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Abstract
In this paper we propose optimisation methods for variational regularisation problems based on discretising the inverse
scale space flow with discrete gradient methods. Inverse scale space flow generalises gradient flows by incorporating a
generalised Bregman distance as the underlying metric. Its discrete-time counterparts, Bregman iterations and linearised
Bregman iterations are popular regularisation schemes for inverse problems that incorporate a priori information without
loss of contrast. Discrete gradient methods are tools from geometric numerical integration for preserving energy dissipation
of dissipative differential systems. The resultant Bregman discrete gradient methods are unconditionally dissipative and
achieve rapid convergence rates by exploiting structures of the problem such as sparsity. Building on previous work on
discrete gradients for non-smooth, non-convex optimisation, we prove convergence guarantees for these methods in a Clarke
subdifferential framework. Numerical results for convex and non-convex examples are presented.
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1 Introduction

We consider the constrained optimisation problem

min
x∈C

V (x), (1.1)

for an objective function V : Rn → R and constraint C ⊂
R
n . The function V may be non-convex and non-smooth, as

outlined in Assumption 3.1. In this paper, we propose and
study optimisation schemes by using tools from geometric
numerical integration to solve the inverse scale space (ISS)
flow.

The ISS flow is a differential system which generalises
gradient flows by replacing the Euclidean distance by a
Bregman distance, defined via a convex Bregman (distance
generating) function J : Rn → R. The ISS flow is given by

ṗ(t) = −∇V (x(t)), p(t) ∈ ∂ J (x(t)). (1.2)

Here, ∂ J is the convex subdifferential of J , to be defined in
Sect. 2, and R := R ∪ {±∞}. The term inverse scale space
flow goes back to Scherzer and Groetsch [50]. This flow is
typically derived as the continuous-time limit of Bregman
iterations—methods for solving variational regularisation
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problems. Like gradient flows, the ISS flow is a dissipa-
tive system, and its dissipative structure is determined by the
function J . This allows one to solve (1.1) while incorporat-
ing a priori information into the optimisation scheme, with
the benefits of converging to superior solutions, and doing
so faster. For background on the ISS flow and Bregman dis-
tances, see Sect. 2.1.

Geometric numerical integration deals with numerical
integration methods that preserve geometric structures of
the continuous system. Such geometric structures include
dissipation or conservation of energy and Lyapunov func-
tions. In recent years, geometric numerical integration—and
numerical integration in general—has gained interest within
the mathematical optimisation community, as a framework
for formulating iterative schemes that are dissipative or
amenable to Lyapunov arguments.

We propose to discretise the inverse scale space flow with
discrete gradient methods. These are methods from geomet-
ric numerical integration that preserve the aforementioned
geometric structures in a general setting. In recent papers
[21,26,45,46], optimisation schemes based on discretising
gradient flows with discrete gradients have been analysed
and implemented for various problems. Favourable proper-
ties of the discrete gradient methods include unconditional
dissipation, i.e. dissipation is ensured for any time step, and
the Itoh–Abe discrete gradient method is derivative-free and
has convergence guarantees in the non-smooth, non-convex
setting [45]. For smooth problems, the theoretical conver-
gence rates of the discrete gradient methods match those of
explicit gradient descent and coordinate descent [21]. The
drawback of these methods is that the updates are in general
implicit. Nevertheless, formany simple variational problems,
the updates turn out to be explicit.

In this paper, we study the Itoh–Abe discrete gradient
method applied to the ISS flow. We prove that the method
is well defined and converges to a set of stationary points
for non-smooth, non-convex functions. Furthermore, build-
ing on the paper byMiyatake et al. [38] which pointed out the
equivalence between the discrete gradient methods for linear
systems and successive-over-relaxation (SOR) methods, we
point out equivalencies of various approaches to least squares
problems.

Bregman iterations, and related methods, are closely tied
to inverse problems and regularisation methods, particularly
in signal processing.We consider numerical examples in this
setting as well.

1.1 Related Literature

Spurred by applications for variational regularisation in
image processing and compressed sensing, the ISS flow and
the Bregman method have been active areas of research
during the last decade. The Bregman iterative method was

originally proposed by Osher et al. [41] in 2005 for total
variation-based image denoising, representing an extension
of the Bregman proximal algorithm [14,19,32,55] to non-
smooth Bregman functions. Subsequently the ISS flow was
derived and analysed by Burger et al. [7,9–11]. Since then,
researchers have studied the ISS flow with applications to
generalised spectral analysis in a nonlinear setting, i.e. by
Burger et al. [8], Gilboa et al. [23], and Schmidt et al. [51].
The Bregman method has been studied for �1-regularisation
and compressed sensing by Goldstein and Osher [24] and
Yin et al. [59], and extended to primal-dual algorithms by
Zhang et al. [61].

The linearised Bregman method was proposed by Yin et
al. [59] for applications to �1-regularisation and compressed
sensing, and further studied in this setting by Cai et al. [12],
and Dong et al. [18]. An extension for non-convex problems
was proposed by Benning et al. [3], proving global con-
vergence for functions that satisfy the Kurdyka–Łojasiewicz
property. Lorenz et al. [34,52] proposed a sparse variant of
theKaczmarzmethod for linear problems based on linearised
Bregman iterations. These and other methods were unified
in a Split Feasibility Problems framework for general con-
vergence results by Lorenz et al. [33]. For further details
on Bregman iterations and linearised Bregman methods, we
refer to [4].

We review papers on discrete gradient methods for opti-
misation based on gradient flows. Grimm et al. [26] used
discrete gradients to solve variational regularisation prob-
lems in image analysis and proved convergence to a set
of stationary points for continuously differentiable func-
tions. Ehrhardt et al. [21] provided additional analysis for
the methods, including convergence rates for smooth, con-
vex problems and Polyak–Łojasiewicz functions, as well as
well-posedness of the implicit equation. Ringholm et al. [46]
applied the Itoh–Abe discrete gradientmethod to non-convex
image problems with Euler’s elastica regularisation.

Furthermore, several recent works have looked at discrete
gradient methods in more general settings. Riis et al. [45]
studied the Itoh–Abe discrete gradient method in the setting
of derivative-free optimisation of non-smooth, non-convex
objective functions, and proved that the method converges to
a set of stationary points in the Clarke subdifferential frame-
work. Celledoni et al. [13] extended the Itoh–Abe discrete
gradient method to optimisation problems defined on Rie-
mannian manifolds. Hernández-Solano et al. [29] combined
a discrete gradient method with Hopfield networks in order
to preserve a Lyapunov function for optimisation problems.

