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ABSTRACT

Cellular senescence has long been used as a
cellular model for understanding mechanisms
underlying the ageing process. Compelling evidence
obtained in recent years demonstrate that DNA
damage is a common mediator for both replicative
senescence, which is triggered by telomere short-
ening, and premature cellular senescence induced
by various stressors such as oncogenic stress and
oxidative stress. Extensive observations suggest
that DNA damage accumulates with age and that
this may be due to an increase in production of
reactive oxygen species (ROS) and a decline in DNA
repair capacity with age. Mutation or disrupted
expression of genes that increase DNA damage
often result in premature ageing. In contrast, inter-
ventions that enhance resistance to oxidative stress
and attenuate DNA damage contribute towards
longevity. This evidence suggests that genomic
instability plays a causative role in the ageing
process. However, conflicting findings exist which
indicate that ROS production and oxidative damage
levels of macromolecules including DNA do not
always correlate with lifespan in model animals.
Here we review the recent advances in addressing
the role of DNA damage in cellular senescence and
organismal ageing.

INTRODUCTION

It has long been suspected that ageing is closely linked
with damage. Indeed cellular macromolecules are con-
stantly exposed to both extrinsic and intrinsic damage.
Sources of extrinsic damage include UV irradiation and
other environmental toxic agents whereas intrinsic insults
principally consist of reactive oxygen species (ROS) and
spontaneous hydrolysis (1,2). ROS are produced during
normal cellular metabolism, particularly by respiration
in mitochondria, and when ROS production exceeds the

capacity of detoxification, can cause oxidative damage to
macromolecules including DNA. There is an emerging
consensus that a progressive and irreversible accumulation
of oxidative damage contributes to impaired physiological
function, increased incidence of disease and thus impacts
on the ageing process (3,4).

Although ageing may involve damage to various
macromolecules, for those that can be replaced by their
fast turnover, damage may not accumulate and therefore
may not be critical. DNA, on the other hand, is the prime
information molecule of the cell and nuclear DNA in
particular must last the lifetime of the cell. Therefore,
DNA damage represents a critical threat to cell function.
If DNA damage is severe or its accumulation exceeds its
elimination by DNA repair mechanisms, cellular senes-
cence or apoptosis will occur and this may contribute to
the ageing process.

Experimental approaches that aim to understand the
importance of DNA damage in the ageing process include
(1) observations of cumulative occurrence of DNA damage
in ageing cells in vitro as well as in tissues of aged
organisms including humans, (ii) non-genetic interven-
tions that influence oxidative stress, DNA maintenance
and lifespan and (iii) genetic manipulations that either
enhance resistance to oxidative stress or compromise
DNA integrity and the consequential effects on lifespan.
Here we review in vitro and in vivo data relevant to our
current understanding of the role of DNA damage in
cellular senescence and organismal ageing.

DNA DAMAGE AND CELLULAR SENESCENCE

Replicative senescence was first described in human
fibroblasts as a state of permanent cell cycle arrest
resulting from serial passage in culture due to a limited
proliferative lifespan (5). Senescent cells undergo distinc-
tive changes in morphology to become enlarged, flattened
and granular but remain viable and metabolically active
for long periods of time in culture (6,7). In addition to
human fibroblasts, replicative senescence has been
observed in a variety of cell types derived from many
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species (8,9). Senescent cells can be distinguished by
the presence of a biomarker—senescence associated
beta-galactosidase (SA-B-gal), which is detectable at
pH 6 (10,11).

DNA damage response in telomere-dependent replicative
senescent cells

Most somatic cells have a finite number for population
doubling and eventually become senescent because of
telomere shortening due to the end replication problem
(12,13). Telomeres are special chromatin structures
composed of tandem repeats of the TTAGGG sequence
and telomere DNA-binding factors that protect chromo-
somal ends from being recognized as a broken DNA end
(14,15). With low or absent telomerase activity, as in the
case of human diploid fibroblasts, telomeres become
shorter and shorter following each round of cell divi-
sion/DNA replication. Once telomeres reach a critically
short length their protective structures collapse and
chromosomal ends become uncapped thus triggering
senescence (14,16).

