
  GENESDEV/2018/320937_Chan&Narita 
1 

 

 

Short-term Gain, Long-term Pain: The Senescence Life Cycle and 

Cancer 

 

Adelyne Sue Li Chan1 and Masashi Narita1,2 

 

 

1 Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of 

Cambridge, Cambridge CB2 0RE, United Kingdom 

 

Keywords: senescence; cancer; epigenetics; inflammation 

 

2 E-mail: masashi.narita@cruk.cam.ac.uk  

 

 

 

 

 

  



  GENESDEV/2018/320937_Chan&Narita 
2 

 

 

Summary 

Originally thought of as a stress response end-point, the view of cellular senescence 

has since evolved into one encompassing a wide range of physiological and 

pathological functions, including both pro- and anti-tumorigenic features. It has also 

become evident that senescence is a highly dynamic and heterogenous process.  

Efforts to reconcile the beneficial and detrimental features of senescence suggest that 

physiological functions require the transient presence of senescent cells in the tissue 

microenvironment. Here, we propose the concept of a physiological ‘senescence life 

cycle’, which has pathological consequences if not executed to its entirety.  
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Introduction 

The concept of senescence has been evolving over recent decades, having originally 

been described as a stress response that leads to a persistent proliferative arrest even 

in the presence of growth factors. Since senescence can limit the propagation of 

damaged cells (which are at risk of malignant transformation), removing them from the 

proliferative pool (Campisi 2001; Lowe et al. 2004), it has therefore been considered 

to be an endogenous tumor suppressor mechanism or even a therapeutic goal, 

alternative to apoptosis. However, this is not an all-encompassing view of senescence. 

Known as the senescence-associated secretory phenotype (SASP), senescent cells 

typically secrete diverse factors, which affect the tumor microenvironment. This is also 

important for stromal cell senescence, which can be either anti- or pro-tumorigenic 

depending on the context (reviewed in (Pérez-Mancera et al. 2014)). It is perhaps safe 

to say that senescence is an autonomous tumor suppressor but a non-autonomous 

tumor ‘modulator’ (Hoare et al. 2018). 

 

Senescence has also been implicated in aging as one of the hallmarks of aging 

(López-Otín et al. 2013). It has been proposed that the age-dependent accumulation 

of senescent cells within tissue stem or progenitor cell compartments results in the 

decline of their regenerative capacity in multiple tissues (reviewed in (Sharpless and 

DePinho 2007)). These studies have provided the first functional relevance for 

senescence in aging within body organs, but more recent evidence that enforced 

killing of senescent cells in mice extends their life span has firmly established the 

causal role of senescence in aging (Baker et al. 2011; 2016). 
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In parallel, recent evidence has described more physiological roles for senescent cells 

that extend beyond the cancer and aging contexts, with functions in shaping 

embryonic development (Storer et al. 2013; Muñoz-Espín et al. 2013; Chuprin et al. 

2013), contributing to the maturation of certain cell types (Besancenot et al. 2010; 

Helman et al. 2016) and maintaining tissue integrity in adult organisms by facilitating 

wound healing (Berg et al. 2003; Krizhanovsky et al. 2008; Jun and Lau 2010a; 

Demaria et al. 2014). Thus, despite once being considered a state of ‘functional death’, 

senescent cells do have diverse functionalities in vivo. 

 

These functions of senescent cells in tumor suppression or tissue homeostasis are 

often reinforced by or dependent on their transient presence, respectively, within the 

microenvironment, where senescent cells are eventually removed by immune cells (Ito 

et al. 2017). At least in some contexts, senescence can be seen as a progressive 

process, initiated by cellular activation, developing senescence effectors, modulation 

of the tissue microenvironment and, finally, the recruitment of immune cells to mediate 

resolution (Krizhanovsky et al. 2008). Senescence-associated disorders can perhaps 

be viewed as a consequence of a failure in the execution of the ‘senescence life cycle’ 

(Fig. 1). Misregulation of senescence within tissues can promote pathological 

conditions including cancer and other age-related disorders (Burton and Krizhanovsky 

2014; Muñoz-Espín and Serrano 2014; He and Sharpless 2017). In this review, we 

provide an overview of the relevance of senescence in tumor development, discussing 

both the autonomous and the non-autonomous aspects of senescence. We recently 

reviewed the relationship between senescence and cancer hallmarks elsewhere 

(Hoare et al. 2018). Here, we focus on the various aspects of the senescence 
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response and discuss the implication of senescence in tumor development and 

treatment with particular emphasis on early stage tumors.  

 

Senescence as heterogeneous phenotype 

 

The first observation of cellular senescence in vitro was described in replicative 

exhaustion, now known to be the result of telomere shortening (Hayflick 1965; Shay 

and Wright 2000). Since then, various stress-associated inducers of ‘premature’ 

senescence have been identified, including DNA damage, oxidative stress, aberrant 

oncogene activation, and tumor suppressor gene loss (Kuilman et al. 2010; Campisi 

2013). These cellular stressors evoke persistent DNA damage signalling and 

activation of the p53/p21 and p16/pRB tumor suppressor pathways, which mediate 

entry into, and maintenance of, senescence (d'Adda di Fagagna et al. 2003; Mallette 

et al. 2007; Rodier et al. 2009; Campisi and d'Adda di Fagagna 2007). Furthermore, 

a number of additional effector programs are involved in the senescence process, and 

the concept of senescence as a collective phenotype of multiple effectors, instead of 

a single entity, has been proposed. As such, due to the lack of a single biomarker that 

is both specific and unique to senescence, it is typically characterized using a 

combination of associated cellular changes, including chromatin re-organization, the 

gene expression profile, and secretome and metabolic pathways (Salama et al. 2014; 

Kuilman et al. 2010). In light of this, using an analogy from a clinical term, entry into 

senescence can perhaps be viewed as a ‘syndrome’: the incremental acquisition of 

associated phenotypes instead of a binary event where a defined set of changes 

manifest at the same time. This is consistent with the previously proposed concept of 

the differing depths of the senescence phenotype, which is modified by important 
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cellular changes that follow an initial cell cycle arrest (Baker and Sedivy 2013; Chen 

and Ozanne 2006; Passos et al. 2010; Ivanov et al. 2013). This may further explain 

the well-described phenotypic heterogeneity of senescent cells, which manifests from 

the level of gene expression, where the phenotype depends on cell-type, context, and 

nature of the upstream stressor (Passos et al. 2007; van Deursen 2014; Marthandan 

et al. 2016; Hernandez-Segura et al. 2017). Senescent cell populations have also 

been described to possess a high degree of cell-to-cell variability that exceeds that of 

quiescent cells (Wiley et al. 2017), reinforcing the heterogeneity of senescence even 

at the single cell level. 

