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H I G H L I G H T S

• Uncertainty of with Final and Useful energy statistics is explored for the first time.

• Data about end-use conversion efficiencies is collected and updated.

• In the UK, The average Final to Useful conversion efficiency is of 67%.

• A large share of Useful energy consumption (85%) has an uncertainty below 25%.

• Internet of Things will improve end-use energy statistics, including Useful Energy.
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A B S T R A C T

The use of Useful energy as an energy indicator for sustainability and energy efficiency policy making has been
advocated for since the 1970s. Useful energy is the energy delivered by conversion devices in the form required
to provide an energy service. This indicator has not been employed mainly because of concern over the relia-
bility of the underlying data, however its uncertainty has never been quantified. This study is a first attempt to
rigorously quantify the uncertainty that is associated with Final and Useful energy balances. A novel metho-
dology based on a Bayesian approach is developed, previously unpublished data about average end-use con-
version device efficiency is compiled and the Useful energy balance of the United Kingdom is calculated. The
uncertainty analysis shows that the largest source of uncertainty is the allocation to energy end-uses, where the
uncertainty of the energy flows goes from a median value of 5% to one of 34%. Useful energy consumption for
transport and for heating has low uncertainty (4–10%) and overall, 85% of consumption has uncertainties below
an acceptable 25% threshold. Increased availability of energy consumption sensing technology will enable the
improvement of end-use energy statistics. If governments and statistical offices seize this opportunity, Useful
energy has the potential to become an important indicator for the development of energy efficiency policies and
thus help stimulate policy action in end-use sectors.

1. Introduction

The need to reduce global green house gas (GHG) emissions has
induced governments to implement a number of policies aimed at re-
ducing energy consumption. The IEA estimated that the share of global
energy consumption being affected by efficiency and conservation po-
licies rose from 14% in 2005 to 27% in 2014 [1]. The successful im-
plementation of efficiency policies requires appropriate indicators and
energy statistics in order to track progress, to prove additionality and to
set targets [2]. Two example statistics used for these purposes are the
vehicle stock fuel efficiency (l/100 km) [3,4] and the energy require-
ment for heating and cooling of buildings (kWh/m2) [5].

All current energy efficiency indicators are based on measures of

Primary or Final energy. Since the 1970s, academics [7] have argued in
favour of measuring Useful energy, for its use as an energy indicator.
Fig. 1 illustrates the relationship between three ways in which energy is
measured. Primary energy refers to the energy that is extracted from
nature, such as the chemical energy of coal, or the kinetic energy of
water streams [8]. Primary energy is mostly converted into energy
carriers (eg. electricity, gasoline) which are purchased by final con-
sumers. The total amount of energy purchased is referred to as Final
energy. Energy carriers are employed for different end-use applications
(end-uses), such as cooking, heating spaces or the provision of move-
ment. The energy for each end-use application is provided by a con-
version device, which transforms energy carriers in the desired energy
form (e.g. thermal, kinetic, and electromagnetic energy). The output
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energy from conversion devices is referred to as Useful energy. Useful
energy is also the last form of energy that can be measured in energy
units before the delivery of an energy service and it can diverge sub-
stantially from Final energy. For example, roughly 25% of Final energy
delivered to road transport is converted to Useful kinetic energy, in
contrast, over 300% of the Final energy delivered to heat pumps is
converted to Useful thermal energy.

There are at least three reasons why understanding Useful energy
consumption is important. First, there is skew towards supply side
measures in climate mitigation plans [9] at the expense of demand-side
measures. One of the reasons for this is that Primary and Final energy
accounting practices are well established and a multitude of metrics are
available for policy design. Useful energy accounting, with its focus on
the demand side of the energy system, can provide additional indicators
for the development of energy efficiency policies. Since the availability
of indicators for policy design and evaluation are key to policy devel-
opment, Useful energy accounting could help bridge the gap between
supply side and end-use side policy action.

Second, Grubler [10] highlights that a key limitation in the under-
standing of long term energy transition has been the lack of Useful
energy data and that the reliance on Final and Primary energy figures
might have distorted our understanding of past energy transitions.

Third, researchers in the field of exergy economics have been ex-
ploring the impact of Useful energy on economic growth [11], claiming
that the addition of Useful energy time series can better explain eco-
nomic growth compared to the traditional economic production factors
of capital and labour.

Despite these benefits, only few Useful energy accounts exist in of-
ficial publication and academic studies. One of the reasons for this is the
concern over the reliability of Useful energy estimates [12], as ex-
emplified by the following statement in the 2014 digest of United
Kingdom energy statistics: “Statistics on Useful energy are not suffi-
ciently reliable to be given in this Digest; there is a lack of data on
utilisation efficiencies and on the purposes for which fuels are used”
[12]. However, the recent increase in demand side energy efficiency
policies has lead to an increase in the quality and quantity of energy
end-use statistics in many countries. A questions arises from these de-
velopments: is the existing data sufficient to paint an accurate picture of
Useful energy consumption?.

This study aims to answer this question by achieving two objectives:
(a) to provide a methodology to estimate the uncertainty of Useful
energy calculations, and (b) to test this methodology with the appli-
cation to the United Kingdom’s energy system. In the next section, a

review of the literature surrounding Useful energy accounting is pro-
vided. In Section 3 the model employed to calculate Useful energy and
to estimate its uncertainty is described while Section 3.3 focuses on the
data relevant to the UK. In Section 4 the results of the study are dis-
played and discussed, and Section 5 draws conclusions and suggests
avenues of further research.

2. Previous work

The relevant literature is split in three parts. First, past examples of
official Useful energy balances are presented along with the current
practices used to estimate the quantity of energy used in each end-use
application. Second, literature from the Societal Exergy Analysis field is
summarised and compared to standard Useful energy accounts. Third,
the literature dealing with the theoretical framework required for un-
certainty analysis of top down statistics is outlined.

2.1. Useful energy statistics

Useful energy is used in energy demand modelling at various levels.
For example, it is used at a global level in the World Energy Model [13]
and at a sectoral level in the UK [14]. The metric is also often used in
facility level analyses [15], especially for air conditioning systems
where end-use efficiencies of different technologies have large varia-
tions [16]. However, Useful energy consumption is seldom measured
directly because it would require the measurement and recording of
each of the various energy-using devices. In addition, no monetary
transaction is usually involved with the conversion from Final to Useful
energy, therefore its estimation cannot be based on existing accounting
practices as is the case for Final and Primary Energy [6]. Instead, Useful
energy is calculated from Final energy statistics with the addition of
two pieces of information: the split (or allocation) between end-use
applications of energy, and information on the average conversion ef-
ficiency of each end-use application. Eq. (1) summarises the simplest
Useful energy calculation method.

