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Abstract 

Formulae for the biaxial moduli and their principal values for (hkl) surface orientations of 

single crystal cubic thin films subjected to a state of equibiaxial strain when bonded to an 

isotropic substrate or cubic substrate with which it has a cube-cube orientation relationship are 

given. The assumption is made in this analysis that the single crystal film is thin enough that 

the traction-free surface leads to zero shear stresses throughout the film in suitably chosen 

coordinate systems. Expressions for the shear strains and the out-of-plane normal strain for 

(hkl) orientations are also given. It is shown that the stationary points of the biaxial modulus 

always lie on {hhl} orientations. Formulae for these stationary points are derived. The 

assumption of zero shear stresses throughout the film in suitably chosen coordinate systems 

produces values of the principal biaxial moduli that are in general different from those obtained 

in prior work where the assumption of zero shear strains throughout the film in suitably chosen 

coordinate systems was made. 
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1. Introduction 

A state of equibiaxial strain is developed in thin films during or after the deposition process 

[1,2]. The stresses produced in the film/substrate due to the biaxial state of strain depend upon 

their biaxial moduli. These stresses can lead to curvature and delamination of the film [1,2]. 

Further information on the biaxial modulus of films and coatings can be found in [3] and 

references therein. For many practical applications, the film and the substrate are both 

polycrystalline. Random polycrystals can be assumed to be isotropic and the average elastic 

constants can be used for calculations. Textured or single crystalline films/substrates are also 

of importance and low index orientations such as (001), (111) and (110) are commonly used. 

Films/substrates with high index orientations - (hhl) or (hkl) - offer different combinations of 
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physical properties [4–9] which cannot be obtained from the standard orientations. Single 

crystal silicon wafers with surface orientations such as (310, (511), (531) and (731) are sold 

commercially as substrates [10,11]. For such ‘exotic’ orientations, and even for the more 

common, and more conventional, (001), (111) and (110) substrate orientations, the anisotropy 

of the elastic properties needs to be considered in the calculation of residual stresses from 

curvature measurements [12] and in the design of microelectromechanical systems (MEMS) 

[13]. The biaxial modulus when either the film or the substrate is an (hkl) oriented cubic single 

crystal was derived and analyzed by Knowles [3], assuming that the shear strains were zero in 

suitably chosen coordinate systems. If the film is assumed to be thin, the shear stresses and 

tensile stresses acting normal to the film can also be considered zero throughout the film since 

the normal stresses on the free surfaces are zero. In such a situation, shear strains will exist for 

all (hkl) orientations other than {001}, {111} and {110} [14] and the biaxial modulus is also 

expected to be different from that under the assumption of zero shear strains made in [3]. The 

main objective of the current study is to analyze the expression for the biaxial modulus in cubic 

thin films, assuming zero stresses normal to the film plane. 

The present study is organized as follows. The direction cosine matrix for the 

transformation from the crystal coordinate system to the film coordinate system and equations 

for the stresses and strains, with the assumptions of zero normal stresses and equibiaxial strain 

within the film plane, are given in Section 2. The expressions for the biaxial moduli, principal 

biaxial moduli and the corresponding axes for a (hkl) cubic plane are established in Section 3. 

Calculations of the extreme values of the biaxial moduli are shown in Section 4. The normal 

strain along the thickness direction and the shear strains that result from the assumptions of 

equibiaxial strain and zero normal stresses are given in Section 5. The transition of the biaxial 

modulus from a shear stress free assumption to a shear strain free assumption is discussed in 
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Section 6. The results of the current study are further discussed in Section 7 and the   

conclusions are given in Section 8. 

 

2. Stresses and Strains in Thin Films under Equibiaxial Strains 

For linear elastic solids, Hooke’s law relates the strains ( i ) and stresses ( i ) through [15,16] 

 
i ij j

i ij j

c

s

 

 

=

=
 (1) 

where i and j take all the values from 1–3 and the sum is taken over repeated indices. The 

stiffness and compliance constants are denoted by 
ijc  and 

ijs  respectively. The contracted Voigt 

notation [15,16] is used for the stiffness and compliance constants, and for the stresses and 

strains. 

A right-handed orthonormal system, X, is defined such that the 
3

Xx  axis is along the 

normal to the film plane and the 1

Xx  axis is along the meridional tangent. The meridional 

tangent to the plane (hkl) is the direction of intersection of (hkl) and the meridional plane (i.e., 

the plane containing the directions [hkl] and [001]). Another right-handed orthonormal system, 

F, is defined by rotating the X frame about the 3

Xx  axis by an angle  . By varying   from 

0 360 ,−   the stresses, strains, and elastic properties along each of the directions within the 

film plane can be calculated by transforming them to the F frame. The unit normal to the film 

plane normal can be expressed in terms of the azimuth (θ) and elevation (ϕ) angles with respect 

to the crystal coordinate system. θ is the angle between 1x  and the projection of the film plane 

normal on the 1 2x x−  plane, and ϕ is the angle between the film plane normal and the 3x  axis. 

The direction cosines 1 2 3( , , )n n n  of a plane defined by its normal ( , )   are  
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For all values of  , 0 =   corresponds to the (001) plane. For all the other cubic planes, the 

plane normal ( , )   can be obtained from the Miller indices (hkl) as 

 

1

1

2 2 2

tan

cos

k

h

l

h k l





−

−

 
=  

 

 
=  

+ + 

 (3) 

The assumption that the film is thin implies zero normal stresses which gives 

 
3 4 5 0F F F  = = =  (4) 

Under a state of equibiaxial strain, 
1 2

F F  = = . If the strain state is equibiaxial throughout 

the film plane, 6 0F = . For the most general symmetry of the film plane, Hooke’s law can be 

written in the form 
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. (5) 

The direction cosine matrix for the transformation from the crystal coordinate system to the X 

coordinate system is 

 

cos cos sin cos sin

sin cos 0

cos sin sin sin cos

CXa

    

 

    

− 
 

  = −   
 
 

 (6) 

If the 1

Xx  and 2

Xx  axes are rotated within the film plane by an angle  , the direction cosine 

matrix for the transformation from the X frame to the F frame is  

 

cos sin 0

[ ] sin cos 0

0 0 1

XFa

 

 

 
 

= − 
 
 

 (7) 
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The direction cosine matrix for the overall transformation from the crystal frame to the F frame, 

given by the product of the two matrices, is 

 

 

sin sin cos cos cos cos sin sin cos cos sin cos

sin cos cos cos sin cos cos sin cos sin sin sin .

cos sin sin sin cos

XF CFa a a

           

           

    

   =    

− + + − 
 

= − − −
 
 
 

 (8) 

This has also been described in Ref. [14]. The stiffness and compliance constants transform 

according to the rule for fourth-order tensors as 

 ,F F

ijkl ip jq kr ls pqrs ijkl ip jq kr ls pqrsc a a a a c s a a a a s= =  (9) 

The relationship between transformed stiffness and compliance constants described as fourth-

order tensors and in the contracted Voigt notation can be found in Refs. [3] and [4]. 