 

Senescence in tumors 

As the induction of senescence is essentially the converse of the canonical 

unrestricted proliferation that defines cancer cells, much of the original research into 

the biology of senescence focused on its role in endogenous tumor suppression, which 

limits immortalization (telomere shortening induced senescence, see next section) and 

excessive mitotic signaling (oncogene-induced senescence, OIS).  

 

Telomere shortening 

The tumor suppressive role of senescence was originally conceived in the context of 

telomere dysfunction (Shay and Wright 2005). Replicative senescence, for instance, 

can be considered to be a counterpart of immortalization in culture. Indeed, replicative 

senescence can be, at least partially, rescued by ectopic expression of telomerase in 

culture (Bodnar et al. 1998; Vaziri and Benchimol 1998) and most (>90%) human 

cancers aberrantly upregulate telomerase (Kim et al. 1994; Shay and Bacchetti 1997; 

Jafri et al. 2016). The tumor suppressive role of telomere shortening is recapitulated 
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in telomerase deficiency in various tumor-prone mouse models (González-Suárez et 

al. 2000; Blasco 2005). However, telomerase deficiency alone in mice can lead to an 

increase in spontaneous cancer incidence mainly in rapidly proliferating cell types, 

exemplified by the unusually high incidence of teratocarcinomas, probably due to 

increased genome instability, a hallmark of cancer (Rudolph et al. 1999). Importantly, 

these exceptions, where short telomeres counter-intuitively promote the incidence of 

cancer, tend to be associated with a p53 defect (Chin et al. 1999; Artandi et al. 2000).  

 

This is consistent with the view that telomere dysfunction triggers a DNA damage 

response, which activates the p53 pathway (d'Adda di Fagagna et al. 2003; Deng et 

al. 2008). The downstream effects of this pathway can be apoptosis and/or 

senescence. However, which component(s) are responsible for the tumor suppressive 

activity of short telomeres in vivo? Using a mouse model of Burkitt’s lymphoma with 

telomerase deficiency (Adams et al. 1985; Blasco et al. 1997), Feldser and Greider 

report that apoptosis is dispensable for short telomere-mediated tumor suppression. 

Provided that p53 is intact, mice remain resistant to tumor formation even following 

the blockade of apoptosis. Instead, micro-lymphomas, which stain positive for markers 

of senescence are observed, demonstrating the importance of senescence as an 

effector of tumor suppression in this context (Feldser and Greider 2007).  

 

These data suggest that the intrinsic limitation of proliferative capacity can contribute 

to a reduction in both tissue regenerative capacity and cancer initiation (Liu et al. 2011; 

Chang 2005). This appears to support the idea of a trade-off between aging and 

cancer (Kirkwood and Austad 2000; Tyner et al. 2002), although this view only 
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considers the autonomous aspect of senescence (see ‘Non-autonomous effectors’ 

below) and telomere shortening is just one way to trigger senescence.  

 

Telomeres are notorious for DNA repair: it has been suggested that DNA damage in 

telomeres is effectively unrepairable, causing a persistent DNA damage response 

(DDR) and the formation of telomere-associated foci (TAF) in ageing and stress-

induced senescence (Fumagalli et al. 2012; Hewitt et al. 2012; Takai et al. 2003). This 

can occur independently of telomere length, as markers of DDR can accumulate at 

telomeres that are not yet critically shortened (Fumagalli et al. 2012). Although the 

chromosome body can also harbor persistent DNA damage after genotoxic stress 

(called DNA segments with chromatin alterations reinforcing senescence, DNA-

SCARS) (Rodier et al. 2010), live cell imaging experiments have previously suggested 

that the majority of these persistent foci are associated with telomeres (Hewitt et al. 

2012). These residual DNA damage foci appear to contribute to the maintenance of 

cell cycle arrest (Passos et al. 2010; Rodier et al. 2010) suggesting that telomere 

dysfunction-mediated senescence can also occur in contexts other than replicative 

stress. 

 

Importantly, DNA damage can induce senescence even in cancer cells in some 

contexts: called therapy-induced senescence (TIS) (Schmitt et al. 2002; Nardella et al. 

2011; Acosta and Gil 2012), and TAF formation after irradiation is not affected by 

telomerase activity (Fumagalli et al. 2012; Hewitt et al. 2012), suggesting that cancer 

cells could possibly be subjected to this mechanism. However, the anti-tumor effect of 

TIS is less evident and highly context and model dependent (Dörr et al. 2013; Tato-

Costa et al. 2016; Demaria et al. 2017; Yang et al. 2017b). This is perhaps in part due 
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to the diversity of the SASP components and their pleiotropic activities, as well as the 

heterogeneity and stochasticity of cancers and their response to therapies within the 

tissue microenvironment. This point is further discussed below (see ‘Non-autonomous 

effectors’). 

 

Senescence in preneoplasia 

While replicative senescence limits cellular ‘immortalization’, an early step in 

tumorigenesis, an alternative autonomous tumor suppressive function of senescence 

can be seen in OIS, where some ‘mitogenic’ oncogenes (or loss of tumor suppressors, 

as exemplified by PTEN loss-induced cellular senescence, PICS) can paradoxically 

induce persistent proliferative arrest (Braig and Schmitt 2006; Courtois-Cox et al. 

2008; Pérez-Mancera et al. 2014). OIS was first described in human diploid fibroblasts 

in culture, where a phenotype similar to replicative senescence was observed 

following ectopic expression of constitutively active HRas (Serrano et al. 1997) or its 

downstream effectors MEK (Lin et al. 1998) or RAF1 (Zhu et al. 1998). This senescent 

phenotype is accompanied by accumulation of the tumor suppressor proteins p53 and 

p16 and a concomitant ablation of these tumor suppressors leads instead to 

transformation, supporting the notion of OIS as an intrinsic tumor suppressor 

mechanism (Lin et al. 1998; Serrano et al. 1997). In mouse models, the tumor 

suppressor p19Arf has been shown to mediate the activation of p53 in response to 

oncogenic Ras (Palmero et al. 1998). Following the description of OIS in vitro, 

senescent cells harboring oncogenic mutations were observed to accumulate in 

premalignant lesions of various tissue types both in humans and mice(Collado et al. 