=U F ϕ η (1)

where U is Useful energy, F is Final energy, ϕ is the allocation vector
that contains information on the split of energy end-uses, and η is the
average conversion efficiency.

The European statistical office (EUROSTAT) attempted to estimate
Useful Energy balances for member countries in the period between
1975 and 1988 [17,18]. The allocation of energy to various end-uses
was completed for three broad sectors (Industry, Transport and

Fig. 1. Schematic of the flow of energy from Primary,through Final, to Useful, adapted from [6].
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Buildings) using proxy data such as surveys of energy uses, the physical
form of the energy products and expert knowledge of the energy uses in
each sector. The average efficiencies were determined for about 30
devices based on unspecified “studies published by energy technicians
and engineers”. More recently, Useful energy accounts have been
compiled at an European level [19,20], but only for the provision of
space heating and cooling.

Outside Europe, the Brazilian ministry for mines and energy com-
missioned Useful energy analyses for the years 1984, 1994 and 2004
[21]. These studies had two aims: first to analyse separately the
structure of energy consumption and the development of energy effi-
ciency; and second to compute the energy saving potential from im-
proved conversion efficiency. The authors employed various govern-
ment-led surveys to assess the allocation of energy to end-uses while
conversion efficiencies were estimated directly by the authors (without
a clear methodology). Both these studies are well documented and
analyse the entire energy system, but unfortunately they have been
discontinued.

De Stercke [22] compiled a database containing estimates of Useful
energy and Useful exergy for 15 countries in the period between 1960
and 2009. He employed IEA data as a starting point and used estimates
by Nakićenović in 1996 [23] on the split of energy consumption to the
various end-uses, whenever country specific data was unavailable. Data
on conversion efficiencies found by past studies was used to define an
empirical exponential function relating the efficiency of various devices
with GDP to fill the gaps for years and countries without available data.
This study has the benefit of providing a time series of Useful energy
consumption for a group of countries, however gross approximations
were required to fill the large data gaps present in terms of conversion
efficiency and energy end-use split.

There are currently no official Useful energy balances being pub-
lished by governmental agencies. One of the reasons for this dis-
continuation in Europe and in Brazil is the uncertainty associated with
the estimates. In fact, as early as in 1979, the statistical review of UK
energy stated estimates of Useful energy were desirable, but they were
not published because they were deemed too unreliable [24]. However,
official statistics on the breakdown by energy end-use, one of the key
ingredients for Useful energy calculation, are becoming more common
and refined thanks to their use in energy efficiency policies, as is dis-
cussed in following section. To quantify the effect of these improve-
ments, an assessment of current Useful energy statistics is necessary.

2.1.1. End-use energy statistics
The IEA records that at least 14 countries provide end-use break-

down in the residential sector [25] while Enerdata provides the
breakdown for all EU member states [26]. This data is compiled be-
cause the definition of some efficiency indicators require a dis-
aggregation of energy consumption by end-use, for example the space
heating requirements of dwellings, measured in kWh of space heating
per m2 [2]. The costs of gathering extra data on energy end-uses is
justified by the avoided cost that would be incurred due to bad policy
design and evaluation.

The reliability and accuracy of end-use statistics depends on the
data gathering methodology. National statistical offices use different
methodologies which can be categorised as follows.

• Metering/Auditing the breakdown can be measured directly by
installing sub-metering equipment in buildings. This enabled a high
resolution understanding of energy use by each type of appliance
and end-use, as done for many EU countries [27–29]. In the in-
dustrial sector, this type of collection methodology is better de-
scribed as an energy audit, where the performance of equipment and
processes are measured by visiting experts. While there are several
benefits to this methodology, its costs are high meaning that the
sample size and frequency of the metering are often low [30].

• Direct Survey End-use energy breakdowns can be estimated using a

survey that directly asks for the breakdown. This method assumes
that the respondents are technically literate and have access to de-
tailed data on their energy consumption [31]. Therefore, this
methodology is only relevant to the industrial sector and possibly to
buildings that employ an energy manager or an energy management
system.

• Engineering Models Engineering models require information on a
representative sample of buildings or of industries and a calculation
method to estimate the breakdown of energy consumption. The
input data required quantitative information on building physics
(e.g. U-values, floor area, type of process technology) and energy
using equipment. The detail and accuracy of the physical model is
constrained by the resolution of information provided by the stock
survey [32]. Such surveys are common for the residential and
commercial sector, where governments need information on build-
ings for non-energy related purposes. For the industrial sector, en-
gineering models break down energy consumption by end-use based
on industrial equipment and process stock and efficiency. These
models are usually not based on public surveys but instead are either
informed by propriety databases [33] or by adhoc academic studies
[34].

• Statistical Models This method is similar to the method described
above in terms of data requirements and quality. However, instead
of calculating the energy consumption based on physical relations, a
regression analysis between input variables and end-use consump-
tion is used. The regressions are calculated using historical data [35]
on energy end-uses. For the industrial sector, statistical models can
be used to model the cross-cutting energy requirements such as
lighting or space heating [36].

The methods and sample sizes used to estimate the breakdown of
energy end-uses have an impact on the reliability of the resulting sta-
tistics. However, the uncertainty associated with these estimates is
seldom quantified or even assessed. This undermines the robustness of
the end-use statistics, and of the study results.

2.2. Societal exergy analysis

One field that has expanded the concept of Useful energy is field of
societal exergy analysis, which aims to characterise the energy effi-
ciency of societies at different scales, sectoral, national and global [37].
Exergy rather than energy is used because it is believed to further de-
scribe the quality of energy consumption compared to energy metrics
[38]. Estimates of the overall Primary to Useful exergy efficiency for
different societies range between 10% and 30% [39].