We point out that a central feature of discrete gradient
methods is that due to their implicit formulation, no restric-
tions are required for the time steps. This will also be the case
for the analysis in this paper.

Beyond discrete gradients, other methods from numerical
integration have led to notable developments in optimisation
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in recent years. Recent papers by Su et al. [54] andWibisono
et al. [56] study second-orderODEs based on the continuous-
time limit of Nesterov’s accelerated gradient descent [39], in
order to gain insight into the acceleration phenomenon. In
this setting, Wilson et al. [57] provided a framework for Lya-
punov analysis of optimisation schemes and continuous-time
dynamics, and Betancourt et al. [5] proposed a framework
for symplectic integration for optimisation. On a related note,
Scieur et al. [53] showed that several accelerated optimisation
schemes can be derived as multi-step integration schemes
from numerical analysis. An optimisation scheme based on
numerically integrating dissipative Hamiltonian conformal
systems was proposed by Maddison et al. [35], with the aim
of ensuring linear convergence for a larger group of functions
than classical Other numerical integration methods of rele-
vance include implicit Runge–Kutta methods, where energy
dissipation is ensured under mild time step restrictions [27],
and explicit stabilised methods for solving strongly convex
problems [20].Another example is the studyof gradient flows
inmetric spaces andminimisingmovement schemes [1], con-
cerning gradient flow trajectories under other measures of
distance, such as the Wasserstein metric [49].

1.2 Structure and Contributions

The paper is structured as follows. For the remainder of
Sect. 1, we define mathematical notation. In Sect. 2, we
provide preliminary material for convex and non-convex
analysis, and introduce Bregman distances. In Sect. 3, we
propose aBregmandiscrete gradientmethodbasedon the ISS
flow, and prove well-posedness and convergence results in a
non-convex, non-smooth framework. In Sect. 4, we discuss
particular examples of Bregman discrete gradient methods.
In Sect. 5, we present results from numerical experiments. In
Sect. 6, we conclude.

1.3 Notation and Preliminaries

Throughout the paper, we denote by ‖ · ‖ the �2-norm, i.e.
‖x‖2 = ∑n

i=1 |xi |2. For p ∈ [1,+∞],‖·‖p denotes the usual
�p-norm. For ε > 0 and x ∈ R

n , we denote by Bε(x) the open
ball {y ∈ R

n : ‖y−x‖ < ε}. We denote by {e1, . . . , en} the
standard coordinate vectors in R

n . We define the extended
reals as R := R ∪ {±∞}.

For a sequence (xk)k∈N ⊂ R
n , we denote by S its limit

set, i.e. the set of accumulation points,

S = {x∗ ∈ R
n : ∃(xk j ) j∈N s.t. xk j → x∗}.

For amatrix A ∈ R
m×n , we denote byai ∈ R

n its i th row, and
AT its transpose. Accordingly, aij refers to the j th element
of the i th column of A.

For x ∈ R, the sign operator sgn : R → {±1, 0} is
defined as

sgn(x) =

⎧
⎪⎨

⎪⎩

1, if x > 0,

0, if x = 0,

−1, if x < 0.

2 Preliminaries for Convex and Non-convex
Analysis

In this section, we provide preliminary material on nons-
mooth analysis. In Sect. 2.1, we cover convex analysis and
Bregman distances, while in Sect. 2.2 we cover nonconvex,
nonsmooth analysis in the Clarke subdifferential framework.

2.1 Convex Analysis

We consider functions J : Rn → R that are convex, proper,
and lower-semicontinuous (see [22,48] for details on this
class of functions).

Definition 2.1 (Effective domain) The effective domain of a
function J : Rn → R is defined as dom(J ) = {x ∈ R

n :
J (x) < ∞}.

Definition 2.2 (Subgradients and subdifferentials) The sub-
differential of a convex function J : Rn → R at x ∈ R

n is
the set of vectors

∂ J (x)

= {p ∈ R
n : J (y) − J (x) − 〈p, y − x〉 ≥ 0 for all y ∈ R

n}.

Vectors in ∂ J (x) are called subgradients of J at x.

For i = 1, . . . , n, we denote by [∂ J (x)]i the projection of
∂ J (x) onto the i th coordinate, i.e. [∂ J (x)]i = {pi : p ∈
∂ J (x)}.

For the theory of convex functions and their subdifferen-
tials, see [48].

We consider the characteristic function χC of a convex,
closed set C ⊂ R

n , defined by

χC(x) :=
{
0, if x ∈ C,

+∞, else.

This is a convex, proper, lower-semicontinuous function, and
0 ∈ ∂χC(x) for all x ∈ dom(χC) = C.

We can now define the generalised Bregman distance [6]
of a convex function J .
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Definition 2.3 (Bregman distance) Given p ∈ ∂ J (x), the
Bregman distance between x and y is given by

Dp
J (x, y) = J (y) − J (x) − 〈p, y − x〉.

We refer to J as the corresponding Bregman function.

Example 2.4 If J (x) = ‖x‖2/2, then Dp
J (x, y) = ‖x−y‖2/2,

i.e. the square of the Euclidean distance.

While Bregman distances are non-negative due to convex-
ity of J , they are not metrics as they do not generally satisfy
symmetry or a triangle inequality. However, a related object
is the symmetric Bregman distance.

Definition 2.5 (Symmetric Bregman distance) Given p ∈
∂ J (x) and q ∈ ∂ J (y), the symmetric Bregman distance
between x and y is given by

Dsymm
J (x, y) = Dq

J (y, x) + Dp
J (x, y) = 〈q − p, y − x〉.

Definition 2.6 (μ-convexity) Aproper, lower-semicontinuous
convex function J : Rn → R is μ-convex for μ ≥ 0 if either
of the following (equivalent) conditions hold.

(i) The function J (·) − μ

2
‖ · ‖2 is convex.

(ii) J (y)− J (x)−〈p, y−x〉 ≥ μ
2 ‖y−x‖2 for all x, y ∈ R

n ,
p ∈ ∂ J (x).

If μ > 0, J is said to be strongly convex.

For strongly convex Bregman functions, the following prop-
erty of Bregman distances is immediate.

Proposition 2.7 (Bregman distance under μ-convexity) If J
is μ-convex, then for all x, y ∈ R

n,

Dp
J (x, y) ≥ μ

2
‖y − x‖2, Dsymm

J (x, y) ≥ μ‖y − x‖2.

