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Tumours develop in an evolutionary process, in which the accumulation
of mutations produces subpopulations of cells with distinct mutational pro-
files, called clones. This process leads to the genetic heterogeneity widely
observed in tumour sequencing data, but identifying the genotypes and fre-
quencies of the different clones is still a major challenge. Here, we present
Cloe, a phylogenetic latent feature model to deconvolute tumour sequenc-
ing data into a set of related genotypes. Our approach extends latent fea-
ture models by placing the features as nodes in a latent tree. The resulting
model can capture both the acquisition and the loss of mutations, as well as
episodes of convergent evolution. We establish the validity of Cloe on syn-
thetic data and assess its performance on controlled biological data, compar-
ing our reconstructions to those of several published state-of-the-art methods.
We show that our method provides highly accurate reconstructions and iden-
tifies the number of clones, their genotypes and frequencies even at a modest
sequencing depth. As a proof of concept, we apply our model to clinical data
from three cases with chronic lymphocytic leukaemia and one case with acute
myeloid leukaemia.

1. Introduction. Cancers evolve through waves of mutation and clonal ex-
pansion [Nowell (1976)]. Darwinian selection operates on the increased variation
within the tumour, favouring clones with increased fitness, according to microen-
vironmental and therapeutic pressures [Fearon and Vogelstein (1990); Stratton,
Campbell and Futreal (2009); Aparicio and Caldas (2013); Beerenwinkel et al.
(2015)]. As a consequence of this evolutionary process, tumours are generally ge-
netically heterogeneous [Gerlinger et al. (2012); Nik-Zainal et al. (2012)] and
consist of related populations of cancer cells (clones) with distinct genotypes,
which encode the evolutionary history of each cell population [Nik-Zainal et al.
(2012)]. This genetic heterogeneity is important clinically because it can confound
the molecular profiling of biopsies, and increased variation may equip tumours
with more avenues to escape treatment, leading to worse prognosis [Schwarz et al.
(2015)].
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The clonal deconvolution problem. Identifying clones and their proportions is
a difficult task [Beerenwinkel et al. (2015)], aggravated by the fact that cancer
genomics data generally come from bulk sequencing experiments, which profile
a mixture of cells from different clones. Clones are related to each other and can
be thought of as nodes in a phylogenetic tree that describes tumour development.
The root of the tree corresponds to a normal, nonmutated cell; every other node is
a cancer clone with a distinct complement of mutations (its genotype). Each clone
inherits the mutations of its parent and adds more to them. This encodes a subset
relationship between parent and child nodes.

However, none of this is directly observable. Instead, the data only consist of
a set of mutations and their proportions (called allele fractions) in a collection of
tumour samples (Figure 1). The clonal deconvolution problem thus asks to identify
the clonal genotypes, phylogeny and clonal fractions that best explain the observed
data [El-Kebir et al. (2015)].

Additional challenges. The clonal deconvolution problem is further complicated
by factors such as the selection of alleles during tumour evolution and the specifics
of the data obtained from sequencing experiments. In particular, convergent evo-
lution and mutational loss contradict the common assumption that mutations arise
only once in the phylogeny (the infinite sites assumption) and never disappear. Tu-
mours are subjected to internal selective pressures in their microenvironment and
external pressures from therapeutic interventions. In such cases, multiple tumour
clones may acquire the same mutation in convergent evolution, especially if it is a
hotspot mutation or it confers resistance to the treatment. At the same time, muta-
tions can be removed by several mechanisms, including loss of heterozygosity, the
deletion of the chromosome fragment carrying the mutation. Another challenge
is that, for cost-effective sequencing options like targeted amplicon sequencing,
which we will use for the validation and the case studies, the depth of sequencing
is not informative of the chromosomal copy number of the tumour. This contradicts
assumptions often made by previous methods.

Previous approaches. Various methods have been proposed in the literature
[Beerenwinkel et al. (2015)] to improve on manual analyses [Gerlinger et al.
(2012); Nik-Zainal et al. (2012)]. To put our approach in context, it is useful to dis-
tinguish direct reconstructions that directly infer clonal genotypes [e.g., CloneHD
[Fischer et al. (2014)], Clomial [Zare et al. (2014)] and BayClone [Sengupta et al.
(2015)]] from indirect reconstructions that obtain clusters of mutations rather than
full genotypes and require additional phylogenetic analysis to obtain genotypes
[e.g., PyClone [Roth et al. (2014)], SciClone [Miller et al. (2014)], PhyloWGS
[Deshwar et al. (2015)] and BitPhylogeny [Yuan et al. (2015)]].

Direct reconstructions generally aim to infer two quantities, a matrix of muta-
tion assignments and a matrix of clonal fractions, which come together in an ad-
mixture in the sampling model. The mutation assignments matrix associates each
mutation with zero or more classes, which can be intuitively interpreted as clonal



PHYLOGENETIC CLONAL DECONVOLUTION 2379

FIG. 1. Overview of the general clonal deconvolution problem. Sample A shows how from a nor-
mal root node four clones evolved according to the displayed phylogeny. In this example, genotypes
consist of two loci (blue and orange), which may be mutated (red star), gained or lost. The normal
genotype consists of two nonmutated alleles for each locus. Clonal fractions are represented by the
diameter of the node and reported as a percentage. A second sample B from the same patient would
also consist of the same tree and genotypes; clonal fractions, however, may change. These latent pa-
rameters give rise to the observed mutation and copy-number data, shown at the bottom. The allele
fraction of a mutation is the proportion of that allele in the sample. The observed copy number is
the total copy number of each clone weighted by the clonal fractions. The increase of the orange
mutation’s allele fraction and the decrease of its observed copy number are due to the growth of the
clone with a single and mutated copy.

genotypes. For models that lack a phylogeny, inference may yield biologically im-
plausible genotypes, as shown later in the benchmarking studies (Section 3.3).

On the other hand, indirect methods cluster mutations based on their allele frac-
tions across multiple samples. Joint phylogenetic modelling allows these clusters
to become nodes of a tree, displaying at which node each mutation first appeared.
Hence, the assignment of mutation clusters to nodes of a tree is generally inflexible
to episodes of convergent evolution or mutational loss.

Latent feature models. Here we introduce Cloe, a phylogenetic latent feature
model for clonal deconvolution that belongs to the category of direct reconstruc-



2380 F. MARASS ET AL.

tion methods. Latent feature models discover independent features with which to
describe a set of observed objects. The set of features possessed by an object deter-
mines the parameters of its distribution [Ghahramani and Griffiths (2005)]. In our
context, observed objects are mutations, and latent features are clonal genotypes
representing clones.