The prediction that critically shortened telomeres can be
recognized as a site of DNA damage was unequivocally
proven by the findings that molecular markers indis-
tinguishable from those induced by DNA damage are
indeed detected in senescent human fibroblasts (17,18).
These markers include nuclear foci of phosphorylated
histone H2AX and their co-localization with DNA repair
and DNA damage checkpoint factors such as 53BPI,
MDC1 and NBSI as well as the concomitant activation of
the DNA damage inducible kinases CHK1 and CHK2
(17,18). More importantly, analysis of immunoprecipi-
tated DNA using genomic DNA chips demonstrated that
the chromosome ends of senescent cells directly contribute
to the DNA damage response, and that uncapped
telomeres directly associated with many DNA damage
response proteins (17). Further analysis demonstrated that
it is the subset of very short telomeres—devoid of most of
their telomeric repeat sequences—which triggers DNA
damage foci formation and terminal cell cycle arrest
(19,20). Thus the functional links between telomere
attrition and DNA damage response were firmly estab-
lished in replicative senescence (21,22). Further evidence
supporting the mediation of DNA damage response
between telomere attrition and senescence were obtained
by the observation that shorter telomeres and telomeric
vH2AX foci were preferentially detected in early
senescent cells sorted from young proliferating fibroblast
cultures (23).

It is worth noting that mouse embryonic fibroblasts
(MEFs), which are also widely used in the study of
replicative senescence, become senescent after many fewer
population doublings than human fibroblasts when
cultured under standard conditions which include atmo-
spheric (20%) oxygen. It is clear now that senescence of
MEFs under this culture conditions is not due to telomere
attrition but is due to their sensitivity to oxidative stress
and the consequential high levels of oxidative DNA
damage in 20% oxygen. Indeed it has been demonstrated

that MEFs did not senesce in physiological (3%) oxygen
levels (24).

DNA damage response in telomere-independent premature
senescent cells

In addition to replicative senescence, a senescent pheno-
type can be induced prematurely in early passage cells by
agents that cause DNA damage (25-29) or disrupt
heterochromatin (30), by disruption of functional telo-
mere structures (31), or by overexpression of oncogenes
(32-36). These forms of premature senescence are typically
induced within a period as short as several days and are
not normally accompanied by telomere shortening (16,37).
Despite the differences in the stressors and the lack of
significant telomere shortening, there appears to be a
common pathway that triggers premature senescence,
which is a DNA damage response.

Sub-lethal oxidative stress such as hydrogen peroxide
(H>O,) treatment can cause massive acute DNA double-
strand breaks (DSBs) which are followed by upregulation
of p53 and p21, and cell cycle arrest in the stressed cells
(29,38). Much of this DNA damage can be repaired and
thus the cell can re-enter the cell cycle, however some of
the DNA damage persists which will eventually trigger
premature senescence. Such persistent DNA damage can
be increased substantially by a second H»,O, treatment,
thus resulting in a high induction of premature senescence
(29,39). In addition, oxidative stress encountered during
the S-phase of the cell cycle tends to result in more DNA
DSBs, higher fractions of persistent DNA damage and
higher induction of premature senescence (38).

Disruption of functional protective telomere integrity
by overexpression of a dominant negative TRF2 mutant
results in telomere uncapping and induction of premature
senescence. TRF2 is a telomere-binding protein that is
essential in maintaining functional telomere structures
(14). Dysfunctional, uncapped telomeres in mammalian
cells caused by ectopic expression of mutant TRF2
induced a DNA damage response with DNA damage
response factors, including 53BP1, YH2AX, Radl7, ATM
and Mrell being specifically associated at the dysfunc-
tional telomeres (31). In this case, telomere lengths were
not affected by the expression of mutant TRF2 suggesting
that the dysfunctional state of telomeres rather than
telomere shortening per se is an important factor in
inducing a DNA damage response and premature
senescence.

Recent findings show that cells that senesced in response
to oncogene expression accumulated DNA damage foci.
These studies demonstrated that oncogene expression
caused hyperproliferation and DNA hyper-replication.
Consequently, replicons refire or terminate prematurely,
generating DNA breaks that initiate a DNA damage
response (40—42). Oxidative stress may also contribute to
DNA damage in cells overexpressing oncogenes as high
levels of ROS were detected in these cells (43,44). The
causative function of the DNA damage checkpoint
response in induction of senescence was established
by the observation that depletion of checkpoint
kinases such as ATM or CHK2 resulted in by-pass of



senescence (40,41). Together, these findings established
oncogene-induced DNA damage signalling as a critical
mediator of oncogene-induced senescence (45).

Premature senescence can also be induced by exposure
of mammalian cells to oligonucleotides homologous to the
telomere 3’-overhang tandem sequence TTAGGG
(T-oligos), which can be readily taken up by cells into
the nucleus (46,47). The induction requires functional p53
and/or pRb pathways as the inactivation of both the p53
and pRb pathways is necessary for normal human
fibroblasts to escape T-oligo-induced senescence (48).
Furthermore, T-oligos can induce massive phosphoryla-
tion of H2AX (49), again suggesting that the DNA
damage signalling pathway is activated in the process of
T-oligo-induced premature senescence.