2.2 Non-Convex Subdifferential Analysis

We summarise the main concepts of the Clarke subdiffer-
ential for locally Lipschitz continuous, non-smooth, non-
convex functions V : Rn → R, and refer to [16] for further
details.

Definition 2.8 (Lipschitz continuity) V is Lipschitz of rank
L near x if there exists ε > 0 such that for all y, z ∈ Bε(x),
one has

|V (y) − V (z)| ≤ L‖y − z‖.

V is locally Lipschitz continuous if the above property holds
for all x ∈ R

n .

Definition 2.9 (Clarke directional derivative) For V Lips-
chitz near x and for a vector d ∈ R

n , the Clarke directional
derivative is given by

V o(x;d) = lim sup
y→x, λ↓0

V (y + λd) − V (y)
λ

.

Definition 2.10 (Clarke subdifferential) Let V be locally
Lipschitz continuous and x ∈ R

n . TheClarke subdifferential
of V at x is given by

∂V (x) = {p ∈ R
n : V o(x;d) ≥ 〈d,p〉 for all d ∈ R

n}.

An element of ∂V (x) is called a Clarke subgradient.

The Clarke subdifferential was introduced by Clarke in [15].
It is well defined for locally Lipschitz functions, coincides
with the standard subdifferential for convex functions [16,
Proposition 2.2.7], and coincides with the derivative at points
of strict differentiability [16, Proposition 2.2.4].We addition-
ally state two useful results, both of which can be found in
Chapter 2 of [16].

Proposition 2.11 (Properties of Clarke subdifferential)
Suppose V is locally Lipschitz continuous. Then

(i) ∂V (x) is nonempty, convex and compact, and if V is
Lipschitz of rank L near x, then ∂V (x) ⊆ BL(0).

(ii) ∂V (x) is outer semicontinuous. That is, for all ε > 0,
there exists δ > 0 such that

∂V (y) ⊂ ∂V (x) + Bε(0), for all y ∈ Bδ(x).

In this paper, we will consider constrained optimisation
problems argminx∈C V (x) for a closed, convex subset C. We
assume in the convergence analysis that C is box constraints
of the form C = ⊗n

i=1[li , ul ]. To have a formal notion of
first-order optimality in this setting, we define the tangent
cone.

Definition 2.12 (Tangent cone) For a convex, closed set C ⊂
R
n , the tangent cone at x ∈ C, denoted by T (C, x), is the

closure of the set of vectors v ∈ R
n such that there is δ > 0

such that for all ε ∈ (0, δ), x + εv ∈ C.

Definition 2.13 (Clarke stationarity) Let V : Rn → R be a
locally Lipschitz continuous function and C ⊂ R

n a closed,
convex set. A point x∗ ∈ R

n is a Clarke stationary point of
V restricted to C if V o(x∗;d) ≥ 0 for all d ∈ T (C, x∗).

As the following proposition shows, the above definition
generalises minimisers for convex functions, and Clarke sta-
tionary points in the unrestricted case.
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Proposition 2.14 (Stationary versusminimal) Let V : Rn →
R be a convex function and C ⊂ R

n be closed and convex.
Then x∗ ∈ R

n is a Clarke stationary point restricted to C if
and only if x∗ ∈ argminx∈C V (x).

Proof This follows directly from [31, Theorem 4.19], noting
that for convex functions the Clarke directional derivative
coincides with the classical directional derivative [16, Propo-
sition 2.2.7]. ��

3 The Discrete Gradient Method for the
Inverse Scale Space Flow

In what follows, we discuss the inverse scale space flow,
and propose a Bregman discrete gradient method by using
discrete gradients to solve the differential system.

3.1 Inverse Scale Space Flow and BregmanMethods

For a convex function J : R
n → R, objective function

V : R
n → R and starting points x(0) = x0 ∈ R

n ,
p(0) ∈ ∂ J (x0), the ISS flow is the dissipative differential
system given by (1.2). If J were twice continuously differ-
entiable and μ-convex, then (1.2) could be rewritten as

ẋ(t) = −(∇2 J (x(t)))−1∇V (x(t)),

and the energy V (x(t)) would dissipate over time as

d

dt
tV (x(t)) = 〈ẋ(t),∇V (x(t))〉

= −
〈
ẋ(t),∇2 J (x(t))ẋ(t)

〉
≤ −μ‖ẋ(t)‖2.

We briefly discuss variants of Bregman methods as dis-
cretisations of (1.2). The Bregman method is derived by
backward Euler discretisation of (1.2) and is given by

pk+1 = pk − τk∇V (xk+1), pk+1 ∈ ∂ J (xk+1)

which can be rewritten as

xk+1 = argmin
x∈Rn

V (x) + 1

τk
Dpk

J (xk, x). (3.1)

From (3.1), we see that the Bregman method is dissipative,
as

V (xk+1) − V (xk) ≤ − 1

τk
Dpk

J (xk, xk+1)

≤ − μ

2τk
‖xk − xk+1‖2.

Similarly, the linearised Bregman method is derived by
forward Euler discretisation of (1.2) and is given by

pk+1 = pk − τk∇V (xk), pk+1 ∈ ∂ J (xk+1)

or equivalently

xk+1 = argmin
x∈Rn

V (xk) + 〈∇V (xk), x − xk〉 + 1

τk
Dpk

J (xk, x).

The ISS flow and Bregman methods are considered for
solving ill-conditioned linear systems Ax = b, with the
objective function

V (x) = 1

2
‖Ax − b‖2.

In this setting, iterates of both the Bregman method and the
linearised Bregman method converge [4,33] to a solution of

min
x∈Rn

{J (x) s.t. Ax = b}.

Furthermore, applications of the ISS flow include image
denoising with reduced contrast-loss and staircasing effects
[41], recovering eigenfunctions [51], and identifying sparse
or low-rank structures [59].

Wemake the following assumptions on the objective func-
tion V , the constraints C, as well as the Bregman function J .

Assumption 3.1 (a) The function V : R
n → R is locally

Lipschitz continuous and bounded below.
(b) x∗ ∈ R

n is a Clarke stationary point of V restricted to
C if and only if for all coordinate vectors ei , we have
V o(x∗; ei ), V o(x∗;−ei ) ≥ 0.

(c) The set C ⊂ R
n consists of coordinate-wise box con-

straints, i.e. C = ⊗n
i=1[li , ui ].