2005; Michaloglou et al. 2005; Chen et al. 2005; Braig et al. 2005; Lazzerini Denchi et 

al. 2005; Collado and Serrano 2010; Narita and Lowe 2005).  
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In a cell-autonomous manner, the nature of the activating oncogenic signal influences 

the balance between entry into senescence and tumorigenesis, where oncogene dose 

and the presence of other cooperating mutations have been suggested to influence 

cellular outcome (Sarkisian et al. 2007; Quintanilla et al. 1986; Tuveson et al. 2004). 

The most widely used OIS model remains the classic culture model: overexpression 

of oncogenic HRAS-G12V-induced senescence in human diploid fibroblasts (Serrano 

et al. 1997). This is highly robust and, particularly with the introduction of a 4OHT-

inducible system (Young et al. 2009), useful for procedures which require a large 

number of cells, as are often required for genomic and proteomic approaches. 

However, one inherent caveat of this model is the level of Ras, which is supra-

physiological. The natural Ras-driven tumorigenesis is typically initiated with a single 

allelic oncogenic mutation (Hobbs et al. 2016). 

 

Evidence for the notion that oncogenic dose influences cellular outcome was provided 

by earlier studies showing that mouse embryonic fibroblasts (MEFs) expressing 

endogenous level of the single allelic Kras-G12V or Kras-G12D fail to undergo 

senescence, although they were not fully transformed (Guerra et al. 2003; Tuveson et 

al. 2004). A similar insensitivity to senescence-induction by a moderate level of ectopic 

oncogenic Ras or its downstream effector, Raf was also shown in human- or 

immortalized mouse-fibroblasts (Deng et al. 2004; Sewing et al. 1997). At the same 

time, mouse models developed to recapitulate the role of oncogenic Ras mutations in 

tumorigenesis have shown that, while endogenous Kras-G12V expression leads to 

premalignant lesions in the pancreas (Hingorani et al. 2003) and preneoplastic 

hyperplasia in the lung and intestine, additional cellular alterations are typically 
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required for progression to full malignancy (Tuveson et al. 2004). Furthermore, only a 

subset of cells are transformed by oncogenic KRas, even then in a highly context-

dependent manner (Jackson et al. 2001; Guerra et al. 2003; DuPage et al. 2009; Lee 

and Bae 2016). 

 

These observations suggest that a low dose of oncogenic Ras is not sufficient to 

trigger senescence programs nor malignant transformation. This was further 

supported by a mouse breast cancer model, where the level of a doxycycline-inducible 

ectopic Hras-G12V can be titrated (Sarkisian et al. 2007). Consistent with the earlier 

studies, this study also showed that high- but not low-level Ras induces senescence 

in mammary glands in vivo. In addition, while low-level Ras (comparable to the level 

expressed from the endogenous Kras-G12D allele in the mouse pancreas model 

described above) is not immediately sufficient for cancer development, the mice 

eventually develop tumors. Interestingly, these tumors (derived from low-level Ras) 

are accompanied by the spontaneous upregulation of oncogenic Ras, to a level similar 

to that of high-level Ras, which induces senescence. Furthermore, they observed 

senescent mosaicism within those low-Ras initiated tumors with spontaneous 

upregulation of oncogenic Ras. Mechanisms for the spontaneous upregulation of 

oncogenic Ras in this study were not clear, but a similar upregulation of oncogenic 

Ras during cancer development has been reported in different tumor models 

(Quintanilla et al. 1986; Finney and Bishop 1993; Aguirre et al. 2003; Junttila et al. 

2010).  

 

It is possible that, even when it is initiated by a single copy mutation, Ras activity needs 

to be increased for full malignant transformation but that this is counteracted by 
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senescence programs. Perhaps the OIS culture system models a tumor suppressive 

event at this critical step of Ras-driven tumorigenesis (Fig. 2). Of note, the Ras 

pathway is regulated by diverse effectors, thus its oncogenic activity can be 

upregulated through multiple routes (Downward 2003; Calvisi et al. 2006; Courtois-

Cox et al. 2006; Shaw et al. 2007; Vandal et al. 2014). It would be important to 

determine the correlation between the level of oncogenic activity and the senescence 

phenotype during the preneoplastic stage in those genetically engineered OIS models. 

 

Autonomous senescence effectors 

As a collective phenotype made up of numerous cellular effector programs, we discuss 

autonomous and non-autonomous effectors separately, and here we focus on 

chromatin and genomic alterations as representative of the autonomous effectors 

potentially contributing to the static nature of senescence arrest.  

 

Epigenetics 

It has been proposed that senescence, unlike quiescence (a state of physiological and 

readily reversible cell cycle arrest), employs distinct alterations in the chromatin 

landscape (Parry and Narita 2016). These epigenetic and chromatin alterations occur 

at various levels: including DNA methylation, histone marks and variants, chromatin 

accessibility and non-coding RNAs (Buschbeck and Hake 2017; Pal and Tyler 2016; 

Parry and Narita 2016; Nacarelli et al. 2017). Among these, DNA methylation (5-

Methylcytosine at CpG) is, on the one hand, known as a marker of constitutive 

heterochromatin, particularly at regions with repetitive sequences. On the other hand, 

although CpG islands, which are abundant regulatory elements in mammalian 

promoters, are usually hypomethylated, the CpG islands of some genes can be 
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hypermethylated in abnormal conditions: e.g. hypermethylation of CpG islands at the 

promoters of tumor suppressors leads to their silencing and promotes tumorigenesis 

(Deaton and Bird 2011).  

 

It has been long known that DNA methylation globally declines during senescence, 

forming the basis for the well-known ‘heterochromatin loss model’: the idea that a 

gradual breakdown of heterochromatin leads to the de-silencing of otherwise 

repressed genes (or non-coding RNAs), contributing to senescence and aging 

(Villeponteau 1997). However, more recent studies using next generation sequencing 

technology have revealed that the alterations in DNA methylation during senescence 

are not unidirectional. Using a model of replicative senescence in human fibroblasts, 

Cruickshanks et al. demonstrated that DNA methylation is globally reduced at 

heterochromatic regions, but focally increased at a subset of CpG islands. 