Latent feature models have been previously applied to clonal deconvolutions,
but maintained the assumption that features are conditionally independent [Zare
et al. (2014); Sengupta et al. (2015)]. In parallel, extensions to these models have
been developed to relate features hierarchically, but placed features as the leaves
of the tree [Heaukulani, Knowles and Ghahramani (2014)]. Moreover, these tree
structures only correlated the feature assignments, making such a model unsuitable
for clonal deconvolutions.

The model we propose lifts the independence assumption and relates features
with a latent hierarchy, where each feature is independent of the others given its
parent. In our framework, features correspond to the nodes of the tree, which en-
codes a noisy subset relationship in the mutation assignments. Our model differs
from the phylogenetic Indian Buffet Process, as the latter relates observed ob-
jects with a latent phylogeny rather than the features [Miller, Griffiths and Jordan
(2012)]. Our approach is more general than previously published methods because
it relies on fewer assumptions on clones and the evolutionary model: we can read-
ily model multiple independent primary tumours, account for loss of mutations
and penalise, though still allow, convergent evolution.

We validate Cloe on simulated data, on a controlled biological dataset, and ap-
ply it to two published clinical datasets: longitudinal samples from three chronic
lymphocytic leukaemia patients [Schuh et al. (2012)] and from an acute myeloid
leukaemia case [Griffith et al. (2015)]. Cloe is available as an R package at
https://bitbucket.org/fm361/cloe.

2. The Cloe model. Our model follows the overview of Figure 1. A latent
phylogenetic tree influences the clonal genotypes; these, together with clonal frac-
tions and additional nuisance parameters, describe the distribution of the data.

We observe data for J mutations in T samples, and the data are collected in two
J × T matrices: X for mutant read counts and D for read depths, the number of
times a particular locus of the genome is covered by sequencing reads.

The phylogenetic tree is defined by a vector T with K > 1 elements, one for
each clone. We consider the normal contamination as a fixed clone. Our analysis is
restricted to mutations in copy-number neutral regions: each clone, including the
normal, contributes exactly two copies of each allele, of which at most one can be
mutated. Clonal genotypes are defined in a binary J × K matrix Z, where each
column z·k represents the genotype of clone k. The proportions of each clone in
each sample are summarised in a K × T matrix F formed by T stochastic vectors.

Our goal is to infer the phylogeny T , clonal genotypes Z and clonal fractions
F from the posterior distribution P(T ,Z,F | X,D). To do this, in the following

https://bitbucket.org/fm361/cloe
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FIG. 2. Simplified graphical model corresponding to Cloe, omitting overlapping plates and con-
vergent evolution relations.

sections we develop a probabilistic model that links observed and unobserved vari-
ables, and an inference algorithm to explore the posterior distribution.

2.1. Model definition. For guidance, a simplified version of our model is out-
lined in Figure 2, while at the end of this section Figure 3 presents the complete
model.

Phylogeny. For K > 1 populations, we model the phylogenetic tree as a vector
T of length K , where Tk = l means that the parent of k is l. The normal clone
is fixed as the first entry, the root of the tree. To ensure that the graph encoded
by T is a tree, we let each entry only take values on the previous entries. This
definition is flexible, as the tree can assume any shape, even allowing phylogenies
with multiple primary tumours. T is defined by

T1 = 0,

T2 = 1,

Tk ∼ U(δ, k − 1) for k ∈ {3, . . . ,K},
(2.1)

where U(δ, a) is a one-deflated discrete uniform distribution with values in
{1, . . . , a}. The probability of drawing a 1 is δ, and the probability of drawing
an integer between 2 and a is uniform:

U(x; δ, a) =
⎧⎨
⎩

δ if x = 1,
1 − δ

a − 1
if x ∈ {2,3, . . . , a}.(2.2)

We penalise multiple independent primary tumours (multiple children of the nor-
mal clone) by setting δ = (2k)−1.
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Genotypes. Genotypes are defined in a binary J × K matrix Z = (zjk), where
1 denotes a mutation and 0 the unmutated (wild-type) state, for each mutation
j in each clone k. We fix the genotype of the normal clone to a zero vector of
length J , implying that all mutations are somatic. More generally, the normal
genotype could be modified to accommodate known germline variants. The geno-
type of a clone k for a mutation j is then defined as

(2.3) zjk | zjTk
,μ,ρ ∼ Bernoulli(pjk),

where μ is the probability of mutating if the parent does not have a mutation, and
ρ is the probability of reverting to wildtype if the parent is mutated:

(2.4) pjk =
{
μ if zjTk

= 0,

1 − ρ if zjTk
= 1.

Clonal fractions. Because the samples may be spatially or temporally sepa-
rated, and collected at irregular intervals, we assume that clonal fractions are in-
dependent between samples. We represent clonal fractions with a K × T matrix
F = (f·t )t=1,...,T composed of stochastic column vectors f·t describing the propor-
tions of each clone in a sample t . Clonal fractions for a sample t are modelled with
a symmetric Dirichlet distribution with hyperparameter γt :

(2.5) f·t | γt ∼ Dirichlet(γt ).

Likelihood. Genotypes and clonal fractions come together in an admixture, their
dot product representing the expected allele fractions for each mutation in each
sample. We model mutant reads as successful trials from a beta-binomial distri-
bution with overdispersion parameter s. The probability of success is a function
of the expected allele fraction pjt = 1

2(zj · · f·t ). To capture sequencing noise at
extreme values of pjt , we replace it with a function e(pjt ) that depends on the
sequencing error rate ε (e.g., 0.1%) such that

(2.6) e(pjt ) =

⎧⎪⎪⎨
⎪⎪⎩

ε if pjt = 0,

1 − ε if pjt = 1,

pjt otherwise.

The likelihood is then specified by

(2.7) xjt | djt , zj ·, f·t , s ∼ Beta-binomial
(
djt , e(pjt ), s

)
.

Nuisance parameters. We let the beta-binomial overdispersion parameter s and
the Dirichlet hyperparameters γ have Gamma priors, whereas the mutation and
reversion probabilities μ and ρ are fixed.



PHYLOGENETIC CLONAL DECONVOLUTION 2383

FIG. 3. The full graphical model of Cloe.

2.2. Penalising convergent evolution. One of the risks of assuming the inde-
pendence of features in this biological application is that the inferred genotypes
may largely display convergent evolution. We can penalise such occurrences by
altering the definition of genotypes [cf. equations (2.3) and (2.4)].

Under the infinite sites assumption (ISA) every mutation occurs only once so
that if multiple clones possess a mutation j , then the mutation must have appeared
with their most recent common ancestor. In contrast, if the most recent common
ancestor is not mutated, then the mutation must have appeared multiple times (con-
vergent evolution). We thus say that a mutation assignment zjk = 1 conflicts with
ISA if the most recent common ancestor of {k′ : zjk′ = 1, k′ ≤ k} does not harbour
mutation j .