Different methods are used in this field and the differences are well
summarised in a recent review paper [37]. Eq. (2) describes how the
total Useful exergy of a society (EU) is calculated in most articles [40],

∑= ∊E F ηU sfe sfe sfe (2)

where η is the end-use conversion efficiency, ∊ is the exergy factor and F
is Final energy. The index s f e, , refer respectively to the sector, fuel and
end-use of energy. This equation contains one further efficiency term
(∊) compared to the standard Useful energy estimation method shown
in Eq. (1). Cullen and Allwood [41] argue that better insights are
available by distinguishing the technical sub-systems that form the
energy system. To this end, they introduce the concept of “conversion
device” and “passive system”. The former are the ensemble of tech-
nologies that convert Final energy into Useful energy (eg. engines,
boilers) while the Passive Systems dissipate Useful energy in order to
deliver a energy service (i.e. vehicle body, building frame). Since con-
version devices are well defined technical systems, it is easier to esti-
mate their efficiency as well as their improvement potential [42]. Ac-
cording to their framework, Useful exergy is therefore better estimated
as shown in Eq. (3),
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∑= ∊U F ηsfd sfd sfd (3)

where all symbols retain their meaning and index d refers to the con-
version device undertaking the energy conversion. The Useful energy/
exergy results obtained in this field are often affected by the lack of
robustness and reliability dictated by the numerous assumptions and
estimates required. The following issues affect the reliability of the
results.

• The allocation to end-use applications is often performed by a
combination of data and educated guesses, without systematic and
comparable methodology being put in place.

• The estimation of average conversion efficiencies employed are
often quoted from previous work with minor adjustments. There is
little focus on efficiency data gathering while there is a lot of re-
liance on expert judgement.

• The calculation of the exergy factors for each end-use requires es-
timates of average environmental and process conditions. However,
there is very limited information on the average temperatures of the
various processes.

While these issues have been recognised by members of the research
community [37], the impacts of these assumptions on the results un-
certainty has not been quantified yet.

2.3. Uncertainty in useful energy estimates

The topic of data uncertainty in energy statistics is not often dis-
cussed in academic debate. Macnick [43] contributed by highlighting
the lack of attention given to uncertainty in energy statistics published
by international organisations and stated that this might undermine the
credibility of studies that employ this data. The long established prac-
tice of Primary and Final energy accounting by governmental agencies
in the developed world means that statistical differences in energy
balances are always below 0.5% and that the uncertainty associated
with these estimates is deemed to be less than 5% [44,12]. The same
cannot be said about Useful energy and exergy accounts [37], yet there
is no established methodology to quantify the uncertainty of the results.

Fortunately, further insights on how to treat uncertainties in large
systems can be gained from other fields such as Material Flow Analysis
(MFA) [45]. Uncertainty can be of two types: epistemic or aleatory. The
former refers to uncertainty due to lack of knowledge about the true
value of a parameter, while the latter refers to the uncertainty due to
the intrinsic randomness of a phenomenon [45]. For energy statistics,
uncertainty is solely epistemic since energy flows in an economy have
one true value, but there is uncertainty about this value due to
knowledge imperfection.

Conventional approaches to uncertainty quantification and analysis
[46] are less relevant here because they focus on repeatable processes
such as measurements in experiments or survey answers. In contrast,
the collection of national level energy statistics is a non-repeatable
process. “Single-sample” uncertainty assessment techniques in use since
the 1950s [47] aim to quantify the uncertainty of a given non-repeated
measurement, but depend on empirical techniques such as auxiliary
calibration experiments. These have no equivalent in assessing un-
certainty in national statistics, where uncertainties are quantified
through techniques such as expert elicitation and pedigree matrices.
Therefore, the best way to analyse the uncertainty of this type of data is
through a Bayesian framework using Monte Carlo methods [48]. In this
framework, the uncertainty of a parameter is defined using probability
distributions representing the degree of belief of that parameter.
Bayesian approaches have been gaining momentum in studies that
analyse the uncertainty of highly aggregated systems. For example, this
theoretical framework is used in national and global level material flow
analyses. Laner et al. have reviewed many possible techniques for un-
certainty evaluation of MFAs [45] and developed a framework for data

quality evaluation and uncertainty propagation which is based on the
quantification of prior knowledge using a Bayesian framework [49,50].
Gottschalk et al. [51] discussed a Bayesian approach to MFA, and
Cencic and Frühwirth [52] applied this to data reconciliation for simple
linear models. Lupton and Allwood have introduced a general recipe for
the application of the Bayesian framework to MFA and applied it to the
global steel supply chain [53]. Also the techniques prescribed by the
IPCC for GHG accounting are based a Bayesian framework since gov-
ernments are asked to provide confidence intervals for their emission
estimates [54].

In summary, two factors play in favour of the revival of Useful en-
ergy accounting. First, the introduction of energy performance stan-
dards mean that the efficiency of most energy-using products is now
measured. This means that accurate year on year estimates of average
end-use efficiency only require a stock model and sales data by effi-
ciency category. Second, the ease of information gathering brought
about by the ubiquity of sensors might further decrease the cost and
increase the accuracy of end-use energy consumption surveys.
Therefore, Useful energy balances might become more feasible and
reliable. Within this context, this study develops a methodology drawn
from other fields, to quantify the uncertainty of Useful energy in a
country that has a wealth of publicly available energy statistics: the
United Kingdom.

3. Methods

This section outlines the methods used for this study in three parts.
First, the general methodology to disaggregate Final energy consump-
tion and to compute Useful Energy is presented and terminology is
introduced. Second, the uncertainty quantification techniques and the
probabilistic model is described. Third, the data sources used to analyse
the UK’s Useful energy consumption and its uncertainty are listed.

3.1. Useful energy calculation

Useful energy is calculated by multiplying Final energy consump-
tion by the end-use conversion efficiency with the efficiency (η). Final
energy can be disaggregated in terms of energy carrier f (e.g. Coal,
Electricity, etc.), sector s (e.g. Industry, Residential), end-use e (heating,
lighting, etc.), and device d (e.g. electric motor, boiler, etc.). Hence,
Useful energy is calculated using Eq. (4).

=U F ηfsed fsed fsed (4)

Standard energy balances provide Final energy consumption sta-
tistics disaggregated in terms of energy carriers and sectors (Ff s, ).
Therefore, two allocation matrices ϕ and θ are needed before the Useful
energy calculation can be made. Matrix ϕ allocates Final energy to each
end-use application. For example, it can specify that Coal in the re-
sidential sector is used 80% for space heat and 20% for hot water.
Matrix θ allocates Final energy to the specific conversion device used
for each end-use. For example by specifying that 40% of oil used for
mechanical energy in road transport goes to petrol engines and 60% to
diesel engines. Eq. (5) summarises the relationship, where the super-
scripts indicate that there is a matrix for each of the indicated cate-
gories.