DNA damage response is a common mediator of cellular
senescence

The compelling evidence discussed above thus suggests
that cellular senescence, whether replicative senescence or
premature senescence that is induced by different stressors,
share a common underlying aetiology, that is, DNA
damage (Figure 1). ROS are the major agents responsible
for endogenous oxidative DNA damage in the cells.
Therefore, any disturbance of biological systems that
increase intracellular ROS levels would be expected to
induce untimely senescence. Indeed, inhibition of SODI,
the copper—zinc-containing superoxide dismutase that is a
major defence against ROS by detoxifying the superoxide
anion, induces premature senescence in human fibroblasts
(50). Overexpression of Akt, an important cell signalling
molecule, was found to lead to an inhibition of the
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Figure 1. DNA damage response is a central mediator in triggering
cellular senescence. Telomere shortening resulting from end-replication
problem or stochastic loss, and various other stressors such as acute
oxidative stress treatment, ionizing radiation, overexpression of
oncogenes, forced telomere uncapping and exposure to T-oligos all
trigger a DNA damage response during induction of cellular
senescence. The signalling pathways activated by DNA damage
response converge on the p53 and Rb proteins with the p53-p21-Rb
pathway mediating senescence due primarily to telomere shortening
while pl6-Rb pathway mediates premature senescence. Images shown
are DNA damage foci detected by immunofluorescence microscopy
using anti-yH2AX and 53BP1 antibodies (top), and a senescent human
fibroblast cell detected with SA-B-Gal (bottom).
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FOXO3a transcription factor and an elevation of intra-
cellular ROS that later induced a senescence-like cell
growth arrest in a p53-dependent manner (51). Increased
p53 activation can trigger a senescence response with
concomitant increased ROS production (52). Conversely,
increasing the level of SOD delays senescence of primary
fibroblasts as well as decreasing the rate of telomere
shortening (53). It is beyond the scope of this review to
discuss in detail the signals and pathways that activate
cellular senescence following a DNA damage response,
but the emerging consensus is that the signalling pathways
activated by DNA damage response converge on the p53
and Rb proteins with the p53-p21-Rb pathway-mediating
senescence due primarily to telomere shortening and the
pl6-Rb pathway is thought to mediate premature
senescence [Figure 1, for reviews see (9,54-57)].

Cellular senescence and ageing

That cellular senescence may be intimately linked with
organismal ageing was supported by the following
observations. First, there was a positive correlation
between the replicative potential of cells in culture and
the maximum lifespan of the species from which they are
derived (58,59). Second, cells derived from progeroid
(premature ageing) patients exhibited accelerated cellular
senescence in vitro (60-63). Third, senescent cells are
detected in vivo and accumulate with age. For example,
senescent cells were detected and increased with age in
primate skin (64,65), human vascular tissue (66-68) and
rodent and human kidneys (69-71).

In addition to the above correlative observations, a
recent study provided evidence that cellular senescence
may play a causative role in the ageing process. Keyes
et al. (72) found that p63 heterozygous mutant mice had
a shortened lifespan and developed features of accelerated
ageing. Both germline and somatically induced p63
deficiency activated widespread cellular senescence.
Using an inducible tissue-specific p63 conditional model,
they further showed that p63 deficiency induced cellular
senescence and caused an accelerated ageing phenotype
in the adult (72). This study thus established a causative
link between cellular senescence and premature ageing
in vivo (72,73).

The accumulation of senescent cells in animal organs
may contribute to the ageing process by depleting the
renewal capacity of tissues [path A in Figure 2, (74)] and/
or by altering tissue structure and function through
secretion of matrix metalloproteinases, epithelial growth
factors and inflammatory cytokines which could interfere
with the tissue microenvironment [path B in Figure 2,
(54)]. Consequently, tissue homeostasis will be compro-
mised which ultimately will lead to ageing (Figure 2).

DNA DAMAGE ACCUMULATES WITH AGE

According to the free radical theory of ageing, ROS play
an important role in the ageing process by causing
oxidative damage to biomolecules in cells (75). Here
we focus our discussion on DNA damage in the ageing
process. The reader is referred to other reviews for
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Figure 2. Two possible pathways through which cellular senescence
may contribute to the ageing process. (A) Cellular senescence may
reduce self-renewing cells, thus causing impaired regeneration of tissues.
(B) Cellular senescence may cause disrupted tissue structure, local
inflammation and permissive microenvironment for neoplastic growth
through secretion of degradative enzymes, inflammatory cytokines and
epithelial growth factors. Both pathways can cause compromised tissue
homeostasis and function which ultimately lead to ageing.

discussion of the general role of oxidative damage to
biomolecules including lipid, protein and DNA in ageing
(3,4,76,77).