(d) The function J : Rn → R is proper, lower-semicontinuous,
and μ-convex with μ > 0. Furthermore, J (x) =∑n

i=1 ji (xi )+χ[li ,ui ](xi ), where ji : R → R are convex
and Lipschitz continuous on [li , ui ] for each i .

3.2 The Bregman Discrete Gradient Method

In what follows, we define discrete gradients and propose
the Bregman discrete gradient method by discretising the
ISS flow.

Definition 3.2 (Discrete gradient) Let V be a continuously
differentiable function. A discrete gradient is a continuous
map ∇V : Rn × R

n → R
n such that for all x, y ∈ R

n ,

〈∇V (x, y), y − x〉 = V (y) − V (x) (Mean value), (3.2)
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lim
y→x

∇V (x, y) = ∇V (x) (Consistency).

(3.3)

Discrete gradients are tools from geometric numerical
integration. In geometric integration, one studies meth-
ods for numerically solving ODEs while preserving certain
structures of the continuous system—see [28,36] for an intro-
duction. Discrete gradients are tools for solving first-order
ODEs that preserve energy conservation laws, dissipation
laws, and Lyapunov functions [25,30,37,44].

The Itoh–Abe discrete gradient [30] (also known as the
coordinate increment discrete gradient) is given by

∇V (x, y) =

⎛

⎜
⎜
⎜
⎜
⎝

V (y1,x2,...,xn)−V (x)
y1−x1

V (y1,y2,x3,...,xn)−V (y1,x2,...,xn)
y2−x2

...
V (y)−V (y1,...,yn−1,xn)

yn−xn

⎞

⎟
⎟
⎟
⎟
⎠

, (3.4)

where 0/0 is interpreted as ∂i V (x).
The Itoh–Abe discrete gradient is derivative-free and is

evaluated by successively computing difference quotients.
For optimisation problems where the gradient is expensive to
compute (e.g. [46]), or unavailable (e.g. [45]), Itoh–Abe dis-
crete gradient methods are useful for ensuring convergence
guarantees and competitive convergence rates [21] without
requiring derivatives.

We propose the Bregman discrete gradient method as fol-
lows. For a starting point x0 ∈ R

n , subgradient p0 ∈ ∂ J (x0),
and time steps (τk)i∈N > 0, solve for k = 0, 1, . . .,

pk+1 = pk − τk∇V (xk, xk+1)

pk+1 ∈ ∂ J (xk+1).
(3.5)

This scheme preserves the dissipative structure of the ISS
flow and (linearised) Bregman methods, as we see by apply-
ing the mean value property (3.2) and (3.5).

V (xk) − V (xk+1) = 〈xk − xk+1,∇V (xk, xk+1)〉
= 1

τk
〈xk − xk+1,pk − pk+1〉

= 1

τk
Dsymm

J (xk, xk+1)

≥ μ

τk
‖xk − xk+1‖2. (3.6)

Furthermore, if we plug in J (x) = ‖x‖2/2, we recover the
discrete gradient method for gradient flows [21]. Observe
that the dissipative structure holds for arbitrary positive time
steps τk > 0. We thus only require that τk ∈ [τmin, τmax] for
arbitrary bounds τmin, τmax > 0.

ByAssumption 3.1 d), the subdifferential of J is separable
in the coordinates, i.e.

∂ J (x) =
n∏

i=1

∂χ[li ,ui ](xi ) + ∂ ji (xi ).

It follows that solving the Bregman Itoh–Abe equation (3.5)
corresponds to successively solving n scalar inclusions, i.e.
given xk , and pk , we want xk+1 and pk+1 that solve

pk+1
i = pki − τk,i

V (yk,i ) − V (yk,i−1)

xk+1
i − xki

,

pk+1
i ∈ ∂ ji (y

k,i
i ) + ∂χ[li ,ui ](y

k,i
i ),

yk,i = [xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
n ],

i = 1, . . . , n.

(3.7)

Here yk,i denotes [xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
n ]T . For a

choice of vki ∈ [∂V (yk,i−1)]i , if pki −τk,iv
k
i ∈ [∂ J (yk,i−1)]i ,

then we consider xk+1
i = xki and pk+1

i = pki − τk,iv
k
i an

admissible update.

Remark 3.3 While discrete gradients are not defined for non-
smooth functions V , the resultant Bregman discrete gradient
method (3.7) is still well defined, provided the function V
has a well defined Clarke subdifferential. This is the case,
e.g. if V is locally Lipschitz continuous [16]. Furthermore,
note that the properties used to derive the dissipative structure
(3.6) holds in this setting.

4 Theoretical Results

In this section, we prove that a solution to the Bregman dis-
crete gradient method (3.7) exists, and provide conditions in
which the update is unique. Furthermore, we prove that the
accumulation points of the iterates (xk)k∈N from the Breg-
man Itoh–Abe method are Clarke stationary.

4.1 Well-Posedness and Preliminary Results

The Bregman Itoh–Abe scheme (3.7) is in general implicit.
We therefore want to ensure that an update exists and is easy
to compute. Furthermore, we want to know under what con-
ditions the updates are unique. In what follows, we address
these questions. The corresponding analysis generalises that
from the previous papers on discrete gradient methods for
optimisation [21,45].

We first show that an update (not necessarily unique)
always exists.

Lemma 4.1 (Existence) For any τ > 0, xk ∈ R
n, and

pk ∈ ∂ J (xk), there exists an update (xk+1,pk+1) that satis-
fies (3.7).
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Proof As (3.7) consists of successive scalar updates, it is
sufficient to consider a scalar problem, v : R → R, j : R →
R. For x ∈ R and p ∈ ∂ j(x) we either want y �= x such that

p − τ
v(y) − v(x)

y − x
∈ ∂ j(y), (4.1)

or y = x and p − τw ∈ ∂ j(x), for some w ∈ ∂v(x).
If such a w exists, we are done. Otherwise, we have

min{vo(x; 1), vo(x;−1)} < 0 and may assume that
vo(x; 1) < 0. In this case, we will show that there exists
y > x such that (4.1) holds.

Since p − τvo(x; 1) > p and p ∈ ∂ j(x), we deduce that
p− τvo(x; 1) > ∂ j(x). By the outer semicontinuity of sub-
differentials and definition of Clarke directional derivatives,
there is δ > 0 such that

p − τ
v(y) − v(x)

y − x
> ∂ j(y) for all y ∈ (x, x + δ).

