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Abstract 

Background 

BOADICEA for breast cancer and the epithelial ovarian cancer (EOC) models included in the 

CanRisk tool (www.canrisk.org) provide future cancer risks based on pathogenic variants in 

cancer-susceptibility genes, polygenic risk scores, breast-density, questionnaire-based risk 

factors and family history. Here, we extend the models to include the effects of pathogenic 

variants in recently established breast cancer and EOC susceptibility genes, up-to-date age-

specific pathology distributions and continuous risk factors. 

 

Methods 

BOADICEA was extended to further incorporate the associations of pathogenic variants in 

BARD1, RAD51C and RAD51D with breast cancer risk. The EOC model was extended to include 

the association of PALB2 pathogenic variants with EOC risk. Age-specific distributions of 

oestrogen-receptor-negative and triple-negative breast cancer status for pathogenic variant 

carriers in these genes and CHEK2 and ATM were also incorporated. A novel method to 

include continuous risk factors was developed, exemplified by including adult-height as 

continuous. 

 

Results 

BARD1, RAD51C and RAD51D explain 0.31% of the breast cancer polygenic variance. When 

incorporated into the multifactorial model, 34-44% of these carriers would be reclassified to 

the near-population and 15-22% to the high-risk categories based on the UK NICE guidelines. 

Under the EOC multifactorial model, 62%, 35% and 3% of PALB2 carriers have lifetime EOC 

risks of <5%, 5-10% and >10% respectively. Including height as continuous, increased the BC 

relative-risk variance from 0.002 to 0.010. 

 

Conclusions 

These extensions will allow for better personalised risks for BARD1, RAD51C, RAD51D and 

PALB2 pathogenic variant carriers and more informed choices on screening, prevention, risk 

factor modification or other risk-reducing options. 
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Introduction 

Breast cancer (BC) and epithelial tubo-ovarian cancer (EOC) are two of the most common 

cancers in females1 2. Through mammography or other methods, screening for BC can reduce 

mortality, and organised screening is available in most developed countries3. For EOC, no 

effective screening exists, but the disease can be prevented by salpingo-oophorectomy. 

However, these preventative options are associated with adverse effects. Therefore, 

identifying those at increased risk may help to target screening and preventative options to 

those most likely to benefit4. Both BC and EOC risks are multifactorial diseases, with family 

history of cancer (FH), genetic factors and lifestyle, hormonal and reproductive risk factors 

(RF) all contributing to risk5-7. 

 

Previously we developed the BOADICEA (Breast and Ovarian Analysis of Disease Incidence 

and Carrier Estimation Algorithm) model for BC risk prediction and for the likelihood of 

carrying pathogenic variants (PVs) in BC susceptibility genes. BOADICEA v5 incorporates the 

effects of PVs in five BC susceptibility genes (BRCA1, BRCA2, PALB2, CHEK2 and ATM), the 

effects of known common genetic variants summarised as a polygenic risk score (PRS, 

accounting for ~20% of the polygenic variance), and a polygenic component that accounts for 

any residual familial aggregation8 9. We also developed a similar EOC model (Ovarian Cancer 

Model v1) that considers the effects of PVs in BRCA1, BRCA2, RAD51D, RAD51C and BRIP1 on 

EOC together with a PRS (accounting for ~5% of the polygenic variance) and a residual 

polygenic component10 11. BOADICEA includes mammographic density and both models 

incorporate the effects of known lifestyle, hormonal, reproductive and anthropometric RFs. 

In addition, the models incorporate breast tumour heterogeneity by considering the 

distributions of tumour oestrogen receptor (ER) and triple-negative (TN) (ER, progesterone 

receptor and human epidermal growth factor receptor 2 negative) status for BRCA1 and 

BRCA2 PV carriers and the general population12 13. Both models are freely available to 

healthcare professionals via the CanRisk webtool (www.canrisk.org), and are widely used by 

healthcare professionals14. 

 

Recently, large population-based and family-based targeted sequencing studies have 

established that PVs in RAD51C, RAD51D and BARD1 are associated with BC risk15 16 and that 

http://www.canrisk.org/
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PVs in PALB2 are associated with EOC risk17 18. In addition, analysis of the tumour 

characteristics in the BRIDGES study has provided age-specific estimates of the distributions 

of tumour characteristics for PV carriers in all established susceptibility genes19. 

 

A further limitation of the previous models is that all epidemiological RFs are treated as 

categorical. However, some RFs (e.g., height, body mass index (BMI) mammographic density) 

are intrinsically continuous, and discretisation results in a loss of information, reducing their 

predictive ability.  

 

Here we extend both models to explicitly model the effects of PVs in the recently established 

BC and EOC susceptibility genes and incorporate up-to-date age-specific pathology 

distributions. We present a methodological framework for incorporating continuous RFs into 

the model, and we demonstrate this by including height as a continuous variable. Finally, we 

describe updates to the population reference cancer incidence rates used in the models by 

incorporating more up-to-date incidences, incidences for additional countries and refining 

the derivation of birth-cohort specific incidences for inclusion in the models that address 

sparsity in the population incidence data.   

Methods 

Rare Moderate-Risk Pathogenic Variants 

Both BOADICEA and the EOC Model model cancer incidence as an explicit function of PVs in 

known high- and moderate-penetrance susceptibility genes (major genes) together with a 

polygenic component9-12 20-22. By using an explicit genetic model, they can account for both 

genetic testing and detailed FH. BOADICEA includes the genes BRCA1, BRCA2, PALB2, CHEK2 

and ATM, with dominance in that order, along with a BC susceptibility polygenic component. 

The EOC Model includes the genes BRCA1, BRCA2, RAD51D, RAD51C and BRIP1, with 

dominance in that order, along with an EOC susceptibility polygenic component. Details of 

the underlying model are included in the supplementary material.  The values of the 

parameters for the original models were determined by complex segregation analysis9 10. 

However, this was not possible for the extended versions since no sufficiently large data set 

containing all the model features was available. Instead, we adopted a synthetic approach23, 

in which additional model parameters are taken from large-scale external studies8 11 12 21.  
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Here, BOADICEA was extended to explicitly model the effects of PVs in BARD1, RAD51C and 

RAD51D (eight BC susceptibility genes), while the EOC model was extended to include PALB2 

(six EOC susceptibility genes). In both models, the effects of PVs were included as major genes 

and are parameterised by their allele frequency in the general population and their age-

specific relative risks (RR). The BC RR for carriers of PV in BARD1 was taken from the BRIDGES 

study15, while those for RAD51C and RAD51D were the meta-analysed values from Dorling et 

al15 and Yang et al24. The EOC RR for PALB2 PV carriers was taken from Yang et al17. The 

BRIDGES study15 suggested that the RR estimates associated with PVs in ATM are lower than 

the previously assumed estimate of 2.821 and it was therefore updated to the Dorling et al15 

estimate. The previously assumed RR estimates for PVs in BRCA1, BRCA2, PALB2 and CHEK28 

21 were based on large studies that enabled the estimation of age-specific risks, or were 

estimated as part of the BOADICEA model fitting process, and were not updated, except for 

the BRCA2 associated EOC RRs for ages 59 and over (supplementary material).  The PV carrier 

frequencies for PALB2, CHEK2 (including all PVs), ATM, BARD1, RAD51D, RAD51C and BRIP1 

and screening test sensitivities for all genes were derived from Dorling et al15. We used the 

BRIDGES study to derive these frequency estimates as it is a very large population-based 

dataset that includes targeted sequencing data. Frequencies were based on the control 

frequencies in European populations, adjusted for the assumed sensitivity of the sequencing 

and the fact that large rearrangements were not detectable (supplementary material). The 

default sensitivities were then calculated, assuming that clinical genetic testing will detect all 

known pathogenic mutations except for large rearrangements (except BRCA1 and BRCA2, 

where testing for large rearrangements is routinely done). All model parameters for PVs are 

given in Table 1. 

 

As the polygenic component captures all residual familial aggregation not explained by the 

major genes, the previous models implicitly included the contributions of PVs in the new 

genes (i.e., BARD1, RAD51C and RAD51D for BOADICEA and PALB2 for the EOC Model). 

Therefore, to avoid double counting their contribution, it was necessary to remove their 

contribution from the polygenic component by adjusting the log-RR per standard deviation 

of the polygenic component such that the total variance of the polygenic component and the 
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new genes is the same as that of the polygenic component of the previous model21 

(supplementary material).  

 

The association between PALB2 PVs and EOC was also included in the BOADICEA model, and 

the associations with male BC and pancreatic cancer have been included in both models17.  

 

The effects of PV in the new BC susceptibility genes on risk prediction were assessed by 

considering the risk categories described in the National Institute for Health and Care 

Excellence (NICE) familial BC guidelines25 for hypothetical women with different ages or family 

history. For lifetime risk (age 20 to 80 years), three categories are defined: 1) near-population-

risk, for risks less than 17%, 2) moderate-risk, for risks in the range [17%, 30%) and 3) high-

risk, for risks of 30% or greater. Reclassification was considered based on questionnaire-based 

RFs (QRF) (RFs other than mammographic density), mammographic density (MD, based on 

the BI-RADS system) and a polygenic risk score (PRS). The assumed distributions and RRs for 

QRFs and MD have been described in detail previously8 11. For BC, the PRS was taken to be 

the Breast Cancer Association Consortium 313 variant PRS, which accounts for 20% of the 

overall polygenic variance8 26. For EOC, we defined three risk categories based on lifetime 

risk27 28: 1) near-population-risk, for risks of less than 5%, 2) moderate-risk, for risks in the 

range [5%, 10%) and 3) high-risk, for risks of 10% or greater, and reclassification was 

considered based on RFs and a PRS. For EOC, the PRS was taken as the Ovarian Cancer 

Association Consortium 36 variant PRS, which accounts for 5% of the overall polygenic 

variance11 29. 

