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Abstract 15 

Various computational approaches have been developed for estimating the relative abundance 

of different cell types in the tumour microenvironment (TME) using bulk tumour RNA data. 

However, a comprehensive comparison across diverse data sets that objectively evaluates the 

performance of these approaches has not been conducted. Here we benchmarked seven widely 

used tools and gene sets and introduce ConsensusTME, a method that integrates gene sets from 20 

all the other methods for relative TME cell estimation of 18 cell types. We collected a 

comprehensive benchmark dataset consisting of pan-cancer data (DNA-derived purity, leukocyte 

methylation, and H&E-derived lymphocyte counts) and cell-specific benchmark data sets 

(peripheral blood cells and tumour tissues). Although none of the methods outperformed others 

in every benchmark, ConsensusTME ranked top three in all cancer-related benchmarks and was 25 

the best performing tool overall. We provide a web resource to interactively explore the 

benchmark results and an objective evaluation to help researchers select the most robust and 

accurate method to further investigate the role of the TME in cancer (www.consensusTME.org). 

Statement of Significance 

This work shows an independent and comprehensive benchmarking of recently developed and widely 30 

used tumour microenvironment cell estimation methods based on bulk expression data and integrates 

the tools into a consensus approach 
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Introduction 

The tumour microenvironment (TME) plays an active role in tumour initiation, progression, 35 

metastasis, and treatment response (1). Thus, studying the TME is a central paradigm of cancer 

research. However, a great variety of stromal and immune cell types populate tumour tissues, 

and the complex interactions between these different components of the tumour 

microenvironment is still unclear. Traditionally, cells from the TME have been quantified using 

immunohistochemistry (IHC), immunofluorescence (IF), flow cytometry, and more recently using 40 

cytometry by time of flight (CyTOF) mass spectrometry. These methods, although accurate, are 

laborious, low throughput and require pre-selected cellular markers, making their application in 

large number of samples and measurements challenging. Thus, the systematic application of 

these assays for comprehensively investigating the various different cell types in the TME in an 

unbiased manner is limited. Single cell RNA sequencing (scRNA-seq) has begun to fill this gap, 45 

however, scRNA-seq is expensive to apply on large patient cohorts, requires specific sample 

preparation, and cannot be applied to existing data sets, such as The Cancer Genome Atlas 

(TCGA) which consists of thousands of genomically profiled and clinically well-annotated tumour 

samples. The study of the different cell subpopulations of the TME in TCGA has become an 

important goal, but also an important challenge for bioinformatics, since cell type information 50 

identity is mixed in bulk tumour transcriptomics data.  

 

Estimation of non-cancerous cell proportions from bulk tumour samples can be performed using 

genomics data such as whole-exome sequencing, microarrays, RNA-seq, or DNA methylation 

data. During the last decade, multiple computational approaches have been developed intending 55 

to quantitatively or semi-quantitatively calculate distinct TME cell type population estimates (2). A 

variety of statistical frameworks and algorithmic procedures have been employed with each 

method using different benchmarking data sets (2). In general, two different algorithmic classes 
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exist into which most TME cell estimation methods can be classified: regression-based 

deconvolution algorithms and gene set enrichment-based methods. Importantly, both classes rely 60 

on cell type-specific markers that are selected according to prior knowledge. The deconvolution 

algorithms use signature matrices containing gene expression profiles of purified immune cells 

and impute to what degree each of the gene expression profile is represented in the bulk tumour 

gene expression profile. Gene set enrichment-based methods assign curated gene sets to 

represent cell types before computing enrichment scores as a function of the expression of the 65 

genes within each gene set. Both classes of computational approaches that intend to estimate 

TME cell content in tumours (i.e. TME cell estimation methods) require two components: a 

statistical framework (e.g. regression or gene set enrichment) and a signature for the specific cell 

type of interest (e.g. a signature matrix or signature gene set). 

 70 

Cell type-specific estimation in the TME using bulk tumour data is a challenging task as certain 

stromal- and immune cell populations are lowly abundant cell populations and is further 

convoluted because expression of particular genes is rarely unique to any particular cell type. 