We include ISA checks into our model by using an indicator function I (j, k, a)

that returns 1 if the most recent common ancestor of all clones k′ ≤ k that harbour
mutation j also possesses the mutation when zjk = a; that is, I (j, k, a) = 1 if ISA
is satisfied by setting zjk = a, and 0 otherwise.

Thus, we redefine the distribution of genotypes making them conditional on all
previous genotypes and weighting assignments by a user-defined parameter ν if
they comply with ISA, or by 1 − ν if they do not:

(2.8) P(zjk = 1 | T ,Zj,<k, zjTk
= 0,μ,ρ, ν) ∝ (μν)I (j,k,1)(μ(1−ν)

)1−I (j,k,1)
.

In practice, only transitions that gain a mutation can clash with ISA, and the factor
of ν immediately cancels out if the parental genotype is 1 at a given j . An ISA-
check at j is thus only warranted if the parent is not mutated at j .

The graphical model corresponding to what has been described so far is shown
in Figure 3.

2.3. Inference. We are interested in the posterior distribution of the latent
variables given the observed variables P(T ,Z,F | X,D). We approximate the
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Algorithm 1 MCMCMC sampling algorithm for Cloe
1: for i = 1, . . . , #iterations do
2: for m = 1, . . . , #chains do
3: for j = 1, . . . , J do � Z
4: Propose new z∗(m)

j ·
5: Accept with probability 2.12
6: end for
7: for k = 3, . . . ,K do � T
8: Compute P(T ∗(m)

k = l) for l ∈ {1, . . . , k − 1} (eq. 2.9)

9: Sample new T ∗(m)
k from P(T ∗(m)

k )

10: end for
11: Randomly swap two siblings
12: With probability 1% propose a swap between a node and its parent
13: Accept with probability 2.11
14: for t = 1, . . . , T do � F
15: Propose new f∗(m)

·t from eq. 2.13
16: Accept with probability 2.14
17: end for � Nuisance parameters
18: Propose new s∗(m) ∼N (s(m), σs) and accept with probability 2.15
19: for t = 1, . . . , T do
20: Propose new γ

∗(m)
t ∼N (γ

(m)
t , σγ ) and accept with probability 2.16

21: end for
22: end for
23: if i is a multiple of 100 then � Chain swap
24: Propose a chain j ∈ {1, . . . ,m − 1}
25: Accept the state swap between chains j and j + 1 with probability 2.17
26: end if
27: end for

posterior by Metropolis-coupled Markov chain Monte Carlo [MCMCMC; Geyer
(1991)]. Within each MCMCMC chain, we use a generalised Gibbs sampler to
draw samples of the tree vector and other parameters from their full conditionals.

Because the posterior landscape appears composed of high peaks separated by
deep valleys (Supplementary Figure 1), we run five chains in parallel, with tem-
pered posteriors. The sampling strategy described hereafter is applied to each chain
and summarised in Algorithm 1.

Phylogeny. For each Tk>2, we compute the conditional posterior of the parent
assignment Tk = l, for each l < k:

(2.9) P(Tk = l | . . . ) ∝ P(Z | T−k,Tk = l)P (Tk = l).

The likelihood term amounts to tallying the genotype transitions from parent l to
child k, and reassessing how many transitions comply or clash with ISA for all
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clones. The prior, according to equation (2.1), is equal to

(2.10)

P(Tk = l) = δI (l=1)

(
1 − δ

k − 2

)1−I (l=1)

=
(

1

2k

)I (l=1)( 2k − 1

2k(k − 2)

)1−I (l=1)

.

To facilitate the exploration of the space of tree and genotypes configurations,
we uniformly propose a pair of siblings and swap their position in the tree and in
the genotypes and clonal fractions matrices. Prior to this swap, the siblings had
access to one linear topology. This move allows the other linear topology to be
explored while leaving probabilities unaltered.

In addition, the swap between a node k and its parent l is proposed. A node k is
chosen uniformly from {3, . . . ,K}. A tree T ∗ is created where k is the parent of l,
while any children of k remain children of k; the same applies to l. As with the
sibling swap, this move requires rearranging the clone order in the genotypes and
clonal fractions matrices. The parent swap affects genotype transitions from Tl , the
original parent of l, to k, and from k to l. The proposal is accepted with probability

(2.11) min
(

1,
P (Z{Tl ,k,l} | T ∗,μ,ρ, ν)P (T ∗{Tl ,k,l})
P (Z{Tl ,k,l} | T ,μ,ρ, ν)P (T{Tl ,k,l})

)
.

This move rescues the sampler from local maxima where the parental relation-
ships are learnt in the wrong order. Because this situation is rare, and the move is
computationally expensive, we perform this move with probability 0.01.

Genotypes. Because mutations are independent, we update Z by row, propos-
ing a new row z∗

j · by flipping each bit of zj · with probability θ . The proposal is
symmetric and the move is accepted with probability

(2.12) min
(

1,
P (xj · | dj ·, z∗

j ·,F, s)P (z∗
j · | T ,μ,ρ, ν)

P (xj · | dj ·, zj ·,F, s)P (zj · | T ,μ,ρ, ν)

)
,

where the likelihood is only computed for mutation j , and the prior refers to the
sequence of transitions from the root genotype at j to the leaves, with appropriate
penalties for convergent evolution.

Clonal fractions. Because of the independence of the samples, the matrix F
is updated by column. A new vector f∗·t is proposed from a Dirichlet distribution
centred at the current value f·t :

(2.13) Q
(
f∗·t | f·t

) = Dirichlet(ψf·t + ε),

where ψ is a precision factor and ε a small bias to avoid sinks at 0. The proposal
is accepted with probability

(2.14) min
(

1,
P (x·t | d·t ,Z, f∗·t , s)P (f∗·t | γt )Q(f·t | f∗·t )
P (x·t | d·t ,Z, f·t , s)P (f·t | γt )Q(f∗·t | f·t )

)
.
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Nuisance parameters. The remaining parameters are updated with Metropolis
moves using Gaussian proposals. The Metropolis–Hastings acceptance ratios are

(2.15) min
(

1,
P (X | D,Z,F, s∗)P (s∗)
P (X | D,Z,F, s)P (s)

)
for s,

and

(2.16) min
(

1,
P (f·t | γ ∗

t )P (γ ∗
t )

P (f·t | γt )P (γt )

)
for γt .