=F F ϕ θfsed fs fs
e

fse
d( ) ( )

(5)

In the following sections, the rationale behind the categories em-
ployed is described.

3.1.1. Final energy
National energy balances (such as those published by the IEA [55])

containing data on Final energy consumption split by economic sectors
and by energy carriers are used to define Ffs. Energy carriers. These are
classified based on their physical state in the following categories:
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Liquid fuels, Gas, Coal, Solid Biomass and Waste, Electricity and District
Heat (DH). Grouping energy carriers by physical state has the benefit of
allowing a better match with specific conversion devices technologies.

Nine economic sectors categories used by the IEA are used in the
study: Industry, Residential, Services, Agriculture/Fishing/Forestry
(AFF), Road Transport, Rail Transport, Navigation, Aviation, and
Pipeline Transport.

3.1.2. Sectors to end-use
Energy end-use statistics are used to define the ϕfs

e matrix which
allocates Final energy to the various end-uses. To define this matrix, a
coherent definition of end-use categories is required. End-use statistics
are compiled at a sectoral level thus the categories employed are often
sector specific. A cross-sectoral analysis requires comparable end-use
categories for all sectors, while still being sufficiently specific about the
end-use of energy. Since these two requirements are often at odds, a
judgement is required in the defining the end-use categories employed.
The German Energy Statistics Office provides a good starting point, as it
employs end-use categories that facilitate a compromise between the
two needs [56]. Table 1 lists and describes the nine end-use categories
employed in this study. The only modification of the German definition
is the split of the Process Heat category in Process Heat Direct and
Process Heat - Indirect to fit the data available for other countries.

3.1.3. End-use to conversion device
The allocation matrix θfse

d( ) describes the share of energy converted in
a specific devices for a given combination of sector, energy carrier and
end-use. The definition and classification of energy conversion devices
used in this study is based on the work by Cullen and Allwood [42],
with only one modification. Those authors distinguish four types of
burners based on the type of fuel they use. While there are technical
differences between these categories, there are further differences be-
tween the mode of combustion, that is, on whether the combustion
occurs within a boiler or directly on the product to be heated. This is
because the efficiency of the boiler depends on both the combustion
efficiency and the heat exchanger design; while for direct combustion,
only the former matters. Since the framework used in this analysis
enables the distinction of energy flows by fuel, it is best to classify the
devices only on their technical differences: direct combustion versus
indirect combustion. Table 2 lists and describes the conversion devices
employed in this study.

3.1.4. Conversion efficiency
The conversion efficiency of each device must represent the average

efficiency for a device using a given energy carrier, in a given sector to
deliver a specific energy service. The definition of efficiency depends on
the system boundary chosen. In this instance, the boundary is limited to
the first form of energy in the Useful form. For example, for an electric
motor, the mechanical energy measured at the shaft is considered the
device output; even though energy may be used further used in other
devices such a driving a fan. The output from the conversion devices is
classified in five Useful Energy categories derived from Cullen et al.

[41]. These are: Motion, Heating, Coolth, Illumination, Information.
Data on the average efficiency of conversion devices is seldom found

in either official statistics or academic literature. When no information
is available, average efficiencies must be estimated using other sources.
These include: technical equipment surveys, device performance data-
bases; and device performance data found in manufacturer’s catalogues.
Whenever possible and appropriate performance data is collected for a
large number of conversion devices. This data is analysed to obtain a
range of efficiency values as well as to determine the major trends that
influence a device’s efficiency (e.g. power rating, technology type).

3.2. Uncertainty analysis

Three steps are used to assess uncertainty in this analysis. First, the
uncertainty associated with each model parameter is quantified and
described. Second, a probabilistic model is defined. Third, the un-
certainty is be propagated in the model to assess the uncertainty of the
Useful energy consumption.

3.2.1. Uncertainty estimation
Epistemic uncertainty is routinely quantified in various fields such

as engineering modelling [57], scientific computing [58], and safety
assessments [59]. Two widely used methods for uncertainty quantifi-
cation are expert elicitation and the pedigree matrix. Expert elicitation
techniques are designed to formally interview experts in the field who
possess in depth knowledge of the parameter being studied. This is used
in risk assessment and in technological forecasting studies [60]. The
pedigree matrix technique enables the consistent quantification of the
uncertainty of the available data by assessing it against multiple quality
dimensions. This method is mostly used in Life Cycle Inventory [61]
and in MFA [50]. In addition to these primary methods, statistical
agencies can provide confidence intervals or uncertainty ranges for
their published statistics.

In accordance with the IPCC guidelines, in this study uncertainty is
defined as two times the coefficient of variation. This definition enables
the uncertainty (Y) to be intuitively expressed as a percentage (e.g. ±Y

Table 1
List of end-use categories used to classify end-uses for all sectors.

End Use Category Description

Process Heat - Direct Energy applied directly for material processing (cooking, blast furnace, etc.)
Process Heat - Indirect Energy delivered through an intermediate mean, usually steam
Space Heat Energy used to maintain comfortable temperature inside buildings
Hot Water Energy used to increase water temperature for hygiene and comfort
Space Cooling Energy used to maintain a comfortable temperature inside buildings
Process Cooling Energy used to decrease the temperature of materials below ambient (refrigeration)
Mechanical Energy used to deliver Useful work (pumping, motion etc.)
Illumination Energy used to the illumination of buildings and streets
Information, Communication, Entertainment Energy used for computing power, and for communication and control

Table 2
Description of the energy conversion device categories employed, adapted from
Cullen and Allwood [42].

Conversion Device Description

Spark Ignition Engine Spark ignition Otto engine (car, generator, machinery)
Diesel Engine Compression ignition diesel engine (truck, car, ship,

train, generator)
Gas Turbine Jet engine for aircrafts, gas turbines for mechanical drive

(industry, pipeline compressors)
Electric Motor AC/DC induction motor (excl. refrigeration)
Boiler All fuels to: Space Heat, Hot Water, Process Heat-Indirect
Electric Heater Electric resistance heater, electric arc furnace
Burner Process Heat Direct from fuels. All uses of DH
Cooler Refrigeration, air conditioning, air separation
Light Device Lighting (tungsten, fluorescent, halogen, etc)
Electronics Computers, televisions, portable devices
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%).