 

3. Expression for the Biaxial Modulus and the Principal Biaxial Moduli  

The biaxial modulus (M) along the direction 
1

Fx  on the film plane (i.e., on the (
1 2

F Fx x− ) plane) 

is given by 

 13 3 14 4 15 51
11 12

1

F F F F F FF
F F

F

c c c
M c c

  

 

+ +
= = + +  (10) 

3.1 {hkl} Interface Orientations 

Using Eqs. (8), (9) and (10), M on a general plane in cubic thin films can be expressed as 

 2

{ } 1 2 3sin 2 sinhklM b b b = + +  (11) 

where 

( )( )( )
( )( )

2 2 2

44 1 44 44 2 2 3 2

1

1 2 3 4 5

2 4 52 5 2 4 cos 2 cos 4 sin 2

cos 4 cos 4 cos 4 cos 2

c l c c l l H l l H
b

m H m m m m

  

   

+ + − + − +
=

− + + +
,          (11.a) 

( )

( ) ( )

2

44 1 2

2 6 4 2 2 4 6

1 2 3 4 44 5 6

cos cos 2 sin 4 sin

cos cos sin cos sin sin

c l H l H
b

y y y y c y y

   

     

− −
=

+ + + + +
,          (11.b) 
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( )
( )( )

2 2

44 1 1 2

1 2 3 4 5

3

2 cos 2 6 cos 4 sin 2 sin

cos 4 cos 4 cos 4 cos 2
b

c l H z z H

m H m m m m

   

   

− +

− + + +
=

+
,           (11.c) 

1 11 122 ,l c c= +                   (11.d) 

2 11 12 ,l c c= −                   (11.e) 

( )3 11 12 445 5 2 cos4 ,l c c c= − + +                  (11.f) 

( ) ( )2 3 2

1 11 12 44 44 11 12 44 2 1 24 21 8 4 19 13 ,m c c c c c c c l l l= − + + + +             (11.g) 

( )2 2 2

2 11 12 12 44 44 11 12 442 9 2 13 ,m c c c c c c c c= − + − + − +              (11.h) 

( )2 2 2

3 11 11 12 12 11 12 44 442 5 2 ,m c c c c c c c c= − − + − + +               (11.i) 

2 2 2

4 11 11 12 12 11 44 12 44 442 3 7 2 ,m c c c c c c c c c= + − − − −               (11.j) 

( )( ) 2

5 6 44 12 cos4 sin 2 ,m m H c l  = − +               (11.k) 

( )2 2 2

6 11 12 12 44 44 11 12 442 3 2 7m c c c c c c c c= − + − + − +               (11.l) 

and 

44 12 112H c c c= + −                                             (11.m) 

is the anisotropy parameter defined by Hirth and Lothe [17]. 
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Figure 1 The biaxial modulus on the (234) and (129) planes in (a) Cu, (b) Si, (c) Nb and (d) β-brass. 

The variations of M (in GPa) with the angle ψ from the meridional tangent are shown. The principal 

stress axes on (234) and (129) are marked with blue dotted lines and red dot-dashed lines respectively. 

 

Along the principal stress directions within the film plane, 6 0F = . The principal 

biaxial moduli are also the extrema of { }hklM . The orientations of the principal stress axes are 

obtained by solving either 

 ( )6 16 26 36 3 46 4 56 5 0F F F F F F F F Fc c c c c    = + + + + =  (12) 
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Table 1 The principal stress axes and the corresponding principal biaxial moduli for the (234) and 

(129) planes in Cu, Si, Nb and β-brass 

 (234) 

 
1

  

 

1
M  

(GPa) 

1
  

 

2
  

 

2
M  

(GPa) 

2
  

 

Cu 7.30° 269 [0.3030 0.6835 0.6641]  97.30 204 [0.8777 0.4717 0.0851]  

Si 12.60° 232 [0.2205 0.7242 0.6534]  102.60° 209 [0.9020 0.4065 0.1461]  

Nb 18.58° 137 [0.1254 0.7626 0.6346]  108.58° 160 [0.9200 0.3288 0.2133]  

β-

brass 

1.06° 268 [0.39652 0.6282 0.6694]  91.06° 157 [0.8396 0.5431 0.0124]  

 (129) 

 
1

  

 

1
M  

(GPa) 

1
  

 

2
  

 

2
M  

(GPa) 

2
  

 

Cu –5.05° 134 [0.5111 0.8253 0.2402]  84.95° 121 [0.8527 0.5219 0.0212]  

Si 4.30° 189 [0.3658 0.8991 0.2404]  94.30° 183 [0.9244 0.3810 0.0181]  

Nb 17.07° 204 [0.1523 0.9610 0.2305]  107.07° 218 [0.9824 0.1727 0.0708]  

β-

brass 
–12.97° 70.8 [0.6237 0.7455 0.2350]  77.03° 51.3 [0.7742 0.6306 0.0541]  

 

or equivalently 

 
{ }

0
hklM

=


 (13) 

which gives 
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( )
( )

1 2
1

3

2

44 11 121

2 2 4 2 2 2 2 4

44 11 12

1
tan 2

2

sin 4 cos cos 2 ( )cos1
tan

2 4 sin cos (3cos cos ) 2( ) cos sin cos (1 3cos )

b

b

c c c

c c c



   

       

−

−

 
= −  

 

 − −
 =
 − + − − +
 

                      (14) 

and  

 2 1 90 = +   (15) 

The corresponding principal biaxial moduli are 

 
2

3 2
1 1 2

3

4
1 1

2

b b
M b

b

 
= − − + + 

 
 

 (16) 

 
2

3 2
2 1 2

3

4
1 1

2

b b
M b

b

 
= + + + 

 
 

 (17) 

It is to be noted that both 1M  and 2M  are discontinuous if 2 0b   and 3 0b =  as the 

inverse tangent function (used in Eqs. (14) and (15)) is discontinuous. For planes of the type 

(hhl) and (0kl), 2 0b =  and the principal biaxial moduli given by Eqs. (16) and (17) are 

continuous. Eqs. (16) and (17)  reproduced in terms of the ijs  constants are shown in 

Appendix A. 

The anisotropy of cubic materials is generally quantified using the Zener anisotropy 

ratio, A, defined as 

 
44

11 12

2c
A

c c
=

−
 (18) 

If 1A = , the elastic properties are isotropic. The deviation from 1 indicates the extent of 

anisotropy. 

For general (hkl) planes, we take (234) and (129) as examples. The variation of the 

biaxial moduli within the (234) and (129) planes of copper ( 3.23A = ), silicon ( 1.56A= ), 
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niobium ( 0.50)A =  and β-brass ( 8.50A = ) are shown in Figures 1a–d. The stiffness constants 

obtained by inverting the compliance constants reported in Ref. [18] were used for Cu, Si and 

Nb. For β-brass, the stiffness values were those from Table III of Ref. [19]. The principal stress 

axes and the corresponding principal biaxial moduli are shown in Table 1. It is observed that 

the biaxial moduli and their loci vary with the crystal and the orientation of the film plane under 

consideration. The choice of film plane has a lesser effect on the magnitudes of M in Si and 

Nb, whereas Cu and β-brass exhibit greater extents of anisotropy. As expected from Eq. (14), 

the orientations of the principal stress axes also vary with the material and the orientation of 

the film plane. The principal biaxial moduli are noticeably higher on the (234) plane than on 

the (129) plane for Cu, Si and β-brass, for each of which A > 1, while the reverse is true for Nb, 

for which A < 1. 