Temperatures and chain swaps. Regularly at user-defined intervals, a swap be-
tween two adjacent chains is proposed as a Metropolis–Hastings move. Let M de-
note the number of parallel chains, P (m) denote the tempered posterior of chain m,
and ωm denote the state of chain m. A chain m is selected among the first M − 1
chains. The swap between chains m and m + 1 is then accepted with probability

(2.17) min
(

1,
P (m)(ωm+1)P

(m+1)(ωm)

P (m)(ωm)P (m+1)(ωm+1)

)
.

The temperature τm for each chain m is chosen according to the following
scheme [Ronquist, Huelsenbeck and Teslenko (2005)]:

(2.18) τm = (
1 + 
T (m − 1)

)−1
,

where 
T > 0 regulates the temperature differences between chains.
Parameter estimates. MCMCMC parameter estimates are derived solely from

the first, untempered chain. After discarding a certain proportion of the initial sam-
ples as burn-in, and thinning the chain by a factor of i, thus considering every ith
sample, we obtain a maximum a posteriori (MAP) estimate of the parameters by
selecting the chain state of the sample with the highest posterior value.

Model selection. When Cloe is run on the same dataset with various values
of K , a model selection criterion is needed to rank the solutions. To do so, we
use the log-posterior probability of the MAP estimate, as it accounts for the fit to
the data as well as the model complexity. Nevertheless, because this is a heuristic,
manual review of the results is recommended. When multiple models attain similar
log-posterior probabilities, we prefer solutions with higher log-likelihood values,
denoting a better fit to the data.

3. Validation and benchmarks. We extensively validated and benchmarked
Cloe by using simulated data and a controlled experimental setup based on mix-
tures of cell line DNA.

3.1. Simulated data. We first tested our model on 9 simulated datasets, one for
each combination of number of clones (3, 4 or 5) and depth of sequencing (means:
50×, 200×, 1000×). The genotypes were created according to a random tree and
using parameters μ = 0.5, ρ = 0.05, ν = 0.9; clonal fractions were iid draws from
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TABLE 1
Running parameters for the simulated and validation
datasets. For ε, the sequencing error parameter, the

first value refers to the simulations, and the second to
the validation dataset

Parameter Value

MCMCMC

Iterations 40,000
Chains 5

T 0.4
Swap interval 50
Burn-in 50%
Thinning factor 4

Z

μ 0.3
ρ 0.1
ν 0.75
θ (proposal) 0.20
ε (likelihood) 0.005, 0.002

F

ψ (proposal) 200
ε (proposal) 4

Nuisance parameters

γ (prior, shape) 2
γ (prior, rate) 1
σγ (proposal) 0.2
s (prior, shape) 11
s (prior, rate) 0.10
σs (proposal) 16

a symmetric Dirichlet distribution with parameter γ = 2. All datasets contained
100 mutations and 5 samples, with depths obtained from a Poisson distribution and
mutant read counts obtained from a binomial distribution. Because of the fixed size
of our model, we ran Cloe for 3, 4 and 5 clones on each of the 9 datasets (running
parameters are reported in Table 1).

We measured Cloe’s performance by its ability to identify the correct number of
clones and the right parameters. In addition, we computed the frequentist coverage
probability and assessed mixing performance from three consecutive runs of the
algorithm. To compute the reconstruction error, we calculated two metrics, the
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FIG. 4. Results on the simulated datasets. Left: inferred model size for every combination of K

and depths. Centre and right: reconstruction errors. All datasets consisted of five samples and 100
mutations.

normalised genotypes error Zerr and the normalised clonal fractions error Ferr,
both defined as the sum of the absolute differences between inferred (Z∗) and the
true (Z) matrices, normalised by the real matrix dimensions (ignoring the fixed
genotype in Z). To control for equivalent solutions with permuted clones, we find
the permutation σ of the columns of Z∗ that minimises Zerr:

(3.1) Zerr = 1

J (K − 1)
min

σ

(∑
j,k

∣∣z∗
jσ (k) − zjk

∣∣).

The same permutation is then used to rearrange the rows of F∗, which is nor-
malised by JK. If the true and inferred matrices have different sizes, we pad the
smaller one with normal clones with zero clonal fractions. In this instance K refers
to the correct number of clones.

Model selection. Using our automated model selection, we were able to recover
the correct size K for every dataset (Figure 4, left) in two of the three runs. In one
run, a higher log-posterior probability was given to the solution with 4 clones on
the dataset with 50× and 5 clones (−14464.05 compared to the 5-clone solution’s
−14464.58; Supplementary Figure 3).

Reconstruction fidelity. To assess the reconstructions, we considered only the
MAP solution for each dataset. The reconstruction error was low, with Zerr ≤
0.027 and Ferr ≤ 0.033. The largest errors were obtained at the lowest depth (Fig-
ure 4, centre and right), suggesting that on these random datasets Cloe can not only
discover the correct number of clones, but also infer correct genotypes and clonal
fractions with >96.7% accuracy (Supplementary Figures 4, 5 and 6).

MCMC performance. As measured by the reconstruction error metrics, Cloe can
provide accurate inference of genotypes and clonal fractions on both simulated and
biological data (Section 3.2). However, the shape of the posterior distribution may
prevent a complete exploration of all peaks in all chains (Supplementary Figure 1).
Convergence to high probability regions is quickly reached, yet it is possible that
the sampler may climb the correct peak and move away from it with difficulty.
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TABLE 2
Effective sample size per dataset, computed on 5000 post-burn-in and post-thinning iterations for
the first of the three replicate runs with the correct number of clones. The dataset is denoted by the
average sequencing depth and the real number of clones. LP denotes the log-posterior, used as a

proxy for the multidimensional parameters

Dataset γ1 γ2 γ3 γ4 γ5 s LP

50×, 3 99.87 140.05 283.02 75.51 53.55 791.69 999.84
200×, 3 102.72 184.97 262.84 87.50 74.97 446.42 620.97
1000×, 3 83.27 232.58 223.02 86.26 71.26 231.40 290.80
50×, 4 296.28 99.69 234.60 83.70 186.02 633.14 1369.27
200×, 4 461.14 87.64 330.48 77.61 219.94 555.83 894.29
1000×, 4 498.87 123.30 350.10 71.80 177.40 223.17 226.41
50×, 5 185.99 111.19 101.98 172.80 193.12 689.40 791.96
200×, 5 394.70 181.97 200.82 156.75 280.00 445.45 469.93
1000×, 5 507.30 202.85 202.03 160.05 340.71 269.50 293.98

To gain more insight into the performance of the sampler, we assessed conver-
gence by the Gelman–Rubin statistic, coverage by computing frequentist coverage
probabilities, and sampling by calculating the effective sample size (ESS). The
Gelman–Rubin statistic was calculated from the log-posterior values of the un-
tempered chains as a proxy for the multidimensional parameters. The potential
scale reduction factor is within the accepted range, less than 1.1 (Supplementary
Figure 2), for 24/27 cases. In three cases, at least one of the replicates did not con-
verge to the same peak in the given number of iterations. Each run was started with
a different random seed.