3.2.1.1. Energy balance. Information on the uncertainty of energy
statistics is rare. However, the 2006 IPCC guidelines on GHG
inventories [54] advise Annex I countries to perform uncertainty
analyses on their emissions. Since most of the energy system relies on
fossil fuels, this data can be used to inform the uncertainty of energy
statistics. Uncertainties are estimated by staff working in the reporting
institution or by appropriate experts, for each energy carrier in each
sector. Emission uncertainties are the combination of emission activity,
which represents the physical quantity of fuel burnt, and of the carbon
emission factor which represents how much CO eq2 is emitted by the
combustion of one physical unit of fuel. The carbon emission factors are
related to the heating values of the fuels since both are a function of the
fuels chemical composition, and sometimes emission factors are
calculated from calorific value data [62]. Therefore, it is assumed
that the uncertainty of the calorific value is equivalent to that of the
emission factor. Calorific values are easier to calculate than emission
factors and are measured more often due to contractual needs. Hence
the assumption is deemed conservative. The activity (A) and the
emission factor (EF) probability density functions are combined to
determine the overall emission intensity uncertainty (Ye), as shown in
Eq. (6)

=
+

+
Y

A EF
A EF

Var[ ]
Exp[ ]e

(6)

Knowing the probability distributions which describes these un-
certainties it is possible to determine the probability density function of
aggregated fuel categories. The uncertainty is assumed to follow a
lognormal distribution because energy consumption cannot be nega-
tive. For electricity, the uncertainty in consumption derives from
measurement error, since electricity network must always balance.
Therefore a value of 0.5% is appropriate since this is the standard for
electricity meters in the EU [63]. For district heating, an uncertainty of
3% is assumed since it represents typical metering accuracies [64]. The
data on the variance of each fuel-sector combination is used to inform
the probabilistic model of Ff s, .

3.2.1.2. Allocations to end-uses and devices. Energy end-use statistics
collected using the methods outlined in Section 2.1.1 result in an
allocation vector of proportions αe for each energy carrier and each
sector, such that

∑ =α 1
e

e
(7)

Statistical agencies rarely provide uncertainty estimates for their
published values, and when they do, it is a single value (as reported in
[65]). However, most end-use energy data is sourced from energy
consumption models which provide interpretation and quantification of
uncertainty in their input parameters and in their outputs. Given the
lack of official figures, it is necessary to make use of expert judgement
for the quantification of the uncertainty (Y) for each allocation.

Describing the uncertainty of an allocation is, perhaps surprisingly,
not straightforward. For example, assume we have 100MJ of energy
split into three parts of 80%, 17% and 3%. What is the meaning of a
10% “uncertainty”? Intuitively, it is expected that all shares vary by
10%. That is, the biggest from 72 to 88MJ, the middle one from 15 to
19MJ and the smallest from 2.7 to 3.3MJ. However, this is not pos-
sible. To see why, consider that the smallest share reduces to the
minimum expected, from 3MJ to 2.7 MJ. The other two shares must
increase by a total of 0.3 MJ. Even if all of this increase went to the
80MJ share, that would still be only a variation of 0.3/ 80 = 0.4%:
much less than the expected variation. Conversely, if the largest share
were to increase by 10% the corresponding change in the smaller shares
would be bigger than expected.

Because it is not possible to have “10% uncertainty” on all parts of
the allocation, a choice about how to interpret the uncertainty must be
made. At the same time, there is no information about the specific
probability distributions describing the allocations, or their covariance
(i.e. which part would increase if another part decreases). In this paper
the Dirichlet distribution is used to describe uncertain allocations be-
cause it naturally represents allocations that add up to 100%, and be-
cause it has a simple parameterisation in terms of the mean shares and a
”concentration parameter” determining the level of uncertainty. We
consider the following rules for the interpretation of a “10% un-
certainty” relative to different “reference parts”: (a) 8 percentage points
(pp) on 80%, (b) 1.7 pp on 17%, (c) 0.3 pp on 3%.

Fig. 2 compares the results of these rules to the expected outcome –
10% variations in the size of the output parts. Unsurprisingly, the ex-
pected uncertainty range is observed for the reference part whose un-
certainty was specified: a has the expected range for the first part, b for
the second part, etc. But this example shows that parts smaller than the
reference part have greater than expected uncertainty, while parts
bigger than the reference part have smaller than expected uncertainty.
Because bigger parts have a bigger influence on the overall results, it is
better to exaggerate the uncertainty of small parts than it is to deny the
uncertainty of large parts. We therefore use rule a: adjust the dis-
tribution to match the uncertainty in the largest part to the specified
value. This approach is followed for both the allocation of Final energy
to end-uses, and for the allocation from end-uses to conversion devices.
A more formal explanation of the equations used is shown Section 3 of
the Supporting Information.

3.2.1.3. Conversion efficiencies. Statistical offices at times provide
average conversion efficiency estimates obtained using sales data or
expert estimation. Since these estimates are rare, the method to derive
national average efficiencies from publicly available data described in
Section 3.1.4 is used for most devices.

Fig. 2. Comparison of probability distributions from a Dirichlet distribution
with input parameters αe=[0.8 0.17 0.03] using three different interpretations
for an uncertainty of 10%. In cases a, b, and c the 10% relative uncertainty is
applied is applied respectively to the smallest, mid and largest input para-
meters. The shaded bands show the ± 10% range relative to each share which is
in line with the most intuitive interpretation of uncertainty.
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The uncertainty of the efficiency estimate is quantified using two
parameters: the quality of the underlying data (which quantifies the
magnitude of the uncertainty) and the quality of the central estimate
(which determines the probability distribution is used).

Data quality is assessed in a consistent way using a pedigree matrix
similar to the one used by Laner et al. [50] for Material Flow Analysis.
The data is assessed using five qualitative indicators: Reliability,
Completeness, Geographical Correlation, Temporal correlation, Other
correlation. The score obtained by each data point is used to determine
the magnitude of the uncertainty of each estimate. The definition of
each indicator, as well as the qualitative aspect associated with each
score are show in Table 3, while the values associated with each score
are shown in Table 1 found in Section 2.1. of the Supporting informa-
tion.

Since efficiency values are bound between zero and one, and be-
cause the range of efficiencies can be either small or large depending on
the technology, the uncertainty is defined as a fraction of the efficiency
range (R) for each technology as seen in Eq. (8).

∑=β R s
i

i
(8)

where β is the uncertainty parameter for each efficiency, R is the per-
formance range for a given technology, s is pedigree matrix score for
that technology and the index i refers to each indicator.