3.2 {001} Interface Orientations 

For the {001} orientations, 2 3 0b b= =  in Eq. (11) and the biaxial modulus is given by 

 
2

12
{001} 11 12

11 11 12

2 1c
M c c

c s s
= + − =

+
 (19) 

This result was previously derived in Ref. [12]. M is isotropic in the plane and its value 

does not depend on 44.c  The biaxial moduli on the (001) plane of Cu, Si, Nb, and β-brass are 

shown in Fig. 2a. Nb has the highest {001}M  (234 GPa), followed by Si (179 GPa), 

Cu (115 GPa) and β-brass (52 GPa). 
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Figure 2 The variations of M with ψ on the (a) (001), (b) (111), (c) (012) and (d) (227) planes of Cu, Si, 

Nb and β-brass. The black lines at 0 =   and 90 =   correspond to the principal stress axes. The 

principal stress axes for (012) are [021]  and [001] . For the (227) plane, they are [774]  and [110] . 

 

3.3 {111} Interface Orientations 

Evaluating Eq. (11) using 45 =   and ( )1cos 1/ 3 −=  gives 2 3 0b b= =  which shows that 

the biaxial modulus is isotropic on the {111} planes. The value of M, which was also previously 

reported in Ref. [12], is given by 
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( )11 12 44

{111}

11 12 44 11 12 44

6 2 6

2 4 4 8

c c c
M

c c c s s s

+
= =

+ + + +
 (20) 

The biaxial moduli on the (111) plane of Cu, Si, Nb, and β-brass are shown in Fig. 2b. 

The highest {111}M  is observed on Cu (262 GPa), followed by β-brass (254 GPa), Si (227 GPa) 

and Nb (139 GPa). 

3.4 {0kl} Interface Orientations 

The normals to all the planes of the type (0kl) have their azimuthal angles 90 =  . When 

90 =  , 2 0b =  and 

 

 

Figure 3 The variations of the principal biaxial moduli on planes of the type (0kl) in Cu, Si, Nb and β-

brass as a function of the angle between the plane normal and [001]. 
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44 11 12 11 12
1 2

11 11 44 12 12 44 11 12

2

11 12 11 12
3 2

11 11 44 12 12 44 11 12

8 ( )( 2 )

6 ( +2 ) ( )cos 4

2( )( 2 ) sin 2

6 ( +2 ) ( )cos 4

c c c c c
b

c c c c c c H c c

c c c c H
b

c c c c c c H c c







− +
= −

− − + − +

− +
=
− − + − +

 (21) 

For such planes, Eq. (11) simplifies to 

 2

{0 } 11 13 sinklM b b = +  (22) 

The other planes related to (0kl) by symmetry will also have the same value of M. The 

orientations of the principal axes obtained using Eqs. (14) and (15) are 0 =   and 90  

respectively. The corresponding principal stress directions for a plane of type (0kl) are [0 ]lk  

and [100] . The corresponding principal biaxial moduli, given by Eqs. (16) and (17), are 

 
1 1(0 )[0 ]

2 1 3(0 )[100]

kl l k

kl

M M b

M M b b

= =

= = +
 (23) 

The biaxial moduli on the (012) plane of Cu, Si, Nb, and β-brass are shown in Fig. 2c. 

As expected, the principal stress axes are along 0 =   and 90 . For Cu, Si and β-brass, 

(012)[021]
M is greater than 

(012)[100]
M , while 

(012)[100]
M  is greater for Nb. 

(012)[021]
M  and  

(012)[100]
M  

for Cu, Si, Nb and β-brass are 185 and 145 GPa, 213 and 189 GPa, 158 and 207 GPa, and 110 

and 79 GPa respectively. 

The principal biaxial moduli of Cu, Si, Nb and β-brass as a function of ϕ, the angle 

between the plane normal and [001] are shown in Figs. 3a–d. 0 =  , 45  and 90  correspond 

to the (001), (011) and (010) planes, respectively. Both the principal moduli show a similar 

change as   is varied. The plots are symmetric around 45 =   as (011) is a mirror plane. The 

maximum difference between the principal biaxial moduli is observed on (011) for all the four 

materials. The crests are observed at 45  for Cu, Si and β-brass (materials with A > 1), while 

Nb (A < 1) has a depression at 45 . The difference between the principal biaxial moduli on the 

(011) and the (001) planes can be estimated using Eqs. (16), (17) and (19): 
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( )

( )( )

( )

11 12
(001) 12(011)[011]

11 11 12 44

11 12 11 12

(001)(011)[100]

11 11 12 44

2

2

2

2

c c
M M c H

c c c c

c c c c
M M H

c c c c

 +
− =   + + 

+ +
− =

+ +

 (24) 

The thermodynamic stability of cubic crystals [15] requires that 44 0,c 
11 12 ,c c  and 

11 122 0.c c+   Therefore, the fractions enclosed in parentheses in both the equations are always 

positive. 
(001)(011)[100]

M M−  will have the same sign as H. The sign of 
(001)(011)[011]

M M−  depends 

on the sign of the product 12c H . For a vast majority of real cubic crystals, 12c  is positive and 

hence the sign of the product depends on that of H. Based on the stiffness values reported in 

Ref. [18], the 12c  of barium is –0.38 GPa and H is 12 GPa. Therefore, 
(001)M  of Ba is greater 

than 
(011)[011]

M  but lower than 
(011)[100]

M . UBe13, GeTe-SnTe with 20 mol% GeTe, Sm1-xYxS 

(x = 0.3, 0.25, 0.42 and 0.424) and SmB6 are other cubic crystals with a negative 12c .  

3.5 {hhl} Interface Orientations 

For the planes of the type (hhl), 45 =   and Eq. (11) is again of the form  

 2

{ } 1 3 sinhhlM b b = +  (25) 

where 

 

( )( )

( )( ) ( ) ( )( )

( )( )

( )( ) ( ) ( )( )

44 11 12 11 12 44

1

12 44 12 44 11 11 12 44 44 11 12 44

2

44 11 12

3

12 44 12 44 11 11 12 44 44 11 12 44

4 2 3 3 2 cos 2

2 3 2 11 4 cos 2 2 cos 4

4 2 1 3cos 2 sin

2 3 2 11 4 cos 2 2 cos 4

c c c c c c H
b

c c c c c c c c H c c c c

c H c c
b

c c c c c c c c H c c c c



 

 

 

+ − + −
= −

− + − + + − − + + +

+ +
=

− + − + + − − + + +

  (26) 

As for {0kl} planes, the principal stress axes are along 0 =   and 90 . The 

corresponding principal biaxial moduli are 

 
1 1( )[ 2 ]

2 1 3( )[110]

hhl ll h

hhl

M M b

M M b b

= =

= = +
 (27) 
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Figure 4 The variation of the principal biaxial moduli on planes of the type (hhl) in Cu, Si, Nb and β-

brass as a function of the angle between the plane normal and [001]. 

The biaxial moduli on the (227) plane of Cu, Si, Nb, and β-brass are shown in Fig. 2d. 

