMmax(|uC |, |uD|)qLM/|qLM |, if dh/dx ≥ 0, |uLM | > max(|uC |, |uD|)

hLM = qLM/min(|uC |, |uD|)qLM/|qLM |, if dh/dx ≥ 0, |uLM | < min(|uC |, |uD|)

hLM = qLM/max(|uC |, |uD|)qLM/|qLM |, if dh/dx ≤ 0, |uLM | > max(|uC |, |uD|)

qLM = hLMmin(|uC |, |uD|)qLM/|qLM |, if dh/dx ≤ 0, |uLM | < min(|uC |, |uD|)
(56)

The case for the both sides of the considered edge with different signs for the discharge is limited
in a similar way. We analyzed the situation with the increasing and decreasing water depth, and as
shown in Fig. 12 (a-d), all kinds of situations are listed which may occur for both sides with different
signs for the discharges: the left side is the condition which will not create an extreme velocity and
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the right side is the one where this situation may happen. The limitation can be summarized as:

if qC ∗ qD < 0



qLM = hLMmax(uC , uD), if dh/dx ≥ 0, uLM > max(uC , uD)

qLM = hLMmin(uC , uD), if dh/dx ≥ 0, uLM < min(uC , uD)

hLM = qLM/max(uC , uD), if dh/dx ≤ 0, uLM > max(uC , uD)

hLM = qLM/min(uC , uD), if dh/dx ≤ 0, uLM < min(uC , uD)

(57)

It can be observed that the water depth is modified during the limitation of the velocity. In two-
dimensional shallow water equations, the unit discharge is usually splitted in x- and y-directions,
which may make the limitation process more challenging, because the unit discharge in both
directions can be limited independently. The modified water depth may lead to a local extremum in
velocity in the direction that is not being limited, e.g. if the x-direction is limited a local extremum
in the velocity in y-direction may occur. However, the treatment described in Eqs. 56 and 57 restricts
the slope of the water depth while its sign is ensured to stay the same. Thus, the method for
reconstructing the discharges in x- and y-direction will automatically select the smaller slope and
therefore always satisfies the condition in both x- and y-direction. An additional challenge is that
the variables have to be also reconstructed at the vertices of the cell, hence the limiting process
is applied to the whole cell. Consequently, the order of accuracy of the MUSCL reconstruction
decreases and if the values of discharge at the vertices differ significantly from the values at the cell
edge, the interpolation of the discharge will be wrong. In order to control this issue, we propose to
use a threshold value ε+ for limiting very high velocities at the wet and dry interface. We choose
this value to be ε+ = 100ε, where ε = 10−6 m is the threshold that determines whether a cell is wet
(if the water depth in the cell is larger than ε) or dry (if the water depth in the cell is less than ε), cf.
e.g. [19, 21, 32].

5. COMPUTATIONAL EXAMPLES

We present 5 computational test cases, 2 with analytical solutions. The performance of the improved
MUSCL reconstructions are compared regarding accuracy, efficiency and ease of implementation.

The first test case is the well-known Thacker’s solution benchmark, which is chosen to
demonstrate the accuracy and capability to deal with wet and dry interfaces of the MUSCL schemes.
The second test case is chosen to verify the capability of the scheme to capture shock waves for
high-speed discontinuous flow conditions and shows a steady-state oblique jump. The third test case
shows a radial dam break and the fourth test case shows a 2D Riemann problem, to demonstrate the
accuracy of the presented reconstruction methods. Finally, in a last test case a Tsunami experiment
is replicated to demonstrate a near to real-world application.