Interestingly, the pattern of hypermethylated CpG islands in replicative senescence is 

reminiscent of that of cancers, leading to the hypothesis that senescence and cancer 

share features of epigenetic change. This suggests that cells which have escaped 

from senescence would be more susceptible to subsequent transformation 

(Cruickshanks et al. 2013).  

 

This idea, that senescence-associated epigenetic alterations might contribute to a 

tumor suppressive senescence phenotype but at the same time encompass 

oncogenic properties, appears to explain well the dual effect of senescence in cancer, 

i.e. senescence as a tumor suppressor and yet also as a risk factor for cancer. This 

might also provide a partial explanation for the recent study suggesting that 

senescence escapers exhibit a stem-like signature with high tumor initiating potential 
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(Milanovic et al. 2018). However, a recent study provides an alternative view. By 

directly comparing the DNA methylation profile between replicative senescent and 

transformed cells derived from the same cell line, Xie et al. identified a global reduction 

with focal increases in DNA methylation during senescence, consistent with the 

findings of the previous study. However, looking at individual genomic regions 

conversely suggested that methylation patterns evolved separately during 

tumorigenesis and progression to senescence: the former being stochastic and the 

latter being highly reproducible and thus suggesting that they are somewhat 

programmed. Based on this data, the authors propose that transformation-associated 

changes in DNA methylation status do not stem from senescence escape but rather 

reflect alterations which can be associated independently with both aging and 

increased cancer risk (Xie et al. 2018). In contrast to replicative senescence, OIS-

associated DNA methylation alterations appear to be minimal, underscoring the 

diversity of the senescence phenotype (Xie et al. 2018; Sakaki et al. 2017). Whichever 

is the case, the decline in DNA methylation of heterochromatic regions with repetitive 

sequences (e.g. transposons, satellite DNAs) in senescence or cancer potentially 

causes genome instability through a reactivation of transposons for instance. Indeed, 

expression of retrotransposable elements and satellite sequences have been shown 

to increase during replicative senescence (De Cecco et al. 2013b). 

 

In an interesting contrast to DNA methylation, the profile of DNA accessibility (a marker 

for open chromatin, which can be an indicator of developmental maturity (Stergachis 

et al. 2013)) is also altered during replicative senescence: DNA accessibility exhibits 

a global increase with focal declines (De Cecco et al. 2013a). This appears to show a 

mirror image of the DNA methylation pattern, but whether or not DNA methylation and 
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chromatin accessibility are physically or functionally related has not been tested. In 

OIS too, a general increase in chromatin accessibility has been reported, and different 

oncogenes induce different profiles of accessible regions upon senescence entry 

(Parry et al. 2018) 

 

Chromatin dynamics 

In addition to the alterations to the linear structure of the genome, widespread changes 

in higher-order chromatin structure have been observed during senescence. For 

example, senescence-associated heterochromatic foci (SAHF) are readily visualized 

by microscopy as DAPI-dense foci in the nucleus (Narita et al. 2003; Zhang et al. 

2005). A number of structural and functional factors that are required for SAHF 

formation have been identified: e.g. HMGA chromatin architectural proteins and 

histone co-chaperones HIRA/ASF1a have been shown to be necessary for SAHF 

formation, whereas loss of linker histone H1 is correlated with SAHFs (Zhang et al. 

2005; Narita et al. 2006; Funayama et al. 2006). It was initially proposed that SAHFs 

are involved in the stable silencing of a subset of genes, including cell cycle genes 

(Narita et al. 2003; Sadaie et al. 2013; Zhang et al. 2007), but it is also possible that 

inter-SAHF euchromatic regions actively take part in stable gene activation. It is 

important to note that SAHF formation is model dependent, which may represent the 

heterogeneity of senescence. Interestingly, higher levels of p16 and HMGA, both of 

which are critical for SAHF formation, are correlated with the irreversibility of the 

senescence arrest (Beauséjour et al. 2003; Narita et al. 2006), reinforcing the 

existence of a spectrum of senescence, an idea associated with the ‘senescence 

syndrome’ mentioned above.   
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In contrast to SAHF, senescence-associated distension of satellites (SADS) represent 

a distension of a-satellite and satellite II sequences, which are heterochromatic and 

normally compacted at the (peri)centromere, during senescence. SADS appear to be 

more universal than SAHFs (Swanson et al. 2013). Interestingly, both of these newly 

formed heterochromatin (SAHFs) and unfolding of constitutive heterochromatin 

(SADS) appear not to require alterations in repressive marks, H3K9me3 and 

H3K27me3 (Chandra et al. 2012; Swanson et al. 2013). Instead, these chromatin 

structural changes are mediated by a differential association with the nuclear 

membrane. In proliferating cells, heterochromatin typically localizes preferentially to 

the nuclear periphery and around the nucleolus, tethered by lamina-associated and 

nucleolus-associated chromatin domains (LADs and NADs respectively) (Padeken 

and Heun 2014). While NADs have been suggested to be conserved at least in 

replicative senescence (Dillinger et al. 2017), the level of Lamin B1 declines during 

senescence (Shimi et al. 2011; Freund et al. 2012; Sadaie et al. 2013; Shah et al. 

2013; Criscione et al. 2016). Although the loss of Lamin B1 is not sufficient for 

senescence or SAHF induction, it liberates H3K9me3-rich heterochromatin from the 

nuclear periphery and facilitates SAHF formation (Sadaie et al. 2013). These 

observations have led to the model whereby SAHFs are formed through the spatial 

re-positioning of pre-existing repressive histone marks (Chandra et al. 2012; 2015). 

Although it is not clear how Lamin B1 loss promotes SADS formation, it has been 

shown that SADS often extend along or toward the nuclear periphery and the 

researchers speculated that alterations in Lamin B1 and other structural proteins might 

contribute to this process (Swanson et al. 2013).  
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Another consequence of Lamin B1 downregulation during senescence is 

compromised nuclear envelope integrity and the subsequent leakage of chromatin 

fragments from the nucleus into the cytoplasm as cytoplasmic chromatin fragments 

(CCFs). Although it was reported that Lamin B1 downregulation during senescence is 

mediated by RB-dependent silencing (Shimi et al. 2011), Lamin B1 is also a substrate 

of autophagic degradation (see below) (Dou et al. 2015; Lenain et al. 2015). Indeed, 

CCFs, together with Lamin B1, can be degraded by autophagy, thus this process was 

proposed as a mechanism utilized by senescent cells to remove damaged genomic 

material (Ivanov et al. 2013; Dou et al. 2015; 2017). The loss of chromatin would 

impact on the chromatin landscape, gene expression and long-term phenotype of 

senescent cells (O'Sullivan et al. 2010; Ivanov et al. 2013). However, emerging 

evidence indicates that leaked cytoplasmic DNA in turn can also trigger a discrete 

aspect of senescence, the non-autonomous activity, via activation of the cGAS/STING 

pathway which is discussed further in the next section.   