Once the uncertainty (β) of the estimate is quantified, a probability
density function is selected to represent the distribution of the un-
certainty. The distribution is chosen according to the quality of the
central estimate.

• Uniform distribution: if there is no information available to provide a
central estimate of the average efficiency. The difference between
the lower and upper bound of the distribution is equal to β.

• Triangular distribution: if there sufficient information to provide a
central estimate of the efficiency. The expected value of the dis-
tribution is set to the central estimate; while difference between the
upper and lower bound is β

• Normal distribution: If a reliable central estimate for the average ef-
ficiency is available. The expected value of the distribution is the
central estimate, while the standard deviation is β

4
.

3.2.2. Uncertainty propagation
The uncertainty is propagated through the model using a Monte

Carlo simulation technique. The simulation is implemented using a
Python and a MatLab script, using 5000 samples are drawn from each of
the probability distributions and then multiplied together to obtain a
sample of estimates for Useful energy. The value of 5000 was chosen to
provide numerical stability to the resulting distributions without ex-
cessive computational effort.

3.3. UK data sources

In this section, the sources of data used to calculate the Useful en-
ergy consumption of the UK are described. The method followed is
summarised in Fig. 3.

3.3.1. Energy balance
The 2013 Eurostat energy balance for the UK [66] is used for the

analysis (the department for Business, Energy and Industrial Strategy
(BEIS) does not publish a disaggregated balance). Data on the un-
certainty associated with each of the fuels is retrieved from the 2016
GHG inventory report [67], while an explanation of the methodology
use to compile the data is found in a 1998 Department for Environment,
Food & Rural Affairs (DEFRA) report [62]. The uncertainty of liquid and
gaseous biofuels is assumed to be the same as their fossil equivalents,
since their reporting follows similar centralised practices [68]. Solid
biomass consumption in the energy sector and industry is assumed toTa
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have the same uncertainty as coal, since it is reported by similar or-
ganisations. Solid biomass use in the residential sector is reported to
have significant uncertainty and is therefore assigned an uncertainty of
50%.

3.3.2. End-use allocation
Information of the end-use allocation is retrieved from the Energy

Consumption UK (ECUK) report [69]. Since not all end use categories
reported in ECUK match those shown in Table 1, it is necessary to make
some judgements on the split between different categories, adding ad-
ditional uncertainty. For electricity use in the residential sector, data
from the Household Electricity Survey [28] an empirical study of
electricity use in British households is used due to its higher resolution
and reliability. For the Agriculture, Fishing and Forestry (AFF) sector,
no end-use consumption data is available on ECUK, therefore the al-
location is based on a DEFRA study performed in 2007 on energy use in
farms [70].

Table 4 summarises the uncertainty value associated with each end-
use allocation used in this study. Residential sector end-use breakdown
is based on the Cambridge Architectural Hosing Model [71], for which

an uncertainty analysis has been performed. The service sector break-
down is based on the Building Energy Efficiency Survey [72] and its
reliability has been compared with other well-established simulation
models [73]. The industrial breakdown is based on the non-domestic
Energy and Emissions Model, which uses a survey last conducted over
17 years ago [74].

3.3.3. Allocation to devices
For the majority of flows, only one device is associated with a given

Fig. 3. Flowchart summarising the steps taken to calculate the Useful energy demand of the UK and its uncertainty, from data sources to results. The text shaded in
grey refers to the uncertainty of the data, described in the transparent boxes. The text in brackets indicates where the assumptions are found in the text. The
abbreviations used are the following. ECUK:Energy Consumption UK, CD: Conversion Device, SI: Supporting Information.

Table 4
Summary of the uncertainty associated with each end-use allocation vector
estimated by the author. Further details about the rationale underpinning
the values is found in Section 1 of the Supporting Information.

Sector Uncertainty (%)

Residential 18
Service and Commercial 20
Industrial 25
Agriculture, Forestry, and Fishing 25
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sector/fuel/end-use combination. For example, only the “Electric
Heater” can deliver residential space heating using electricity. There are
four instances, listed in Table 5, where further allocations are required.
In all cases, the ambiguity arises because more than one type of internal
combustion engine can be used to deliver mechanical energy from fossil
fuels. The energy balance distinguishes between Diesel Fuel, Gasoline
Fuel and Type A Jet fuel. This distinction is sufficient to make most of
the required allocations. Liquid fuel used in Industry, is split between
gas turbines and diesel engines according to the global sales of Diesels
and Gas Turbines for mechanical Drive obtained from ”Diesel and Gas
Turbine Worldwide” [75]. Gas use in industry is assumed to be either
used in spark ignition gas engines or gas turbines, with a strong pre-
dominance of the latter technology. Liquid fuel in the service sector is
split equally among diesel and spark ignition.

3.3.4. Conversion efficiencies
Average values for the conversion efficiency of each device category

in the UK in 2013 is sought. Data is sourced from both national and
international databases and catalogues. Whenever possible, official
governmental figures are used. A full description of the data and as-
sumptions made can be found in Section 2.1 of the Supporting in-
formation.

4. Results

4.1. Useful energy balance

The energy flow through the UK, is modelled to obtain estimates of
Useful energy consumption with the results shown in Table 7 as a
Useful energy balance.

In Fig. 5 a Sankey diagram mapping UK energy flows from Final to
Useful energy is shown. The Final energy consumption was 5.8 EJ −y 1

(1 EJ = 1012 MJ) while a Useful energy consumption of 3.9 EJ −y 1 was
estimated. Hence the average conversion efficiency is of 67%. The
largest Useful energy category is Heating, which accounts for 64% of
total Useful energy consumption while Motion is the second most used
form of Useful energy consumption, accounting for 22%. The transport
sector is the one that consumes most Final energy (2.2 EJ) while the
Residential sector consumes most Useful energy (1.6 EJ).

Fig. 4 shows the contributions of Final and Useful energy, by con-
version devices, to sectors. The lower contribution of the transport
sector in terms of Useful energy consumption is because mechanical
energy enjoys the lowest conversion efficiencies compared to other
Useful energy categories. Motion is provided with an average conver-
sion efficiency of 34% while the same value for heating is 90%.