 

Updates to Tumour Pathology 

Both models incorporate data on BC tumour pathology, specifically ER and TN. The 

distribution of pathology for affected carriers of PVs differs substantially from that in non-

carriers for several genes, so that pathology data can affect the carrier probabilities and hence 

cancer risks11 12. In BOADICEA and the EOC model, breast tumours are classified into five 

groups based on ER and TN status: ER unknown, ER-positive, ER-negative/TN unknown, ER-

negative/not TN, and TN. Previously, the models achieved this using age-dependent 

distributions in the general population and BRCA1 and BRCA2 PV carriers and an age-
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independent distribution for CHEK2 PV carriers12 21. Due to a lack of data, the tumour ER 

distribution for carriers of PV in other genes was assumed to be the same as the general 

population. Here, the models have been updated to incorporate age-dependent ER and TN 

tumour distributions for carriers of PVs in the BC susceptibility genes PALB2, CHEK2, ATM, 

BARD1, RAD51C and RAD51D, using data from BRIDGES19. 

 

Continuous Risk Factors 

The previous versions of the models included reproductive, lifestyle, hormonal and 

anthropometric RFs8 11. One limitation of these models was that the RFs needed to be coded 

as categorical variables. Some RFs are naturally continuous, requiring prior discretisation to a 

finite number of categories, resulting in some loss of information and reduction in risk 

discrimination. Here, the methodology was extended to allow the inclusion of continuous risk 

factors.  

 

The key challenge is to calculate the baseline incidences 𝜆𝜆0(𝑡𝑡) in equation (1) (supplementary 

material) from the population incidence and the risk factor distributions. The baseline 

incidences are calculated sequentially for each age 𝑡𝑡 (considered discrete) using the values at 

age 𝑡𝑡 − 1, starting from age 0, requiring the evolution with age of the probability distribution 

of those who are disease-free 30. For discrete factors/genes, this involves summing over all 

possible categories/genotypes, but for continuous factors/genes, it would involve integrating 

over all possible values. In principle, these integrals could be computed (either analytically or 

numerically). However, at each age, the number of terms in the integrand increases by a 

factor of 2, so by age 80, there are >1024 terms, with evaluation becomes impracticable. 

Alternatively, the risk factor could be discretised into a very large number of categories. This 

would give a very close approximation to the continuous distribution, but (particularly once 

multiple risk factors are considered, as here) the large number of categories would also make 

the calculations impractical. Instead, we propose an alternate approach in which the 

continuous factors are discretised with categories adapted according to the observed RF. The 

approach is as follows: 
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1. Firstly, discretise the range of possible risk factor values into a finite number (𝑛𝑛) of 

bins and calculate the probability mass and RR for each bin from the probability 

density and RR function for the continuous RF. This part is identical to the standard 

approach for discretising risk factors, used in the existing models8. For a risk factor, 𝑥𝑥, 

with probability density 𝑃𝑃(𝑥𝑥) and relative risk 𝑅𝑅𝑅𝑅(𝑥𝑥) the probability mass for bin 𝑖𝑖 

with range [𝑙𝑙𝑖𝑖,𝑢𝑢𝑖𝑖] is: 

                                                            𝑃𝑃(𝑖𝑖) =  � 𝑃𝑃(𝑥𝑥)

𝑢𝑢𝑖𝑖

𝑙𝑙𝑖𝑖

𝑑𝑑𝑑𝑑,                                                      (1) 

and the corresponding RR is 

                                                𝑅𝑅𝑅𝑅(𝑖𝑖) =
1

𝑃𝑃(𝑖𝑖)
� 𝑅𝑅𝑅𝑅(𝑥𝑥) 𝑃𝑃(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑢𝑢𝑖𝑖

𝑙𝑙𝑖𝑖

.                                        (2) 

2. Create an additional (𝑛𝑛 + 1)𝑡𝑡ℎ bin based on the individual’s measured risk factor 

value that has an infinitesimal width. The RR for this bin is taken as the RR at the 

measured value, and it has zero mass. As this bin is infinitesimal, its overlap with the 

other bins is zero, so there is no double-counting. 

 

This procedure creates a categorical risk factor with 𝑛𝑛 + 1 categories, where the individual is 

assigned to the (𝑛𝑛 + 1)𝑡𝑡ℎ category defined in step 2. This allows the exact value of the risk 

for the individual to be used, while the number of categories required to compute the 

baseline rates is fixed, limiting the computation time.  

 

The accuracy of the approximation in the procedure relies on the assumption that the range 

of values within each bin have similar RRs, which should be reflected in the choice of 

discretisation scheme and the number of bins 𝑛𝑛. These choices will depend on the shape of 

the distribution and the RR function. 

 

The above procedure can be applied to any risk factor distribution or RR function. However, 

the process assumes that an individual’s position within the distribution is fixed with respect 

to age, although the value of the risk factor and RR may vary with age. Here, the method was 

applied to height.  
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Updates to Population Incidences 

The baseline incidences in equation (1) are birth-year and country specific as a consequence 

of using birth-year and country-specific population incidences in the constraining process. We 

refined the derivation of cohort-specific population incidences to account for variability in the 

incidences due to small numbers. In addition, we have updated existing incidences in the 

model to include more recent calendar periods and adapted the model to utilise cancer 

incidence from four new populations: the Netherlands, France, Slovenia and Estonia. Details 

are included in the supplementary material. 

 

Results 

Rare Moderate-Risk Pathogenic Variants 

Table 1 summarises the models’ genetic parameter estimates, including those for the new 

genes. The estimated cumulative age-specific BC risks for BARD1, RAD51C and RAD51D PV 

carriers in BOADICEA and EOC risks for PALB2 carriers, assuming the UK incidences applicable 

to those born in the 1980s, are shown in figure 1. The estimated average lifetime BC risks for 

PV carriers are 24%, 22% and 21% for BARD1, RAD51C and RAD51D PV carriers, respectively. 

The estimated lifetime EOC risk for PALB2 carriers is 5.0%. Based on the assumed allele 

frequencies, 0.22% of the population carry PV in the genes BARD1, RAD51C or RAD51D, and 

these explain on average 0.31% of the female BC polygenic variance (averaged over all ages 

and cohorts, weighted by the age- and cohort-specific BC incidences). Approximately 0.13% 

of the population carry PVs in PALB2, explaining 0.16% of the EOC polygenic variance and 

2.5% of the male BC polygenic variance.  

 

Figure 2 (a)-(f) and Supplementary Table s1 show the distributions of lifetime BC risks for 

carriers of PVs in BARD1, RAD51C and RAD51D for a female with unknown FH and a female 

whose mother is affected at age 50 based on PV carrier status alone and including QRF, MD 

and a PRS. Based solely on PV carrier status, all females with unknown FH would be classified 

as at moderate risk. When information on QRF, MD or PRS is known, there is significant 

reclassification to near-population and high-risk categories, which is greatest when all factors 

are used in combination. For example, based on lifetime BC risks and using the full 
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multifactorial model incorporating QRF, MD and a PRS, 33.9% of BARD1 PV carriers with 

unknown FH would be reclassified from moderate-risk to near-population-risk, and 21.9% 

would be reclassified to high-risk (Supplementary Table s1). Similarly, BARD1 PV carriers with 

an affected first-degree relative would be considered high-risk (risk of 33.7% by age 80) based 

on family history and PV status alone. Incorporating the other risk factors would reclassify 

12% as near-population risk and 40.2% as moderate-risk (Supplementary Table s1).  

 

Figure 2 (g) and (h) and Supplementary Table s2 show the distribution of lifetime EOC risks 

for carriers of PVs in PALB2 for a female with unknown FH and a female whose mother is 

affected at age 50, as a function of the RFs and PRS. For a PALB2 carrier with unknown FH, 

when the RFs and PRS are considered jointly, 62.4% are classified as near-population-risk, 

34.9% as moderate-risk, and 2.7% as high-risk. The corresponding proportions with an 

affected mother are 11.2%, 55.8%, and 33%, respectively. However, even among PALB2 

carriers with an affected mother, 97.5% will have risks of less than 3% by age 50 

(Supplementary Table s2).  

 

Tumour Pathology 

Figure 3 and Supplementary Tables s3 and s4 show the age-specific distributions of ER-

negative tumours and TN tumours among ER-negative tumours used in the models for PALB2, 

ATM, CHEK2, BARD1, RAD51C and RAD51D PV carriers based on the BRIDGES data19. BARD1, 

RAD51C and RAD51D PV carriers predominantly develop ER-negative BCs, and the 

proportions decrease with increasing age. On the other hand, CHEK2 and ATM carriers 

primarily develop ER-positive BCs, and the proportion of ER-positive tumours increases with 

age. Among those with ER-negative tumours, most tumours are TN for PV carriers in all genes, 

except CHEK2 carriers, in whom the majority are ER-negative but not TN.   