 

Non-autonomous effectors  

In addition to their essential feature (the persistency of cell cycle arrest), senescent 

cells are actively engaged in communication with other cells and the extracellular 

matrix (ECM) within the tissue microenvironment. Several modes of senescence-

associated cell-cell communication have been shown including the SASP, cell fusion 

(Chuprin et al. 2013), cytoplasmic bridges (Biran et al. 2015), cell-cell contact (Nelson 

et al. 2012; Hoare et al. 2016; Parry et al. 2018; Ito et al. 2017) and secreted 

extracellular vesicles (Takasugi et al. 2017). 
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The SASP is the best characterised of these mechanisms (Kuilman and Peeper 2009; 

Malaquin et al. 2016), and the non-autonomous ‘functionality’ of senescent cells has 

been mostly attributed to the SASP. The fact that senescent cells secrete soluble 

factors was long known and expression of some factors, such as MMP3 and PAI1, 

had been used as markers of senescence (Krtolica et al. 2001; Parrinello et al. 2005; 

Kortlever et al. 2006). Initially, the SASP was collectively assumed to have tumor 

promoting effects (Campisi and d'Adda di Fagagna 2007), because senescent 

fibroblasts promote the tumorigenesis of co-existing premalignant epithelial cells 

(Krtolica et al. 2001). The SASP has since been demonstrated as a part of senescence 

program, itself with diverse downstream effects. For example, PAI1 was shown to be 

a downstream effector of the p53 pathway during replicative senescence, which 

contributes to cell cycle arrest; while IL6 and IL8, an inflammatory cytokine and 

chemokine respectively, reinforce senescence arrest through paracrine activities 

(Kortlever et al. 2006; Kuilman et al. 2008; Acosta et al. 2008; Wajapeyee et al. 2008). 

Increasing evidence has revealed that the SASP is a highly dynamic process, 

associated with diverse composites, regulatory mechanisms, and functionalities.  

 

Inflammatory SASP and senescence surveillance 

Among the diverse components, the best characterised factors of the SASP are of the 

pro-inflammatory type, represented by IL1, IL6 and IL8 among others. Expression of 

these inflammatory SASP components is controlled by diverse factors, such as 

epigenetic and chromatin regulators, the translation machinery, and signaling 

molecules (Tasdemir et al. 2016; Takahashi et al. 2012; Freund et al. 2011; Laberge 

et al. 2015; Herranz et al. 2015; Rodier et al. 2009; Hoare et al. 2016; Capell et al. 
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2016; Aird et al. 2016; Dou et al. 2017). The central mode of SASP regulation is a 

hierarchical model, where the genes encoding the proximal inflammatory cytokines, 

such as IL1 and IL6, are induced by the inflammatory transcription factors, NFkB and 

C/EBPb, cooperatively with co-factors, such as BRD4 (Tasdemir et al. 2016). 

Importantly, these inflammatory cytokines in turn reinforce the activity of those 

transcription factors through a positive feedback loop, thus the signaling is locally 

amplified (Kuilman et al. 2008; Orjalo et al. 2009; Acosta et al. 2013; Pérez-Mancera 

et al. 2014).  

 

But how is such a signaling cascade subsequently resolved? The major outcome of 

the inflammatory SASP in vivo is not just senescence reinforcement, but also 

activation of an immune reaction (Fig. 1). The first in vivo evidence for this was derived 

from a p53-deficient liver cancer model, where cancer cells express a tetracycline-

regulable p53 RNAi (Xue et al. 2007). Restoration of endogenous p53 after the cancer 

was established led to the induction of senescence and tumor regression, which was 

not due to apoptosis but immune clearance of senescent liver tumor cells. Although 

this experiment was conducted in athymic nude mice, which are immuno-

compromised, their innate immune system is intact and sufficient for the clearance of 

senescent cells in this particular context. A follow-up study in mice lacking T and B 

cells reinforced the sufficiency of innate immune cells, in this case NK cells, in 

mediating tumor suppressive clearance of senescent cells (Iannello et al. 2013).  

 

Subsequently, a similar elimination of senescent cells by innate immune cells has 

been shown in other models, such as chronic liver damage in mice (Krizhanovsky et 
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al. 2008; Lujambio et al. 2013). Krizhanovsky et al. showed that the liver damaging 

agent, CCl4, induces senescence in the liver, but those senescent cells are mainly 

hepatic stellate cells (HSCs). HSCs are fibroblast-like cells, which are normally in a 

quiescent state but become active and proliferative, followed by the development of 

senescence. Through the SASP, senescent HSCs can be eliminated by innate 

immune cells, including natural killer cells and tumor inhibiting M1-state macrophages 

(Krizhanovsky et al. 2008; Lujambio et al. 2013). Interestingly, p53-deficient HSCs 

bypass senescence and secrete factors that stimulate macrophages into a tumor 

promoting M2 state, suggesting a non-autonomous tumor suppressor activity for p53 

(Lujambio et al. 2013). This study also highlights that the SASP derived from 

senescent stromal cells has a profound impact on the tumor microenvironment. 

 

These ‘TIS’ (i.e. restoration of endogenous p53) or damage-induced senescence 

studies established the role of innate immunity in senescence clearance, but a role for 

adaptive immune components in senescence surveillance was shown in a liver OIS 

model. As shown by Kang et al. (Kang et al. 2011), ectopic expression of oncogenic 

NRas induces senescence in hepatocytes in mice and those OIS hepatocytes are 

eliminated primarily by macrophages, but this process requires activation of mutant 

NRas specific CD4+ T cells. Indeed, immune clearance of OIS hepatocytes is 

diminished when the experiment was conducted in immune-compromised mice, which 

eventually developed liver cancer (Kang et al. 2011). Interestingly, major 

histocompatibility complex class II (MHCII) is typically expressed by professional 

antigen presenting cells (APCs) but hepatocytes appear to express MHCII to directly 

present antigens (Herkel et al. 2003). Indeed, a fraction of the OIS hepatocytes appear 

to express higher level of MHCII, which, although not sufficient (i.e. professional APCs 
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are necessary), is required for senescence surveillance (Kang et al. 2011). Similar 

upregulation of MHCII was reported in melanocytic OIS models. In contrast to the liver 

model, however, MHCII on OIS melanocytes appears to be sufficient for T cell 

activation (van Tuyn et al. 2017). These studies suggest that the senescence 

surveillance involves multi-levelled and distinct aspects of the immune system 

depending on the context, such as the senescence trigger and cell type. 