Table 6 shows the average conversion efficiencies for each sector
and each end-use category. It can be observed that the provision of
coolth has the highest efficiencies as well as the highest uncertainties.
Uncertainties are higher for the delivery of Motion than for Heating.
The data collected enables comparisons in the rate of change of average
conversion device efficiencies against historical results [17]. For ex-
ample, lighting efficiency has increased from 6% in 1978 to 10% in
2013, thanks to the development of new lighting technologies and their
comparatively fast market penetration. Also the efficiency of space heat
delivery has increased from 64% to 83%, mainly thanks to the

substitution of oil and coal for natural gas and electricity. On the other
hand, there seems to have been a very small increase average petrol
engine efficiency and the average efficiency of electric motors has de-
creased. One possible reason for this trend is the increased market pe-
netration of smaller, less efficient, motors in buildings.

4.2. Uncertainty analysis

The analysis shows that there is great variability in the uncertainty
associated with energy statistics. Final energy statistics found on the
energy balance have mostly low uncertainties (⩽5%) with the exception
of Biomass and Waste for which there are higher uncertainties (around
30%). Fig. 4 show the magnitude and uncertainty of the Final energy
consumption, and of the Useful energy output from each conversion
device. Boilers, have the lowest uncertainty (around 7%) while the
output of light devices has the highest (126%).

One clear trend is that smaller energy quantities are more uncertain
than larger ones. For example in Industry, Useful energy for illumina-
tion has an uncertainty of 126% while Useful energy for heating has an
uncertainty of 6%. Higher level of aggregation are also linked to lower
uncertainty, therefore entire sector uncertainties are lower than those
associated with a specific device.

The uncertainty generation is highest in the allocation of Final en-
ergy to end-uses. The uncertainty associated with Final energy con-
sumption in a sector for each fuel varies between 0.5 % and 55% with a
median uncertainty of 5%. While the uncertainty associated with Final
energy consumed for each end-use in each sector ranges between 1.5%
and 120% with a median uncertainty of 34%. Similar uncertainties are
observed for Useful energy estimates broken down by sector and end-
use, with only a slightly higher median uncertainty.

It is important to note that the results of this uncertainty analysis are
as valid as the assumptions outlined in the methodology section and do
not include the “modelling” uncertainty which is associated with the
assumptions made. However, the analysis has aimed to be conservative
throughout, to avoid being overconfident about the uncertainty of the
results.

5. Discussion

This study provides a methodology to quantitatively assess the un-
certainty associated with Useful energy estimates for the first time. The
Useful energy balance of the United Kingdom in 2013 was calculated
and its uncertainty quantified.

5.1. Useful energy balance

The differences between the Final and Useful energy balances are
similar to those observed in previous studies of the UK in national [38],
European [40], and global studies [22]. There are two main con-
siderations shown by the analysis. First, the provision of Mechanical
energy has the highest improvement potential in terms of Final to
Useful efficiency. A policy that could help bridge this gap is weight-
based fuel economy standard which compels manufacturers to improve
the efficiency of internal combustion engines using available technol-
ogies such as cylinder deactivation or Atkinson cycle engines [76].

Table 5
Combinations of sector, fuel and end-use which require further allocations to determine the share of energy used by a specific device. The Uncertainty column
indicates the uncertainty associated with the allocation.

Sector Fuel End-use Gas turbine (%) Diesel engine (%) Spark ignition engine (%) Uncertainty (%)

Industry Gas Mechanical 75 25 20
Industry Liquid fuel Mechanical 30 60 20
Road Liquid fuel Mechanical 63 37 1.2
Aviation Liquid fuel Mechanical 99.50 0.50 5
Services Liquid fuel Mechanical 50 50 20
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Second, the industrial sector is the most efficient sector because it tends
to use the largest (and thus most efficient devices) and relies more than
any other sector on direct combustion, which has a 100% first law ef-
ficiency. While Primary energy consumption lies outside the boundaries
of this analysis, it is important to note that the relative Primary to
Useful efficiency is different from the Final to Useful efficiency trends
outlined here. For example, while electric motors display a very high
Final to Useful efficiency, their Primary to Final efficiency can be on par
with the one of Diesel engines (further details can be found in Cullen
et al. [42]).

The energy conversion efficiency values used in this analysis of UK
energy flows, have been revised based on the latest efficiency data from
tested conversion devices. This update was long due in the literature
and it enables the assessment of some long term trends by comparing
the results with values used by Eurostat in the 1970s [17]. As seen in
Table 6, there is considerable variation in the uncertainty associated
with efficiency: showing efficiency values with a confidence interval
should be standard practice, and any claim of year on year variation
should at least be checked for statistical significance.

From the conversion efficiency data collection procedure, it was

Fig. 4. Final and Useful energy consumed and produced by each end-use conversion device in each sector. The error bars indicate the range of two standard
deviations. Useful energy bars are lower than Final energy bars because of conversion losses (except for cooling, where efficiencies ⩾1 are observed). The magnitude
of the error bars shows that there is not always enough information to rank end-use consumption because the uncertainty is larger than the differences between
estimated consumption figures.

Fig. 5. Sankey diagram representing the energy data used in this study. The width of the lines represents the quantity of energy (in PJ, where 1 PJ = 109 MJ) while
the intensity of the colour represents the uncertainty (in %) of each flow. The first four layers are loss-less because they show only allocations, losses are only incurred
in the stage between conversion devices and Useful energy categories.
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observed that device efficiencies do not show large year on year var-
iations but they do change over longer time periods, albeit with dif-
ferent rates. Devices with short lifetimes and fast technological progress
(e.g. light bulbs) must be updated with higher frequencies compared to
devices that have long lifetimes and slower technological progress (i.e.
industrial boilers or jet engines).

The present study is a snapshot view of the Useful energy balance of
the UK because the focus of the study was on the development an un-
certainty quantification framework. It is recognised, that the full benefit
of Useful energy accounting are found in consistent time series and in
comparisons between countries. Future work should employ the fra-
mework provided here to build consistent international accounts of
Useful energy (such as done by De Stercke et al. [22]) while also pro-
viding a quantification of the uncertainty associated with the data. It is
hoped that such a database could help stimulate further research in
Useful energy accounting and help bridge the gap between supply side
and end-use side energy statistics.