 

Using the updated age- and gene-specific ER-negative and TN tumour status distributions 

resulted in differences in the predicted overall and gene-specific carrier probabilities by 

different tumour pathology and age (Figure 4). For ATM, the carrier probabilities for ER-

negative tumours are reduced relative to previous estimates, reflecting the stronger 

association with ER-positive disease. Carrier probabilities for CHEK2 now show a decline with 
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age for ER-negative tumours (previously, this was only predicted for ER-positive disease). The 

carrier probabilities for PALB2 remain similar to previous estimates. For the new genes 

BARD1, RAD51C and RAD51D, the carrier probabilities are, as expected, higher for ER-

negative and TN disease, but there is little variation by age. 

 

Continuous Risk Factors 

As previously, adult female height was assumed to be normally distributed with mean 

162.81cm and standard deviation 6.452cm, and be associated a log-RR per standard 

deviation, for both breast and ovarian cancer, of 0.101308 11. We therefore discretised the 

normal distribution such that the probability masses of the bins were given by a binomial 

distribution 𝐵𝐵(𝑛𝑛 − 1, 1
2
), giving sufficient discretisation to adequately capture the tails of the 

distribution. We examined the relative discretisation error of the predicted lifetime risk as a 

function of the number of bins (Figure 5 e and f) and chose 𝑛𝑛 = 5, as the lowest number of 

bins such that the root-mean-square relative error was less than 10−4. Compared to the 

discrete (five-level) RF, the variance of the RR of both BC and EOC increased from 0.002 to 

0.010 when height was included as a continuous RF. The effects on predicted lifetime risks 

are shown in Figure 5 (a)-(d). Under the continuous implementation here, the lifetime BC risk 

varied from 9.7% for the first percentile to 14.6% for the 99th, whereas under the previous 

discrete distribution, the risks range from 10.1% to 14.2%.  

 

Discussion 

This work has extended the multifactorial BOADICEA BC and EOC risk prediction models 

(BOADICEA v6 and the Ovarian Cancer Model v2), employing a synthetic approach23. The 

explicit effects of PVs in RAD51C, RAD51D, BARD1 and PALB2, which have now been 

established as BC and/or EOC susceptibility genes15 16 17 and are commonly included on cancer 

gene panels, are now included in the models. The models have also been extended to 

accommodate continuous RFs, and parameterisation of tumour pathology and cancer 

incidence have been updated with more recent data. These represent the most 

comprehensive models for BC and EOC and will allow more complete BC and EOC risk 

assessment of those undergoing gene-panel testing. In a separate study, the BOADICEA v6 
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breast cancer model presented here, has been validated in an independent prospective study 

of 66,415 women attending mammographic screening in Sweden. The full model, including 

RFs, mammographic density, PRS and PVs in BRCA1, BRCA2, PALB2, CHEK2, ATM, BARD1, 

RAD51C and RAD51D was well calibrated overall (calibration slope 0.97 (95%CI:0.95-0.99) and 

in deciles of predicted 5-year risks; and had a C-index of 0.71(95%CI:0.68-0.74) for 

discriminating between affected and unaffected women [Yang et al, under review].   

 

By explicitly modelling the effects of PVs in the new cancer susceptibility genes, the models 

provide personalised cancer risks of PV carriers when combined with QRFs, MD and PRS. 

Although the numbers affected by these changes will be small at population level, for 

individuals with RAD51C, RAD51D an BARD1 PVs and their families, the updated risks will be 

clinically important. RAD51C, RAD51D and BARD1 (like ATM and CHEK2) would be classified 

as “moderate risk” BC genes based on the average risks15. However, according to the 

BOADICEA predictions, over half (56-59%) of carriers of PVs in these genes in the population 

would be reclassified from moderate BC risk category to either near-population-risk (34-44%) 

or high-risk (15-22%), if data on the other risk factors were incorporated (Table s1). Such 

changes may have important implications for discussions around earlier or more frequent 

screening or on risk-reduction options for these women. Similarly, based on the multifactorial 

EOC model ~38% of PALB2 PV carriers will have lifetime EOC risks of >5% (Table s2), which 

may influence recommendations on the timing of risk-reducing surgery.   

 

As previously, the models assume that the effects of the PVs in the new genes interact 

multiplicatively with the PRS and the RFs. No studies have yet assessed the joint effects of 

PVs in these genes and the PRS or RFs. Previous results for CHEK2 and ATM suggest that the 

multiplicative model holds true for earlier versions of the PRS31-33. Unlike CHEK2 and ATM, 

however, the new genes predispose more strongly to ER-negative disease, and the combined 

effect may depart from the multiplicative assumption. Demonstrating this explicitly for the 

new genes will be challenging given the rarity of the mutations. The multiplicative model has 

also been shown to be reasonable for the combined effects of PRS and RFs34, but there is as 

yet no large-scale evaluation of the combined effects of PVs and RFs. However, recent 

prospective validation studies of the current and previous versions of the models suggest 

that, overall, the models fit well11[Yang et al. under review]. Should deviations from the 
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multiplicative model between these PVs and RFs emerge, the model can be updated to take 

them into account.  

 

Both the BC and EOC models incorporate PVs' effects using the estimated population allele 

frequencies and RRs. These are combined with reference population incidences to calculate 

absolute risks while constraining the overall incidences over the RFs included in the model. 

Our implementation used RR and allele frequency estimates from the largest available studies 

on those of European ancestry15. These were assumed to be constant across all countries. 

Available data are currently too sparse to obtain country-specific estimates. Although there 

is no evidence that RRs vary among populations, the allele frequencies are likely to vary to 

some extent 15. This is most apparent for CHEK2, where the founder c.1100delC variant 

(p.Thr367Metfs*15) is common in northwest Europe with carrier frequencies between 0.3% 

to 1.2%35 and explains the majority of carriers but is rare or absent in other populations. If 

population-specific variant frequencies can be generated, the model can be easily updated to 

accommodate these. Nevertheless, by allowing population incidences to vary by country, the 

predicted absolute risks given by the models are country-specific.  

 

The updated age-specific distributions of tumour ER and TN status for six of the BC 

susceptibility genes in the model (PALB2, CHEK2, ATM, BARD1, RAD51C and RAD51D) should 

allow better differentiation between PVs that may be present in a family and provide age- 

and gene-specific mutation carrier probabilities consistent with the prevalence of PVs 

observed in Mavaddat et al19. We note however that estimates are more uncertain at very 

young and very old ages, where the data are sparse, and more extensive validation may be 

required in these age-groups. Since PV carrier probabilities are used internally in the models, 

these will also impact the predicted absolute risks for all unaffected individuals if information 

on tumour characteristics is available for affected relatives whether or not they carry a PV. 

 

We have developed a novel methodological approach for including continuous RFs into the 

models. We demonstrated this by including height in both the BC and EOC models, allowing 

for more nuanced predictions and improving the risk discrimination. While the resulting 

discrimination based on height alone is modest, the framework will allow other more 

predictive RFs to be included in the model if accurate risk estimates become available. The 
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most important example is MD: continuous measures of MD, available through tools such as 

STRATUS, CUMULUS and Volpara36-38, have been shown to have stronger associations with 

BC risk than the categorical BI-RADS system. Other examples include BMI and ages at 

menarche and menopause. Further, the method could be applied to the joint distribution of 

several continuous risk factors, where the integrals in equations (1) and (2) become 

multidimensional integrals.  

 

We have further refined the method for creating cohort incidences from calendar period 

incidences (supplementary material). The approach provides incidences that are less sensitive 

to year-on-year fluctuations by averaging over all years in the birth cohort. This method is 

particularly useful for cancers with low incidences, such as EOC and male BC, where the 

population size is small, and there is no prior averaging over calendar years. The refinement 

will have little effect on incidences from larger countries. 

 

Our models have certain limitations. No single dataset containing all the required information 

was available to construct the multifactorial models, so the models were extended via a 

synthetic approach. The new model parameters were taken from extensive, well-designed 

published studies together with existing parameters from model fitting9 10. We and others 

have used this approach for developing previous versions of the models8 11 12 21 39 40, which 

have been shown to provide clinically valid predictions41 42[Yang et al, under review]. As is the 

case for the previous versions, the updates presented here are primarily based on studies of 

those of European ancestry in developed countries. There is little evidence that the RRs 

associated with PVs differ by ancestry. The PV frequencies are also broadly similar across 

populations, except for specific founder mutations and CHEK2 PVs, which have a much higher 

frequency in European than non-European populations. However, other parameters in the 

model, including RF and PRS distributions, will differ by population, and the model will need 

to be adapted for use in non-European ancestry populations and developing countries. The 

synthetic approach presented here allows the model to be easily customised to other 

populations as better estimates become available43 44. Although we used the associations 

between PVs and tumour ER and TN status, the models do not currently consider the 

associations with intrinsic BC subtypes based on combinations of ER, progesterone receptor, 

HER2 and/or grade19. The methodology described here could be used to further extend the 
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models to consider these BC subtypes. Finally, the models make the simplifying assumption 

that PVs in the assumed BC and EOC susceptibility genes are associated with similar risks to 

those for truncating variants. These would include missense variants which have similar risks 

to truncating variants. However,  there is evidence that missense variants 

in CHEK2 and ATM are associated with BC risk, which may be different from the risks for 

truncating variants45. The models would not be applicable to carriers of such variants.  