 

Other SASP functionality 

The functionality of the SASP is not limited to mediating immune clearance of 

senescent cells from the tissue. It also plays a role in the maintenance of tissue 

integrity. As mentioned above, upon liver damage, quiescent HSCs become activated 

and proliferate before developing senescence (Krizhanovsky et al. 2008). Activated 

HSCs produce ECM components, contributing to liver fibrosis. Importantly, the SASP 

components of senescent HSCs contains ECM degradation enzymes, thus countering 

the excessive fibrosis. Thus, tissue repair and integrity are controlled through a timely 

switch from a fibrogenic to a fibrolytic secretory program, and this switch is coupled 

with the eventual elimination of senescent cells by immune cells. A similar role for 

senescence in tissue repair and wound healing has been shown in other tissue 

damage models (liver (Kong et al. 2012; Kim et al. 2013; Borkham-Kamphorst et al. 

2014), kidney (Wolstein et al. 2010), skin (Jun and Lau 2010b; Pitiyage et al. 2011; 

Demaria et al. 2014), and heart (Zhu et al. 2013)). Notably, Krizhanovsky et al. also 

showed in the liver model (Krizhanovsky et al. 2008) that persistence of senescent 

HSCs due to the failure of immune-mediated elimination of senescent HSCs rather 

promotes liver fibrosis, reinforcing the idea of a senescence life cycle. Association 
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between fibrogenic senescence and chronic tissue damage/inflammation has also 

been reported in an idiopathic pulmonary fibrosis mouse model (Schafer et al. 2017).  

  

More recently, a progressive switch of secretory factors has also been shown in the 

classical senescence model in culture, where NOTCH signaling is transiently activated 

during an early phase of senescence triggered by oncogenic HRas or DNA damage 

(Hoare et al. 2016). The NOTCH phase is correlated with a distinct secretome, 

representing TGFb and other fibrogenic factors, and subsequent downregulation of 

NOTCH signaling is required for switching to the typical inflammatory and fibrolytic 

SASP in the late phase of senescence. This is highly reminiscent of the case of HSC 

senescence (Krizhanovsky et al. 2008), but it remains to be elucidated whether or not 

Notch signaling is activated during the progressive development of HSC senescence. 

Mechanistically, it was shown that NOTCH signaling negatively regulates the 

expression of primary inflammatory cytokine production through suppressing the 

activity of the transcription factor C/EBPb . Consistently, in the liver OIS model 

described above, the inhibition of NOTCH signaling in NRas-expressing hepatocytes 

facilitates their elimination (Ito et al. 2017).  

 

A recent addition to the SASP functionality includes its role in cellular reprograming 

(reviewed in (Taguchi and Yamada 2017)). Earlier studies had shown that the 

senescence machinery autonomously serves as a barrier to reprogramming into 

induced pluripotent stem cells (iPSCs) in response to expression of the four Yamanaka 

factors (Oct3/4, Sox2, Klf4, and c-Myc) (Krizhanovsky and Lowe 2009; Li et al. 2009; 

Banito et al. 2009; Hong et al. 2009; Kawamura et al. 2009; Marión et al. 2009; Utikal 
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et al. 2009). However, using mice expressing those Yamanaka factors, recent studies 

have shown that senescent cells non-autonomously facilitate the reprogramming of 

surrounding cells through an NFKB-driven secretome, particularly IL6 (Mosteiro et al. 

2016; Chiche et al. 2017). Consistently, Ritschka et al. showed that a transient or low-

level, but not prolonged, exposure to the OIS SASP promotes cellular plasticity and 

regenerative capacity in mouse skin keratinocytes (Ritschka et al. 2017). It has been 

suggested that senescence arrest in tissue stem cell or progenitor cells reduces 

regenerative capacity in some tissues (Sharpless and DePinho 2007). In contrast to 

this autonomous effect of senescence, much like the case of cellular reprograming to 

iPSC, senescent cells appear to non-autonomously contribute to maintaining the 

tissue stem cell niche.  

 

The physiological roles of senescent cells in facilitating tissue repair in response to 

injury relies on their clearance after the cessation of the wound healing processes, as 

accumulation of senescent cells conversely favour the pathogenesis of aging and age-

related disorders. Tumors have long been dubbed as “wounds that do not heal” 

(Dvorak 1986; Byun and Gardner 2013; Dvorak 2015), due to similarities between the 

phases of wound healing and that of tumor stroma formation. Through the SASP 

(derived from either tumorous or stromal senescent cells), the chronic presence of 

senescent cells within a tumor microenvironment would maintain a chronically 

inflamed microenvironment that is inherently tumorigenic (Lecot et al. 2016; Baker et 

al. 2017). The SASP also modulates other key hallmarks of cancers through locally 

facilitating vascularization (Coppé et al. 2006), epithelial-mesenchymal transition 

(Coppé et al. 2008; Kuilman et al. 2008), tumor invasion (Kim et al. 2017; He et al. 
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2018) and cellular plasticity (Ritschka et al. 2017). Disruption of the senescence life 

cycle may create a tumorigenic microenvironment collectively through these SASP 

functionalities (Fig. 1). 

 

 

Upstream regulators of SASP 

The inflammatory SASP appears to be controlled through multiple effectors. For 

example, the SASP is typically promoted by a persistent DNA damage response 

(Rodier et al. 2009; Ciccia and Elledge 2010). However how the inflammatory cascade 

is initiated had not been clear until a recent series of publications showed that the 

cGAS-STING cytosolic DNA sensing pathway, described in the previous section, is a 

critical upstream event to trigger the SASP (Dou et al. 2017; Glück et al. 2017; 

Takahashi et al. 2018; Li and Chen 2018). Evolved as a defence response to viral and 

microbial infections, this pathway promotes inherent anti-tumor immunity (Deng et al. 