The principal stress axes are along 0 =   and 90 . 
(227)[774]

M  and 
(227)[110]

M  for Cu, Si, Nb 

and β-brass are 165 and 130 GPa, 201 and 189 GPa, 182 and 192 GPa, and 110 and 50 GPa 

respectively. 

The principal biaxial moduli of Cu, Si, Nb, and β-brass on (hhl) planes as a function of 

  are shown in Figs. 4a-d. In all cubic materials, 
( )[ 2 ]hhl ll h

M  and 
( )[110]hhl

M  coincide at 54.74  

1(i.e., cos (1/ 3))− . This corresponds to the (111) plane where M is isotropic. 

It is shown in Appendix B that the global extrema of the biaxial modulus always lie on 

planes of the type {hhl}. Further analysis of the principal biaxial moduli on planes of the type 

{hhl} is shown in Section 4. 
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4. Global Extrema of the Biaxial Modulus 

The principal biaxial moduli (Eqs. (16) and (17)) give the extrema of the biaxial moduli on 

each plane. The stationary points of the principal biaxial moduli are examined to obtain the 

global extrema. The stationary points of M can be obtained by solving 

 1 20
M M

   

     
= =   

      
 (28) 

In Appendix C, it is shown that the only stationary points of the type {0kl} are {001}, 

{011} and {010}. As these planes are also of the type {hhl} in cubic crystals, the stationary 

points on (hhl) planes alone are considered here. 

For (hhl) planes, 45 =  , substituting this in Eq. (16) gives 

 1

44

8 cos 2 3 cos 4

4 cos 2 cos 4

b H H
M a

c c H d

 

 

+ −
=

− +
 (29) 

where 

44 11 12( 2 ),a c c c= − +   (29.a) 

4411 32 ,b H c= −   (29.b)

2

11 12 44 12 44 11 12 44(2 3 )( 2 ) ( 11 ),c c c c c c c c c= − − + + +  (29.c) 

and  

11 12 44( 2 ) .d c c c H= + +   (29.d) 

The stationary values obtained by solving 1 / 0dM d = are 

1. 0 =  , the {001} planes, 

2. 90 =   , the {110} planes, and 

3. the solutions to the biquadratic equation 

 
2 4cos cos 0p q r + + =  (30) 

where 
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2

11 12 11 12 44 4464( 2 )( 3 2 ) ,p c c c c c c H= + − +                         (30.a)

2

11 12 11 12 44 44128( 2 )( 5 2 ) ,q c c c c c c H= + + −                                                (30.b) 

and 

2

11 12 11 12 44 4464( 2 )(2 4 ) .r c c c c c c H= − + + −                          (30.c) 

Therefore, the solutions will be real when 

 
2 4

0 1.
2

q q pr

r

−  −
   (31) 

The stationary points of 1M  (on planes other than {001} and {110}) will be on (hhl) planes 

inclined to the (001) plane by angles of 

 

2

1

11

2

1

12

4
cos

2

4
cos .

2

q q pr

r

q q pr

r





−

−

 
− + − =

 
 

 
− − − =

 
 

 (32) 

Substituting 45 =   in Eq. (17) gives 

 2

44

cos 2

4 cos 2 cos 4

h H
M g

c c H d

−
=

− +



 
 (33) 

where 

4 ,g a= −                              (33.a) 

and 

448 3 .h c H= −                   (33.b) 

The stationary values obtained by solving 2 / 0dM d =  are 

1. 0 =  , the {001} planes, 

2. 90 =  , the {110} planes, and 

3. the solutions to the biquadratic equation 
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 2 4cos cos 0u v w+ + =   (34) 

where 

2 2 2

11 12 11 12 12 44 44 11 12 44 4464( 2 )( 2 2 ( 3 )) ,u c c c c c c c c c c c H= − + − + + + +            (34.a) 

11 12 11 12 44 44 44128( 2 )( 2 )(4 ) ,v c c c c c c H c H= + + + −              (34.b) 

and 

2

11 12 11 12 44 4464( 2 )( 2 ) .w c c c c c c H= − + + +                (34.c) 

For the solutions to Eq. (34) to be real, they must satisfy both the inequalities 

 

2 4
0 1

2

v v uw

w

− + −
   (35) 

 

2 4
0 1

2

v v uw

w

− − −
   (36) 

After simplification, it turns out that the necessary and sufficient conditions required to satisfy 

Eqs. (35) and (36) are 0H   and 0H   respectively. Therefore, the principal biaxial modulus 

2M  will always have one stationary point other than the ones on {001} and {110} at 

 

2
1

21

2
1

22

4
cos ,  if 0

2

4
cos ,  if 0

2

v v uw
H

w

v v uw
H

w





−

−

 
− + − = 

 
 

 
− − − = 

 
 

 (37) 

In short, the principal biaxial moduli of an anisotropic (with 0H  ) cubic thin film will 

have stationary points on at least three distinct planes: {001}, {110} and {hhl} inclined to (001) 

by either 21  or 22  depending upon the sign of H. A maximum of two more planes with 

stationary points may be present based on the two conditions in Eq. (31). The global extrema 

are to be selected from the stationary points. The stationary points, global extrema and the 

corresponding orientations of a few cubic materials are shown in Table 2.  
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Table 2 Stationary points of the biaxial moduli in Cu, Si, Nb and Li. The global maxima are shown in 

bold, and the minima are underlined. The normals to the planes with the stationary points are of the 

form , ),( 45 ij =  where ij  are given by Eqs. (32) and (37). The stiffness values were obtained by 

inverting the compliance constants reported in Ref. [18]. 

Material Cu Si Nb Li 

H (GPa) 103 56 –56 17 

{001}
M (GPa) 115 179 234 5.85 

1 {110}
M (GPa) 282 238 133 31.9 

2 {110}
M (GPa) 185 196 199 17.8 

1 11
( )M  (GPa) 283 - - 31.9 

1 12
( )M  (GPa) - - 133 5.36 

2 21
( )M  (GPa) 274 231 - 31.0 

2 22
( )M  (GPa) - - 137 - 

11
  78.47° - - 82.35° 

12
  - - 76.89° 18.08° 

21
  47.30° 46.60° - 46.16° 

22
  - - 49.10° - 
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5. Expressions for the Strains ,
3 4 5

  and 
F F F    

The third, fourth and fifth lines of Eq. (5) are solved to obtain 
3

F , 
4

F  and 
5

F . The out-of-

plane strain is given by 

 
31

3

3

F e

e
 = , (38) 

where 

2 2 2

11 11 12 11 44 12 12 44 44

2 2 2

11 11 12 11 44 12 12 44 44

2 2 2 2

11 11 12 44 11 12 11 44 12 12 44 44

31 ( ( (cos 4 (cos 4 ( 2 2 7 4 13 2 )

2 2 4 11 2 )

2sin 2 cos 2 (2 cos 4 (2 4 ) 2 3 4 17 2 )

cos (

1

12

4 2

8
H c c c c c c c c c

c c c c c c c c c

c H c c c c c c c c c c c

c

e  

  