Three types of meshes are employed in this work, the diagonal mesh, Scottish mesh and Delaunay
mesh, respectively ( [8]) as shown in Fig. 13.
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5.1. Thacker’s planar rotation benchmark

Thacker’s planar rotation benchmark is considered to be one of the most challenging test cases
for numerical codes, because it involves moving wet and dry fronts inside a parabola. The bottom
topography is defined as

zb(x, y) = −h0

[
1− (x− x0)2 + (y − y0)2

a2

]
(58)

where (x0, y0) represent the coordinates of the parabola center; h0 is the water depth at the parabola
center; a is the distance from the center point to the zero elevation of the shoreline. The analytical
solution of this test case is given as

ηt =
σh0

a2

[
2(x− x0)cos(ωt) + 2(y − y0)sin(ωt)

]
(59)

u(t) = −ωsin(ωt), v(t) = ωσcos(ωt) (60)

where σ is a constant value, and ω =
√

2gh0/a is the angular velocity of the rotation. In this
work, parameters are set to be the same with [13] with h0 = 0.1 m, a = 1.0 m, σ = 0.5 and the
computational domain is set to be 4× 4 m2 with the domain center at (2 m, 2 m). All boundaries
are closed boundaries.

The characteristic length ∆x =
√
A/N is used to set the resolution of the meshes, A is the area

of the computational domain and N is the total number of cells.
The accuracy is expressed as the L1-error which can be calculated as

L1 =

∑n
1 |qi − qi,exact|Ai∑n

1 Ai
. (61)

The upper part of Fig. 14 - 18 plot the water depth contour of FOU, HOU, UEQ, VEQ and VEM
compared to the analytical solution, respectively, at t = 3.5T and 4T , T represents one period. It
can be observed that VEM reaches the best agreement. HOU also yields good agreement, which is
slightly less accurate than VEM. FOU yields the worst agreement and has more diffusion compared
to other schemes; the lower part of the Fig. 14 - 18 show the velocity field plot, where it can be
observed that the FOU gives the most drag effect of velocity, HOU shows a significantly drag tail,
which maybe because of too much information from upwind, which leads to more diffusive behavior
and VEM shows the best velocity field, where the vectors of the velocity almost coincide with the
water depth contour. In order to compare the accuracy of different methods, we consider the worst
grids to test the schemes. Cut section plots are shown in Fig. 19 and 20 for Delaunay and Scottish
grids presented in Fig. 13. It is seen that VEM can obtain good accuracy on both grids, the difference
between VEM and other methods is not very large on Delaunay grid; but on the Scottish grid, VEM
yields much better agreement than the other methods. HOU always gives the second best agreement.
The time step size is set adaptively using the CFL criterion, therefore the velocity influences the time
step size. Even though the algorithm of VEM is slightly more complex than HOU, the computational
effort is about 10% less than HOU, because no high velocities are reconstructed.

We present a mesh convergence study for this test case in Fig. 21 - 23. The L1-error at t = 4T for
h and qy are plotted in these figures for different grids, in which the lines with symbols represent the
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numerical results varying with the refining of the mesh level (represented by characteristic length
∆x shown in Tab. II) and the solid line is the order of 2. It can be seen that the results for VEQ and
HOU are the same for the diagonal grid, as the middle point and the intersection point will reach
to the same coordinate on diagonal grid, this also can be found in [8]. For the numerical results on
diagonal grid, all the numerical results give a relatively low order, however, the VEM still can obtain
highest accuracy and numerical order. For the Scottish and Delaunay grid, HOU scheme increases
the accuracy significantly, which means that the scheme is more or less mesh dependent. And VEM
scheme keeps the highest accuracy and numerical order. UEQ and VEQ scheme give almost slightly
different results for different grids, the advantage of each scheme is related to the mesh type, but is
quite small.

::::
The

::::::::
presented

::::::::
MUSCL

:::::::
schemes

::::
add

:
a
:::::::::
limitation

:::::::::
presented

::
in

::::
Sec.

:::
4.5

::
at

::::
wet

:::
and

::::
dry

:::::
fronts.

:::::
This

:
is
:::
to

::::::
prevent

:::
the

::::::::::
occurrence

::
of

:::::::
negative

:::::
water

:::::::
depths.

::::::::::::
Consequently,

::::
wet

:::
and

:::
dry

::::::
fronts

:::::
reduce

::::
the

::::::
overall

:::::::
accuracy

:::
of

::::
these

::::::::
schemes,

::::
and

:::
this

::::
can

::
be

:::::::
thought

::
as

:::
the

::::::::::
explanation

:::
of

::::
why

:::
the

:::::::
accuracy

:::::
order

::::::
cannot

:::::
reach

::
2

::
in

:::
this

::::
test

::::
case.