Thus, there is not a straightforward solution for accurate TME cell estimation with various different 

gene signatures and statistical frameworks suggested as the optimal solution (2). One of the 75 

problems in the field is that each method has claimed to outperform others in their own 

benchmarking experiments (3,4). Thus, the need for independent and more comprehensive 

benchmarks has become increasingly important (5,6).  

 

Here, we developed a consensus approach (ConsensusTME) for 18 different cell types that 80 

compiles cell type-specific genes used by seven published gene sets or existing TME cell 

estimation methods: Bindea et al. gene sets (7), Davoli et al. gene sets (8), Danaher et al. gene 

sets (9), CIBERSORT (10), MCP-counter (11), TIMER (12), and xCell (13). We performed pan-

cancer benchmarks using publicly available bulk genomic and transcriptomic data from TCGA 
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and cell type-specific benchmarks using “ground truth” data based on experiments carried out in 85 

each of the original manuscripts where available. The ConsensusTME approach, available as an 

R package, is evolvable by design allowing new gene signatures and algorithms to be 

incorporated and their performance compared with continuously updated benchmark data sets. 

Overall, the ConsensusTME approach provides a robust and improved method for the relative cell 

type estimation using bulk expression data of human tumour samples. We make all results 90 

accessible to the public (www.consensusTME.org) as well as provide a framework for 

incorporating new TME estimation methods and data sets. 

Materials and Methods  

Contact for Resource Sharing 

Further information and requests for resources should be directed to and will be fulfilled by the 95 

Lead Contact, Martin L. Miller (martin.miller@cruk.cam.ac.uk). 

 

Quantification and Statistical Analysis 

Single-sample gene set enrichment analysis 

Single-sample gene set enrichment analysis (ssGSEA) (14), a modification of standard GSEA 100 

(15), was performed on RNA measurements for each sample using the GSVA package version 

1.32.0 (16) in R version 3.6.0 with parameter: method = “ssgsea”. TME cell gene sets obtained 

from previous publications or described as below (7–9) 
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ConsensusTME 

To generate the ConsensusTME gene sets we identified cell types for which there were signatures 105 

from at least two different sources were available, 18 cell types in total. To extract genes from the 

signature matrix “LM22” used by CIBERSORT, we first filtered out genes whose expression value 

was below 1.96 standard deviations of the mean for each cell type. In addition, we collapsed 

activated and resting states for corresponding cell types. Once we had collected signature genes 

from Bindea et al., Danaher et al., Davoli et al. CIBERSORT, MCP-Counter and xCell we created 110 

a unique union of the genes for each cell type. From this union of genes a set of cell type-specific 

genes was curated for each of the TCGA cancer types. This was done using a similar approach 

to the TIMER algorithm where genes were only included if the expression of that gene has a 

negative correlation (pearson’s correlation < 0.2, p-value ≤ 0.05) with tumour purity (ABSOLUTE 

derived) for the corresponding cancer type (12,17). The assumption behind this filter is that it 115 

removes immune- and stromal cell genes which may be aberrantly expressed by cancer cells in 

some cancer types hereby ensuring that filtered the gene sets likely represent the presence of 

the implicated immune cell while also leading to gene sets that account for tissue specific 

variability in the immune response (18). The implementation of such an expression filter may on 

the other hand unintentionally remove immune- and stromal-specific genes that may indeed be 120 

cancer specific and hereby exclude interesting genes that are interesting to investigate in other 

contexts. However, in the current version the implementation of the tumour-specific expression 

filter ensures that as additional signatures are incorporated into the ConsensusTME supersets 

performance continues to increase. Finally, ssGSEA was employed to calculate NES for each cell 

type as described above. General immune scores for each tumour types were generated by 125 

combining the genes of the different immune cells into one gene set for each TCGA cancer type. 

The ConsensusTME method can be used through installation of the “ConsensusTME” R package 

via GitHub (https://github.com/cansysbio/ConsensusTME/).  
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Comparison statistical metrics  

Concordance between computational estimates and ground truth values was measured using 130 

either Kendall’s rank correlation coefficient or the multiple linear regression goodness of fit 

metrics: adjusted R-squared, Akaike information criterion (AIC), and Bayesian information 

criterion (BIC). AIC and BIC z-score values were calculated to compare across different tumour 

types in the comparisons since AIC and BIC values are unitless. Differences between groups of 

variables in the TIMER benchmark were identified using one-way ANOVA with Tukey honest 135 

significant differences post-hoc tests. All statistical tests were adjusted for multiple testing using 

the Benjamini-Hochberg procedure to control for false discovery rate (FDR). 

