
 2021 European Conference on Computing in Construction  
                          Ixia, Rhodes, Greece 

  July 25-27, 2021 
 

  

 

ABSTRACT 
We propose a mobile 3D reconstruction method for 
improving the precision and density of point clouds. It is 
suitable for hand-held scanners comprised of a colour 
camera and a lidar. We fuse time-synchronized and 
spatially registered images and lidar sweeps using deep 
learning techniques into dense scans, which are then used 
for progressive reconstruction in an odometry-like 
manner. We build a prototypic scanner and test our 
method in an indoor case-study. The results show that our 
pipeline outperforms reconstructions by other devices and 
methods, yielding relatively denser and detail-preserving 
point clouds with a 46% reduction in noise of 
reconstructed planar surfaces. 

INTRODUCTION 
Construction professionals do not follow hard-and-fast 
rules while collecting geometric data of objects. On one 
extreme, a plumber might use a tape to measure the length 
of a pipe against the design specifications. On the other 
hand, an inspector will probably use a static laser scanner 
to document the as-is state of a whole asset while 
performing quality control. Part of the reason behind the 
diversity of rules is a lack of general guidelines. The 
method used by a professional will be rather intuitive and 
depend on the requirements of the task at hand. There are 
many technologies currently on the market which can 
reconstruct infrastructure scenes, filling the needs of some 
use cases that exist between the two mentioned extremes. 
 However, professional scanning tools become more 
and more mobile in contrast to well established 
static/terrestrial laser scanners such as FARO (2016). 
Mobile scanners bring the hope of increased productivity 
unlike their terrestrial counterparts, for which the effort 
spent on acquiring data is substantial, followed by even 
more substantial post-processing (BIM task group, 2013; 
Kalyan et al., 2016). Mobile scanners such those produced 
by GeoSLAM (n.d.) or Smith (n.d.) enable faster scanning 
and eliminate the need for time-consuming single-place 
data capturing, followed by painstaking registrations of 
individual scans. 
 Nevertheless, the mobility of these devices comes at a 
cost. The top 2 desirable attributes of mobile scanners are 
point cloud resolution/density and point cloud accuracy 

according to one of the biggest recent surveys in the 
AECO (Architecture, Engineering, Construction, 
Operation)  industry (NavVis et al., 2021). The same 
survey further shows that the key barriers to further 
market penetration of mobile scanners are the lack of 
accuracy and reliability of obtained point clouds. 
 We adopt a geodetic concept of accuracy presented by 
USIBD (2016) where LW� LV� VSOLW� LQWR� µ3UHFLVLRQ¶� DQG�
µ&RUUHFWQHVV¶�� :H GHILQH� µ3UHFLVLRQ¶� DV� WKH� VWDQGDUG�
deviation (noise) of part of a point cloud (for example, the 
spread of points on a planar wall) while µ&RUUHFWQHVV¶ is 
the absolute position of points against their true value. For 
simplicity, the former can be thought of as a local attribute 
of a point cloud related to the random noise on 
measurements of a sensor which produced it while the 
latter corresponds to the systematic error of a scanning 
device such as a drift that mobile scanners suffer from. 
 Another point cloud attribute closely related to 
reliability and accuracy is resolution. According to 
USIBD (2016), the resolution of point clouds coming 
from laser scanners should be such that the points are not 
far away from each other compared to the diameter of the 
beam of a laser scanner. For example, some details on a 
wall would be missed if spaces between points are too 
large. On the other hand, decreasing the distances between 
points to a value smaller than the diameter of the beam 
results in redundancy in data. However, problems with too 
low resolution are dominant in practice, especially when 
the distance to the scanning objects increases. 
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Figure 1: Our prototypic scanner (left); an indoor scene 
reconstructed using the proposed method (right). 