:

In summary, it can be observed that VEM yields the lowest error and highest order in all figures,
HOU yields a slightly lower error than the other methods for the water depth, but also yields the most
diffusive velocity field except FOU. VEQ and UEQ are similar, because their algorithms are both
based using a line connecting both cell centers. However, from the results we can conclude that the
difference is negligibly small. The implementation of UEQ is more straight-forward.

:::::::
Present

::::::
results

:::
are

::::::::
compared

::
to

:::
the

::::::
results

::::::::
reported

::
in

::::::::
[16, 31].

::::
The

:::
cell

::::::::
numbers

::
in

:::::
these

:::
test

:::::
cases

:::
are

::::::
similar

:::
to

:::
the

::::::
present

::::
one,

::::::::
therefore

::
a
::::::::::
comparison

::
is
:::::::::::

meaningful.
::::
The

:::::
VEQ

:::::
yields

::::
less

::::::::
accurate

::::::
results,

::::
the

:::::
VEM

:::::
yields

::::::
almost

:::::::
similar

::::::::
accuracy.

::
It

::
is

:::::
noted

::::
that

::::
both

:::
the

:::::
VEQ

:::
and

:::::
VEM

::::
are

::::::::::::::
computationally

::::
more

:::::::
efficient

::::
and

:::::
more

:::::::::::::
straightforward

::
to

:::::::::
implement

::::
than

:::
the

::::::::::
approaches

::
in

::::::::
[16, 31].

5.2. Steady oblique hydraulic jump

A steady-state hydraulic jump that develops when a unidirectional supercritical flow in an open
channel hits an inclined solid wall is investigated. A 40 m× 30 m frictionless domain with a flat
bed is used and a uniform supercritical velocity with a Froude number of 2.7 is applied at the
western inflow boundary. The initial water depth and velocity for the whole domain is set to 1 m

and 8.57 m/s, respectively. The eastern boundary is a free outflow boundary, and the northern and
southern boundaries are closed boundaries. The southern wall is given an inclined angle of 8.95◦,
beginning from x = 10 m to the northeastern direction. The supercritical velocity will reflect, thus
creating an oblique hydraulic jump along the southern wall. Theoretically, the water will jump from
1 m to 1.5 m and starting from x = 10 m, form a 30◦ to the x-direction. We enforce a constant time
step for all methods for comparison purposes. The simulation runs for 10 s until the flow is steady
and the hydraulic jump is formed. The simulation is carried out on a Delaunay grid (Fig. 13) with
3029 cells.

Results are shown in Fig. 24 - 28. The dashed line in the water level represents the 30◦ of the
analytical solution. Except FOU all methods diminish the numerical diffusion. On the left of the
figures, the cut sections show that the water depth increases from 1 m sharply to 10 m, and the water
level almost reaches 1.4 m at x = 5 m. All MUSCL reconstruction methods yield good accuracy for
this test case.

As shown in Tab. III, FOU is the fastest scheme. For the MUSCL reconstructions, UEQ is the most
efficient method due to the straight-forward implementation and simple algorithm. Comparing to
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HOU, VEQ only need to compute the linear system along the upwind direction, where can improve
the computational efficiency. The VEM takes the most computational time, but compare to HOU, the
difference is quite small, the additional treatment for including the downwind information doesn’t
influence the computational efficiency too much.

5.3. Radial dam break

A 2D radial dam break case from [33] is simulated to test the capability of the reconstruction
methods to preserve the symmetry of the problem. The initial conditions are:

h(0, x, y) =

2 m if
√

(x− 25)2 + (y − 25)2 < 20.0

0.5 m otherwise
(62)

The computational domain is a 50 m× 50 m square. The computational mesh is a Delaunay mesh
(Fig. 13) with 11932 cells. The simulation is run for 3 s.