TCGA immune estimations  

TCGA RNA-sequencing (RNA-seq) data was collected from cBioPortal (19). Batch normalisation 

had been applied and gene expression values calculated using the “RSEM” pipeline (20). Four 140 

existing TME cell estimation methods and three published gene sets were used alongside 

ConsensusTME to produce relative abundances of immune cell types per sample across 32 tumour 

types. For each method, a general immune score was also derived if it was not already provided, 

representing the total level of immune cell infiltration in each tumour sample, for the TME methods 

that were gene sets this was done by collapsing the genes for each cell type together to form a 145 

new category and for the regression based methods this was done by summing the regression 

coefficients as per method used by CIBERSORT algorithm with parameters: absolute = TRUE, 

abs_method = 'sig.score' . 

TME cell estimation methods 

TME estimation methods were used to estimate abundances of cell types from RNA expression 150 

profiles. The TME methods that were benchmarked were CIBERSORT (run in absolute mode) 
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(10), MCP-counter (11), TIMER (12), xCell (13), as well as gene sets collected from three previous 

publications (7–9) (Supplementary Table 1A). 

 

Bindea et al., Danaher et al. and Davoli et al. gene sets 155 

Gene sets provided by Bindea et al., Danaher et al. and Davoli et al. were used with ssGSEA to 

provide enrichment scores for each of the immune signatures (7–9). To generate general immune 

scores, genes selected for immune cells where combined into one gene set for each method 

independently. 

 160 

xCell 

The “xCell” R package (version 1.12) was used to generate immune estimates for the xCell 

method (13). A general immune estimation score is already generated by xCell. 

  

MCP-counter 165 

Estimations for the MCP-counter method were produced using the “MCPcounter” R package 

(version 1.1.0) (11). Immune scores for this method were produced in a similar manner as the 

ssGSEA methods by creating a union of signature genes for each of the cell types. The 

“MCPcounter.estimate” function was altered to allow for the new signature. 

  170 

CIBERSORT 

CIBERSORT estimations were produced using the R source code, provided on request from the 

web resource (10). CIBERSORT was run in “Absolute mode” (under beta development) using 

100 permutations and quantile normalisation disabled as recommended for RNA-seq data. 
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Absolute scores representing the “overall immune content” is produced natively by the algorithm 175 

in absolute mode. 

  

TIMER 

TIMER estimations were produced using R source code, available from the web resource (12). 

Immune scores for TIMER were produced as a sum of the coefficients for each cell type. 180 

  

Purity score benchmark 

Pan-cancer purity scores were downloaded from the NIH Genomic Data Commons 

(https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin) (Supplementary Table 1B) 

(21). Purity scores were generated using ABSOLUTE (17) which uses copy number, variant allele 185 

frequency, and tumour specific karyotype data to calculate the cancer fraction of a tumour 

samples. To benchmark the immune estimation methodologies using purity of samples the 

immune scores were added to an independent stromal score; calculated through the use of 

ESTIMATE (version 1.0.13) (22). The stromal score was added as this could negatively affect the 

performance of estimating RNA-based tumour purity for TME cell estimation methods which only 190 

estimate immune cells compared to those that estimate both immune- and stromal cells. 

ABSOLUTE’s derived tumour purity and the different TME methods tumour purity scores were 

correlated independently for each tumour type.  

  

Leukocyte fraction benchmark  195 

Methylation derived leukocyte fraction scores were downloaded from the NIH Genomic Data 

Commons (https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin)  

(Supplementary Table 1B) (21). Multiple linear regression was then employed using TME method 

cell type estimates that were in the category of being leukocytes (Supplementary Table 1C) as 
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explanatory variables and the methylation derived leukocyte fraction as the response variable. 200 

Leukocyte methylation data was log transformed to meet the normality and heteroscedasticity 

assumptions of the model. Adjusted R squared, AIC, and BIC metrics were calculated to compare 

the goodness of fit between the methods while taking into consideration the number of variables 

included in the model. 