5.2. Uncertainty analysis

The results from the uncertainty analysis show three broad trends.
First, end-use application with smaller shares of energy have higher
uncertainty. This results from the nature of the distribution used to
model the uncertainty of the allocation vector, and because at parity of
absolute uncertainty, smaller shares will have higher relative un-
certainties. Second, results with a higher level of aggregation have
lower uncertainty, because the uncertainties are assumed to be un-
correlated they cancel to some extent in the aggregated value, thus
reflecting the intuition that we are more confident about aggregated
values than detailed breakdowns of data. Third, the main source of
uncertainty is found in the allocation to end-use applications. It was
previously thought that both end-use allocation and efficiency values
contributed to the uncertainty of Useful energy estimates, however this
study has shown that the key element that results in uncertainty is the
allocation to end-use applications. One of the reasons for the higher
uncertainty of the allocation to end-uses is the fact that practitioners are
reluctant to quantify uncertainty while compiling national level statis-
tics and thus only very conservative assumptions can be made about
these values.

The interpretation of the uncertainty results is facilitated by de-
fining an acceptability threshold, and conveniently statistical offices
often define a range of acceptable uncertainty for national surveys. For
example, the UK’s Annual Survey of Hours and Earnings considers ac-
ceptable uncertainty values between 20% and 40% [77] (they use the
Coefficient of Variation metric, which is half the uncertainty as defined
in Eq. (6)). In a study by Eurostat, examples of acceptability thresholds
for uncertainty were found between 10% and 33% [78], while the
American Community Survey, considers values with uncertainties up to
24% as “reliable” [79]. Using these examples as guidelines, Useful en-
ergy estimates with uncertainties below 25% are deemed sufficiently
reliable. Table 7 shows that Useful energy estimates for the provision of
Heating in all sectors (with the exception of Heating from biomass) and
of Mechanical energy in the Transport sector are sufficiently reliable;

these sectors account for 85% of total Useful energy consumption. All
other Useful energy categories are too uncertain to be deemed accep-
table. Therefore, although the uncertainty of Useful energy estimates is
higher than Final energy statistics, this study shows that most Useful
energy estimates are reliable, and statistical offices only need to focus
on reducing the uncertainty in a small number of Useful energy cate-
gories.

In the specific case of the UK, an improvement of the industrial end-
use energy statistics would have the greatest impact on the reliability of
Useful energy accounting with the smallest effort. This could be
achieved by an energy end-use application survey for the Industrial
sector. A possible practical solution would be to adopt the survey
methodology used for the US Manufacturing Energy Consumption
Survey [31], where the energy managers of a sample of industrial fa-
cilities report on the end-use applications of their energy consumption.

At a global level, the advent of the Smart Grid vision in buildings,
and of the Internet of Things paradigm in the manufacturing sector are
likely to increase the quantity and quality of metered end-use con-
sumption data for energy statistics. In particular, new development in
metering and sensing technology, such as the Non Intrusive Appliance
Load Monitoring [80], smart plugs [81], and natural gas sensors [82]
enable consumers to be aware of their energy consumption. The de-
creasing costs of sensing and data processing technology (which are at
the basis of the Industry 4.0 revolution [83]) mean that an increasing
share of energy consumption will be monitored. These new develop-
ments mean that increasing quantities of data on the end-uses of energy
will become available in the near future. It is recommended that sta-
tistical offices make use of these new tools for their data collection
protocols as this would bridge the gap between the reliability of supply
and demand side statistics. This is expected to facilitate the deployment
of more detailed policies on the end-uses of energy and thus reduce the
imbalance between supply and demand side policy action.

Three avenues for further research are highlighted by the results of
this analysis.

• Further research is required to improve the accuracy of the un-
certainty estimates for allocating energy. There are at least two ways
to improve the robustness of the data used to assess the uncertainty
of end-use energy statistics. Firstly, one could employ expert elici-
tation techniques to canvas a number of practitioners to extract
probability density functions to be associated to the various para-
meters. Secondly, the uncertainty analysis could be performed di-
rectly on the models that are used by statistical offices to estimate
the end-use energy consumption in each sector.

• The uncertainty analysis should also be expanded to include
Primary energy statistics, while at the moment there is no available
technique to estimate their uncertainty. It would be desirable for all
users of energy statistics to if an assessment of the quality of such
numbers was made available by statistical agencies or if a suitable
probabilistic model could be employed to infer their uncertainty.

• A comparative study of the techniques used to estimate energy end-
uses could shed light on the international best practices which could
be emulated in other countries to improve the quality of end-use

Table 6
Average conversion efficiencies from Final to Useful Energy for each sector, aggregated by Useful energy category.

Coolth Heating Illumination Information Motion

Industry 309% ± 347% 94.2% ± 1% 13% ± 2% 85% ± 27% 83.8% ± 3%
AFF 311% ± 345% 89.2% ± 1% 13% ± 2% 60.5% ± 3%
Residential 248% ± 104% 88.3% ± 1% 6% ± 2% 84.8% ± 26% 74% ± 5%
Services 289% ± 77% 93.6% ± 3% 8% ± 2% 84.9% ± 26% 86.9% ± 3%
Aviation 38% ± 3%
Navigation 39% ± 3%
Rail 72.7% ± 3%
Road 25.1% ± 1%
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energy statistics.

5.3. Conclusion

This study is the first attempt to rigorously quantify the uncertainty
that is associated with Final and Useful energy balances–which are
extensively used in national level energy system modelling. This study
provides three main contributions to the wider energy studies litera-
ture. First, a novel methodology is developed to enable the quantifi-
cation and assessment of the uncertainty associated with Final and
Useful energy statistics using a Bayesian framework. Second, new data
on the efficiency of ten end-use conversion devices is compiled and it is
used to estimate their average efficiency. Third, the Useful energy
balance of the United Kingdom is estimated with updated data.

The new efficiency data suggests that it is important to collect up to
date country specific efficiency data and that year-on-year variations
are small but vary for different end-use technologies. The uncertainty
analysis shows that the largest source of uncertainty is the allocation to
energy end-uses where the uncertainty of the energy flows goes from a
median value of 5% to one of 34%. The transport sector results are the
most certain while, and the provision of Useful Heating is the most
certain Useful category. Overall, 85% of Useful energy consumption has
uncertainties below the acceptability threshold of 25%. While the es-
timates obtained are more unreliable than traditional Final energy
statistics, it is believed that a relatively small improvement in the end-
use data quality could turn Useful energy into a viable energy indicator
for policy design and evaluation. The advent of cheaper and widespread
sensing equipment and data processing technology will bring about
more information about the end-uses of energy. Statistical offices are
advised to make use of this new information to improve data collection
protocols and thus improve the reliability of end-use energy statistics.
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