 Due to the above reasons, we focus on improving the 
precision and resolution of point clouds in this paper. We 
propose a novel mobile 3D reconstruction method where 
the key distinguisher and novelty compared to all the 
other mobile state-of-practice (SOP) and state-of-the-art 
(SOTA) scanning solutions are twofold: (1) we first 
considerably densify sparse lidar scans by fusing them 
with high-resolution colour images; and (2), we use these 
densified scans to reconstruct a scene progressively. For 
the 1st part, our system utilizes recent advances in spatial 
Artificial Intelligence (AI) where colour images are fused 
with lidar depth measurements in a deep learning-based 
task named image-guided depth completion. This task 
aims at increasing the resolution of the relatively spare 
lidar scans. For the 2nd part, we utilize an ICP-like self-
localization method to stitch the densified scans with each 
other in near real-time which results in the progressive 
creation of the scanned scene. This is otherwise known as 
odometry, which falls within a broader category of 
robotics/computer vision called SLAM (Simultaneous 
Localization and Mapping) (Cadena et al., 2016). 

We build a prototypic hand-held scanner consisting of 
a suite of a camera and a lidar (Figure 1 on the left), 
implement our method as a software package for the 
scanner and test the whole in an indoor case study (Figure 
1 on the right) to verify our method. The results show that 
our proposed method outperforms the current indoor 
scanners, such as Google Tango (Marder-Eppstein, 2016), 
or LOAM-based reconstruction methods (Zhang and 
Singh, 2014), with around 46%-increase in the precision 
of reconstructing flat surfaces. Also, our point cloud more 
reliably represents the reconstructed object by preserving 
more of its details. 

Before we proceed to the specifics of our method and 
the case study, however, the subsequent section reviews 
the SOTA mobile reconstruction methods and the related 
image-guided depth completion algorithms. 

RELATED WORK 
State of the art in mobile mapping 
The performance of general mapping methods is often 
compared on the KITTI odometry benchmark (Geiger et 
al., 2012). KITTI ranks the methods according to their 
average translation error between the estimated trajectory 
and the ground truth. According to this ranking, visual-
lidar methods (Zhang and Singh, 2015) and lidar-only 
ones (Zhang and Singh, 2014) are the best with the former 
having a minimal advantage. A recent deep learning-
based approach (Yang et al., 2020) has over 60% worse 
performance compared to the first method, and a 
monocular visual odometry technique (Buczko and 
Willert, 2017) has an error more than twice as high as the 
baseline. Further subsections will focus on the caveats of 
these methods. 
 In visual odometry, a set of features such as two-
dimensional intensity discontinuities (commonly called 
corners or key-points (Cipolla, 2017)) has been used to 

hand-craft the dominating feature-based approaches. 
Noisy corners are back-projected into such a 3D point 
cloud and sensor poses that maximise the probability of 
obtaining these corners (Engel et al., 2016). Recent 
approaches include (Mur-Artal and Tardos, 2017; Tang et 
al., 2019). 
 Lidar odometry methods minimise the geometric error 
of subsequent lidar range measurements, named further 
sweeps or scans. Subsequent sweeps are matched to a 
progressively built 3D model consisting of previously 
registered scans. The methods vary across geometric 
features extracted from scans and the way they are 
sampled. Some recent works include (Deschaud, 2018; 
Shan and Englot, 2018; Zhang and Singh, 2014).  
 Ultimately, there are mixed-commodity mapping 
approaches combining visual and lidar odometries. They 
bring a challenge not observed in the previous 2 
paragraphs: how to fuse data coming from various 
domains together, for example, sparse range 
measurements of a lidar and dense planar images. Some 
recent approaches designed to address this problem are 
(Graeter et al., 2018; Zhang and Singh, 2018). 

Image-guided depth completion techniques 
Described in the previous paragraph camera-lidar 

fusion can be viewed from a different perspective, 
namely, how to use a substantially denser camera to 
densify sparse lidar measurements. Depth densification 
methods belong to more exotic tasks in computer vision 
dominated recently by deep learning. Depth densification 
can be further split by what the specific input to their 
algorithms is. It is of particular interest to investigate 
methods which take both images and lidar scans as an 
input because they might synthesize with the camera-lidar 
odometry methods described in the previous paragraph. 
Such methods often fall within the term image-guided 
depth completion (IGDC). 