− − − + + + −

+ + + − + +

+ + + − + + − +

+

=

+

2 2 2

11 11 12 11 44 12 12 44 44

2 2 3

44 11 12 44 11 12 11 12 11 12 11 12 44

2 9 4 35 2 )))

8 (4 17 ) ( )(13 51 ) 2( ) ( 2 ) 4 )

c c c c c c c c

c c c c c c c c c c c c c

+ + − + +

+ − − − + − − + +

 

  (38.a) 

and 

2 6 2 4 2

11 44 44 11 11 44 12 12 44

2 2 3

11 12 11 12 11 11 12 44 11 12 44 44

2 2 2 4

11 11 12 12 44

2

44 11 11 44 12 12 44

3

11

cos ( ( 2 ))cos sin

1
(( ) ( 2 ) 6 ( ) 6( ) 4

8

( 2( ) ) cos 4 )cos sin

1
( 6 ( 2 ) (

8

c

e c c c c c c c c c

c c c c c c c c c c c

c c c c c H

c c c c c c c c





 

 

+ + − +

+ − + + − + − +

+ + − +

+ + − + +

=

+ 6

12 .) cos 4 )sinc H  

 (38.b) 

Since both 31e  and 3e  are independent of  , 
3

F  for a given film plane depends only 

on the magnitude of the equibiaxial strain,  . For a state of equibiaxial strain on planes of the 

type (0kl) and (hhl) in Cu and Nb, the resulting 
3

F  (in terms of  ) are plotted against   in 

Figs. 5a and b, respectively. The values of 
3 /F   on (0kl) type planes are symmetric about 

(011) when the film plane is varied from (001) to (011). This is expected as (011) is a mirror 

plane. Cu has a peak while Nb has a depression at (011). For the (hhl) type planes, Cu has a 

peak at (111), whereas Nb has a depression. The stationary points for both Cu and Nb are at 

{001}, {111} and {110}. The maximum (most negative) values of 
3 /F   for both Cu and Nb 
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are approximately –1.45. However, the maximum for Cu is on {001}, and that for Nb is on 

{111}. The minimum (least negative) values for Cu and Nb are –0.74 on {111} and –1.07 on 

{001} respectively. 

The shear strains 
4

F  and 
5

F  are 

 1 2
4

3

cos sinF e e

e

 
 

+
=  (39) 

 1 2
5

3

sin cosF e e

e

 
 

−
=  (40) 

where 

 3

11 12 11 11 2( 2 )( cos 2 )sin 4 sin ,
8

e
H

c c c c H   = + − −  (41) 

and 

2

2 11 12 44 44 442 .( 2 )((8 3 cos 4 )sin 2 (14 (2 )cos 4 4s )in )sin
64

H
e c c c H H c H c H   = + + + + − +− +

  (42) 

 

Figure 5 The out-of-plane normal strain 
3

F  (in terms of the in-plane equibiaxial strain 
1

F ) in (a) Cu 

and (b) Nb on planes of the type (hhl) and (0kl) plotted against the angle between the plane and (001). 

 

The shear strains 4

F  and 5

F  are dependent on ψ. The strains 
3

F , 
4

F  and 
5

F  (in units 

of )  calculated for different planes in Cu are shown in Figs. 6a–d. As expected, the normal 

strain 
3

F  is a constant within the plane, and the shear strains 
4

F  and 
5

F  vary sinusoidally 
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with a phase difference of 90° between them. The shear strains have their extreme values along 

the principal stress directions on the {0kl} and {hhl} type planes. On a general (hkl) type plane, 

the orientations of the extrema depend upon the stiffness constants. The shear strains in Nb are 

lower than those in Cu on all the three planes considered here. The normal strains are higher 

for Nb on the (231) and (012) planes while they are approximately equal on the (227) plane. 

 

 

Figure 6 The variations of the strains 
3 4 5

,   and F F F
    per unit   within the: (231), (012) and (227) 

planes of (a–c) Cu, and (d–f) Nb. The principal stress axes are indicated with vertical dashed lines. 
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5.1 Planes without Shear Strains 

Both the shear strains will vanish only when 1 2 0e e= =  in Eqs. (41) and (42). The following 

solutions are obtained:  

1. { 0 , 0 , 90 ,180 } =  =      and { 90 ,  90 } =   =   , which are the {100} planes. 

2. ( )1{ 45 ,  cos 1/ 3 }  −=   =  , the {111} planes. 

3. { 45 ,  90 } =   =   , { 0 ,  45 } =  =    and { 90 ,  45 } =   =   . These are the 

{110} planes. 

There are two more sets of solutions to 1 2 0e e= =  which are dependent on the 
ijc  values. 

However, the solutions do not have real values if the criteria for the thermodynamic stability 

of cubic crystals are satisfied. Therefore, under a state of equibiaxial strain in the film plane, 

only the {100}, {111} and {110} planes can have zero shear strains in cubic thin films. 

 

6. Comparison of the Biaxial Moduli under the Assumptions of Zero Shear Strains and 

Zero Normal Stresses 

The biaxial modulus ( σM ) subjected to an equibiaxial strain under the assumption of zero shear 

strains in the film was studied by Knowles [3]. σM  is given by Eq. (5) of  [3]: 

 13 23
11 12 13

33

.
F F

F F F

σ F

c c
M c c c

c

 +
= + −  

 
 (43) 

Under such conditions, internal residual shear stresses are present on all planes other than 

{001}, {111} and {110}. In the current study, where it is assumed that the shear stresses normal 

to the film are zero, the same planes are found to have zero shear strains. Therefore, the 

expression for the biaxial modulus subjected to an equibiaxial strain using the thin-film 

assumption (zero shear stresses normal to the film plane) shown in Eq. (10) of the present study 

reduces to Eq. (5) of Ref. [3] for the {110}, {001} and {111} planes.  
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For planes other than {110}, {001} and {111}, it is important to assess the 

consequences of the initial assumptions of the states of stresses and strains in the film on the 

biaxial modulus. The principal biaxial moduli on the planes of type (0kl) and (hhl) subjected 

to equibiaxial strain are calculated by varying the boundary conditions from a shear stress-free 

state to a shear strain-free state. For (0kl) and (hhl) interfaces, we have the general boundary 

conditions 

 

1 2

6

3

6

0

0

0

F F

F

F

F

ε ε ε

ε

σ

σ

= =

=

=

=

 (44) 

and we can have either 
4 0F =  and 

5 0F = for traction-free conditions or 
4 0F =  and 

5 0F =  

for conditions where there are internal residual shear stresses. 

For (0kl) interfaces, 90 =   and since one of the principal stress axes is along 90 , =   

we have, in general, the matrix equation 

 

11 12 13 151

12 22 232

313 23 33 35

44

515 35 555

66

0 0

0 0 0

0 00

00 0 0 0 00

0 0 0

00 0 0 0 00

F F F FF

F F FF

FF F F F

F

FF F FF

F

c c c c

c c c

c c c c

c

c c c

c









    
    
    
    

=     
    
    
        

    

 (45) 

where terms calculated or required to be zero are shown. 