A reference solution is obtained using a high-resolution simulation with 1000000 cells on a
structured grid using the high-resolution Godunov-type scheme of Clawpack [34].

Fig. 29 shows a 3D plot of VEM results at t = 1.0 s and t = 2.5 s. The cut section along y = 25

m is shown in Fig. 30, the numerical results are plotted over a section that goes from (25, 50) m to
(50, 50) m at times t = 1 s, t = 2 s and t = 3 s.

The difference between the different MUSCL reconstructions are quite small, but at t = 1 s, it
can be observed that the UEQ shows the best agreement, and VEM is slightly better than VEQ
and HOU. The shock wave position is correctly captured, but due to numerical diffusion the shock
wave front smeared. This is because of the low resolution of the grids. For t = 2s, the water level
at the domain center is only well captured by HOU and VEM, while UEQ shows the lowest water
level (about 0.05 m lower than the reference solution). Except at the center position, the MUSCL
reconstructions are near to the reference solution, in which, the VEM shows the best agreement,
followed by HOU. For t = 3 s, the shock wave is still well captured, but for the water level at
domain center, HOU shows the most numerical diffusion and VEQ gives the best agreement with
the maximum water level of the reference solution, followed by VEM.

5.4. 2D Riemann problem

This test case is originally presented in [4]. A frictionless [0, 200]× [0, 200] computational domain
with a initial condition set as

h =

{
10 if x ≥ 100 ∧ y ≥ 100

1 else
(63)

u =

{
10 if x ≤ 100

0 else
(64)

v =

{
10 if y ≤ 100

0 else
(65)
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is used. The Delaunay computational mesh( Fig.13) consists of 6552 cells. In order to investigate
the accuracy, a mesh that can be considered ‘poor’ is used.

Fig. 31 shows the flow pattern calculated by VEM at 1 s, 3 s, and 5 s. It can be observed that
the shock wave positions are well captured. Due to the poor grid, the front of the shock wave is
smeared. The rarefaction wave at the Northeast of the domain is well resolved by the numerical
scheme. The water depth contour plot and the velocity field are shown in Fig. 32. As there is no
analytical solution for this test case, quantitative analysis can not be further conducted, but it can be
obviously found that the present MUSCL schemes produce less diffusion than FOU scheme.

In order to verify the order of accuracy of the methods, a cut section along [0,0] [200,200] is set
inside the domain. The water depth along this cut section is shown in Fig. 33. We can observe that the
MUSCL reconstruction methods are quite similar, but UEQ captured a slightly steeper rarefaction
wave compared to the others. According to the description in [28] and the theoretical and numerical
analysis in [2], the rarefaction waves are likely to be dampened by low-order schemes. Then, we can
conclude that UEQ has the best performance in modeling shock problems on unstructured grids.

5.5. Tsunami wave impact on a conical island

We replicate the laboratory experiment from [35] using the presented numerical schemes and the
MUSCL reconstructions. The experiment features wet and dry fronts, uneven topography and very
shallow water depths, which are challenging for a numerical method.

The experiment domain is a [0.0, 25.92] m × [0.0, 27.6] m rectangle (Fig. 34). A Delaunay grid
of 15692 cells is used for discretization. An ideal conical island with the center located at [x0, y0] =
[12.96, 13.8]m is defined as

z(x, y) = max[max(0.625, 0.9− 1/(4
√

(x− x0)2 + (y − y0)2)), 0.0]. (66)

The initial still water level of the domain is 0.32 m, the island is partially submerged inside the
water, a wave maker is set at the inflow boundary with a varying water level relative to the initial
still water level, and the velocity is set as

η(t) = Hsech2[
√

3H/4η3
0

√
g(η0 +H)(t− T )] + η0 (67)

u(t) =
C(η(t)− η0)

η(t)
(68)

v(t) = 0 (69)

where H is the amplitude of the wave and η0 is the still water depth; T denotes the time for the
wave crest reach the domain. The wave working condition is chosen as η0 = 0.32 m, T = 2.45 s,
and H = 0.064 m. Friction is not take into account in this case. The simulation run time is 20 s.