IGDC uses substantially denser colour images to 
densify sparse lidar measurements (Ma et al., 2019). An 
algorithm predicts how to complete the gaps between 
sparse lidar measurements guided by images from the 
camera. More specifically, neural networks regress the 
depth of each pixel in the depth map. The difference 
between the sparse lidar depth maps and dense 
counterparts can be seen in Figure 3 c) and e), or d) and 
j). Such methods usually compare their performance on 2 
datasets: (1) indoor NYU Depth Dataset by Silberman et 
al. (2012) and (2) outdoor KITTI Depth Completion 
dataset by Uhrig et al. (2017), both of which provide 
registered pairs of sparse depth maps and images along 
with the corresponding dense depth maps as ground truth. 
Since our paper deals with indoor scenes, only the 
performance on the first dataset is of interest. According 
to Imran et al. (2021), the top 3 indoor IGDC methods are 
those by Imran et al., (2021), Park et al. (2020) and Xiong 
et al. (2020).  

The limitation of IGDC methods is that they only 
reconstruct dense scenes from single points of view. Also, 



due to their reliance on end-to-end deep learning 
techniques, they are very much sensor dependent. This 
means that WKH\� FDQQRW� EH� XVHG� ³RXW-of-the-ER[´� ZLWK 
custom cameras and lidars. 

Objectives of this paper 
The mentioned odometry methods focus on better 
estimation of trajectory which might then result in 
improving the correctness of the overall point cloud. The 
IGDC techniques, on the other hand, try to improve the 
precision and density of point clouds taken from single 
points of view. The goal of this paper is to combine these 
two methods in the hope of improving the precision and 
density of progressively built scans in an odometric 
manner. 

SYSTEM OVERVIEW 
Our system aims at achieving precise and dense scans 
from a mobile scanner by processing the collected 
sequences of time-synchronized and spatially registered 
pairs of RGB images and lidar scans. Unlike the other 
SOP and SOTA odometry solutions, our method: (1) first 
considerably densifies sparse lidar scans using RGB 
images; and (2) uses these densified scans to reconstruct 
a scene progressively. For the 1st part, we utilize deep 
learning-based image-guided depth completion which 
uses images to intelligently increase the resolution of the 
lidar scans. For the 2nd part, we utilize an ICP-like self-
localization method to stitch the densified scans to each 
other which results in the progressive building of the 
transversed scene. The combination of these two is the 
key novelty and distinguisher from all the other methods. 
A high-level description of our solution is presented in 
Figure 2. It consists of 3 major steps, each of which is 
described in detail in the following subsections. Figure 3 
shows partial outputs of the key processes. 
 

Data preparation 
The input (images and lidar sweeps) to the following 
densification method must be aligned in space and 
synchronized in time so that the corresponding images 
and lidar sweeps represent the same scene from the same 
point of view captured at nearly the same time. 
 The camera and lidar need to be synchronized in time 
because they are being moved while scanning, and the 
sensors send images and lidar sweeps at different 
frequencies. For example, our camera shoots images at a 
frequency of around 50 Hz while lidar sends its scans at 
the frequency of around 10 Hz. These frequencies also 
slightly fluctuate in time, hence a need to select such an 
image and a lidar sweep that are maximally consistent 
with each other at a given moment. 

We achieve that by a standard synchronisation policy 
developed by ROS (n.d.) that selects pairs of images and 
sweeps such that their difference in timestamps is minimal 
and neither of them was synchronised before. This will 
ensure that they represent the same part of the scene and 
their uniqueness among the other pairs. The timestamped 
streams of images and lidar sweeps are symbolized by the 
³��´�VLJQV�DW�WKH�WRS�OHIW�SDUW�RI�Figure 2. 
 There is a lot of redundancy in such streams of data 
given the synchronised signals will be of frequency close 
to that of the lidar (10 Hz) and a person using the device 
will be moving with it at around walking speed. Hence, a 
QHFHVVLW\� WR� GLVFDUG� WKH� DOUHDG\� ³VHHQ´�SDUW� RI� D� VFHQH��
and, at the same time, to capture images and sweeps that 
partially overlap with already reconstructed parts of the 
scene so that they can be registered. Our system is 
constantly monitoring if the user has moved or rotated the 
scanner by certain thresholds based on an odometry 
method described in the following sections. For example, 
the system picks a new key pair of an image and a scan 
when the user holding the device walks 1 meter in any 

Figure 2: High-level overview of the proposed method (read from top left to right). 