To calculate the coverage probability, we computed the 95% highest posterior
density intervals from the MCMC traces, again using the log-posterior as a proxy.
In each case, the true log-posterior probability was obtained by running the MCMC
sampler with genotypes, clonal fractions and tree fixed to the correct values. Seven
of the nine simulated datasets covered the true log-posterior in every replicate
(Supplementary Table 1). In the remaining two cases, the true log-posterior lay
close to but outside the upper bound of the interval. However, the accuracy of the
reconstruction, as shown above, remained high, suggesting a discrepancy in the
nuisance parameters.

Finally, we computed the ESS for the first run on each dataset, focussing on
the cases where the sought number of clones matched the actual number of clones
of the dataset. Table 2 reports the ESS of the nuisance parameters and the log-
posterior, computed from 5000 post-burn-in and post-thinning iterations. Modu-
lating the standard deviation of the Gaussian proposals for the nuisance parame-
ters could decrease their autocorrelation. However, the shape of the posterior space
(Supplementary Figure 1) may prevent efficient large moves.
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TABLE 3
Clonal fractions in the 14 mixtures of the validation experiment

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

N 0.26 0.34 0.22 0.13 0.37 0.38 0.72 0.26 0.13 0.45 0.65 0.38 0.53 0.00
C1 0.03 0.41 0.14 0.29 0.14 0.14 0.04 0.38 0.03 0.02 0.06 0.09 0.19 0.08
C2 0.18 0.00 0.19 0.25 0.06 0.04 0.11 0.05 0.32 0.18 0.03 0.28 0.00 0.30
C3 0.44 0.19 0.00 0.17 0.10 0.41 0.13 0.18 0.43 0.23 0.20 0.25 0.22 0.57
C4 0.10 0.05 0.44 0.15 0.33 0.05 0.00 0.14 0.10 0.12 0.07 0.00 0.06 0.04

FIG. 5. The observed data for the validation dataset. On the left is the artificial phylogeny, where
N denotes the normal clone, and C1 to C4 are the genotypes derived from the cancer cell lines. On
the right are the observed mutational dynamics (allele fractions over samples) at an average depth
of 17,260×.

3.2. Controlled experimental data. Because synthetic data may not capture
the variability seen in real biological data, we tested our method on a bespoke ex-
periment, described in detail in the Supplementary Material [Marass et al. (2016)].
Briefly, in order to mimic heterogeneous tumour samples, we genotyped DNA
from four single-cell-diluted cancer cell lines and one normal cell line, and mixed
it at known proportions (Table 3). Fourteen mixtures were created, with a median
tumour content of 64%. In this experiment, the cancer cell lines represent tumour
clones.

Because the cell lines were unrelated, we selected a subset of mutations (het-
erozygous single nucleotide variants and small indels) to embed the genotypes into
an artificial phylogeny (Figure 5, left). The cell lines were genotyped by whole-
exome sequencing and the allele fractions of the selected mutations were quanti-
fied by deep targeted sequencing [Forshew et al. (2012)]. The final dataset con-
tained 82 mutations, quantified across 14 mixtures at a median depth of 17,260×
(Figure 5, right).

The large number of samples and the high depth of sequencing that we obtained
afforded a sensitivity analysis in which we varied the number of samples and the
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FIG. 6. Reconstruction errors on validation data obtained running Cloe with K = 5 clones. The
heatmaps show the genotypes error (left) and clonal fractions error (right) for various combinations
of depth and samples.

depth. Cloe was run on these datasets with the same parameters as for the synthetic
data (Table 1), albeit with a smaller sequencing error parameter.

Model selection. We ran Cloe for K ∈ {3,4,5,6} and performed model selec-
tion based on the log-posterior values of the MAP estimates. In every case we were
able to identify the correct number of clones (Supplementary Figure 7), suggesting
that either a moderate depth of sequencing or multiple samples should suffice in
obtaining good estimates of the number of clones.

Reconstruction fidelity. Overall, we obtained precise reconstructions for almost
all depth-samples combinations. Considering for each combination only the first
solution suggested by Cloe, on average 1% of mutation assignments were inac-
curate (Zerr median 0, mean 0.013), and clonal fractions were inferred with an
average error lower than 2% (Ferr median 0.017, mean 0.019; Figure 6 and Sup-
plementary Figure 8). As expected, we observed a pattern of decreasing errors as
the data increase in the number of samples or in depth. Except for the low-depth
cases described below, every solution reconstructed the correct tree topology (Sup-
plementary Figure 9, left).

Specific low-depth cases. Poorer reconstructions were obtained at lower depths
(≤ 60×) for the datasets with three samples. In every case, the inferred genotypes
showed a faulty separation between two expected genotypes (Supplementary Fig-
ure 10), which led to high error metrics: Zerr ≤ 0.134 and Ferr ≤ 0.065. Inference
of the phylogeny was also affected (Supplementary Figure 9, right). Despite the
imprecise reconstruction, there is an overall good agreement with the observed
data [Supplementary Figure 10(e)].
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These results could be improved by tuning the running parameters of Cloe for
these datasets. Because the height of the posterior peaks at these levels of depth
is lower than at high depth, using less tempered chains may result in higher ac-
ceptance of chain swaps and, consequently, in a more complete exploration of the
posterior space. Increasing the number of MCMCMC iterations could also prove
to be beneficial.

It should be also noted that at low depths sampling noise may promote subopti-
mal parameter combinations to near-optimal. In this case, more mutations should
be analysed in order to average sampling noise effects, though this may place a
heavy burden on our implementation’s runtime. Alternatively, one could model
more data in terms of samples. If the clonal fractions are dynamic enough, meaning
that most clones grow and shrink at some point in the samples, more opportunities
are provided to separate clonal signals.

3.3. Comparison to other approaches. To further benchmark Cloe, we com-
pared the results of four published methods compatible with targeted sequenc-
ing on our validation dataset: the latent feature models BayClone [Sengupta et al.
(2015)] and Clomial [Zare et al. (2014)] as well as the nonparametric mixture mod-
els PhyloWGS [Deshwar et al. (2015)] and PyClone [Roth et al. (2014)]. Other
methods, like CloneHD [Fischer et al. (2014)], are not applicable to targeted se-
quencing.