On the other hand, as v is bounded below,

y �→ (v(y) − v(x))/(y − x)

is bounded below for all y ∈ [x + δ,+∞), while by μ-
convexity of j , we have ∂ j(y) ≥ ∂ j(x) + μ(y − x) for all
y ∈ [x + δ,+∞). Hence, there is r � 0 such that

p − τ
v(y) − v(x)

y − x
< ∂ j(y) for all y ≥ x + r .

By continuity of v, and by outer semicontinuity of subdif-
ferentials, it follows that there exists y ∈ (x + δ, x + r) that
solves (4.1). This concludes the proof. ��

Next we give conditions in which the update is unique.
While this holds for any time step if the objective function is
convex, it may fail for nonconvex functions, as discussed in
[21, Section 5].

Proposition 4.2 (Uniqueness) For τ > 0, xk ∈ R
n, and

pk ∈ ∂ J (xk), the update (xk+1,pk+1) to (3.7) is unique in
the following cases.

(i) V is convex.
(ii) V (·) + η‖ · ‖2 is convex for η > 0, and τ < μ/η.

Proof Case (i) Suppose V is convex. The existence of a
solution to (3.7) is guaranteed by Lemma 4.1. To establish
uniqueness, we argue as follows. An update yk,i must satisfy

pki − τ
V (yk,i ) − V (yk,i−1)

xk+1
i − xki

∈ [∂ J (yk,i )]i . (4.2)

The left-hand side is non-increasing with respect to xk+1
i

due to the difference quotient term of the convex function
V , while the right-hand side is strictly increasing due to the
strong convexity of J . Hence there cannot be two distinct
solutions for yk,ii to the scalar equation. This implies unique-
ness of the update.

Case (ii): Suppose V (·)+ η‖ · ‖2 is convex and τ < μ/η.
We rewrite (4.2) as

pki
τ

− V (yk,i ) − V (yk,i−1)

xk+1
i − xki

− ηxk+1
i ∈ 1

τ
[∂ J (yk,i )]i − ηxk+1

i .

Since τη < μ, the function J (·) − τη‖ · ‖2/2 is strongly
convex, and therefore the right-hand side is strictly increasing
with respect to xk+1

i . On the other side, as V (·) + η‖ · ‖2 is
convex, the difference quotient term V (yk,i )−V (yk,i−1)

xk+1
i −xki

+ηxk+1
i

is non-decreasing with respect to xk+1
i . Therefore, by the

same reasoning as in the first case, the update to the Bregman
Itoh–Abe method must be unique. ��

Remark 4.3 If the update is stationary, i.e. xk+1
i = xki , then

the subgradient update pk+1
i is unique only up to the choice

of subderivative vi ∈ [∂V (yk,i−1)]i .
Note that while the convexity criteria in Proposition 4.2

are global, they are often generalised to local properties
such as lower C2-smoothness [47] and prox-regularity [43].
However, an analysis of these properties in the context of
Itoh–Abe discrete gradient methods is beyond the theoreti-
cal and practical scope of this paper. We also add that lack
of uniqueness is not an issue for the implementation or com-
putational tractability of the scheme.

The following lemma summarises several useful proper-
ties of the iterates (xk,pk)k∈N, and generalises Lemmas 3.3,
3.4 in [45].

Lemma 4.4 (Properties of scheme) Let V , J , and C satisfy
Assumption 3.1, and let (xk,pk)k∈N be iterates that solve
(3.7) for time steps (τk)k∈N ⊂ [τmin, τmax]. Then the follow-
ing properties hold.

(i) V (xk+1) ≤ V (xk).
(ii) limk→∞ ‖xk+1 − xk‖ = 0.
(iii) If V is coercive, then there exists a convergent subse-

quence of (xk,pk)k∈N.
(iv) The set of limit points S is compact, connected, and has

empty interior. Furthermore, V is single-valued on S.

Proof Property (i) follows from (3.6).
As V is bounded below and (V (xk))k∈N is decreasing,

V (xk) → V ∗ for some limit V ∗. Therefore, by (3.6),
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V (x0) − V ∗ =
∞∑

k=0

V (xk) − V (xk+1)

≥
∞∑

k=0

μ

τk
‖xk − xk+1‖2

≥ μ

τmax

∞∑

k=0

‖xk − xk+1‖2.

This implies property (ii).
Properties (iii) and (iv) follow from (i) and (ii) and are

proven, respectively, in [45, Lemma 3.3 and Lemma 3.4]. ��

4.2 Amended Scheme

In the next subsection, we prove that accumulation points of
the iterates from the Bregman Itoh–Abe method are Clarke
stationary. However, we first modify the Bregman Itoh–Abe
method to ‘forget’ subgradients induced by the constraints.

We define the modified scheme as follows. For a starting
point x0, p0 ∈ ∂ J (x0), and k ∈ N, update

pk+1
i + q̃ = pki − τk,i

V (yk,i ) − V (yk,i−1)

xk+1
i − xki

,

pk+1
i ∈ ∂ ji (y

k,i
i ), q̃ ∈ ∂χ[li ,ui ](y

k,i
i ),

yk,i = [xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
n ],

i = 1, . . . , n.

(4.3)

Observe that since 0 ∈ ∂χC(x) for all x ∈ C, we still have
pk+1 ∈ ∂ J (xk+1). It is also straightforward to verify that the
previous results and analysis of dissipative structure in this
section also hold for (4.3).

The reason for introducing the modified scheme (4.3) is
so that the subgradient iterates pki do not grow arbitrarily
large when xki equals ui or li for several updates (recall that
when the constraint is active, ∂χ[li ,ui ] is unbounded). Oth-
erwise, the iterates might get stuck at a non-stationary point
for several iterations, since xki is unable to leave {li , ui } until
the subgradient update in ∂χ[li ,ui ] vanishes, yielding ineffi-
cient progress. Furthermore, this leads to pathological, albeit
unlikely, examples where the iterates of (3.7) converge to
non-stationary accumulation points. For completeness, we
give such an example in Section A.

4.3 Main Convergence Theorem

Having introduced a modified Bregman Itoh–Abe scheme
in the previous section, we proceed to state and prove the
main theorem of this paper, namely that all accumulation
points of the scheme (4.3) are non-stationary. We note that
this also holds for the original Bregman Itoh–Abe method if
the iterates (xk)k∈N converge to a unique limit.

Theorem 4.5 (Stationarity guarantees) Let V , J , and C
satisfy Assumption 3.1, and suppose the sequence of iter-
ates (xk,pk)k∈N solves (4.3) for time steps (τk)k∈N ⊂
[τmin, τmax]. Then all accumulation points x∗ ∈ S are Clarke
stationary points restricted to C.