 

The new model features have been built on the established and well-validated BOADICEA and 

EOC models8 11 41. The updated models will allow for more personalised risk assessment and 

can help guide decisions on screening, prevention, risk factor modification or other risk-

reducing options. The models presented are now  available for use by healthcare 

professionals through the user-friendly CanRisk webtool (www.canrisk.org, CanRisk version 

2).  

http://www.canrisk.org/
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Figure Legends 
Figure 1: Predicted risk by age Vs age for a female born in 1985 with an unknown family 

history based on pathogenic variant carrier status for the new genes in the model. Figure (a) 

shows the breast cancer risk for carriers of pathogenic variants in BARD1, RAD51C and 

RAD51D along with the population risk. Figure (b) shows the ovarian cancer risk for carriers 

of pathogenic variants in PALB2 along with the population risk. Predictions are based on UK 

cancer incidences. 

 

Figure 2. Predicted lifetime cancer risks (from age 20 to 80 years) for a female born in 1985 

with a pathogenic variant in BARD1 (breast cancer risk), RAD51C (breast cancer risk), RAD51D 

(breast cancer risk), and PALB2 (ovarian cancer risk) on the basis of the different predictors 

of risk (pathogenic variant status (PV), questionnaire-based risk factors (QRFs), 

mammographic density (MD), and PRS). All figures show the probability density against the 

absolute risk. Figures (a), (c), (e) and (g) show risks for a female with unknown family history, 

while Figures (b), (d), (f) and (h) show risks where the individual’s mother has had cancer at 

age 50. The backgrounds of the graphs are shaded to indicate the risk categories. For breast 

cancer, these are the categories defined by the National Institute for Health and Care 

Excellence familial breast cancer guidelines25: 1) near-population risk shaded in pink (<17%), 

2) moderate risk shaded in yellow (≥17% and <30%) and 3) high risk shaded in blue (≥30%). 

For ovarian cancer, the categories are: 1) near-population risk shaded in pink (<5%), 2) 

moderate risk shaded in yellow (≥5% and <10%) and 3) high risk shaded in blue (≥10%). 

Predictions were based on UK cancer incidences. The line labelled population denotes the 

average population risk in the absence of knowledge of family history, pathogenic variant 

status, RFs or a PRS. All figures assume the population distributions of QRFs and MD. 

 

Figure 3.  The tumour pathology proportions in the general population and among carriers of 

pathogenic variants (PV) in the breast cancer (BC) susceptibility genes included in the 

BOADICEA model. Figure (a) shows the proportion of oestrogen receptor-negative (ER-) 

tumours among all tumours, and Figure (b) shows the proportion of triple-negative (TN) (ER-

, progesterone receptor-negative and human epidermal growth factor receptor 2) tumours 

among ER- tumours. The general population, BRCA1 PV and BRCA2 PV values are the same as 
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previously used in the model12, while those for the other genes are updated using recent 

BRIDGES data19.  

 

Figure 4: The probabilities of carrying a pathogenic variant estimated by BOADICEA in the 

genes PALB2, CHEK2, ATM, BARD1, RAD51C and RAD51D for an affected female born in 1985 

as a function of her age at diagnosis based on different tumour pathology. Figures (a), (c), (e) 

and (g) show the probabilities based on the updated proportions (current model), while 

figures (b), (d), (f) and (h) are based on the previously assumed tumour pathology proportions 

(previous model version)  and where proportions for BARD1, RAD51C and RAD51D, which 

were not in the previous model, are assumed to be the same as in the general population. In 

figures (a) and (b), the female has had an oestrogen receptor-positive (ER+) tumour; in figures 

(c) and (d), the female has had an oestrogen receptor-negative (ER-) tumour, but the triple-

negative (TN) status is unknown; in figures (e) and (f), the female has had an ER- tumour that 

is not TN and in figures (g) and (h), the female has had a TN tumour. Predictions are based on 

UK cancer incidences. 

 

Figure 5. Predicted lifetime breast and ovarian cancer risks as a function of height for a female 

born in 1985 with unknown family history, comparing the updated model, where height is 

treated as continuous, to the previous model, where height was treated as categorical. 

Figures (a), (c) and (e) show breast cancer, while Figures (b), (d) and (f) show ovarian cancer 

risks. Figures (a) and (b) show the predicted risk as a function of height, while Figures (c) and 

(d) show the probability density/mass of risk as a function of height. Predictions are based on 

UK cancer incidences. Figures (e) and (f) show the log (base 10) of the root-mean-squared 

relative discretisation error as a function of the number of bins. The error was taken to be the 

absolute difference between the value and the asymptotic extrapolation of the 

measurements as a function of the number of bins. The average is taken over 100 heights 

that are spaced 1% apart, from 0.5% to 99.5%. 
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Table 1. The parameters used to include the effects of rare high- and intermediate-risk pathogenic variants in the models. 

 
“Allele Freq” is the pathogenic variant allele frequency in the general population, SS is the screening sensitivity, RR is the relative risk, relative to 
the general population and EOC is epithelial tubo-ovarian cancer. The BOADICEA model includes the effects of BRCA1, BRCA2, PALB2, CHEK2, 
ATM, BARD1, RAD51C and RAD51D, while the EOC Model includes the effects of BRCA1, BRCA2, RAD51D, RAD51C, BRIP1 and PALB2. The updated 
parameters are the allele frequencies for PALB2, CHEK2, ATM, RAD51C, RAD51D, BRAD1 and BRIP115, the SS for pathogenic variants in for all 

GENE  
ALLELE  
FREQ SS 

RR OF FEMALE  
BREAST CANCER (95% CI) 

RR OF 
EOC (95% CI) 

RR OF MALE 
BREAST CANCER (95% CI) 

RR OF 
PROSTATE  
CANCER 

RR OF 
PANCREATIC 
CANCER (95% CI) 

BRCA1 

BOADICEA 
0.0006394 
 
EOC Model 
0.0007947  

0.89 

1 age < 20
exp(3.0146 + 0.02412 × age) 20 ≤ age ≤ 29
exp(6.0707 − 0.07775 × age) 30 ≤ age ≤ 39
exp(4.2511 − 0.03226 × age) 40 ≤ age ≤ 49
exp(4.2086 − 0.03141 × age) 50 ≤ age ≤ 79

 

1 age < 30
exp(−3.55 + 0.1986 × age)    30 ≤ age ≤ 39
exp(7.1776 − 0.06959 × age) 40 ≤ age ≤ 49
exp(4.5236 − 0.01651 × age) 50 ≤ age ≤ 79

 8 
1.82 age < 65
0.84 age ≥ 65 

3.10 age < 65
1.54 age ≥ 65 

BRCA2 

BOADICEA 
0.00102  
 
EOC Model 
0.002576 

0.96 

1 age < 20
exp(3.2153 − 0.008815 × age) 20 ≤ age ≤ 29
exp(4.28945 − 0.04462 × age) 30 ≤ age ≤ 39
exp(3.96865 − 0.0366 × age)   40 ≤ age ≤ 49
exp(1.8169 + 0.006435 × age) 50 ≤ age ≤ 59
exp(−0.2606 + 0.04106 × age) 60 ≤ age ≤ 69

13.0991 70 ≤ age ≤ 79

 

1 age < 40
exp(−9.708 + 0.2427 × age)    40 ≤ age ≤ 53
exp(6.50334 − 0.05751 × age) 54 ≤ age ≤ 57

exp(11.3175 − 0.140513 × age) 58 ≤ age ≤ 69
4.4 70 ≤ age ≤ 79

 80 
7.33 age < 65
3.39 age ≥ 65 

5.54 age < 65
1.61 age ≥ 65 

PALB2 0.00064 0.92 

1 age < 20
9.1 20 ≤ age ≤ 24
8.97 25 ≤ age ≤ 29
8.85 30 ≤ age ≤ 34
8.54 35 ≤ age ≤ 39
8.02 40 ≤ age ≤ 44
7.31 45 ≤ age ≤ 49
6.55 50 ≤ age ≤ 54
5.92 55 ≤ age ≤ 59
5.45 60 ≤ age ≤ 64
5.10 65 ≤ age ≤ 69
4.82 70 ≤ age ≤ 74
4.56 75 ≤ age ≤ 79

 
1 age < 30

2.91 (1.40 − 6.04) age ≥ 30 
1 age < 30

7.34 (1.28 − 42.18) age ≥ 30 1 
1 age < 30

2.37 (1.24 − 4.50) age ≥ 30 

CHEK2 0.00373 0.98 
1 age < 20

exp(1.605325 − 0.0148367 × age) age ≥ 20 1 1 1 1 

ATM 0.0018 0.94 2.10 (1.17 − 2.57) 1 1 1 1 
BARD1 0.00043 0.89 2.09 (1.35 − 3.23) 1 1 1 1 

RAD51C 0.00035 0.78 1.97 (1.48 − 2.62) 
1 age < 30

exp(−1.7974 + 0.07631 × age) 30 ≤ age < 60
exp(9.7592 − 0.1163 × age)      age ≥ 60

 1 1 1 

RAD51D 0.00035 0.86 1.82 (1.34 − 2.47) 
1 age < 30

exp(−2.88662 + 0.09656 × age) 30 ≤ age < 58
exp(5.99144 − 0.05651 × age)   age ≥ 58