Fig. 35 shows the maximum wave run up at the front, the side and the back of the island at t = 9

s, t = 11 s and t = 13 s. Fig. 36 shows oscillating solutions computed by VEM and HOU without
the treatment for the velocity, respectively, which means that the velocity limitation for the wetting
and drying front significantly influences the stability of the numerical scheme.

Fig. 37 shows the comparison of measurement data from the experiment with the numerical
results from different reconstruction methods at gauges located approximately at the run up area.
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The gauges number 6, 9, 16 and 22 are located at [9.36, 13.80] m, [10.36, 13.80] m , [12.96,
11.22] m and [15.56, 13.80] m respectively, as shown in Fig. 34. Numerical results capture the
peak of the water level at gauge 6 and gauge 9, but for the gauge 6, the trough is overestimated
by all methods. For gauge 16 and gauge 22, both peak and trough are slightly smaller compared
to the measurement data. This is because of the 3D effects of the wave propagation. The position
of the wave is well captured by all the MUSCL reconstructions, FOU shows the most diffusion.
Furthermore, the computed maximum run-up on the island is compared with the measurement data
in Fig. 38. A slightly overestimated run-up can be observed for the MUSCL schemes at the front
face to the wave come direction, this maybe the case because of the mesh size in relative to the
wetting and drying interface which leads to a numerical error, while the backwash direction is well
captured except for FOU. It can be observed that the difference of the results between the different
MUSCL schemes are quite small, but all are much better than FOU. All MUSCL reconstructions
are capable to handle wet and dry fronts over uneven terrain.

6. CONCLUSIONS

This paper presents two novel MUSCL reconstruction methods on unstructured grids: UEQ and
VEM. Based on the TVD approach, the search for the upwind information is ambiguous. Therefore,
we developed improved ways to determine the point from which the upwind information can be
obtained. We derived an additional TVD condition, which limits the edge values based on the
variables of the cells at the considered edge and showed that existing MUSCL reconstruction
methods do not satisfy this condition. In order to avoid spurious velocity oscillations at the edge,
we proposed a treatment for limiting the velocities.

The derived reconstruction methods are tested in 5 test cases. We compared results with the
methods from [8, 13]. In most cases, we demonstrate that the novel VEM method is superior to the
existing methods, especially on Scottish meshes (Fig. 13). The presented numerical scheme is able
to handle wet and dry fronts, where the advantage and necessity of the proposed velocity treatment
is significant.
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Table I. Procedures of multislope MUSCL reconstructions

Steps 2D nodal evaluation Q method (UEQ).
Choose Fig. 8b as legend

Vector manipulation extrapolate Q
method (VEQ) Choose Fig. 9b as legend

1 Calculate the coordinate of intersection
point U of line CD and the neighbor cell
centers connecting line EF

Compute −→rk and −→k

2 Interpolate value U from values at center
E and F

Solve Eq. (22) get the coefficient β1 and
β2.

3 Extrapolate the edge value by following
Eqs. (16, 17)

Calculate5qC,(D,F,H) from Eq. (20)

4 - Extrapolate5qN3C from Eq. (23)
5 - Extrapolate the edge value by following

Eq. (25)

Steps Vector manipulation extrapolate M
method (VEM). Choose Fig. 9a as
legend.

Old vector manipulation extrapolate M
method (HOU). Choose Fig. 9a as legend.

1 Compute −→rk and −→tk Compute −→rk and −→tk
2 Solve Eqs. (21 & 22 ) to get the coefficient

α1 , α2, β1 and β2.
Solve Eq. (21 & 22) to get the coefficient
α1 , α2, β1 and β2.

3 Calculate 5qC,(D,F,H) and 5qD,(C,E,G)

from Eq. (20)
Calculate 5qC,(D,F,H) and 5qD,(C,E,G)

from Eq. (20)
4 Evaluate 5qCM and 5qN3C from Eq.