 205 

Somatic single nucleotide mutation data 

Somatic single nucleotide mutation data was downloaded from the Broad Institute GDAC 

Firehose (https://gdac.broadinstitute.org/). 

 

H&E deep learning lymphocyte fractions benchmark  210 

Lymphocyte fractions were generated by Saltz et al. for 13 TCGA cancer types using deep 

learning based image analysis (Supplementary Table 1B) (23). Multiple linear regression was 

applied in a similar manner as for the leukocyte methylation analysis, instead using a hyperbolic 

sine transformation of lymphocyte fraction as a response variable to meet normality and 

heteroscedasticity assumptions of the model. Models for each method were fitted using only 215 

method estimates of lymphocytes as explanatory variables (Supplementary Table 1C). 

  

Independent cell type-specific benchmarks  

The benchmarking validation analyses for each of the methods were replicated, where possible, 

to match the parameters used in the original publications. Of the seven methods there were four 220 

benchmarking datasets available; either online or provided by the authors. Each of the datasets 

contained samples with bulk gene expression values along with matched “ground truth” values 

(Supplementary Table 1B). The CIBERSORT benchmarking dataset, provided by the authors on 

request (10), consisted of flow cytometry values of different immune cell types from PBMC 
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samples. The xCell benchmarking datasets, SDY311 and SDY420, were publicly available for 225 

download from ImmPort (24), and consisted of RNA-Seq and matching CyTOF quantification of 

immune cells from PBMC samples. The MCP-counter publication used gene expression profiles 

from GEO (accession number GSE39582) and IHC counts of CD3+, CD8+, and CD68+ cells 

(available on request from the authors) (11). The TIMER benchmark consisted of H&E stained 

slides from TCGA Bladder urothelial carcinoma (BLCA) study. A pathologist manually reviewed 230 

each of these slides to categorise each sample into one of three categorical levels for neutrophil 

abundance: “Low”, “Medium” or “High”; estimations are available from the TIMER online resource 

(12). For all benchmarking experiments, except TIMER, concordance was measured using 

correlation between “ground truth” values and the immune estimations of each method. Due to 

the variation in the degree of specificity to which cell subsets were defined, summations of subsets 235 

was required to allow accurate comparisons in some cases (Supplementary Table 1D). For the 

TIMER benchmark, samples were grouped by low, medium and high pathological estimation, then 

TME method estimates were compared by ANOVA with Tukey post hoc. 

Results 

Consensus cell type-specific gene supersets for estimating tumour 240 

microenvironment cell populations 

Following the generation of large data sets of tumour genomic profiles such as TCGA and the 

International Cancer Genome Consortium (ICGC), various approaches to assessing TME cell 

populations have been developed, each using different algorithms, gene markers, and validation 

benchmarks (2). To build on the knowledge of cell type-specific gene sets represented in the 245 

diversity of these TME cell estimation methods, we sought an integrative strategy that 

incorporates knowledge from existing signatures and statistical approaches. The ConsensusTME 
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method integrates cell type-specific gene markers from independent TME cell estimation methods 

and uses single sample gene set enrichment analysis (ssGSEA) to compute relative TME cell 

type- and tumour-specific enrichment scores from bulk expression data (Fig. 1A). The first step 250 

of the ConsensusTME approach is the selection of publicly available signatures or tools which for 

the current version included four tools: CIBERSORT, TIMER, MCP-counter, xCell, and three gene 

sets curated and used by Bindea et al., Danaher et al. and Davoli et al. Second, cell types are 

selected when at least two methods estimate their abundance. Third, we generated a gene set 

for each cell type by using the union of genes used by the methods to estimate that cell type. 255 

Fourth, we removed genes that correlate (rho > -0.2) with tumour purity in a tumour type-specific 

manner as applied in the TIMER method (12) (see Methods). Fifth, for statistical framework the 

ssGSEA approach was selected because gene set enrichment frameworks treat microarray and 

RNAseq values in the same way, being based on the ranked genes rather than the mRNA 

transcript abundance values. In addition, ssGSEA outperforms other gene set enrichment 260 

calculations with the ConsensusTME gene sets (Supplementary Fig. S1A). Finally, the output from 

ConsensusTME are normalised enrichment scores (NES), which accounts for variations in gene 

set size (14) and captures the relative level of estimated abundance of specific cell types across 

samples. For example, in a sample with a high NES for a specific cell type, the individual genes 

of the gene set would rank higher in a sorted list of the abundance level of all genes in the 265 

transcriptome compared to samples with low NES of the same cell type. In sum, to improve 

performance, ConsensusTME aggregates cell type specific genes that have been independently 

considered relevant by different methods, and estimates their relative abundance in a tumour type 

specific manner (Supplementary Fig. S1B) . 