 1 1 1 

BRIP1 0.00071 0.95 1 3.41 (2.12 − 5.54) 1 1 1 
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genes 15, the RR for female breast cancer for ATM, BARD1, RAD51C and RAD51D 15 24, and the EOC, male breast cancer and the pancreatic cancer 
RRs for PALB217. All other parameters are as previously published8-11 21.  
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Supplementary Material 
Pathogenic Variants in Cancer Susceptibility Genes 

 
Model definition 
The BOADICEA and epithelial tubo-ovarian cancer (EOC) models assume that the cancer 
incidences for individual ! at age ", #(")("), depend on their underlying genotype through a 
model of the form: 

						#(")(") = #$(")	exp+ , -+.%&'(") +,0()*'(") ∙ 2()*
(")

*
34561 − 9+

("):	9'
(");

',-

+.-
<

/!"0-

'.-

+ .1&(")	=1
(")3,																																																																																																											(1) 

where #$(") is the baseline incidence (applicable to a non-PV carrier with a zero polygenotype 
and unknown RFs). ?%&  is the number of major genes present in the model, which for the 

previous versions of both models was five. 9'
(") are indicator variables for the 

presence/absence of a PV in a major gene in person !, taking values 1 if a PV is present and 0 
otherwise with A = 1,… ,?%&  representing the genes present in the model in the dominance 

order and A = ?%& + 1 corresponding to non-carriers of PVs, where 9/!"0-
(") = 1 for non-

carriers of any PV and 0 otherwise. The cancer incidences associated with homozygous and 
heterozygous carriers of PVs in each gene are assumed to be the same, and the risk to carriers 
of PVs in more than one gene is assumed to be that of the higher-ranked PV in the dominance 
order. Because PVs are rare, this model can be well approximated by assuming a single locus 
with ?%& + 1 alleles, one representing the presence of a PV in each of the ?%&  genes and an 
additional wild-type allele representing absence of PVs in all genes1. .%&'(") represent the 
age-specific log-relative risks (log-RRs) associated with the major genes relative to the 
baseline incidence. The relative risks (RR) assumed for the major genes are summarised in 

Table 1. =1
(") is the polygenotype for individual	!, assumed normally distributed in the general 

population with mean 0 and standard deviation 1, and .1&(") is the age-specific log-RR per 
standard deviation associated with the polygene, relative to the baseline incidence2 3. When 
a PRS is known, the polygenotype is decomposed into an observed and residual component 
where the observed component is given by the PRS4. C indexes the RFs that are present in the 
model, which are modelled as categorical factors. 0()*'(") is the vector (length D* − 1	were 
D* is the number of categories for RF C, with one category being the baseline) of age-specific 

log-RRs associated with RF C, which may depend on the major genotype A, and 2()*
(")  is the 

corresponding vector of indicator variables (0 or 1) that indicate the category of RF C for 
individual ! (1 for the observed category, 0 otherwise, with all elements 0 for the baseline). 
The baseline incidences #$(") are determined so that the total age-specific incidences, 
summed over the RFs and genotypes, agree with the population incidence (given the assumed 
population distributions and RRs)2 5. The population incidences are birth-cohort and country-
specific, but this dependence is omitted from equation (1) for clarity of notation. The RRs and 
distributions of the RF have been described elsewhere4 6. To allow appropriately for missing 
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RF information, only those RFs measured on a given individual are considered (thus, the 
baseline incidence, #$(") are determined for each individual dependent on their measured 
RFs).  
 
The models assume that RRs associated with PVs in the major genes are log-additive 
(multiplicative) with the RFs and the polygenic component. The model also assumes that the 
PVs and the PRS combine multiplicatively (conditional on other factors).  
 
The models evaluate pedigree likelihoods using the MENDEL software7. As MENDEL considers 
only finite discrete genotypes, the polygenotype is approximated by the hypergeometric 
polygenic model 1 5 8. 
 
Both models consider family history of breast cancer (BC), EOC, pancreatic cancer (PaC) and 
prostate cancer (PrC). The incidences of each cancer are assumed independent, conditional 
on the genotypes and RFs in the model. In BOADICEA, EOC, PaC and PrC are assumed to 
depend only on the major genotype. Correspondingly, in the EOC model, BC, PaC and PrC are 
assumed to depend only on the major genotype. 
 

Adjusting the residual polygenic component after the inclusion of new major genes 
The variance due to PVs in each gene at age " is given by: 

EFG(", A) = log+
K1 − L'M

2 + L'K2 − L'M	exp(2	.%&'("))

6K1 − L'M
2 + L'K2 − L'M	exp(.%&'(")):

23, 

where L' is the population allele frequency of gene A; the variance components are assumed 
to be additive. This process also considered the updated RR and PV frequencies for the 
previously included genes.  For BOADICEA, the overall BC polygenic variance was 4.83 −
0.5961 × " for females and 1.4 for males, while for the EOC model, the overall EOC polygenic 
variance was 1.434 2 3. 
 

Allele Frequencies 
Allele frequencies for all genes, except BRCA1 and BRCA2, were taken from the BRIDGES study 
9. The frequencies were based on the frequency of protein-truncating variants in European 
ancestry controls. To account for the incomplete sensitivity of the sequencing as performed 
in BRIDGES, the frequencies were adjusted by dividing by WX(1 − E), where W is the proportion 
of the coding sequence of each gene determined to be callable, X is the proportion of variants 
in the called sequence across all genes that were detected (estimated to be 0.957), and E is 
the proportion of the pathogenic variants expected to be copy variants. For CHEK2, the 
adjustment was applied to variants excluding c.1100delC. Details are given in the 
Supplementary Material of Dorling et al.9. For BRIP1, E was assumed to be 0.05. The BRCA1 
and BRCA2 frequencies from the previous versions of BOADICEA and the EOC model were 
used for consistency. 
  

Sensitivities 
The default sensitivities are based on the assumption that protein truncating variants and 
known pathogenic missense variants are detected with close to 100% sensitivity in clinical 
tests but that, except for BRCA1 and BRCA2, large rearrangements are not detected. The 
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sensitivities are therefore given by 1 − E, as above. For BRCA1 and BRCA2, sensitivities were 
defined by assuming that the main source of insensitivity was missense variants not classified 
as pathogenic – the frequencies of these variants have been estimated by Dorling et al10. Were 
large re-arrangements not tested for, the corresponding sensitivities for BRCA1 and BRCA2 
would be reduced to ~76% and 95% respectively (owing the much higher frequency of large 
re-arrangements in BRCA1). 
 

BRCA2: ovarian cancer relative risks updates 
Previous estimates of the EOC relative risks for BRCA2 PV carriers were obtained during the 
BOADICEA model fitting process, using complex segregation analysis in families with BRCA2 
PVs2. This involved fitting models in which the log-relative risks were piecewise linear 
functions of age. Due to the very small number of EOCs diagnosed in ages 65 years and over 
in the original dataset, the RR was estimated to decrease rapidly from 23.7 at age 58, to 1.59 
at age 69 and remain constant at that level thereafter. However, more recent data suggest 
that the EOC RRs for ages 70 and over are higher11. The original RR estimate of 1.59 may result 
in an underestimation of risks for older BRCA2 carriers.  We therefore updated the log-RR 
function included in the model by re-deriving the piecewise log-RR linear function such that 
the EOC RR decreases less rapidly from 23.7 at age 58 to 4.4 for ages 70 and over. The RR=4.4  
estimate used for ages 70 and over was obtained from a prospective cohort analysis of BRCA2 
PV carriers11.  
 
The updated log-RR EOC parameters for ages 58 and over for BRCA2 carriers are shown in 
Table 1 and the resulting age-specific EOC cumulative risks are shown in Figure s3. 
    

Population Incidences 
The BOADICEA and EOC models both allow population customisation via population-specific 
incidences4 6 12. Here the models are extended with incidences from the Netherlands, France, 
Slovenia and Estonia. Incidences for the Netherlands were taken from Statistics Netherland 
for 1950-1988 and the Netherlands Cancer Registry for 1989-2017, where BC incidences 
exclude ductal carcinomas in situ, as these are not included in the models 13 14. Incidences for 
France were taken from CI5Plus and CI5 for 1977-1989 using nine registries and from 
INCa/Santé Public France for 1990-2018 15-17. Incidences for Slovenia covering 1961-2016 
were taken from the Slovenian Cancer Registry 18. Incidences for Estonia covering 1968-2018 
were taken from the Estonian National Institute for Health Development 19. Predicted lifetime 
breast and EOC risks using these incidences are shown in Figure s1. 
 