direction or rotates it by 20 degrees. Such key pairs can 
be seen in Figure 3 in the first 2 rows. 
 Image undistortion follows a procedure described by 
OpenCV (n.d.). It corrects images in such a way that all 
edges that are straight in reality, are also straight in the 
images. To use this method, however, the camera must be 
intrinsically calibrated.  
 Intrinsic calibration of a sensor aims at estimating its 
internal parameters so that its output is useable and 
meaningful. We assume that our camera follows a pinhole 
camera model which includes its intrinsic matrix and lens 
distortion coefficients. These parameters are estimated 
using a standard calibration procedure described by 
OpenCV (n.d.). The camera calibration is also needed to 
project lidar points onto images which is the last process 
in our data preparation step. 
 Corresponding images and lidar scans need to be 
overlaid/registered onto each other so that the input to the 
subsequent densification process is consistent in space. 
We achieve this by projecting lidar points onto image 
space which creates sparse depth maps with pixels 
containing the distances from the origin of the camera to 
the given 3D points. Camera calibration described in the 
previous paragraph provides a way to project 3D points 
onto the image space. However, this projection happens 
in the camera coordinate system which is different from 
WKH� OLGDU¶V� FRRUGLQDWH� V\VWHP��:H� HVWLPDWH� D� (XFOLGHDQ�
transformation (rigid-body translation and rotation) 
between the sensors using a SOTA camera-lidar extrinsic 
calibration method described by (Huang and Grizzle, 
2020) to provide a mapping between these two coordinate 
systems. On a side note, we obtain 3D points of the lidar 
in Cartesian coordinates based on raw sensor 
measurements IROORZLQJ�WKH�PDQXIDFWXUHU¶V�PDQXDO�DQG�
incorporating the default lidar intrinsic parameters. 
Thanks to this, the stream of sweeps coming from the lidar 
is spatially correct up to the precision level declared by 
the manufacturer. Also, we assume that the motion 
distortion caused by holding the scanner at a walking 
speed while scanning is negligible. 

Lidar depth maps densification using images 
The time-synchronized and spatially registered key 
images and sparse lidar depth maps (Figure 3 a, c and b, 
d) are the input to the first main step in our pipeline ± the 
densification method whose presence is the key 
distinguisher from all the other SOP and SOTA mobile 
scanning methods.  
 We have decided to integrate the image-guided depth 
completion algorithm by Zhang and Funkhouser (2018) 
because the way it was designed and trained allows us to 
use this method with our camera and lidar without a 
significant retraining. Also we considred such factors as 
open-source availability and the hardware the method was 
trained on in our selection process. The algorithm first 
predicts surface normals as well as occlusion boundaries 
using deep neural networks (the processes in the middle 
part of Figure 2). For example, the former is colour-coded  

a) b) 

c) d) 

e) f) 

g) h) 

e) j) 

k) l) 
Figure 3: Partial outputs of reconstruction processes outlined 

in Figure 2. Pairs a) c) and b) d) show time-synchronized 
undistorted camera images and sparse lidar depth maps; e) 

and f) portray predicted normal vectors of surfaces; g) and h) 
represent predicted occlusion boundaries; e) and j) portray 

regressed dense depth maps; k) and l) show the back-projected 
depth maps in the form of point clouds 

in Figure 3 e) and f), with black normals pointing towards 
the camera and those pointing upwards marked in blue. 
The latter are shown in Figure 3 g) and h) and are split 
into 3 classes: i) a boundary (marked in red); ii) an 



occlusion boundary as depth discontinuity (colour-coded 
as green); and iii) surface normal discontinuity (blue). 
Next, the surface normals are weakened at those places 
where occlusion boundaries have been inferred, and, these 
two information maps are used to compute a dense depth 
map (Figure 3 e) and f)) using a standard optimization 
method (bottom middle of Figure 2) as described by 
Zhang and Funkhouser (2018). 