Pan-cancer leukocyte and lymphocyte TCGA benchmarks 270 

To benchmark the different methods in an objective and systematic manner, we used publicly 

available data from multiple tumour types comprising 9,142 samples in total. All immune 
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estimation methods were utilised setting appropriate parameters but without optimisation 

requiring changes to source code. This included running CIBERSORT absolute mode and TIMER 

using the appropriate cancer type for the dataset. For each of the Bindea et al., Danaher et al. 275 

and Davoli et al. gene sets, ssGSEA was applied with the same parameters as ConsensusTME 

(see methods). First, to evaluate the ability of each TME cell estimation method to capture the 

overall amount of immune component in the TME, we calculated total immune scores 

independently with each method. Briefly, when immune scores were not calculated by default by 

a method, we customly derived it by either creating a unique union of all genes for gene set 280 

enrichment methods and adding that as an additional signature or for regression based 

approaches summing the coefficients from all cell types (see Methods). Since tumour purity does 

not account only for immune cell infiltration, but also for other stromal cells (e.g. fibroblasts and 

endothelial cells) (25), we inferred stromal non-immune related content of all samples using 

ESTIMATE (22) and added this value to each of the TME estimation methods’ immune scores to 285 

create a RNA-based immune- and stromal composition score (TME score). We found that all 

seven methods and ConsensusTME perform very similar to each other as estimated by the 

correlation (Kendall's correlation coefficient, τ) between the RNA-based TME score calculated 

from each of the methods and the DNA-derived tumour purity score based on ABSOLUTE (17,21) 

(Fig. 1B). As expected, in nearly all comparisons (all methods by all cancer types) there was a 290 

negative correlation between the TME score and the DNA-based tumour purity score. Across all 

cancer types (pan-cancer) we found that CIBERSORT, ConsensusTME, and Danaher performed 

as the top 3 TME estimation methods. Furthermore, using this specific correlation measure, all 

the methods performed well overall with many correlations being statistically significant, but there 

were some cancer types in which all methods performed poorly, e.g. pancreatic adenocarcinoma 295 

(PAAD). Variation in performance was largely independent of cancer cellularity, mutation load, 

leukocyte fraction, and sample size for any of the methods.  
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We further evaluated the performance of the TME estimation methods by using leukocyte 

fractions derived from DNA methylation data for 30 tumour types (see methods) (21). The 300 

leukocyte DNA methylation data, which is not a gold standard in itself, was used as an orthogonal 

inference for leukocyte infiltration across tumour types studied by the TCGA consortium. To 

assess the performance of each of the methods using leukocyte methylation data and to account 

for accuracy across multiple cell types, we fitted multiple linear regression models using the 

leukocyte fraction as a response variable and only cell type estimates in the category of being 305 

leukocytes as explanatory variables for each method (Supplementary Table 1C). As there are 

many cell types classed as leukocytes, multiple linear regression was chosen as it allows us to 

assess how variation across all cell types in combination could explain the variation in the 

methylation derived leukocyte fraction. Since different methods estimate different number of 

leukocytes, the coefficient of determination can be artificially increased by the number of variables 310 

in a model (i.e. overfitting). Thus, to more appropriately compare the models in an unbiased way 

we used adjusted coefficients of determination (R2), the Akaike information criterion (AIC), and 

Bayesian information criterion (BIC) for model comparison. These penalise model complexity (i.e. 

number of cell types used in the models) to varying degrees with BIC putting the greatest 

emphasis on finding a parsimonious model. When comparing the R2 of the different models, the 315 

best performing methods were Bindea, ConsensusTME, and Danaher (Fig. 1C). Similarly, AIC and 

BIC scores showed that ConsensusTME, Davoli, Danaher and Bindea models perform better than 

the other methods (models with lower AIC and BIC values are preferred).  