Incidences for some of the existing regions were updated using data from more recent 
calendar years. For the UK, incidences covering 2011-2017 were added 20. For Denmark, 
Finland, Iceland, Norway and Sweden, incidences covering 2011-2018 were added 21 22. For 
Australia, incidences covering 2011-2017 were added 23.  For the USA, incidences covering 
2013-2018 from 21 registries were added 24. For New Zealand, incidences covering 2010-2018 
were added 25 26. For Canada, incidences covering 2011-2018 were added 27. Figure s2 (a) 
shows the updated incidences' effects on the cohort incidences for UK female breast cancer 
incidences for those born in the 1980s. 
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The models use calendar-specific population incidences to calculate cohort-specific 
incidences 2, where the cohorts are defined by decadal birth year ranges (1910-1919, 1920-
1929, 1930-1939, 1940-1949, 1950-1959, 1960-1969, 1970-1979 and 1980-1989 with 
individuals born before/after the first/last cohort, assumed to have the same incidences as 
the first/last cohort). The original model used UK incidences from CI5, which reported 
calendar incidences averaged in 5-year calendar-period bins 2 15. Cohort incidences were then 
taken as those for someone born in the middle year of each range to represent that cohort 
(1915 for 1910-1919 etc.). However, some of the other regions have smaller populations and 
report annual-calendar-period specific incidences. For these populations, especially for 
cancers with low incidences (e.g., EOC and male BC), using a single year to represent the 
cohort can lead to cohort incidences dominated by year-on-year calendar fluctuations. The 
methodology was refined by deriving new sets of cohort incidences. In these, the age-specific 
incidences for an individual in the cohort were taken as the average of the age-specific 
incidences applicable to those born in each year of the birth-cohort range. The average age- 
and cohort-specific incidences were then smoothed using LOWESS with linear regression and 
a bandwidth of 0.2. Figure s2 (b) shows the effects of the new averaging method on cohort 
incidences for Estonian male breast cancer incidences for those born in the 1920s. 
 
Further, previously, incidences for years before/after the earliest/latest calendar year were 
taken to be the same as those in the earliest/latest calendar year available. Again, for regions 
with small populations presenting annual calendar-period incidences and cancers with low 
incidences, the cohort incidences can be adversely affected by statistical anomalies present 
in incidences of the earliest/latest calendar year. The methodology was refined with incidence 
for years before/after the earliest/latest calendar year taken as the average of the first/last 
five years of the available annual calendar-period incidences. 
 

Algorithm optimisation 
 
The BOADICEA future risk calculations rely on calculating pedigree likelihoods under the 
assumed genetic models of inheritance2. The inclusion of additional genes (RAD51C, RAD51D, 
BARD1)  in the model resulted in a substantial increase in runtime. This is further compounded 
by the fact that separate pedigree likelihood calculations are required for risk predictions at 
multiple future time-points (e.g. in annual, or 5-year intervals). To reduce the programme 
runtime we re-formulated underlying algorithm to calculate the future risks as follows.  
 
BOADICEA calculates the probability that an individual develops breast (or ovarian) cancer 
over a given time period, given the age of the proband, the genotypes, other risk factors, and 
family history: 
 
 

Y(Z("-)|Z("$), Z( , \, ]) 
 
Where Z(") is the phenotype of the proband at time t, Z(  represents the phenotypes of the 
all the relatives, \ are the risk factors measured on the proband and 	] are the genetic model 
parameters (allele frequencies, relative risks etc). "$ is the current age of the proband and "- 
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the future age at which the predictions are being made. In practice, these are calculated as 
the ratio of two pedigree likelihoods2:  
 

Y(Z("-), Z( , \, ])
Y(Z("$), Z( , \, ])

 

 
The numerator and denominator probabilities, are the probabilities of the full set of 
phenotypes in the pedigree at times "- and "$and are calculated in MENDEL, using a pedigree 
peeling algorithm7. When predicting future risks, this involves performing this calculation 
repeatedly at several time-points. However, under the standard assumption in pedigree 
likelihood calculations, the phenotype of the proband is conditionally independent of those 
of relatives given the genotypes of the relatives28 . Thus:  
 

∑ Y(Z("-)|9, Z( , \, ])Y(9, Z("$), Z( , \, ])&
Y(Z("$), Z( , \, ])

 

which can be re-written as: 
 

∑ YKZ("-)_9, \, ]MYK9_Z( , Z("$), \, ]M																																	(2)&    
 
where G is the full set of genotypes (including the full measured and unmeasured polygenic 
or major gene components) and  

YK9_Z( , Z("$), \, ]M =
Y(9, Z("$)Z( , \, ])

∑ Y(93, Z("$), Z( , \, ])&#
 

 
Therefore, the risk prediction (expression (2))  can be performed by first calculating the 
genotype probabilities for the proband given the phenotypes at time "$ (i.e. a single, time-
consuming pedigree likelihood calculation) and then calculating the penetrance function for 
the proband at multiple  time-points Y(Z("-)|9, \, ]), which does not involve any pedigree 
likelihood calculations. 
 
The risk calculations under the revised and original formulations are identical, but when 
calculating the remaining lifetime cancer risks used in the CanRisk tool (www.canrisk.org), 
there is a 50-90% reduction in computation time under this revised formulation, depending 
on the proband’s age (Figure s4).  
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Figure s1. Predicted lifetime (age 20 to 80 years) breast and ovarian cancer risk by age for a female born in 1985 with 
unknown family history (ie average female in the population) comparing risks using incidences for the UK, France, the 
Netherlands, Slovenia, and Estonia. Figure (a) shows breast cancer risks, where risks for the UK, France, the Netherlands, 
Slovenia, and Estonia are 12.0%, 12.1%, 12.1%, 8.8% and 7.4%, respectively. Figure (b) shows ovarian cancer risks, where 
risks for the UK, France, the Netherlands, Slovenia, and Estonia are 1.8%, 1.2%, 1.3%, 1.1% and 1.5%, respectively. 

 

 
Figure s2. Smoothed Cohort-specific population incidences. Figure (a) shows female breast cancer incidences for the UK 
for those born in the 1980s for the previous incidences (using incidences up to and including 2010) and for the updated 
incidences (using incidences up to and including 2017), where both datasets use the average over the birth years in the 
cohort. Figure (b) shows male breast cancer incidences for Estonia for those born in the 1920s, using incidence from a 
single birth year to represent the cohort (labelled 1925) and using the average over the birth years in the cohort (labelled 
1920-1929). 
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Figure s3. Revised epithelial ovarian cancer risks for a BRCA2 pathogenic variant carrier with unknown family history using 
the updated BRCA2 relative risks. Figure (a) shows the cumulative risk by age, while figure (b) shows the distribution of 
absolute by age 80 on the basis of the different predictors of risk (pathogenic variant status (PV), questionnaire-based risk 
factors (QRFs), mammographic density (MD), and PRS).
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Figure s4. Ratio of run-times for calculating the remaining life-time risks in the CanRisk tool under the optimised algorithm 
compared to the original implementation.   
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New Susceptibility Genes 
Breast Cancer: BARD1, RAD51C and RAD51D 
Table s1. Predicted 10-year (age 40 to 50 years) and lifetime (age 20 to 80 years) breast cancer risk for a female born in 1985 with unknown family history and for a female with a mother 
affected at age 50. The columns labelled “Risk” contain risks in the absence of information about questionnaire-based risk factors (QRF), mammographic density (MD) or a polygenic risk 
score (PRS). The other columns show the distribution of females based on these risk factors in the risk categories defined in the NICE familial breast cancer guidelines 29: 1) near-population 
risk, shaded pink (< "#% lifetime risk; < %% 10-year risk), 2) moderate risk, shaded yellow (≥ "#% and < %'% lifetime risk; ≥ %% and < (% 10-year risk) and 3) high risk, shaded blue 
(≥ %'% lifetime risk; ≥ (% 10-year risk). Column headings are shaded the same colours as the corresponding lines in Figure 2. Predictions are based on UK cancer incidences, assuming the 
population distributions of QRFs and MD. 

Family 
History 

Risk 
Horizon 

PV 
Screening Risk 

QRF QRF & MD PRS QRF & PRS QRF, MD & PRS 
Pop Mod High Pop Mod High Pop Mod High Pop Mod High Pop Mod High 

Unknown 

10-Year 

Untested 1.7 96.4 3.6 0 94.9 5.1 0 90 10 0 90.6 9.2 0.2 89.2 10.6 0.3 
BARD1 3.6 48.8 50.5 0.6 48.8 49.8 1.4 46.5 50 3.5 56.5 39.5 4 57.8 37 5.2 
RAD51C 3.4 57.3 42.3 0.4 54 44.9 1.1 50.8 46.5 2.7 60.2 36.6 3.2 61 34.7 4.4 
RAD51D 3.1 67.3 32.5 0.2 61.1 38.2 0.7 56.5 41.6 1.8 64.9 32.8 2.3 65.2 31.4 3.4 
No PV 1.6 97.1 2.9 0 95.8 4.2 0 91.5 8.4 0 91.9 8 0.1 90.5 9.3 0.2 

Lifetime 

Untested 12 92.1 7.7 0.2 88.8 10.7 0.5 87.5 12.3 0.2 85.2 13.7 1.1 83.4 14.9 1.7 
BARD1 23.5 12.5 77.1 10.4 21.8 62.8 15.3 19.8 62.1 18.1 30.8 49.4 19.8 33.9 44.1 21.9 
RAD51C 22.3 18.9 72.7 8.4 27.5 60.3 12.2 24.8 61 14.2 35.6 47.8 16.6 38.3 42.9 18.8 
RAD51D 20.8 29.7 63.9 6.4 35.8 55.3 8.9 32.4 57.7 9.9 42.4 44.7 12.9 44.3 40.7 15 
No PV 11.6 92.9 7 0.1 90.1 9.4 0.5 89.1 10.7 0.1 86.7 12.4 1 84.8 13.7 1.5 