2014; Woo et al. 2014; Bose 2017). The cGAS-STING pathway, an intrinsic tumor 

suppressor, is deregulated in carcinomas (Xia et al. 2016) and low levels of cGAS or 

STING are correlated with poor prognosis in some cancer types (Song et al. 2017; 

Yang et al. 2017a). Interestingly, the same pathway appears to be provoked during 

senescence, sensing CCFs (Ivanov et al. 2013; Dou et al. 2015).  

 

The DNA sensor cGAS, upon binding to DNA, produces the second messenger 

cGAMP, which activates STING. This typically leads to the engagement of two 

canonical downstream pathways: A type I interferon (IFN) response mediated by IRF3 

and an inflammatory response through NFKB activation (Abe and Barber 2014; Barber 

2015). However, type I IFNs are not necessarily overrepresented in the SASP, 
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depending on the cell type (Dou et al. 2017). The researchers proposed that this is in 

part due to the activation of p38MAPK (another positive regulator of the SASP (Freund 

et al. 2011)), which can inhibit STING-mediated IFN induction (Dou et al. 2017). Thus, 

the cGAS-STING pathway is critical in the activation of the NFkB-driven SASP. 

Consistently, the loss of this pathway results in reduced senescence surveillance and 

increased tumorigenesis in the liver OIS model (Glück et al. 2017; Dou et al. 2017). 

As with the inflammatory SASP, it is conceivable that prolonged activation of cGAS-

STING can also promote tumorigenesis and metastasis, possibly through chronic 

inflammation (Li and Chen 2018). Indeed, in an obesity-induced liver cancer model, 

the SASP-derived from senescent HSCs promotes liver cancer (Yoshimoto et al. 

2013) and this effect was diminished in Sting knockout mice (Dou et al. 2017). 

 

Autophagy 

It has been shown that the SASP is also controlled through macroautophagy (simply 

autophagy hereafter), another effector of senescence (Hoare et al. 2011). Autophagy, 

an evolutionarily conserved catabolic machinery, involves the formation of 

autophagosomes and their fusion to lysosomes to form autolysosomes, where 

encircled macromolecules or even organelles, are digested by lysosomal enzymes 

(Shen and Mizushima 2014). The bulk degradation of damaged macromolecules 

facilitates their turn-over and the degradation products can be an alternative energy 

source. Thus, basal autophagy is important for the quality control of cellular 

components and energy homeostasis. In addition to its basal activity, autophagy can 

also be acutely activated by not only metabolic (e.g. starvation) but also cytotoxic (e.g. 

DNA damage and oncogenic) stress. It is conceivable that stress-induced autophagy 



  GENESDEV/2018/320937_Chan&Narita 
26 

 

 

contributes to the degradation of damaged cellular components, but its long-term 

functional relevance is not entirely clear.  

 

One of the best-known markers of senescence is an increase in senescence-

associated b-galactosidase activity (SA-b-gal), which is derived from a lysosomal 

enzyme (Lee et al. 2006), and earlier studies have suggested that autophagy is 

activated during senescence and SA-b-gal reflects increased lysosomal mass at least 

in some contexts  (Gerland et al. 2003; Narita et al. 2011; Kurz et al. 2000). 

Functionally, it has been suggested that autophagy contributes to the senescence 

phenotype in part through modulating the SASP (Patschan et al. 2008; Young et al. 

2009). Interestingly, prolonged activation of autophagic protein degradation was 

shown to activate the anabolic counterpart of autophagy, mTOR on the surface of 

(auto)lysosomes through degradation products (i.e. amino acids) (Yu et al. 2010; 

Efeyan et al. 2012). Increased lysosomal biogenesis and compartmentalization during 

senescence have been shown in several models (Young et al. 2009; Narita et al. 2011; 

Dörr et al. 2013). It was proposed that prolonged activation of autophagy leads to the 

simultaneous activation of mTOR (which is typically regulated in the opposite direction 

to autophagy), which facilitates protein synthesis (Narita et al. 2011). How mTOR 

signaling specifically activates the SASP was not clear, but recent studies have 

proposed multiple mechanisms for this through modulating translation and the 

stabilization of mRNA molecules encoding SASP components (Herranz et al. 2015; 

Laberge et al. 2015; Tomimatsu and Narita 2015) (Fig. 3).  

 

The positive regulation of senescence by autophagy was counter-intuitive, considering 

the role of autophagy in cellular quality and fitness checks, although it is possible that 
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increased autophagy activity serves as a pro-survival factor in senescent cells, which 

are known to be resistant to the cell death machinery (Dörr et al. 2013).  The relevance 

of autophagy in senescence appears to be highly context dependent (Kwon et al. 

2017). It is probably important to consider the difference between basal and stress-

induced autophagy, a lack of the former would lead to the accumulation of damaged 

macromolecules (such as p62-containing aggresomes) and damaged organelles 

(such as dysfunctional mitochondria). Thus, it is conceivable that loss of basal 

autophagy alone promotes senescence through cellular damage (Kwon et al. 2017). 

For instance, a role of basal autophagy in preventing senescence of muscle satellite 

cells thus maintaining stemness has previously been reported (García-Prat et al. 

2016). However, in addition to this autonomous activity of autophagy, autophagy 

affects a non-autonomous aspect of senescence (i.e. the SASP) in the context of 

chronic stress-induced autophagy. In addition, autophagy also contributes to other 

senescence effectors, such as (epi)genetic modulation through Lamin B1 degradation 

(Dou et al. 2015; Lenain et al. 2015). As mentioned earlier in this review, autophagy-

mediated degradation of Lamin B1 also leads to the formation of CCFs, which could 

activate the cGAS-STING-SASP axis (Fig. 3).  

 

Another layer of regulation of the SASP by autophagy was recently identified. 

Autophagy is generally considered to be a non-selective bulk degradation machinery, 

but it involves some level of selectivity through autophagy receptor proteins, such as 

p62/SQSTM1 (Komatsu and Ichimura 2010). Kang et al. have shown that the 

transcription factor GATA4 positively controls the NFkB-driven SASP (Kang et al. 

2015). They found that GATA4 is a substrate of p62-mediated selective autophagy, 

which is, in contrast to general autophagy, inhibited during senescence, indicating that 
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selective autophagy can negatively regulate the inflammatory SASP. Thus overall, 

autophagy appears to affect the SASP at multiple levels in a non-unidirectional manner 

(Fig. 3).  