We ran two tests on the validation dataset described in the previous section,
first using all samples and the entire depth, and then 3 samples and a depth of
100×. Our method’s performance on the first dataset is a perfect reconstruction of
the genotypes (Zerr = 0) and a near-perfect reconstruction of the clonal fractions
(Ferr = 0.005), with a correct identification of the number of clones. With less data,
there are three misassignments (Zerr = 0.009) and the error of the clonal fractions
is 0.017 (Figure 7); again, the number of clones is correctly inferred.

BayClone [Ji (2016)] was run with default parameters for 45,000 iterations, dis-
carding the first 5000 and thinning the chain by a factor of 4. We tested the same
model sizes as for our own method, namely, 3, 4, 5 and 6. Through the log-pseudo-
marginal likelihood, BayClone was able to identify K = 5 as the best solution
on the first dataset. However, its reconstruction of the genotypes was less precise
(Figure 8), with Zerr = 0.25 and Ferr = 0.103. Here Zerr, the normalised absolute
difference between inferred and real genotypes matrices, ignores the ploidy of the
mutation. The reconstruction was poorer on the second dataset because of the less
precise data: six clones were inferred with Zerr = 0.287 and Ferr = 0.147 (Supple-
mentary Figure 11).

Clomial (version 1.6.0) implements an EM algorithm, and it was run with de-
fault parameters (1000 restarts and 100 maximum EM iterations) using model sizes
of 3, 4, 5 and 6. On the first dataset, model selection with BIC (and AIC) indicated
K = 5 as the best solution, with one misassignment (Zerr = 0.003) and an accurate



PHYLOGENETIC CLONAL DECONVOLUTION 2393

FIG. 7. Comparison of Cloe against four published methods on our validation dataset. Zerr denotes
the reconstruction error on genotypes, and Ferr the error on clonal fractions. The column headers
denote the data that were analysed in each instance. The legend refers to the number of inferred
clones; the correct number is five.

reconstruction of the clonal fractions (Ferr = 0.006). With less data, model selec-
tion was unclear as AIC, BIC and the log-likelihoods were all discordant. Using
the correct model size, Clomial obtained a Zerr = 0.076 and Ferr = 0.044.

PyClone (version 0.12.9) was run for 30,000 iterations with a beta-binomial
density and copy-number neutral states allowing a single mutant allele out of two
(AB mode). PyClone was also provided with estimates of cellularity for each of
the samples. We removed the first 3000 iterations as burn-in samples and thinned
the chain by a factor of 4. The output of PyClone consists of a clustering of the
observed mutations, where each cluster should correspond to one of the nonroot
nodes of Figure 5 (left). Phylogenetic modelling can translate these clusters into
genotypes. On the full dataset, PyClone produced three clusters, as shown in Fig-
ure 8. Because the cluster of stem mutations was merged with one of its two chil-
dren, we were unable to interpret the results phylogenetically. Hence, we could
not derive genotypes or clonal fractions. As such, the clusters were used as geno-
types. The estimate of K is 4 with Zerr = 0.241. On less data, two clusters were
produced, leading to an estimate of K of 3 with Zerr = 0.357.

PhyloWGS (commit 290645c) was run with 1000 burn-in samples, 10,000
MCMC iterations, 5000 MH iterations and without copy-number information, so
as to elicit copy-number neutral behaviour; only the top solution was considered.
Like PyClone, PhyloWGS clusters mutations. However, joint phylogenetic analy-
sis means that genotypes can be obtained by letting each clone have the mutations
of the corresponding cluster plus the mutations of its ancestors. On both datasets,
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FIG. 8. Comparison of the genotypes inferred by the five benchmarked methods using all the data
in our validation dataset. PyClone’s reconstruction is a clustering of the mutations. In this repre-
sentation, solutions were padded with the normal clone (C1) for a more direct comparison with our
method. The legend refers to the proportion of mutated alleles out of two.

PhyloWGS inferred six clones, likely because it does not allow mutation losses.
On the entire dataset the errors were Zerr = 0.25 and Ferr = 0.069, while on the
low-depth dataset the errors were Zerr = 0.247 and Ferr = 0.105.

In summary, our benchmark shows that Cloe compares favourably against simi-
lar published methods (Figure 8). It is expected that the accuracy of the reconstruc-
tion would be affected by the quality of the data. Indeed, every model performed
more poorly on less data, however, Cloe seemed to be affected to a lesser extent
(Supplementary Figure 11).

4. Case studies. We show the applicability of Cloe to clinical data in two case
studies.

4.1. Chronic lymphocytic leukaemia. This dataset consists of five time points
for each of three chronic lymphocytic leukaemia patients [Schuh et al. (2012)]. The
original study identified mutations by whole-genome sequencing (WGS; average
depth across the mutation loci 39×) and quantified a subset of these with deep,
targeted amplicon sequencing (TAR; average depth 101,600×).

The authors reported evolutionary trees and clonal fractions for each of the three
cases, following k-means clustering of the mutations and a manual analysis. We
used this information to run Cloe with known clonal fractions on all mutations,
prioritising information from the higher depth datasets. We interpreted these re-
sults as ground truth mutation assignments for all three patients, and scored our
reconstructions to these reference parameters.
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We ran Cloe on the reported mutations with K ∈ {3, . . . ,7} for each case and
each experiment (WGS, low-depth, and TAR, high-depth), comparing our results
with the original study, with PhyloSub’s results [Jiao et al. (2014)], and with
CloneHD’s reconstruction of case CLL003 [Fischer et al. (2014)]. We also in-
cluded another dataset, which consisted of the WGS dataset with data from the
higher depth TAR dataset for mutations in common.

Case CLL003 displays a radical clonal shift [Supplementary Figures 12(a) and
(b)]: the main clone in the early time points is replaced by a distinct new clone
that appears only at the second time point and expands to become the predominant
clone. Using targeted sequencing data, Cloe obtained a very accurate reconstruc-
tion, identifying the correct number of clones, with a single misassignment and
average errors on clonal fractions of 1% (Figure 9, Supplementary Figure 13). On
less data, our method opted for a solution with 4 clones that ignored the founding
clone, only present in the first of five samples at a clonal fraction of 3%. Choos-
ing the top solution with 5 clones recovered the correct clonal structure. On WGS
data there were five incorrect mutation assignments (Supplementary Figure 14),
whereas with the combined dataset only one (Supplementary Figure 15). Barring
the rare founding clone, the 4-clone reconstructions are correct with one (com-
bined data) and two (WGS data) misassignments.

The remaining cases showed more stable dynamics [Supplementary Fig-
ures 12(c)–(f)]. For CLL006, Cloe assigned the nine mutations of the TAR dataset
to six clones without errors; three errors were observed with 18 mutations in the
WGS dataset (Figure 9). Analysis of the combination of the two data types yielded
an additional clone, though similar log-posterior probabilities and a higher log-
likelihood were obtained by a six-clone solution. Removing clone C5 from the
seven-clone solution yields a correct reconstruction (Supplementary Figure 16).