 

Similarly, we implemented multiple linear regression analysis using tumour-infiltrating lymphocyte 320 

counts derived from digitised H&E-stained images analysed through a deep-learning 

convolutional neural network approach (23). The methods that showed better fit metrics were 

ConsensusTME, Davoli, Bindea and Danaher (Fig. 1D). Together, these broad pan-cancer 

benchmarks show a variation in the performance of the different methods when compared to each 
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other, and no single method consistently outperforms the others. There was also cancer specific 325 

performance variation observed that should be taken into account when considering the 

appropriateness of using these TME estimation methods.  

 

Performance evaluation based on cell type-specific datasets  

All TME estimation methods tested, except Bindea and Davoli, performed their own independent 330 

benchmarks using experimental data with cell type-specific measurements in the original 

publications. We collected benchmarking data for CIBERSORT, xCell, TIMER, and MCP-counter 

to carry out a side-by-side comparisons. We used the CIBERSORT benchmark data that 

consisted of peripheral blood mononuclear cells (PBMCs) of 20 healthy human subjects quantified 

by flow cytometry (10). Correlations between estimated immune cell types and the flow cytometry 335 

fractions showed that the best performing methods were MCP-counter, CIBERSORT, and xCell 

(Supplementary Fig. 1C). However, most of the correlations lacked statistical significance, and 

due to the different cell types estimated by the different methods it is difficult to reach a conclusion. 

Similarly, the xCell benchmark data set consisted of 16 PBMC leukocyte subsets from two 

different studies with 61 and 104 healthy human subjects each, where PBMCs fractions were 340 

measured using CyTOF (13). MCP-counter, CIBERSORT, and xCell were the methods that 

showed best performance in these PBMC benchmarks; however many cell types did not reach 

statistical significance (Supplementary Fig. 1C). 

 

Finally, we used cancer-related benchmarks from TIMER (12) and MCP-counter (11). For 345 

TIMER’s benchmark, 404 TCGA bladder cancer samples were analysed by a pathologist who 

categorised them as low, medium, or high according to their neutrophil counts using H&E stained 

slides. Performance was assessed by measuring the significance of difference between the 

computational estimates of samples in each category. Here, ConsensusTME, Bindea, and TIMER 
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obtained the best separation between categories, but only ConsensusTME and Bindea separated 350 

significantly the three categories after multiple test correction (Fig. 2A). Interestingly, xCell, 

CIBERSORT, and MCP-counter did not differentiate the three categories significantly, while 

Davoli does not estimate neutrophils. For MCP-counter’s benchmark, IHC digital quantification of 

CD3+ (T cells), CD8+ (CD8+ T cells), and CD68+ (Monocytic lineage) cell densities were 

analysed from 38 colorectal cancer samples. Correlations between the TME methods’ estimations 355 

and the cellular fractions were computed (Fig. 2B). ConsensusTME, MCP-counter, and Danaher 

provided the best correlations, with ConsensusTME performing best on the three cell types 

evaluated.  

 

When observing the rank of methods across all benchmarking experiments (Fig. 2C) no one 360 

method was shown to consistently outperform all others. However, the integrative ConsensusTME 

approach was in the top three for all cancer-based benchmarks and achieved the best mean rank 

of all TME estimation methods.  

 

Discussion 365 

With the recent generation of large publicly available molecular profiling of cancer samples, a 

variety of computational methods for analysis of cell components of the TME have been 

generated. In principle, the method of choice should be based on performance, however, the 

popularity and ease of use can also be reasons behind the specific method that researchers tend 

to select (5). In the case of TME cell estimation from bulk expression data, this problem is 370 

magnified by the lack of objective and independent benchmark analyses, since most methods 

use their own benchmarks which may introduce biases and reliance on one type of data. Here we 

performed an unbiased and objective benchmarking exercise comparing seven of the most widely 
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used and recent TME estimation methods, and also developed ConsensusTME: a gene set 

enrichment based method that integrates cells types and genes from these seven different 375 

methods in order to generate a consensus gene superset for each cell type. The novelty of 

ConsensusTME is that it a) draws on the current knowledge of cell specific gene by integrating 

gene sets from publicly available methods, b) provides a new TME cell estimation method that 

consistently performs well with the best mean rank across all benchmarks, and c) will evolve and 

improve as new methods and data sets are published. We also provide a web resource 380 

(www.consensustme.org) for evaluating current and future TME cell estimation methods across 

a diverse range of datasets allowing researchers to make informed decisions about the strengths 

and weaknesses of the different approaches to immune estimation.  