(23)
Evaluate 5qCM and 5qN3C from Eq.
(23)

5 Update5qCM with Eq. (50) Extrapolate the edge value by following
Eq. (25)

6 Extrapolate the edge value by following
Eq. (25)

-

Table II. Characteristic length ∆x used for mesh convergence test

Mesh level Diagonal mesh (m) Scottish mesh (m) Delaunay mesh (m)

1 0.0442 0.0435 0.0439
2 0.0314 0.0313 0.0315
3 0.0224 0.0222 0.0223
4 0.0159 0.0159 0.0156

Table III. Oblique hydraulic jump: relatively computational cost.

Schemes FOU UEQ VEQ HOU VEM

Relative computational time 1.00 1.35 1.40 1.47 1.50
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Figure 1. One dimensional MUSCL reconstruction

Figure 2. Three-point-stencil for Darwish and Moukalled [10] (U is not taken into account), Li and Liao [11]
and Hou et al. [6] (left); three-point stencil for Hou et al. [12] (right)

Figure 3. Vector notations at the considered and the neighboring cells
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Figure 4. Monotonicity violating reconstruction

Figure 5. Illustration of interpolation error in 2D node evaluation methods
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Figure 6. Stencils for vector manipulation method

Figure 7. Configuration that satisfies (left) and does not satisfy (right) the assumption

(a) UEM (b) UEQ

Figure 8. Stencils for (a) 2D nodal evaluation method along edge normal direction (UEM); (b) 2D nodal
evaluation method along the cell centerline (UEQ)
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(a) VEM (b) VEQ

Figure 9. Stencils for (a) improved vector manipulation method (VEM); (b) Buffard and Clain’s vector
manipulation method (VEQ)

Figure 10. Ghost cell techniques used for the MUSCL reconstructions

Figure 11. When qCqD ≥ 0, the local extrema for velocities created by MUSCL reconstruction: (a)
dh/dx > 0, |uLM | > max(|uC |, |uD|), the overestimated result is controlled by limiting the qLM ; (b) dh/dx >

0, |uLM | < min(|uC |, |uD|), the overestimated result is controlled by limiting the hLM ; (c) dh/dx < 0,
|uLM | > max(|uC |, |uD|), the overestimated result is controlled by limiting the hLM ; (d) dh/dx < 0, |uLM | <

min(|uC |, |uD|), the overestimated result is controlled by limiting the qLM .
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Figure 12. When qCqD < 0 all the left hand side of (a-d) shows the situations can not create the local
extrema velocities, for the right sides: (a) dh/dx > 0, uLM > max(uC , uD), the overestimated result is
controlled by limiting the qLM ; (b) dh/dx > 0, uLM < min(uC , uD), the overestimated result is controlled
by limiting the qLM ; (c) dh/dx < 0, uLM > max(uC , uD), the overestimated result is controlled by limiting

the hLM ; (d) dh/dx < 0, uLM < min(uC , uD), the overestimated result is controlled by limiting the hLM .

Figure 13. The three types of mesh employed to evaluate the effective accuracy of the schemes: the diagonal
mesh (left), the Scottish mesh (center) and the Delaunay mesh (right)
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(a) Contour plot
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(b) Velocity field plot

Figure 14. Thacker’s planar solution: contours of water depth computed by FOU scheme (dashed line) and
the analytical solution (solid line) from Thacker at: t = 3.5T (a: left), t = 4.0 T (a: right), unit (m), with 16364

cells of Delaunay mesh. (b) The corresponding velocity field.
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(b) Velocity field plot

Figure 15. Thacker’s planar solution: contours of water depth computed by HOU scheme (dashed line) and
the analytical solution (solid line) from Thacker at: t = 3.5T (a: left), t = 4.0 T (a: right), unit (m), with 16364

cells of Delaunay mesh. (b) The corresponding velocity field.
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(b) Velocity field plot

Figure 16. Thacker’s planar solution: contours of water depth computed by UEQ scheme (dashed line) and
the analytical solution (solid line) from Thacker at: t = 3.5T (a: left), t = 4.0 T (a: right), unit (m), with 16364

cells of Delaunay mesh. (b) The corresponding velocity field.
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(b) Velocity field plot