ROS can cause either single-strand base oxidative
modification, single-strand nicks or DSBs (78). A subset
of single-strand nicks may be converted to DSBs if they
persist to be present during DNA replication. Among the
single-strand base damage identified so far, the guanine-
derived modification, 8-ox0-2-deoxyguanosine (8-0xo-dG)
is the major oxidative lesion (79,80). The level of
8-0x0-dG in DNA has, therefore, been consistently used
as a measure of oxidative damage to DNA in ageing
studies. Although accurate measurement of 8-0xo-dG in
DNA is hampered by oxidation of guanine during
preparation of DNA for analysis which can result in
differences in published estimates of the concentration
that vary over a range of three orders of magnitude
(81,82), generally, 8-oxo-dG levels increase with age in
various organisms studied (4). In addition, results from a
transgenic mouse model carrying a LacZ reporter gene
showed that both in vivo and in vitro ageing were
associated with an increased mutation frequency that is
likely a consequence of oxidative stress (83). Lu et al. (84)
observed that DNA damage is markedly increased in the
promoters of genes with reduced expression in the aged
human frontal cortex, which may cause reduced expres-
sion of genes involved in learning, memory and neuronal
survival. Thus increased oxidative DNA damage was
suggested to play a causative role in human brain ageing
(84). By detecting y-H2AX foci, Sedelnikova et al. (85)
showed that persistent DNA DSBs accumulated in ageing
mice and this accumulation occurred in germ as well as
somatic cells. It was suggested that it is the irreparable
DNA damage that may have a causal role in ageing (85),
reminiscent of the causal role of irreparable DNA damage
in induction of cellular senescence.

THE UNDERLYING CAUSES OF DNA DAMAGE
ACCUMULATION WITH AGE

Whether DNA damage occurs and accumulates is largely
determined by the levels of ROS produced and how
efficiently the antioxidant defence systems remove ROS
and DNA repair mechanisms repair damaged DNA. The
increase of DNA damage with age may therefore be due to
an imbalance between ROS generation and clearance, and
decline of DNA repair mechanisms.

ROS production and antioxidant defence systems

By measuring ROS, oxidation levels of macromolecules,
and a prooxidative shift in cellular redox status many
studies suggest that ROS production increases with
age (4). The age-associated increase in ROS production
is likely due to decline in the function of electron transport
chain with age. Zahn et al. (86) analysed changes in
transcriptional profile in humans, mice and flies during
ageing and found that expression of components of the
electron transport chain decreased with age in all three
organisms. Thus they suggested that decreased expression
of the electron transport chain pathway with age might
be a common marker of physiological ageing across
species (86).

Age-related increase in ROS generation/oxidative stress
may also be a consequence of a decline of antioxidant
defence systems. However, the pattern of age-related
changes in antioxidants in many tissues and species has
been inconsistent. On one hand, some studies supported
the notion that a decline in antioxidant defence systems
occurs with ageing (87), but substantial data also exist
indicating that there is no generalized decrease in
antioxidant defence enzymes (88-91) with some studies
even showing an age-associated increase in antioxidant
enzyme activities (e.g. 92,93). Thus the correlation
between antioxidant enzymes and ageing is, at best,
weak and sometimes contradictory, suggesting that anti-
oxidant enzymes may not necessarily be a limiting factor
governing the degree of cellular oxidative damage with
ageing.

DNA repair

DNA repair systems include base excision repair (BER)
and nucleotide excision repair (NER) for single strand
lesions and homologous recombination (HR) and non-
homologous end-joining (NHEJ) pathways for DSBs
(78,94). One important factor that causes age-associated
accumulation of DNA damage may be the functional
decline of DNA repair systems with age. Indeed, such
declines have been observed in in vitro (95) and in vivo
systems (94). For example, NHEJ becomes less efficient
and more error-prone during cellular senescence (96).
Decline of NHEJ efficiency has also been reported in the
rat brain during ageing (97). Therefore, it was suggested
that diminished efficiency and fidelity of DSB repair are
responsible for age-related genomic instability (98,99).
Several studies demonstrated that efficiency of NER also
decreases with age as the rate of removal of UV-induced
DNA lesions is slower in aged humans relative to younger



adults (100-102). This age-associated decline was shown
to result from, at least in part, decreased levels of proteins
that participate in the repair process (101). More recently,
an age-associated decline of DNA repair efficiency
including BER and NHEJ was reported in ageing rat
neurons (103). In this case, age-associated compromise in
BER is attributed to the deficiency of DNA polymerase [
and DNA ligase in ageing neurons whereas the limiting
factor(s) for compromised NHEJ remained to be identi-
fied (103). Decline of DNA repair capacity at the whole
organismal level was reported recently in ageing
Caenorhabditis elegans in which a 30-50% decrease in
DNA repair in ageing adults was observed (104). Taken
together, these observations suggest that age-associated
accumulation of DNA damage is, at least in part, due to
an age-associated decline of DNA repair capacity.