Odometry 
We back-project the individual pixels from the predicted 
dense depth maps and associated colour images to RGB-
XYZ points in 3D space in the camera-centred coordinate 
system using the camera intrinsic matrix, thus obtaining a 
colour point cloud (the top process in odometry in Figure 
2 with examples in Figure 3 k) and l)). We do that using 
standard trigonometric relationships between the camera-
centred spherical coordinate system and its Cartesian 
equivalent. 
 All the processes up to this point described 
UHFRQVWUXFWLRQ�UHODWLYH�WR�WKH�FDPHUD¶V�LQWHUQDO�UHIHUHQFH�
frame which moves as the device does. However, the final 
3D model should be in a static frame, named here scene 
(as shown in the bottom-left part of Figure 4a). The 
process of the sensor-to-scene translation is achieved via 
RGRPHWU\�ZKLFK�³JOXHV´ the single camera-centred dense 
point clouds. 

The trajectory of the device is estimated in 2 steps: we 
first compute simple sweep-to-sweep odometry which is 
then refined with dense-scan-to-dense-scene odometry. 
For the former, a lidar-only ICP-based method is used. Its 
result can be seen in Figure 4a where the trajectory 
(marked in purple) was not estimated good enough to 
allow for proper registration of the two densified scans. 
Therefore, this trajectory is corrected by finely registering 
the dense point clouds to the already accumulated partial 
scene as shown in Figure 4b. 

Finally, the progressive reconstruction can take place 
by accumulating the scene-referenced point clouds as 
presented in Figure 4c. This last step closes the proposed 
framework. 

RESULTS 
This section provides results on the performance of the 
proposed system in an indoor environment. We 
reconstruct a cupboard with a chest of drawers using the 
proposed method and compare it to the reconstruction 
from a Google Tango. 
 We reconstructed the scene around 10 times using 
different settings which Google Tango offers. The most 
precise reconstruction was selected for comparison here 
with our method. It must be noticed, however, that the 
Google scanner had difficulties reconstructing the scene. 
The reason for this might be the fact that the scene has 
very few distinct features with the walls and the pieces of 
furniture blending and being quite homogenous. We 
hypothesize that the underlying technology behind 
Google Tango ± visual odometry ± struggles in cases of 

featureless areas. This fact is also pointed out by Engel et 
al., (2016). 
 

a) 

 

 
b) 

c) 
Figure 4: Odometric reconstruction of an indoor scene using 

our method. 

Qualitative 
The qualitative comparison between our reconstruction 
and that of Google Tango can be seen in Error! 
Reference source not found.. The green and red circles 
indicate regions that are of particular interest for the 
comparison. Judging by images a) and b) in Error! 
Reference source not found., our reconstruction (on the 
left) seems more precise than that one on the right. 
Moreover, such details as the handles of the lockers are 
more realistically reconstructed. Also, the reconstructed 
surface of the front door in the cupboard is indeed flatter 
than that on the right. Besides, the side of the drawer is 
more uniformly and more densly mapped than that of 
Google Tango which contains voids. Moving on to 
images c) and d) in Error! Reference source not found., 
the gap between the cupboard and the drawer seems better 
pronounced in our scan on the left than in that on the right. 
In reality, there was around a 2cm gap between these 2 
pieces of furniture which is more realistically 
reconstructed by our method.  Pictures e) and f) show that 
our point cloud is crispier when it comes to reconstructing 
the handles of the drawer. 



On a side note, the final precision of the scene-
referenced scans can be influenced by 2 factors: i) 
precision of our integrated image-guided depth 
completion method; and ii) the precision of registering the 
neighbouring dense scans in an odometry-like manner. In 
our experiment, we measure the combined impact of both. 
 The attentive reader might also notice small 
undesirable artefacts in the point cloud produced by our 
method. For example picture k) in Figure 3 shows that 
some edges contain small indentations (particular on the 
cupboard) and smarming effects (on the radiator). The 
former are likely caused by inaccuracies in the camera-
lidar calibration, subsequent projection of lidar scans onto 
image space, and finally, the densification method which 
is confused between not precisely overlaid image-realted 
feature maps and lidar depth maps. For the former, 
individual pixels in images cannot be unambiguously 
assigned to either the edge of an object or its background 
due to the nature of the image formation process in the 
camera. In other words, the boundaries will be blurred 
after zooming in to edges even when the image seems 
sharp. 