Mother  
affected  
at age 50 

10-Year 

Untested 3.5 51.8 47.6 0.5 50.6 48.1 1.3 53.7 45.7 0.6 63.4 35.1 1.5 63.5 34.1 2.4 
BARD1 6.4 1.1 87.2 11.7 10 71.9 18.1 12.5 69 18.5 23.3 60.3 16.4 28.6 53.1 18.3 
RAD51C 6.1 2 88.5 9.5 12.2 73 14.8 15 69.7 15.4 26.4 59.5 14.1 31.4 52.5 16.1 
RAD51D 5.6 3.8 88.9 7.3 15.8 73 11.1 18.7 69.5 11.8 30.8 57.8 11.4 35.4 51.2 13.4 
No PV 3.1 68.7 31.1 0.3 62.2 36.9 0.8 64.8 34.9 0.3 72 26.9 1.1 71.3 26.9 1.8 

Lifetime 

Untested 19.3 40.6 54.6 4.8 43.5 50.1 6.3 47.1 50.3 2.5 54.6 39.2 6.2 55.0 36.9 8.1 
BARD1 33.7 0.1 37.9 62 3.4 37.4 59.3 2.3 43.2 54.6 7.8 44.2 47.9 12 40.2 47.8 
RAD51C 32.2 0.2 47.4 52.4 4.1 43.3 52.6 3.4 48.8 47.8 10 47.3 42.7 14.5 42.3 43.2 
RAD51D 30.4 0.5 59.3 40.2 5.5 50.7 43.8 5.6 55.5 38.9 13.6 50.3 36 18.3 44.4 37.3 

 No PV 17.9 55 41.3 3.8 53.5 41.6 4.9 57.8 40.5 1.7 62.6 32.5 4.9 62.1 31.3 6.6 
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Ovarian cancer: PALB2 
Table s2. Predicted ovarian cancer risk to age 50 (age 20 to 50 years) and lifetime risk (age 20 to 80 years) for a female born in 1985 with unknown family history and for a female with a 
mother affected at age 50. The columns labelled “Risk” contain risks in the absence of information about risk factors (RF) or a polygenic risk score (PRS). The other columns show the 
distribution of females based on these risk factors falling into risk categories defined as: 1) near-population risk, shaded pink (< )% lifetime risk; < %% risk to age 50), 2) moderate risk, 
shaded yellow (≥ )% and < "'% lifetime risk; ≥ %% and < )% risk to age 50) and 3) high risk, shaded blue (≥ "'% lifetime risk; ≥ )% risk to age 50). Column headings are shaded the 
same colours as the corresponding lines in Figure 1. Predictions are based on UK cancer incidences, assuming the population distributions of QRFs and MD. 

 

Family 
History 

Risk 
Horizon 

PV 
Screening Risk 

RF PRS RF & PRS 
Pop Mod High Pop Mod High Pop Mod High 

Unknown 

Risk to age 50 
Untested 0.3 99.9 0 0.1 100 0 0 100 0 0 
PALB2 0.8 99.9 0 0.1 100 0 0 100 0 0 
No PV 0.3 99.9 0 0.1 100 0 0 100 0 0 

Lifetime 
Untested 1.8 99.9 0.1 0.1 100 0 0 99.6 0.4 0 
PALB2 5 61.8 37.3 1 55.8 44.1 0.1 62.4 34.8 2.7 
No PV 1.7 99.9 0 0.1 100 0 0 99.7 0.3 0 

Mother 
affected 
at age 50 

Risk to age 50 
Untested 1 99.9 0 0.1 100 0 0 100 0 0 
PALB2 1.5 98.4 1.6 0.1 100 0 0 97.5 2.4 0.1 
No PV 0.5 99.9 0 0.1 100 0 0 100 0 0 

Lifetime 
Untested 5.1 57.6 41.8 0.6 52.9 47.0 0 60.5 38.3 1.2 
PALB2 9.6 6.1 58.7 35.2 0.4 66.0 34.6 11.4 56.0 32.6 
No PV 3.3 91.7 8.2 0.1 98.6 1.3 0 90.5 9.4 0.1 
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Tumour Pathology Subtypes 
AGE 

GENERAL 
POPULATION BRCA1 BRCA2 PALB2 CHEK2 ATM BARD1 RAD51C RAD51D 

20 0.4615 0.8201 0.1881 0.5316 0.2884 0.2366 0.7706 0.7471 0.6255 
21 0.4615 0.8201 0.1881 0.5316 0.2884 0.2366 0.7706 0.7471 0.6255 
22 0.4615 0.8201 0.1881 0.5316 0.2884 0.2366 0.7706 0.7471 0.6255 
23 0.4615 0.8201 0.1881 0.5316 0.2884 0.2366 0.7706 0.7471 0.6255 
24 0.4614 0.8201 0.1881 0.5316 0.2884 0.2366 0.7706 0.7471 0.6255 
25 0.4606 0.8201 0.1881 0.5316 0.2884 0.2366 0.7706 0.7471 0.6255 
26 0.459 0.8201 0.1881 0.5218 0.2813 0.2296 0.7633 0.7394 0.6159 
27 0.4567 0.8201 0.1881 0.512 0.2743 0.2227 0.7558 0.7314 0.6061 
28 0.4539 0.8201 0.1881 0.5021 0.2674 0.216 0.748 0.7232 0.596 
29 0.4504 0.8201 0.1881 0.4921 0.2605 0.2093 0.74 0.7147 0.5858 
30 0.4444 0.8201 0.1881 0.482 0.2537 0.2027 0.7318 0.706 0.5754 
31 0.435 0.8201 0.1881 0.4718 0.2469 0.1961 0.7232 0.697 0.5647 
32 0.4228 0.8201 0.1881 0.4615 0.2402 0.1897 0.7144 0.6877 0.5539 
33 0.4093 0.8201 0.1881 0.4513 0.2337 0.1835 0.7055 0.6784 0.5431 
34 0.3953 0.8196 0.1883 0.441 0.2272 0.1774 0.6963 0.6688 0.5322 
35 0.3804 0.8171 0.1891 0.4307 0.2207 0.1713 0.6868 0.6588 0.521 
36 0.3638 0.8117 0.1908 0.4202 0.2142 0.1653 0.677 0.6486 0.5096 
37 0.3461 0.804 0.1932 0.4096 0.2079 0.1594 0.6668 0.638 0.4979 
38 0.3289 0.7947 0.1962 0.3989 0.2015 0.1536 0.6562 0.627 0.4859 
39 0.3139 0.7849 0.1993 0.3881 0.1951 0.1478 0.6451 0.6156 0.4737 
40 0.3013 0.775 0.2024 0.3771 0.1888 0.142 0.6336 0.6038 0.4611 
41 0.2899 0.7652 0.2055 0.3661 0.1826 0.1364 0.6217 0.5915 0.4483 
42 0.2785 0.7559 0.2085 0.3549 0.1763 0.1308 0.6093 0.5788 0.4353 
43 0.2676 0.7482 0.2109 0.3469 0.1717 0.1269 0.6008 0.5703 0.4266 
44 0.2583 0.7426 0.213 0.3389 0.1671 0.123 0.5922 0.5615 0.4179 
45 0.2511 0.7388 0.2157 0.3309 0.1625 0.1191 0.5834 0.5525 0.409 
46 0.2451 0.7357 0.2197 0.3227 0.1579 0.1153 0.5743 0.5433 0.4001 
47 0.2395 0.7318 0.2253 0.3146 0.1533 0.1115 0.565 0.5338 0.391 
48 0.2343 0.7273 0.232 0.3094 0.1503 0.1092 0.5597 0.5285 0.386 
49 0.2301 0.7224 0.2392 0.3043 0.1473 0.1069 0.5544 0.523 0.3809 
50 0.2269 0.7176 0.2463 0.2991 0.1443 0.1045 0.549 0.5175 0.3759 
51 0.2243 0.7127 0.2535 0.294 0.1413 0.1022 0.5435 0.512 0.3708 
52 0.2217 0.7082 0.2602 0.2888 0.1383 0.0999 0.538 0.5064 0.3657 
53 0.2192 0.7043 0.2658 0.2852 0.1363 0.0984 0.5344 0.5027 0.3624 
54 0.2167 0.7008 0.2697 0.2817 0.1343 0.0968 0.5307 0.499 0.3592 
55 0.2139 0.695 0.2717 0.2781 0.1323 0.0953 0.5271 0.4953 0.3559 
56 0.2103 0.6852 0.2725 0.2745 0.1303 0.0937 0.5234 0.4916 0.3526 
57 0.2058 0.6713 0.273 0.2709 0.1283 0.0922 0.5197 0.4878 0.3493 
58 0.2009 0.6547 0.2736 0.2678 0.1266 0.0908 0.5164 0.4845 0.3464 
59 0.1961 0.6371 0.2743 0.2646 0.1249 0.0895 0.5131 0.4812 0.3435 
60 0.1911 0.6193 0.2749 0.2614 0.1232 0.0882 0.5098 0.4778 0.3407 
61 0.1858 0.6017 0.2756 0.2583 0.1214 0.0868 0.5064 0.4745 0.3378 
62 0.1803 0.5851 0.2762 0.2551 0.1197 0.0855 0.5031 0.4711 0.3349 
63 0.1751 0.5712 0.2767 0.2524 0.1185 0.0844 0.5 0.468 0.3322 
64 0.1707 0.5617 0.2771 0.2498 0.1172 0.0833 0.4969 0.4649 0.3295 
65 0.1677 0.5571 0.2773 0.2471 0.1159 0.0823 0.4938 0.4618 0.3268 
66 0.1656 0.5562 0.2773 0.2445 0.1146 0.0812 0.4907 0.4587 0.3242 
67 0.1641 0.5562 0.2773 0.2418 0.1133 0.0801 0.4876 0.4556 0.3215 
68 0.1631 0.5562 0.2773 0.2392 0.1121 0.079 0.4845 0.4524 0.3188 
69 0.1625 0.5562 0.2773 0.2366 0.1108 0.078 0.4813 0.4493 0.3161 
70 0.162 0.5562 0.2773 0.234 0.1096 0.077 0.4782 0.4461 0.3135 
71 0.1613 0.5562 0.2773 0.2314 0.1083 0.0759 0.475 0.443 0.3108 
72 0.1601 0.5562 0.2773 0.2287 0.1071 0.0749 0.4718 0.4398 0.3081 
73 0.1584 0.5562 0.2773 0.2263 0.106 0.0739 0.4688 0.4368 0.3056 
74 0.1564 0.5562 0.2773 0.2239 0.1049 0.073 0.4658 0.4338 0.3031 
75 0.1538 0.5562 0.2773 0.2215 0.1038 0.072 0.4628 0.4308 0.3006 
76 0.1507 0.5562 0.2773 0.219 0.1026 0.0711 0.4597 0.4278 0.2981 
77 0.1474 0.5562 0.2773 0.2166 0.1015 0.0701 0.4566 0.4248 0.2955 
78 0.1446 0.5562 0.2773 0.2142 0.1004 0.0692 0.4536 0.4217 0.293 
79 0.1434 0.5562 0.2773 0.2117 0.0993 0.0683 0.4505 0.4186 0.2905 