 

The ConsensusTME approach is an evolvable method by design, meaning as new gene sets and 385 

signature matrices become available, they can be added to existing supersets and tested with 

already established benchmarks, thus potentially improving its performance as new methods and 

gene sets are developed. The “wisdom of the crowd” phenomenon, that the collective knowledge 

of a group supersedes that of individuals, is an approach that has previously been used to address 

complex problems in computational biology (26). With the complexity and diversity of the TME 390 

that also varies across different anatomical locations, the derivation of gene sets to capture this 

is a challenge that is well suited to this collaborative approach. While this may lead to the inclusion 

of spurious genes in the supersets, the collection of multiple gene signatures can better capture 

the diversity in the transcriptome of immune cells in across different biological contexts. To 

combat this and to make gene sets specific for each cancer type, we employed a purity-based 395 

gene selection in ConsensusTME, similar to that used by TIMER (see Methods) (12). Future 

versions may deploy alternative approaches such as gene exclusion or inclusion lists or weighting 

schemes, particularly as single cell sequencing data of tumours becomes available which will 
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make it possible to derive cancer-specific immune- and stromal gene signatures directly. To allow 

dissemination of ConsensusTME we developed an easy to implement R package.  400 

 

Currently ConsensusTME leverages a ssGSEA statistical framework, but the compartmentalised 

approach allows for gene sets to be used with other statistical frameworks where appropriate. 

While our benchmark of other available frameworks showed ssGSEA to be the most robust and 

accurate, future development on get set enrichment algorithms may produce a new gold standard 405 

in the future (Supplementary Fig. S1A). Different frameworks can be especially important when 

considering the intended use of the output. ConsensusTME NES’s are imputed primarily for 

comparison of scores relatively across samples. Similar to another ssGSEA based method xCell, 

ConsensusTME NES’s also resemble absolute scores, which would allow comparison across cell 

types, however, currently this has not been benchmarked (13). Regression based methods 410 

including CIBERSORT are better suited for solving this problem of comparing across cell types, 

but require more careful interpretation when comparing across samples since outputs are 

fractional. 

 

We performed pan-cancer benchmarks using orthogonal data types generated for TCGA 415 

samples. While DNA-derived tumour purity scores correlated negatively with RNA-derived TME 

estimations for all methods, leukocyte methylation scores showed some variation across 

methods, and a lack of correlation for some methods. Also, different tumour types showed varying 

levels of concordance with leukocyte estimations that was irrespective of features of the cancer 

type, such as average tumour cancer cell fraction, median mutation load, or average leukocyte 420 

fraction. The methylation derived leukocyte fraction was generated by Hoadley et al. who 

compared the methylation patterns of pure leukocyte cells and normal tissue methylation patterns 

before selecting regions of differential methylation between healthy or cancer cells and immune 

cells (21). This approach has the potential to be complementary to bulk RNA based deconvolution 
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(21,27,28). Lymphocyte deep learning H&E quantifications provided a lower association with 425 

RNA-derived lymphocyte estimations, an observation that has been reported previously and 

considered to be in part due to the RNA-derived estimates reflect more cell counts, while spatial 

image-derived estimates reflect the fraction of lymphocytes per area (23,27). Thus, this 

benchmark should be used with caution due to the uncertainty of both RNA-derived and imaged-

based derived lymphocyte estimates. However, similar performance results to the leukocyte 430 

methylation benchmark were observed.  