The importance of DNA repair systems in determining
longevity has been demonstrated convincingly in prema-
ture ageing patients (e.g. Werner and Cockayne syn-
dromes). Werner syndrome (WS) is a segmental progeroid
disease characterized by acceleration of specific age-
related phenotypes and increased cancer due to loss of a
helicase protein known as WRN. It was suggested that
increased accumulation of DNA strand breaks as well as
dysfunctional telomeres and resulting premature senes-
cence play a causative role in the WS (63,105). This notion
is supported by the recent findings that WS cells tend to
have an increased accumulation of DSBs and enhanced
genomic instability including telomere dysfunction (106)
and that replication-associated telomere loss was respon-
sible for chromosomal aberrations in WS fibroblasts (107).
The biological significance of functional DNA damage
repair is further underpinned by the fact that many other
progeroid syndromes including Cockayne syndrome and
trichothiodystrophy, are NER-related disorders (108,109).
The connections between impaired BER and human
disease are fewer than NER-related disorders. This is
likely due to either the embryonic lethality of defects in
essential BER components or the multitude of back-up
systems (i.e. redundancy of BER enzymes) in the removal
of oxidatively damaged bases from DNA, which may
reflect the critical nature of BER in maintaining genome
integrity (110-112).

An emerging third link—age-related shifts in DSB repair
pathway usage

In addition to the observations that DNA damage
increases and DNA repair capacity decreases with age
and that defects in DNA repair genes are associated with
premature ageing, now a third link has emerged: ageing is
also associated with changes in DSB repair pathway
usage, from simpler NHEJ in younger organisms to HR in
the aged ones. Using a transgenic repair reporter construct
Preston et al. (113,114) discovered that in sperm from
male Drosophila the predominant mechanism by which
DNA DSBs are repaired changes dramatically as the male
ages. Interestingly they found that the age-related changes
in DNA repair were not an overall increase or decrease in
repair capacity, but rather a shift in the relative usage of
repair mechanisms such that younger organisms repair
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DSBs primarily by NHEJ or single-strand annealing
(SSA) whereas in older individuals HR becomes the
predominant repair process (115). Given the fact that
DNA damage accumulates with age, it is surprising that
ageing is correlated with reduced usage of NHEJ and SSA,
which are actually error-prone and increased usage of HR
which is the more accurate repair pathway. The authors
suggest that their findings may be in keeping with the
‘antagonistic pleiotropy’ hypothesis (116) in that the use
of simpler end joining processes to repair breaks avoids
time-consuming DNA synthesis, thus allowing more rapid
development and offering a significant competitive advan-
tage for most species. However, the use of these error-
prone pathways at ecarly ages may result in faster
accumulation of DNA damage with deleterious conse-
quences later in life (115).

The mechanism by which relative usage of DSBs repair
shifts with age is currently unknown although it is
speculated that the shift might be due to age-related
changes in expression levels and/or activities of compo-
nents of the repair pathways (117). Also, the generality of
age-related changes in DSB repair pathway usage remains
to be established.

CAUSAL OR CORRELATIVE? EVIDENCE FROM
EXPERIMENTAL INTERVENTIONS

Although numerous reports indicate that DNA damage
increases with age, the question of whether DNA damage
is a causative agent of ageing or it is merely a correlative
accumulation with ageing cannot be answered by descrip-
tive observations. In order to address this question,
experimental interventions that can alter lifespan are
needed. These experimental interventions include genetic
and non-genetic approaches.

Evidence from non-genetic approaches

That DNA damage may play a causal role in the ageing
process was supported by observations in CR (Caloric
restriction) animals. Various studies have reported reduc-
tions in steady-state oxidative damage to cellular macro-
molecules including DNA in CR animals (118,119).
The reductions in oxidative damage by CR has been
attributed to a decline in the rate of ROS generation and/or
enhanced repair mechanism (118,119). These observations
thus provide a link between attenuated DNA damage/
enhanced DNA repair and lifespan extension by CR.