Table s3: Age-specific proportion of oestrogen receptor-negative tumours among all female breast cancer tumours in the 
general population and carriers of pathogenic variants in the breast cancer susceptibility genes used in the BOADICEA 
model. 

  



 12 

AGE 
GENERAL 
POPULATION BRCA1 BRCA2 PALB2 CHEK2 ATM BARD1 RAD51C RAD51D 

20 0.6582 0.8799 0.7586 0.6066 0.3768 0.5979 0.8195 0.8094 0.8489 
21 0.6582 0.8799 0.7586 0.6066 0.3768 0.5979 0.8195 0.8094 0.8489 
22 0.6582 0.8799 0.7586 0.6066 0.3768 0.5979 0.8195 0.8094 0.8489 
23 0.6582 0.8799 0.7586 0.6066 0.3768 0.5979 0.8195 0.8094 0.8489 
24 0.6579 0.8799 0.7586 0.6066 0.3768 0.5979 0.8195 0.8094 0.8489 
25 0.6566 0.8799 0.7586 0.6066 0.3768 0.5979 0.8195 0.8094 0.8489 
26 0.6539 0.8799 0.7586 0.6047 0.3766 0.596 0.8183 0.8082 0.8479 
27 0.6499 0.8799 0.7586 0.6027 0.3763 0.594 0.8171 0.8069 0.8468 
28 0.6451 0.8799 0.7586 0.6006 0.3759 0.5919 0.8158 0.8055 0.8457 
29 0.6401 0.8799 0.7586 0.5984 0.3754 0.5897 0.8144 0.8041 0.8445 
30 0.6349 0.8799 0.7586 0.5961 0.3748 0.5874 0.813 0.8026 0.8433 
31 0.6299 0.8799 0.7586 0.5937 0.3741 0.5849 0.8114 0.801 0.8419 
32 0.6251 0.8799 0.7586 0.5911 0.3732 0.5824 0.8098 0.7993 0.8405 
33 0.6211 0.8799 0.7586 0.5888 0.3726 0.58 0.8083 0.7977 0.8392 
34 0.6181 0.8799 0.7586 0.5863 0.3719 0.5775 0.8067 0.7961 0.8378 
35 0.6156 0.8799 0.7586 0.5837 0.371 0.5749 0.805 0.7943 0.8364 
36 0.6128 0.8799 0.7586 0.5809 0.3699 0.5721 0.8032 0.7925 0.8348 
37 0.6091 0.8799 0.7586 0.578 0.3688 0.5691 0.8013 0.7905 0.8331 
38 0.6046 0.8799 0.7586 0.5747 0.3673 0.5658 0.7992 0.7882 0.8312 
39 0.5999 0.8799 0.7586 0.5712 0.3655 0.5623 0.7968 0.7858 0.8292 
40 0.5952 0.8799 0.7586 0.5674 0.3636 0.5585 0.7943 0.7832 0.827 
41 0.5905 0.8799 0.7586 0.5634 0.3614 0.5545 0.7917 0.7804 0.8247 
42 0.586 0.8799 0.7586 0.5591 0.359 0.5501 0.7888 0.7774 0.8221 
43 0.5823 0.8799 0.7586 0.5588 0.3604 0.5499 0.7886 0.7772 0.822 
44 0.5798 0.8799 0.7586 0.5585 0.3617 0.5496 0.7884 0.777 0.8218 
45 0.5785 0.8799 0.7586 0.5583 0.3631 0.5493 0.7882 0.7768 0.8216 
46 0.5783 0.8799 0.7586 0.558 0.3644 0.549 0.788 0.7766 0.8215 
47 0.5783 0.8799 0.7586 0.5576 0.3657 0.5487 0.7878 0.7764 0.8213 
48 0.5783 0.8799 0.7586 0.5602 0.3698 0.5513 0.7895 0.7782 0.8228 
49 0.5783 0.8799 0.7586 0.563 0.374 0.554 0.7914 0.7801 0.8244 
50 0.5783 0.8799 0.7586 0.5658 0.3784 0.5569 0.7933 0.7821 0.8261 
51 0.5783 0.8799 0.7586 0.5687 0.3828 0.5598 0.7952 0.7841 0.8278 
52 0.5783 0.8799 0.7586 0.5718 0.3875 0.5629 0.7972 0.7862 0.8295 
53 0.5783 0.8799 0.7586 0.5749 0.3922 0.566 0.7993 0.7884 0.8313 
54 0.5783 0.8799 0.7586 0.5781 0.397 0.5692 0.8014 0.7905 0.8332 
55 0.5783 0.8799 0.7586 0.5814 0.4019 0.5726 0.8035 0.7928 0.8351 
56 0.5783 0.8799 0.7586 0.5848 0.407 0.576 0.8057 0.7951 0.837 
57 0.5783 0.8799 0.7586 0.5883 0.4121 0.5795 0.808 0.7974 0.8389 
58 0.5783 0.8799 0.7586 0.5915 0.4171 0.5827 0.81 0.7996 0.8407 
59 0.5783 0.8799 0.7586 0.5948 0.4221 0.5861 0.8121 0.8018 0.8426 
60 0.5783 0.8799 0.7586 0.5982 0.4273 0.5895 0.8143 0.804 0.8444 
61 0.5783 0.8799 0.7586 0.6017 0.4326 0.593 0.8165 0.8063 0.8463 
62 0.5783 0.8799 0.7586 0.6053 0.438 0.5966 0.8187 0.8086 0.8483 
63 0.5783 0.8799 0.7586 0.6073 0.4417 0.5986 0.8199 0.8099 0.8493 
64 0.5783 0.8799 0.7586 0.6093 0.4455 0.6006 0.8212 0.8111 0.8504 
65 0.5783 0.8799 0.7586 0.6113 0.4494 0.6027 0.8224 0.8125 0.8515 
66 0.5783 0.8799 0.7586 0.6134 0.4533 0.6048 0.8237 0.8138 0.8526 
67 0.5783 0.8799 0.7586 0.6155 0.4572 0.6069 0.825 0.8152 0.8537 
68 0.5783 0.8799 0.7586 0.6176 0.4611 0.609 0.8262 0.8164 0.8548 
69 0.5783 0.8799 0.7586 0.6196 0.4651 0.6111 0.8275 0.8178 0.8559 
70 0.5783 0.8799 0.7586 0.6218 0.4691 0.6132 0.8288 0.8191 0.857 
71 0.5783 0.8799 0.7586 0.624 0.4731 0.6154 0.8301 0.8205 0.8581 
72 0.5783 0.8799 0.7586 0.6262 0.4773 0.6177 0.8315 0.8219 0.8593 
73 0.5783 0.8799 0.7586 0.6283 0.4812 0.6197 0.8327 0.8232 0.8603 
74 0.5783 0.8799 0.7586 0.6303 0.4851 0.6218 0.8339 0.8245 0.8614 
75 0.5783 0.8799 0.7586 0.6324 0.4892 0.624 0.8352 0.8258 0.8625 
76 0.5783 0.8799 0.7586 0.6346 0.4933 0.6262 0.8365 0.8271 0.8636 
77 0.5783 0.8799 0.7586 0.6368 0.4974 0.6284 0.8378 0.8285 0.8647 
78 0.5783 0.8799 0.7586 0.6391 0.5016 0.6307 0.8391 0.8299 0.8659 
79 0.5783 0.8799 0.7586 0.6415 0.5059 0.6331 0.8405 0.8313 0.8671 

Table s4: Age-specific proportion of triple-negative tumours among female oestrogen receptor-negative breast cancer 
tumours in the general population and carriers of pathogenic variants in the breast cancer susceptibility genes used in the 
BOADICEA model. 
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