 

Cell type-specific benchmarking on the PBMC data sets showed that while MCP-counter and 

CIBERSORT performed best on PBMCs, in general a low number of significant correlations were 

obtained across methods. Due to the diversity of cells tested and estimated by the different 435 

methods, the introduction of potential biases was unavoidable, for example: a method predicting 

only highly abundant or transcriptionally distinct cell types would likely show good correlations but 

may not be as informative as a method providing estimates for a wider range of cell types. Thus, 

obtaining a concluding result out of the PBMC benchmarks was challenging, although the 

interactive portal can be used to compare how methods performed on a cell-by-cell basis. 440 

Moreover, given the gene expression of PBMCs in the circulation of healthy individuals is different 

to that of tumour infiltrating lymphocytes, for the application of TME cell estimation using bulk 

RNA tumour data, PBMC benchmarks may be less informative (29,30). In contrast, benchmarks 

using bulk tumour gene expression from both bladder and colorectal cancer tumours for 

neutrophils, CD3+, CD68+, and CD8+ cells showed significant associations for the majority of 445 

TME estimation methods, particularly ConsensusTME. Together, these benchmarks showed that 

while no one method consistently outperforms others, ConsensusTME was unique in ranking 

among the top three best performing methods in all cancer-related benchmarks. Our 

comprehensive benchmarking on diverse pan-cancer and cell type-specific data complements 
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recently published efforts in evaluating TME cell estimation methods focussed mainly on specific 450 

cancer types (melanoma and ovarian) and scRNA-seq data (6).  

 

In this work, we have provided a framework for a set of objective and unbiased benchmarks for 

immune- and stromal cell estimation and deconvolution methods. While each benchmark 

individually suffers from limitations, the combination of experiments allows a broad and informed 455 

assessment of the accuracy of current methods. The constant evolution within the field of 

deconvolution led us to develop a shiny app for exploration of results (www.consensustme.org). 

Rather than these benchmarks providing a temporal snapshot of performance of TME cell 

estimation methods, this resource will ensure that new methods and datasets will be 

benchmarked and integrated into a common framework and the results can be explored in an 460 

interactive environment. Through use of this benchmarking methodology, we show that the 

ConsensusTME approach provides more accurate and robust cell type estimates than any of the 

existing methods individually for the estimation of immune cell subtypes in the setting of bulk 

tumours.  
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Figure 1: Benchmark of methods for estimating TME cell components using purity and leukocyte 

DNA methylation data from TCGA data. A) ConsensusTME development strategy (see Methods). B) 

Each heatmap square represents Kendall’s correlation coefficients (τ) of DNA-derived ABSOLUTE 

tumour purity scores (17,21) and RNA-derived TME score estimated by the different methods for the 555 

named TCGA cancer type. Box plots represent each methods performance across cancer types. C) 

Multiple linear regression models of leukocyte methylation scores as response variable (21) and RNA-

derived leukocyte estimations as explanatory variables (Supplementary Table 1C). Column heatmaps are 

sorted according to methylation derived leukocyte fraction (Left: Low, Right: High), rows are sorted 

according to median performance (Top to Bottom: Decreasing performance). D) Multiple linear regression 560 

models of deep learning H&E-derived lymphocyte counts as response variable (23) and RNA-derived 

lymphocyte estimations as explanatory variables (Supplementary Table 1C). Adjusted R2, Akaike 

Information Criterion (AIC) z-score, and Bayesian Information Criterion (BIC) z-score were compared 

across models generated by each methods cell type estimation. Lower AIC and BIC values represent a 

better goodness-of-fit penalising the number of variables. Mutation load: Median number of single 565 

nucleotide variants (SNVs). Tumour purity: DNA-derived ABSOLUTE cancer cell fraction. Leukocyte 

fraction: leukocyte cell fraction based on methylation data. Bar plots are sorted according to median 

correlation coefficient (Left to Right: Decreasing performance).  
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Figure 2: Cell type-specific benchmark using original benchmarking datasets published by the 570 

individual methods. A) Comparison between low, medium, and high categories of BLCA (n=404 samples) 

neutrophil H&E pathology counts from the TIMER benchmark data. One-way ANOVA with Tukey HSD post 

hoc tests were employed to calculate q-values. B) Kendall’s correlation coefficients (τ) of MCP-counter 

COADREAD IHC (n=38 samples) cell densities (cell/mm2) against TME methods estimates for CD8+ T 

Cells (CD8+), T Cells (CD3+) and Macrophage/Monocytes (CD68+). Plots are sorted according to median 575 

correlation coefficient (left to right: decreasing performance). C) Overview of TME cell estimation methods 

across all benchmarking experiments, ConsensusTME method highlighted. Mean rank of cell estimations 

across all benchmarking experiments shown in final column. 
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