For (hhl) interfaces, with 45 =   and a principal stress axis along 0 =  , we have 

in general the matrix equation 
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11 12 13 151

12 22 23 252

313 23 33 35

44 46

515 25 35 555

46 66

0 0

0 0

0 00

00 0 0 00

0 0

00 0 0 00

F F F FF

F F F FF

FF F F F

F F

FF F F FF

F F

c c c c

c c c c

c c c c

c c

c c c c

c c









    
    
    
    

=     
    
    
        

    

 (46) 

where the terms calculated or required to be zero are shown. 

The fourth and sixth rows of Eqs. (45) and (46) are clearly satisfied as equations. The 

third and fifth rows can be rearranged in the most general form 

 13 2333 35 3

15 25 535 55 5

( )

( )

F FF F F

F F FF F F

c cc c

c cc c



 

    − +
=      − + +    

 (47) 

and so  

 13 233 55 35

15 25 55 35 33

( )1

( )det

F FF F F

F F FF F F

c cc c

c cc c



 

     − +−
=      − + +−    

 (48) 

where 

 ( )
2

33 55 35det F F Fc c c= −  (49) 

If we define the strains ( )3 0

F  and ( )5 0

F  as the strains which arise when 
5 0F = , we have: 

 

( )

( )

5

5

13 23 55 15 25 35
3 0

13 23 35 15 25 33
5 0

( ) ( )

det

( ) ( )

det

F

F

F F F F F F
F

F F F F F F
F

c c c c c c

c c c c c c





 

 

=

=

 − + + +
=  
 

 + − +
=  
 

 (50) 

If the shear strain 
5 0F = , we have from the third line of Eq. (45) (as well as Eq. (46)) 

 13 23
3

33

F F
F

F

c c

c
 

 +
= − 

 
. (51) 

The shear stress ( )5 0

F  at which 
5 0F =  is 
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( )

( )

35 13 23
5 15 25 35 3 15 250

33

5 0
33

( )

det
.

F F F
F F F F F F F

F

F

F

c c c
c c c c c

c

c

    



 +
= + + = + − 

 

= −

 (52) 

If we assume that the level of residual shear stress in the film is a fraction α of that at which

5 0F = , 

 ( ) ( )5 5 50 0
33

detF F F

Fc
    = = −  with 0 1  . (53) 

whence in Eq. (45), 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 5 3 53 0 35 0 0 35 0

33

5 5 5 5 55 0 33 0 0 33 0 0

33

det

(1 )
det

F F F FF F F

F

F F F F FF F F

F

c c

c

c c

c

    


    

     
 

     

= −  +

= +  −  −

 (54) 

Since 
4 6 0F F = = , we then have for both {hhl} and {0kl} interfaces, 

 
1 11 12 13 3 15 5 .F F F F F F Fc c c c    = + + +  (55) 

Now, from Eqs. (54) and (55),  

 
( ) ( )

1
1 11 12 13 3 15 5

3 50 35 13 0
11 12 13 15

33

(1 )

F
F F F F F F

F FF F
F F F F

F

M c c c c

c c
c c c c

c


   



 
 

 

= = + + +

 
= + + + + − 

 

 (56) 

so that as we alter α from zero (traction-free boundary conditions) to one (zero residual shear 

strains boundary conditions), 1M  is a linear function of α. 

For {0kl} planes, the second line of Eq. (45) gives 

 
2 12 22 23 3

F F F F Fc c c   = + +  (57) 

and for {hhl} planes, from the second line of Eq. (46), we have 
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2 12 22 23 3 25 5

F F F F F F Fc c c c    = + + + . (58) 

Therefore, in general, for {hhl} and {0kl} planes, 

 
( ) ( )3 50 35 23 02

2 12 22 23 25

33

(1 )

F FF FF
F F F F

F

c c
M c c c c

c

 
 

  

 
= = + + + + − 

 
. (59) 

and so 2M  is also a linear function of α.  

The magnitudes of the principal biaxial moduli on the (012) planes of Cu and Nb with 

a transition from residual shear stress free to residual shear strain free boundary conditions are 

shown in Fig. 7. 

 

Figure 7 The principal biaxial modulus M1 plotted against α for the (012) planes of Cu and Nb. 

 

7. Discussion  

The expressions for the biaxial moduli of cubic thin films along directions that lie on a general 

(hkl) plane have been derived. For a given film material, the magnitude of M depends on the 

direction considered as well as the orientation of the film plane. On the {111} and {001} planes, 

M is independent of the direction within the plane. Expressions for the principal stress 

directions on planes other than {111} and {001} are obtained by equating either the shear stress 
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6

F  or /M    to zero. The corresponding values of the principal biaxial moduli are the 

extrema on the given plane. The principal axes always lie along 0 =   and 90  for planes of 

the type {0kl} and {hhl}. 

The stationary points of the biaxial modulus are found to lie on planes of the type {hhl}. 

The global extrema are determined from the stationary values of the two principal biaxial 

moduli. Both 1M  and 2M  have stationary values on {110} and 1 2M M=  on {001}. 1M  can 

have a maximum of two more stationary values depending upon the number of real solutions 

to Eqs. (30) and (32). Additionally, 2M  will always have exactly one stationary value on a 

plane of type {hhl} given by Eq. (37). In total, cubic thin films can have a minimum of four 

and a maximum of six (symmetry-wise distinct) stationary points. The global extrema of 90 

cubic materials have been calculated using Eq. (38) for 90 cubic materials using the values of 

the elastic constants reported in Refs. [6], [7] and [9]. Out of the 90 cubic materials 

investigated, the global extrema for most of the known cubic materials are on {001} and {110}, 

and both the extrema are found to lie on planes other than {001} and {110} in ten materials. 

When the thin film assumption is made, the stresses that act normal to the film plane 

are zero. The expression for the out-of-plane normal strain 
3

F  generated under a state of 

equibiaxial strain in the film plane is derived (Eq. (38)). In each of the 90 cubic materials 

investigated, based on the compliance values reported in Refs. [18],  [19] and  [20], the 

stationary points are observed on {001}, {111} and {110} planes. In addition, the extrema 

always appeared on the {111} and {001} planes. Except for Ba, 
3 /F   is negative for all the 

investigated materials. This implies that a normal compressive strain is produced in almost all 

cubic materials when the in-plane equibiaxial strain is tensile in nature and vice versa. 

Magnitudes greater than unity are observed in 61 out of the 90 materials considered here. This 

means that the normal strains generated are often greater in magnitude than the in-plane strain. 
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The expressions derived for the shear strains 
4

F  and 
5

F  are shown in Eqs. (39) and 

(40). As both shear strains are functions of  , their magnitudes depend on the direction of 

measurement within the film plane. The thin film assumption of zero normal stresses results in 

out-of-plane shear strains for all orientations of the film plane except {001}, {111} and {110}. 

Therefore, the expression for the biaxial modulus differs from that derived by Knowles [3] 

under the assumption of zero shear strains. The high magnitudes of elastic strains predicted by 

calculations are not likely to be observed experimentally as they will be relaxed plastically. 

An important aspect that has not been considered in the calculated quantities is the 

uncertainty. The results calculated in this study are the biaxial moduli, its principal values and 

the corresponding orientations, stationary values and global extrema and the strains 
3

F , 
4

F   and 

5

F . As they are all based on the reported values of stiffness/compliance constants, the 

propagation of the errors in the elastic constants to the calculated values are considered in detail 

in Appendix D. 