Finally, for CLL077, Cloe’s analysis resulted in a perfect reconstruction of the
genotypes with targeted sequencing data. Two misassignments were obtained for
the combined dataset, whereas four of the five clones were identified in the WGS
data: the founding clone, with only four of the 20 mutations, was merged with
one of its children. After the four-clone solutions, solutions with six clones had
high log-posterior probabilities. Indeed, the first of these solutions is an accurate
reconstruction with two misassignments and one clone repeated twice almost iden-
tically. In the middle, solutions with the expected number of clones, five, had six
errors (Supplementary Figure 17).

Overall, Cloe produced accurate reconstructions of the latent parameters.
Higher errors were observed when an incorrect number of clones was inferred.
However, even in these cases, our phylogenetic model allowed us to obtain close
approximations of the ground truth.

Assuming that our reconstruction of the ground truth is correct, Cloe’s inference
results in a better reconstruction than reported by CloneHD, both using high-depth
and low-depth data: first, because of our phylogenetic modelling, we were able
to identify the founding clone; second, we could confidently identify the rising
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FIG. 9. Performance metrics of Cloe on the CLL datasets. The correct number of clones for cases
CLL003 and CLL077 is 5, whereas for CLL006 it is 6. TAR stands for targeted sequencing (average
depth 101,600×); WGS stands for whole-genome sequencing (average depth 39×); BOTH is the
WGS dataset with TAR data for shared mutations. The legend refers to the number of inferred clones.
When the first solution inferred the wrong number of clones, the top solution for the correct number
of clones is also shown.

clone’s parent [the ambiguous green clone in Fischer et al. (2014)]. With low-
depth data, Cloe’s automatic model selection preferred a model with four clones,
but could also provide a more accurate five-clone solution.

Our results on targeted sequencing data largely agree with those obtained by
PhyloSub, with two small exceptions. For CLL003, Cloe predicts that clone 4
[clone c of Figure 7 (right) in Jiao et al. (2014)] does not harbour the IL11RA
mutation. This episode appears to be supported by the data (Supplementary Fig-
ure 18), as Cloe’s reconstruction leads to a closer fit to the data (sum of absolute
errors on the allele fractions of this mutation is 0.06 for Cloe, 0.13 for PhyloSub).
Rather than a loss of mutation, this could be due to convergent evolution at the leaf
nodes, leading to a sum of absolute errors of 0.07. For case CLL006, our recon-
struction agrees with that of Schuh et al. (2012): five tumour clones are detected,
and the EGFR mutation is predicted to stem from the founding clone. PhyloSub in-
stead preferred to place the EGFR mutation in an additional clone after the founder,
leading to a closer fit: the sum of absolute errors was 0.02 compared to Cloe’s 0.07
for this mutation.

4.2. Acute myeloid leukaemia. AML31 refers to a patient with acute myeloid
leukaemia, whose case was studied in great depth with several sequencing exper-
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iments targeting bulk DNA at various scales, RNA and also single cells [Griffith
et al. (2015)]. As each layer of data refined the authors’ understanding of the evolu-
tion of this tumour, seven clusters and driver mutations were identified. Integration
of all sequencing data revealed over 1300 mutations curated in a ‘platinum list’.
The tumour genomes appeared to be devoid of copy-number aberrations.

We considered a subset of platinum-list mutations for three datasets: ALLDNA
(a pool of all the DNA sequencing data, median depth of 1841× for the primary
tumour sample, 388× for the relapse), TORRENT (custom capture panel on an
Ion Torrent platform, median depths 41× and 46.5×) and WGS (whole-genome
sequencing on an Illumina platform, median depths 323× and 41×). For each
dataset, we uniformly selected a random subset of 250 mutations, halving the num-
ber of mutant reads for hemizygous chromosome X mutations, and adding reported
driver mutations.

Cloe was run with K ∈ {3, . . . ,7} on the datasets. Model selection on ALLDNA
indicated K = 5 as the preferred solution, followed closely by K = 6, which pro-
vided a closer fit to the data (Supplementary Figure 19). The inferred mutation
dynamics for both models are shown in Figure 10. Whereas both model sizes
could capture the trends in the data, the solution for K = 6 correctly identified
two groups of mutations that rise in allele fraction in the relapse sample.

Our reconstruction shows a decrease in tumour burden at relapse, a single origin
for all clones and branched evolution after the founding clone (Figure 11). Clone 5
and its child, clone 6, become the main clones in the relapse sample, supplant-
ing clones 3 and 4. The founding clone appears present only at very low clonal
fractions.

Matching our clones to the original clusters, we found a close correspondence
(Table 4), corroborating Cloe’s inference. The only misassignment is TP53 to
clone 6, which in the original study required single-cell sequencing and additional
time points to identify as belonging to a separate clone. Beyond the genotypes,
there was also a close match between inferred and expected clonal fractions, with
a maximum absolute difference of 4%.

Cluster 6 was not identified by our model. According to the original analysis,
this cluster was present at less than 5.5% clonal fraction in the primary sample, to
then disappear at relapse. Such a cluster would contribute half of its clonal frac-
tion in allele fraction, due to the heterozygosity of the mutations. We do observe
that nine of the 257 mutations were not assigned to any clone. Their average allele
fraction was 2.2% in the primary sample and close to 0% in the relapse (Supple-
mentary Figure 21). Because they did not fit the dynamics of the other clones,
sequencing noise was used to fit them [equation (2.6)].

Because of the high depth of sequencing for this dataset, we additionally ran
Cloe with 8 clones. The solution we obtained refines what reported in Figure 11
for 6 clones: clone C5 is divided in two, matching the multiple rising allele fraction
patterns, and the missing clone is identified (Supplementary Figures 22 and 23).
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FIG. 10. Observed and inferred mutation dynamics for 257 mutations from the ALLDNA dataset;
driver mutations are highlighted. Left: observed allele fractions; centre: predicted allele fractions
given the parameters inferred by Cloe using 5 clones; right: predicted allele fractions given the
parameters inferred by Cloe with 6 clones. The allele fraction predicted for a mutation j in a sample
t is given by 1

2
∑

k zjkfkt .

FIG. 11. Parameters inferred by Cloe running with 6 clones on 257 mutations from the ALLDNA
dataset. Genotypes are shown on the left, where green denotes presence of a mutation; clonal frac-
tions for each clone are shown on the right. C1 is fixed as the normal contamination. The corre-
sponding phylogeny is shown in Supplementary Figure 20.