Proof Let x∗ ∈ S and consider a convergent subsequence
(xk j ) j∈N. We want to show for each basis vector ei that
either V o(x∗; ei ) ≥ 0 or x∗

i = ui , and analogously that
either V o(x∗;−ei ) ≥ 0 or x∗

i = li . As the arguments are
equivalent, we only prove the first case.

Suppose for contradiction that V o(x∗; ei ) < −η for some
η > 0, and that x∗

i < ui . By the definition of the Clarke
directional derivative, Definition 2.9, there are ε, δ > 0 such
that for all x ∈ Bε(x∗) and λ ∈ (0, δ), we have

V (x + λei ) − V (x)
λ

≤ −η

2
. (4.4)

Since xk j → x∗ and ‖xk j+1 − xk j ‖ → 0, for each N ∈ N

there exists K such that for all j ≥ K , we have xk ∈ Bε(x∗)
and ‖xk − xk+1‖ < δ for k = k j , k j + 1, . . . , k j + N . By
making ε > 0 sufficiently small, we have Bε(x∗

i ) < ui .
Furthermore, since xk+1

i ≥ xki for k = k j , . . . , k j + N − 1,
we deduce that the constraint component q̃ is zero. By (4.4),
it follows that

p
k j
i − p

k j+N
i =

N−1∑

k=k j

pki − pk+1
i

=
N−1∑

k=k j

τ ki
V (yk,i ) − V (yk,i−1))

xk+1
i − xki

≤ −τmin

N−1∑

k=k j

η

2
= −Nτmin

η

2
. (4.5)

ByAssumption 3.1, ∂ ji is bounded onU = Bε(x∗)∩[li , ui ].
Since pk, ji , . . . , p

k j+N
i ∈ ∂ ji (U ), we can choose N such

that Nτmin
η
2 > max ∂ ji (U ) − min ∂ ji (U ) and arrive at a

contradiction. Thus, x∗ is a Clarke stationary point restricted
to C. ��

5 Examples of Bregman Itoh–Abe Discrete
Gradient Schemes

In this section, we describe several schemes based on the
Bregman Itoh–Abe discrete gradient scheme (3.7). We will
primarily consider objective functions of the form

V (x) = 1

2
〈x, Ax〉 − 〈b, x〉, (5.1)
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where A ∈ R
n×n is a symmetric, positive semi-definite

matrix, with strictly positive entries aii > 0 on the diagonal.
We are particularly interested in problems with underly-

ing sparsity and/or constraints, with applications in image
analysis. Throughout this section, we use a time step vec-
tor τ k coordinate-wise scaled by the diagonal of A, i.e.
τ k = τ/diag (A) = [τ/a11, . . . , τ/ann ] for all k ∈ N, and
some τ > 0.

We first introduce some well-known coordinate descent
schemes for solving linear systems, which Miyatake et al.
[38] showed were equivalent to the Itoh–Abe discrete gradi-
ent method. The successive-over-relaxation (SOR) method
[60] updates each coordinate sequentially according to the
rule

yk,0 = xk

yk,i = yk,i−1 − ω

aii
(〈ai , yk,i−1〉 − bi )ei ,

xk+1 = yk,n,

(5.2)

whereω ∈ (0, 2). Forω = 1, this is theGauss–Seidelmethod
[60]. The SORmethod is equivalent to the Itoh–Abe discrete
gradient method

xk+1 = xk − τ∇V (xk, xk+1),

with V given by (5.1) with the time steps τi = 2ω/

((2 − ω)aii ).

5.1 Sparse SORMethod

Weconsider underdetermined linear systems andwant to find
sparse solutions x∗. Hence we seek to apply the Bregman
Itoh–Abe method (3.7) with objective function V given by
(5.1), and

J (x) = 1

2
‖x‖2 + γ ‖x‖1, (5.3)

for γ > 0. We term this the Bregman SOR (BSOR) method.
By Proposition 4.2, the updates of this method are well

defined and unique. One can verify that the updates are given
as follows. Denote by x̃ k+1

i the standard SOR coordinate
update from xki , (5.2). Furthermore, for pk ∈ ∂ J (xk), we
write pk = xk +γ rk , where rk ∈ ∂‖xk‖1. Then (xk+1

i , rk+1
i )

are given in closed form as

xk+1
i = S

(

x̃ k+1
i + 2γ

2 + τ
rki ,

2γ

2 + τ

)

,

rk+1
i = rki + τ

γ aii

(

bi − 〈ai , xk〉 − aii (2 + τ)

2τ
(yi − xi )

)

.

(5.4)

Here S : R × R → R denotes the shrinkage operator
S(x, λ) = sgn(x)max{|x| − λ, 0}, applied elementwise to
a vector x.

5.2 Sparse, Regularised SOR

If b = Axtrue + , where xtrue is the sparse ground truth and
is noise, then it may be necessary to regularise the objective
function as well. Hence we consider the objective function

V (x) = 1

2
〈x, Ax〉 − 〈b, x〉 + λ‖x‖1, (5.5)

for some regularisation parameter λ > 0. The non-
smoothness induced by ‖ · ‖1 satisfies Assumption 3.1, so
Theorem 4.5 implies Bregman Itoh–Abe discrete gradient
methods will still converge to stationary points of this prob-
lem.

For both J (x) = 1
2‖x‖2 + γ ‖x‖1 and J (x) = 1

2‖x‖2, the
scheme (3.7) can be expressed in closed form for (5.5), on
a case-by-case basis. However, for purposes of brevity, we
leave including this in “Appendix”.

6 Equivalence of Iterative Methods for
Linear Systems

In what follows, we discuss and demonstrate equivalencies
for different iterative methods for solving linear systems. We
recall from the previous section that the SOR method (5.2)
is equivalent to the Itoh–Abe discrete gradient method [38].

The explicit coordinate descent method [2,58] for min-
imising V is given by

yk,0 = xk

yk,i = yk,i−1 − αi [∇V (yk,i−1)]iei ,
xk+1 = yk,n,

(6.1)

where αi > 0 is the time step. Asmentioned in [58], the SOR
method is also equivalent to the coordinate descent method
with V given by (5.1) and the time step αi = ω/aii . Hence, in
this setting, the Itoh–Abe discrete gradient method is equiv-
alent not only to SOR methods, but to explicit coordinate
descent.