Quantitative 
We compare the precision in reconstructing flat surfaces 
to qualitatively evaluate our method. Specifically, a part 
of a flat surface has been extracted from the whole 
reconstructed scene as shown in Figure 6, and its precision 
was compared to the corresponding patch from the point 
cloud obtained by the LOAM odometry method which is 
de facto the best SOTA lidar-only 3D mapping method 
according to the KITTI odometry benchmark. 
 We simply fit planes to the extracted planar patches of 
the point clouds and compute the Root Mean Squared 
Errors (RMSE) after fitting the planes. We execute this 
computation in Cloud Compare and the results are 
presented in Table 1. We multiply the RMSE by 2 in the 
table to relate it to 2 standard deviations, which in turn, 
cover 95% of the distances between the points in the 
extracted patches and the fit planes assuming that the 
distribution of the points is Gaussian. 
 Quantitative results seem to confirm that our method 
yields more precise reconstruction overall. The noise level 
on a flat surface is decreased from 18.0 to 9.8 mm which 
results in a 46% reduction compared to LOAM. We could 
not compute the noise level of the flat surface in the scans 
by Google Tango though because the feature allowing to 
download the scans did not seem to work properly. 

DISCUSSION & CONCLUSION 
In this paper, we provided a novel 3D reconstruction 
pipeline for hand-held scanners comprising of an RGB 
camera and a lidar. Our contribution lies in the 
combination of camera-lidar fusion and odometry, where 
the resulting dense and precise scans are used for 
progressive mapping in an odometry-like manner. To the 
best of our knowledge, the aforementioned combination 
makes for the first such a framework in the world. 

Table 1: Comparison of precision in reconstructing flat 
surfaces marked in yellow in Figure 6 (smaller value is better). 

Reconstruction method 2 RMSE 
[mm] 

LOAM 18.0 
Our method 9.8 

 We built a prototypic scanner and tested our method 
in an indoor case study where 2 pieces of furniture were 
reconstructed. Our indoor experiment on reconstructing a 
cupboard with a chest of drawers shows that our pipeline 
has the potential to work well as it outperforms the current 
SOP and even SOTA lidar-based mobile methods. The 
results show that the proposed pipeline can outperform 
reconstructions by Google Tango and LOAM. The 
obtained scans are relatively denser and more precise with 
a 46% reduction in noise of reconstructed planar surfaces. 
Moreover, our method allowed us to capture more details 
of the scene such as drawer handles and gaps between the 
pieces of the furniture. 
 Our method can also improve the estimation of the 
trajectory of the mobile device if that is the goal. The 
simple sweep-to-sweep ICP-based lidar odometry 
revealed that the vertical movements are not estimated 
even close to true trajectory. This is because the lidar 
fixed horizontally to the device and held horizontally by 
the user does not measure any changes in the vertical 
direction. Also, we noticed that the drift grows 
significantly and it makes it hard to reliably reconstruct a 
scene using only this simple odometric technique. 
Therefore, the proposed refinement step is justified. It 
uses the dense scans coming from the camera-lidar fusion 
which can be way easier registered with each other, which 
in turn, yields a more reliable trajectory of the mapping 
device. 
 From the end-user perspective, it might seem quite 
natural that a 3D mapping device should provide a colour 
point cloud. However, the current state-of-practice 
PDSSLQJ�GHYLFHV�GR�QRW�GR�VR�E\�GHIDXOW��$�QLFH�³VLGH-

Figure 5: We measure the precision in reconstructing flat 
surfaces in the place marked with the yellow dashed rectangle. 

A fit plane there is marked in blue translucent color. 



HIIHFW´� RI� RXU� FDPHUD-lidar fusion is that the resulting 
scans have colour information by default which is directly 
transferred from the camera.  

When it comes to a broader impact of the proposed 
method, it can potentially unlock certain use-cases 
popular in the AECO industry, not accessible so far for 
hand-held scanners. According to band C in the accuracy 
band table by RICS (2014), scans of infrastructure 
facilities might require relative accuracy up to 10mm. Our 
method seems to meet this requirement unlike other 
techniques. 
 The work done here will be a basis for further research 
in outdoor case studies where larger objects such as 
building or infrastructure facilities will be reconstructed.  
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