Indirect evidence supporting the role of oxidative DNA
damage in ageing is also available from pharmacological
intervention studies. Synthetic antioxidant enzyme
mimetics such as EUK-8, EUK-134 and EUK-189,
which have broad-spectrum efficacy against both super-
oxide and hydrogen peroxide showed lifespan extension
effects in C. elegans (120). Moreover, treatment of SOD2
(the mitochondrial form of SOD) nullizygous mice with
these mimetics attenuated mitochondrial defects and
extended their lifespan by 3-fold (121). Similarly, admin-
istration of antioxidant mimetics to ATM-deficient mice
suppressed oxidative DNA damage and DNA deletions,
and increased longevity (122).
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Recently, caloric restriction mimetics such as resveratrol
and related polyphenol compounds have been shown to
extend lifespan of yeast, C. elegans and Drosophila
(123,124). Moreover, resveratrol was also found to exert
its beneficial biological functions and promote survival in
mice (125-127). Evidence from in vitro and in vivo studies
demonstrated that resveratrol can effectively scavenge
ROS, upregulate the expression of antioxidant enzymes
and increase resistance to oxidative stress (128—130). These
findings support the notion that oxidative damage is a
major determinant of lifespan and that it can be counter-
acted by pharmacological interventions.

Evidence from genetic approaches

Genetic models that show lifespan extension usually
involve overexpression of antioxidant enzymes or altering
gene expression in a manner that increases resistance to
oxidative stress. For example, overexpression of SODI
and SOD?2 in Drosophila (131-134) and yeast (135,136)
extended lifespan. Positive effects of overexpression of
antioxidant enzymes on longevity have also been observed
in mammalian models. Schriner et al. (137) showed that
transgenic mice overexpressing catalase in mitochondria
increased both median and maximum lifespan, which was
accompanied by decreased H,O, production and reduced
oxidative damage. The overexpression of other antioxidant
enzymes including glutamate-cysteine ligase (138), methio-
nine sulphoxide reductase (139) and thioredoxin (140)
also can extend lifespan. Whether extension of lifespan in
the model organisms overexpressing antioxidant enzymes
is through mitigating cellular senescence remains to be
established.

In addition to the genetic models overexpressing
antioxidant enzymes, various other genetic models with
extended lifespan have been reported in recent years.
These genetic models include disrupted expression of GH
and insulin/IGF1 signalling pathways (141-146), p66*"
(147,148) and clk-1/mclk-1 (149,150), and overexpression
of Klotho (151,152), MST/CST (153) and FOXOs
(154,155) as well as enhanced JNK signalling (156,157).
A common theme that is repeatedly identified in these
genetic models is the enhanced expression of antioxidant
defence systems, increased resistance to oxidative stress
and reduced oxidative damage.

Alongside the genetic models of extended lifespan, there
are genetic models of premature ageing. These models
typically involve disrupted expression of proteins that
play a role in the maintenance of DNA (including
telomere) integrity such as WRN, Ku80, ATM and
ERCCI (158-160). Evidence supporting the causal role
of genomic instability in ageing has been further obtained
from two recent mutant mouse models. Mostoslavsky
et al. (161) showed that deficiency of Sirt6, one of seven
mammalian Sir2 family members caused defective BER,
elevated levels of spontaneous genomic instability and led
to premature ageing. Wang et al. (162) reported that
Cdc42 GTPase-activating protein deficiency can cause
reduced DNA damage repair ability, increased genomic
abnormalities, premature senescence and ultimately pre-
mature ageing phenotypes in mice. This study thus

provided an interesting link between genomic instability,
cellular senescence and ageing (162).

Two recent reports using progeroid mouse models
provided a very important link between DNA damage
and ageing. Niedernhofer ez al. (163) showed that Erccl "~
mice recapitulated the progeroid syndrome of a human
patient. Comprehensive analysis of gene expression in the
Erccl/~ mice liver revealed a broad spectrum of changes
as compared with littermate controls. These changes
included a general decrease in the activity of hormonal
pathways involved in the regulation of metabolism, such
as GH/IGFI signalling, and increased activity in anti-
oxidant and DNA repair pathways (163). By using a
different NER-deficient mouse model—Csb™™/Xpa /™
double-mutant mice, van der Pluijm et al. (164) found
similar gene expression changes as seen in Erccl /™ mice,
including suppressed GH/IGF1 endocrine signalling and
the upregulation of antioxidant defence genes. These two
studies also showed that the suppression of GH/IGF1
signalling could also be induced by chronic exposure to
DNA damage agents. Strikingly the gene expression
pattern observed in NER-deficient and in mutagen-treated
mice in these two studies is reminiscent of the array of
changes previously reported in long-lived mutant
C. elegans and CR mice (144). The authors suggest that
this seemingly paradoxical observation may be explained
by postulating that DNA damage, whatever the causes,
triggers a common, highly conserved stress response which
is systemic suppression of the GH/IGF1 hormone axis.
This in turn leads to metabolic changes that shift energy
usage from growth and proliferation to protective main-
tenance, minimizing further damage. Progeroid mice
resulting from DNA-repair deficiency thus mount the
same protective response, but cannot fully counter
the consequences of a high load of DNA damage.
Consequently excess DNA damage and correspondingly
high levels of mutagenesis, cellular senescence and cell
death may conspire to promote progeroid changes and
disease pathogenesis (165).