It is not surprising that these iterative coordinate meth-
ods turn out to be the same, given that the gradient V in
(5.1) is linear. Furthermore, these equivalencies extend to
discretisations of the inverse scale space flow with J given
by (5.3). The resultant Bregman Itoh–Abe scheme for (5.1)
is described in Sect. 5.1. We may compare this to a Bregman
linearised coordinate descent scheme,
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Fig. 1 Comparison of SOR and sparse SORmethods, for Gaussian lin-
ear system without noise. Top: Convergence rate for relative objective,
i.e. [V (xk) − V ∗]/[V (x0) − V ∗]. Bottom: Support error with respect
to iterates, i.e. proportion of indices i s.t. sgn(xki ) = sgn(x∗

i )

yk,0 = xk, pk ∈ ∂ J (xk)

zi = argmin
y

[∇V (yk,i−1)]i · y

+ aii
αi

Dpk

J (yk,i−1, yk,i−1 + yei ),

yk,i = yk,i−1 + ziei ,

xk+1 = yk,n .

One can verify that this scheme is equivalent to (6.1) for the
parameters

τi = 2α

(2 − α)aii
, λ∗ = λ

1 + α
2−α

.

7 Numerical Examples

In this section, we present numerical results for the schemes
described in Sect. 5.

Fig. 2 Comparison of SOR and sparse SOR methods, for Gaussian
linear systemwithout noise, and binary ground truth. Top: Convergence
rate for relative objective. Bottom: Support error with respect to iterates

7.1 Sparse SOR

We construct a matrix A ∈ R
1024×1024 from independent

standard (zeromean, unit variance)Gaussian draws, and con-
struct the sparse ground truth xtrue by choosing 10% of the
indices at random determined by uniform draws on the unit
interval. We then solve the problem

argmin
x

1

2
‖Ax − b‖2,

where b = Axtrue. We compare the SOR method (J (x) =
‖x‖2/2) and the BSOR method (J (x) = ‖x‖2/2 + γ ‖x‖1),
where γ = 1. We set time steps to τ = 2/diag (A), cor-
responding to the Gauss–Seidel method. See Fig. 1 for the
results.

For the same test problem, but where the ground truth is
binary, i.e. only takes values 1 or 0, see Fig. 2.

7.2 Sparse, Regularised SOR

We construct A ∈ R
1024×1024 and xtrue as in the previ-

ous subsection. However, we add noise to the data, i.e.
b = Axtrue + , where is independent Gaussian noise with a
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Fig. 3 Comparison of SOR and sparse SOR methods, for Gaussian
linear system with noise. Top: Convergence rate for relative objective.
Bottom: Support error with respect to iterates

standard deviation of 0.1‖Axtrue‖∞. Since the added noise
destroys the sparsity structure of A−1b, the sparse SOR
method fails to improve the convergence rate. The results
for V (x) = ‖Ax − b‖2/2 are in Fig. 3.

We therefore include regularisation in the objective func-
tion of the form

V (x) = 1

2
‖Ax − b‖2/2 + λ‖x‖1,

where λ = 100, andwith initialisation x0 constructed by ran-
dom, independent Gaussian draws. The results are visualised
in Fig. 4.

7.3 Student-t Regularised Image Denoising

Weconsider a nonconvex image denoisingmodel, previously
presented in [40], given by

F : Rn → R, F(x) :=
N∑

i=1

ϕiΦ(Kix) + ‖x − xδ‖1. (7.1)

Here {Ki }Ni=1 is a collection of linear filters, (ϕi )
N
i=1 ⊂

[0,∞) are coefficients, Φ : Rn → R is the nonconvex func-
tion based on the student-t distribution, defined as

Fig. 4 Comparison of SORand sparse SORmethods, for �1-regularised
linear system with noise. Top: Convergence rate for relative objective.
Bottom: Support error with respect to iterates

Φ(x) :=
n∑

j=1

ψ(xi ), ψ(x) := log(1 + x2),

and xδ is an image corrupted by impulse noise (salt & pepper
noise).

As impulse noise only affects a small subset of pixels, we
use the data fidelity term x �→ ‖x−xδ‖1 to promote sparsity
ofx∗−xδ forx∗ ∈ argmin F(x).As linear filters,we consider
the simple case of finite difference approximations to first-
order derivatives of x. We note that by applying a gradient
flow to this regularisation function, we observe a similarity
to Perona–Malik diffusion [42].

We consider a Bregman Itoh–Abe method (abbreviated to
BIA) for solving minx∈Rn F(x) with the Bregman function

J (x) := 1

2
‖x‖2 + γ ‖x − xδ‖1,

to account for the sparsity of the residualx∗−xδ , and compare
the method to the regular Itoh–Abe discrete gradient method
(abbreviated to IA).

We set the starting point x0 = xδ , and the parameters to
τk = 1 for all k, γ = 0.5, and ϕi = 2, i = 1, 2. For the
impulse noise, we use a noise density of 10%. In the case
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Fig. 5 Comparison of BIA and IA methods, for student-t regularised
image denoising. First: Convergence rate for relative objective. Second:
Convergence rate for relative gradient norm. Third: Input data. Fourth:
Reconstruction

where xk+1
i is not set to xδ

i , we use the scalar root solver
scipy.optimize.brenth on Python. Otherwise, the updates are
in closed form.

See Fig. 5 for numerical results. By gradient norm, we
mean dist(∂F(xk), 0).We observe that, as in the convex case,
the Bregman Itoh–Abemethod converges significantly faster
than the Itoh–Abe method, as the former utilises the sparse
structure of the problem.

8 Conclusion

In this paper, we propose to discretise the ISS flow with the
Itoh–Abe discrete gradient. The resultant schemes exhibit a
dissipative structure (3.6) related to the symmetrised Breg-
man distance of a function J . This generalises the discrete
gradient method for gradient flows and can be viewed as
a discrete gradient analogue to Bregman iterations. Build-
ing on previous studies of the Itoh–Abe discrete gradient
method in the non-smooth, non-convex setting, we prove
convergence guarantees of the Bregman Itoh–Abe discrete
gradient method in such a setting.

We consider numerical examples motivated by linear
systems and searching for sparse solutions, as well as a non-
convex image denoising example. These results indicate that
for sparse reconstructions, popular iterative solvers such as
the SOR method can be significantly sped up by incorporat-
ing a Bregman step.