On the modest amount of data of the TORRENT dataset our model selection
produced a more conservative estimate of the number of clones, preferring four
clones. Using five or more clones improved the log-likelihood to the same extent.
We compare here solutions for K = 4 and K = 5 (Figure 12).
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TABLE 4
Correspondence between Cloe’s inferred clones and
the clusters in the original analysis by Griffith et al.

(2015). While drivers are also present in the children of
a clone, here we report the clone in which the

mutations first appeared

Clone Cluster Drivers

C2 1 DNMT3A
C4 4 FOXP1
C5 3 IDH2
C3 2 IDH1
C6 5 CXCL17, TP53

FIG. 12. Observed and inferred mutation dynamics for 254 mutations from the TORRENT dataset.
Left: observed allele fractions; centre: allele fractions inferred by Cloe with 4 clones; right: allele
fractions inferred by Cloe with 5 clones.

With three tumour clones, our model matched the main trends: two large clones
in the primary sample that disappear at relapse, and one growing clone. In addition,
tumour content was accurately inferred: 89% for the primary sample and 44% for
the relapse sample, compared to the expected values of 91% and 37%. The addition
of a fourth tumour clone (K = 5) allows a better disambiguation of the clones
present in the primary, while the spread of allele fractions in the relapse sample
makes it difficult to distinguish two rising clones.

Identifying seven clones including the normal in two samples with a median
depth less than 45× is an arduous task. Griffith et al. (2015) show that SciClone
detects four clones up to around 100× depth using all mutations on the platinum
list. While Cloe prefers four clones using a subset of mutations at a depth of 45×,
it is capable of splitting the observed dynamics further, obtaining closer approxi-
mations of the real clonal structure.
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Finally, for the WGS dataset, Cloe’s solution with 5 clones obtained the highest
posterior probability, while 6 and 7 clones obtained closer fits to the data (Sup-
plementary Figure 24). With four tumour clones, Cloe identified three decreasing
groups of mutations and one group that arose at relapse. This matches the ob-
served dynamics, as the low depth at relapse accounts for a larger spread of the
allele fractions that confounds the identification of two rising clones (Supplemen-
tary Figure 25). Interestingly, the addition of another clone, rather than fitting this
low-depth relapse data, matches a fourth group of mutations present only in the
primary around 5% clonal fraction. These mutations overlap with the unassigned
mutations in the ALLDNA dataset and the inferred clone does not harbour addi-
tional driver mutations other than DNMT3A, which derives from its parent.

With this case study we applied Cloe to a scenario with two samples, highlight-
ing the difficulties of automatic model selection, especially when trying to identify
a large number of clones with a moderate amount of data.

The running parameters for the two case studies differ from the ones listed in
Table 1 in that we used five chains with 
T = 0.25. In addition, for the AML
datasets we ran 50,000 iterations of our sampler with μ = 0.2, ρ = 0.04 and ε =
0.001.

5. Discussion. As tumour sequencing data grow in depth and breadth, the
question of tumour heterogeneity will continue to be focal. In this study we pre-
sented Cloe, a novel latent feature model for direct clonal reconstruction. Our
model discovers genotypes in the data by assigning observed mutations to latent
features (clones) guided by a latent phylogeny. This phylogenetic deconvolution
sets Cloe apart from other direct reconstruction methods [Fischer et al. (2014);
Zare et al. (2014); Sengupta et al. (2015)]. Compared to indirect reconstruction
methods, our algorithm can handle multiple primary tumours, the loss of muta-
tions and convergent evolution. In particular, to our knowledge, this is the first
method to allow and penalise convergent evolution.

Our study on simulated data showed a good performance of our MCMCMC
algorithm. However, tuning the MCMCMC parameters in order to correctly ex-
plore the spiked posterior landscape is not trivial. We empirically found parame-
ters that would allow the chains to mix well. Regions of high posterior probability
are quickly reached, yet finding the right peak may be a slow process, complicated
by each biological constraint on the model. Many parameters can be tuned in our
model. We sought values that would work well for both simulated data and our val-
idation data. Tuning the MCMCMC parameters to each dataset independently, thus
optimising the exploration of the posterior space, might further improve results.

In our definition of the tree we assume that multiple primary tumours are less
likely to occur than tumours with a single origin. If our understanding of clonal
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evolution were to suggest otherwise, the definition of the tree may be simplified to
a discrete uniform distribution, giving equal weight to a single origin or multiple
ones.

Limitations. The main limitation of our method is the restriction to mutations
from copy-number neutral regions. Whereas this may be amenable to certain types
of cancer (e.g., mutation-driven rather than copy-number-driven cancers), it may
preclude the analysis of more genomically rearranged tumours.

In contrast to some models described in the literature, our method does not in-
clude the number of clones as a parameter. Instead, Cloe must be run for various
choices of K , and the best solution in terms of posterior probability will indi-
cate the number of clones with good accuracy. On our simulation and validation
datasets our model was indeed able to identify the correct number of clones in
58/59 cases.

As shown in the case studies, model selection may not be trivial. We thus recom-
mend manual review of the inferred parameters for various model sizes to ensure
that the results of the inference are robust.

Analysing hundreds of mutations can result in a high computational burden.
This limitation could be alleviated by preprocessing the input data, grouping mu-
tations that exhibit similar dynamics throughout the samples. One way to do this is
via a Chinese Restaurant Process with a product of binomials; mutant read counts
and depths for all mutations in a cluster could then be summed and analysed as a
single unit.

Extensions. We see several avenues for future extensions. At the theoretical
level, future work should focus on optimising the inference and extending this
framework to arbitrary copy numbers. Also, to address the model selection prob-
lem, the phylogenetic latent feature model could be rephrased in a nonparametric
perspective. In terms of applications, our model could also be applied to epige-
netics: by appropriately changing the likelihood function, Cloe could deconvolute
methylation data into evolutionarily related epigenotypes.

In summary, Cloe is a rigorous and flexible framework for clonal deconvolution
of cancer genomes that achieves high accuracy in benchmarking studies and leads
to important insights into tumour evolution in clinical case studies.
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SUPPLEMENTARY MATERIAL

Supplement A: Supplementary information (DOI: 10.1214/16-AOAS986
SUPPA; .pdf). Supplementary text and figures.

http://dx.doi.org/10.1214/16-AOAS986SUPPA
http://dx.doi.org/10.1214/16-AOAS986SUPPA
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Supplement B: Source code of the analyses (DOI: 10.1214/16-AOAS986
SUPPB; .zip). This package contains scripts, data (in the form of matrices of
mutant read counts and depths) analysed in this article and a version of Cloe to
reproduce the findings.
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