Recent studies also provided evidence that links DNA
damage, declined stem cell functionality and ageing. Mice
deficient in genomic maintenance pathways such as NER,
NHEJ and telomere maintenance showed decreased stem
cell functional capacity including loss of reconstitution and
proliferative potential, diminished self-renewal, increased
apoptosis and ultimate functional exhaustion (166).
Similarly mice with diminished DNA DSB repair caused
a progressive loss of haematopoietic stem cell and bone
marrow cellularity during ageing, and severely impaired
stem cell function in tissue culture and transplantation
(167). Furthermore, deficiency in DNA damage response
by deletion of ATR in adult mice caused rapid premature
ageing, resulting from reductions in tissue-specific stem
and progenitor cells, and exhaustion of tissue renewal and
homeostatic capacity due to forced regeneration pressure
imposed in residual ATR-competent cells (168,169).

Conflicting data

Despite the large body of evidence from the experimental
intervention studies supporting the critically important



role of DNA damage in the ageing process, there are
reports that either cast doubts on the effectiveness of some
antioxidant mimetics or show data contradictory to the
correlative relationship between antioxidant activities,
DNA damage and ageing. For example, no effects of
EUK-8 and EUK-134 could be found in house flies that
were treated with various concentrations of the mimetics
(170). Administration of these mimetics to C. elegans
increased cellular SOD activity in a dose-dependent
manner, but failed to extend lifespan (171). More recently,
Partridge and co-workers tested the effects of EUK-8 and
-134 and MitoQ, one of a new class of mitochondria-
targeted antioxidants (172) in Drosophila under various
conditions (173). They found that although the three
drugs did significantly increase the lifespan of SOD-
deficient flies and improved their tolerance to paraquat
stress these antioxidant drugs all failed to increase the
lifespan or to rescue the paraquat sensitivity of wild-type
flies (173). Moreover, in an earlier study they found that
although CR extended lifespan in Drosophila, there was
no significant difference in mitochondrial ROS production
compared with controls and that overexpression of
mitochondrial adenine nucleotide translocase lowered
membrane potential and ROS production but did not
extend lifespan (174). Furthermore overexpression of
SOD in Drosophila failed to extend lifespan in some
studies, and in some cases even shortened lifespan
(175,176). Conversely, heterozygous MnSOD knockout
mice showed decreased MnSOD activity (177), increased
sensitivity to oxidative stress (178), increased oxidative
DNA damage and even a higher incidence of cancer, but
the lifespan was not affected (179).

MITOCHONDRIAL DNA (mtDNA) DAMAGE AND
AGEING

Mitochondria contain their own genome, which is a
circular double-stranded DNA molecule of ~16kb
(mtDNA). Mammalian mtDNA contains 37 genes,
which code for 13 polypeptide components of the
respiratory chain as well as rRNAs and tRNAs necessary
for intramitochondrial protein synthesis (180). As mito-
chondria are the major source of ROS, together with the
fact that mitochondria do not have the enzymes necessary
for NER and protective histone wrapping, it has long been
suspected that mtDNA is the prime and vulnerable target
of ROS attack (181). It is also suspected that mtDNA
damage, if not repaired, leads to disruption of the electron
transport chain and production of more ROS, which, in
turn, leads to further mtDNA damage, hence the concept
of a ‘vicious cycle’ of ROS production and mtDNA
damage. The importance of mtDNA damage in ageing
and age-associated diseases have been supported by the
observations that mtDNA damage (including point
mutations and deletions) increases with age and mito-
chondrial dysfunction is a common aetiology of many
age-associated neurodegenerative diseases (180—183).