 

Conclusion 

 

Senescence blocks the proliferation of unnecessary or unwanted cells in both 

physiological and pathological contexts. Due to this autonomous aspect, senescence 

has been proposed to be a therapeutic goal of cancer therapy. While the senescence 

arrest can be an intrinsic tumor suppressor mechanism, particularly at the early stages 

of tumorigenesis, this view turns out to be too simplistic. Senescent cells are 

metabolically active and have a profound impact, often deleterious in the long-term, 

on their neighbours through their non-autonomous activities. Interestingly, however, 

these autonomous and non-autonomous programs appear to be mechanistically 

linked. While the causal relevance of epigenetic changes during senescence remains 

elusive, the distinct epigenetic landscape in senescence has been correlated with the 

SASP (Aird et al. 2016; Tasdemir et al. 2016; Parry et al. 2018). Loss of Lamin B1 

appears to orchestrate high-order chromatin structural alterations, genomic instability, 

and the formation of CCFs, which in turn triggers the SASP (Sadaie et al. 2013; Shah 

et al. 2013; Dou et al. 2015; 2017). Autophagy, an autonomous effector by nature, 

also affects the SASP (Fig. 3). Further understanding of how the ‘irreversibility’ of cell 

cycle exit is mechanistically and functionally coupled with non-autonomous effectors 

of senescence will be of great interest. Georgilis et al. have recently identified a 

number of druggable targets, the inhibition of which can induce senescence without 

the inflammatory SASP (Georgilis et al. 2018). Such de-coupling between cell cycle 
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arrest and the SASP might provide a promising therapeutic modality for pro-

senescence cancer therapy, with reduced complications from the SASP. 

 

Alternatively, senescence itself has recently been proposed to be a therapeutic target, 

rather than a goal. After the seminal work by van Deursen and colleagues, showing 

that the genetic ablation of senescent cells provides beneficial effects on health 

lifespan in mice (Baker et al. 2011), a number of small molecules that selectively kill 

senescent cells (collectively called senolytics) have been developed (Yosef et al. 

2016; Zhu et al. 2015; Baar et al. 2017; Kirkland and Tchkonia 2017; Zhu et al. 2016). 

Mostly, these reagents have been used (Demaria et al. 2017) in the context of aging 

and tissue damage (Xu et al. 2018). In the cancer context, it was shown that killing 

stromal senescent cells induced by chemotherapy reduces the associated side 

effects, such as cardiac and liver dysfunction, and general fatigue (Demaria et al. 

2017; Baar et al. 2017). 

 

However, considering the potential adverse effects of the SASP derived from TIS, 

administering ‘senolytics adjuvants’ in conjunction with pro-senescence therapy in 

cancer might be a promising approach. In fact, it was shown that targeting the 

metabolic pathways increased in senescent cells (e.g. autophagy or glucose 

utilization) in TIS lymphoma cells leads to the selective killing of TIS cells and an 

improved treatment outcome (Dörr et al. 2013). A more recent study also suggests 

that selective targeting of TIS cells using sugar-coated (thus sensitive to b-

galactosidase) nanoparticles encapsulating cytotoxic drugs is beneficial in xenograft 

models (Muñoz-Espín et al. 2018).  
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Senescence, or even the SASP, is mostly tumor suppressive in the early stages, 

particularly when the senescent cells are eliminated by the immune system. This 

intrinsic phase might also be exploited for tumor therapy (Fig. 1). For example, it was 

shown that genetic inhibition of Notch signaling in the hepatocyte OIS model facilitates 

senescence surveillance (Hoare et al. 2016). We proposed that OIS might be most 

relevant at the stage of oncogenic ‘amplification’ (genetically or functionally) after 

somatic mutations, which are often found in normal tissues (Fig. 2) (Risques and 

Kennedy 2018). Selective targeting of cells at this stage might also be beneficial for 

tumor therapy or prevention. 
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Figure 1. Senescence ‘life cycle’

Phases of the ‘senescence life cycle’: Cells undergo senescence in response to stress in normal 
(non-cancerous) tissues. As part of the senescence programme, the secretome is modified to include 
upregulation of pro-inflammatory cytokines and chemokines which modulate the tissue microenvironment. 
This recruits immune cells and facilitates clearance of senescent cells, mediating resolution and restoring 
tissue homeostasis. Deviation from this fail-safe mechanism can instead lead to age-related pathology or 
cancer. In some cases, cells become activated / proliferative before senescence establishment, and 
senescence signaling can be locally amplified through non-autonomous activities (these points are not 
reflected in the figure for simplicity). 
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Figure 2. OIS as a model of spontaneous upregulation of somatically mutated oncogenic 
signaling

Using oncogenic Ras as an example, an age-dependent increase of somatic mutation of oncogenes 
and their clonal expansion are common, but high-levels of oncogenic signaling is necessary for both 
OIS and full malignant transformation. Typically, spontaneous upregulation of oncogenic signaling (to 
the levels sufficient for malignancy) triggers the OIS program, which is tumor suppressive as long as the 
‘senescence life cycle’ is executed to completion. Failure to clear OIS cells can conversely be tumor 
promoting, as these cells are at risk of senescence escape having acquired tumor-facilitating cellular 
changes as well as shaped a pro-tumorigenic microenvironment. 
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Figure 3. Multiple non-unidirectional levels through which autophagy-related processes in 
senescence affect regulation of SASP genes, often via NFkB activation. 

Activation of macroautophagy as an effector of senescence and spatial coupling of mTOR with 
autolysosomes leads to mTOR activation, which has been proposed to modulate SASP expression 
through multiple mechanisms (brown arrows). Autophagy-mediated degradation of Lamin B1 also 
promotes CCF formation, which upregulates SASP genes through the cGAS-STING pathway. This 
has been suggested to occur both by nuclear membrane blebbing (purple arrows), which shuttles 
LADs to the cytoplasm, as well as loss of nuclear envelope integrity allowing escape of chromatin 
fragments (blue arrows). However, the activation of general autophagy during senescence is 
accompanied by an inhibition of p62-mediated selective autophagy, allowing stabilisation of the 
GATA4 transcription factor, which regulates SASP genes via NFkB (green arrows). Dotted arrows 
denote physical movement, solid arrows denote signaling.  
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