Future work is dedicated to proving convergence rates for
the Bregman Itoh–Abe methods, and to compare the scheme
to related methods such as the sparse Kaczmarz method [33].
Furthermore,wewill study corresponding inverse scale space
schemes using other discrete gradients, such as the mean
value discrete gradient.
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Appendix A: Counterexample of Theorem4.5
for (3.7)

In the following example, we describe an example of a con-
strained optimisation problem for which the iterates of the
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unmodified Bregman Itoh–Abe method (3.7) fails to con-
verge to a limit set of stationary points.

Example A.1 As a starting point, we consider a C2-smooth
objective function W : R2 → R as described by Curry [17],
for which the trajectory of a Euclidean gradient flow spirals
along a gully, asymptotically trending towards the unit circle
S1 = {[x, y]T ∈ R

2 : x2 + y2 = 1}.
Denote by [x̃ k, ỹk]T the iterates from the (standard) Itoh–

Abe method for W with (arbitrary) time steps τ ≡ 1 and
starting point [x̃0, ỹ0]T in the gully. As each update of the
method consists of moving to a local point of descent, the
iterates of this method will also remain in this gully and
spiral towards S1.

We assume that there exists compact, disjoint sets A, B ⊂
R
2 with nonempty interior, such that B ∩ S1 �= ∅, and such

that most of the iterates ([x̃ k, ỹk]T )k∈N are in A. That is, for
all k ∈ N, the set {i ≤ k : [x̃ i , ỹi ]T ∈ A} is strictly greater
than the set {i ≤ k : [x̃ i , ỹi ]T /∈ A}. Such a set A exists
as long as the iterates are spiralling around the unit circle at
approximately a steadily decreasing rate.

Next we define an objective function V : R
3 → R

as follows. Let f A, fB : R
2 → R be smooth support

functions of A and B, respectively, with disjoint support
sets. That is, f A(x, y) ∈ [0, 1], fB(x, y) ∈ [0, 1], and
f A(x, y) · fB(x, y) = 0 for all [x, y]T ∈ R

2, and further-
more, f A(A) ≡ 1 and fB(B) ≡ 1. We then consider the
optimisation problem

min
z≥0

V (x, y, z) := W (x, y) + z( f A(x, y) − fB(x, y)).

(A.1)

We implement the unmodified Bregman Itoh–Abe method
(3.7) with τ ≡ 1, x0 = [x̃0, ỹ0, 0]T , and J (x) =
‖x‖2/2 + χ[z≥0](z), where we use the shorthand notation
x = [x, y, z]T .

If [x, y]T ∈ B∩S1, then ∂zV (x, y, 0) = −1,meaning that
[x, y, 0]T is a non-stationary point of V restricted to {z ≥ 0}.
Since the limit set of ([x̃ k, ỹk]])k∈N is S1, it follows that the
iterates ([x̃ k, ỹk, 0])k∈N admit non-stationary accumulation
points for V . It therefore remains to show that for all k ∈ N,
xk = [x̃ k, ỹk, 0] are admissible updates to theBregman Itoh–
Abe method (3.7) for (A.1).

To verify that xk = [x̃ k, ỹk, 0] for all k, we can argue
by induction. If xk = [x̃ k, ỹk, 0], then V (x̃ k, ỹk, 0) =
W (x̃ k, ỹk) so x̃ k+1 and ỹk+1 are admissible updates for the
x- and y-coordinates.

It remains to verify the same for the z-coordinate as well.
If [x̃ k+1, ỹk+1]T ∈ A, then ∂zV (x̃ k+1, ỹk+1, 0) = 1, so
we have the update zk+1 = 0 and pk+1

3 = pk3 − 1 ∈
χ[z≥0](zk+1). On the other hand, if [x̃ k+1, ỹk+1]T /∈ A,
then ∂zV (x̃ k+1, ỹk+1, 0) ∈ [−1, 1], so if in addition pk3 <

−1, then we have the update zk+1 = 0, pk+1
3 = pk3 −

∂zV (x̃ k+1, ỹk+1, 0). Denoting by M and N the cardinalities
of {i ≤ k : [x̃ i , ỹi ]T ∈ A} and {i ≤ k : [x̃ i , ỹi ]T /∈ A},
respectively, we know by construction of A that M −N ≥ 1.
Furthermore, we observe that pk3 ≤ N − M ≤ −1, which
concludes the argument.

Appendix B �1-regularised sparse SOR
method

In what follows, we describe the update rule for the Bregman
Itoh–Abe method with V given in (5.5) and J given in (5.3).

Denote by x̃ k+1
i the standard SOR update (5.2) for the i th

coordinate. Then the �1-regularised sparse SOR method can
be expressed as follows.

1. If xki = 0 and |x̃ k+1
i − γ rki | ≤ γ + λτ/aii , then

xk+1
i = 0, rk+1

i = γ rki − x̃ k+1
i

γ + λτ/aii
.

2. Else if

|(τ/2 + 1)x̃ k+1
i + γ rki | ≥ γ + τλ/aii ,

then

xk+1
i = x̃ k+1

i +
γ rki − (γ + τλ/aii ) sgn

(
x̃ k+1
i + γ

τ/2+1r
k
i

)

τ/2 + 1

rk+1
i = sgn

(

x̃ k+1
i + γ rki

(τ/2 + 1)

)

.

3. Else if xki �= 0 and

∣
∣
∣(τ/2 + 1)x̃ k+1

i + γ rki − (λτ/aii ) sgn(x
k
i )

∣
∣
∣ ≤ γ,

then set

xk+1
i = 0,

rk+1
i = rki + 1

γ
((τ/2 + 1)x̃ k+1

i − (τλ/aii ) sgn(x
k
i )).

4. Else if xi �= 0 and

∣
∣
∣
∣
∣
2

(
aii
2

+ aii
τ

)

x̃ k+1
i +

(
2aii γ

τ
+ λ

)

sgn(xki )

∣
∣
∣
∣
∣

2

≤ (bi − 〈ai , yk,i−1〉 +
(
2aii γ

τ
+ λ

)

sgn(xki ))
2 . . .

+ 8λ

(
aii
2

+ aii
τ

)

|xki |,
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then set

xk+1
i = x̃ k+1

i + sgn(xki )

2

(
aii
2 + aii

τ

)

(
2aii γ

τ
+ λ . . .

−
√
√
√
√

(bi − 〈ai , xk〉 +
(
2aii γ

τ
+ λ

)

sgn(xki ))

2

+ 8λ

(
aii
2

+ aii
τ

)

|xki |
⎞

⎟
⎠ ,

rk+1
i = −rki .
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