To address whether defective mtDNA plays a causative
role in the ageing process, Trifunovic et al. (184) created a
mutant mouse model in which the proof-reading ability of
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mtDNA polymerase is lost by replacing the critical
aspartate residue with alanine in one of the three
exonuclease domains. They found that the mutant mice
showed elevated levels of point mutations as well as
increased amounts of deletions and that this increase in
somatic mtDNA was associated with reduced lifespan and
early onset of ageing-related phenotypes (184).
Apparently, this study provided a causative link between
mtDNA mutations and premature ageing phenotypes in
mammals. In order to see whether the premature ageing
phenotypes in the mutant mice were due to increased
oxidative stress that might be caused by increased mtDNA
mutations Kujoth er al. (185) investigated markers of
oxidative stress, including levels of protein carbonyl,
F2-isoprostanes and 8-oxo-dG (oxidative damage to
DNA) and 8-oxo-G (oxidative damage to RNA), in a
similar mutant mouse model. Surprisingly, they found
that accumulation of mtDNA mutations was not asso-
ciated with increased mitochondrial H,O, production or
increased markers of oxidative stress, but was correlated
with the induction of apoptotic markers. The levels of
apoptotic markers were also found to increase during
ageing in normal mice. Therefore, they suggested that
apoptosis and subsequent loss of irreplaceable cells might
be an important mechanism of ageing in mammals
(183,186). Trifunovic et al. (187) found in a subsequent
study that increased mtDNA mutations indeed did not
affect ROS production in their mutant mice. Thus the
premature ageing phenotypes in mtDNA mutant mice
were not caused by a vicious cycle of massively increased
oxidative stress as initially suspected. These findings also
provided strong evidence that argue against any direct role
of oxidative stress in the premature ageing process in the
mutant mouse models (188,189).

Does premature ageing of the mtDNA mutant mouse
prove that mtDNA mutations are involved in the natural
ageing process? This question was raised by Khrapko
et al. (190) based on the fact that the levels of mutations in
the mutant mice are typically more than an order of
magnitude higher than typical levels in aged humans. By
using a more accurate assay, Vermulst ez al. (191) found
that mtDNA mutations increased with age in both wild-
type and mutant mice with the mutation frequency in
homozygous mutant mice being 2500-fold higher than in
wild-type mice. Remarkably, heterozygous mice showed
an ~500-fold higher mutation burden than age-matched
normal mice, with no obvious features of premature
ageing (191). This study indicated that mitochondrial
mutations do not limit the lifespan of wild-type mice, thus
casting doubt on a causal role in normal ageing (192).

CONCLUSIONS

An accumulated large body of evidence has demonstrated
beyond doubt that DNA damage is a crucial mediator for
various stresses during cellular senescence regardless of
whether they are telomere dependent or independent and
that oxidative DNA damage accumulates with age. The
age-associated accumulation of DNA damage is attribu-
table to an age-related increase in ROS production and a
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Figure 3. Major components that contribute to age-related accumula-
tion of DNA damage and the subsequent consequences that lead to
ageing. Age-related increase in ROS production and decline in DNA
repair capacity have been identified as two major factors that cause
age-associated accumulation of DNA damage. It is less clear as to how
the antioxidant defence systems influence increased accumulation of
DNA damage during ageing. At the cellular levels DNA damage results
in cellular senescence or apoptosis, which in turn lead to compromised
tissue homeostasis through stem cell depletion and/or disrupted tissue
structure as detailed in Figure 2. Ultimately organ function declines
and phenotypical features of ageing manifest at organismal level.

decline in DNA repair capacity although how changes in
antioxidant defence systems contribute remains less clear.
Increasingly, experimental interventions, particularly
genetic animal models serve to provide valuable insight
into underlying mechanisms at both molecular and
cellular levels. Thus it is now clear that at the cellular
level DNA damage results in cellular senescence or
apoptosis, which in turn leads to compromised tissue
homeostasis, most likely through diminished self-renewal
or altered tissue structure. Ultimately phenotypical
features of ageing manifest at organismal level (Figure 3).

With the accelerated pace of genetic models being
created and more sophisticated approaches (e.g. develop-
mental stage-specific, tissue-specific and cell type-specific
as well as dose controllable) being used, it is hoped that
new data will continue to provide new links between the
components that are implicated in the ageing process
(e.g. DNA damage, insulin/IGF1 signalling and metabo-
lism), to strengthen the weak links (e.g. cellular senescence
and ageing) and to enrich the established links (e.g. DNA
repair capacity and ageing). At present, the correlative

relationship between DNA damage and ageing is strong
and a causative role of compromised DNA maintenance
or accelerated mtDNA mutations in premature ageing
is convincing. However, whether DNA damage plays a
causative role in normal ageing still remains to be estab-
lished. It is hoped that this question may be addressed by
creating an animal model with enhanced DNA repair
capacity or enhanced DNA polymerase proofreading
capacity.

Hayflick (193), who first described cellular senescence
over four decades ago, recently keenly declared that
‘Biological ageing is no longer an unsolved problem’. It is
hoped that with the science of ageing rapidly growing in
depth, breadth and molecular detail, one day it will be
possible to declare ‘Mechanisms of biological ageing are
no longer an unsolved problem’.
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