The fraction of surface atoms with broken bonds relative to the atoms in the bulk 

increases with a decrease in film thickness. For extremely thin films, it is known that the 

relaxation of the surfaces atoms and the redistribution of charges cause changes to the crystal 

structure and the elastic properties [21,22]. However, in the current study, the surface effects 

have not been considered and the results here are more relevant for films with thicknesses in 

the micrometre range than for those with nanometre thicknesses 

 

8. Conclusions 

The assumption of zero normal stresses on the film plane results in shear strains acting normal 

to the film plane. The biaxial moduli of a given cubic film subjected to an equibiaxial strain for 

general {0kl}, {hhl} and {hkl} interface orientations are found to be influenced by such 

boundary conditions as well. The planes on which global extrema of M occur using the 
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boundary conditions assumed in Ref. [3] and the current study are found to be different, 

although the extrema in both the cases occur on planes of the type {hhl}. Likewise, the values 

of the principal biaxial moduli and the principal stress directions also depend on the assumed 

boundary conditions. 
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Appendix A 

Formulae for the Principal Biaxial Moduli in a Plane (hkl) in Terms of 
ij

s  

When the 
1

Fx  and 
2

Fx  axes are oriented along the principal axes under a state of equibiaxial strain 

and traction-free boundary conditions, the strains in the film are 

 

11 12 13 14 15 16

12 22 23 24 25 26

3 13 23 33 34 35 36

4 14 24 34 44 45 46

5 15 25 35 45 55 56

16 26 36 46 56 66
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 (A.1) 

where F

ijs  are the contracted Voigt notations [15,16] for the F

ijkls  given by Eq. (9) and the 

orientations of the principal axes are the solutions to the equation 

 
( )

( )

2

11 12 44

2 2 4 2 2 2 2 4

11 12 44

sin 4 cos ( )cos 2 cos
tan 2

4( )sin cos (3cos cos ) 2 cos sin cos (1 3cos )
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− −
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− − + − +

  

 




    
. 

  (A.2) 

The principal biaxial moduli are given by 
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 11 12 1 2 3 4 522 12
1 2 2 2 2

11 22 12 11 12 1 11 2 12 3

( sin 4 cos 4 ) ( sin 2 cos 2 )

( )

F F
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s s n n n J n n Js s
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  (A.3) 

and 

 11 12 1 2 3 4 511 12
2 2 2 2 2
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F F
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  (A.4) 

where 

44
11 12

2

s
J s s= − −   (A.4.a) 

is the anisotropy parameter defined by Hirth and Lothe [17], 
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Principal moduli on (0kl) planes 

Substituting 90 =   in Eqs. (A.3) and (A.4), we get 
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Principal moduli on (hhl) planes 

Substituting 45 =   in Eqs. (A.3) and (A.4), we get 
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11 12 11 12

(1 cos )
2

1 3
2cos cos cos (cos cos )

2 2

J
s s

M

s s s J s J J

− − +

=
 

− − + − − + − 
 



    

 (A.7) 
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Appendix B 

Stationary Points of the Principal Biaxial Moduli 

The two principal moduli within a plane are defined by the equations 

 1 22 12
1 2

11 22 12( )

F F F

F F F

s s
M

s s s





−
= =

−
 (B.1) 

and 

 2 11 12
2 2

11 22 12( )

F F F

F F F

s s
M

s s s





−
= =

−
 (B.2) 

Following the formalism used in Appendix B of Ref. [3] which makes extensive use of the 

analysis of Ref. [23], the conditions under which 1M  and 2M   have stationary values can be 

specified. 

The condition derived by Norris [23] for a stationary value to be obtained of an 

engineering modulus f for a triclinic material is that a vector 
)( f

d  = 0 at a stationary point of f 
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for a suitable vector )( f
d independent of the three-dimensional vector 

1 1 2 2 3 3

F F Fq q q= + +q e e e , 

defined in the formalism here relative to the orthonormal set of axes 
1

Fx , 
2

Fx  and 
3

Fx , in which 

the unit vectors along these three axes are 
1

F
e , 

2

F
e  and 

3

F
e , respectively, about which the rotation 

takes place. This then leads to three conditions for stationary values of f, one from each 

component of )( f
d along the axes 

1

Fx , 
2

Fx  and 
3

Fx  respectively. The analysis requires 

differentiation of f with respect to   for a general q, evaluated at 0 =  ; this in turn requires 

differentiation of the F

ijs  in Eq. (5) with respect to   for a general q, also evaluated at 0 = 

. 

The vector 
)( f

d  is defined by the condition 

 ( )( )
.ff




= 



q
d q  (B.3) 

It follows from Section 3 of Ref. [23], that 
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 (B.4) 

where the F

ijs  are the values at 0 =  , i.e., the values with respect to the 
1

Fx , 
2

Fx  and 
3

Fx  

orthonormal set of axes. 

Differentiating 1M  and 2M  with respect to the F

ijs , we have 
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and 
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Hence, it follows that 
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The three conditions for the stationary values of 1M  and 2M  are that each of the coefficients 

of 
1

F
e , 

2

F
e  and 

3

F
e  in equations (B.7) and (B.8) respectively are zero. 

The coefficients of 
3

F
e  

These coefficients are of particular interest. In equation (13), the condition that this coefficient 

is zero becomes for 1M  the condition: 
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  (B.9) 

The sixth row of Eq. (A.1) gives 

 
22 16 11 26 12 16 26( ) 0F F F F F F Fs s s s s s s+ − + = . (B.10) 

From the first two rows in Eq. (A.1), we have: 
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Hence, the sixth row of Eq. (A.1) reduces to the condition 

 ( ) ( )2 2 2

22 12 16 11 12 11 22 12 22 12 26( ) ( ) ( ) 0F F F F F F F F F F Fs s s s s s s s s s s− + + − − = . (B.12) 

Using Eq. (B.12) in Eq. (B.9) gives 
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which has the two solutions 

 (i) 
11 22

F Fs s=    and (ii) 
12 26 22 16

F F F Fs s s s=  (B.14) 

The first of these conditions is satisfied when the film plane is parallel to the {001} and {111} 

planes. 
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Making use of equation (B.10) and since 2

11 22 12( ) 0F F Fs s s−   as a consequence of the 

Born stability criteria, the second condition becomes 

 
16 26 0F Fs s= =  (B.15) 

This single condition precludes general (hkl) interfaces as being locations of stationary values 

of 1M  because it is evident from the algebra defining principal axes for the biaxial moduli that 

for such interfaces 
16 0Fs   and 

26 0Fs  . This then leaves {0kl} and {hhl} interfaces as the only 

locations of stationary values of 1M . 

In Eq. (B.8), the condition that this coefficient is zero becomes for 2M  the condition: 
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Using Eq. (B.12), Eq. (B.16) simplifies to: 

 

( )
( )11 22

12 16 11 262
2

11 22 12

0
( )

F F
F F F F

F F F

s s
s s s s

s s s

−
− =

−
 (B.17) 

which has the two solutions 

 (i) 
11 22

F Fs s=  and (ii) 
12 16 11 26

F F F Fs s s s=  (B.18) 

As for 1M , the first of these conditions is satisfied for 2M  for the {001} and {111} planes. 