Figure 17. Thacker’s planar solution: contours of water depth computed by VEQ scheme (dashed line) and
the analytical solution (solid line) from Thacker at: t = 3.5T (a: left), t = 4.0 T (a: right), unit (m), with 16364

cells of Delaunay mesh. (b) The corresponding velocity field.
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(b) Velocity field plot

Figure 18. Thacker’s planar solution: contours of water depth computed by VEM scheme (dashed line) and
the analytical solution (solid line) from Thacker at: t = 3.5T (a: left), t = 4.0 T (a: right), unit (m), with 16364

cells of Delaunay mesh. (b) The corresponding velocity field.
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Figure 19. Thacker’s planar solution: computed and analytical water levels at cross section of y = 2 m at: t
= 3.5 T (left), t = 4.0 T (right), with 2062 Delaunay meshes.
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Figure 20. Thacker’s planar solution: computed and analytical water levels at cross section of y = 2 m at: t
= 3.5 T (left), t = 4.0 T (right), with 2116 Scottish meshes.

Figure 21. Thacker’s planar solution: h (left) and qy (right) convergence results for numerical schemes used
on diagonal grid at t = 4 T.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
Prepared using fldauth.cls DOI: 10.1002/fld

Page 35 of 46

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

36 J. ZHAO ET AL.

Figure 22. Thacker’s planar solution: h (left) and qy (right) convergence results for numerical schemes used
on Scottish grid at t = 4 T.

Figure 23. Thacker’s planar solution: h (left) and qy (right) convergence results for numerical schemes used
on Delaunay grid at t = 4 T.
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Figure 24. Water level contour (left) and cut section plot for FOU scheme (right).
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Figure 25. Water level contour (left) and cut section plot for HOU scheme (right).
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Figure 26. Water level contour (left) and cut section plot for UEQ scheme (right).
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Figure 27. Water level contour (left) and cut section plot for VEQ scheme (right).

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
Prepared using fldauth.cls DOI: 10.1002/fld

Page 37 of 46

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

38 J. ZHAO ET AL.

5 10 15 20 25 30 35 40

X [m]

0

5

10

15

20

25

30

Y
 [m

]

5 10 15 20 25 30

X [m]

1

1.1

1.2

1.3

1.4

1.5

1.6

Figure 28. Water level contour (left) and cut section plot for VEM scheme (right).

Figure 29. Radial dam-break problem: 3D view of water level computed by VEM at: t = 1.0 s (upper); t =
2.5 s (lower).
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Figure 30. Radial dam-break problem: section view computed water level at: t = 1.0 s (upper); t = 2.5 s
(middle); t = 3.0 s (lower).
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(a) t = 1s

(b) t = 3s

(c) t = 5s

Figure 31. 2D Riemann problem: 3D views of computational flow pattern by VEM scheme at: t = 1.0 s (a);
t = 3.0 s (b); t = 5.0 s (c).
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(c) UEQ
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(e) VEM

Figure 32. 2D Riemann problem: contour plot of water depths (left) and velocity vector fields (right) for
different numerical schemes
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Figure 33. 2D Riemann problem: diagonal section water depth plot at t = 5s for different numerical schemes
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Figure 34. Tsunami wave impact on a conical island: computational domain, boundary conditions and
locations of selected gauges.
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(a) t = 9s

(b) t = 11s

(c) t = 13s

Figure 35. Tsunami wave impact on a conical island: 3D view of water depth and the bottom topography
calculated by UEQ scheme at: (a) t = 9s, (b) t = 11s and (c) t = 13 s.
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(a) VEM

(b) HOU

Figure 36. Tsunami wave impact on a conical island: 3D view of water depth and the bottom topography
calculated by VEM and HOU scheme without limitation for the velocity at 11.5 s: (a) VEM and (b) HOU.
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(a) Gauge 6
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(c) Gauge 16
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Figure 37. Tsunami wave impact on a conical island: time series of water level at 4 gauges.
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(e) VEM

Figure 38. Tsunami wave impact on a conical island: measured max run-up (blue lines) and computed dry
area (red dot).
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