Making use of Eq. (B.12), the second condition again becomes 

 
16 26 0.F Fs s= =  (B.19) 

It can be shown that the coefficients of 
1

F
e  and 

2

F
e  in Eqs. (B.7) and (B.8) are also zero for 

planes of the type {hhl} and {0kl} confirming that the stationary points, and hence, the global 

extrema of the biaxial modulus, lie only along such interfaces. 
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Appendix C 

Stationary Points of the Principal Biaxial Moduli on (0kl) Planes 

The principal biaxial moduli on (0kl) planes given by Eq. (22) are 
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The stationary points of 1M  are the solutions to 
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As the Born stability criteria requires 11 0,c   
11 12c c , 11 12( 2 ) 0c c+   and 44 0c  , 

the only solutions other than the case of complete isotropy ( 0H = ) are 0 =  , 45  and 90  

which correspond to the planes (001), (011) and (010) respectively. 

Similarly, the stationary points of 2M  are the solutions to  
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+
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 (C.3) 

which are again 0 =  , 45  and 90 . The other solutions 12 0c =  and 0H =  will mean that 

2M  is the same on all (0kl) planes. In Appendix B, it is shown that the stationary points of the 

principal biaxial moduli are always on (hhl) and (0kl) planes, which are now further restricted 

to lie only on planes of the type (hhl). 
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Appendix D 

Uncertainty in the Calculated Values of the Biaxial Moduli 

Compliance constants (
ijs ) reported in Ref. [18] are inverted to obtain the stiffness constants 

( )ijc .  

For cubic materials, 
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The most probable error in the calculation of stiffness constants is 
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Similarly, the most probable errors in the values of the principal biaxial moduli are given by 
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where Mi are given by Eqs. (16) and (17). 

Example: Copper 

The compliances (in 1(TPa)− ) of copper reported in Ref. [18] are 11 15.0,s =  12 6.3s = −  and 

44 13.3s = . The reported standard deviations of 
ijs  are 1

11( ) 0.2 (TPa)s −=  , 

1

12( ) 0.06 (TPa)s −=   and 1

44( ) 0.09 (TPa)s −=  . The standard errors are obtained by 

dividing by n , where n  is the number of datasets: 

 
( )ij

ij

s
s

n


 = . (D.4) 

For the reported values of Cu, 10n = , and using Eq. (D.2), we have 
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11 4 GPa,c =   

12 4 GPa,c =    

and 

44 0.2 GPac =  . 

The calculated principal biaxial moduli and the estimated errors on different planes in Cu 

obtained from Eq. (D.3) are  

{001} 110 12 GPaM =  , 

{111} 262 3 GPaM =  ,  

and 

1 185 5 GPaM =    and 2 282 3 GPaM =   on (110). 

The stationary values of the biaxial modulus of Cu are 114.94, 282.36, 185.26 and 282.59 and 

273.47 GPa. Assuming that the uncertainty is 5 GPa  for each of these, the global maximum 

cannot be ascertained since 282.36 and 282.59 are both 282 5 GPa . Based on the ijs  values 

reported in Ref. [18], the global minimum is 110 12 GPa on {001} and the global maximum 

is 282 5 GPa  which is either 
(110)[0 ]l k

M  or M  along 0 =   on {hhl} with 78.47 =  . 

Uncertainty in the M values calculated using the reported values of cij and standard 

deviations 

For copper the 
ijc  values reported in Ref. [18] are 

11 169 GPa,c =  

12 122 GPa,c =  

44 75.3 GPa.c =  

The reported standard deviations are 

11( ) 1.5 GPa,c =   
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12( ) 1.8 GPa,c =   

44( ) 0.6 GPa.c =   

Substituting these values in Eq. (D.4) with 10n =  gives the standard errors, which can now 

be used in Eq. (D.3) to get 

{001} 115 2 GPaM =  , 

{111} 261 2 GPaM =  , 

1{110} 185 0.6 GPa,M =   

and 

2{110} 282 0.6 GPa.M =   

The errors are almost an order of magnitude lower than that when the 
ijs  were used. Still the 

locations of the global maximum of the biaxial modulus of Cu cannot be ascertained. Therefore 

the locations of the global maximum and minimum of Cu will require more accurate 

measurements of the elastic constants. 

Similarly, the values of all the quantities (biaxial moduli, orientation of principal stress 

axes, and the strains 
3

F ,
4

F  and 
5

F ) calculated using the equations derived in this study will 

have errors that depend on the uncertainty in the determination of the elastic constants. The 

uncertainty in the results also depends on the orientation of the interface. The specific example 

of Cu shows that the location of the maximum biaxial modulus cannot be ascertained. The 

analysis also shows that the errors in the results obtained using the 
ijc  formalism is lower when 

the reported 
ijc  values are used. The inversion of the reported 

ijs  matrix to obtain the 
ijc  values 

increases the uncertainty of the final results. 
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List of Figure Captions 

 

Figure 1 The biaxial modulus on the (234) and (129) planes in (a) Cu, (b) Si, (c) Nb and (d) β-

brass. The variations of M (in GPa) with the angle ψ from the meridional tangent are shown. 

The principal stress axes on (234) and (129) are marked with blue dotted lines and red dot-

dashed lines respectively. 

Figure 2 The variations of M with ψ on the (a) (001), (b) (111), (c) (012) and (d) (227) planes 

of Cu, Si, Nb and β-brass. The black lines at 0 =   and 90 =  correspond to the principal 

stress axes. The principal stress axes for (012) are [021] and [001]. For the (227) plane, they are 

[774]  and [110] . 

Figure 3 The variations of the principal biaxial moduli on planes of the type (0kl) in Cu, Si, 

Nb and β-brass as a function of the angle between the plane normal and [001]. 

Figure 4 The variation of the principal biaxial moduli on planes of the type (hhl) in Cu, Si, Nb 

and β-brass as a function of the angle between the plane normal and [001]. 

Figure 5 The out-of-plane normal strain 
3

F  (in terms of the in-plane equibiaxial strain 
1

F ) 

in (a) Cu and (b) Nb on planes of the type (hhl) and (0kl) plotted against the angle between the 

plane and (001). 

Figure 6 The variations of the strains 
3

F , 
4

F  and 
5

F  per unit   within the: (231), (012) and 

(227) planes of (a–c) Cu, and (d–f) Nb. The principal stress axes are indicated with vertical 

dashed lines. 

Figure 7 The principal biaxial modulus M1 plotted against α for the (012) planes of Cu and Nb. 
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List of Table Captions 

 

Table 1 The principal stress axes and the corresponding principal biaxial moduli for the (234) 

and (129) planes in Cu, Si, Nb and β-brass 

Table 2 Stationary points of the biaxial moduli in Cu, Si, Nb and Li. The global maxima are 

shown in bold, and the minima are underlined. The normals to the planes with the stationary 

points are of the form ( 45 , ),ij =   where 
ij  are given by Eqs. (29) and (34). The stiffness 

values were obtained by inverting the compliance constants reported in Ref. [6]. 


